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Responses 
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Timing is an essential component of human actions, and is the foundation of any 

sort of sequential behavior, from picking up a glass to playing an instrument or dancing. 

Because of this, our understanding of how we represent time in the brain (i.e., the human 

timing system) critically relies on basic research on simple behaviors. Perception of 

temporal regularities is central to a wide range of basic actions, but also underpins 

abilities unique to humans such as the creation of complex musical scores. This 

dissertation is an in-depth examination of endogenously and exogenously guided timing 

behavior, and how context is a critical component of understanding rhythmic entrainment 

in humans.  

We previously validated “gold standard” functional magnetic resonance imaging 

(fMRI) findings on action-based timing behavior using functional near infrared 

spectroscopy (fNIRS) (Rahimpour et al., 2020). In particular, we observed significant 

hemodynamic responses in cortical areas in direct relation to the complexity of the 

behavior being performed. To do so, we probed multiple levels of contextual influence on 

action-based timing behavior and patterns of cortical activation as measured using fNIRS. 

Our findings highlighted several distinct, context-dependent parameters of specific timing 

behaviors. Here we further interrogate human timing abilities by introducing variations of 

our original experimental design, observing that subtle contextual variations have a 

significant impact on the degree of rhythmic entrainment given the presence/absence of 

metronomic input. We used electroencephalogram (EEG) to further validate our fNIRS 

findings, demonstrating that single trial neurobiological activity can be used to predict 

whether behavior is exogenously or endogenously guided. We also found that patterns of 

neural activity correspond to differential use of the internal timing system, and that 

specific differences in neural activity correlate with accuracy of action-based timing 

behavior. These findings emerged from our use of a novel deep learning approach to 

extract person-specific, neural-based features as predictors of behavioral performance. 

Finally, we examined whether fNIRS and EEG produced similar localization information, 

finding that the influence of training factors on cortical localization must be accounted 

for to make such comparisons.  

Keywords: action-based timing behavior, fNIRS, EEG, rhythmic entrainment, 

hemodynamic response, event related potential, neurobiological activity, coordination 

modes, phase of maintenance task, synchronization, syncopation, pacing, continuation, 

deep learning, difference in difference approach, piecewise grow curve model, 

coordination dynamics 
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Chapter 1: Introduction 

 

          In traditional Persian music (https://www.youtube.com/watch?v=D5W4GJod8qU), 

both performers execute and synchronize a rhythmic pattern together. Sometimes one 

stops while the other maintains the tempo but over time, both performers and listeners 

entrain to the rhythm. These temporal rhythmic interactions make it difficult to ignore the 

music and underpin what makes it enjoyable. More broadly, this highlights how we 

perceive and respond to complex temporal information, abilities that serve as the basis for 

a range of questions relevant to research in psychology, cognitive science, and 

neuroscience. Not surprisingly, complex temporal processing has been studied 

extensively using a range of methodological approaches (Grondin, 2010; Haigh et al., 

2021).  

In my dissertation, I aim to answer some fundamental questions about action-

based timing. First, I review recent findings from this area of research, with a focus on 

the neural bases of timing action and behavioral entrainment in humans. Second, I 

identify gaps in the extant scientific literature and formulate hypotheses that are as yet 

unanswered in this field of study. Finally, I present a series of studies in which I 

investigated action-based timing using both behavioral and brain-based experimental 

approaches, in addition to introducing a novel machine-learning approach.  

 

Timing Scales 

In humans, the development of sensitivity to time is essential, as accurate timing 

guides many aspects of social behavior, including speaking, dancing, listening to speech, 

playing music, performing a wide variety of sports, and driving a car. Four different 

timing scales have been identified as relevant to characterizing human timing 

mechanisms: 1) microseconds (e.g., echolocation); 2) milliseconds (e.g., music, dance 

and speech); 3) seconds to minutes to hours (e.g., conscious perception of time); 4) 

circadian rhythms (e.g., sleep-wake cycle) (Merchant & De Lafuente, 2014). Here, I 

focus on the millisecond scale as it is applied to the study of human timing behavior. 

Timing With Millisecond Resolution 

Timing that is calibrated to the hundreds of milliseconds (200–1,000 ms) is the 

basis for a broad range of activities, from speech perception/communication to the 

execution and appreciation of music and dance. Processing in the auditory, visual, and 

tactile modalities relies on timing, as does the coordination of movements that occur in 

this time range (Clarke, 1999). Thus, the human ability to quantify time on the 

millisecond scale needs to be precise, yet flexible. Indeed, individuals must be able to 

control the onset and offset of their time estimation depending on the contingencies of the 

environment.  

Such flexibility in perception of time is well described by Weber's law, which 

quantifies human perceptual ability by predicting a linear relationship between sensitivity 

and duration on interval timing tasks (Getty, 1976; Killeen & Weiss, 1987). Weber law 

predicts a linear psychophysical function, such that as the duration of an event increases, 

the amount of error in timing action also increases linearly (Grondin, 2014; Merchant et 

al., 2008); but see (Grondin, 2012, 2014). Thus, according to this law, the resulting 

https://www.youtube.com/watch?v=D5W4GJod8qU
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Weber fraction (i.e., the parameter that indicates the coefficient of variation) should be 

constant (Merchant & De Lafuente, 2014). 
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Timing Interval Properties  

However, more recent studies have shown that there are violations in such scalar 

timing properties (Bizo et al., 2006). For example, it has been shown that Weber’s law 

does not hold or holds only for a restricted range of durations depending on the particular 

task context (Bangert et al., 2011; Merchant et al., 2008). Merchant et al (2008) found 

that performance variability was larger in perceptual tasks compared to timing action 

tasks, and for visual compared to auditory stimuli. Variability also decreased as a 

function of the number of intervals. These researchers suggested that their findings may 

indicate the existence of different timing mechanism. Bangert et al (2011) also reported 

that there is a violation of Weber’s law for time. For example, depending on the specific 

numbers, the Weber fraction indicates that the scalar property is nonlinear. Indeed, these 

researchers reported that the Weber fraction is higher at 1,700 ms than at 1,350 ms, where 

the Weber fraction is already higher than at 1,175 or 1,000 ms. Thus, for brief intervals 

(270–1,175 ms), their data showed no violation of Weber’s law, but beyond that range, 

the Weber fraction increased.  

Timing depends on a wide range of factors, including perception, learning and 

memory, and voluntary motor action and control (Grondin, 2010). Timing perception 

alone is complex, and timing-based action depends on the interaction of a dynamic 

network of brain structures, which associate temporally dependent sensory information 

dynamically with memory traces of time to generate behavior based on perceptual 

decisions (Roseboom et al., 2015). Integration of time across multiple sensory modalities 

is necessary for the recognition and interpretation of temporal aspects of the sensory 

information that are guiding action. Thus, the ability to adjust behavior dynamically in 

different contexts is a critical component of the execution of voluntary movements with 

strict temporal control.  

Implications of Timing Behavior  

Action-based timing plays an important role in timing behavior. Generally 

speaking, the human motor system is hierarchically organized, guided by sensory input 

(Pinel, 2009) and mediated by voluntary control (Wing, 2002). This hierarchical structure 

allows the motor system to organize a large number of different movement sequences 

involving various complexities, including the number of limbs used, number of 

trajectories, sequence length, and relative timing of movement (Wolpert & Ghahramani, 

2000).  

Because the ability to perform time-dependent behavior accurately is critical for 

various skills, a large body of research has focused on how temporal mechanisms control 

behavior, with focus shifting more recently to whether and how timing is represented in 

the central nervous system (Repp, 2005). In real-life behavior, hierarchically-timed action 

interfaces with perceptual and cognitive systems (Cisek, 2019). In other words, timing 

behavior dynamically interfaces perception, action, and cognition, with different 

states/parameters changing over time (Balasubramaniam et al., 2021). This dynamic 

system synergistically integrates different elements of timing, including different 

coordination modes (Schöner & Kelso, 1988). Here, coordination mode refers to the way 

a motor action, in this case tapping, is timed relative to an external stimulus. By linking 

changes in coordination mode to behavioral outcomes, we can try to understand how the 

brain dynamically organizes perception and action.  The dynamic movements produced 
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by the motor system based on both endogenous and endogenous processes is referred to 

be researchers as coordination dynamics (Tognoli et al., 2020).  

Examples of behaviors whose performance relies fundamentally on the 

coordination of perceptual processes, timing, and motion—on coordination dynamics—

include professional dancers’ performance on the stage, musicians’ performances in 

concert, and pro-gamers’ gaming performances, to name just a few. Even within a 

specific class of movement, such skills differ further still across individuals and are 

impacted by age, as well as neurological disorders or neural degradation. Impacts on 

different characteristics of timing-based action can be observed in people with, for 

example, neurologically-based motor deficits (e.g., people with Parkinson's Disease) or 

auditory deficits (e.g., cochlear implant users), meaning that there are practical reasons to 

better understand how coordination dynamics work. There are theoretical reasons for 

understanding coordination dynamics too. Critically, understanding the mechanisms 

underlying timing behavior will help address questions about the nature of our internal 

clock. More specifically, if humans organize sequential events internally when there are 

no environmental or other external cues to guide such behavior, one must ask whether 

such processing is idiosyncratic, differing from person-to-person, or rather whether a 

“universal” or standard internal clock guides timing for everyone in the same way.  

One perspective that helps delineate the connection between internal timing and 

its consequences is studied through the use of maintenance tasks in an experimental 

setting. Maintenance tasks are those in which participants are asked to first produce a 

behavior linked to an externally presented stimulus, and their behavior is further assessed 

(i.e., for changes in accuracy) after removal of the external cue. One task that uses 

maintenance is the continuation paradigm (Rao et al., 1997), which has been an important 

source of information about the accuracy of internal timing mechanisms relative to timing 

as it is guided by external information.  

Maintenance has been shown in findings from participants performing a routine 

task at different fixed time intervals (Matell & Meck, 2000). Investigations of 

maintenance have demonstrated that short-term memory is essential for measuring timing 

performance (Schon et al., 2004). For example, maintenance based on temporal intervals 

in the sub-second and second range has been shown to interact with working memory and 

long-term memory, both of which are crucial to the elaboration of information to 

maintain different timing intervals (Rammsayer & Ulrich, 2011). Thus, it seems that 

internal generation of precisely timed movements is dependent on interrelated neural 

systems involved in sensorimotor processing (Rao et al., 1997), attention, and memory 

(Ruspantini et al., 2011).   

Researchers who have used the continuation paradigm argue that time-associated 

brain regions respond in a context-dependent manner by maintaining the activation 

induced by stimulus-based input during the “pacing” phase to guide behavior in the 

“continuation” phase (Jantzen et al., 2004). Thus, contextual parameters of action-based 

timing systems play a major role in the variable behavioral and neural results obtained 

using the continuation paradigm. Furthermore, possible examination is to find a novel 

way to predict context-based behavioral accuracy by neurophysiological markers.  
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Timing and External Sensory Input 

I have focused my research in part on understanding how people temporally 

coordinate their actions relative to external input. Specifically, I examine sensorimotor 

synchronization (SMS), a form of behavior in which an action is temporally coordinated 

with an external event (Repp, 2005). Usually, SMS refers to a situation in which both the 

action and the external stimulus are periodic. Therefore, SMS can be defined as the 

ability to temporally coordinate one’s own motor rhythm with an external rhythm. Such 

coordination is essential, for example, in music and in dancing (Murta et al., 2017). 

Musicians and dancers must synchronize their actions with the audible and visible actions 

produced by other ensemble members. Orchestral musicians must follow a conductor. 

Musicians often use a metronome to pace their actions, or they coordinate their actions 

with beats produced by other musicians, such as those in the rhythm section. Even when 

people simply listen to music, they generate temporal expectations (internal 

synchronization), often moving in synchrony with the musical beat. 

Despite the complexity of these domains of relevance, SMS studies often focus on 

the simple task of finger tapping to an auditory sequence that consists of pure tones, and 

there are many variants of SMS tasks that engage different forms of movement (e.g., 

tapping on a hard surface versus finger flexion or limb movement without contact) 

(Balasubramaniam et al., 2004), modalities of stimulation (e.g., auditory or visual) (Hove 

et al., 2013), and coordination (e.g., in-phase (synchronization) or anti-phase 

(syncopation)) (Jantzen et al., 2004). Finger tapping in synchrony with an external 

rhythm remains a popular paradigm because of its simplicity. SMS tasks in neuroscience 

research most often involve a modified version of finger tapping, which allows 

investigation of the internal timing system.  

Interestingly, the findings on rhythm and beat perception suggest that people have 

different capacities for synchronization to rhythms presented across different modalities 

(Grahn & Brett, 2007). Findings generally show an auditory advantage, with stronger 

neural coupling between sensory and motor areas of the brain when people coordinate 

their actions to an auditory stimulus. Consistent with this, auditory rhythms generally 

lead in terms of the accuracy of sensorimotor synchronization relative to visual rhythms 

(Comstock et al., 2018). The auditory cortex of many vertebrates contains cells that are 

tuned to the duration of auditory stimuli in the range of tens of milliseconds (10–100 ms); 

in contrast, the range of durations represented in the visual area begins at around 100 ms 

(Toussaint & others, 2002). These findings all support the argument that time is a 

fundamental component of auditory processing, in particular. 

Timing Parameters Available for Manipulation 

Two central coordination dynamics of interest that I have used in the studies 

presented here are maintenance (already discussed) and in-phase (synchronization, i.e., 

movement in time with a pacing metronome) versus anti-phase timing (syncopation, i.e., 

movement in between successive metronome) (Jantzen et al., 2004). While in-phase 

synchronization of motor action to auditory input can be performed relatively 

automatically with little planning or monitoring, anti-phase syncopation involves 

planning and executing each movement individually. Thus, syncopation is more 

attention-demanding and involves learning-related mechanisms far beyond those required 

for synchronization. A person must repeatedly predict the midpoint of an interval, with 
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minute timing errors accumulating as the task progresses (Mayville et al., 2002). Thus, 

syncopation is a less stable form of coordination than synchronization, and relative to 

synchronization, syncopation decreases in stability as rate increases (Jantzen et al., 2004; 

Wilson et al., 2014). A further manipulation of timing can be achieved by having 

participants engage in paced tapping, followed by continuation tapping, whereby they 

continue tapping without an accompanying external stimulus.  This manipulation can be 

combined with the in-phase/anti-phase manipulation (Lewis et al., 2004).  

Neural Representation of Timing Action 

The motor system is organized in a hierarchical structure that involves the spinal 

cord, subcortex, and cerebral cortex (Pinel, 2009). Finger tapping tasks generally recruit 

primary sensory and motor cortex (S1 and M1), supplementary motor area (SMA), 

premotor cortex (PMC), inferior parietal cortex, basal ganglia, and cerebellum (Witt et 

al., 2008). Although the SMA is involved primarily in motor planning, its activity also 

reflects an active supervisory role of M1 during motor processing (Kasess et al., 2008). 

Different task-specific parameters may modulate the neural mechanisms engaged during 

motor performance. For example, motor areas are recruited to a greater extent in tone-

syncopated than tone-synchronized tapping (Byblow & Stinear, 2006; Chen et al., 2008; 

Jantzen et al., 2004; Mayville et al., 2002).  

The similarities and differences in the neural circuits engaged during tapping can 

be investigated further by adding a pacing-continuation component to the task. While 

simple synchronized finger tapping engages the motor-cerebellar network, continuation 

of synchronized tapping without an accompanying sound engages a broader range of 

cortical regions due to its load on working memory. Motor areas such as M1, S1, SMA, 

and anterior cerebellum are commonly activated during both pacing and continuation 

tapping (Witt et al., 2008). Thus, more complex SMS tasks result in greater activation in 

related motor areas (e.g., pre-SMA, PMC, & cerebellum), as well as in stronger coupling 

to the auditory area (in the presence of a tone). 

Our group previously investigated neural activity patterns underlying movements 

paced according to an external sound, which they then maintained without that sound. 

Our findings demonstrated that temporal representation depends on how that 

representation is established (i.e., for continuation, how it was established during a 

previous pacing phase) (Rahimpour et al., 2020). Furthermore, while we found that 

synchronization was achieved relatively automatically, with little planning or monitoring, 

syncopation involved planning and executing each movement individually. Moreover, 

syncopation was also generally more attention-demanding and appeared to involve 

learning-related mechanisms, because it required participants to identify the break point 

of an empty interval over and over with no feedback on the accuracy of their performance 

(Mayville et al., 2002). This effect was exaggerated further by introducing a stimulus-free 

continuation phase. Thus, syncopation appears to be a less stable form of coordination 

than synchronization. Consistent with this, other findings have shown that, relative to 

synchronization, syncopation decreases in stability as the rate of the behavior (i.e., 

tapping) increases (Jantzen et al., 2004; Wilson et al., 2014) (More details in Chapter 2 

and 3).  
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Aims 

The neural activity elicited from timing behavior depends on several timing 

parameters, including duration of timing movement, the effect of training (musician vs. 

non-musician) (Chen et al., 2008), interval ratio (metrical vs. non-metrical rhythmic 

form) (Sakai et al., 1999), rhythmic complexity (Mathias et al., 2020), movement rate 

(Kelso et al., 1998), number of stimuli (Jantzen et al., 2009), kinematics (e.g., the 

velocity of acceleration) (Paek et al., 2014), body effector (Serrien, 2008), movement 

trajectory (Pabst & Balasubramaniam, 2018), left versus right (dominant versus non-

dominant) hand movement (Bai et al., 2005), and unimanual versus bimanual movement 

(Serrien, 2008). Chapter 2 focuses on how multiple levels of parameters affect timing 

behavior and neural activity. This study focused specifically on the impact of study 

design (i.e., block design—validated in our previous study—compared to alternating 

design) on timing performance and neural engagement.  

Thus far, the neural data I have described have been obtaining using an indirect, 

blood-based measurement tool, functional near-infrared spectroscopy (fNIRS), to 

examine timing-based action. I describe fNIRS in detail in Chapter 2. For now, it is 

important to keep in mind that cortical hemodynamics are slow relative to neural activity 

itself. We are able to establish long-range connections between timing behavior and 

hemodynamic activity, but we are unable to observe moment-to-moment changes in the 

brain during such action. FNIRS is a good indirect measure of timing-based influences on 

the brain, but it is fundamentally constrained in terms of its temporal details. Given that, 

Chapter 3 explores insights provided by neural activation of previously trained 

individuals as measured via EEG. These activations should reflect and predict context-

oriented timing behavior and thus allow us to study more nuanced aspects of the temporal 

characteristics of coordination dynamics. In the study presented in Chapter 3, neural 

activations—and their corresponding event-related potentials (ERPs)—are tracked in 

participants while they engage in the same alternating timing paradigm described in 

Chapter 2. These brain-based measures together with carefully acquired behavioral data, 

will further inform our understanding of the temporal changes in sensory-motor related 

brain activity as it responds in support of time-based action. Specifically, in this study we 

ask how ERPs relate to [specifically predict] behavioral accuracy the tapping task we 

established in previous studies. 

These two forms of brain-based information (collected using fNIRS and EEG) tell 

us different things about how the brain supports timing-based action, together they can 

inform us about the measures themselves. ERPs (as collected using EEG) are limited in 

terms of the precise localization they can indicate regarding the neural source of their 

effects. Source modeling is a tool to help interpret the source localization of EEG-

acquired signals, but due to the inverse problem (Koles, 1998), this is an imperfect 

method. It is important to better understand the accuracy of such source localization 

techniques, something we can achieve using a neuroimaging method with a better spatial 

resolution (e.g., fNIRS). Thus, in Chapter 4, I explore the degree to which fNIRS can 

validate source localization findings for EEG data and explore the influence of training 

effect on precise brain locals. Specifically, this chapter gives insight into the ability of 

fNIRS system to validate results obtained using the ICA-DIPFIT source localization 
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technique, with a focus on data collected using the same timing-based actions described 

in Chapters 2 and 3. 
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Chapter 2 

Multiple Levels of Contextual Influence on Action-Based Timing Behavior and 

Cortical Activation 

  

Abstract 

 Procedures used to elicit both behavioral and neurophysiological data to address 

a particular cognitive question can impact the nature of the data collected. Previously, we 

used functional near-infrared spectroscopy (fNIRS) to assess performance of a modified 

finger tapping task (Rahimpour et al., 2020), in which participants performed 

synchronized or syncopated tapping relative to a metronomic tone. Both versions of the 

tapping task included a pacing phase (tapping with the tone) followed by a continuation 

phase (tapping without the tone). Both behavioral and brain-based findings revealed two 

distinct timing mechanisms underlying the two forms of tapping. Here we investigate the 

impact of an additional—and extremely subtle—manipulation of the study’s 

experimental design. We measured responses in 23 healthy adults as they performed the 

two versions of the finger-tapping tasks either blocked by tapping type or alternating 

from one to the other type the course of the experiment. As in our previous study, 

behavioral tapping indices and cortical hemodynamics were monitored, allowing us to 

compare results across the two study designs. Consistent with previous findings (Jantzen 

et al., 2004a, 2007a; Rahimpour et al., 2020), results reflected distinct, context-dependent 

parameters of the tapping. Moreover, our results demonstrated a significant impact of 

study design on rhythmic entrainment in the presence/absence of auditory stimuli. 

Tapping accuracy and hemodynamic responsivity collectively indicate that the blocked 

design context is ideal for studying action-based timing behavior.  

 

Keywords: rhythmicity, rhythm entrainment, synchronization, syncopation, block 

study design, alternating study design, fNIRS, coordination mode, maintenance 

paradigm, finger-tapping task, causal inference, temporal trend, HRF, AR-IRLS, 

coordination dynamics 
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Introduction 

Timing and coordination in human behavior can be described as a function of 

motor and acoustic interactions within a larger complex dynamical system (Proksch et al., 

2022). The behavior of such a complex dynamical system can be affected by changes in 

the timing of both externally observed stimuli and endogenous motor and auditory 

processes. Thus, it is critical to characterize an appropriate contextual approach to study 

human timing ability. Sensorimotor synchronization is a scientific approach to investigate 

timing entrainment behavior in humans, which fundamentally underlies more complex 

rhythmic behaviors such as dancing. Finger-tapping is a common sensorimotor 

synchronization task used to explore timing control of rhythmic entrainment (i.e., stable 

temporal relationship between external periodic inputs and endogenous rhythmic process) 

and, as a result, coordinate with environmental rhythm (McPherson et al., 2018; Repp & 

Su, 2013). Finger-tapping studies assess how participants use their mental timing system 

in a manner that is independent of other motor behavior or feedback mechanisms (Ivry & 

Keele, 1989; Sergent, 1993; Wing & Kristofferson, 1973). Two leading derivatives of the 

sensorimotor synchronization approach are synchronization-continuation and 

syncopation-continuation tasks (tapping on the beat, or off the beat respectively) (Jantzen 

et al., 2004; Rahimpour et al., 2020). In those approaches, participants are initially 

entrained with an external stimulus. When the stimulus train is extinguished, they are 

required to maintain and sustain the entrainment (on or off the beat) based on the internal 

timekeeping mechanism.  

Two stable modes of human behavioral coordination with external signals are 

synchrony and syncopation (or anti-synchrony). Synchronized tapping to an external 

pacing signal generally requires little preparation and self-monitoring (Chauvigné et al., 

2014). By contrast, syncopated tapping requires substantial monitoring of the perception-

action cycle across time (Mayville et al., 2002a). Participants may also be asked to 

continue tapping after the cessation of the externally presented stimulus, allowing 

researchers to contrast pacing along to an external stimulus and continuing without it. 

