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Abstract 

Solid-State Nuclear Magnetic Resonance Studies of Cross Polarization 

from Quadrupolar Nuclei 

by 

Susan Margaret De Paul 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Alexander Pines, Chair 

The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a 

large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure 

and dynamics. For such nuclei, the technique of cross polarization is well-established as a 

method for sensitivity enhancement. However, over two-thirds of the nuclei in the 

periodic table have a spin-quantum number greater than one-half and are known as 

quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials 

including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the 

extent to which polarization can be transferred from quadrupolar nuclei. 

In this dissertation, solid-state NMR experiments involving cross polarization 

from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions 

are investigated in detail. The behavior of the central transition of a quadrupolar nucleus 

under a low-power radiofrequency spin-lock field is examined both experimentally and 

with numerical simulations. Complications in choosing the matching spin-lock field 

strength for the spin-1/2 nucleus are discussed. The dynamics of the cross-polarization 

process are characterized in a model compound (low albite) and a protocol for optimizing 

the polarization-transfer efficiency is presented. Significant enhancement of 29Si NMR 

sensitivity by using 27 Al-to-29Si and 23Na-to-29Si cross polarization is demonstrated in 

several inorganic compounds. 

This sensitivity enhancement permits otherwise impractical two-dimensional 

NMR experiments to be performed. Cross polarization from quadrupolar nuclei is 

incorporated into experiments designed to correlate the isotropic and anisotropic parts of 

the chemical-shielding tensor. Several different pulse sequences for performing such 



correlations under magic-angle spinning conditions are analyzed and compared. Cross 

polarization from quadrupolar nuclei is also combined with the recently-developed 

Multiple-Quantum Magic-Angle Spinning (MQMAS) experiment to create a new 

technique for measuring heteronuclear correlation spectra. 

~n addition, the motion of cyclopentadienyl rings in four organometallic solids is 

studied by variable-temperature NMR, and two-dimensional exchang~ spectroscopy is 

used to demonstrate that sigmatropic rearrangements occur in the 

monohaptocyclopentadienyl groups of Hf(115-C5H5)z(11 1-C5H5)z. An experiment which 

demonstrates that a rapid mechanical sample reorientation leads to a time reversal of 

radio-frequency driven spin diffusion among 13C spins is also presented. 

2 



Table of Contents 

1 Introduction . ..................................................... 1 

1.1 Quantum Fundamentals ............................... · .............. 1 

1.1.1 Density Matrix ............................ , ....................... 2 

1.1.2 Interaction Representation .................. ~ ........................ 6 

1.1.3 · Wigner Rotation Matrices ........................................... 10 

1.1.4 Perturbation Theory ............................................... 13 

1.2 NMR Hamiltonians ................................... · ............. 14 

1.2.1 Spin Operators and the Zeeman Interaction ............................. 14 

1.2.2 Rf Irradiation, Rotating Frame, and Bloch Equations ..................... 16 

1.2.3 Chemical-Shielding Interaction ...................... · ................ 18 

1.2.4 Dipolar Interaction ................................................. 21 

1.2.5 Quadrupolar Interaction ............................................ 22 

1.2.6 Other Interactions in NMR .......................................... 31 

1.3 Powder Spectra ................................................... 32 

1.4 Rotating Samples ................................................. 33 

1.4.1 Wigner Rotation Matrices Revisited ................................... 33 

. 1.4.2 Effects of Sample Rotation on Quadrupolar Lineshapes ................... 37 

1.5 Phase Cycling and Data Processing ................................... 38 

1.5.1 Coherence-Transfer Pathways ....................................... 39 

1.5.2 Pure-Phase Two-Dimensional Spectra ................................. 43 

2 13C Variable-Temperature CP/MAS Studies of Tetracyclopentadienyl 

Complexes .................................. -.................... 51 

2.1 Fluxional Motion in Organometallic Compounds ........................ 51 

2.2 One-Dimensional 13C Variable-Temperature CP/MAS Experiments ......... 54 

2.2.1 SnCp4 Spectra ........................................ · ............ 58 

2.2.2 HfCp4 Spectra .................................................... 61 

2.2.3 ZrCp4 Spectra .... · ................................................ 65 

2.3 Two-dimensional Exchange Spectroscopy .............................. 67 

v 



2.4 Comparison of HfCp4 and TiCp4 Exchange Spectra ...................... 75 

3 Spin Locking of Quadrupolar Nuclei During MAS ...................... 79 

3.1 Low Albite as a Model Compound ..................................... 79 

3.2 Spin Locking of Half-Integer Quadrupolar Nuclei ........................ 83 

3.3 Spin Locking in the Sudden Regime .................................. 89 

3.4 Direct measurement of the 27 AI and 23Na T 1p's in low albite ........... , .. 101 

4 Cross Polarization of Quadrupolar Nuclei During MAS Using Low 

Radiofrequency Field Amplitudes .................................. 103 

4.1 Previous Studies of Cross Polarization Involving Quadrupolar Nuclei ....... 103 

4.2 Experimental Parameters .......................................... 105 

4.3 Hartmann-Hahn Matching for Quadrupolar Nuclei ...................... 107 

4.4 Cross-Polarization Dynamics for Quadrupolar Nuclei .................... 116 

4.5 Prognosis for Cross-Polarization from Quadrupolar Nuclei Using Low-Rf Field 

Strengths ........................................................ 131 

5 Applications of Cross Polarization from Quadrupolar Nuclei to 

Aluminosilicates ................................................ 137 

5.1 Isotropic-Anisotropic Correlation Spectroscopy ........................ 137 

5.2 Magic-Angle Hopping .. : ......................................... 138 

5.3 Isotropic-Anisotropic Correlation by Slow Spinning ..................... 139 

5.3.1 Theory of Magic-Angle Turning Experiments .......................... 140 

5.3.2 MAT with 90° Pulses ............................................. 145 

5.3.3 MAT with 180° Pulses ...... · ...................................... 148 

5.3.4 TOSS-reTOSS ................................................... 151 

5.4 Application of Isotropic-Anisotropic Correlation Methods to Low Albite .... 154 

5.5 Experiments on Low Microcline .................................... 158 

5.6 Validity of Using Cross Polarization from Quadrupolar Nuclei ............ 159 

5. 7 REDOR Experiments ................... , ......................... 161 

vi 



6 High-Resolution Heteronuclear Correlation between Quadrupolar and Spin-

1/2 Nuclei using Multiple-Quantum Magic-Angle Spinning . ............ 166 

6.1 Methods for Obtaining High-Resolution Spectra of Quadrupolar Nuclei ..... 166 

6.1.1 DOuble Rotation (DOR) ........................................... 167 

6.1.2 Dynamic-Angle Spinning (DAS) .................................... 169 

6.1.3 Multiple-Quantum Magic-Angle Spinning (MQMAS) ................... 173 

6.2 Heteronuclear Correlation and Quadrupolar Nuclei ...................... 180 

6.2.1 MAS- and DAS-Based Techniques .................................. 180 

6.2.2 MQMAS-HETCOR .............................................. 183 

7 Reversal of Radiofrequency-Driven Spin Diffusion by Reorientation of the 

Sample-Spinning Axis . ........................................... 194 

7.1 Previous Polarization-Echo Experiments .............................. 194 

7.2 Spin Diffusion ................................................... 195 

7.3 Reversal of Rf-Driven Spin Diffusion ................................ 198 

7.3.1 Pulse Sequence and Experimental Apparatus ........................... 198 

7.3.2 Build-up of Cross-Peak Intensity .................................... 200 

7.3.3 Spin-Diffusion Echoes ............................................ 204 

vii 



Acknowledgments 

This thesis would not exist without the help of many people. 

First, I would like 'to thank my advisor, Alex, for accepting me into his group and 

creating an environment where it is possible to interact with and learn from a variety of 

talented scientists. Alex's enthusiasm is always inspiring. 

I thank Dione Carmichael for keeping the group running on a day-to-day basis. 

During my five years here, over sixty-five other "Pinenuts" have lived in D-62 

Hildebrand, and I have probably learned something from each of them. Unfortunately, 

space does not permit me to acknowledge everyone individually, but I would like to 

mention those who. directly contributed to the work presented in this thesis. 

I thank Professor Jay Shore for helping me get started, for being patient with me as 

I blundered through my first few years of graduate school, and for introducing me to 

espresso-based drinks. He initiated the 27 Al-to-29Si cross-polarization work of Chapters 

3, 4, and 5. Dr. Holly Gaede and Dr. Sheryl Gann contributed to some of the early 

experiments, and Dr. Matthias Ernst provided direction at a crucial point in the project. 

Professor Eric Munson and Dr. Marcia Ziegeweid taught me a lot about how to run 

spectrometers, build probes, and stay awake all night monitoring experiments while doing 

the work presented in Chapter 2. 

The experiments in Chapter 6 were dorie in collaboration with Dr. Lucy Bull and 

soon-to-be-Dr. Shuanhu Wang. I learned from both of them, and I thank Lucy for her 

hospitality during the trips to Santa Barbara to finish up the project. 

I thank Dr. Marco Tomaselli for teaching me about spin diffusion and echoes while 

doing the work presented in Chapter 7. 

All of my collaborations have been pleasant experiences, and I am grateful to have 

had the opportunity to work with many talented scientists. I also am thankful for those 

group members (too numerous to mention by name) who contributed in a positive way to 

the atmosphere of the group. I have enjoyed the many afternoon coffee breaks at Strada 

(where I spent more money per year than I did on taxes!), and I have learned a lot from 

informal conversations. 

viii 



Friends in the department (including Eric Zylstra, Linda Brzezinski, Craig Gerken, 

Cindy Berrie, Ward Thompson, Pete Jacobs, Bruce Spath, Mei Hong, Eyal Barash, 

Carsten Vala, Amy Herhold, and Tim Germann among other~) provided welcome breaks 

·from lab over the years. I have many fond memories of sampling ethnic foods, exploring 

bookshops, particip~ting in murder-mystery parties and Christmas skits, cooking 

Thanksgiving dinner, learning to SCUBA-dive, skiing (in the loosest sense of the word), 

and having interesting conversations. 

I would also like to thank the group at Newman (including but not limited to Ralph 

and Carrie Neff, Melissa Gonzales, Gisele Giorgi, Kevin Hartshorn, Erin Hammond, 

Yvette Justice, Nigel Barboza, Rex Winterbottom, Erica Boyd, Rick Harris, Felix Wu, 

Dave Smith, Joe Morris, Tina Ialongo, Heather Janes, and Frank Da Prato) for their 

friendship and support, particularly during this last year. 

I thank my roommate Janet Coffman for helping to keep me sane for the past three 

years even in the face of bizarre situations (such as when our other roommate 

spontaneously decided to move to Utah in the middle of the night without telling anyone). 

My parents and my sister Angie have always been there for me. Their phone calls 

often provide humor and much-needed perspective. I would not be where I am today 

without them, and I thank them for their love and support. 

Last, but by no means least, I would like to thank my boyfriend Matthias for his 

friendship, advice, love, and encouragement during the past two years. 

ix 



Chapter 1: Introduction 

This thesis primarily describes studies of the transfer of polarization from 

quadrupolar nuclei to spin-1/2 nuclei in high-field, solid-state Nuclear Magnetic 

Resonance (NMR) spectroscopy. In the first chapter, the underlying quantum-mechanical 

theory will be reviewed, and the manifestation of physical interactions in NMR spectra 

will be discussed. In Chapter 2, an example of the use of conventional solid-state NMR 

spectroscopy to characterize chemically interesting processes will be presented. Chapter 3 

will describe experiments, simulations, and theory pertaining to the spin -~vcking of 

quadrupolar nuclei in rotating samples. The information obtained from these studies can 

be used to optimize cross-polarization experiments as will be shown in Chapter 4. 

Applications of this technique will be demonstrated in Chapters 5 and 6. Finally, a proof­

of-principle experiment which demonstrates that "spin diffusion" can be refocused by 

macroscopic sample reorientation will be presented in Chapter 7. · 

1.1 Quantum Fundamentals 

One of the most exciting aspects of NMR from a spectroscopic point of view is the 

success of quantum mechanics in describing the behavior of nuclear spins in a magnetic 

field. Quantum effects can be seen more clearly in NMR than in many other branches of 

physical chemistry, and the effects of complicated combinations of pulses and rotations 

can be straightforwardly simulated. In this section, some basic ideas from quantum 

mechanics will be reviewed. The description provided in this thesis is neither self­

contained nor complete; in particular, a knowledge of Dirac notation is assumed. In-depth 

treatments of the topics presented in this section can be found in introductory books on 

quantum mechanics1' 2'3 in monographs on NMR4•5•6•7•8•9 and in previous theses from this 

group.IO.IJ 



1.1.1 Density Matrix 

In quantum mechanics, a particle is described by a wave function or state vector, 

1\}l(t)). Although the wave function itself does not have a simple physical interpretation, it 

contains all of the information necessary to describe the particle. The ~ave function 

changes with time according to the Schrodinger equation 

ih :/l'(t)) = J1(t) 1\}l(t)) ( 1.1) 

where J1(t) is the Hamiltonian operator, which describes the energy of the system. 

Although, in general, the solution to the Schrodinger equation can be non-trivial, 

the problem is greatly simplified for the case of a time-independent Hamiltonian. In such 

a case, straightforward integration of Equation ( 1.1) gives 

1\{'(t)) = e -iJlt/hl\{'(0)). (1.2) 

It is possible to find a set of orthonormal state vectors, { lcp)} , which are eigenvectors of 

the time-independent Hamiltonian. These state vectors obey the equation 

( 1.3) 

where the terms, { Ei} , are known as the eigenvalues of the Hamiltonian and correspond 

to the allowed energy levels for the particle. 