Such a continuation phase depends on an internal mental representation of the duration of 

the intervals and thus can provide insights into specific aspects of timing behavior and 

endogenous timing processes. 

The ability to accurately and precisely perform timing behavior is critical to 

various real-world skills (Nachev et al., 2008). Different task-specific timing parameters 

may be manipulated to further target specific neural and/or cognitive mechanisms. The 

behavioral performance and associated neural activity elicited from timing behavior 

depend on several timing parameters, including duration of timing movement, the effect 

of training in rhythmic timing activities (e.g. musicians vs. non-musicians) (Chen et al., 

2008), stimulus interval ratio (metrical vs. non-metrical rhythmic form) (Sakai et al., 

1999), rhythmic complexity (Mathias et al., 2020), movement rate (Kelso et al., 1998), 

number of stimuli (Jantzen et al., 2009), kinematics (e.g., the velocity of acceleration) 

(Paek et al., 2014), body effector (Serrien, 2008), movement trajectory (Pabst & 

Balasubramaniam, 2018), left versus right (dominant versus non-dominant) hand 

movement (Bai et al., 2005), and unimanual versus bimanual movement (Serrien, 2008a).  

It is important to understand how subtle decisions in the initial study design of timing 
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tasks may impact both behavioral and neural processes, and the conclusions that can be 

drawn from these studies. 

Study Designs in Timing Research  

The intricacies of timing behavior and variety of contexts in which humans 

make use of different timing mechanisms make it important to carefully design 

experimental tasks to ensure we are observing stable characteristics of timing 

behavior. Motor control and movement research employing tapping has often alternated 

coordination modes across the course of an experiment. to minimize behavioral 

confounds across trials (Merel et al., 2019).  However, much fMRI research relies on 

blocked design to improve signal to noise ratio in neural data across conditions (Amaro & 

Barkera, 2006), given the sluggish nature of cortical hemodynamics (relative to, for 

example, electrical brain potentials). In what follows, we describe the impact of two 

contrasting study designs – with coordination mode either blocked or alternating – on the 

behavioral and neural correlates of timing.  

In our previous study (see Rahimpour et al., 2020), participants were asked to 

perform a synchronized and syncopated finger-tapping in a standard continuation task. 

The synchronized and syncopated tapping trials were presented in a blocked manner, so 

participants did not have to switch back and forth between the two types of tapping. 

Participants were asked to pace their tapping relative to the auditory metronome tone and 

then continue tapping without the tone. This represents a canonical blocked design, with 

synchronized and syncopated trials performed consecutively. Such a design allows 

researchers use to examine the accuracy of timing ability, while lending itself to 

hemodynamic-based measures such as fMRI. These synchronization/syncopation-

continuation tasks have been found to recruit sensorimotor cortex (S1/ M1), 

supplementary motor area (SMA), premotor cortex (PMC), inferior parietal cortex, basal 

ganglia, and cerebellum to different degrees depending on the specific coordination mode 

and task phase (Lewis et al., 2004; Witt et al., 2008). In our previous findings, we 

observed significant hemodynamic changes directly related to the complexity of the 

tapping task. Specifically, we observed recruitment of a broader cortical network during 

the syncopated continuation condition compared to other conditions (synchronized 

pacing, synchronized continuation, or syncopated pacing). We also observed overall 

differences in hemodynamic activity in the synchronized versus syncopated coordination 

mode, which points to distinct processing networks for these different forms of 

coordination dynamics. Our block study design activated a network compatible with the 

motor-related timing network (M1 and SMA) in the syncopated and synchronization 

tasks, but additional activity was observed during syncopated tapping in central, frontal, 

and parietal areas. This a finding is compatible with an increase in memory and 

attentional processes, as well as increases in cognitive control, required for syncopated 

tapping (Rahimpour et al., 2020). 

In contrast, in a design in which coordination mode alternates from trial to trial  

participants are asked to alternate their tapping pattern between synchronized and 

syncopated tapping across trials. When adding the continuation paradigm to this design. 

Each trial includes a period of tapping paced to an auditory tone and then continued in the 

absence of the tone (Comstock et al., 2018; Comstock & Balasubramaniam, 2018; Pabst 

& Balasubramaniam, 2018). As previously mentioned, the coordination modes of 



17 
 

 

synchrony and syncopation can create two stable attractors in human movement. 

However, the less stable coordination mode—syncopation—has a tendency to transition 

to the more stable timing of synchronous tapping, particularly given increasing task 

demands, such as by increasing the complexity of the task by including a continuation 

condition with no externally guiding stimulus (Jantzen et al., 2009). Additionally, it takes 

time to develop an internal representation of pulse and to entrain tapping behavior to 

complex rhythmic stimuli (Chapin, et al., 2010). Thus, alternating between synchronized 

and syncopated tapping may increase task demand as well as shorten the amount of time 

available to develop a stable pulse percept, particularly in the syncopated coordination 

mode. Therefore, we predict relatively less accurate and lower rhythmic entrainment 

performance from participants in an alternating design than a block study design across 

both synchronization- and syncopation-continuation tasks. Also, we predict that 

complexity and difficulty of study design (given the alternating versus block design) will 

lead to broader patterns of neural activation overall.  

Current Study 

In this study, we examined whether the study’s design, with tapping either 

blocked by coordination mode or alternating across modes, influenced behavioral and 

cortical indicators of rhythmic entrainment. We used a sensorimotor synchronization 

finger-tapping task from our previous study, which included two coordination (tapping) 

modes (synchronized vs. syncopated), and two forms of maintenance (pacing with a 

metronome vs. continuing without the metronome). Critically, one set of participants 

performed the experiment with task trials blocked by coordination mode, and a second set 

was asked to alternate from one coordination mode to the other across the course of the 

experiment. Thus, four conditions were included for each of the two study designs: 1) 

synchronized pacing, 2) synchronized continuation, 3) syncopated pacing, and 3) 

syncopated continuation.  

Our previous study used tapping tracking for behavioral measurement 

(MakeyMakey™ kit) and functional near-infrared spectroscopy (fNIRS) for 

hemodynamics. Compared to functional magnetic resonance imaging (fMRI), fNIRS 

provides fine-grained temporal information and a more vibrant picture of cortical 

hemodynamic activity in terms of concentration changes of both [Oxy-Hb] and 

deoxygenated [deoxy-Hb] hemoglobin (Cutini et al., 2014). Moreover, it has a higher 

temporal resolution than fMRI and PET and better spatial resolution than EEG. It also 

has less sensitivity to movement than all other methods.  

We hypothesize that switching back and forth between coordination modes over 

the course of the study will increase demand on timing control mechanisms, and thus 

impact the behavioral performance and cortical hemodynamics we observe during the 

finger-tapping task. We propose that the neural representation of timing behavior may be 

flexibly determined by the sensorimotor systems engaged during pacing and continuation 

phases for synchronized and syncopated coordination modes, and that this neural 

representation may differ based on the study design—blocked or alternating—that is 

used. To test our hypothesis, we compared findings across the two study 

designs. Specifically, we measured relative changes in cortical hemodynamics while 

participants performed the maintenance task given its systematically varied difficulty 

levels. This allowed us to probe the neural representation and continuity of timing 
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behavior across two different coordination modes (synchronization and syncopation) in 

two different maintenance contexts (pacing and continuation) across two different design 

contexts (block and alternating). We predicted that the finger-tapping task would produce 

markedly different behavioral and cortical outcomes depending on the specific context in 

which the forms of tapping were embedded. 

 

Materials and Methods 

 

Participants 

Twenty-three healthy adult volunteers (16 females, 7 males; mean age 26.1, range 

19-41) from the University of California, Merced were recruited in the study. Thirteen 

participants were randomly assigned to perform the tapping task in an alternating design 

and the remainder were assigned to perform the task in a block design. All participants 

successfully completed the tapping task and participated in fNIRS data collection. All 

participants were strongly right-handed, according to self-report. No participants reported 

any neurological or skeletomuscular disorder or injury that would prevent them from 

performing a timing-based tapping task. Informed consent was obtained from each 

participant before any data collection. This study was approved by the University of 

California, Merced Institutional Review Board for research ethics and human 

participants.  

Task Procedure  

Participants performed a rhythmic coordination task in a mixed-method study 

design containing two different study designs: block design and alternating design (See 

Figure 2 in Chapter 2). This task involved tapping on a custom-built metal plate 

connected to a MakeyMakey™ kit (Comstock et al., 2018; Comstock & 

Balasubramaniam, 2018) in time with an auditory metronome presented at 1 Hz in order 

to register the timing of each tap relative to an auditory metronome tone (Rahimpour et 

al., 2020). The time point of a participant's plate finger-tapping was corrected by 25 ms 

(to correct for temporal device delay due to the time it took the internal circuitry of the 

MakeyMakey™ to process the input, a built-in delay for input registration that reduces 

accidental double inputs) to define the onset of each behavioral response.  

Two different timing relations were examined: synchronized tapping (pressing on 

each beat) and syncopated tapping (pressing between successive beats). The orders of 

coordination modes were counterbalanced across the trials (i.e., half of the participants 

were randomly selected to start with synchronization and the rest with syncopation), and 

half of the participants completed the tapping task in either blocked (Figure 1A-Chapter 

2) or alternating design (Figure 1B-Chapter 2). Each coordination mode consisted of two 

phases of pacing and continuation at a rate of 1 Hz. For each coordination mode, 

participants were instructed to perform the task condition’s timing relation as best as 

possible when the metronome was on, and to continue after the metronome stopped. 

Seated participants performed repetitive right finger movements in the presence of an 

auditory metronome that produced a 1kHz tone for 20ms every 1000ms (1Hz). There 

were ten trials for each of the four timing conditions (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, syncopated continuation), with each trial 

involving 27 cycles of responses. 
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Figure 1.  Schematic diagrams stimulus design A) blocked and B) alternating study 

designs. Participants perform repetitive finger tapping in the presence and then absence 

of an auditory metronome tone. The task consisted of 20 tapping trials. Each trial began 

with a pacing phase (15 cycles of tapping with the tone) followed by a continuation phase 

(12 tapping cycles continued in the same manner established during pacing but without 

the tone). Tapping patterns were performed in two different coordination modes: 

synchronized tapping (blue color) or syncopated tapping (red). Ten trials of tapping in 

each coordination mode were performed corresponding to block or alternating study 

design. During each trial, participants fixated a crosshair (+). 

 

Statistical Analysis  

 

Behavioral Analysis 

For behavioral analysis, two relative measures of performance were calculated: 

asynchrony as a measure of accuracy, and inter-response interval as a measure of tapping 

fluency. We defined asynchrony as the time difference between a participant’s response 

and the stimulus for each tapping cycle (𝑡𝑎𝑝𝑖 − 𝑏𝑒𝑎𝑡𝑖, 𝑖 𝜖 𝑛; 𝑐𝑦𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) (Bavassi et 

al., 2017; Deligniéres et al., 2009). We defined “virtual” asynchrony in syncopation as 

the time difference between a participant’s response and the middle time point of each 

cycle (𝑡𝑎𝑝𝑚𝑖𝑑 {𝑖,𝑖+1} − 𝑡𝑎𝑝𝑖 , 𝑖 𝜖 𝑛; 𝑐𝑦𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟). The term “mean asynchrony” (i.e., 

coordination error) is used to refer to accuracy for both synchronization and syncopation. 

Lower mean asynchrony (i.e., an asynchrony value close to 0) indicates higher levels of 

tapping accuracy. Further, negative mean asynchrony indicates that a participant is 

predicting the onset of each successive stimulus, while positive mean asynchrony 

indicates that a participant is reacting to a stimulus onset (Repp & Su, 2013). Note that 
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virtual mean asynchrony is also defined and computed by considering the taps and the 

extrapolated silent beats in continuation phases (Repp, 2005). Lastly, we measured the 

fluency of tapping, the inter-response interval (IRI), which we defined as the time 

between consecutive taps (𝐼𝑅𝐼𝑖 = 𝑡𝑎𝑝𝑖+1 − 𝑡𝑎𝑝𝑖  , 𝑖 𝜖 𝑛; 𝑐𝑦𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟).  Negative 

asynchrony indicated that a tap occurred before the stimulus onset; a positive asynchrony 

indicated that the tap occurred after the stimulus onset. Thus, positive asynchronies 

represent reactions to stimuli, rather than their anticipation (Repp & Su, 2013). A 

negative IRI indicated that the interval produced behaviorally by the participant was 

shorter than the target time interval. Although the reasons for this phenomenon are not 

fully understood, anticipation errors in general are assumed to arise because the brain 

synchronizes the sensory consequences of the action with the event (e.g., auditory tone) 

without accounting for the afferent-conductance delay (Rose et al., 2021).  

For our analyses, we first removed outliers from mean asynchrony and IRI indices 

using the interquartile range (IQR) based method. IQR is defined as the difference 

between the 25th percentile (Q1) and the 75th percentile (Q3) of our two behavioral 

markers. We considered an observation to be an outlier if it had a value 1.5 times greater 

than the IQR or 1.5 times less than the IQR (Rousseeuw & Croux, 1993). The average 

amount of missing data (due to single tap outliers or missing taps) within each timing 

condition was 3.2 (outliers= 2.98; missing taps=1.22). We then balanced data using a 

bootstrapping resampling method by selecting the constant sample size (=5) within each 

timing condition block (Berkovits et al., 2000). 

Regression: 

We analyzed our data using a multiple linear regression (MLR) model estimated 

by ordinary least squares (OLS) in order to assess the strength of the association between 

a set of independent variables (predictors) and single dependent (predicted) variable. Our 

model defined IRI and mean asynchrony as two separate dependent variables, and phase 

(pacing vs continuation), coordination mode (synchronization vs syncopation), and study 

design (blocked vs alternating) as three independent variables. The main equations can be 

presented as: 

 

𝑌𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦 = 𝑋. 𝛽 + 𝜀                     (1) 

and  

𝑌𝐼𝑅𝐼 = 𝑋. 𝛽 + 𝜀                                  (2) 

 

Where 𝑌 is a 𝑛 × 1 (𝑛 = 23) matrix containing 𝑛 total observations of each mean 

asynchrony and IRI variables, the matrix 𝑋 has dimensions 𝑛 × (𝑘 + 1) for 𝑡ℎ𝑟𝑒𝑒 

independent variables. The vector  𝛽𝑘  (𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛: (𝑘 + 1) × 1;  𝑘𝜖 0, … ,3) and 

𝜀 (𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛: 𝑛 × 1) represent regression coefficient and error, respectively. After 

observing no violation of MLR assumptions, we estimated our model to predict our mean 

asynchrony and IRI variables based on our three independent variables and generate the 

main effect and interaction effect of each independent variable (predictor) on the 

dependent (predicted) variable.  

After estimating our regression coefficients, we used Tukey’s honestly significant 

difference (HSD) post-hoc test as a multiple pairwise comparison technique (Abdi & 
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Williams, 2010) to find the ANOVA contrast effects between all possible group pairing 

sub categorical observations.  

Cubic Spline Growth Curve Model: 

A flexible statistical approach to model the nonlinear form of temporal trend 

growth is the piecewise growth curve model (PGCM) (Chou et al., 2004). We estimate 

PGCM by cubic spline interpolation approach (Dyer & Dyer, 2001) to perform piecewise 

interpolation and find the turning point of the curve (Ning & Luo, 2017). This allows us 

to formulate the function of growth forms for pacing and the subsequent continuation 

phases such that the second derivative of the model represents the turning point of the 

fitted model. This point is essential since we are interested in comparing growth rates 

across the pacing and continuation phases. The specification of a turning point is 

important (Ning & Luo, 2017), since it may happen before or after the intervention (the 

transition from pacing to continuation). 

Causal Inference: 

Finally, we implemented the difference in differences (DID) method (Branas et 

al., 2011; Wing et al., 2018) to compare the changes in our behavioral indices over time 

between averaged indices of the alternating design (as the manipulated group) and the 

block design (as the control group). We were then able to investigate the causal effect of 

study design on rhythmic entrainment. The DID technique is ideal for use with the 

continuation paradigm, given that randomization of pacing and continuation phases at the 

level of the individual is impossible. No violation of assumptions has been observed in 

our DID approach. First, the functions and covariates in the model are correctly defined. 

Second, the expectation value of the error term is zero and the corresponding 

distributions of covariates are independent. Third, both study designs follow the same 

trends over time in the absence of intervention. The DID regression model was 

implemented as shown in the following equations: 

 

𝑌 = 𝛽0 + 𝛽1. [𝐵𝑙𝑜𝑐𝑘] + 𝛽2. [𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔] + 𝛽3. [𝐵𝑙𝑜𝑐𝑘 × 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔]
+ 𝜀                  (3) 

 ‘ 

Block’ and ‘Alternating’ represent control and manipulated groups, respectively, 

in which dummy variables of time are defined as pacing:0 and continuation:1. The 

variable ‘𝐵𝑙𝑜𝑐𝑘 × 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔’ is defined as the interaction between behavioral 

performance changes of block and alternating designs. Also, 𝛽𝑖  (𝑗𝜖{0,1,2,3}) are defined 

as regression coefficients of the model. Because timing coordination is randomized over 

time, we were able to control for its effect and exclude it from the model as a 

confounding variable.  

A post hoc power analysis was conducted using the software package, GPower 

(Faul & Erdfelder, 1992). The sample size of 23 was used for the statistical power 

analyses, and a three-predictor variable equation was used as a baseline. The 

recommended effect sizes used for this assessment were as follows: small (𝐶𝑜ℎ𝑒𝑛′𝑠 𝑓 =
0.14), medium (𝐶𝑜ℎ𝑒𝑛′𝑠 𝑓 =  0.39), and large (𝐶𝑜ℎ𝑒𝑛′𝑠 𝑓 =  0.59) (see Cohen et al., 

2014). The 𝛼 −level used for this analysis was p < .05. The post hoc analyses revealed 

the statistical power for this study was 0.2 and 0.8 for detecting a small and medium 

effects, respectively, whereas the power exceeded .95 for detecting a moderate to large 
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effect size. Thus, there was sufficient power (i.e., power= 0.8) at the moderate to large 

effect size level, although less than adequate statistical power at the small effect size 

level. 

fNIRS Instrument and Analysis 

During the finger-tapping task, cortical hemodynamics were monitored and 

recorded using a multichannel continuous-wave fNIRS system (NIRScout, NIRx Medical 

Technologies, LLC) with a probe comprising 16 light-source emitter positions containing 

760 and 850 nm LED light and 20 APD light detectors. Data were collected at 3.785 Hz, 

and the average inter-optode distance was 3 cm (Rahimpour et al., 2020). Figure 2 

illustrates our fNIRS probes and channel placement mapped relative to typical 10-10 

scalp landmarks.  

 

 

  

Figure 2. fNIRS probes and channel placement adapted from (Rahimpour et al., 2020). 

Depiction of the geometrical layout of sources (S, red) and detectors (D, blue) concerning 

the international 10-10 EEG system (A) and the corresponding sensitivity maps (B) of the 

probe in a 3D head model. A and P indicate anterior and posterior, respectively. 

 

Raw fNIRS intensity signals were first converted to optical density changes and 

then oxygenated [Oxy-Hb] and deoxygenated [deoxy-Hb] hemoglobin concentration 

estimates, via the modified Beer-Lambert law (partial pathlength factor: 6.0) (Kocsis et 

A 
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A P 

P 



23 
 

 

al., 2006). Both preprocessing and activation analyses were measured using the NIRS 

Brain AnalyzIR toolbox, a MATLAB-based open-source analysis package (Huppert et 

al., 2009; Santosa et al., 2018) which is computed using an autoregressive iterative 

reweighted least square (AR-IRLS) algorithm (Huppert, 2016).   

Extracerebral components such as scalp hemodynamics, heartbeat, and 

respiration, and motion artifacts were corrected using AR-IRLS thoroughly described in 

Barker et al. (2013) and implemented in the NIRS Brain AnalyzIR software described in 

Santosa et al. (2018). Therefore, it makes the algorithm robust to physiological and 

motion artifacts (Hoppes et al., 2018; Lin et al., 2017). We used a canonical model to 

estimate the general linear model's regression coefficients and finally generate the 

hemodynamic response functions (HRFs).  

We first checked the data quality at the participant level and then computed 

group-level results. At the group level, we performed a linear mixed-effects model that 

included the 𝛽 value (together with t-value) per channel and timing condition as the 

dependent variable and independent variable, respectively, to model group-level 

correlations (Abdelnour et al., 2009). For each channel, estimates of the t-value for oxy-

Hb and deoxy-Hb were computed across all trials for all participants. Our analyses only 

include the significantly active channels (i.e., statistically non-zero β) with FDR corrected 

p-value (q-value). However, we focus our analyses on [oxy-Hb] hemoglobin 

concentration due to its higher signal-to-noise ratio (SNR) and lower inter-participant 

variability relative to [deoxy-Hb] (see Rahimpour et al., 2020).  

 

Results 

Our focus is on the impact of the two study designs on the behavioral and 

hemodynamic measures of the finger-tapping task, above and beyond the contextual 

influences of coordination mode and phase of the maintenance paradigm. We first report 

and compare the behavioral results from the IRI and mean asynchrony indices, followed 

by a comparison of the channel maps for each timing condition across the block and 

alternating study designs.     

Behavior 

 

Mean Asynchrony 

Our estimated multiple regression model was calculated to predict mean 

asynchrony based on coordination mode, maintenance phase, and study design. A 

significant effect of all independent variables on the mean synchrony index was found 

(𝐹1,24 = 430.08, 𝑃 < 0.001), with an R2 of 0.78 in our full estimated regression model. 

Moreover, there was a main effect of phase on mean asynchrony (𝐹1,24 = 269.09, 𝑃 <

0.001, η2 =  0.4), with a 48.82 ms average shift toward more positive mean asynchrony 

during continuation compared to pacing. We also observed an average increase of 8.44 

ms in mean asynchrony for syncopation compared to synchronization that was significant 

(𝐹1,24 = 5.83, 𝑃 = 0.02, η2 =  0.14), and an average increase of 23.15 ms in mean 

asynchrony for the alternating compared to block design, which was also significant 

(𝐹1,24 = 96.22, 𝑃 < 0.001, η2 =  0.33). Thus, all three independent variables—

coordination mode, maintenance phase, and study design—significantly impacted mean 
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asynchrony. Moreover, a significant phase × study design interaction (𝐹1,24 = 5.97, 𝑃 <
0.02, η2 =  0.24) and coordination × study design interaction (𝐹1,24 = 7.29, 𝑃 <

0.01, η2 =  0.28) were observed.  

We also observed a contrast effect between pacing and continuation in 

synchronization (𝐹1,24 = 10.8, 𝑃 = 0.001, η2 =  0.34) and syncopation (𝐹1,24 =

22.4, 𝑃 < 0.001, η2 =  0.4) when controlling for study design. A contrast effect was 

also observed for synchronization and syncopation in the continuation phase (𝐹1,24 =

7.5, 𝑃 < 0.001, η2 =  0.3) when controlling for study design.  

Block study design: 

 In order to find the accuracy of synchronized and syncopated paced tapping, the 

average mean asynchronies were measured as −33.75 ± 130.5 (𝑚𝑠) (mean±SD) and 

−38.03 ± 145.34 (ms), respectively (see Figure 3). This clearly shows negative mean 

asynchrony (NMA) (i.e., the anticipation of tapping response with respect to the auditory 

stimulus) (Repp & Su, 2013) in the pacing phase for synchronization and syncopation. 

Moreover, the average continuation phase with no metronome present was estimated at 

14.71 ± 210.8 (ms) for synchronized tapping and 62.91 ± 244.25 (ms) for syncopated 

tapping conditions. This indicates more variability for continuation than pacing in both 

coordination modes. 

By using Tukey’s HSD posthoc test, we observed significant differences between 

pacing and continuation in synchronization mode (𝐹1,24 = 8.18, 𝑃 < 0.001, η2 =  0.24); 

between phases in syncopation 𝐹1,24 = 18.62, 𝑃 < 0.001, η2 =  0.34; and 

synchronization and syncopation in continuation phase (𝐹1,24 = 8.26, 𝑃 < 0.001, η2 =

 0.23).  

Alternating study design: 

For participants in the alternating study design, for synchronized and syncopated 

pacing and continuation, the mean asynchronies were 24.03 ± 106.22 (ms)(mean ±
SD), 5.33 ± 127.93 (ms), 62.99 ± 212.73 (ms), and 76.59 ± 218.92 (ms), 

respectively, as illustrated in Figure 3. The results reveal that pacing resulted in more 

accurate and stable tapping compared to the continuation phase. Significant differences 

between pacing and continuation were observed for synchronization (𝐹1,24 = 6.13, 𝑃 <

0.001, η2 =  0.13) and syncopation (𝐹1,24 = 12.46, 𝑃 < 0.001, η2 =

 0.33) coordination modes; however, no significant differences between coordination 

modes in each phase were observed.  
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Figure 3. Mean asynchronies of each timing condition (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, and syncopated continuation) for the 

block design (black) and alternating design (red). Error bars show standard deviation 

(SD). Dashed brackets indicate statistically significant comparisons between timing 

conditions and solid brackets represent significant contrast effect between two study 

designs (block vs. alternating designs)  

 

Block vs. Alternating study design: 

Specifically, we found a significant contrast effect between pacing and 

continuation phases (𝐹1,24 = 23.65, 𝑃 = 0.001, η2 =  0.2), and also between the block 

and alternating study designs when averaging across the two coordination modes (𝐹1,24 =

14.96, 𝑃 = 0.001, η2 =  0.18). Significant contrast effects were observed between the 

block and alternating design in synchronized pacing (𝐹1,24 = 9.04, 𝑃 < 0.001, η2 =
 0.31), synchronized continuation (𝐹1,24 = 8.24, 𝑃 < 0.001, η2 =  0.28), and syncopated 

pacing (𝐹1,24 = 8.27, 𝑃 < 0.001, η2 =  0.29).  

As can be seen in Figure 4, the average mean asynchrony index in syncopated and 

synchronized continuation is higher than in pacing for both coordination modes. This is 

consistent with our previous findings (Rahimpour et al., 2020) that more complex timing 

behavior results in less accurate behavioral performance. 

Synchronized Pacing Syncopated Pacing Synchronized Continuation Syncopated Continuation 
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Figure 4. Values of mean asynchrony from block design to alternating design for each 

coordination mode and phase of maintenance task: synchronization (blue); syncopation 

(green); pacing (solid line); continuation (dashed line). Error bar indicates standard error 

(SE). 

 

Temporal trend and causal inference on mean asynchrony: 

We used cubic spline interpolation to estimate the fitted model of averaged pacing 

and continuation tapping trial cycles, as shown in Figures 5 and 6. Figure 5A shows the 

temporal trends for the averaged tapping cycles corresponding to the two coordination 

modes across the two study designs. The trend for synchronization over time shows a 

lower level of mean asynchrony than for syncopation; however, an incremental increase 

in asynchrony in the alternating compared to the blocked design was observed in all 

timing conditions, particularly at the continuation onset time point. Figure 5B shows the 

second derivative of the trends specifying the turning point estimated by our interpolated 

model. As can be seen, the estimated turning point for the block design falls (accurately) 

at the continuation onset time point (15 seconds). However, for the alternating study 

design, the turning point for both synchronized and syncopated tapping occurs at 10 

seconds (5 seconds before the phase transition time point) and again at 24 seconds (9 

seconds after phase transition) due to incomplete timing entrainment in the alternating 

design context. 
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Figure 5. (A) Estimated asynchrony trend during maintenance (pacing followed by 

continuation) and (B) second derivatives of the corresponding trends locating the turning 

points (blue square marks) in: blocked synchronization (b_s as solid black line); blocked 

syncopation (b_sn as dashed black line); alternating synchronization (a_s as solid red 

line); and alternating syncopation (a_sn as dashed red line). Gold vertical solid line 

represents continuation phase onset. 

 

Figure 6A depicts the temporal trends for the averaged tapping cycles across all 

timing conditions corresponding to the two study designs. The temporal trend for the 

alternating design has a higher asynchrony level than the block design; however, the 

incremental growth of asynchrony is observed in both, particularly in the transition to the 

continuation phase. Figure 6B shows the second derivative of the estimated asynchrony 

trends (Figure 6A) in which the maximum value represents the turning point of our model 

(see section Cubic Spline Growth Curve Model). As shown, the estimated turning point 

for the block design occurs at the continuation onset time point (second: 15). However, 

the turning point for the alternating design appears at time point 12 (3 seconds before the 

phase transition). 
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Figure 6. (A) Estimated asynchrony trend for the maintenance paradigm (pacing followed 

by continuation) averaged for coordination mode, and (B) second derivatives of the 

corresponding trends locating the turning points (x-marks) in the block design (black 

line) and alternating design (red line). The gold vertical solid line represents continuation 

phase onset. 

 

As shown in Figure 7, the DID approach estimated by OLS was implemented to 

find the causal effect of study design on what we will refer to as rhythmic entrainment 

(Kurtosis= 3.03, Skewness=-0.1). From a total of 7842 observations (trials), we observed 
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a significant causal effect of study design on mean asynchrony output (𝐹2,7839 =

187.02, 𝑃 < 0.001), with an R2 of 0.04. As shown in equation (3), four defined 

regression coefficients were used to estimate the effect of each of the following on the 

outcome: 𝛽0: baseline mean asynchrony during pacing for block design; 𝛽1: mean 

asynchrony temporal changes of block design; 𝛽2: mean asynchrony temporal changes of 

alternating design; 𝛽3: interaction of mean asynchrony between the two study designs. 

The coefficients were estimated as reported in Table 1. As shown, all coefficients were 

significant. These results demonstrate the causal impact of the study design on a 

behavioral measure obtained during performance of the maintenance task using different 

modes of coordination.  

 

Table 1. Basic DID models of mean asynchrony for study design causality 

 𝜷 SE T statistics R 

Constant -

36.12 

1.22 -5.343* 0.3 

Block  75.21 3.392 16.213** 0.66 

Alternating 54.33 4.107 9.543** 0.33 

Block × Alternating -

10.19 

4.113 9.796** 0.63 

Obs  7842  

BIC  442.33  

Likelihood-ratio test of 

alpha=0 

 Chibar2(01) =883.3 

Prob≥chibar2=0.000 

 

Abbreviation: SE, standard error. 𝛽, regression coefficient. Prob, probability. obs, 

observation. BIC, Bayesian information criterion 

* 𝑃 < 0.01, ** 𝑃 < 0.001 
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Figure 7. Graphic illustration of the DID estimator. Values of mean asynchrony averaged 

by timing coordination modes from pacing to continuation for each study design: block 

(black) and alternating (red). 

 

IRI 

MLR was also used to predict IRI based on timing type, maintenance phase, and 

study design; the outcome was significant (𝐹1,24 = 366.28, 𝑃 < 0.001), for the full 

model with an R2 of 0.52. We observed a main effect of phase on IRI (𝐹1,24 =
166.05, 𝑃 < 0.001, η2 =  0.42) with superior performance for pacing relative to 

continuation. We also found an average increase of IRI (∆𝐼𝑅𝐼 =13.77 ms) during 

syncopation relative to synchronization (𝐹1,24 = 98.05, 𝑃 < 0.001, η2 =  0.44), and an 

average increase (∆𝐼𝑅𝐼=15.44 ms) for the alternating compared to block design ( 𝐹1,24 =

14.16, 𝑃 < 0.001, η2 =  0.22), thus favoring block design for accuracy. Likewise, all 

three independent variables—phase, coordination mode, and study design—significantly 

impacted IRI. Moreover, the phase and study design significantly interacted with each 

other (𝐹1,24 = 16.3, 𝑃 < 0.001, η2 =  0.14).  

When controlling for coordination mode, we observed a significant difference 

between the block design and alternating design (𝐹1,24 = 6.02, 𝑃 = 0.001, η2 =  0.22). 

Specifically, a significant contrast effect between block design and alternating design was 

observed for synchronized pacing (𝐹1,24 = 4.69, 𝑃 < 0.02, η2 =  0.16). We also 

observed a contrast effect between pacing and continuation for synchronization (𝐹1,24 =
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6.83, 𝑃 = 0.001, η2 =  0.24 ) and syncopation (𝐹1,24 = 18.5, 𝑃 = 0.001, η2 =  0.3) 

coordination modes when controlling for study design. A contrast effect was observed 

between synchronization and syncopation for the continuation phase (𝐹1,24 = 14.9, 𝑃 =

0.001, η2 =  0.33) when controlling for study design.  

Block study design: 

Synchronized tapping was performed with a mean IRI of 998.32 ± 52.24 (ms) 

and 994.8 ± 65.34 (ms) for the pacing and continuation phases, showing performance 

was very close to one second, thus on-time with the metronome. The average response 

rate was slower during syncopated tapping, with a mean IRIs of 998.76 ± 59.93  (ms) 

for pacing and 1022.18 ± 70.7  (ms) for continuation phases.  

Post-hoc analyses of our regression model revealed a significant contrast effect 

for syncopated pacing and syncopated continuation (𝐹1,24 = 12.1, 𝑃 < 0.001, η2 =

 0.31 ). We also observed a contrast effect for synchronized continuation and syncopated 

continuation (𝐹1,24 = 13.13, 𝑃 < 0.001, η2 =  0.3).  

Alternating study design: 

Synchronized tapping was performed with a mean IRI of 986.65 ± 54.03 (ms) 

and 1013.41 ± 61.69 (ms) for the pacing and continuation phases. Moreover, during 

syncopated tapping, the average response rate was slower, with a mean IRIs of 

1001.76 ± 56.42 (ms) for pacing and 1030.75 ± 70.51 (ms) for continuation phases.  

A post-hoc analysis of the linear regression model for the alternating design 

revealed a contrast effects at every level for the alternating study design: synchronized 

pacing and synchronized continuation (𝐹1,24 = 11.32, 𝑃 < 0.001, η2 =  0.34 ),  

syncopated pacing and syncopated continuation (𝐹1,24 = 16.18, 𝑃 < 0.001, η2 =  0.37 ), 
synchronized pacing and syncopated pacing (𝐹1,24 = 5.41, 𝑃 < 0.001, η2 =  0.19 ), 

synchronized continuation and syncopated continuation conditions (𝐹1,24 = 8.19, 𝑃 <

0.001, η2 =  0.27 ) (see Figure 8)  
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Figure 8. Averaged IRIs with SDs for each condition (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, and syncopated continuation) for block 

(black) and alternating designs (red). solid brackets indicate statistically significant 

contrasts between the two study designs and dashed brackets represent significant 

comparisons between timing conditions. 

 

Block vs. Alternating study design: 

We observed a significant contrast effect for synchronization and syncopation 

coordination modes (𝐹1,24 = 11.15, 𝑃 = 0.001, η2 =  0.28), as well as for the block and 

alternating study designs (𝐹1,24 = 6.02, 𝑃 = 0.001, η2 =  0.22). A main effect of 

coordination mode (𝐹3,36 = 85.01, 𝑃 < 0.001, η2 =  0.4) and study design (𝐹1,24 =

14.88, 𝑃 < 0.001, η2 =  0.33) on the IRI marker was also observed. We also observed 

an interaction between coordination mode and study design on IRI. (𝐹3,36 = 15.32, 𝑃 <

0.001, η2 =  0.26).  

Figure 9 shows that the IRI mean value in syncopated continuation is significantly 

higher than all other timing conditions regardless of study design. While supporting our 

prior findings (Rahimpour et al., 2020) that more complex timing behavior leads to less 

accuracy of behavioral performance, the results also show that participants in general 

performed better in the block design than in the alternating design across timing 

conditions.  

Synchronized Pacing Synchronized Continuation Syncopated Pacing Syncopated Continuation 
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Figure 9. Mean values of IRIs from block and alternating designs for each condition: 

synchronization (blue); syncopation (green); pacing (solid line); continuation (dashed 

line). Error bar indicates standard error (SE). 

 

Temporal trend and causal inference on IRI: 

Using cubic spline interpolation, we estimated the fitted model of averaged pacing 

and continuation tapping trial cycles, as shown in Figures 10 and 11. Figure 10A shows 

four different IRI temporal trends of the averaged tapping cycles corresponding to the 

two types of coordination modes of the study designs. Syncopated tapping in both 

designs shows an abrupt increase in at 16 seconds (at first unpaced tap). However, 

gradual decrease has been observed in all trends during continuation of both study 

designs. In this regard, as shown in Figure 10B, the estimated turning points of all trends 

occur at the continuation onset time point (15 seconds); however, the turning point for 

syncopated tapping occurs at 6 seconds (9 seconds before phase transition time point) in 

the alternating study design. 

 



34 
 

 

 

Figure 10. (A) Estimated IRI trend of maintenance paradigm (pacing followed by 

continuation), and (B) second derivatives of the corresponding trends locating the turning 

points (blue square marks) in synchronization + block design (b_s as solid black line); 

syncopation + block design (b_sn as dashed black line); synchronization + alternating 

design (a_s as solid red line); and syncopation + alternating design (a_sn as dashed red 

line). Gold vertical solid line represents continuation phase onset. 

 

Figure 11A depicts temporal traces of the mean IRI cycles corresponding to the 

two study designs. The temporal trace corresponding to alternating design is higher than 

the block design in continuation phase; however, the abrupt growth of IRI was observed 

in both designs in the transition to continuation phase. Figure 11B shows the second 

derivative of the trend in which the estimated turning points for both study designs fall on 

the continuation onset time point (15 seconds). 
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Figure 11. (A) Estimated IRI trend for maintenance paradigm (pacing followed by 

continuation) across coordination mode by design type, and (B) second derivatives of the 

corresponding trends locating the turning points for the block design (black line) and 

alternating design (red line). Gold vertical solid line represents continuation phase onset. 

 

We implemented the DID approach estimated by OLS to find the causal effect of 

study design on accuracy (Figure 12). From a total 7023 observations, we observed a 

significant causal effect of the manipulation on mean asynchrony output (𝐹2,7020 =

73.78, 𝑃 < 0.001), with an R2 of 0.02 (Kurtosis= 3.170, Skewness=0.085). Four 
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regression coefficients ( 𝛽0: baseline mean IRI of block design in pacing period; 𝛽1: IRI 

temporal changes of block study design group; 𝛽2: IRI temporal changes of alternating 

study design; 𝛽3: interaction of IRI changes between two study designs) were estimated 

to determine whether there were the main effects of independent variables (see Causal 

Inference section for more information). Accordingly, as reported in Table 2, all 

regression coefficients were significant, revealing the causal effect of study design on the 

tapping accuracy in the maintenance paradigm. 

 

Table 2. Basic DID models of IRI for study design causality 

 𝜷 SE T statistics R 

Constant 998.24 0.82 795.011* 0.13 

Block  10.29 1.252 10.273** 0.46 

Alternating 25.63 1.449 13.255** 0.53 

Block × 

Alternating 

15.41 1.502 3.685** 0.33 

Obs  7023  

BIC  393.5  

Likelihood-ratio test of 

alpha=0 

 Chibar2(01) =143.3 

Prob≥chibar2=0.001 

 

Abbreviation: SE, standard error. 𝛽, regression coefficient. Prob, probability. obs, 

observation. BIC, Bayesian information criterion 

* 𝑃 < 0.01, ** 𝑃 < 0.001 

 

 

 

Figure 12. Graphic illustration of the DID estimator. The values of IRIs averaged across 

coordination mode with pacing to continuation phase for each study design: block (black 

line); alternating (red line). 
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Cortical Hemodynamics 

Here we investigate the result of the hemodynamic activity for each timing 

condition (i.e., synchronized pacing, synchronized continuation, syncopated pacing, and 

syncopated continuation) in two different methodological designs of the fNIRS 

experiment (block versus alternating design). We depict and compare group-level 

channel maps' results via AR-IRLS regression model. 

Synchronized Pacing 

Channels with significant activation for synchronized pacing conditions obtained 

by block design and alternating design are shown in Figure 13. In the blocked design, we 

observed highly significant [Oxy-Hb] activations in left temporal, frontal channels 

(𝑡𝐹𝑇7−𝐹7 = 7.3, 𝑞 = 0.01; 𝑡𝐹𝑇7−𝐹𝑇9 = 6.5, 𝑞 = 0.03; 𝑡𝐹𝑇7−𝐹𝐶 = 5.3, 𝑞 < 0.05), right 

parietal temporal (𝑡𝐶𝑃2−𝐶2 = 5, 𝑞 < 0.05) and left parietal area (𝑡𝐶𝑃𝑧−𝐶𝑃1 = 7.5, 𝑞 <
0.01) extending anteriorly into central (𝑡𝐶𝑧−𝐶1 = 6.1, 𝑞 = 0.03; 𝑡𝐶𝑧−𝐹𝐶𝑧 = 5.9, 𝑞 =
0.03), and frontal (𝑡𝐹𝐶𝑧−𝐹𝑧 = 5.1, 𝑞 = 0.04; 𝑡𝐹𝐶𝑧−𝐹𝐶1 = 6.4, 𝑞 = 0.01; 𝑡𝐹𝐶1−𝐹1 =
4.4, 𝑞 = 0.05) regions in block design study (Figure 13A); however no significant 

activation was observed in alternating design (Figure 13B).  

 

A B 

  

 

 

 

 

Figure 13. Channel maps of the main effect (q<0.5) of synchronized pacing condition on 

[Oxy-Hb] hemodynamic activation obtained by (A) Block design and (B) Alternating 

design. Color bars represent the t-value range. 
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Synchronized Continuation 

 In Figure 14, we see different patterns, with mostly nonsignificant activation of 

channels in both the block and alternating designs, although here is a significantly 

activated channel within the left parietal region (𝑡𝐶𝑃𝑧−𝐶𝑃1 = 4.7, 𝑞 = 0.05) and right 

central parietal area (𝑡𝐶𝑃2−𝐶2 = 4.6, 𝑝 = 0.05) in the block design. We also observed 

marginally significant activation in the left central (motor) area (𝑡𝐹𝐶𝑧−𝐹𝐶1 = 4, 𝑞 =
0.055; 𝑡𝐹𝐶1−𝐹𝐶3 = 4.1, 𝑞 = 0.053). The highly activated area has been observed in 

frontotemporal areas (𝑡𝐹𝑇7−𝐹𝑇9 = 7.4, 𝑞 < 0.01; 𝑡𝐹𝑇7−𝐹7 = 6.1, 𝑞 = 0.02) as well as 

right frontotemporal area (𝑡𝐹𝐶7−𝐹𝐶 = 5.4, 𝑞 < 0.05). However, similar to synchronized 

pacing, no significant activation was observed during the synchronized continuation 

condition of the alternating design.  
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Figure 14. Channel maps of the main effect (q<0.5) in synchronized continuation 

condition obtained by (A) block design and (B) alternating design. Color bars represent 

the t-value range. 

 

Syncopated Pacing 

In the block design, the most highly activated electrode was found in the right 

central frontal area (𝑡𝐹𝐶𝑧−𝐹𝑧 = 7.2, 𝑞 < 0.01; 𝑡𝐹𝐶𝑧−𝐹𝐶2 = 8.5, 𝑞 < 0.01). In addition, 
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other significantly activated channels in the block design were observed in the central and 

frontal areas (𝑡𝐶𝑧−𝐶1 = 6.8, 𝑞 = 0.02; 𝑡𝐶1−𝐹𝐶1 = 6.2, 𝑞 = 0.03; 𝑡𝐹𝐶𝑧−𝐹𝐶1 = 5.8, 𝑞 <
0.05) (Figure 15A). However, as shown in Figure 15B, the most activated channels for 

the alternating design are observed in left central areas (𝑡𝐶1−𝐶3 = 4.65, 𝑞 = 0.05; 

𝑡𝐶1−𝐹𝐶1 = 4.66, 𝑞 = 0.05) and bilateral temporal areas (𝑡𝑇7−𝑇𝑃7 = 4.92, 𝑞 < 0.05; 

𝑡𝑇8−𝑇𝑃8 = 4.88, 𝑞 < 0.05, and 𝑡𝐶5−𝑇7 = 4.7, 𝑞 < 0.05).  
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Figure 15. [Oxy-Hb] channel maps of the main effect (q<0.5) in syncopated pacing 

condition obtained by (A) block design and (B) alternating design. Color bars represent 

the t-value range. 

 

Synchronized Continuation 

Similar to syncopated pacing, syncopated continuation produced several 

significant channels of activation, particularly in the frontal, central, and parietal areas in 

both block and alternating designs. Figure 16 illustrates the [Oxy-Hb] channel maps with 

significant main effects in the syncopated continuation condition for the block design and 

a few marginally significant channels for the alternating design. As with syncopated 

pacing, the block design produced stronger [oxy-Hb] activation than the alternating 

design.  

A few marginally significant areas of activation were observed in the alternating 

design (𝑡𝐶3−𝐹𝐶3 = 4.71, 𝑞 = 0.05; 𝑡𝐶3−𝐹𝐶3 = 4.76, 𝑞 = 0.05), with a broad distribution 

of channels showing nonsignificant levels of activation in central, temporal, parietal, and 

frontal areas (none of these reached significance). In contrast, we observed highly 
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significant activation in the frontal area (𝑡𝐹𝐶𝑧−𝐹𝑧 = 8.1: 𝑞 <  0.01; 𝑡𝐹𝐶𝑧−𝐹𝐶2 = 8.4: 𝑞 <
0.01) for the block design. Moreover, other significantly activated channels in the block 

study design can be observed in the left central frontal area (𝑡𝐹𝐶1−𝐹𝐶𝑧 = 6.2: 𝑞 = 0.04), 

right parietal area (𝑡𝐶𝑃2−𝐶2 = 6.8: 𝑞 = 0.03), and left parietal, temporal areas (𝑡𝐶𝑃3−𝐶3 =
5.8: 𝑞 < 0.05; 𝑡𝐶1−𝐶3 = 5.7: 𝑞 < 0.05).  
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Figure 16. [Oxy-Hb] channel maps of the main effect (q<0.5) in the syncopated 

continuation condition obtained by (A) block design and (B) alternating design. Color 

bars represent the t-value range. 

  

Discussion 

The current study aimed to determine whether a subtle manipulation of 

experimental design influences overall accuracy in a tapping task and affects 

corresponding cortical hemodynamics. We observed a causal effect of study design on 

behavioral performance. Moreover, there was a meaningful influence of study design on 

the estimated temporal interpolation was indicated by GCM. The turning points in the 

block design were the indicators of accurate computational interpolation for the 

experimental transition between pacing and continuation. However, they did not perform 

in this way for the alternating design. In general, more complex behavior leads to less 

stable and less accurate individual performance. To this end, we measured the behavioral 

accuracy and hemodynamic activation associated with different timing behaviors. 