A quantum-mechanical projection operator can be defined as follows 

(1.4) 

When this operator is applied to a state I'P(t)), it gives the orthogonal projection of 1\f(t)) 

onto lcpi). Using this projection operator, one can expand an arbitrary state, 1\{'(t)), in 

terms of the basis of eigenvectors of the Hamiltonian 

( 1.5) 

2 



This procedure is analogous to the more familiar case of describing a vector in Cartesian 

space by its projections onto the orthogonal x, y, and z axes. 

While the above description of a system in terms of state vectors works well for 

the case of a single particle, it is not well-suited to describing collections of particles. In 

NMR, however, one always records the signal from a large number of spins. It is, 

therefore, desirable to have a formalism that explicitly takes into account the statistical 

nature of the system. Such a formalism is provided by the density matrix.M>~ 2 

The density operator is defined as 

p(t) = LPkl\f k(t))(\f k(t)l' 
k 

(1.6) 

where Pk is the probability that the entire system is in a state 1\f k(t)). Note the functional 

similarity between Equation (1.6) and the projection operator of Equation (1.4). In this 

case, however, the state that is being projected onto is not necessarily an eigenstate of the 

Hamiltonian but is the linear superposition of eigenstates that describes the current state of 

the system. 

If one expands 1\f k(t)) in the eigenbasis of the Hamiltonian (see Equation ( 1.5)), 

Equation ( 1.6) becomes 

Explicitly taking the ensemble average gives 

p(t) = ,L,Lci(t)c/(t)lcp)(cp}­
i j 

( 1.7) 

( 1.8) 

The statistical nature of the density operator is clearly evident in Equations ( 1. 7) and ( 1.8). 

The matrix elements of p(t) in the eigenbasis of the Hamiltonian can be found 

using Equation ( 1.8). The diagonal elements 

3 



(cpml p(t) lcpm) . = I I ci(t)c j *(t)(cpmlcp)(cpjlcpm) 
i j 

= ~ ~ c.(t)c.*(t)8. (). £..i£..J 1 J 1m Jm. 
i j 

express the population of a given state lcpm), while the off-diagonal elements 

(cpmlp(t)jq>0 ) = IIc/t)c/(t)(cpmlcp>(cpjlq>0 ) 

i j 

= ~~c.(t)c.*(t)8. (). £..J£..J I J 1m JO 
i j 

(1.9) 

(1. 10) 

express a "coherence," or interference, between two eigenstates lcpm) and jq>
0
). The 

concept of a coherence will be discussed in more detail in Section 1.5 .1. 

The time evolution of the density operator is described by the Liouville-von­

Neumann equation 

iii :l(t) = [Jl(t) ,p(t)] (1.11) 

which can be derived from Equations (1.6) and (1.1 ). Equation ( 1.11) can be solved 

analytically to yield 

p(t) = U(t)p(O)Ut(t) (1.12) 

where the propagator U(t) is defined as 

{ 

-~{ Ji{t')dt'} 

U(t) = T e , (1.13) 

and the Dyson time-ordering operator, T, specifies the order of evaluation of operators. 13 " 4 

4 



The form of the initial density matrix, p(O), in Equation ( 1.12) depends on the 

condition of the system. For a general system in thermal equilibrium, it is given by 

-Wk8 T 
e 

p(O) = ---==-­z (1.14) 

where :JI is the Hamiltonian describing the energy levels of the system, k8 is the 

Boltzmann constant, and Z is the partition function 

-Wk 8 T 
Z = Tr {e } . ( 1.15) 

Again, the statistical nature of the density operator is readily apparent. In NMR, the 

energy level spacings are typically very small compared to the temperature at which the 

experiments are performed. Even for protons with a resonance frequency of 600 MHz,.the 

Larmor splitting is only hvL = 3.97x10-25
J while the room-temperature thermal energy 

is k8 T = 4.11 x 10-
21 

J. This permits one to expand Equation ( 1.15) as 

p(O) :::: .!.( 1 - :JI ) 
. Z k8 T 

( 1.16) 

where 1 is the identity operator. Since the identity operator can neither evolve with time 

nor be detected in an NMR experiment, it is customarily dropped from calculations. 

Expectation values can be calculated by using density matrices. Generalizing the 

expectation value from the Schrodinger representation to an ensemble of spins 

(A) = LPk('l'k(t)IAI'Vk(t)) 
k 

and expanding the wave functions over the b~sis l<i>) (see Equation (1.5)) gives 

= I,I,c/(t)c/t)(<p)AI<p). 
i j 

5 
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( 1.18) 



Yet the ensemble-averaged term in Equation (1.18) is simply an off-diagonal element of 

the density matrix (see Equation (1.10)). Equation (1.18) therefore becomes 

(A) = LL (<pilp(t)l<i>)(<i>jiAI<p) 
i j 

= Tr {p(t)A}. 

( 1.19) 

Equations (1.19) and (1.11) are used frequently in NMR to calculate the observable 

magnetization resulting from the application of various Hamiltonians. 

1.1.2 Interaction Representation 

The behavior of a spin system under rf pulses and sample rotation can be 

determined by solving the Liouville-von-Neumann equation (Equation (1.11 )). Often, 

however, the problem can be considerably simplified by using the interaction 

representation to change the frame of reference. This is routinely done in NMR in the case 

of the rotating-frame transformation, in which the reference frame is shifted from the 

stationary laboratory frame to a frame that rotates with the Larmor frequency (see Section 

1.2.2). In such a frame, the formerly precessing magnetization will appear stationary, and 

the effects of rf pulses become particularly simple to describe. 

The interaction representation is described in several books on NMR.5•8.I 5 It can be. 

expressed in two slightly different formulations, both of which will be presented below. 

Transformation to an interaction representation is possible when a Hamiltonian 

contains both a time-independent term and a time-dependent term 

It is then possible to define a unitary operator, R, as 

-i:rt;,t/fz 
R=e 

6. 

( 1.20) 

( 1.21) 



With this operator, one can perform a similarity transformation on the density matrix to 

create a new density matrix in the interaction frame 

I . 
p (t) = Rt p(t)R. ( 1.22) 

Here, use has been made of the fact that for a unitary operator 

(1.23) 

This leads to the property 

t -1 
RR=R R=1, (1.24) 

which will be useful in the derivations which follow. 

The interaction Hamiltonian is commonly defined as 

(1.25) 

or as 

( 1.26) 

Note that inclusion of the term -inRt ( dR/ dt) in Equation ( 1.26) may seem somewhat 

arbitrary or unphysical. However, defining the Hamiltonian in this way allows a 

Liouville-von-Neumann equation to be used to describe the evolution of the density 

matrix in the interaction frame as will be shown below. The equivalence of Equations 

(1.25) and ( 1.26) can be seen by substituting Equation ( 1.20) into Equation (1.26) and 

using both the properties of unitary operators (Equation ( 1.24)) and the fact that a given 

operator commutes with a function of that operator2 

7 



(1.27) 

With the interaction Hamiltonian defined according to Equations (1.25) and (1.26), 

the density matrix in the interaction frame can be described by a Liouville-von-Neumann 

equation 

( 1.28) 

Equation ( 1.28) is the same as ( 1.11) as can be seen by direct substitution of Equations 

( 1.22) and (1.25) into Equation (1.28). The left-hand side of Equation (1.28) becomes 

in :l \t) = in :t (Rt p(t)R) 

·n dRt ( )R ·nRtdp(t)R ·nRt ( )dR . = 1 (itP t + 1 dt +I p t dt 

= inc;0Rt )p(t)R + inRtd~~t)R + inRtp(t)( -i;oR) 

( 1.29) 

Similarly, the right-hand side of Equation ( 1.28) becomes 

[!Jl (t) ,p
1
(t)] = [RtJ{1(t)R,Rtp(t)R] 

= RtJ{1(t)RRtp(t)R-Rtp(t)RRtJ{
1
(t)R (1.30) 

,; Rt[J{
1
(t),p(t)].R. 

8 



Equating the two and operating from the left by Rand from the right by Rt gives 

.in d~~t)- [.?iQ.p(t)l = [!H1(t),p(t)l 
(1.31) 

in d~~t) = [!Ho +!HI (t),p(t)] 

which is the original Liouville-von-Neumann equation (Equa,tion (1.11)). 

Note that the above derivations were rigorous and did not require any assumptions 

about the relative sizes of !H0 and !H1 (t) . The only requirement was that !He be time­

independent. Even this requirement need not be satisfied if Equation ( 1.21) is generalized 

to a form similar to that in Equation (1.13) although such cases will not be considered in 

this thesis. In many applications of this transformation, however, !H0 will be the largest 

part of the Hamiltonian. In such cases, it is common practice to divide !H1 (t) into a term 

which commutes with !H0 , ~(t), and a term which does not commute with !H0 , J/;c(t), 

as follows 

( 1.32) 

The Hamiltonian in the interaction frame then becomes 

:Kct) = JJj(t) + R t J/;c(t)R. (1.33) 

At this point, a first-order perturbative approximation known as the secular approximation 

is commonly made, and it is assumed that the off-diagonal portions of the Hamiltonian are 

small enough relative to the diagonal elements that they can be ignored. The Hamiltonian 

is then truncated so that only the term ~(t) remains.5 This truncation is done in addition 

to the change to the interaction representation and is not a direct mathematical 

consequence of the transformation. 
' Transformation to a different frame will change the time dependence of the 

Hamiltonian. In the case of the rotating-frame transformation (see Section 1.2.2), the 

transformation eliminates the time-dependence in the rf term of the lab-frame 

Hamiltonian. However, transformation to an interaction frame can also introduce new 
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time dependences. This is precisely what happens to the terms in the original Hamiltonian 

that do not commute with ~ when the rotating-frame transformation is. carried out. 

Time-independent terms which commute with :J-{0 remain tim~-independent, but the non­

commuting terms pick up an additional time dependence (see Equation (1.33)), which 

often provides further justification for making the secular approximation. 

1.1.3 Wigner Rotation Matrices 

In addition to being able to change the motional reference frame (by using the 

interaction representation), it is also convenient to be able to change the coordinate system 

to facilitate the solution of a problem. This can easily be done when spherical tensors are 

used. All of the physical interactions governing NMR spectra can be written in terms of 

sums of products of two second-rank tensors, one concerned with spin variables and one 

concerned with spatial variables.6•7 These tensors can then be rotated into the desired 

frame of reference by a unitary transformation which can be performed on each 

component 

(1.34) 

where A1,n is the n-th component of a tensor of rank 1. The unitary operator, UEuler, 

represents a series of three consecutive rotations about different axes by the angles 

(a.~,y). 1 •7 .I 6.I 7 .I 8 These angles are known as the Euler angles. Several different 

conventions are used in the literature, but the one we will use16 is depicted in Figure 1.1. 

The results of applying the unitary transformation of Equation (1.34) to each 

component of a tensor can be represented by using Wigner rotation matrices 

( 1.35) 

Here, R1,m is a tensor component in the new frame; { A1, n} are the components in the old 

frame; and D~~~(a, ~. y) is a Wigner rotation matrix. The Wigner rotation matrices can 

be simplified further by writing 

10 



D (l)( R )= -i(na+my)d(I)(R) 
n, m a, 1-1• 'Y e n, m tJ (1.36). 

where d~.1 ~(~) is known as a reduced Wigner rotation matrix element and is defined 

according to16 

(1.37) 

Table 1.1 lists the reduced Wigner rotation matrix elements for 1=2. Also of interest are 

the matrix elements with n=m=O which can be shown to simplify to16 

z 

z 

X 

(X, Y, Z) 
(a,~' y) 

(x, y, z) 
Figure 1.1 - Euler angle definitions. The first rotation is by an angle a about the Z axis of 
the original coordinate system. This changes the positions of the X and Y axes. The 
second rotation is by the angle ~ about the newly-rotated Y axis, and it changes the 
positions of the X and Z axes. The third rotation is by the angle y about the newly-rotated 
Z axis. The final positions of the axes are given by the labels x, y, and z. 
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\m 
n 2 1 0 -1 -2 

2 . l3( 1 + cosl3) . l3( 1- cos13) 2 
2 (1 + cosl3) A . 213 (1 - cosl3) -sm 2 sm -sm 2 4 4 

1 . l3( 1 + cos13) sm 2 
213 ( 1- cosl3) cos - 2 - Asin213 ( 1 + cos13) 213 2 -cos . l3( 1- cosl3) -sm 2 

Asin213 
2 

A. 213 0 A. 213 3cos 13- 1 A 8
sm 

2 - 8sin213 
8

sm 

-1 . 
13
c _ cos 13) sm 2 

( 1 + cos 13) 213 
2 

-cos Asin213 213 c- -~os13) cos - 2 . 13( 1 + cos 13) -sm 2 

2 . 13( 1 - cos 13) A . 213 . 13c + cos 13) 2 
-2 ( 1 -cos 13> sm 

2 
-sm Stn 

2 
( 1 +cos 13> 

4 4 

Table 1.1 - Reduced Wigner rotation matrix elements d~2~(13) . 

where the P1(cos~) terms are known as Legendre polynomials. The relevant Legendre 

polynomials for NMR are the zeroth-, second-, and fourth- rank terms which are given by 

( 1.39) 

( 1.40) 

and 

1 4 2 
= 8(35cos ~-30cos ~+3). ( 1.41} 

The Principal-Axis System (PAS) for a given interaction is the frame of reference 

in which the space tensor is diagonal. It is, therefore, a convenient representation to use 

when describing individual crystallites, but in general it does not correspond to what is 

observed in the laboratory. The Wigner rotation matrices are used in NMR to relate the 

orientation of a given crystallite to the lab frame or to the axis about which the 

macroscopic sample is rotated (see Section 1.4 ). Many examples of their use will be seen 

throughout this thesis. 
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1.1.4 Perturbation Theory 

The derivation of non-degenerate, time-independent perturbation theory can be 

found in any textbook on quantum mechanics1•2 and only the key results will be 

summarized below. 