Manipulation of timing behaviors was achieved by manipulating coordination mode 
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(syncopated vs synchronized tapping) and phase of the maintenance task (pacing and 

continuation) (Jantzen et al., 2004) across two study designs (block vs. alternating study 

designs). Results showed that both block and alternating study designs engaged primary 

temporal and motor areas of the brain, and specific forms of motor timing behavior 

differentially engaged frontal and parietal areas. Therefore, study design strongly 

influenced overall cortical engagement.  

We observed significant differences in the behavioral results for both study 

designs between coordination modes (synchronized vs. syncopated tapping) and phase 

(pacing vs. continuation). In our original fNIRS validation study, which used a block 

design (Rahimpour et al., 2020), recruitment of a broader cortical network during 

syncopated continuation compensated for the increased timing demands on the motor 

system, allowing for stable interval production performance. In our study, the differences 

in neural activity that we observed during blocked synchronized and syncopated tapping 

may reveal reliance on distinct processing networks in support of more automatic versus 

cognitively controlled timing behavior. For example, increased activity within 

subsystems associated with motor planning and preparation (SMA and dorsal-premotor) 

(Mayville et al., 2002) and working memory and attention (prefrontal cortex, superior 

parietal lobe, and MTG) (Smith & Jonides, 1998) have been postulated to reflect 

increases in cognitive demand for performance of the off-beat (syncopated) coordination 

mode. Such differences were even more pronounced during continuation (when no 

metronome was present), when the absence of the external auditory stimulus no longer 

served as a timing guide and cognitive load was greater.  

Across both study designs, finger tapping activated cortical areas compatible with 

the automatic, motor-related timing network (sensorimotor regions). The additional 

activity observed during syncopated tapping in central, frontal, and parietal areas is 

consistent with greater engagement of memory and attention processes, and an overall 

increase in levels of cognitive control. This interpretation is consistent with behavioral 

findings showing that motor production of anti-phase relationships imposes higher 

cognitive and attentional demand than in-phase patterns (Meyer-Lindenberg et al., 2002; 

Monno et al., 2002). This was observed across both study designs. 

A significant difference between the two study designs was observed in the 

average neural activation as reflected by [Oxy-Hb] levels. In particular, the two designs 

produced different activation patterns for the synchronized versus syncopated rhythms, 

and for the pacing and continuation phases. These findings suggest that not only are 

different cortical networks engaged during externally guided performance of different 

coordination modes across study designs, but that once established, those different 

networks continue to operate even when the external guide is no longer present. Although 

there are likely other mediating factors, one distinct possibility is that these hemodynamic 

response patterns reflect the differential representation of temporal information given two 

distinct coordination dynamics. Indeed, process models of interval timing propose 

specific mechanisms for representing and storing temporal intervals (Treisman, 1963), 

and the consequence of the existence of two different timing mechanisms is that 

substantially different networks are recruited to perform the same temporal task (Wing, 

2002). Results presented here strongly suggest that the neural activity supporting 

continuation of an initially externally guided rhythm not only generalizes across different 
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coordination modes but that it is also strongly influenced by the study context in with 

initial that mode is initially established. Thus, the context of a study’s design plays an 

integral role in which neural networks are engaged during the continuation paradigm.  

These findings lead to the interesting consequence that the complexity and 

difficulty of a study’s design (here, block vs. alternating) impacts the extent of neural 

activation, with lower levels of activation observed when entrainment is not allowed to 

take place, as in the alternating design context. In contrast, greater levels of neural 

activation were observed in sensorimotor areas across all timing conditions in the block 

design. These differences may reflect differences in overall entrainment, with ongoing 

changes in coordination in the alternating study design relative to the block design 

interrupting any consistent entrainment of motor timing behavior. There is some evidence 

that hemodynamic responses are modulated by movement parameters (Harrington et al., 

1998; Thickbroom et al., 1998), further supporting our interpretation that a study’s design 

impacts context-dependent neural engagement.  

Future research will be needed to understand the details of this impact. For 

example, an increase in the overall length of trials in the alternating design context may 

lead to sufficient entrainment so as to produce comparable levels of hemodynamic 

activity to those observed in the blocked context. Moreover, contrasting hemodynamic-

based measures with other, more direct measures of neurophysiological activity, such as 

electroencephalography, will be important to further substantiating these findings.  

 

Conclusion 

The present study interrogates behavioral and brain responses when different 

rhythmic patterns of motor coordination are introduced into a pacing-continuation task, 

and further compares responses across a rhythmically blocked versus a rhythmically 

alternating study design. Behavioral results point to the substantial influence of study 

design on complex timing behavior. The complexity and difficulty of the particular study 

design likewise impacts the degree and breadth of neural activation elicited. Significantly 

higher levels of activity across all four tapping conditions in block design may reflect 

development of an internal representation of the timing patterns (i.e., entrainment), 

something that is not possible in the alternating design. Thus, our findings highlight the 

impact of a study’s design on the degree of rhythmic entrainment that can be achieved 

given different forms of coordination dynamics. Thus, neural correlates of timing 

behavior reflect context-dependent parameters. 

Our results provide insight into the influence of the broader experimental context 

on timing behavior and the underlying neural activity that supports it, an interpretation 

consistent with several previous findings (Jantzen et al., 2007; Jantzen et al., 2004; 

Rahimpour et al., 2020). Thus, representation of timing information is formed in a 

context-dependent manner, with the introduction of different cognitive states or 

expectations, as well as difficulty levels, impacting behavioral performance and the 

corresponding neural engagement supporting it. Here we have observed that it takes time 

to develop an internal timing representation and thus entrain motorically to complex 

rhythmic stimuli.  
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Chapter 3 

Exploring Neurophysiological Markers to Predict Action-Based Timing 

Performance 

 

Abstract 

Research on action-based timing has shed light on the temporal dynamics of 

behavioral transitions in rhythmic sensorimotor coordination. Here, we investigate the 

neural mechanisms underlying timing dynamics using a modified experimental paradigm 

that combines synchronized and syncopated tapping (i.e., distinct coordination dynamics) 

with auditory pacing and continuation phases. To track motor network engagement 

during timing-based action, we measured neural responses in twelve healthy volunteers 

while they performed a synchronized/syncopated finger-tapping task on which they had 

previous experience. This produced a 2 x 2 alternating design: trials of synchronous and 

syncopated tapping with pacing to a tone followed by continued tapping without the tone. 

The accuracy and fluency of participants’ tapping was tracked while their neural 

responses were monitored using electroencephalography (EEG). For data analysis, we 

used a novel deep learning approach to extract participant-specific, neural features that 

were predictive of the four distinct behavioral conditions. We then established that these 

brain-based features correlated with our two measures of performance accuracy.  

Our findings demonstrate that specific coordination dynamics in action-based 

timing behavior can be identified in the corresponding EEG signal at the single trial level, 

and further can be used to predict the presence and absence of auditory input guiding 

rhythmic entrainment. Applying deep learning to single trial EEG data predicted the 

timing phase 20% above chance. Neurophysiological features related to attentional, and 

motor processes in the central, temporal, and frontal electrode sites contributed most to 

prediction accuracy. Furthermore, the N1peak latency component of the EEG signal, 

which is related to attentional processes, was observed at the central parietal electrode 

site. Importantly, our novel approach to EEG data analysis identified predictive 

neurophysiological processes in single-trial neural dynamics, demonstrating that deep 

learning approaches can be used to establish links between action-based behavioral 

performance and neurophysiological processes.  

 

Keywords: stimulus-locked ERP, response-locked ERP, finger tapping task, 

synchronization, syncopation, pacing, continuation, correlation, deep learning  
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Introduction  

The human motor system supports motor function and organizes different 

movement sequences (Rizzolatti & Luppino, 2001). The motor system supports actions 

with a wide range of complexities, including the number of limbs used, number of 

trajectories involved, sequence length, and relative timing of movement (Wolpert & 

Ghahramani, 2000). The ability to accurately and precisely perform time-dependent 

actions is critical for a variety of skills, such as playing sports or playing a musical 

instrument. Research has demonstrated that temporal mechanisms in the brain support 

such behaviors, and there is substantial interest in how action-based timing is represented 

in the central nervous system. In this regard, finger tapping is a reliable and commonly 

used task for measuring motor performance and evaluating muscle control and motor 

ability in the upper extremities (Jantzen et al., 2007; Witt et al., 2008). Methodologically, 

finger tapping allows investigation of the mental timing systems associated with motor 

actions and feedback mechanisms of varying complexity (Ivry & Keele, 1989; Sergent, 

1993; Wing & Kristofferson, 1973). For example, finger tapping has been used to probe 

the neural representation and maintenance of timing behavior, where maintenance refers 

to the accurate behavioral maintenance of temporal information following the removal of 

timing cues. Likewise, finger tapping allows for measurement of relative changes in 

neural responses that reflect changes in coordination dynamics as participants perform 

different patterns of tapping with systematically varied levels of difficulty (Jantzen et al., 

2004; Spencer et al., 1998).  

Here we used a modified finger-tapping task that builds on our previous 

examination of movement timing (Rahimpour et al., 2020) to investigate the process by 

which individuals entrain to an external periodic stimulus (i.e., a metronome) and then 

internally maintain that entrainment (i.e., endogenous rhythmic process). We investigated 

this across two different timing contexts: synchronized (i.e., on-beat) and syncopated 

(i.e., off-beat) tapping. Increased activity within neural subsystems associated with timing 

behavior has been postulated to reflect increases in cognitive demand during coordination 

of complex action patterns. Examples include internal timing (basal ganglia and 

cerebellum) (Harrington et al., 1998; Ivry & Keele, 1989; Serrien, 2008), motor planning 

and preparation (supplementary motor area (SMA), and dorsal-premotor cortex) 

(Mayville et al., 2002), and working memory and attention (prefrontal cortex, and parietal 

land occipital areas) (Davranche et al., 2011; Nobre, 2001; Smith & Jonides, 1998). Other 

studies indicate that the brain areas recruited during finger tapping include primary 

somatosensory-motor cortex (S1/M1), SMA, premotor cortex (PMC), the inferior parietal 

lobule, basal ganglia, and cerebellum (Nachev et al., 2008; Witt et al., 2008), with 

different task-specific parameters modulating the particular neural mechanisms that are 

engaged.  

Much progress has been made in identifying neural correlates specific to different 

forms of sensory-motor synchronization. For example, the similarities and differences in 

the neural circuits engaged by tapping to a metronomic tone (i.e., the pacing phase) and 

continuing to tap without the tone (i.e., the continuation phase) have been investigated 

using the pacing-continuation paradigm (Serrien, 2008). Simple synchronized finger 

tapping engages the cerebellar-parietal network, while continuation tapping relies 

engages prefrontal regions due to its load on working memory (Lewis et al., 2004). More 
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complex sensory-motor synchronization tasks result in greater activation in motor-related 

areas (pre-SMA, PMC, and cerebellum), as well as stronger coupling to the auditory 

cortex, such that there is less variability in tap timing when participants are guided by a 

regular auditory tone akin to a metronome (Comstock et al., 2018; Comstock & 

Balasubramaniam, 2018). Indeed, the ability to perceive and respond to temporal 

periodicities (i.e., timing perception) requires tight coupling of the auditory and motor 

systems (Chen et al., 2008; Ebrahimzadeh et al., 2020; Grahn & Brett, 2007; Hove et al., 

2013). Motor regions, such as the sensory-motor cortex (M1/S1) and the SMA, along 

with the anterior cerebellum, are activated during both pacing and continuation tapping 

(Witt et al., 2008), while frontal networks play an essential role in mediating coordination 

in tasks with increased complexity (Jantzen et al., 2007; Mayville et al., 2002).  

To examine the interaction between pattern and timing complexity, Jantzen et al. 

(2004) used functional magnetic resonance imaging (fMRI) to track cortical 

hemodynamics as participants performing either synchronized or syncopated finger 

tapping in response to an auditory cue, and then continued their tapping in the absence of 

that cue. Results revealed that these timing-based behaviors engaged different neural 

regions depending on the initial pacing context and regardless of its complexity. Our 

recent findings using functional near-infrared spectroscopy (Rahimpour et al., 2020) 

likewise indicate that the cortical activity elicited from timing behavior is task-dependent, 

and that the motor timing network further adapts to the presence or absence of external 

metronome.   

Neural Activation  

Tracking neural responsivity to different timing patterns requires a temporally 

sensitive measure that can provide temporal resolution in the millisecond range. 

Electroencephalography (EEG) is just such a measure; event-related potentials (ERPs), in 

particular, measure phase-locked neural activity relative to a stimulus (i.e., auditory tone 

onset) or response (i.e., finger tap) (Lopez-Calderon & Luck, 2014). When combined 

with the continuation paradigm, EEG can be used to track patterns of neural engagement 

during both the pacing and continuation phases of the continuation task while tapping 

accuracy is also monitored. For example, Peper, Beek, and van Wieringen (1995) found 

that stimulus-locked ERPs (i.e., ERPs time-locked to the auditory metronome) during the 

pacing phase of the continuation paradigm were associated with the motoric act of 

tapping and were phased-locked with tap onsets. In another study, the amplitude of the 

event-related changes decreased with increases in tapping cycle frequency (Boonstra et 

al., 2006). Furthermore, Serrien (2008) found greater EEG coherence—a measure of the 

degree of similarity in activity across electrodes—at central scalp sites during the 

continuation relative to the pacing phase of the continuation paradigm, as well as higher 

variability in tapping accuracy. Because activity in these areas (Clark et al., 2001) is 

associated with working memory functions, Serrien (2008) interpreted the findings as 

reflecting increased demand on working memory to maintain the temporal representation 

of the now-absent auditory stimuli during the continuation phase. Engagement of the 

inferior frontal lobule (supporting auditory-motor coupling) during synchronized pacing, 

and of the inferior parietal lobule during continuation, was observed by researchers using 

EEG frequency-based steady-state evoked potentials (SSEP) (De Pretto et al., 2018). 

Pfurtscheller et al. (2003) found beta-band oscillation in the mid-central area reflecting 
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inhibition of neural subnetworks during synchronized continuation, and Ross et al. (2022) 

observed a significant role of mu rhythms in motor inhibition during beat perception.  

Only a few studies have investigated neural activity associated with both the 

coordination dynamics (synchronization and syncopation) using EEG. For example, 

Mayville et al. (1999) observed topographical changes in neural activity correlated with 

an automatic switch of dynamic coordination (from synchronized to syncopated tapping). 

However, Wallenstein et al. (1995) found that this coordination switch most impacted 

activity at left central electrode sites, and that changes in neural activity increased 

significantly just prior to this transition. Thus, it seems that the transition from one to the 

other coordination mode introduces a point of instability in the brain-behavior 

entrainment pattern due to the change in coordination dynamics. 

Finally, examination of how neural activity couples with different behavioral 

movements is contributing to our understanding of action-based timing perception. For 

example, Bavassi et al. (2017) observed that asynchrony between the tone and the tap 

during synchronized tapping (i.e., synchronization error) related to the first peak latency 

of the principal component analysis (PCA), particularly PC1 and PC2. Smit et al. (2013) 

likewise found a strong correlation between alpha-band oscillations and the dynamics of 

tapping behavior, and Nozaradan et al. (2016) reported a link between cortical and 

behavioral measures of rhythmic movement, finding beat-related SSEP activity 

associated with both synchronized and syncopated tapping. Researchers have observed 

high correlations between the kinematics accuracy of repetitive finger tapping and delta 

band activity, localized in contralateral central area (Paek et al., 2014), consistent with 

the negative lateralized readiness potential (LRP) that has been observed in contralateral 

motor cortex to the responding hand (review paper; Kappenman & Luck., 2011). Overall, 

there is greater neural responsivity during synchronized than syncopated rhythmic 

tapping (Chemin et al., 2014), higher amplitude of timing oscillations (associated with an 

increase in rhythmic movement to the metronome) during tapping compared to a 

listening-only task (Nozaradan et al., 2016), and greater spectral power during 

synchronized than rhythm hearing in both auditory and motor areas (Mathias et al., 

2020).  

Current Study  

The analytical methods used in the studies reviewed thus far were averaged across 

trials and did not explore individuals’ neurophysiological activity at the single trial level. 

In particular, the LRP is difficult to extract and is very sensitive to noise, making single-

trial analysis difficult (Kappeman & Luck., 2011). Inter-trial phase coherence (ITPC) is 

also limited to averaging across trials (Van Diepen & Mazaheri, 2018). Because SSEP 

transfers EEG signal into the frequency domain, the temporal information is lost; this is a 

critical point as temporal resolution is one of the main advantages of doing EEG studies 

(Pretto et al., 2018). In a recent study, Nave et al. (2022) conducted trial by trial 

exploratory logistic regression analyses of a task on rhythm perception but were not able 

to generalize their approach to other forms of timing behavior. Finally, cluster-based 

permutation tests depend on a predetermined threshold for cluster size selection and is 

highly sensitive to estimation parameters, meaning it does not control for false positive 

rate (Sassenhagen & Draschkow, 2019). Here we apply a novel analytical technique to 

address these limitations.  
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The goal of the present study was to use a temporally sensitive measure of neural 

activation, EEG, to track neural activity during a tapping task whose complexity varied in 

both pattern and timing. To this end, we collected EEG data from well-trained 

participants while they completed a continuation task, as employed in our prior study 

(Rahimpour et al., 2020). The task involved both in-phase (i.e., synchronized) and anti-

phase (i.e., syncopated) tapping. Each form of tapping took place across two phases: first 

relative to an auditory metronome and then continued without the metronome. However, 

where we blocked trials by tapping pattern in our original study, here we introduced an 

alternating design (Pabst & Balasubramaniam, 2018) whereby the pattern of tapping 

alternated trial-by-trial between synchronization and syncopation, with each trial still 

including both pacing to a tone and continuation without the tone. This change from 

blocked to alternating trials increased the task difficulty by isolating the specific tapping 

pattern to a particular trial. 

Although few studies have reported a linear relationship between the amplitude of 

neurophysiological activity and accuracy of task performance, Nozaradan et al. (2016) 

found that average asynchrony of taps relative to the guiding tone (i.e., synchronization 

error) strongly correlates with neural entrainment to a beat. For example, Mathias et al 

(2020) observed that the N1 peak latency negatively correlates with the average 

divergence between the target and realized tap (i.e., mean tap asynchrony), meaning that 

as mean asynchrony in a complex timing task decreased, stimulus-locked N1 amplitude 

became more positive (Mathias et al., 2020). However, the interrelation between behavior 

and the associated neurophysiological dynamics is not linear (Amirali et al., 2020), even 

though most analytic approaches in the literature rely on the assumption of linearity when 

applying correlational approaches to relate behavioral and neurophysiological data. 

Moreover, because ERP data are inherently noisy, it is difficult to establish functional 

connections at the single-participant or single-trial level via statistical techniques alone 

(Amirali et al., 2020). These issues severely limit our capacity to relate specific patterns 

of neural activity to human behavior. However, these deficiencies may be addressed by 

employing machine learning techniques.  

Thus far, only a small number of studies have used deep learning in cognitive 

neuroscience research; to our knowledge, none have focused on timing behavior. The 

current study tests a novel approach to predict behavior state based on neurophysiological 

activity. We aimed to establish a predictive relationship between neurophysiological 

features extracted via deep learning from the EEG signal collected while participants 

performed distinct action-based timing behaviors. Our primary hypothesis was that neural 

responsivity as measured by EEG would correspond to the dynamic coordination process 

that manifests across two forms of timing guidance, exogenous (i.e., during pacing) and 

endogenous (i.e., during continuation), and given two different tapping behaviors (i.e., 

synchronization and syncopation). To this end data were collected across four tapping 

conditions: synchronized pacing, synchronized continuation, syncopated pacing, and 

syncopated continuation. 
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Materials and Methods 

 

Participants 

We recruited fifteen healthy volunteers with self-reported normal hearing to 

participate in the study. All had participated in a prior study in which they performed the 

same tapping task used here, meaning each had experience with the task. Data from three 

participants were excluded from the analyses due to a high number of motion artifacts in 

their EEG data based on visual inspection. Thus, twelve healthy right-handed adult 

volunteers (mean age 26, range 20-41 years) successfully participated in the study. None 

of the participants reported any neurological or skeletomuscular disorder or injury that 

would prevent them from performing a timing-based tapping task. The Institutional 

Review Board approved the protocol for research ethics and the protection of human 

subjects at the University of California, Merced. All participants gave informed written 

consent after the experimental procedures were explained to them. 

Stimuli and Task 

Each participant performed the finger-tapping task using the index finger of their 

dominant (right) hand in response to a 20 ms long, 1kHz metronomic tone repeated every 

1000 ms (1 Hz). A one-second-long tone indicated the end of a trial and the start of a 20-

second resting state. The task involved two patterns of tapping: 1) taps with each tone 

(synchronization) and 2) taps between two consecutive tones (syncopation). In order to 

avoid any neural adaptation to the particular tapping pattern during the performance of 

the task, we modified the original blocked design introduced by Jantzen and colleagues 

(2004) to one in which the tapping pattern alternated between synchronized and 

syncopated tapping from trial to trial (a syncopation trial always follows a 

synchronization trial and vice versa) for a total of ten trials per timing condition (20 trials 

overall) (see Figure 17). Regardless of the tapping pattern, within a given trial, tapping 

was first paced relative to a metronomic tone (15 cycles) and then continued without the 

tone (12 cycles). Distinct from the designs used in Jantzen et al. (2004) and Rahimpour et 

al. (2020), participants had experience performing the task in a prior study. 
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Figure 17. Schematic of the experimental paradigm adapted from Rahimpour et al (2020) 

to perform repetitive right finger tapping in the presence of the auditory metronome in the 

alternating study design. Blue and orange colors indicate synchronized and syncopated 

tapping, respectively.  

 

To track tapping behavior, we used a temporally precise device—a smooth metal 

plate—that did not interfere with the accuracy of participants’ tapping during their 

performance of the task. Two leads were connected to the plate, one connected to a 

custom-built electronic input device produced from a MakeyMakey™ kit (Comstock & 

Balasubramaniam, 2018) and the other held by the participant so that with each tap by the 

participant on the metal plate, the circuit was completed and delivered to the input device, 

which then sent a signal to the computer via USB, thus registering the tap (Collective & 

Shaw, 2012).  

For analytical purposes, we used each finger tap on the plate as the mark of the 

onset of each behavioral response. The device introduced a temporal delay of 

approximately 25 ms. The delay is due to the time for the internal circuitry in the 

MakeyMakey™ to process the input, which has a built-in delay for input registration to 

reduce accidental double inputs (similar to a computer keyboard). The 25 ms delay was 

determined by a method recommended by the MakeyMakey™ engineers in which a high-

speed camera (240 fps) was utilized to simultaneously record the timings of the tap and 

the corresponding computer registration via a tone output from the computer, a method 

that computed the delay to be approximately 25ms (+/- 2 ms from the camera frame rate). 

Thus, we adjusted the time recorded for each response post-hoc. Paradigm software was 

used to present the instructions and to synchronize the onset of each trial with a trigger 

sent to the EEG data. 

EEG Data Recording 

EEG data were continuously recorded with an ANT-Neuro 32 electrode cap with 

electrodes placed according to the 10–20 International electrode system (Figure 18), 

assigning Cz as the reference electrode. The data were recorded at a sampling rate of 

1024 Hz with electrode impedance below five 𝑘Ω (Kappenman & Luck, 2010). 

Following acquisition, the EEG data were processed with EEGLAB (Delorme & Makeig, 

2004) and ERPLAB (Lopez-Calderon & Luck, 2014). 
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Figure 18. Channel locations according to the 10-20 international electrode 

system. 