Perturbation theory can be applied to solve . the time-independent Schrodinger 

equation (Equation ( 1.3)) when the Hamiltonian has the form 

( 1.42) 

where the magnitude of V is very small compared to that of ~ and where the 

Schrodinger equation for :Ji0 can be solved exactly 

(1.43) 

The eigenvalues of the full Hamiltonian (Equation ( 1.42)) can then be shown to be 

approximated by 

E. = E.(O) +E.( I) + E.(Z) + ... 
J J J J 

( 1.44) 

where the first-order correction to the energy is given by 

E( I) = (iiVU) 
J 

( 1.45) 

and the second-order correction to the energy is given by 

E.(2) = L (iiVIk)(kiVU) 
J . E(O) E(O) . 

k;tj . j - k 

( 1.46) 

For many cases in NMR, only first-order corrections need to be taken into account 

to describe the observed spectrum. However, for the case of the quadrupolar interaction 

(see Section 1.2.5), second-order terms need to be explicitly considered. 
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For time-dependent interactions, other forms of perturbation theory need to. be 

considered. These include Femii's Golden Rule,2 Average-Hamiltonian Theory (AHT),4
•
6 

and Floquet theory. 19·20•21 •22 The latter two are suitable only for periodic Hamiltonians, a 

condition which often occurs in NMR. Note that the zeroth-order average Hamiltonian is 

given by 

t 

'j[(O) = ~I .1{{t)dt (1.47) 

0 

where 't is period of the cycle. This is equivalent to the result from first-order static 

perturbation theory, and the two descriptions will be used interchangeably throughout this 

thesis. 

1.2 NMR Hamiltonians 

While the concepts presented in Section 1.1 are powerful tools for calculating the 

quantum-mechanical-behavior of a system, they require a knowledge of the Hamiltonians 

that govern the physical behavior of the system. In this section, a brief description is 

given of some important interactions in solid-state NMR and the corresponding 

Hamiltonians. The Hamiltonians are expressed in terms of sums of products of spherical 

tensors in a manner similar to that described by Ha~berlen.6•7 • 11 

1.2.1 Spin Operators and the Zeeman Interaction 

By the laws of angular momentum, a nucleus with a spin-quantum number I has 

(2I+ 1) eigenstates. These states ardabeled by the quantum number m where m has one of 

the values {-I, -I+ 1 , ... ,1-1 ,I}. In the presence of an externally applied static magnetic field, 

these states become non-degenerate due to the interaction of the spin with the magnetic 

field. This interaction is known as the Zeeman interaction and can be described by the 

following Hamiltonian 

( 1.48) 

14 



where y is the isotope-dependent gyromagnetic ratio and Bo is the strength of the applied 

magnetic field. Here we have used the usual convention that the direction of the magnetic 

field defines the z-axis. The operator, lz, is the operator for the z-component of the angular 

momentum and has eigenvalues and eigenvectors given by 

Izll, m) = mil, m). ( 1.49) 

Since the Zeeman Hamiltonian is by far the largest Hamiltonian in all cases discussed in 

this thesis, its eigenvectors can be used as a basis set, and all other interactions can be 

treated as perturbations to the Zeeman Hamiltonian (see Section 1.1.4). By first-order, 

time-dependent perturbation theory,4 it is then possible to show that the selection rule for 

magnetic resonance transitions is ~m=±1 (although "forbidden" transitions can be excited 

to some extent as predicted by higher-order terms in the perturbation expansion). Thus, 

the NMR transition frequency is Wr_ =-yB0 and is known as the Larmor frequency. It 

corresponds to the frequency of precession of the spins about the B0 field. 

The transverse angular-momentum operators, Ix and Iy, are important in NMR 

since all observable magnetization is proportional to them. They are not diagonal in this 

basis, however, and their non-zero matrix elements are given by 

and 

(I, mllxll, m') = ~ { JI (I+ I) - m' (m' + 1) 8m, m' + 1 

+JI(I+1) -m'(m'-I)8m,m'-l} 

(I,mllyll,m') = ;i {JI(I+ I) -m'(m'+ 1) 8m,m'+l 

- JI(I+1) -m'(m'-1)8m,m'-l }. 

Often it is convenient to use linear combinations of Ix and ly as follows 
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I = I -ily. - X 
(1.53) 

The operators defined in Equations ( 1.52) and (1.53) are known as raising and lowering 

operators, respectively, since they change the magnetic quantum number by one 

l+ll,m) = JI(I+1) -m(m+1)ll,m+1) (1.54) 

I _II, m) = JI (I + 1) - m ( m-1) II, m - 1) . (1.55) 

The spherical tensor operators that will be used in Sections 1.2.3, 1.2.4, and 1.2.5 can 

easily be expressed in terms of the operators 1+, 1_, and lz 

1.2.2 Rf Irradiation, Rotating Frame, and Bloch Equations 

Transitions between the eigenstates of the Zeeman Hamiltonian can be induced by 

application of a linearly polarized rf field perpendicular to the static B0 field. Such a field 

can be described by the following Hamiltonian 

( 1.56) 

where 2B n is the strength of the applied rf field, and <1> is an arbitrary phase. The 

frequency roc is the carrier frequency of the rf; to induce a transition, roc must be nearly 

resonant with the Larmor frequency of the I spins (cq). The rf irradiation can be 

decomposed into the sum of two circularly polarized components rotating at frequencies 

+roc and -roc, leading to 

(1.57) 

which describes the combined effects of the Zeeman and rf fields; note that 

ro 11 = -y 1B 11 . Only the component of the rf field that rotates in the same direction as the 

precessing moment will induce transitions between the Zeeman levels. To see explicitly 

how the rf irradiation affects the spins, it is convenient to switch to an interaction 
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representation in which this component is stationary. This can be accomplished by using 
-iroctlz 

the transformation R = e along with Equation ( 1.26). Equation ( 1.57) then 

becomes 

-
:J-{ = 1i (COL- CO c) Iz + nco! I [ (IX cos<!>- Iy sin <I>) (1.58) 

+ (lxcos (2coct + <j>) -lysin (2coct + <j>)). 

Note that the coordinate system is right-handed with respect to rotations about coli (which 

points in the opposite direction from the magnetic field for spins with a positive 

gyromagnetic ratio).4 Neglecting the terms which oscillate with 2coc leaves a stationary 

field that the magnetization can precess abot,It. When cot_ =roc (on-resonance irradiation), 

this field lies in the xy-plane . . 
This frame of reference is known as the "rotating frame,"· and it is commonly used 

·' 
to describe NMR experiments. It is more than a mathematical convenience: the mixing· 

process in the receiver of an NMR spectrometer subtracts out the carrier frequency so that 

the recorded signal corresponds. to the magnetization in the xy-plane of the rotating frame. 
' 

All Hamiltonians in this thesis will be written in this rotating frame. Note that there is 

another common usage of the words "rotating frame," however, which arises in the 

context of spin-locked magnetization. Experiments in which the relevant axis of 

quantization is defined by the rf field rather than the Zeeman field are often said to take 

place in the "rotating frame."7 With the exception of the term "rotating-frame relaxation" 

(TIp), only the former definition will be used in this thesis. 

So far, the treatment of NMR in this thesis has been entirely quantum-mechanical. 

However, a classical picture of magnetization vectors precessing about magnetic fields is 

also useful. The classical viewpoint is best summarized by the Bloch equations, which are 

written in the rotating frame as follows 
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(1.59) 

where M0 is the equilibrium magnetization; (Bx, BY' Bz) are the components of the 

magnetic field in the rotating frame; T 1 is the longitudinal relaxation time; and T 2 is the 
. . 

transverse relaxation time. The theory of relaxation8 has been extensively developed but 

is beyond the scope of this thesis. From the point of view of the experiments discussed 

below, the values ofT1 and T 2 will appear most prominently as practical constraints which 

influence the choice of pulse sequence for a given application. 

1.2.3 Chemical-Shielding Interaction 

The chemical shift reflects the magnetic shielding of a nucleus by neighboring 

electrons. Like the Zeeman interaction, the chemical shift is proportional to the strength 

of the applied magnetic field. Both diamagnetic and paramagnetic effects contribute to the 

chemical shift, which is an orientation-dependent quantity. In solution-state NMR 

spectroscopy, rapid molecular tumbling averages out this orientation-dependence and 

produces a narrow line at a position, known as the isotropic chemical shift, which reflects 

the average electronic environment of the nucleus. In the spectra of powdered solid 

samples, however, individual crystallites have different orientations with respect to Bo 

and, consequently, slightly different resonance frequencies. 

The Hamiltonian for the full chemical-shielding interaction in the laboratory frame 

is given by 

2 

:J{.cs = 1i ~ ~ (-1) mRCS Tcs . 'Y £..J £..J I, -m I, m ( 1.60) 
I= 0, 2m= -2 
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Because this Hamiltonian is symmetric, no 1=1 terms are present in the sum. 1' 16 This is 

generally true for NMR Hamiltonians.6 The spatial terms in Equation (1.60) can be 

calculated using Equation ( 1.35) 

R~~m = L D~~~m(acs, ~cs, ycs)P~! 
n = -1 

where the spherical-tensor components in the principal-axis system are given by 

cs {3 [ I J = ~23 0cs 
P2,0 = ~2 crzz-3(crxx+cryy+crzz) ~2 

cs 
P2, ±I = 0 

1 CS s;:CS 
211 u . 

(1.61) 

( 1.62) 

The term llcs is known as the asymmetry parameter and represents the deviation of the 

chemical-shielding interaction from cylindrical symmetry. The term c,cs is known as the 

anisotropy parameter. The spin part can be expressed as6 

( 1.63) 

cs 
T2,±2 = 0. 

Several conventions are used in the literature for describing the principal values of 

the chemical-shielding anisotropy (CSA). The one used in Equation (1.62) is 

( 1.64) 
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This has the effect that llcs will always be a positive number between zero and one. 

However, whether the most downfield shift is crzz or crxx depends on which side Of criso the 

term cryy is on.23 An alternate convention has therefore been defined as follows 

( 1.65) 

Using this convention, crll is always the most downfield term. The definition of llcs now 

depends on the relative magnitudes of lcr II- crisol and lcr33 - crisol·24 If lcr II - crisol > 

lcr33 - crisol, the following identifications can be made: crii=crw cr22=cryy• and cr33=crxx· 

If lcr33 - crisol > lcr II - crisol, the proper correspondence is: cr33=crw cr22=cryy• and 

cr11=crxx· 

We will use the convention of Equation (1.64) when describing any theoretical 

aspects of chemical shifts, but in Chapter 5 measurements will be reported using the 

convention of Equation ( 1.65), as is customary. 

Because the chemical-shielding anisotropy is on the order of several kHz, it can be 

considered as a perturbation to the Zeeman Hamiltonian. It is, therefore, useful to 

transform into a frame rotating with the Larmor frequency. (see Section 1.2.2). Ignoring 

all oscillating terms (i.e. - making the secular approximation) leaves only terms 

· I h · Tcs d Tcs proportiOna to t e spm tensors o. 0 an 2, 0 

which simplifies to 

J-fcs = tzy { T~soD6~6(acs, ~cs, 'Ycs)p;,so 

2 

+ T~.~ L D~.26(acs, ~cs, 'Ycs)p;,sn } 

n = -2 

· { cs[(3cos2 ~cs -1) 11. 2 cs cs]} 
J-{cs = tzyBolz criso + 0 2 + 2sm ~ cos2a . 

Note that the chemical-shielding Hamiltonian is orientation-dependent. 
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1.2.4 Dipolar Interaction 

Another important interaction in solid-state NMR is the through-space interaction 

between the magnetic moments of two nuclei. This interaction can be described by the 

following Hamiltonian 

' 2 

( flo ) 2 "' "' m D D :J{D = - 47t 21i 'Y/Yk L.J L.J ( -1) Rl, -m Tl, m 
I= 0, 2m= -2 

(1.68) 

D 
where the R1, -m are described in an analogous way to the chemical-shift case (see 

Equation (1.61)) and the spatial components in their PAS are given by 

D D D 
Po,o = P2,±I = P2,±2 = 0 

o {3o {31 
Pz,o = ~2° = ~23 

rjk 

while the spin components have. the form 

D 1 ~ ~ 
T 2, o = J6 [3IJzlkz- Ij. Ik] 

D 1 
T 2, ±I = =F2 [Ij±Ikz + Ijzlk±] 

( 1.69) 

(1.70) 

D 
Since Po, 0 equals zero, there is no isotropic dipolar coupling. Also, the 

interaction is cylindrically symmetric about the internuclear vector (llD=O). Like the 

chemical shift, the strength of the dipolar interaction is small (tens of kHz) relative to the 

Zeeman interaction, allowing first-order perturbation theory to be applied. Assuming that 

the two spins are of the same type (homonuclear), one can make the secular approximation 

which will retain only the terms proportional to T~ 0 
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:}{, = -n{(J.lo)liyjyk} (3cos2~D -1) [3I. I _{.I] 
D 47t 3 2 JZ kz J k . rjk 

(1.71) 

where the term in curly brackets is the dipolar-coupling constant, djk (in units of 

frequency). If the two spins are of different types, then not even T~ 0 will commute with 

the Zeeman term. However, it is possible to rewrite T~ 0 as a sum ~fa commuting and ~ 
non-commuting term (see Equation (1.32)) 

( 1.72) 

The first term on the right commutes with the Zeeman Hamiltonian even for unlike spins. 