 

  

Data Analyses 

Behavioral Measurement  

 

 We established two behavioral measures of performance. The first was accuracy 

asynchrony, defined as the time difference between the target onset and the participant’s 

actual tap (asynchrony = tap onset − stimulus onset). In this case, the target time was 

0 ms (onset of tone) for synchronization and 500 ms for syncopation. The second was 

inter-response interval (IRI), defined as the time between two consecutive taps.  

We used multiple linear regression (MLR) and piecewise growth curve modeling 

(PGCM) to measure behavioral effects of each timing conditions (independent variables) 

on the dependent variables (i.e., mean accuracy asynchronies and IRIs recorded for each 

participant). No participants were categorized as outliers (3 SDs or more from the mean 

value). We also report Pearson correlation (R2) (Benesty et al., 2009) to estimate linear 

similarities between ERPs and behavioral measures.  

EEG Data Analysis 

Preprocessing: 

EEG data were preprocessed by first downsampling to 512 Hz, then applying a 

Butterworth high-pass filter with a cut-off set at 0.1 Hz, an order of 6, and a filter roll-off 

of 24 dB/octave. Data were then visually examined for artifacts, and corrupted sections 

were removed. Bad channels were detected and removed using an automated EEGLAB 

algorithm that compares channels with their surrounding channels (probability measure 

with z-score threshold set to 4).  Four participants had one channel each removed from 

their data; the other eight participants had no channels removed from their data. ICA was 

performed using the Runica algorithm (with infomax rotation) within EEGLAB (Bell & 

Sejnowski, 1989) for further artifact rejection. Components were visually inspected, and 

components related to eye-blink and eye-movement artifacts were removed, resulting in 

an average of 1.2 components (range: 1 to 2 components) removed per participant. After 

running ICA, the bad channels (four channels total) were interpolated using spherical 

interpolation, and the data were re-referenced to the average reference. Data were 
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epoched using ERPLAB in two different ways. To create stimulus-locked ERPs, epochs 

were time-locked to the auditory stimulus onset. Thus, epochs were time-locked to the 

auditory stimulus onset, and for response-locked ERPs, epochs were time-locked to the 

participants’ behavioral responses (i.e., taps) after adding 25 ms shift to account for the 

MakeyMakey device delay.  Both stimulus-locked and response-locked ERPs were 

epoched from -100 to +500 ms relative to the time-locked event (total number of 

stimulus-locked epochs= 12960; response-locked=10031). After removing linear trends 

for an entire epoch, baseline correction was performed to the mean voltage between -

100ms and the stimulus- or response-onset for each epoch. 

Further data cleaning was performed at the epoch level with individual epochs 

removed (mean: 62; range: 9-147) if voltage exceeded ±100𝜇𝑉 in any channels for total 

stimulus-locked and response-locked epochs. Next, we applied a Butterworth low-pass 

filter with a cut-off at 30 Hz, an order of 4, and a filter roll-off of 24 dB/octave.  Finally, 

we generated each participant’s stimulus-locked and response-locked ERPs for each of 

the four tapping conditions (i.e., synchronization-pacing, synchronization-continuation, 

syncopation-pacing, and syncopation-continuation). The total epochs included in the 

stimulus-locked ERP average per participants were 943 ± 46 (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) for 

synchronized pacing, 912 ± 51  for syncopated pacing, 866 ± 51  for synchronized 

continuation, and 899 ± 86  for syncopated continuation. Also, the total epochs for 

response-locked were 741 ± 53, 754 ± 33, 844 ± 76, and 878 ± 29  respectively.  

Deep Learning 

We employed EEGNet (downloadable from 

https://github.com/vlawhern/arleegmodels) by using Python software (library: 

Tensorflow) to establish whether we could predict behavioral timing conditions based on 

single-trial EEG data. The architecture and procedure are almost identical to a previous 

study (Vahid et al., 2020) that investigated cognitive control using EEG. To apply 

EEGNet, we created two-dimensional arrays from single-trial EEG data in which 

channels (C) and time (T) are represented in columns and rows, respectively. 

EEGNet architecture is structured in two main stages (see Figure 19 and Table 3):  

1. In the first stage of processing, temporal feature maps were generated by 

employing convolutional filters (width of 64 samples), after which D (a parameter 

that controls the number of spatial filters and covers all EEG channels) was 

learned by applying depth-wise convolution for each temporal feature map. 

Within each temporal map, the model then learned spatial features. After applying 

temporal and spatial filters, batch normalization followed an exponential linear 

unit (ELU) activation function. This included average pooling over 4-time steps 

with stride of 4.   

2. In the second stage, a separate convolution was used consisting of depth-wise 

temporal filters of width 16 followed by a point-wise convolution. The following 

functions were each applied sequentially: batch normalization, ELU activation 

function, average pooling over 8-time steps, and dropout. Finally, a classification 

step finalized the processing using a dense layer with a softmax-activation 

function.  

In the current study, we investigated how well single-trial neurophysiological data 

at the single-subject level could be used to classify trials into the pacing phase and the 

https://github.com/vlawhern/arleegmodels
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continuation phase and across the two distinct coordination modes (i.e., synchronized and 

syncopated tapping). To this end, EEGNet was applied as a classifier to decode timing 

states. For evaluating classification performance, we used the “k-fold cross validation” 

approach (Refaeilzadeh et al., 2009), which allowed us to divide data into k-subsets and 

apply the holdout method, which was repeated k-times where each of the k subsets were 

used as test-sets and the other k-1 subsets were used for training the model. We set k to 

10 and trained the model for a total of 7466 epochs and then tested it on 747 epochs in 

the validation set. The number of temporal and spatial filters (F1,D) were employed as 

(4,2), and the batch size was set to 32. To train EEGNet, the ADAM optimization was 

used (Kingma & Ba et al., 2014). Because our datasets were unbalanced due to variable 

numbers of trials across participants and timing conditions, we applied a class weight that 

was the inverse of the proportion in the training data, with the majority class set to one. 

To evaluate the model’s performance, here we report the entire confusion matrix and 

accuracy. To investigate which kinds of features (i.e., single timepoints in single 

channels) had the highest impact on the classification decision, we used a “saliency map” 

approach (Simonyan e al., 2013). This made it possible for us to identify which EEG 

timepoints and electrode sites contributed most to classification accuracy. Saliency map 

generation required us to take the gradient of the classification score (i.e., before applying 

the softmax-activation function to the input data). This map showed to what degree the 

model’s output changed when there were small changes in the input data at the single-

subject level. For visualization, saliency maps for each trial belonging to a class were 

averaged and are shown in the results section. In order to standardize the visualization 

map, we also performed a normalization step in which the averaged saliency map scores 

were set between 0 and 1. Using this scale, values close to 1 indicated that a particular 

feature/time point strongly contributed to classification accuracy. To ensure that the 

model’s classification performance in the 2-class (pacing-continuation) problem was 

significantly above chance for a particular participant, we calculated a threshold 

indicating classification accuracies significantly above chance level by assuming that the 

classification error obeys a binomial cumulative distribution (Amirali et al., 2019).  
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Figure 19. Structure of the EEGNet architecture adopted from Lawhern et al (2018). 

Lines denote the convolutional kernel connection between inputs and feature maps. Full 

details about the network architecture can be found in Table 3.  
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Table 3. Details of EEGNet architecture for single trial EEG classification adapted from 

Amirali et al (2020) 

Bloc

k 

Layer Type Filter Size Parameters Output 

Dimension 

 Activati

on 

Mode 

1 Input    (𝐶, 𝑇)    

 Reshape    (1, 𝐶, 𝑇)    

 Conv2D 𝐹1 (1,64)  (𝐹1, 𝐶, 𝑇)  Linear Same 

 BatchNorm   2 ∗ 𝐹1 (𝐹1, 1, 𝑇)    

 DepthwiseConv

2D 

𝐷 ∗ 𝐹1 (𝐶, 1) 𝐶 ∗ 𝐷 ∗ 𝐹1 (𝐷 ∗ 𝐹1, 1, 𝑇)  Linear Valid 

 BatchNorm   2 ∗ 𝐷 ∗ 𝐹1 (𝐷 ∗ 𝐹1, 1, 𝑇)    

 Activation    (𝐷 ∗ 𝐹1, 1, 𝑇)  ELU  

 AveragePool2D  (1,4)  
(𝐷 ∗ 𝐹1, 1,

𝑇

4
) 

   

 Dropout    
(𝐷 ∗ 𝐹1, 1,

𝑇

4
) 

   

         

2 SeparableConv

2D 

𝐹2 (1,16) 16 ∗ 𝐷 ∗ 𝐹1 + 𝐹2 ∗ (𝐷

+ 𝐹1) 
(𝐹2, 1,

𝑇

4
) 

 Linear Same 

 BatchNorm   2 ∗ 𝐹2 
(𝐹2, 1,

𝑇

4
) 

   

 Activation    
(𝐹2, 1,

𝑇

4
) 

 ELU  

 AveragePool2D  (1,8)  
(𝐹2, 1,

𝑇

32
) 

   

 Dropout    
(𝐹2, 1,

𝑇

32
) 

   

 Flatten    
(𝐹2, 1,

𝑇

32
) 

   

 Dense 2 ∗ 𝐹2

∗
𝑇

32
 

  𝑁  Softmax  

Abbreviation: C, number of channels. T, number of timepoints. 𝐹, number of temporal 

filters. D, number of spatial filters. N, number of classes 
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Statistical Analyses of Behavior-Brain Relations 

The relationship between extracted single-trial features generated via the deep learning 

method and participants’ behavioral accuracy measures were estimated using MLR 

analysis (Using Python software; Libraries Scipy and StatsModels). Based on our 

findings of deep learning classification and brain state prediction, we used Pearson’s 

correlation (FDR comparison corrected) to investigate the relationship between extracted 

features of single-trial stimulus-locked and response-locked ERPs and corresponding 

behavioral indices (i.e., mean asynchrony and IRI).  

 

Results 

 

Behavioral results 

We first calculated the mean asynchronies and IRIs for the four timing conditions: 

(i) synchronized pacing, (ii) synchronized continuation, (iii) syncopated pacing, and (iv) 

syncopated continuation. We then used MLR to estimate a regression model and find the 

contrast effect between timing conditions post-hoc. Moreover, PGCM approach is 

calculated to estimate and interpolate the temporal trend of timing conditions on each 

dependent variable (i.e., mean asynchrony and IRI, separately). 

 

Mean Accuracy Asynchrony 

Our estimated MLR model was calculated to predict mean accuracy asynchrony 

based on two factors: phase (pacing, continuation) and coordination mode 

(synchronization, syncopation). A significant main effect of entire model on the mean 

synchrony index was found (𝐹1,11 = 118.1, 𝑃 < 0.02), with an R2 of 0.48 in our 

estimated regression model. There was a main effect of phase on mean accuracy 

asynchrony (𝐹1,11 = 212.23, 𝑃 < 0.01, η2 =  0.47), with a 41.12 ms average increase in 

accuracy asynchrony during continuation compared to pacing. However, the average 

change in mean accuracy asynchrony for syncopation compared to synchronization was 

not significant. Thus, the phase variable significantly impacted mean accuracy 

asynchrony.  

For synchronized and syncopated pacing and continuation, the mean accuracy 

asynchronies were −43.7 ± 13.3 (ms)(mean ± SD), −50.3 ± 116.8 (ms), 12.2 ±
208.3 (ms), and −8.3 ± 206.5 (ms), respectively, as illustrated in Figure 20A. The 

results revealed that tapping during the continuation phase was more accurate but less 

stable relative to tapping during the pacing phase. We also observed negative mean 

accuracy asynchrony (NMAA) in the syncopated continuation condition, as well as for 

both synchronized and syncopated pacing conditions. NMAA describes an averaged 

accuracy asynchrony that is negative, meaning a participant demonstrates anticipatory 

timing behavior (rather than reactive tapping). This was only observed in the more 

complex tapping conditions. In untrained participants, performance in the pacing phase is 

often less accurate than what we observed in this study. Thus, our results appear to reflect 

faster rhythmic entrainment in these participants, each of whom had prior experience 

with the task. Nonetheless, significant differences in mean accuracy asynchrony were 

observed between pacing and continuation phases for both synchronized (𝐹1,11 =
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11.54, 𝑃 < 0.001, η2 =  0.43) and syncopated (𝐹1,11 = 8.36, 𝑃 < 0.001, η2 =

 0.35) tapping. Specifically, we found a significant contrast effect between pacing and 

continuation phases averaged across coordination modes (𝐹1,24 = 14.56, 𝑃 < 0.01, η2 =

 0.25). 

As great be seen in Figure 20B, the average accuracy asynchrony during the 

continuation phase was greater than during pacing for both coordination modes. This is 

consistent with our previous findings (Rahimpour et al., under review) that behavioral 

performance based on endogenous cues is less accurate than that based on exogenous 

cues.  

We used PGCM to estimate the fitted model for trial cycles for both pacing and 

continuation tapping, as shown in Figure 20C. The top plot in this figure shows the 

temporal trends for the averaged tapping cycles corresponding to the two coordination 

modes. The two modes follow each other closely across the first 10 seconds, at which 

point the trend towards synchronization across time reveals more variation than 

syncopation (during timepoints 10-17 s); subsequent to that, the time series for 

synchronization stabilizes (during timepoints 17-27 s), albeit to a pattern closer to that 

seen during syncopation. This means that although behavioral accuracy of syncopation is 

less accurate overall, it is stably so. The bottom plot shows the second derivative of the 

trends specifying the turning point estimated by our interpolated model. As can be seen, 

the estimated turning point for both synchronized and syncopated tapping occurs at 10 

seconds (5 seconds before the phase transition timepoint) and at 25 seconds (10 seconds 

after phase transition). This effect is consistent with our previous finding reported in 

Chapter 2.  
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Figure 20. (A) Mean accuracy asynchronies for each timing condition. Error bars 

show standard deviation (SD). Solid brackets indicate statistically significant 

comparisons between timing conditions. (B) Values of mean accuracy asynchrony 

from each timing condition: synchronization (red); syncopation (black); Error bar 

indicates standard error (SE). (C- Top) Estimated accuracy asynchrony trend 

during maintenance (pacing followed by continuation). (C-Bottom) Second 

derivatives of the corresponding trends locating the turning points (blue square 

marks) in: synchronization (red line); syncopation (black line); Gold vertical solid 

line represents continuation phase onset. 

 

Behavioral IRI 

We estimated the MLR model’s ability to predict IRI based on coordination mode 

and phase. A significant effect of each of the independent variables on the mean accuracy 

asynchrony index was found (𝐹1,11 = 86.1, 𝑃 < 0.05), with an R2 of 0.23 in our 

estimated regression model. Moreover, there was a marginally significant main effect of 

phase on IRI (𝐹1,11 = 102.3, 𝑃 = 0.05, η2 =  0.27).  
As shown in Figure 21A, the average performance of trained participants was 

very consistent for all timing conditions, where IRI represents how evenly spaced taps are 

consistent. However, the stability of performance decreases as the timing complexity 

increases. For synchronized and syncopated pacing and continuation, the IRIs were 

997.1 ± 43.2 (ms)(mean ± SD), 998.4 ± 45.8 (ms), 1000.8 ± 62.9 (ms), and 

1016.3 ± 71.1 (ms), respectively. The only significant difference we observed was 

between the syncopated pacing and the syncopated continuation (𝐹1,11 = 6.43, 𝑃 <

0.05, η2 =  0.23) conditions. As can be seen in Figure 21B, the IRI index in the 
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syncopated continuation condition was higher than in other conditions (consistent with 

Rahimpour et al.’s 2020 finding). Finally, we found an interaction between phase and 

coordination mode (𝐹3,11 = 9.41, 𝑃 = 0.04, η2 =  0.28), which is also consistent with 

our previous findings (Rahimpour et al., 2020). 

We used PGCM to estimate the fitted model of averaged pacing and continuation 

tapping trial cycles, as shown in Figures 21C. The top plot in this figure shows the 

temporal trends for the averaged tapping cycles corresponding to the two coordination 

modes. The trend for synchronization over time was consistent and close to an ideal IRI 

value (i.e., 1000 ms); however, abrupt changes were observed in the 10-17 second time 

range, particularly before the continuation onset time point. Similar to mean accuracy 

asynchrony, the temporal trends for the two coordination modes follow each other very 

closely at the beginning and at the end of the cycles. The bottom plot shows the second 

derivative of the trends, which specifies the turning point estimated by our interpolated 

model. As can be seen, the estimated turning point for synchronized and syncopated 

tapping occurred at 11 seconds (4 seconds before the phase transition time point) and at 

12 seconds (3 seconds after phase transition). These observations are consistent with the 

findings (from the fNIRS alternating study) reported in chapter 2. 

  

 

Figure 21. (A) IRIs of each timing condition (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, and syncopated continuation). 

Error bars show standard deviation (SD). Solid brackets indicate statistically 

significant comparisons between timing conditions. (B) IRI values from each 

timing condition: synchronization (red); syncopation (black); Error bar indicates 

standard error (SE). (C- Top) Estimated IRI trend during maintenance (pacing 

followed by continuation). (C-Bottom) Second derivatives of the corresponding 

trends locating the turning points (blue square marks) in: synchronization (red 

line); syncopation (black line); Gold vertical solid line represents continuation 

phase onset. 
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Neural results 

 

As described in the Materials and Methods section, we measured stimulus-locked 

and response-locked ERPs for all timing conditions. In this study, we first aimed to use 

deep learning to extract neurophysiological features that predicted brain states. Because 

the significant contrasts of behavioral accuracy (i.e., mean accuracy asynchrony and IRI) 

were only observed for two timing phases and not for the two coordination modes, we 

aimed to classify pacing and continuation phases for each coordination mode 

(synchronization and syncopation). Finally, we estimated an MLR model using Pearson’s 

r approach to establish the correlation between the extracted neurophysiological and 

behavioral indexes (i.e., mean asynchrony and IRI).  

 

Feature Extraction and Classification  

 

As described in the Materials and Methods section in this chapter, we used deep 

learning to investigate whether classification emerged within electrodes for stimulus- and 

response-locked ERPs. Deep learning predicts the presence of neurobiological markers to 

classify behavioral phases. Since the behavioral data revealed the performance 

differences modulated with pacing-continuation behavioral phases, this factor was 

considered in the deep learning step. Therefore, the study focused on the 2-class problem 

of pacing-continuation within two coordination dynamics—synchronization and 

syncopation—to train the deep learning architecture (EEGNet) on a training dataset. The 

trained model was then applied to the test/validation dataset in order to see how well it 

identified the two different timing conditions for each coordination mode. That is, for 

evaluating classification performance, we used the “10-fold cross validation” approach 

(see Materials and Methods for more details). We examined (4,2) features option. The 

chance level of our 2-class problem would be 50% classification accuracy. We thus 

calculated a threshold that indicated classification accuracies significantly above chance 

by assuming the classification error conformed to a binomial cumulative distribution.  

 

Pacing-Continuation Classification 

Synchronization Coordination Mode. The average accuracy of trial class prediction 

given stimulus-locked, single-trial EEG data was 70% (SD=28%), which was 20% 

(SD=17.2%) higher than the individual chance level (t (11) =16.3; p=0.02). The 

confusion matrix for the 2-class problem is shown in Figure 22A. Rows show real 

(“true”) labels, while the columns show the classification labels, which were generated by 

the model on the basis of the single trial EEG data. The average prediction accuracy of 

70% can be seen in the confusion matrix (see diagonal from top left to bottom right of the 

confusion matrix). Thus, performance was not only above chance, but correct predictions 

outnumbered incorrect predictions. In particular, synchronized continuation trials were 

incorrectly classified as synchronized pacing for only 26% of the cases. In contrast, 

synchronized continuation trials were correctly classified as such in 74% of cases. 

Generally, the confusion matrix shows that the deep learning approach employed here is 

able to classify trial class (experimental timing phase) based on single trial data.  
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Figure 22B presents separate visualization (“saliency”) maps for each of the two 

classes of pacing and continuation. As can be seen in Figure 22B, the FC1 electrode 

strongly contributed to classification accuracy in the time window from 110 to 180 ms. 

Moreover, we observed contribution to classification for C4 and T8 in the time range 

from 110-140 and 190-260 ms, as well as for T7, C3, and Cz in the time range from 190 

to 260 ms. Importantly, this was the case for both classes of pacing and continuation 

trials. The ERP plots showing activity at these electrodes can be seen in Figure 23. The 

identified time window overlaps with the auditory N1 and P2 peak latency component, 

which reflects auditory stimulus. Therefore, it appears that auditory attention contributes 

to the predictive power of stimulus-locked single trials from the synchronized form of the 

experiment. However, we did not observe meaningful classification of response-locked 

single trials of synchronization mode.  
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Figure 22. A) Confusion matrix showing the classification results for the stimulus-locked 

trials of the pacing (the same as continuation) in synchronization mode. Color shadings 

and number in the matrix denote the frequency at which the read data “true” label was 

classified into one of the two possible predicted classes. B) Visualization maps showing 

the relevance of all timepoints and electrodes for classification of two classes of pacing 

and continuation stimulus-locked trials in synchronization mode. Values close to 1 

indicate that the specific feature at the specific timepoints contributes most to 

classification accuracy. The x-axis denotes the time in ms after auditory stimulus 

presentation. The y-axis indicates the different electrode sites. 
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Figure 23. Stimulus-locked ERPs at the electrode sites contributing most to classification 

accuracy (for pacing vs. continuation) during synchronized tapping in the deep learning 

model. The x-axis indicates ms after auditory stimulus-locked presentation. The black 

and red curves indicate the averaged ERP values for pacing and continuation phases, 

respectively. The shading indicates the SE across the time. The y-axis indicates the 

voltage in 𝜇𝑉 (note that the scaling of the y-axis differs between the plots). The yellow 

shading shows the time interval that was found to contribute strongly to classification 

performance in the deep learning network. The scalp maps in bottom right side indicate 

the amplitude of electrode sites in extracted N1 peak latency (time range: 110-140 ms) 

and P2 peak latency (190-260 ms). 
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Syncopation Coordination Mode.  

1) Stimulus-locked ERPs. The average accuracy of trial-level classification on the basis 

of the stimulus-locked single-trial EEG data was 70% (SD=26%) and thus 20% 

(SD=19.2%) higher than the individual chance level (t (11) =15.3; p=0.02). The 

confusion matrix for the 2-class (pacing -continuation) problem is shown in Figure 24A. 

Rows show real (“true”) labels and columns show classification labels as predicted on the 

basis of the single trial EEG data. As can be seen in the confusion matrix, the average 

prediction accuracy was 70% (see diagonal from top left to bottom right in the confusion 

matrix). This was above chance and substantially larger than the percent of incorrect 

predictions. For example, syncopated continuation trials were only incorrectly classified 

as syncopated pacing in 25% of cases, meaning syncopated continuation trials were 

correctly classified as such in 75% of cases.  