The second term is often called the "flip-flop" term since it corresponds to an exchange of 

magnetization between two spins. It is not energy-conserving for unlike spins (unless 

special pulse sequences are applied) and, therefore, must be dropped from the 

Hamiltonian when the secular approximation is made in heteronuclear spin systems. 

1.2.5 Quadrupolar Interaction 

In additipn to the magnetic interactions described in the previous sections, 

electrostatic interactions can also influence the fine structure of an NMR spectrum. The 

interaction of a nucleus with a surrounding local electric-field gradient is known as the 

quadrupolar interaction. The strength of this interaction can be as large as hundreds of 

MHz, making it comparable to or greater than the Zeeman interaction. In such cases, the 

quadrupolar Hamiltonian can provide the axis of quantization, and rf-irradiation is used to 

excite transitions between the various levels. This type of spectroscopy is known as 

Nuclear Quadrupole Resonance (NQR) spectroscopy. It will not be discussed further in 

this thesis, but an excellent introduction to the topic can be found in the monograph of Das 

and Hahn.25 

We will be concerned with the case where the quadrupolar interaction is small 

enough to be treated as a perturbation to the Zeeman splitting although it will typically be 

large enough that second-order terms must be explicitly considered. Because experiments 

involving quadrupolar nuclei comprise the majority of this thesis, the physical basis for 
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the quadrupolar interaction will be outlined following the derivation of Cohen and . 

Reif,5•10•26 and then the quantum-mechanical Hamiltonian will be presented. Finally, some 

of the issues relating to excitation and observation of the central transition of an odd-half­

integer quadrupolar nucleus will be discussed.27 

The classical energy of interaction of a charge density, p(r), with an electrostatic 

potential, V(r), can be expressed as 

J 
3 . 

E = d r p(r)V(r). (1.73) 

If the potential is expanded about the center of mass of the nucleus, Equation (1.73) 

becomes 

3 

E = V(O) J d3
r p(r) + L ( :~) J d3

r p(r)xa 
a=! a r=O (1.74) < 

where the Xa are Cartesian components. The first term on the right-hand side Equation 

(1.74) is the interaction of a point-charge nucleus (an electric monopole) with a constant 

potential; it will not affect the NMR spectrum.26 The second terrn,an electric-dipole term, 

vanishes because it has odd parity. 1 But the third term, the electric quadrupolar 

interaction, can be non-zero. It is the product of two tensors: a quadrupole moment with 

components 

(1.75) 

and an electric field gradien't with components 

( 1.76) 

Higher-order terms in the multipole expansion can generally be ignored. 
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The most convenient principal-axis system for the quadrupolar interaction will be 

the one in which the electric-field gradient (EFG) is diagonal. It will then have three 

components, but due to Laplace's equation 

VV = 0 = V XX + V yy + V zz, (1.77) 

only two independent parameters can be defined. These parameters are the strength of the 

EFG in units of electric charge 

Q o = eq = Vzz ( 1.78) 

and a parameter expressing the deviation of the electric field from cylindrical symmetry 

( 1.79) 

where IV zzl ~ IVyyl ~IV xxl· 

It will prove convenient io rewrite the quadrupole-moment tensor as 

3 

Qa~ = 3 Qa~'- 0a~ I Qy/ ( 1.80) 

y = 1 

which makes it traceless. Substituting Equations (1.75), (1.76), and (1.80) into Equation 

( 1. 7 4) and making use of Equation (1. 77) gives 

( 1.81) 

So far, no quantum-mechanical aspects have been introduced. However, nuclear 

spin is intrinsically quantum-mechanical; it is, therefore,. necessary to invoke a 

correspondence principle to rewrite the moment tensor in terms of spin angular 

momentum operators. 

According to the Wigner-Eckhart theorem,26 all matrix elements of a tensor of a 

given rank, k, are proportional to each other 
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(E, I, miT kniE, 1', m') = C (1, 1', m, m', k, n) (E, liT kiE, I') (1.82) 

where n is a tensor component; E is a generic quantum number; and C is a Clebsch-Gordan 

coefficient that is independent of the nature of the interaction. The Wigner-Eckhart 

theorem implies that the components of two irreducible tensors of the same rank will be 

related by a constant of proportionality 

I I {(E, IIQkiE, I')} I I 

(E, I, miQkniE, I, m) = (E, IITkiE, I') (E, I, miT kniE, I, m) (1.83) 

where the constant of proportionality is given in curly brackets.- Applying this to Equation 

(1.80) gives 

where the quantum-mechanical operators have been symmetrized. 5 Defining a quadrupole 

moment 

eQ = (E, I, miQzziE, 1', m') ( 1.85) 

and comparing with Equation ( 1.84) allows the constant of proportionality to be written as 

eQ 
~ = 1(21-1)' 

( 1.86) 

and the matrix elements of the quantum-mechanical Hamiltonian become 

( 1.87) 
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Using the Wigner-Eckhart theorem and the "triangle selection rule" for Clebsch-Gordan 

coefficients, 1•2 it is also possible to demonstrate that only nuclei with a spin-quantum 

number greater than one-half will have a quadrupole moment. Over two-thirds of the 

NMR-active nuclides in the periodic table satisfy this condition. 

As is the case for the other NMR Hamiltonians, it is convenient to express the 

Hamiltonian in terms of products of spherical tensor operators rather than Cartesian ones 

= e
2
qQ ~ ~ m Q Q 

:J{Q 21(21-1) £..i £..i (-1) RJ,-mTJ,m 
I= 0, 2in = -2 

(1.88) 

where 

' Q 0 
Po,o = 

Q {3 
P2,0 = ~2 

Q 
P2, ±1 = 0 

Q 1 Q 
P2, ±2 = 211 

and 

Q 2 
To.o = I 

(1.90) 

Note that oO (see Equation (1.78)) has been included in the constant in front of the sum in 

Equation ( 1.88) rather than in the p 02 terms. ,n 
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Because of the size of the quadrupolar interaction, it is necessary to consider not 

only first-order perturbation terms (i.e.- those arising from the secular approximation) 

when transforming to the rotating frame but also second-order terms. To derive these, we 

will take the approach of Goldman et al.28 which utilizes an operator form of perturbation 

theory. Such an approach avoids the necessity of introducing correction terms as must be 

done when using coherent Average-Hamiltonian Theory.7•10 

The operator form of static perturbation theory is simply a generalization of the 

standard non-degenerate perturbation theory described in Section 1.1.4. The energy 

corrections are projected onto the basis of eigenvectors of the zeroth-order Hamiltonian 

which leads to an operator version of Equation (1.44) 

where 

D (n) = Llj)Ej(n) (jl 
j 

(1.91) 

(1.92) 

and the Ej(n) are given by Equations ( 1.45) and ( 1.46). The advantage of this method 

over traditional perturbation calculations of individual shifts 11 is that one can obtain an 

analytical form for the Hamiltonian which can be used to describe the evolution of any 

transition. This will be particularly useful for the simulations of Chapter 3. 

For the quadrupolar interaction, the first order quadrupolar Hamiltonian can easily 

be shown to be (in energy units) 

(1.93) 

where ro0 is the quadrupolar coupling constant 

(J)Q = 21 ( 21- 1) 1i = 
2 

3e qQ 61t 
21 (21- 1) cqcc. 

(1.94) 
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Equation ( 1.93) is identical with what would be obtained by making the secular 

approximation. The second-order contribution is calculated from Equations (1.46) and 

( 1.92) as follows 

( 1.95) 

Defining m = j - k gives 

;u-~2> = !!:_( roQ)2 ~ ~ R Q R Q lj)(jiT~ mU - m)(j- miT~ -mU)(jl . 
""\l ro 3 ~ £..J 2, -m 2, m m (1.96) 

L J m~O 

But 

U - m)(j - ml = 1 - L ln)(nl. (1.97) 
n~j-m 

Substitution leads to 

( 1.98) 

Q Q 
Because the term T 2, m T 2, -m commutes with the projection operator, Equation ( 1.98) 

becomes 

(1.99) 

Explicitly summing and regrouping gives 

(1.100) 

where 10 
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(1.101) 

(1.102) 

Both the first- and second- order terms are orientation dependent. 

Figure 1.2a shows the energy-level diagram for a single spin-5/2 nucleus subject to 

the effects of the quadrupolar interaction to both first- and second-order. Note that to first­

order, the frequency of the (-m Hm) transitions (including the directly observable central 

transition) are unaffected (due to the fact that T~ 0 only depends on even powers of Iz). 

This is generally the case for nuclei with odd-half-integer spin-quantum numbers. 

Inclusion of the second-order terms will influence all of the transitions. In a powdered 

solid sample, the central transition will be anisotr.opically broadened with a lineshape that 

depends on the values of Cqcc and T\. and an additional contribution to the isotropic shift 

will also be introduced (see Section 1.4.2). It is possible to extract values of the 

quadrupolar parameters by performing lineshape simulations; these parameters can then 

be related to bond geometries.29•30•31 Further discussion of the nature of the central 

transition lineshape can be found in Chapter 6. 

In the experiments described in this thesis, the strength of the applied rf field will 

not be strong enough to excite all allowed transitions simultaneously. However, selective 

excitation of the· central transition (m=-112 Hm= I /2) is possible if a relatively weak rf 

field lro 111 « !rod is applied near resonanceY In such a case, the full Ix and Iy operators 

will not enter into Equation (1.58). Instead, one can assume that only the two-by-two 

submatrix between the m=-112 and m=+ 112 levels will be relevant. From Equations ( 1.50) 

and (1.51 ), one can see that this fictitious spin-1/2 operator4 will have an additional factor 

relative to the true spin-1/2 case. For a pulse applied along the +y axis, the operator in the 

( -112,+ 112) submanifold will be 
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Figure 1.2- (a) Energy level diagram for a single crystallite (T\Q=o·, ~Q=45.) of a spin-5/2 
nucleus in a static magnetic field. The effects of the first and second-order contributions to 
the quadrupolar Hamiltonian are depicted. Note that the frequencies of all (-mHm) 
transitions are unaffected to first order. (b) The five allowed transitions of a spin-5/2 
nucleus subject to both first- and second-order quadrupolar effects. Relative intensities of 
the five lines for non-selective excitation are 5:8:9:8:5.27 
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The factor (I+ 1/2) leads to an increased nutation frequency. Thus, the rf-field strength 

required to rotate the central transition by 90° is 1/(l+ 1/2) of that required for a spin-112 

nucleus (or for a quadrupole in a liquid in which nonselective excitation is easily 

achievable)Y This will be particularly important for the cross-polarization experiments of 

Chapter 4. A more rigorous derivation of this result may be found in the thesis of J. H. 

Baltisberger. 11 

1.2.6 Other Interactions in NMR 

Other interactions can also potentially affect solid-state NMR spectra. One of 

these is an indirect dipolar-coupling mechanism which involves bonding electrons. It is 

known as the scalar interaction and is characterized by a coupling constant, J. Although 

important in solution-state spectroscopy, the J-coupling is generally neglected in solids 

since it is typically much smaller than the direct dipolar coupling. Its effects can 

sometimes be observed in highly-crystalline samples, however.32•33•34•35 •36 This thesis will 

not explicitly treat the J-coupling. Other interactions such as spin-rotation coupling and 

the Knight shift in metals5 are also beyond the scope of this thesis. 

So far all of the interactions in Sections 1.2.3 - 1.2.5 have been treated as separate, 

additive perturbations. However, there are also potentially second-order cross terms 

between the different interactions.27 The most significant of these would involve the 

quadrupolar interaction since it is the largest in the systems studied in this thesis. Such a 

cross term would lead to frequency shift in the spectrum of the spin-112 nucleus that is 

proportional to 

'(1.104) 

in Hz. Here ffio is the frequency of the dipolar coupling between the spins; w0 is the 

quadrupolar frequency (see Equation (1.94)); and ffiL is the Larmor frequency of the 

quadr'upolar nucleus. For the dipolar couplings in the system studied in this thesis (see 

Chapter 3), such a term would be on the order of 5Hz and is, therefore, negligible. 
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1.3 Powder Spectra 

So far this chapter has primarily been concef":ed with the orientation of a single 

crystallite. In solid-state NMR, however, powdered samples are often used. These 

powders are composed of many different crystallites, each of which is oriented differently 

with respect to the static magnetic field. This leads to broad powder patterns for each type 

of interaction (e.g. - CSA, dipolar, quadrupolar). Examples of these are shown in Figures 

1.4a and 1.5a. 

To simulate the lineshapes of powder samples, it is necessary to sum over many 

different crystallite orientations. Conceptually, the most straightforward approach would 

be to use equidistant points on a sphere; in practice, however, this is somewhat inefficient 

and requires a large number of step sizes. 11 Alternative methods of powder averaging have 

been proposed;37•38 the method used in this thesis is based on an algorithm described by 

Cheng et al.,38 which traces out a spiral on a sphere. For a given number of points, this 

algorithm has been shown to be more accurate than averaging over "random" orientations. 

Using Cheng's method, the Euler angles (a,~,y) are chosen according to 

and 

a= 

360° · modN {n · v2 } 

N 

180° · n 
~ = N 

'Y = -------
N 

( 1.105) 

( 1.106) 

( 1.1 07) 

where N is the total number of orientations in the powder average; n is an integer ranging 

from 1 toN; and v2 and v3 are tabulat.ed in Tables 1.2 and 1.3. Note that different ,values 

of are v2 are optimal depending on whether one averages over three angles (for an 

arbitrary rotation) or over two angles (e.g. -when cylindrical symmetry makes one of the 

Euler angles irrelevant). 
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N 50 100 144 200 300 538 1154 

v2 7 27 11 29 37 55 107 

v3 11 41 53 79 61 229 271 

Table 1.2 - Table of parameters for use with Equations ( 1.1 05), ( 1.106), and ( 1.1 07) to determine suitable 
Euler angles (a.;j3,y) for powder averaging in the general case.38 

N 144 233 377 616 987 1597 2584 4181 6765 10946 17711 

v2 55 89 144 233 377 616 987 1597 2584 4181 6765 

Table 1.3 - Table of parameters for use with Equations ( 1.1 05) and ( 1.1 06) to determine suitable Euler angles 
( a.,l3) for powder averaging when the symmetry of the problem is such that only two angles are required. 

1.4 Rotating Samples 

While the broad static powder patterns contain information about the environment 

of a given nuclear spin, they lead to poor resolution. Spectra of samples where the nuclei 

are subject to more than one interaction or where multiple sites are present quickly 

become uninterpretable. Fortunately, considerable improvement in resolution can be 

achieved if the sample is rapidly rotated about an axis that is not aligned with the static 

magnetic field. To understand how an external spatial reorientation can affect the spectra 

of internal interactions, it is necessary to use Wigner rotation matrices. 

1.4.1 Wigner Rotation Matrices Revisited 

The orientation dependence of a rotating sample can be calculated by performing 

two consecutive sets of Euler angle rotations as shown in Figure 1.3. The first set 

describes the orientation of an individual crystallite relative to the rotor frame, and the 

second set describes the orientation of the rotor relative to the Bo field. Mathematically, 

this can be expressed by applying Equation (1.35) in a nested manrier 

( 1.108) 
n=-lm'=-1 
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where e is the angle between the rotor axis and the static magnetic field, ror is the rate of 

rotation, and <Pr is the initial phase of the rotor (which for simplicity we will set equal to 

zero in the following sections). Using Equation (1.36) and separating ~he n=O term gives 

R J,m d (I) (8) ~ D (I) ( R ) = 0, m ~ m', 0 a, p, y PI, m' 

m'=-1 

I 

+I 
-inro,t (I) (I) L e dn, m(S)Dm', 0 (a, ~. Y)P1, m' 

n = -1 m' = -1 

"*0 

( 1.109) 

Note that the first term is time-independent. In the limit of very rapid rotation, the time­

dependent terms will average to zero, leaving only the time-independent term. 

X rot 

(a, ~. y) 

(XPAS' Y PAS' ZPAS) --'"""·~ (Xroh Yrot' Zrot) lab 
Figure 1.3 - Euler angle convention for a rotating sample. The first set of Euler angles 
(a.~,y) describes the orientation of a given crystallite relative to the rotor axis, and the 
second set (rort,9,0) describes the orientation of the rotor relative to the Bo field. 



Several special cases are of interest. Recall that in the limit of large B0 fields, only 

spin tensors, T1,m, with m=O are retained in the Hamiltonian (secular approximation). This 

corresponds to retaining only spatial tensors, RI.m• with m=O, due to the form of the NMR 

Hamiltonians (see Equations (1.60), ( 1.68), and ( 1.88) ). Thus, the time-independent 

spatial terms in Equation (1.109) will be proportional to d6:~(8). For 1=2 and 8=54.74°, 

d6.1 ~(8) equals zero; rapid spinning at 8=54.74° (the "~~gic angle") will, therefore, 

eliminate the anisotropy in the R2, 0 terms. Note that the entire anisotropy of the chemical 

shielding and dipolar interactions is contained in such terms; the quadrupolar case is 

different and will be discussed in Section 1.4.2. 

When the rate of spinning about the magic angle is less than or approximately 

equal to the breadth of the static lineshape, the time-dependent terms cannot be ignored. 

Considering the specific case of a spin subject to the chemical-shielding interaction, one 

can use Equations (1.12), (1.13), (1.66), and (1.109) to show that a cryc::tallite will 

accumulate a phase given by 

-inro,t (2) (2) 

[ 

t [ . I I ·· ] J 
exp -iy B0[ cr1., + ·.~~~ m'~ _; dn, o(8)D m', .(a, p, y)p 2, m' . ( 1.11 0) 

The time-dependent terms in Equation ( 1.11 0) can be regrouped into sines and cosines of 

Wrt and 2wrt. Using a property of Bessel functions 

00 

eizsin$ = L eik$Jk(z) (1.111) 
k=-oo 

one can show that the signal depends periodically on the rotation. 39 When such a signal is 

Fourier transformed, a series of "sidebands" spaced at the rotor frequency will appear in 

the spectrum, and the intensities of the sidebands will contain information about the 

chemical-shielding parameters.40 Herzfeld and Berger4° have tabulated ratios of the 

sideband intensities to the centerband intensity for different values of the CSA parameters 

to allow them to be rapidly determined from a magic-angle spinning (MAS) spectrum; 

with modem computers, direct fitting of the spectrum can also be accomplished. 
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Figure 1.4 shows simulations of spectra corresponding to the CSA interaction at 

various spinning spe~ds. Note that since the total integrated intensity of the spectrum is 

constant, rapid MAS not only improves resolution but also sensitivity. The spectrum in 

Figure 1.4c is of the type that can be used for Herzfeld-Berger analysis. 

Another interesting angle is. 8=0·. Using the definition of the reduced Wigner 

rotation matrix elements (Equation (1.37)), one can show that for 8=0· 

d (I) (Oo) = { 0 for n :t:. m. 
n, m 1 for n=m 

(1.112) 

Since only m=O terms are relevant in the secular approximation, it is easy to see (by using 

Equations (1.109) and (1.112)) that all time-dependent terms vanish for 8=0·. In fact, 

what remains is identical to the full, static powder pattern. Thus, spinning about an axis 

parallel to the B0 field is equivalent, from a theoretical point of view, to not spinning the 

sample at all. This can be viewed as a consequence of the Coo symmetry induced by the B0 

a) 
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Figure 1.4 - Simulated CSA powder patterns for oc5=-2.5 kHz and Tlcs=0.76 at spinning 
speeds of (a) 0 Hz, (b) 100Hz, (c) 1kHz, and (d) 10kHz. The total integrated intensity of 
all spectra are the same, but for clarity, the vertical axes of (a) and (b) have been scaled by 
a factor of 10. The rapid spinning spectrum in (d) has high sensitivity, but all information 
about the CSA parameters is lost. The spectrum in (c) represents a good compromise 
between sensitivity and information content. 
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field. In practice, spinning about o· has the advantage of reducing the effects of magnetic 

field inhomogeneity, but the disadvantage of requiring specialized solid-state NMR probe 

technology. 

1.4.2 Effects of Sample Rotation on Quadrupolar Lineshapes 

For odd-half-integer quadrupolar nuclei, the situation is more complicated. This is 

due to the functional form of the second-order quadrupolar anisotropy, which, as can be 

seen from Equation (1.100), depends on products of second-rank spatial tensors. It is well 

known that the product of two commuting second-rank tensors can be written as a sum of 

zeroth-, second-, and fourth- rank tensors.41 By substituting Equation (1.108) into 

Equation ( 1.1 00), one can explicitly calculate the form of this anisotropy for a sample 

spun about an axis e with respect to the static magnetic field. In this thesis, we will be 

interested in the frequencies of the ( +m H -m) transitions 

-(2) -(2) 
( 2Q) . :J{Q_ . :J{Q_ . 

ro+m H-m = (I, ml-tz-11, m)- (I, -ml-fz-II, -m). (1.113) 

Explicit calculation of w ~!~ -m is laborious even when sidebands are neglected and only 

time-independent terms retained. The steps needed to do this are outlined in the thesis of 

K T. Mueller10 for the case m=1/2 and have since been generalized to other values of 

m.42.43 We will present only the final result of this calculation (valid for the case of fast 

spinning relative to the static linewidth) 

(1.114) 

where aQ and ~Q describe the orientation of a given crystallite relative to the rotor axis. 

Note that, as expected, the second-order quadrupolar anisotropy is the sum of zeroth-, 

second-, and fourth- rank terms (see Equations (1.38)-(1.41)). Equation (1.114) will be 

discussed in more detail in Chapter 6; for now what is important to notice is that in 

addition to the second-order Legendre polynomial, there is also a dependence on the 
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fourth-order Legendre polynomial. Thus spinning at the magic angle only removes part of 

the quadrupolar anisotropy (see Figure 1.5). Experiments which can produce isotropic 

lines for odd-half-integer quadrupolar nuclei will be discussed in Chapter 6. 

a) b) 

Frequency Frequency 

Figure 1.5 - Schematic of second-order quadrupolar lineshapes for the central transition 
. (with TJ=0.5) in (a) a static sample and (b) a sample undergoing (ast MAS. Removal of 

the P2(cos9) term has significantly narrowed the lineshape but not eliminated its 
anisotropic character. 

1.5 Phase Cycling and Data Processing 

So far most of the discussions in this thesis have been concerned with the time-

domain behavior of the NMR Hamiltonians. However, spectra are typically presented and 

analyzed in the frequency domain. The two domains can be related by a mathematical 

manipulation known as the Fourier transform. If s(t) is the evolution of the transverse 

magnetization asa function of time, the frequency domain signal, S(ro), will be given by 

the complex Fourier transform of s(t)4 

S(ro) = J s(t)e-imtdt = J s(t)(cosrot-isinrot)dt. (1.115) 

-oo. 

In NMR, one will often (though not always) record signals which are defined for t~O only. 

In such cases, the Fourier transform, S(ro), will contain both real (absorptive) and 

imaginary (dispersive) parts. The two most common Fourier transform pairs in NMR are 

summarized in Table 1.4.23 The discussion which follows in Section 1.5.2 will focus on 

lines which have a Lorentzian lineshape although the same principles apply to Gaussian 

lines as well. 
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Line Type s(t) S(ro) 

Tz 
2 

Lorentzian iilt -t/T2 
(ro- Q) (T2) 

A(ro)-iD(ro) 2 2 i 2 2 = e e 1 + (ro-Q) (T2) I+ (ro-Q) (T2) 

( Jir,T 2 ) e 
- { (ro-Q)2 (T2) 2} /4 

2 2 
Gaussian iilt -t I (T2) 

e e 
1( [i(ro-Q)T2J) x {2 1 + erf 

2 
} 

Table 1.4 - Complex Fourier transforms of Lorentzian and Gaussian decays which are defined for positive 
time values (t~) only. This lack of symmetry about t=O leads to dispersive·components. 

Useful theorems pertaining to Fourier transforms have been summarized in 

monographs on NMR444 and will not be reviewed here. Other important considerations 

such as digitization (dwell times, spectral width, resolution), zero filling, and apodization 

will also not be addressed in this thesis. Instead, the next two sections will focus on how 

to control the evolution of the signals tha.t are observed and how to use such methods to 

obtain artifact-free, two-dimensional spectra. 

1.5.1 Coherence-Transfer Pathways 

In NMR, signals are typically recorded usmg quadrature detection, which 

corresponds to simultaneously observing two orthogonal components of the transverse 

magnetization. Such an acquisition scheme allows one to distinguish (ffiL +0) from (ffiL­

Q). If only one component were detected, those two frequencies could not be 

distinguished. Mathematically, the detected signal, also known as a free-induction decay 

(FID), can be written as 11 

s(t) (1.116) 

where <l>R is the phase of the receiver and I+ is the observable for quadrature detection. (In 

principle, the quadrature operator could be described instead by 1_, but we follow the 

convention of Ernst et al.4) 
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From Equations ( 1.49), (1.54 ), (1.55), and ( 1.116), it is easy to see that only I_ 

terms in the density matrix will produce observable signal. It is, therefore, necessary to 

apply pulses in such a way that all the frequencies of interest to the spectroscopist appear. 

as prefactors of 1_. The way to do this is by coadding signals from experiments in which 

the phases of the rf pulses are varied in a systematic way. 

To understand why such a phase cycling procedure works, it is useful to look at the 

behavior of different coherences under rotations about different axes. In Section I.I.l, a 

"coherence" was defined as an off-diagonal element of the density matrix. Coherences 

can be categorized by their order, or total change in magnetic quantum number.4 This is 

equivalent to characterizing. them by their rate of precession about the z-axis since a 

coherence O'p of order p acquires phase as follows4 

(l.II7) 

where Fz is the total z magnetization. Note that evolution about the z-axis (i.e. - free 

precession) does not change the· order of a coherence. 

Rotation about the x or y axis (as induced by an rf pulse) can change the order of a 

coherence as can be calculated from the equations in Sections I.2.I ~nd I.2.2. For 

instance, a 90° pulse applied to the equilibrium magnetization will change the order from 

p=O to a linear combination of p=+ I and p=-I. A I80° pulse will change p=+ I to p=-1, 

etc. Following Ernst et al.4, we can write the effects of a generalized rf pulse as 

-1 ~ 
urfcrpurf = .L...O'p' 

p' 

(1.118) 

whe~e Urf represents the action of the pulse. Phase shifting that pulse by <1> and 
~ 

rearranging gives 
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(1.119) 

L 
-i<I>Fz . i<I>Fz ipcp 

= e a ,e e · . p 
p' 

where ~p = p' -p. 