Figure 24B presents separate visualization (“saliency”) maps for each of these 

two classes of pacing and continuation. As can be seen in Figure 24.B, C3, C4, T8, and 

CP6 electrodes strongly contributed to classification accuracy of timing phase in the time 

window from 115 to 135 and 190-250 ms. Electrode Pz also contributed to the 

classification accuracy in the time window 190 to 250 ms. Crucially, this was the case for 

both classes of pacing and continuation trials. The ERP plots showing activity at these 

electrodes are given in Figure 25. The identified time window overlaps with the auditory 

N1 and P2 ERP peak latency components, which reflects auditory processes. Therefore, 

auditory attention appears to be predictive of which phase of tapping a person is in given 

syncopated coordination mode.  
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Figure 24. A) Confusion matrix showing the classification results for the pacing in the 

syncopation coordination mode. Color shadings and number in the matrix denote the 

frequency at which the read data “true” label was classified into one of the two possible 

predicted classes. B) Visualization maps showing the relevance of all timepoints and 

electrodes for classification between two classes of pacing trials and continuation 

stimulus-locked trials in syncopation mode. Values close to 1 indicate that the specific 

feature at the specific timepoints contributes most to classification accuracy. The x-axis 

denotes the time in ms after auditory stimulus presentation. The y-axis indicates the 

different electrode sites. 
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Figure 25. Stimulus-locked ERPs at the electrode sites contributing most to classification 

(pacing-continuation phases) accuracy of syncopation mode in the deep learning model. 

The x-axis the time in ms after auditory stimulus-locked presentation. The black and red 

curves indicate the averaged ERP values of pacing and continuation phases, respectively. 

The shading indicates the SE across the time. The y-axis indicates the voltage in 𝜇𝑉 (note 

that the scaling of the y-axis differs between the plots). The yellow shading shows the 

time interval that was found to contribute strongly to classification performance in the 

deep learning network. The scalp maps in bottom right side indicate the amplitude of 

electrode sites in extracted N1 (time range: 115-135 ms) and P2 peak latency component 

(190-260 ms).  

 

2) Response-locked ERPs. The average accuracy of trial level classification prediction 

on the basis of the response-locked single-trial EEG data was 66% (SD=29.5%) and thus 

16% (SD=23.2%) higher than the individual chance level (t (11) =18.7; p=0.046). The 

confusion matrix for the 2-class (pacing-continuation) problem is shown in Figure 26A. 

Rows show real (“true”) label, the columns show the classification label, which was 

predicted on the basis of the single trial EEG data. As can be seen in the confusion 

matrix, the average prediction accuracy was 66% (see diagonal from top left to bottom 

right in the confusion matrix). Syncopated pacing trials were only incorrectly classified 

as syncopated continuation in 28% of cases. In contrast, syncopated pacing trials were 

correctly classified as such in 72% of cases. Generally, the confusion matrix shows that 

the deep learning approach employed here was able to classify trial class (i.e., phases) on 

the basis of single trial data.  
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Figure 26B presents separate visualization (“saliency”) maps for each of these 

two classes of pacing and continuation. As can be seen in Figure 27B, the strong 

contribution for classification accuracy can be observed in the following electrodes and 

time ranges: Fz: 80-130 ms; FC1: 60-100 ms; C3: 110-140 ms, 200-270 ms; C4: 90-140 

ms, 200-250 ms; T8:100-130 ms, 210-250 ms; CP5:0-20 ms, 80-120 ms, 200-220 ms; 

CP6: 115-145 ms; 220-280 ms; Pz: 50-100 ms, 180-220 ms. Crucially, this was the case 

for both classes of pacing and continuation trials. The ERP plots showing activity at these 

electrodes are given in Figure 27. The identified time window overlaps with specified 

time range of motor components, which is known to reflect motor Processes. Therefore, 

motor response processes are predictive of response-locked timing phases in syncopation 

mode.  
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Figure 26. A) Confusion matrix showing the classification results for the response-locked 

trials of the pacing and continuation in syncopation mode. Color shadings and number in 

the matrix denote the frequency at which the read data “true” label was classified into one 

of the two possible predicted classes. B) Visualization maps showing the relevance of all 

timepoints and electrodes for classification between two classes of pacing trials and 

continuation tapping response-locked trials in syncopation mode. Values close to 1 

indicate that the specific feature at the specific timepoints contributes most to 

classification accuracy. The x-axis denotes the time in ms after tapping response 

presentation. The y-axis indicates the different electrode sites 

A 

B 

C
la

ss
if

ic
a

ti
o

n
 F

re
q

u
e

n
cy

 

R
e

le
va

n
ce

 

R
ea

l D
at

a 

Prediction 



72 
 

 

 

 
Figure 27. Response-locked ERPs at the electrode sites contributing most to classification 

accuracy (syncopated-pacing and syncopated continuation) in the deep learning model. 

The x-axis the time in ms after auditory tapping response-locked presentation. The black 

and red curves indicate the averaged ERP values of pacing and continuation phases, 

respectively. The shading indicates the SE across the time. The y-axis indicates the 

voltage in 𝜇𝑉 (note that the scaling of the y-axis differs between the plots. The yellow 

shading shows the time interval that was found to contribute strongly to classification 

performance in the deep learning network. The scalp maps in bottom right side indicate 

the amplitude of electrode sites in extracted motor components (time range: 110-130 ms 

and 220-250 ms).  



73 
 

 

It should be noted that the classification accuracy between synchronized and 

syncopated pacing was not above the change level (for stimulus locked single trial ERPs: 

%55; response-locked: 60%), also between synchronized continuation and syncopated 

continuation were not acceptable (for stimulus locked single trial ERPs: 52%; response-

locked: 61%) 

 

Relations Between Single Trial ERPs and Behavioral Measures 

  

Based on the findings of single trial ERP classification, we predicted that 

individual differences in extracted cortical features (contributed auditory and motor 

components) would correlate with behavioral indices. Thus, separate MLR analyses were 

conducted to examine the relationship between individual differences in extracted single 

trial features and our behavioral accuracy measures (i.e., mean accuracy asynchrony and 

IRI). The behavioral mean accuracy asynchrony and IRI were the dependent variables in 

the regression model (N=12). The independent variables in the model are the extracted 

single-trial amplitudes in each electrode sites that contributed to the classification. We 

explored all possible correlations and plotted the ones that the relationship is statistically 

significant.  

Mean Accuracy Asynchrony. The MLR analysis yielded a model with 𝑟 =
0.62, 𝐹 (1,11) = 6.33, 𝑃 = 0.03 with the average stimulus-locked ERP emerging as the 

only significant unique predictor of mean accuracy asynchrony performance in the 

synchronization coordination mode averaging across phases. A scatterplot showing the 

negative correlation between the extracted auditory-locked ERP amplitude (included N1 

peak latency: 180-220 ms) and mean accuracy asynchrony is shown in Figure 28. In 

support of our general hypothesis about the predictive power of single-trial ERPs, 

stronger neural activity in CP6 electrode site relates to lower mean accuracy asynchrony 

in the synchronized pacing condition.  
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Figure 28. Scatterplots showing individual indices of extracted auditory locked single-

trial neural features corresponding to mean accuracy asynchrony in the synchronized 

pacing condition. The plot illustrates that behavioral accuracy improves with increasing 

strength of amplitude of selective neural features in CP6.  

  

We also found a correlation between the average response-locked ERP emerging 

as the predictor of mean accuracy asynchrony (𝑟 = 0.62, 𝐹 (1,11) = 5.2, 𝑃 = 0.03) in 

the syncopation mode. A scatterplot showing the positive correlation between the 

extracted tapping-locked ERP amplitude in FC1 electrode site extracted from deep 

learning method and mean accuracy asynchrony is shown in Figure 29. The greater 

neural activity at the FC1 electrode site relates to lower mean accuracy asynchrony in the 

syncopated pacing condition.  
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 Figure 29. Scatterplots showing individual indices of extracted response tapping locked 

single-trial neural features corresponding to mean accuracy asynchrony in syncopated 

pacing condition. The plot illustrates that behavioral accuracy improves with increasing 

strength of amplitude of selective neural features in FC1.  

  

In addition, a correlation was observed between averaged extracted single trial 

response-locked ERP emerging as the predictor of mean asynchrony (𝑟 =
0.65, 𝐹 (1,11) = 6.77, 𝑃 = 0.02) in syncopated continuation condition. A scatterplot 

showing the negative correlation between the extracted tapping-locked ERP amplitude at 

the Pz electrode site extracted from our deep learning model and mean accuracy 

asynchrony is shown in Figure 30. Thus, stronger neural activity at the Pz electrode site 

related to higher mean accuracy asynchrony in the syncopated continuation condition.  
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Figure 30. Scatterplots showing individual indices of extracted response tapping locked 

single-trial neural features corresponding to mean accuracy asynchrony in the syncopated 

continuation condition. The plot illustrates that behavioral accuracy improves with 

decreasing strength of amplitude of selective neural features in Pz.  

  

IRI. We estimated our regression model in syncopation mode and found strong 

correlation 𝑟 = 0.72, 𝐹 (1,11) = 9.05, 𝑃 = 0.008 with the average auditory locked ERP 

in Pz as another predictor of IRI performance. A scatterplot showing the strong positive 

correlation between the extracted auditory-locked ERP amplitude (included N1 peak 

latency: 180-220 ms) and IRI index is shown in Figure 31, indicating that stronger neural 

activity at the Pz electrode site relates to higher IRI in the syncopated pacing condition.  
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Figure 31. Scatterplots showing individual indices of extracted auditory locked single-

trial neural features corresponding to IRI in syncopated pacing condition. The plot 

illustrates that behavioral accuracy improves with decreasing strength of amplitude of 

selective neural features in Pz.  

  

Moreover, this analysis yielded a model with 𝑟 = 0.67, 𝐹 (1,11) = 7.99, 𝑃 =
0.01 with the average selective response-locked ERP emerging as the significant 

predictor of IRI performance accuracy. A scatterplot indicating the negative correlation 

between the extracted ERP amplitude at the T8 electrode site and IRI accuracy is shown 

in Figure 32. Thus, stronger neural activity at the T8 electrode site relates to lower IRI in 

the syncopated pacing condition.  
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Figure 32. Scatterplots showing individual indices of extracted response tapping locked 

single-trial neural features corresponding to IRI in syncopated pacing condition. The plot 

illustrates that IRI behavioral accuracy may improves with decreasing strength of 

amplitude of selective neural features on T8.  

 

Discussion 

Here we investigated whether deep learning could identify neurophysiological 

features corresponding to finger tapping processes given systematic manipulation of 

tapping pattern (coordination mode) and phase in the continuation paradigm (pacing or 

continuation). Our findings go beyond conventional ERP component analyses to 

functionally relate EEG features to behavioral performance. We were able to achieve this 

at the time scale of single trials, indicating that neurophysiological processes correspond 

to a single behavior. These results demonstrate that deep learning can be used to classify 

classes of timing trials in an action-based timing task on a single trial level. The findings 

can then be used in a parametric correlational model to link to behavioral timing 

accuracy.  

The central nervous system supports the dynamic behavior of the motor system 

for planning, controlling, and learning actions (Kawato, 1999; Wolpert et al., 1995), and 

listening to rhythmic sound sequences activates not only the auditory system but also the 

sensorimotor system (Fujioka et al., 2009). The findings we report here demonstrate how 

neurophysiological activity—arguably reflecting variable attentional, memory, motoric, 

and sensory demands—corresponds to performance on our finger tapping task, which in 

this case alternates in complexity from trial to trial.  

Electrophysiological activity is differentially modulated by specific movement 

parameters (Jäncke et al., 1998; Thickbroom et al., 1998). Indeed, in the present study, 

each experimental condition activated a network compatible with the automatic, motor-

related timing network, with additional contributions from frontal and central sites to 

motor coordination required by different levels of timing complexity. Consistent with our 
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previous study (Rahimpour et al., 2020), which reported that the increase of oxygenated 

hemoglobin (oxy-Hb) level, the amount of neurophysiological activity also corresponded 

to the degree of difficulty of the different timing behaviors.  

The deep learning approach we implemented here revealed inherent differences 

between phases (pacing vs. continuation) by extracting meaningful contribution of ERP 

components and channels. This neural finding is consistent with the statistically 

significant contrast effects we observed in the behavioral results. In the stimulus-locked 

ERP waveforms, N1 and P2 peak latencies were significantly engaged in phase-contrast 

in both synchronization and syncopation patterns. These two components are generally 

associated in the extant literature with sensory and perceptual processes, including 

sensory gating, selective attention, and stimulus identification (Fogarty et al., 2020). We 

also observed the contribution of response-locked single trial features to sensorimotor 

electrode sites which associated with motor responses. These electrode sites have been 

associated with sensory, motor related, and attentional and working memory processes.  

The finding shows that attentional, sensorimotor and working memory processes 

underlie the differences in timing sub-processes occurring during our finger tapping task. 

Results from deep learning further support the interpretation that attentional and working 

memory impacts on auditory-motor coupling contribute to rhythmic behavior.  

This study provides insights into the neural basis of timing behavior by exploiting 

phases (pacing-continuation) of the continuation paradigm together with changes in 

coordination dynamics introduced by the alternating design used here. The deep learning 

results further show that neurophysiological correlates of attentional, memory processes 

and sensorimotor processes in central, frontal, parietal and temporal electrode sites 

exhibit distinct markers that can be used to guide classification of trial phase in the 

continuation paradigm. The results provide promising evidence for neurally-based 

predictions about memory, attentional, and sensorimotor processes in action-based 

behavior. Thus, deep learning may help elucidate our understanding of neural processes 

by guiding the generation of new hypotheses about timing behavior. This will represent 

an important step towards going beyond conventional ERP components and to 

functionally relate EEG features to behavioral timing performance.  

However, there are several limitations to be addressed in future research. First, the 

results of other classifications (between coordination modes) were inconclusive. 

Therefore, increasing sample size to improve the quality of the data that serves as the 

basis for the deep learning approach may improve overall classification performance. 

Second, although using deep learning further validates our interpretation of some of our 

findings, particularly that attentional, working memory, and sensorimotor components are 

in play to different degrees to the different phases of the continuation paradigm, there are 

still some uncertainties in predicting behavioral accuracy based on single trial 

neurophysiological markers. Further research will be needed to further refine these deep-

learning models. Third, more complex timing trials (Fitch & Rosenfeld, 2007) and 

alternating designs may not accurately reflect the underlying neural activity (Rahimpour 

et al., in press). Dynamic alternation between complex actions may stymie our ability to 

reliably investigate neural activity associated within and across the various subsystems 

involved in pacing and continuation phases of action-based timing behavior. Finally, we 

are mindful that our claims about the precise locations of the sources of activation using 
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the 10-20 system are limited. Thus, it is vital to better localize and validate localization of 

EEG sources through the use of other neuroimaging method with better spatial resolution 

(e.g., fNIRS). Indeed, this is the focus of the research detailed in Chapter 4. 

 

Conclusion 

The findings reported here based on implementation of deep learning point to 

neurophysiological predictors of different forms of action-based timing behavior. We 

have observed individual differences in neural activity that correlate with behavioral 

performance in action-based timing behavior. The results point to links between cortical 

and behavioral measures, and provide evidence that single trial brain activity has 

predictive relevance to our understanding of action-based timing behavior. The results 

show that specific neurophysiological features correspond to attentional, memory, and 

sensorimotor processes and thus may be used as distinct markers that help predict action-

based timing accuracy.  
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Chapter 4 

Using EEG and fNIRS to Explore Cortical Source Localization 

 

Abstract 

This research aims to substantiate claims about the ability of both EEG and fNIRS 

systems to localize sources of timing-based action behavior in the brain. We compared 

both behavioral and neural findings using the alternating-design tapping task described in 

C2 based on data collected across two testing sessions. FNIRS data were collected in the 

first session and EEG data in the second. The behavioral task was identical across the two 

sessions. Overall, we found that experience with the finger tapping task played an 

important role in the accuracy of participants’ behavioral performance from the first to 

the second session. This experience likewise impacted patterns of brain activation across 

the two sessions. We observed training effects on mean accuracy asynchrony and IRI 

across the four timing conditions (synchronized pacing, synchronized continuation, 

syncopated pacing, syncopated continuation). This improvement in performance from the 

first imaging session to the second resulted in differential activation patterns from one 

session to the next. 

 

Keywords: Source Localization, DIPFIT, ICA, EEG, fNIRS, IRI, Asynchrony 
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Introduction 

 

Source localization of the electroencephalography (EEG) signal is a way to 

estimate identification of the brain regions that underlie the EEG signal. Localizing 

sources is increasingly relevant in neuroscience research and in clinical applications that 

use EEG (Cui et al., 2011). As an increasing number of studies employ cortical source 

localization to identify where in the brain responses collected with EEG originate, it is 

crucial to validate the accuracy of the methodology. For example, ERPs are derived from 

the EEG recording of transient brain responses to cognitive stimuli; ERPs are averages of 

specific segments of the EEG recordings taken during repeated presentations of specific 

events. The temporal and frequency content of the signal during these repeated events can 

be characterized in terms of specific patterns common across the same event. These 

components are the specific smaller waveforms that make up the more complex ERP 

waveform. In recent years, the specific components that correspond to different 

perceptual and cognitive processes have been well delineated (Woodman, 2010). 

However, precise localization of the predominant source of these electrical events in the 

brain based on the data recorded from the scalp using EEG has continued to be a 

challenge.  

Over the past three decades, several current density estimation techniques have 

been developed to address the neuroelectromagnetic inverse problem (Baillet, 2001; Bast 

et al., 2004; Koles, 1998), a term that refers to the challenge of identifying the origins 

(sources) of neural activation as recorded by the electrodes placed at various points on the 

scalp. Researchers now implement a wide range of techniques in an effort to localize the 

cortical sources of the EEG signal. A common toolbox and graphic user interface, 

EEGLAB, running under the cross-platform MATLAB environment, is widely used for 

processing EEG data. A specific function of EEGLAB is to facilitate applying and 

evaluating the independent component analysis (ICA) of EEG data. ICA algorithms have 

proven capable of isolating both neurally generated and artefactual EEG sources. 

Researchers have pursued several approaches, including the finite element method (Jatoi 

et al., 2014), skull modeling (Montes-Restrepo et al., 2014), low-resolution 

electromagnetic tomographic analysis (LORETA), minimum norm, recursive multiple 

signal classification (MUSIC), and focal underdetermined system solution (FOCUSS) 

(Song et al., 2015), to name just a handful. The most widely used and successful 

modeling techniques include LORETA, Local Autoregressive Average (LAURA) 

(Michel et al., 2004), and DIPFIT (Iversen & Makeig, 2014). DIPFIT is the model that 

our research lab uses, and is the most recommended EEGLAB plug-in for localizing 

equivalent dipole locations of independent component-guided scalp maps, and the 

DIPFIT plug-in is now regularly applied to the source localization issue (Makeig et al., 

2004).  

In the DIPFIT approach, ICA (Makeig et al., 2004) isolates both artifactual and 

neurally generated EEG sources (Jung et al., 2000; Makeig et al., 1999). This method was 

first applied to EEG by Makeig et al. (1996) and has been widely used in the research 

community ever since, most often to remove noise artifacts (Jung et al., 2000; Jung et al., 

1999; Makeig et al., 1996). Its relevance to source localization became apparent when it 

was found capable of separating brain sources whose activity patterns were distinctly 
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linked to behavioral phenomena. The DIPFIT approach of EEG source localization 

combines ICA, time/frequency analysis, and trial-by-trial visualization (Makeig et al., 

2004).  

The goal of the current project is to explore the validity of the DIPFIT source 

localization program for EEG using fNIRS. We compared source localization outcomes 

using DIPFIT to the more spatially accurate fNIRS data that were collected during each 

participant’s performance of the same finger-tapping task. Our motivation for making this 

comparison is that fNIRS has certain advantages over other neuroimaging methods. In 

particular, it has a higher temporal resolution than fMRI and positron emission 

tomography (PET) and better spatial resolution than EEG. Moreover, other recording 

techniques are highly affected by head movements, while fNIRS is less so, making it 

especially useful with difficult-to-test populations such as infants and young children. 

Our group has broad methodological expertise in fNIRS research (Bortfeld et al., 2007, 

2009; Jahani et al., 2015; Rahimpour et al., 2017, 2018), and we are keen to delineate the 

neural mechanisms that underlie different perceptual and cognitive processes. Doing so 

well depends on precisely localizing the cortical sources of brain-based signals. Although 

fMRI is the gold standard for localization, given its high spatial resolution, we need a 

device that allows participants to be in the same EEG experimental paradigm. For this 

purpose, fNIRS has the highest spatial resolution while maintaining other aspects of the 

participant’s experience in the EEG environment.  

Here we examine an approach to localizing the sources of neural activation—

DIPFIT—by monitoring and tracking trial-to-trial variation in neural data collected via 

EEG, and compare that with data collected via fNIRS from the same participants using 

the same task. NIR topography has been applied to evaluate, for example, the within-

subject reproducibility of sensorimotor-activation NIRS signals in healthy adults (Cui et 

al., 2011; Kameyama et al., 2006; Okamoto et al., 2004; Strangman et al., 2002). Thus, 

fNIRS is an appropriate substitute for fMRI for localizing cortically-based brain activity 

related to cognitive tasks (Cui et al., 2011). Therefore, we compared fNIRS data collected 

as described in Chapter 2 to predictions generated by the DIPFIT source localization 

approach as applied to the data collected as described in Chapter 3. 

Brain Activity 

Finger tapping tasks generally recruit primary cortices (S1, M1), SMA, PMC, 

inferior parietal cortex, basal ganglia, and cerebellum (Witt et al., 2008). However, 

different task-specific parameters may modulate the specific neural mechanisms that are 

engaged in any particular task. The dual coordination mode, continuation paradigm used 

in the current studies helps isolate similarities and differences in the neural circuits 

engaged by paced and continuation (i.e., self-paced) tapping of varying levels of difficult 

(synchronization/syncopation). Much progress has been made in studying the neural 

correlates of various processes relevant to sensorimotor synchronization. For example, 

simple synchronized finger tapping engages the cortical network that includes 

somatosensory and motor areas, while continuation tapping relies more on preferential 

areas due to its load on working memory (More complex sensorimotor synchronization 

tasks result in greater activation in related motor areas, including pre-SMA, PMC, and the 

cerebellum, as well as in stronger coupling to the auditory area (Repp et al., 2013). 

Sensorimotor cortices, SMA, and the anterior portion of the cerebellum are commonly 
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activated during both paced and continuation tapping (Witt et al., 2008). Moreover, 

earlier studies have shown that motor areas are recruited to a greater extent in 

continuation than in paced tapping (Rahimpour et al., 2020). 

Researchers have been used several approaches to find neurologically based 

activity of finger tapping. Based on frequency domain analyses, Boonstra et al (2006) 

found that, while the evoked response in the slower cortical oscillations (i.e., in the theta 

and alpha bands) during paced tapping reflected auditory processing, the induced 

responses (i.e., modulations in phase and amplitude) in the beta band were associated 

with the motor act of tapping and were phase phased-locked with the tap onsets. The 

amplitude of the event-related changes in the beta band also decreased with increasing 

movement rate (Boonstra et al., 2006). Serrien (2008) found somewhat higher tapping 

variability, as well as more functional connectivity in the beta band in the mesial-central 

area (covering areas such as PMC and SMA), in continuation than synchronization 

tapping. Significant activity in the prefrontal-parietal-temporal network (consisting of 

dorsal and ventral prefrontal cortex, middle temporal gyrus, and bilateral prefrontal 

lobes) was present only during continuation tapping, not in paced tapping. Activity in 

these areas is typically associated with various working memory manipulations, and the 

observed activity was attributed to the increased demand on working memory given the 

temporal representation of the auditory stimuli when the pacing signal was switched off 

(Serrien, 2008). Although SMA is primarily involved in motor planning, its activity can 

also reflect an active supervisory role of motor processing supported by activity in M1 

(Kasess et al., 2008).  