It is now easy to see that by summing experiments with· different phase shifts, the 

experimenter can control which coherences are retained and which are eliminated. 

Detailed information on how to do this can be found elsewhere4,) 1•45 and only a few key 

points will be summarized below. 

The first point is that when one increments the phase of a pulse from experiment to 

experiment by 

~<I> = 27t/N (1.120) 

one will select every-N-th value of ~p.4 This rule determines the minimum length of · 

. phase cycle necessary to eliminate a certain coherence. For instance, suppose one wants 

to select the + 1 quantum coherence but eliminate the -1 quantum coherence. The 

minimum phase cycle that achieves this would be a cycle with steps of 27t/3 or 120°. Of 

course, smaller steps (such as 90° phase increments) would also eliminate the -1 quantum 

coherence although this means that a longer phase cycle would be necessary. It will often 

be desirable to retain more than one coherence at a given· stage, particularly if one wants to 

obtain pure absorption-phase lineshapes (see Section 1.5.2). This can easily be done using 

Equation (1.120); a phase cycle with steps of 27t/2 or 180° can be used to retain p=±l 

while eliminating p=0,±2. Of course, some higher 'order coherences (p=±3,±5) will also 

be retained in principle. In practice, however, high-order coherences can often be ignored 

since (1) they may have a low or zero probability of existing (e.g. - an isolated system of 
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two spin-112 nuclei can at most have p=±2; even in large spin systems the highest possible 

coherences will be rare) or (2) later. steps of the phase cycle will prevent them from 

contributing to the final observed signal. 

To detect the p=-1 coherence, the phase of the receiver is cycled according to 

(1.121) 

where (L\p)i is the desired change in coherence induced by the i-th pulse. By combining 

Equations (1.120) and ( 1.121 ), it is possible to design a pulse sequence in which different 

coherences are specifically retained during different time periods of the experiment. Such 

a sequence can be graphically represented as a "coherence transfer pathway."4 Examples 

of these will be seen throughout this thesis (see, for instance, Figures 5.3 and 6.10) where 

thick lines are used to indicate which coherences contribute to the final signal. Note that a 

common shorthand notation for pulse phases that are multiples of 90° is 0=0°, 1=90°, 

2= 180°, and 3=270°. 

Phase cycling can be used to removed hardware-induced artifacts. The CYCLOPS 

cycle46 involves shifting the phase of the last pulse along with the receiver through all f~mr 

spectrometer channels so that the effects of receiver imbalance are removed. Another 

common technique, spin-temperature alternation47 reverses the sense of precession (i.e.­

the direction of the magnetization vector) of the I spins relative to the B 11 spin-lock field 

from scan to scan by shifting the phase of the excitation pulse by 180°. If the I spin 

magnetization is transferred to the S spins via cross polarization, the sense of precession of 

the S spins about the B 1s field will also alternate between scans.23 Consequently, cross­

polarized S-spin signal can be differentiated from directly excited S-spin signal, which 

will always precess in the same direction for a given B lS field. Spin-temperature 

alternation is frequently used in cross-polarization experiments to suppress direct signals. 

Another important use of phase cycles is for obtaining pure absorption-phase 

lineshapes in two-dimensional spectra. It is to that topic that we shall now tum. 

42 



1.5.2 Pure-Phase Two-Dimensional Spectra 

From Table 1.4, we see that the Fourier transform of an exponentially decaying, 

complex signal has both absorptive and dispersive components. For maximal resolution, 

however, it is desirable to have only absorptive peak shapes. In the one-dimensional case, 

it is always possible to obtain a spectrum which is purely absorptive in one channel of the 

detector and purely dispersive in the other. (Often this is done in practice by applying a 

phase correction after collection of arbitrarily phased data.) This is not as easily done in 

two-dimensional case, however. A generic two-dimensional FID can be written as 

(1.122) 

where <p 1 and <p 2 are arbitrary phase factors. Since it is always possible to phase correct 

the data, we can set these phase factors to zero without any loss of generality. Performing 

a Fourier transform over each time variable gives (see Table 1.4)4" 1 

S(ro" ro2) .= (A(ro 1)-iD(ro 1)) (A(ro2)-iD(ro2)) 

= [A(ro1)A(ro2)- D(ro1)D(ro2)] 

-i [A(ro1)D(ro2) + D(ro1)A(w2)] 

(1.123) 

Clearly, neither channel is purely absorptive. The presence of a dispersive term in the real 

channel leads to "phase-twist" lineshapes with negative intensity in the wings. 

To obtain purely absorptive lineshapes, it is necessary to use a more complicated 

acquisition scheme.48 This can be done by the methods of time-proportional phase 

incrementation (TPPI),449•50 hypercomplex data acquisition (also known as .the method of 

States et al.51 ), or whole-echo acquisition.52 

The TPPI and States methods are equivalent in terms of signal-to-noise per unit 

time. 11 Since TPPI was not used to acquire any of the data in this thesis, it will not be 

described here, and the interested reader is referred elsewhere.4 •11 •49·5° 

The hypercomplex method of States et aP 1 permits quadrature "detection" in the 

indirect dimension. The technique requires the experimenter to collect two separate two­

dimensional data sets in which the amplitude modulation in the t1 dimension differs by 90° 
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between the sets. In practice, the second data set is obtained by shifting the pulse at the 

beginning or at the end of the t 1 period by 90° /lpl where p is the order of the coherence. 4 '53 

The phase cycle must ensure that both the +p and -p coherences are retained throughout 
iil1(p)t 1 -i01(p)t 1 the entire t1 period.4 The retention of both e and e leads to a signal with 

cosinusoidal amplitude modulation, and the 90° phase shift gives a data set with sinusoidal 

amplitude modulation. The two signals can be written as 

(1.124) 

(1.125) 

where the -1 quantum coherence is directly detected in t2. Fourier transformation in the t2 

dimension gives 

(1.126) 

(1.127) 

Combining the real part of Equation ( 1.126) with i times the real part of Equation (1.127) 

gives 

(1.128) 

Fourier transformation of the t1 dimension gives a signal in the real channel, A( ro 1)A(ro2), 

which is purely absorptive. 

Two particular linear combinations of Equations ( 1.124) and ( 1.125) are known as 

"echo" and "anti-echo" signals and have the following functional forms 

secho(tl, t2) scos(tl' t2)- issin(tl' t2) 
-in1t1 -t 1/T2 -i02t2 -t2/T2 

(1.129) = = e e e e 

santi(tl, t2) sco/tl' t2) + issin(tl' t2) 
+i0 1t 1 -t 1/T2 -i02t2 -t/T2 

( 1.130) = = e e e e 
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These phase-modulated signals can be acquired directly by phase cycling to chose the -p 

coherence for the "echo" signal and the +p coherence for the anti-echo signal. However, 

shorter phase cycles can be used if they are acquired as sine and cosine data sets 

(assuming that one desires to suppress all the coherences in between -p and +p). Echo and 

anti-echo data sets are particularly convenient when the position of the maximum of the 

FID varies as a function of t1 since they facilitate the ~pplication of shifted apodization 

functions. 53 They also are useful when dealing with experiments involving concepts of 

time reversal.4 Details on how to process such spectra are given elsewhere.53 

An alternative technique for acquiring pure-phase spectra is known as whole-echo 

acquisition.52 In this method, an echo is generated and acquistion started immediately 

after the echo-forming pulse. Assuming that the shape of the echo envelope is given by 

two Lorentzian decays centered about the point (t2-'t) as shown in Figure 1.6, we can write 
I 

the collected signal as 

(1.131) 

Note that the phase cycle is such that during t1 the -p coherence is selected and the +p 

.coherence is suppressed and that the -1 quantum coherence is directly detected. Fourier 

transformation of the t2 dimension gives 

't. 

Figure 1.6- Creation of echoes for whole=echo acquisition. The 180° echo-forming pulse 
is placed at a time 't after the start of the decay. (If MAS is used, the 180° pulse must be 
applied after an integral number of rotor periods.) At a time 't after the 180°, the echo 
maximum is reached. Acquisition is started immediately after the 180° pulse so that the 
entire buildup and decay of the echo is recorded. In the discussion in ·the text, the finite 
length of the 180° pulse is neglected. 
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( 1.132) 

-oo 

The key to whole-echo acquisition is that we record the entire buildup ·and decay 

of the echo.4•54 This allows us to make the substitution t' = t2 - 't 

00 

-in t -t IT -iro t J -lt'I/T -i ( 002 + Q2) t' = e I te t 2e 2 e 2e dt'. (1.133) 

The time-domain signal is now symmetric about t' = 0. Since it has even parity (see 

Equation ( 1.115)), the corresponding frequency-domain signal will have no dispersive 

components. Explicit integration leads to 

(1.134) 

. . i (1)2 't . 
Applymg a first-order phase correction of e gtves 

(1.135) 

which, as expected, has no dispersive components in the ro2 dimension. Thus, a pure 

absorption-phase two-dimensional peak can be obtained. 

The biggest advantage of whole-echo acquisition is that only one two-dimensional 

data set needs to be acquired. Thus, the signal-to-noise per unit time is a factor of J2 
greater than in the hypercomplex experiment. However, whole-echo acquisition will not 

work for samples with long T 2 values since the entire echo cannot be acquired in such a 

case. 

It is also possible to combine whole-echo acquisition with States or TPPI to 

produce spectra with high signal-to-noise ratios. 11 •53•54 
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As the case of whole-echo acquisition shows, an NMR spectroscopist has some 

flexibility about how to define the origin of the time axis. This becomes particularly 

important in cases in which the t1 dimension is split into multiple segments4
•

11 •
54

•55 •
56 (see 

Chapters 5 and 6). A few such experiments are represented schematically in Figure 1.7. 

In these experiments (e.g. - MAT, DAS, MQMAS), the t1 evolution is split into two or 

more parts, and an isotropic echo is formed at the end of the last part of the t1 period. An 

anisotropic signal is then recorded during the time t2. To obtain spectra which correlate 

narrow isotropic peaks with broader anisotropic lineshapes, one might naively think that 

one should start acquiring the signal immediately after the t1 period ends. However, as 

can be inferred from examining Figure 1.7a, it is impossible to obtain a pure-phase 

spectrum with such a sequence. Hypercomplex acquisition won't work because the 

evolution of the+ 1 coherence during the last part of the evolution period cannot contribute 

to the final signal. One potential solution is to shift the t2 origin to immediately after the 

last pulse. Then it is possible to do hypercomplex data acquisition (Figure 1. 7b ). Note 

that the definitions of the two time variables have changed, however. The new variables 

are related to the old variables as follows 

(1.136) 

(1.137) 

where ft 1 is the last fraction of evolution period. The acquired signal will therefore have 

the form 

(1.138) 

Fourier transformation with respect to t2' gives 

(1.139) 
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Figure 1.7 - Schematics of pulse sequences with split evolution periods. The white boxes 
do not represent specific pulses but rather portions of sequences in which the transverse 
magnetization does not evolve. With the timings shown in (a), pure-phase spectra cannot 
be obtained since the + l coherence during the last t 1 segment (represented by a dashed 
line) is not recorded. Pure-phase spectra can be obtained with sequences (b), (c), and (d) as 
described in the text. 
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Subsequently transforming with respect to t 1' and looking at the real part gives 

(1.140) 

While this is a pure-phase signal, the frequencies in the two dimensions are correlated by 

the factor f I ( 1 - f) , leading to diagonal ridges in the two-dimensional spectrum. For 

ease of interpretation, however, it would be preferable to have a purely isotropic signal in 

one dimension and an anisotropic signal in the other dimension. That is, one would like to 

view this pure-phase spectrum in terms of the frequencies ( ro1 ,ro2) corresponding to the 

times (t1 ,t2) shown in Figure L7a. Fortunately, it is possible to have the best of both " 

worlds -- absorptive lineshapes and direct isotropic-anisotropic correlation -- if one shears 

the spectrum by the angle4•11,ss 

.E>shear = arctan( 1 ~f). (1.141) 

In practice, the most convenient method for shearing4 is to apply a first-order phase 

correction of exp [ +{ ~~2;)t 1 '] to Equation (1.139) which leads to 

(1.142) 

Writing Equation ( 1.143) in terms of the variables ( ro1 ,(l)z) gives 
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(1.143) 

where use has been made of Equation (1.136) and the fact that there is reciprocal scaling 

between the time and frequency domains.4 Note that this shearing transformation and 

concomitant change of variables leads to a spectral width in the ro1 dimension that is a 

factor of ( 1-f) of that in the ro 1 
1 dimension. This necessitates a rescaling of the ro1 axis in 

order to obtain the correct isotropic shifts. 55 It also means that the dwell time for the t1 I 

dimension of the experiment in Figure 1.7b must be carefully chosen to avoid aliasing. 53 

Pure-phase spectra can also be obtained by slight modifications to the pulse 

sequence of Figure 1.7a/b. Insertion of a properly phase-cycled 90° pulse after the ft 1 

period can ensure that both + 1 and -1 coherences are retained throughout the entire 

evolution period (Figure 1.7c), allowing direct application of hypercomplex data 

acquisition. 10 Alternatively, a 180° pulse can be inserted after a delay 't to create a full 

echo for each t1 slice, and the principles of whole-echo acquisition can then be applied 

(Figure 1.7d). Note that two first-order phase shifts (one associated with whole-echo 

acquistion and one to shear the spectrum) will be required to process such dataY 

Examples of many of these methods will be see throughout this thesis. 
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Chapter 2: 13c Variable-Temperature CP/MAS Studies 
of Tetracyclopentadienyl Complexes 

In Chapter 1, the theoretical foundations for solid-state NMR were outlined. In 

this chapter, an ex·ample of how solid-state NMR can be used to probe molecular motion 

in a series of cyclopentadienyl compounds will be shown. Although this study involves 

no new techniques, it demonstrates the power of cross polarization, magic-angle spinning, 

and two-dimensional spectroscopy. 