Our aim here is to compare the EEG and fNIRS data to identify the unique 

strengths of each. To do so, we tracked brain activation in participants while they 

completed the tapping task that alternated that complexity of the tapping pattern with 

participants either synchronizing or syncopating their finger tapping responses by first 

pacing and then continuing the tapping pattern in the absence of auditory cue. We 

hypothesized that (1) the finger-tapping task would recruit primary S1 and M1, SMA, 

PMC, and inferior parietal cortex (Witt et al., 2008). We also hypothesized that 

localization findings would be comparable across EEG and fNIRS at a general level, (2) 

fNIRS would play the ground truth role to establish more precise spatial localization, and 

(3) EEG would reveal more nuanced information about the training effect of timing-

based neural activation across the four tapping conditions. We predicted that brain 

activity would likewise relate to the temporal complexity of specific finger tapping 

patterns.  

 

Materials and Methods 

 

Participants   

First, sixteen healthy adults were recruited for the study. Four of them were 

removed due to lack of concentration (results that were missing tap responses for more 

than half of the session) during the study, bad channel quality (due to having thick hair or 

a head circumference that was too large for our probe), or due to light saturation from the 

testing environment. This resulted in a participant pool of twelve healthy right-handed 

adult volunteers (mean age 27.3, range 19-41) at the University of California, Merced 
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who successfully participated in both the fNIRS and EEG data collection in two separate 

sessions. FNIRS data were collected during the first session and EEG data during the 

second. Each participant completed the two sessions on the same day. No participants 

reported any neurological or skeletomuscular disorders or injuries at the time of the 

experiment. The study’s protocol was approved by the Institutional Review Board (IRB) 

for research ethics and human subjects. All participants gave informed consent after the 

experimental procedures were explained to them. 

Experiment 

The alternating experimental design for each testing session was within-

participant. Participants were asked to perform two distinct tapping patterns in relation to 

a regularly spaced auditory tone, continuing each tapping pattern for a fixed amount of 

time after the tone stopped. Thus, the design was 2 (synchronous/asynchronous tapping) 

x 2 (pacing to tone/continuation without tone) x 2 (session1/session2). Seated participants 

performed repetitive right (dominant) finger movements in the presence of an auditory 

metronome that produced a 1 kHz tone for 20 ms every 1000 ms (1 Hz). There were ten 

trials in each condition, with each trial involving 27 cycles of responses. 

Task  

We collected data from the same participants on EEG followed by fNIRS on a 

single day using the same experimental protocol. Tapping was performed with the index 

finger of the right hand on a metal plate attached to a MakeyMakey input device that 

records tapping by sending a small electrical signal to an output lead that the subject 

holds on their left hand. An input lead for the MakeyMakey was then attached to a metal 

plate that the subject tapped. When the subject touched the metal plate, it completed a 

circuit in the MakeyMakey, which sends the signal to the computer to indicate a tap 

(Collective & Shaw, 2012). Subjects performed the task while seated in a comfortable 

chair (See more details in Materials and Methods-Chapter 3).  

Behavioral Analysis 

The time of each behavioral response was defined as the point of tapping the 

finger on MakeyMakey plate. The time of each response was corrected by 25 ms to 

account for the temporal delay of the MakeyMakey device. Two relative measures of 

performance were calculated. Mean accuracy asynchrony was defined as the time 

difference between each behavioral response and the preceding stimulus onset; inter-

response interval (IRI) was defined as the time between consecutive behavioral 

responses.  

EEG Approach 

 

Preprocessing  

EEG was continuously recorded with an ANT-Neuro 32 electrode cap with 

electrodes placed according to the 10–20 International electrode system and recorded at 

1024 Hz. The EEG data were processed with EEGLAB (Delorme & Makeig, 2004). ERP 

data were preprocessed by first down sampling to 512 Hz, then applying a high pass filter 

with 6db cutoff at .1 Hz, followed by a low-pass filter with a 6db cutoff at 56.25 Hz to 

eliminate 60 Hz line noise. Data were then examined, and any bad sections were removed 

by hand. Any bad channels were detected and removed using the probability measure 
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within the ASR plugin for EEGLAB that compares channels with their surrounding 

channels (Mullen et al., 2015). ICA was performed using the infomax algorithm within 

EEGLAB (Bell & Sejnowski, 1989). Following ICA, the component data were examined, 

and components related to eyeblinks and eye movement were rejected to clean the data of 

further artifacts (Jung et al., 2000). Data were epoched using ERPLAB centered around 

the onset of the perturbed stimulus and centered on the participants taps that 

corresponded to the perturbed stimuli. Each epoch was from −0.1 s of the event onset to 

0.5 s past the onset. In addition to removing blinking and eye movement components, any 

epoch that had an eye blink during the stimulus onset was removed. 

ICA-DIPFIT Source Localization 

ICA is a linear data decomposition method which separates multichannel data into 

the different constituent components. Each component contains a time course of neural 

activity in every trial and a single scalp map, indicating the strength of the volume 

conducted component activity at each scalp electrode. A linear ICA decomposition is one 

whose component activities are mostly temporally independent (Lee et al., 2000), and 

therefore also mostly temporally “distinct”. Every EEG electrode montage acts as a set of 

spatial filters cortical field dynamics. ICA performs further linear spatial filtering on the 

recorded data to cancel the effects of summing the volume-conducted cortical source 

activities in each recording channel and identifies sources by finding distinctive sources 

of information in the data. If the activity time courses of different EEG components are 

relatively independent of one another, their local field activities must be primarily 

decoupled physiologically. Thus, ICA should separate EEG (or equally MEG) data into 

physiologically and functionally distinct sources under favorable circumstances. Results 

of actual data decomposition demonstrates that ICA, applied to sufficiently large and 

clean high-density EEG datasets, can separate the large or minor activities, scalp maps, 

and scalp data contributions of dozens of maximally independent information sources 

whose scalp maps fit near-perfectly the dipolar projections of cortical EEG sources 

(Vorobyov & Cichocki, 2002; Hyvärinen & Oja, 2000; Makeig et al., 1999).  

ICA separates EEG sources with tangential and radial orientations (Oostendorp & 

Oosterom, 1996). This method decomposes the data into sources with independent time 

courses and dipolar scalp maps. Disregarding head geometry or electrode locations, the 

ICA approach strongly suggests that the index of the recovered component is a 

physiologically separate process. Previous studies revealed standard EEG processes with 

distinct spatial and event-related dynamic characteristics that account for most non-

artifactual EEG (Makeig et al., 2004). Not surprisingly, these component clusters are 

similar in many ways to traditionally recognized types of EEG activity, although with 

better spatial definition and signal-to-noise ratio relative to the single scalp electrode data 

(Jung et al., 2000).  

The most recommended plug-in in EEGLAB for localizing equivalent dipole 

locations of independent component-guided scalp maps is the DIPFIT plug-in, which is 

now being applied to as a source localization approach. Therefore, we used ICA in 

DIPFIT to localize neural activation across four timing conditions. As specified earlier, 

data were examined and any bad channels were detected and removed using the 

probability measure within the ASR plugin for EEGLAB that compares channels with 

their surrounding channels. The data were then re-referenced to the linked mastoids.  ICA 
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was then performed using the infomax algorithm within EEGLAB. Dipole source 

localization was performed using the Dipfit2 plugin that performs source localization by 

fitting an equivalent current dipole model using a non-linear optimization technique using 

a 4-shell spherical model (Kavanagh et al., 1978). 

fNIRS Approach  

Functional near-infrared spectroscopy (fNIRS) provides an alternative to fMRI 

for assessing superficial cortical hemodynamics. The NIRS method is based on near-

infrared light absorption changes that depend on concentration changes of the 

chromophores [𝑂𝑥𝑦 − 𝐻𝑏] and [𝑑𝑒𝑂𝑥𝑦 − 𝐻𝑏] in the brain. We used 55-channel two-

wavelength NIRS systems with a sampling rate of 3.785 Hz (NIRScout, NIRx, Glen 

Head, NY) (Pollonini et al., 2014) with sixteen light-incident and twenty detector fibers. 

The depth of the measuring point depends on the distance between the transmitters and 

the receivers; it is reported that the NIRS signal reflects the absorption at a depth of 1.2–2 

cm from the scalp when the inter-probe distance is 2.7 cm (Kobayashi et al., 2006; 

Raichle, 1994). As the human cerebral cortex usually lies about 1.0–2.0 cm deep from the 

scalp, the suitable inter-probe distance should be about 2.5–3.0 cm to measure the 

activities of the cerebral surface. According to the above discussions, the inter-probe 

distance is decided to be 3.0 cm in our study. The light sources were continuous laser 

diodes with wavelengths of 760 and 850 nm. The optodes were positioned according to 

the 10-20 system for standard electrode positions. 

The mean of the fNIRS signal during the test condition relative to the mean of the 

fNIRS signal during the pre-baseline condition was estimated using a regression model 

and computed using an autoregressive model, pre-whitened iterative reweighted least 

squares (AR-IRLS) algorithm that is robust to artifacts introduced by subject motion and 

serial correlations introduced by systemic physiology (Barker et al. 2013). Thus, we used 

a hemodynamic response function (HRF) that had an elongated return to baseline after 

the termination of the test condition (Hoppes et al., 2018; Lin et al., 2017).    

We applied mixed effect analysis to estimate the regression model at the group 

level. The relative signal change was inspected on a per subject basis, in which the results 

were used for a second, group-level analysis. Group level analysis was performed via a 

linear mixed effects model that included random intercept terms for each subject to 

model within-subject correlations (Abdelnour & Huppert, 2009). The group level model 

was estimated per channel using the built-in MATLAB 2022a package for estimating 

linear mixed effects models (Mathworks, Natick, MA, USA). The fNIRS measurement 

positions were registered to an anatomical atlas brain (Colin27) (Holmes et al., 1998) 

using a custom registration algorithm based on the international 10–20 coordinate system 

(Tsuzuki & Dan, 2014). For each channel, estimates of the regression coefficients, β, for 

[HbO] and [Hb], as well as the standard error, were computed for each subject group, and 

each trial. T-tests were used to determine if the regression coefficient differed from 0, 

using the false discovery rate method to adjust the p value (pFDR < 0.05).  

NIRS data are typically analyzed in a model that calculates mean hemoglobin 

concentrations across designated periods. Analyses focusing on the multichannel NIRS 

data are expected to clarify the spatial pattern of brain activation, which we then compare 

to the EEG findings generated via the ICA analysis.  
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Region of Interest 

We aim to examine the spatial source localization of neurophysiological activity 

and hemodynamic responses in specified regions of interest (ROI). To this end, we aimed 

to investigate those regions identified as engaged to different degrees in Session 1. For 

spatial localization visualization, we map the channels onto a brain template. Figure 33A 

depicts channel positions relative to common scalp landmarks. Red numbers represent 10 

–20 scalp landmarks. Yellow lines connect light sources and detectors which represent 

data channels. Figure 33B shows the sensitivity map for our probe design as derived from 

photon migration simulations of the probe on a 3D head model. 

 

  

Figure 33. Channel placement and sensitivity. (A) Depiction of temporal head channel 

positioning relative to common scalp landmarks. Red numbers represent 10 –20 scalp 

landmarks. Yellow lines connecting light sources and detectors represent data channels. 

(B) Sensitivity map (𝑚𝑚−1) derived from photon migration simulations of probe in a 3D 

head model. This figure is adapted from Chapter 2. 

 

Behavioral Results 

 

Mean Accuracy Asynchrony 

Our estimated multiple regression model was calculated to predict mean accuracy 

asynchrony based on coordination and phase across the two separate sessions. We 

observed main effects of phase (𝐹1,11 = −261.3, 𝑃 < 0.001, η2 =  0.43), coordination 

mode (𝐹1,11 = 8.03, 𝑃 < 0.001, η2 =  0.23) and study session (𝐹1,11 = 215, 𝑃 <

0.001, η2 =  0.37) on mean accuracy asynchrony. Therefore, all three independent 

variables—coordination mode, maintenance phase, and study session—significantly 

impacted mean asynchrony. Moreover, a significant phase × study session interaction 

(𝐹1,24 = 5.48, 𝑃 < 0.01, η2 =  0.2) was observed. A significant contrast effect was also 

observed between two sessions (𝐹1,11 = 20.4, 𝑃 = 0.001, η2 =  0.24) due to the 

practice effect. We also observed significant difference between synchronization and 

syncopation modes (𝐹1,11 = 5.4, 𝑃 = 0.001, η2 =  0.14). A three-way interaction effect 
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between phase, coordination mode and study session was also observed (𝐹2,22 =

5.48, 𝑃 = 0.001, η2 =  0.2).  

Session 1 

 In order to calculate the accuracy of synchronized and syncopated paced tapping, 

the average mean accuracy asynchronies (with SD) were measured as 22.27 ±
100.56 (𝑚𝑠) (mean±SD) and 3.16 ± 123.45 (ms), respectively (see Figure 34). 

Moreover, the mean accuracy asynchrony for continuation phase with no metronome 

present was estimated at 58.44 ± 196.1 (ms) for synchronized tapping and 66.6 ±
205.88 (ms) for syncopated tapping coordination modes. This indicates more variability 

for continuation than pacing in both coordination modes in the first session. 

By using post hoc tests, we observed significant differences of  mean accuracy 

asynchrony between pacing and continuation in synchronization mode (𝐹1,11 = 6.14, 𝑃 =

0.001, η2 =  0.27) and between phases in syncopation (𝐹1,24 = 11.9, 𝑃 = 0.001, η2 =

 0.31). 

Session 2 

For participants in the second session, for synchronized and syncopated pacing 

and continuation, the mean accuracy asynchronies were −46.48 ± 102.3 (ms)(mean ±
SD), −49.31 ± 120.5 (ms), 27.33 ± 197.68 (ms), and 3.45 ± 212.75 (ms), 

respectively, as illustrated in Figure 34. Results revealed that the pacing phase resulted in 

more stable tapping compared to the continuation phase. Also, we observed negative 

average accuracy asynchrony in the pacing phase for both coordination modes in session 

2. Significant differences between pacing and continuation were observed for 

synchronized  (𝐹1,11 = 15.23, 𝑃 < 0.001, η2 =  0.33) and syncopated (𝐹1,11 =

11.6, 𝑃 = 0.001, η2 =  0.27) coordination modes. Moreover, a significant difference in 

mean accuracy asynchrony between synchronization and syncopation in the continuation 

phase was also observed (𝐹1,11 = 5.17, 𝑃 < 0.001, η2 =  0.22). 
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Figure 34. Mean asynchronies of each timing condition (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, and syncopated continuation) in session 1 

(black) and session 2 (red). Error bars show standard deviation (SD). Dashed brackets 

indicate statistically significant comparisons between two study sessions. 

 

As shown in Figure 34, the contrast effects between two study sessions were observed in 

all timing conditions: synchronized pacing (𝐹1,11 = 12.15, 𝑃 = 0.001, η2 =  0.32); 

synchronized continuation (𝐹1,11 = 6.08, 𝑃 = 0.001, η2 =  0.23); syncopated pacing 

(𝐹1,11 = 11.06, 𝑃 = 0.001, η2 =  0.21); and syncopated continuation (𝐹1,11 =

12.38, 𝑃 < 0.001, η2 =  0.29). These contrasts clearly demonstrate the impact of 

practice from one session to the next on timing behavior in all conditions.  

IRI 

Our MLR was modeled to predict IRI based on coordination and phase in two 

separate sessions. There were main effects of phase (𝐹1,11 = 196.85, 𝑃 < 0.001, η2 =
 0.41), coordination mode (𝐹1,11 = 111.9, 𝑃 < 0.001, η2 =  0.26) and study session 

(𝐹1,11 = 19, 𝑃 < 0.001, η2 =  0.32) on IRI.  Moreover, a significant phase × study 

session interaction (𝐹1,11 = 25.56, 𝑃 < 0.01, η2 =  0.28) was observed. A three-way 

interaction between phase, coordination mode, and study session has also been observed 

(𝐹2,22 = 21, 𝑃 = 0.001, η2 =  0.21). A contrast effect between two sessions has also 

been observed (𝐹1,11 = 6.3, 𝑃 = 0.001, η2 =  0.14) due to the practice effect. We also 

Synchronized Pacing Synchronized Continuation Syncopated Pacing Syncopated Continuation 

* 

* 

* 

* 
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observed a significant effect between synchronization and syncopation modes (𝐹1,11 =

12.13, 𝑃 = 0.001, η2 =  0.29).  

Session 1 

 To calculate the accuracy of synchronized and syncopated paced tapping, the 

average IRI (with SD) was measured, 987.26 ± 53.2 (𝑚𝑠) (mean±SD) and 1001.66 ±
56.36 (ms), respectively (see Figure 36). Moreover, the average IRI for continuation 

(with no metronome present) was estimated at 1013.37 ± 61.7 (ms) for synchronized 

tapping and 1030.75 ± 70.5 (ms) for syncopated tapping coordination modes. 

By using post hoc tests, we observed significant differences between pacing and 

continuation in synchronization mode (𝐹1,11 = 11.22, 𝑃 = 0.001, η2 =  0.22) and 

between phases in syncopation (𝐹1,11 = 14.39, 𝑃 = 0.001, η2 =  0.36). We also 

observed a significant difference between synchronization and syncopation modes in 

pacing (𝐹1,11 = 6.33, 𝑃 = 0.001, η2 =  0.12), and continuation (𝐹1,11 = 8.35, 𝑃 =

0.001, η2 =  0.19) phases.  

Session 2 

For participants in the second session, across synchronized and syncopated pacing 

and continuation, the mean accuracy asynchronies were 996.5 ± 43.08 (ms)(mean ±
SD) for synchronized pacing,  997.7 ± 47.62 (ms) for syncopated pacing, 997.13 ±
67.53 (ms) for synchronized continuation, and 1021.78 ± 75.72 (ms) for syncopated 

continuation, respectively, as illustrated in Figure 35. These results show that 

synchronization resulted in more accurate tapping compared to syncopation. Moreover, 

significant differences were observed between pacing and continuation for syncopation 

(𝐹1,11 = 13.97, 𝑃 < 0.001, η2 =  0.4), and a significant difference between 

synchronization and syncopation in continuation phase has also been observed (𝐹1,11 =

14.09, 𝑃 < 0.001, η2 =  0.32). 
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Figure 35. Averaged IRIs with SDs for each condition (i.e., synchronized pacing, 

synchronized continuation, syncopated pacing, and syncopated continuation) for block 

(black) and alternating designs (red). Dashed brackets indicate statistically significant 

comparisons between the two study sessions. 

 

As shown in Figure 35, the contrast effects between two study sessions were observed for 

the continuation phase for synchronization (𝐹1,11 = 8.62, 𝑃 = 0.001, η2 =  0.3) and 

syncopation (𝐹1,11 = 4.57, 𝑃 < 0.02, η2 =  0.19). These contrasts demonstrate the 

training effects (in Session 2) impacting IRI timing behavior for continuation phase 

tapping.  

 

Brain Activation Comparison 

We estimated activated areas based on MNI coordinates and extracted Brodmann 

areas using the atlas viewer for fNIRS channel maps; Besides, DIPFIT2 plugin in 

EEGLAB was used to covert Talairach to MNI coordinates. We predefined 10 clusters 

for k-means clustering method for EEG source localization and then report the ones that 

are located inside Brodmann areas.  

We report the results of our comparison of electrophysiological activity and 

hemodynamic responses for each timing condition given an alternating design using 

fNIRS (Session 1) and EEG (Session 2). We then explore the conditions that have spatial 

similarities within specified ROI (see section Materials and Methods-Region of Interest). 

Synchronized Pacing Synchronized Continuation Syncopated Pacing Syncopated Continuation 

* 
* 



99 
 

 

Based on the generated sensitivity maps, the fNIRS average channel maps for each 

timing condition are shown. Finally, we compare the hemodynamic results with neurally-

based source localization within specified ROIs as obtained using DIPFIT, showing 

temporal ERPs, equivalent dipole clusters, and scalp maps.   

  

Synchronized Pacing 

Regions of significant [𝑂𝑥𝑦 − 𝐻𝑏] activated channels for the synchronized 

pacing condition are shown in Figure 36A and 37A. This figure identifies the only 

activated regions, which are primarily between FC3 and FC5 in the left STG area [MNI 

coordinates (-48, 13, 17), Brodmann area 44L]  (𝑡𝐹𝐶3−𝐹𝐶5 = 7.06, 𝑞 < 0.01). However, 

the left hemisphere independent component (IC) cluster was a group of 10 ICs 

(mean=0.88, SD=0.47) from 12 subjects in auditory-locked ERP. The centroid was at 

MNI coordinates (-44, -23, 20) corresponding to left primary sensorimotor cortex 

(S1/M1) in Brodmann area 1L. See Figure 36B for the cluster components of equivalent 

dipoles as well as associated auditory-locked ERP plot and mean IC scalp map. The 

auditory locked P1, N1, and P2 components can be observed in the corresponding ERP 

waveshape. 

Furthermore, the left hemisphere IC cluster was a group of 6 ICs (mean=-0.38, 

SD=0.87) from 12 subjects in response-locked ERP activity. The centroid was at MNI 

coordinates (-6, 2, 50) corresponding to left SMA in Brodmann area 6L. Figure 37B also 

shows the cluster components and mean equivalent dipoles as well as associated 

response-locked ERP plot and mean IC scalp map.  

 

 
Figure 36. (A) Channel maps of the main effect (q<0.5) of synchronized pacing condition 

on [Oxy-Hb] hemodynamic activation obtained by synchronized pacing condition. (B) 

Top: Cluster component equivalent dipoles generated by stimulus-locked ERPs in blue 

and dipole centroid in red. Bottom: The averaged of IC components and cluster mean IC 

scalp map. Color bars in A and B represent the t-value and amplitude range, respectively.  

A B 
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Figure 37. (A) Channel maps of the main effect (q<0.5) of synchronized pacing condition 

on [Oxy-Hb] hemodynamic activation obtained by synchronized pacing condition. (B) 

Top: Cluster component equivalent dipoles generated by response-locked ERPs in blue 

and dipole centroid in red. Bottom: The averaged of IC components and cluster mean IC 

scalp map. Color bars in A and B represent the t-value range and amplitude, respectively.  

  

Synchronized Continuation 

Regions of significant [𝑂𝑥𝑦 − 𝐻𝑏] activated channel for the synchronized 

continuation condition is shown in Figure 38A and 39A and reported in Table 4. The 

figures and table identify the activated regions in SMA/preSMA, left medal frontal gyrus, 

left premotor cortex (PLC), left STG, pre-SMA, left transverse temporal gyrus (TTG), 

and left STG. The fNIRS results for  synchronized continuation also show broad 

activation in sensorimotor areas compared to the corresponding pacing phase. 

However, the central hemisphere cluster was the groups of 18 ICs included 1-2 

ICs per subject (mean=0.02, SD=0.4) from 12 subjects in auditory-locked EEG. The 

cluster centroids were at (MNI: -1, -17, 50) corresponding to premotor cortex and SMA, 

in Brodmann area 6. See Figure 38B for the cluster component and centroid equivalent 

dipole positions and mean IC scalp maps. Moreover, greater numbers of associated ICs 

within the cluster were observed in auditory locked continuation comparing to pacing 

phase although significantly less amplitude level (𝐹(1,11) = 2.6, 𝑞 < 0.05). 