2.1 Fluxional Motion in Organometallic Compounds 

One of the most important ligands in organometallic chemistry is the 

cyclopentadienyl ligand, C5H5 or Cp, which can bind to a metal atom in at least ten 

different ways.57 These different configurations are typically categorized by their 

hapticity, 11. which indicates the number of carbon atoms that lie close enough to the metal 

atom to form a bond.58 Whether or not all of these carbon atoms actually participate in 

such a bond is often unclear since the nature of bonding in these compounds is not fully 

understood. Even the hapticity can be difficult to categorize due to ambiguities in X-ray 

diffraction data. The existence of monohapto (11 1 ), trihapto (11\ and pentahapto (115
) 

cyclopentadienyl groups is now generally accepted, but while 114-cyclopentadienyl groups 

have been postulated as intermediates in certain cases, their existence remains 

controversialY As for the nature of the bonding, it is generally assumed that 

monohaptocyclopentadienyl groups are bound to the metal atom via a single a-bond. In 

the most common monohapto configuration, the carbon that binds to the metal is sp3 

hybridized and the other four carbons are sp2 hybridized. The cyclopentadienyl ring is 

nearly planar, and contains two double bonds. It is believed that, in most cases, all five 

carbon atoms in a pentahapto group participate in the bonding through delocalized 

molecular orbitals: such bonding is called 1t or 11 bonding in older literature. 

Describing organometallic compounds in terms of static bonding configurations is 

not an accurate way to represent many of them, however, since a large number are 

stereochemically non-rigid. They can undergo rapid intramolecular rearrangements even 
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in the solid state. If these rearrangements do not lead to chemically distinct species, the 

motion is described as fluxional. Fluxional motion was first postulated for the compound 

(115-C5H5)(11 1-C5H5)Fe(CO)z by Piper and Wilkinson in 1956 based on solution-state 1H 

NMR spectra.59 When Piper and Wilkinson failed to see the multiple peaks they expected 

from a monohaptocyclopentadienyl group, they proposed that rapid ring rearrangements 

caused the metal-carbon cr-bond to shift to each carbon atom in tum. Subsequent studies 

by other workers confirmed this hypothesis, and the motion was termed "ring whizzing."60 

Since then, a variety of possible cyclopentadienyl group motions have been observed 

including interconve.rc;;ion of 11 3 and 115 li~ands, interconversion of 11 1 and 115 ligands, 

rotation of the 115-C5H5 groups, and rotation about the metal-carbon cr-bond.57
•
60

•
61 

However, it is the ring-whizzing process which will primarily concern us here. 

The mechanism for ring whizzing is difficult to determine a priori and remains 

controversial today. Since it involves the motion of a sigma bond in a 7t-electron system, 

it can be referred to as a sigmatropic rearrangement.62 Sigmatropic rearrangements are 

identified using the notation [i,j] where the indices i and j indicate over how many atoms 

each end of the sigma bond migrates. In the case of a metal-carbon bond moving around a 

cyclopentadienyl ring, several types of rearrangements could occur. Unfortunately, it is 

impossible to distinguish between a [I ,5] shift and a [ 1 ,2] shift in a five-membered ring. 

Thus, if such a shift were observed in an NMR spectrum, one could not determine whether 

the mechanism involved completely delocalized molecular orbitals (a [1 ,5] shift) or 

whether it were based on some sort of "principle of least motion" (a [ 1 ,2] shift).58 For 

convenience, such shifts will be referred to as [ 1 ,2] shifts throughout the rest of this 

chapter, but this does not imply that a particular mechanism is favored. Similarly, the 

other possible type of shift in a five-membered ring will be referred to as a [1 ,3] shift. 

Predicting whether [1,2] shifts, [1,3] shifts, or both are to be expected is non­

trivial. Although the molecular orbitals for cyclopentadienyl groups have been 

determined63•64•6S, it is difficult to apply the Woodward-Hoffmann rules62 to the 

rearrangements. This is because the transition metal atom has many orbitals of various 

symmetries which could potentially participate in such a process, especially when the 

valence shell is not filled. 60
•
66

•
67 Furthermore, the process may be dissociative rather than 

concerted since metal-carbon bonds are relatively weak.66•67 For dissociative processes, a 
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Woodward-Hoffmann treatment would not be valid. In the case of cyclopentadienyl 

groups, Woodward-Hoffmann-based calculations suggest that [ 1 ,5] shifts (which are 

equivalent to [I ,2] shifts in a five-membered ring) would be favored. 68 To date, most 

studies of the fluxional motion of monohaptocyclopentadienyl compounds have also 

concluded that [1 ,2] shifts are the predominant rearrangement mechanism. However, the 

conclusions that were reached often depended on the assumptions that were used to assign 

the peaks in an NMR spectrum, and there has not always been a consensus.60•69 Moreover, 

in TJ 1-C7H7 rings, evidence for [1;2], [1,3], and [1,5] shifts has been found despite the fact 
. 

that only [1,5] shifts are predicted by the Woodward-Hoffman rules.70•66•67 "Forbidden" 

[1 ,3] shifts have also been observed in five-membered rings in an indenyl ligand bound to 

Hg,71 and a few compounds that were predicted to be static were, in fact, found to be 

fluxional. 66 Clearly orbital symmetry considerations are not always the only factors that 

control fluxional motion. 

NMR has proven to be a useful tool for studying several types of fluxional motion. 

Few other techniques are able to detect rearrangements which do not change the structure 

of a compound.72 Although flmcional motion has been extensively studied in the solution 

state, the rates can sometimes be too rapid for solution-state NMR to aid in unraveling the 

mechanism.60 Solid-state studies are of paramount importance in understanding such 

cases although, due to steric considerations, some mechanisms that occur in solution may 

not necessarily occur in the solid state.73.74 The first solid-state NMR studies of fluxional 

motion used 1 H wideline NMR to measure second moments and linewidths as a function 

of temperature.72•75 A series of complexes containing monohaptocyclopentadienyl rings 

were examined using this method, and the experimental parameters were compared to 

theoretical models. 76 Temperature-dependent measurements of relaxation times were used 

to determine the activation energy for the rearrangment.77 However, detailed mechanistic 

information could not be obtained. Several years later, analysis of 13C NMR static 

powder line-shapes revealed that jumps through angles of 72° were favored over jumps of 

144° in Fe(TJ5-C5(CH3)5h.78 Monitoring 13C CP/MAS lineshapes as a function of 

temperature also permitted fluxional motion to be studied.74•79•80•81 •82 Recently, two-
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dimensional exchange NMR has been applied to study the rotation of 

pentahaptocyclopentadienyl rings in the solid state61
'83 as well as fluxional motion 

involving other moieites.84•
85 

In this chapter, the results of a solid-state NMR study of several related 

organometallic compounds will be presented. All of these compounds have four 

cyclopentadienyl groups bound to a metal atom in an approximately tetrahedral 

configuration, and all of the metal atoms have an oxidation state of IV. The compound 

TiCp4 has previously been studied in the solid-state;82 the compounds that we studied 

involve metal atoms that usually have a chemistry closely related to that of titanium. 

Zirconium and hafnium are in the same column in the periodic table as titanium. They are 

slightly larger and therefore prone to form compounds with higher coordination numbers 

but are otherwise quite similar in behavior. While tin is not a transition metal element, its 

chemistry is oft~n also similar to that of titanium since it is the same size,70 and extremely 

rapid fluxional motion in tin compounds has previously been observed.60 As will be 

shown in Section 2.2, the chemistry of SnCp4, HfCp4, and ZrCp4 is not the same, 

however. 

2.2 One-Dimensiona1 13C Variable-Temperature CP/MAS Experiments 

Figure 2.1 depicts the structures of Sn(ll 1-C5H5)4, Hf(ll5 -C5H5h(ll 1-C5H5h, and 

Zr(ll5 -C5H5h(ll 1-C5H5) -- which will hereafter be referred to as SnCp4, HfCp4, and 

ZrCp4, respectively. The numbers of sigma (11 1) and eta (115) bonded cyclopentadienyl 

rings in each compound were determined by X-ray diffraction.86•87•88 

The compounds were synthesized by Drs. Leonidas Phillips, Frances Separovic, 

Murray S. Davies, and Manuel J. Aroney at the University of Sydney, Sydney, Australia 

by reacting a metal-halide precursor with sodium cyclopentadienide using methods from 

the literature.88' 89 Since the materials were highly hygroscopic, they were shipped in 

sealed ampules and transferred to 7.5 mm zirconia pencil rotors in a glove box with a N2-

atmosphere. Experiments were typically performed on a given compound for up to a day 

at a time, and the rotors were stored in a desiccator for several weeks between 
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experiments. Only the SnCp4 NMR spectra changed over time, suggesting that this was 

the only one of the compounds to undergo significant degradation during the course of the 

experiments. 

All spectra were recorded on a home-built spectrometer90 interfaced to a Tecmag 

pulse programmer and ~ata acquisition system. The 1H Larmor frequency was 301.2 

MHz, and the 13C Larmor frequency was 75.739. MHz. The probe was home-built but 

incorporated a 7.5 mm Chemagnetics MAS spinning module and used a Doty91 double­

resonance circuit design. The pulse sequence used for these expe~iments is shown in 

Figure 2.2 and is a standard Hartmann-Hahn cross polarization sequence with CW 

decoupling on the protons during the acquisition period. Typical proton decoupling field 

strengths were 35-50_kHz. 

a) b) C4 
C5 

Figure 2.1- Structures of (a) Sn(ll 1-C5H5)4, (b) Hf(ll5-C5Hsh<ll 1-C5H5h, and (c) Zr(ll5-

CsHs5h(lli-CsHs). . 
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The magic angle was set by maximizing the number of rotational echoes in the 

time-domain 79Br spectrum of KBr. The cross-polarization match condition was set on 

adamantane and fine-tuned on the actual samples. Typically, the second-sideband match 

condition92 was used which, for a spinning speed of -4 kHz, gave a 1 H 90° pulse length of 

7 J.lS and a 13C 90° pulse length of 9 JlS. The cross-polarization co1,1tact time was 1 ms. 

To obtain temperatures in the range 133-333 K, the variable-temperature apparatus 

depicted in Figure 2.3 was used. In this set-up, gaseous N2 was cooled by being passed 

through a coil immersed in a liquid nitrogen bath. It was transported to the probe through 

a heater and an insulated stack placed in the bore of the magnet. A thermocouple located 

in the stack was interfaced to a temperature-controller which regulated the temperature of 

the N2 gas to within± 5 K. The design of the MAS spinning module was such that the 

rotor was supported by air bearings at either end, and the rf-coil was free-standing. This 

permitted the temperature-controlled gas to access a large portion of the rotor through 

holes at the top of the stator. N2 gas was also used for both the bearing and the drive air 

lines to minimize water condensation in the probe. 

During the course of the experiments the temperature was decreased in steps of 1 0 

K and the sample was allowed to equilibrate for at least twenty minutes at each 

temperature before spectra were recorded. 

1 

H (9-~~·J+..,._oC_P ___ .. --_ .. : ...... ~---d-e-co-;:n_P_f~---...__,~ <ll .. 
1sc 

Figure 2.2- Cross polarization pulse sequence for lD VT-MAS experiments. CYCLOPS 
phase cycling46 and spin-temperature alternation47 were used. A .flipback pulse at the end 
of the sequence returned any remaining spin-locked proton magnetization back to the z­
axis. 
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To calibrate the controller, an independent series of experiments were performed 

on the compound samarium acetate (SmAc3) tetrahydrate using the same pulse sequence 

and spinning speed. Since the 13C isotropic chemical shift of the chelating carbonyl group 
' 

in SmAc3 is temperature-sensitive93.94 with a temperature dependence given by 

0iso [ppm] = -4867 + 209 T , (2.1) 

such experiments were used to establish a correlation between the temperature reading 

from the thermocouple and the actual temperature of the sample. 

exhaust 

~ 

probe 

heater 

bearing 

room-T 
N2 gas 

Figure 2.3 - Schematic of cooling apparatus used for variable-temperature MAS 
experiments. Bearing and.drive air for the MAS probe were supplied from a high pressure 
(300 psi) N2 dewar. Sample cooling was achieved by blowing N2 gas through a copper 
coil located in a liquid-N2 bath. The heating coil and thermocouple in the VT stack were 
interfaced to a temperature controller which provided a feedback loop to regulate the 
temperature. 
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2.2.1 SnCp4 Spectra 

Fluxional motion in tin compounds tends to be very rapid, which means extremely 

low temperatures are needed to characterize it.60 Previous solution-state I H NMR studies 

of SnCp4 in various solvents showed only a single resonance even at temperatures as low 

as 138 K, which prevented mechanistic information from being determined.95 

X-ray diffraction studies of SnCp4 showed that all cyclopentadienyl groups were 

monohapto and were bound to the tin atom in a distorted tetrahedral configuration through 

elongated cr-bonds (see Figure 2.1a).86 The crystal showed relatively low (monoclinic) 

symmetry with large variations in the angles between the planes of the cyclopentadienyl 

rings. 