 The central hemisphere cluster was the groups of 11 ICs included one ICs per 

subject (mean=0.04, SD=0.24) from 12 subjects in synchronized continuation response-

locked ERPs. The cluster centroids were at (MNI: 8, -8, 67) corresponding to premotor 

A B 
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cortex and SMA, in Brodmann area 6. Figure 39B represents the cluster component and 

centroid equivalent dipole positions and mean IC scalp maps. Response-locked 

synchronized continuation showed spatially close activated area to centralized response-

locked synchronized pacing (figure 37B).  However, more associated ICs within the 

cluster were observed in response locked continuation comparing to pacing although 

significantly less averaged amplitude level (𝐹(1,11) = 1.9, 𝑞 < 0.05). 

  

 

 

Figure 38. (A) Channel maps of the main effect (q<0.5) of synchronized continuation 

condition on [Oxy-Hb] hemodynamic activation obtained by synchronized pacing 

condition. (B) Top: Cluster component equivalent dipoles generated by stimulus-locked 

ERPs in blue and dipole centroid in red. Bottom: The averaged of IC components and 

cluster mean IC scalp map. Color bars in A and B represent the amplitude and t-value 

range, respectively.    
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Figure 39. (A) Channel maps of the main effect (q<0.5) of synchronized continuation 

condition on [Oxy-Hb] hemodynamic activation obtained by synchronized pacing 

condition. (B) Top: Cluster component equivalent dipoles generated by response-locked 

ERPs in blue and dipole centroid in red. Bottom: The averaged of IC components and 

cluster mean IC scalp map. Color bars in A and B represent the t-value range and 

amplitude, respectively.  

 

Table 4. Brain regions showing oxy-Hb hemodynamic significant effects in syncopated 

continuation condition in fNIRS alternating designs 

Channel X Y Z Brodmann t-value p-value Region 

Cz-Fz 1 -1 52 6 5.8 0.03 SMA/preSM

A 

Fz-F1 -1 26 46 8 6 0.02 L-Medial 

Frontal 

FC1-F1 -5 39 20 22 5.9 0.02 L-Premotor 

FC3-FC5 -48 13 17 22 6.3 0.01 L-STG 

F1-F3 -25 10 46 6&8 6.1 0.02 L-preSMA 

FC5-C5 -52 -20 7 41&42 7.43 0.01 L-TTG 

C3-C5 -57 -20 1 22 5.3 0.05 LSTG 

  

  

 Syncopated Pacing 

Figures 40A depicts the activated channel maps of [𝑂𝑥𝑦 − 𝐻𝑏] in the syncopated 

pacing condition. Table 5 also represent the activated channels with the estimated 

coordinates (MNIs) and Brodmann area information. As shown, broad areas of the brain 

including MTG, STG, PTG, ATG, S1/M1, PMC, SMA/pre-SMA are associated with 

syncopated pacing measuring hemodynamic response. Our observation of bilateral 

activation is consistent with findings from our previous study (Rahimpour et al., 2020).  
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Moreover, the central and right hemisphere clusters of auditory-locked neural 

activity were the group of 19 ICs (mean=0.25, SD=0.21) and 4 ICs (mean=-0.1, 

SD=0.26), respectively. This centralized cluster included 1-2 ICs per subject from 12 

subjects. The central and right cluster centroids were at (MNI: 5, -18, 61) corresponding 

to SMA and premotor cortex area, in Brodmann area 6 and at right STG area (MNI: 54, -

8, -10) in Brodmann 22, respectively. See Figure 40B for the cluster component and 

centroid equivalent dipole positions and mean IC scalp maps. P1-N1 and P2 components 

are observed in auditory locked ERPs. However, no cluster of dipoles was observed in 

response-locked ERPs in the syncopated pacing condition.  

 

 

Figure 40. (A) Channel maps of the main effect (q<0.5) on [Oxy-Hb] hemodynamic 

activation obtained by syncopated pacing condition. (B) Top: Cluster component 

equivalent dipoles generated by stimulus-locked ERPs in blue and dipole centroid in red. 

Bottom: The averaged of IC components and cluster mean IC scalp map. Color bars in A 

and B represent the t-value and amplitude range, respectively.  

 

 

 

 

 

 

 

 

Table 5. Brain regions showing oxy-Hb hemodynamic significant effects in syncopated 

pacing condition in fNIRS alternating designs 

A B 
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Channel X Y Z Brodmann t-value p-value Region 

T8-TP8 60 -27 -9 21 7.4 0.01 R-MTG 

TP8-CP6 51 -33 34 40 6.1 0.03 R-SMG 

CP6-C6 50 -21 7 41 6.2 0.03 R-PTG 

C6-T8 50 -23 -9 21&41 6.1 0.03 R-ATG 

CP4-C4 41 -32 46 2 5.9 0.04 R-S1/M1 

FC2-FC4 28 -1 51 6 5.7 0.04 R-PMC 

F2-FC2 25 13 48 6&8 6.1 0.03 R-SMA/preSMA 

F2-F4 21 25 43 8 5.3 0.05 R-SMA 

Fz-F1 -13 27 51 8 5.2 0.05 L-SMA 

F1-FC1 -20 -4 51 6&8 5.3 0.05 L-SMA/preSMA 

FC1-C1 -32 -10 50 4&6 7.3 0.01 L-PMC/SMA 

C1-CP1 -14 -33 48 5 5.1 0.05 L-S1 

FC1-FC3 -28 -2 52 6 5 0.05 L-PMC/SMA 

C1-C3 -22 -25 48 4 6.9 0.01 L-S1/M1 

CP1-CP3 -40 -27 47 2 5.3 0.05 Primary Sensory 

FC3-C3 -36 -10 46 4 6.2 0.02 L-PMC 

C3-CP3 -53 -32 33 40 5.7 0.04 L-SMG 

C3-C5 -46 -26 50 2&42 5.8 0.04 Somatosensory 

C5-CP5 -53 -32 33 40 5.3 0.05 L-Supramarginal 

C5-T7 -52 -19 7 41&42 7 0.01 L-PTG 

T7-TP7 -59 -25 -13 21 7.1 0.01 L-MTG 

  

 

Syncopated Continuation 

Figure 41A represents the activated channels of [𝑂𝑥𝑦 − 𝐻𝑏] in the syncopated 

continuation condition. Estimated coordinates for activated channels is also shown in 

Table 6. As shown, broad areas of the brain are associated with syncopated continuation 

as measured by hemodynamic response (cortical areas: MTG, opercular, SMA/preSMA, 

PMC, PTG, STG, IFG and temporal pole). Our observation is consistent with our 

previous study (Rahimpour et al., 2020).  

Although no cluster of dipoles was observed in auditory-locked 

neurophysiological activity for the syncopated continuation condition, we observed a left 

hemisphere cluster of the group of 8 ICs (mean=0.15, SD=0.34) from 12 subjects in 

response-locked ERPs. The cluster centroids were at (MNI: -5, -13, 51) corresponding to 

left SMA and PMC area, in Brodmann area 6. See Figure 41B for the cluster component 

and centroid equivalent dipole positions and mean IC scalp maps.  

 
A B 
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Figure 41. (A) Channel maps of the main effect (q<0.5) of syncopated continuation 

condition on [Oxy-Hb] hemodynamic activation obtained by synchronized pacing 

condition. (B) Top: Cluster component equivalent dipoles generated by response-locked 

ERPs in blue and dipole centroid in red. Bottom: The averaged of IC components and 

cluster mean IC scalp map. Color bars in A and B represent the t-value range and 

amplitude, respectively.  

 

Table 6. Brain regions showing oxy-Hb hemodynamic significant effects in syncopated 

continuation condition in fNIRS alternating designs 

Channel X Y Z Brodm

ann 

t-value p-value Region 

T8-TP8 60 -27 -9 21 6.4 0.03 R-MTG 

C6-FC6 49 12 17 44 6.1 0.02 R-Opercular 

F2-FC2 25 13 48 6&8 6.3 0.02 R-SMA/preSMA 

FC2-C2 28 -1 51 6 6.3 0.02 R-PMC/SMA 

Fz-F2 22 26 45 8 6.4 0.02 R-preSMA 

Fz-FCz 4 26 45 8 6 0.03 preSMA 

Cz-FCz -6 -21 70 6 6.1 0.03 PMC/SMA 

Fz-F1 -13 27 51 8 5.9 0.04 L-SMA 

FC1-FCz -15 -21 70 6 6 0.03 L-PMC 

FC1-C1 -32 -10 50 4&6 6.2 0.03 L-PMC/SMA 

C1-C3 -22 -25 48 4 6.4 0.02 L-S1/M1 

CP1-CP3 -40 -27 47 2 5.1 0.05 Primary Sensory 

FC3-C3 -36 -10 46 4 6.8 0.01 L-PMC 

C3-C5 -46 -26 50 2&42 6.4 0.02 Somatosensory 

FC5-C5 -55 -19 4 41&42 7.2 0.01 L-PTG 

T7-FT7 -49 -2 -11 22 6.2 0.03 L-STG 

FC5-FT7 -48 13 17 44 6.4 0.03 L-Opercular 

F7-FT7 -40 31 -13 47 6.2 0.02 L-IFG 

FT7-FT9 -43 13 -30 38 6.5 0.02 L-Temporal pole 
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Discussion 

A large body of research has advanced our knowledge about how temporal 

mechanisms control behavior, and focus has shifted to whether and how timing is 

represented in the central nervous system. Studies of finger tapping provide information 

about the mental timing system that is not confounded with more complex motor actions 

or feedback mechanisms (Ivry & Keele, 1989; Sergent, 1993; Wing & Kristofferson, 

1973). In the finger-tapping task used here, individuals tapped their index finger either in 

or out of synchrony (i.e., synchronization vs. syncopation) given auditory cues presented 

at a constant interval. Further knowledge is gained by having participants continue their 

tapping despite cessation of the auditory cue (i.e., continuation). In the case of 

continuation, performance depends on a mental representation of the interval duration 

and thus reveals essential information about internal timing mechanisms. Finger tapping 

tasks have revealed a lot about internal timing mechanisms (Balasubramaniam et al., 

2004; Cluff et al., 2010; Ross & Balasubramaniam, 2014; Studenka et al., 2012). We 

used a modified finger tapping task (two timing conditions: synchronization-

continuation/syncopation-continuation) as a stimulus to examine the activations of 

cortical areas. We found that the finger-tapping task recruited primary sensorimotor 

cortices (S1 and M1), supplementary motor area (SMA), premotor cortex (PMC), and 

inferior parietal cortex (Witt et al., 2008). We also compared the two imaging modalities 

to determine whether EEG and fNIRS can localize cortical activation resulting from this 

task equally well. An additional aim was to characterize the responses obtained using the 

different modalities to identify the unique strengths of each for providing spatial and 

temporal information about brain activity.  

While our goal was to explore ICA-DIPFIT source localization and compare it to 

localization observed via fNIRS, we instead observed a training effect, such that 

performance was much more accurate during the EEG data collection than during the 

fNIRS data collection. We were able to demonstrate that cortical areas are recruited in 

finger-tapping in direct relation to the complexity of the timing behavior being 

performed. Moreover, we found that both neuroimaging methods recruited sensorimotor 

areas and observed some activation clusters in frontal, parietal, and temporal areas 

depending on the degree of the training effect, which varied across behavioral timing 

conditions. However, given the training effect observed from the first to second imaging 

session, we are not able to make any claims about the spatial localization accuracy of the 

source modeling approach tested here. 

One problem for DIPFIT analysis is that the number of clusters are pre-defined 

and, consequently, we are limited to the number of ICs assigned to the pre-defined 

cluster. Future work should explore standardized low-resolution electromagnetic 

tomographic analysis (sLORETA) since in this way we are able to feed extracted 

channels and timepoints to the model (see Chapter 3), which would generate more robust 

and reliable source localization findings. Another limitation was that we did not 

quantitatively compare the spatial accuracy across the two imaging modalities, and thus 

must provide qualitative descriptions based on estimated cortical coordinates extracted 

from the EEG and fNIRS findings. This is an open question for future studies. Lastly, an 

important limitation was that all participants participated first in the fNIRS session and 

then in the EEG session, producing practice effects specific to the EEG data. This was 
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because participants did not want to have to wash their hair in the middle of the day (to 

remove EEG gel) between the two testing sessions. We thus observed training effects in 

both our behavioral and neural results in Session 2, which was always the EEG session. 

For future work, we strongly recommend doing multimodal EEG-fNIRS data collection 

simultaneously, or at least recommend counterbalancing the order of fNIRS and EEG 

sessions in order to control for training effects specific to one or the other imaging 

modality. 

   

Conclusion 

This research provides initial insight into the ability of fNIRS system to validate 

the results obtained from ICA-DIPFIT source localization of timing-based action. We 

investigated and compared behavioral and brain-based findings obtained during 

performance of a systematically varied tapping task by using two neuroimaging methods, 

fNIRS and EEG, across two testing sessions. We found that finger-tapping experience 

plays an important role in behavioral performance, as well as in both hemodynamic and 

neural activation. The two imaging modalities showed distinct patterns of cortical 

activation due to the training effects we have described. We observed the training effect 

on behavior too: on mean accuracy asynchrony across all four timing conditions. 

However, training impact IRI only for the continuation phase of the two modes of 

tapping. Mean accuracy asynchrony provided a more detailed view of the training effects 

in action-based timing behavior. Our findings show that training leads to improved 

performance on the complex behaviors and increasingly automated performance on the 

less complex ones. These effects manifested in different brain-based patterns of 

activation across the two imaging modalities as well.  
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Chapter 5 

Summary 

Findings from the experiments reported here provide insight into the influence of 

contextual action-based timing on behavior and brain (both hemodynamic and neural). 

The aim of these studies was to characterize how behavioral performance under different 

levels of difficulty corresponds to brain-based neurophysiological activity. More 

specifically, the work investigated how action-based timing is influenced by maintenance 

and coordination dynamics and how different context-dependent parameters modulate 

both behavioral and brain-based responses.  

Procedures used to elicit both behavioral and neurophysiological data to address 

particular cognitive questions can impact the nature of the data collected. With that in 

mind, Chapter 2 interrogated the dynamic nature of rhythmic entrainment as reflected in 

both behavioral and brain responses given different rhythmic patterns of motor 

coordination as introduced via the pacing-continuation task. Specifically, data collected 

using the same paradigm in which responses were compared across a rhythmically 

blocked versus a rhythmically alternating study design highlighted the dynamic nature of 

action-based timing behavior. Results revealed that there are better and worse timing 

conditions for rhythmic entrainment to occur, and that the differences between them can 

be relatively subtle.  

Overall, the behavioral results point to the substantial influence of study design on 

complex timing behavior. Results show that the complexity and difficulty of the design 

likewise impacts the degree and breadth of neural activation elicited. The significantly 

higher levels of activity we observed in fNIRS data across all four tapping conditions in 

the block design may reflect development of an internal representation of the timing 

patterns (i.e., entrainment), something that was not possible for participants in the 

alternating design. Thus, our findings demonstrate the critical impact of a study’s design 

on the degree of rhythmic entrainment that can be achieved given different forms of 

coordination dynamics. Likewise, neural correlates of timing behavior reflect context-

dependent parameters. 

Our results provide insight into the influence of the broader experimental context 

on timing behavior and the underlying neural activity that supports it, an interpretation 

consistent with several previous findings (Jantzen et al., 2004, 2007; Rahimpour et al., 

2020). Thus, representation of timing information is formed in a context-dependent 

manner, with the introduction of different cognitive states or expectations, as well as 

difficulty levels, impacting behavioral performance and the corresponding neural 

engagement supporting it. Here we have observed that it takes time to develop an internal 

timing representation and thus entrain motorically to complex rhythmic stimuli.  

We then used EEG to investigate moment-to-moment neurological activity during 

the alternating design task, relating findings to those on participants’ behavioral 

performance. Chapter 3 exploited the pacing-continuation forms of coordination 

dynamics given alternating patterns of synchronized and syncopated tapped to further 

elucidate the neural basis of timing behavior. Task-induced neural activation manifested 

as auditory- and motor-evoked potentials over a broad area of central, temporal and 

frontal electrode sites, corresponding to those regions in the cortex.  
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Moreover, we found that individual differences in rhythmic entrainment as 

reflected in the cortex predicted behavior in context-based timing behavior using a deep 

learning approach. Our study highlighted the strong coupling of behavioral performance 

accuracy and single-trial neurophysiological activity. These results revealed a direct link 

between our cortical and behavioral measures, thus providing evidence that single trial 

brain activity has predictive relevance to action-based timing behavior. Thus, this is an 

initial demonstration that neurophysiological correlates of sensorimotor processes exhibit 

distinct markers that can be used to predict different degrees of action-based timing 

accuracy.  

The research reported in Chapter 4 provides insight into the ability of fNIRS to 

validate the results obtained using an EEG ICA-DIPFIT source localization approach as 

applied to the same timing behavior. We compared both behavioral and brain-based 

findings using the two neuroimaging modalities (fNIRS and EEG), with data collected 

across two identical testing sessions with the same participants completing both on the 

same day. Not surprisingly, we found that experience with the action-based timing 

behavior significantly impacted participants’ behavioral performance accuracy from one 

session to the next, as well as their brain-based responsivity while completing the task. 

Importantly, both neuroimaging modalities showed the impact of different cognitive 

states/expectations and levels of difficulty for the participants, as manifested in cortical 

activation differences given prior experience or no such experience. We observed a 

training effect on mean accuracy asynchrony across all timing conditions, with some 

nuanced differences between the two measures of accuracy we employed. The findings 

support our conclusion that training significantly improves performance of more complex 

timing behaviors, as well as helps “automate” less complex behaviors, and that such 

differences are manifested both behaviorally and in the brain.  

  

Developmental Implication  

The role of time/timing is relevant to a wide range of different cognitive skills and 

deficiencies. In this study, we scrutinized the role of timing in perception and action in 

adults. Time/timing representations arise from sensorimotor coding and are apparent in 

different actions, reflecting different coordination dynamics depending on contextual 

factors. This point of view was supported by the philosopher Guyau (1890) and was 

further described by Piaget (1946) in his description of sensorimotor development. More 

recently, the protracted nature of sensorimotor development has been validated by 

researchers working with children (e.g. Droit, 1995; Droit‐Volet & Rattat, 1999; Rattat & 

Droit Volet, 2002; McCormack & Hoerl, 2017), as well as those working with adults 

(Cassenti, 2011; Fujioka et al., 2012; Kononowicz & Van Rijn, 2015; Manning & Schutz, 

2013; Morillon et al., 2014). Interestingly, Monier et al (2019) found that the beneficial 

effects of action on timing are greater in young children than adults. For example, 

synchronized action during learning systematically helped timing performance for 

younger children in particular. This finding highlights the degree to which action itself 

shapes the cognitive representation of interval duration, helping children construct an 

independent and flexible representation of time. With development, this produces the 

strongly coupled sensorimotor coding for action and time observed in adults across a 

wide range of tasks and conditions.  
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Here we have characterized the neural bases of voluntary movement for finger 

tapping in adults. In contrast to adults, imaging studies show that children have relatively 

greater activation in left SM1 and extending into bilateral SMA, reflecting compensation 

for an underdeveloped motor system and relatively reduced experience in the execution 

of voluntary movement (Turesky et al., 2018).  

In contrast, fMRI findings from the same task with adults reveal stronger 

recruitment of the basal ganglia, reflecting a developmental shift to more subcortical 

processing in adulthood. Interestingly, both pre-SMA/SMA and basal ganglia are 

associated with initiation of movement and motor control, respectively, particularly with 

complex movements. This suggests a different role in children and adults, as 

development of motor control of voluntary movement proceeds across the lifespan 

(Turesky et al., 2018). 

In comparisons of child and adult performance on the continuation paradigm, both 

show activation in the primary motor cortex, premotor cortex, and cerebellum. However, 

overall patterns of activation were different, with adults demonstrating much more 

deactivation, particularly in the occipital and frontal cortices. Additional differences 

involved added recruitment of motor and premotor areas in children compared with 

adults, and increased activity in the cerebellum in children as well. These findings 

demonstrate that performance of the continuation paradigm is less efficient and automatic 

in children, who need to recruit the cerebellum more extensively to maintain rhythmic 

tapping. Moreover, children performed less accurately than adults, despite this additional 

cerebellar activation (De Guio et al., 2012).  

Another contribution of our study is in providing links between specific cognitive 

processes and the neural structures supporting action-based timing behavior. While we 

focused on adult data, developmental data provide an important foundation for 

understanding clinically relevant aspects of motor development, relevant to children with 

motor disorders. The implication can be extended to the development of clinical 

assessment procedures for children as well (Lundy-Ekman et al., 1991). More 

specifically, action-based tasks can reveal atypically poor performance in children that 

may be improved by additional timing training.  

Another developmental domain in which timing deficits have been shown to be 

critical is in the language domain. For example, atypicalities in temporal aspects of 

audio-motor skills may be a key contributing factor of language and literacy difficulties 

in dyslexic children (Miendlarzewska & Trost, 2014). In these studies, such children 

show timing difficulties in the domain of language, music perception and cognition, as 

well as motor control. Indeed, musical training leads to positive outcomes for both 

phonological and spelling skills in previously underperforming children (Flaugnacco et 

al., 2015). This and other research in this domain can help us understand what 

relationships, if any, exist between musical training and improvement of language and 

literacy skills. More generally, the development of timing in childhood may well 

contribute to learning across the lifespan (Overy, 2003).  
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Limitations and Future Works 

Due to the inherent complexity of dynamic timing behavior, we encountered 

several limitations specific to our research methodology, which form the basis for 

suggestions of future work. First, it is vital to scrutinize parametric-based impacts on 

timing behavior. For example, findings from Chapter 2 merit exploring whether an 

increase in the overall length of trials in the alternating design context would lead to 

sufficient entrainment to produce comparable levels of hemodynamic activity to those 

observed in our original (Rahimpour et al., 2020) blocked study design.  

Second, sample size is a crucial factor in data-driven approaches. Given 

constraints on our participant numbers in Chapter 3, the results of classifications between 

coordination modes were inconclusive. Therefore, increasing sample size as a means of 

providing more training data for the novel deep learning approach we introduced, a move 

that may improve overall classification accuracy. As it is, there are still some 

uncertainties about whether we can predict behavioral accuracy based on single trial 

neurophysiological markers. Thus, further research will be needed to further refine these 

deep-learning models.  

 Regarding Chapter 4, more exploration is needed to find the best way to estimate 

EEG source localization. One problem of the approach used in the current study (i.e., 

DIPFIT analysis) is that the number of clusters are pre-defined and, consequently, we 

were limited to the number of independent components assigned to the pre-defined 

clusters. We recommend exploring standardized low-resolution electromagnetic 

tomographic analysis (sLORETA) as a way of feeding extracted channels and timepoints 

to the model, which may result in the generation of more robust and reliable source 

localization. Another limitation was that we were unable to quantitatively compare spatial 

accuracy across the two neuroimaging modalities, fNIRS and EEG. Rather, our 

observations about comparability are qualitative descriptions based on estimated cortical 

coordinates extracted the two sets of findings. How to make such a comparison remains 

an open question for future studies. Finally, a critical limitation to our localization 

comparisons was that all participants participated first in the fNIRS session and then in 

the EEG session, producing practice effects specific to the EEG data. For future work, we 

strongly recommend doing multimodal EEG-fNIRS data collection simultaneously, or at 

least recommend counterbalancing the order of fNIRS and EEG sessions in order to 

control for training effects specific to one or the other imaging modality.   
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