Figure 2.4 shows a series of one-dimensional MAS spectra of SnCp4 recorded at 

different temperatures. The poor signal-to-noise of these spectra is due to the fact that the 

T I of the protons in this sample is rather long at low temperatures, requiring recycle 

delays of 40 s. 

At room temperature, only a single peak at 114.0 ppm was observed in the 

spectrum of SnCp4. As the sample was cooled to 233 K, two additional broad peaks began 

to appear at approximately 130 ppm and 50 ppm. As 'the sample was cooled still further, 

the 114.0 ppm peak diminished in size, while the broad peaks continued to increase in 

intensity. Finally, at 153 K, the 114.0 ppm peak had disappeared entirely, leaving ouly the 

two broader peaks. 

A definitive interpretation of these spectra is difficult due to their poor sensitivity 

and resolution. Some of the sidebands overlap with some of the resonances, and the 

recycle delay may not have been long enough to ensure that the spectra are quantitative. 

Furthermore, SnCp4 was found to be extremely sensitive to moisture, and a change in the 

appearance of the room-temperature spectra over several experimental sessions (data not 

shown) indicated that the sample easily degraded. Although the spectra shown in Figure 

2.4 were acquired on a freshly-packed sample, the integrity of the sample cannot be 

guaranteed, and therefore all interpretations of the spectra are provisional. Nonetheless, 

room temperature spectra acquired before and after the low-temperature experiments 
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193 K 
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183 K 
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250 200 150 100 50 0 
[ppm from TMS] 

Figure 2.4 - 13C CP/MAS spectra of Sn(ll 1-C5H5)4 at different temperatures. The spectra 
are unsealed, and asterisks are used to denote spinning sidebands in cases where they do 
not overlap significantly with peaks. Chemical shifts are in ppm from TMS. For all of the 
spectra except for the room-temperature one, 128 scans were recorded with a recycle 
delay of 40 s. (The room temperature spectrum resulted from the acquisition of 64 scans 
with a 10 s recycle delay.) 
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appeared identical, which supports the hypothesis that the broad peaks in Figure 2.4 

represent motional processes rather than degradation of the complex due to absorption of 

water. 

One possible interpretation of the spectra in Figure 2.4 is that the individual 

monohaptocyclopentadienyl rings in SnCp4 have different activation energy barriers for 

ring rearrangement. At 298 K, the temperature was sufficiently high that all ring 

rearrangements were rapid, and a single, motionally averaged peak was seen. As the 

temperature was lowered, the rings with the highest activation energy barriers were now in 

the slow motion regime. In this limit, one would expect to see distinct and broad 

resonances for each of the five types of carbons in these rings (see Section 2.2.2). These 

resonances would then be expected to narrow as the temperature was lowered still further. 

Indeed, the resonances at approximately 130 and 50 ppm were quite broad at 193 K, and 

the 130 ppm signal narrowed appreciably at lower temperatures. Although only two peaks 

(rather than five) were observed, the sum of the intensity of the peak at 130 ppm and its 

sidebands is clearly greater than the intensity of the peak at 50 ppm in the spectrum at 153 

K, indicating that more carbons contribute to the signal at 130 ppm. Further quantification 

was not attempted due to the limited resolution of this data. However, the empirical 

tendency96 for sp3-hybridized carbons to be more shielded than sp2-hybridized carbons 

suggests that the peak at 50 ppm be assigned to the sigma-bonded carbons in the 

cyclopentadienyl rings and that the peak at 130 ppm is due to the four remaining carbons. 

Further support for this assignment comes from the fact that 114 ppm is the weighted 

average of four resonances at -130 ppm and one resonance at -50 ppm. 

As the temperature was lowered from 233 K to 153 K, cyclopentadienyl rings with 

lower activational energy barriers entered the slow-motion regime. Thus, the intensity of 

the peak at 114.0 ppm monotonically decreased while the intensity of the broad peaks 

increased. Finally, at 153 K, the peak at 114.0 ppm disappeared almost entirely, indicating 

that at this temperature few of the ring rearrangements were occurring rapidly on the 

NMR timescale. 

Unfortunately, it was not possible with our experimental apparatus to be sure that 

the motion was frozen out entirely. However, it is likely that the broad peaks at 153 K 

were due to a dispersion of the isotropic chemical shifts for the different sites rather than 
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motional effects. X-ray crystallographic results show that steric distortions are present in 

crystalline SnCp4;86 such distortions might be responsible both for variations in isotropic 

shifts and for the range of activation energy barriers. 

Because of the long spin-lattice relaxation times and poor site resolution, two­

dimensional exchange experiments were not performed on this compound. Consequently, 

the ring rearrangement mechanism could not be determined. 

A Herzfeld-Berger analysis40 was performed on the room-temperature spectrum to 

determine the motionally averaged values of the carbon chemical-shielding tensor. The 

followiEg values were obtained: cru = 165 ± 8 ppm, cr22 = 146 ± 15 ppm, 0'33 = 23 ± 10 

ppm, llcs = 0.2 ± 0.3 ppm, oCS = -89 ± 10ppm. A previously reported analysis of the 

room temperature 13C powder lineshape found values of cr 11 = 180 ppm, a 22 = 143 ppm, 

and a 33 = 31 ppm.95 The authors of this study did not report error bars for this fit, but the 

signal-to.:.noise ratio was such that the error bars should be sizeable. Our res11)ts, therefore, 

are not inconsistent with theirs. 

2.2.2 HfCp4 Spectra 

The compound HfCp4 has two monohaptocyclopentadienyl rings and two 

pentahaptocylopentadienyl rings (see Figure 2.1b), which make it similar in structure to 

TiCp4.- X -ray diffraction studies of HfCp4 show that, unlike in the case of the SnCp4 

compound, considerable molecular symmetry is present.8M 7 The two eta rings are 

magnetically equivalent and the two sigma rings are related by a two-fold axis of 

symmetry. In fact, as will be shown below, the corresponding primed and unprimed 

monohaptocyclopentadienyl carbons in Figure 2.1 b resonate at the same frequency. In the 

rest of this chapter, the unprimed labels (Cl, C2, C3, etc.) will be used to refer to both 

carbons. The double bonds ate between C2 and C3 and between C4 and C5. 

Solution-state 1 H NMR studies of both HfCp4 and TiCp4 have been performed 

previously.98 While ring interchange was observed for TiCp4, no change was seen in the 
1 H spectrum of HfCp4 at temperatures as low as 123 K. A solid state study of HfCp4 was, 

therefore, desirable. 
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Figure 2.5 shows the variable-temperature, one-dimensional 13C CP/MAS spectra 

of HfCp4 for the same temperature range as in Section 2.2.1. The room temperature 

spectrum shows a single peak (at 113.0 ppm) and its spinning sidebands. Herzfeld-Berger 

analysis40•99 of this spectrum reveals that the chemical-shielding tensor associated with this 

site is axially symmetric, which is what is expected for a rapidly moving 115-C5H5 group. 82 

Thus, the peak at 113.0 ppm was assigned to the ten carbon atoms of the two 115 -C5H5 

rings. This peak retained its intensity and its symmetry throughout the range of 

temperatures studied, indicating that the activation energy barrier for eta ring reorientation 

is very low. This motion may also provide an efficient relaxation mechanism for the 

protons at low temperature: the 1H T1 of HfCp4 is approximately 1.7 s at room 

temperature, significantly shorter than the T 1 of SnCp4. 

Absent from the spectrum at 298 K was direct evidence of the carbons from the 

sigma rings. These carbons may have contributed to the broad baseline in this spectrum. 

Alternatively, the motion of these groups could have occurred at a similar rate to the 

decoupling frequency, leading to destructive interference and loss of signal. 100 As the 

temperature was lowered, -peaks due to the monohaptocyclopentadienyl rings became 

evident: first as broad humps at 213 K and later as well-defined resonances at 90.0, 126.5, 

127.9, and 130.7 ppm. These resonances correspond to four of the five types of carbons 

on the Tl 1-C5H5 ring. The fifth resonance was assumed to lie under the intense 115-C5H5 

resonance because this large peak had six times the intensity of the smaller peaks; this 

assignment was subsequently confirmed by two-dimensional exchange experiments (see 

Section 2.3). As in the case of SnCp4, the most-shielded monohapto carbon resonance 

can be assigned to the carbon sigma-bonded to the metal group since sp3 -hybridized 

carbons tend to be more shielded than sp2-hybridized carbons.96 The issues involved in 

assignment of the remaining resonances will be discussed in Sections 2.3 and 2.4. 

Table 2.1 shows the principal values of the 13C chemical shielding tensor for each 

of the sites in HfCp4. These were extracted from a spectrum of HfCp4 recorded at 133 K 

(data not shown) in which the motion of the sigma rings was assumed to be frozen out. 

(No cross peaks were seen in two-dimensional exchange spectra at this temperature for 

mixing times as long as 500 ms.) Herzfeld-Berger spinning sideband intensity analysis40 

was used to determine the principal values and a modified version of the Speedyfit99 
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Figure 2.5 - 13C CP/MAS spectra of Hf(ll5 -C5H5h (ll 1-C5H5h at different temperatures. 
The spectra are scaled to the height of the tallest peak, but that peak is truncated in these 
plots. Asterisks are used to denote spinning sidebands. Chemical shifts are in ppm from 
TMS. For each of these spectra, 512 scans were recorded with a recycle delay of 3 s. 
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program was used to deconvolve the partially overlapping lines by iteratively fitting a 

simulated spectrum to th~ experimental spectrum. Previous measurements of the 13C 

CSA in this compound were performed on a static sample and, therefore, were an average 

over all sites. 95 

Isotropic cr11 [ppm] 0"22[ppm] O"JJ [ppm] llcs acs [ppml 
Shift [ppm] 

90.0 157 ± 1 90± 1 23 ± 1 1.00 ± 0.04 -67 ± 1 

113.oa 162 ± 1 162 ± 1 15 ± 1 0.00 ± 0.01 -98 ± 1 

126.5 197 ± 3 157 ±6 24±4 0.39 ±0.10 -102 ± 4 

127.9 199 ±4 158 ± 6 26±4 0.41 ±0.11 -102 ± 4 

130.7 220±2 132±3 39 ±2 0.97 ±0.06 -91 ± 2 

Table 2.1 - Principal values of the 13C chemical-shielding tensor for individual sites in HfCp4. 

a. This peak is a superposition of two peaks: an intense resonance from the pentahapto group and a 
smaller resonance (with one-fifth the intensity) from one of the carbons in the monohapto group. 
Thus, the corresponding principal values reflect a weighted average of the two. 

The intensity of the peak at 113.0 ppm is primarily due to the pentahapto carbons 

although it also contains contributions from one of the monohapto carbons. Still, the 

relative sideband intensities are dominated by the pentahapto carbons, and the chemical­

shielding tensor appears axially symmetric. 

The principal values of the chemical shielding tensor for the other sites are similar 

to those found in the literature.24,) 01 Based on a compilation of data from fifty-three 

compounds, T. M. Duncan24 has determined that a typical olefinic carbon nucleus has an 

isotropic chemical shift of 131 ppm (with a standard deviation of 10 ppm) and principal 

chemical shielding tensor components of cr 11 = 224 ± 16 ppm, cr22 = 134 ± 21 ppm, and 

cr33 = 37 ± 15 ppm. The 126.5, 127.9, and 130.7 ppm resonances in the spectrum of 

HfCp4 all have tensor components that fall within two standard deviations of these values, 

while the 0"22 and especially the cr11 components of the 90.0 ppm site lie outside this 

range. This further supports the assignment of the 90.0 ppm resonance to the C 1 carbon. 

However, empirical correlations of the chemical-shielding tensor components do not 

permit a definitive assignment of the C2, C3, C4, and C5 carbons. 
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Two-dimensional exchange experiments were successfully performed on HfCp4 

and will be discussed in Section 2.3. 

2.2.3 ZrCp4 Spectra 

The X-ray structure of ZrCp4 was highly controversial for many years. Although 

the structure depicted in Figure 2.1 c was first proposed as early as 1970,102 it was 

immediately challenged by other researchers. 103 The primary reason for this was that a 

Zr(115 -C5H5h(ll 1-C5H5) configuration would imply that the zirconium atom had twenty 

electrons in its valence shell (four from the zirconium, five from each pentahapto 

cyclopentadienyl group, and one from the monohapto group). This violates the well­

established "18-electron rule" which predicts that transition-metal elements strive to 

achieve a closed-shell configuration. While exceptions to the 18-electron rule (such as 

TiCp4 and HfCp4) are known, they tend to be in the other direction; that is, elements on 

the left side of the d-block often have fewer than eighteen valence electrons because of 

steric considerations. 58 In fact, this is often proposed as a reason for the instability of such 

compounds. 104 In 1978, however, a more accurate X-ray structure determination showed 

that ZrCp4 does indeed have the configuration shown in Figure 2.lc, although the Zr-C 

bond lengths were significantly longer than the typical case.88 It may be possible to think 

of these extended bond lengths as indicative of effectively fewer electrons being donated 

per Cp group;88•89 this would then allow an 18-electron configuration tci be achieved. 

Another surprising aspect of this structure was that it differed significantly from 

HfCp4.87 Generally, it has been assumed that zirconium and hafnium have the same 

organometallic che~stry.89 However, the X-ray structures showed that this was clearly 

not the 'case (see Figure 2.1 ). Variable-temperature solution-state 1 H NMR studies of 

ZrCp4 have been performed but showed no change in the spectrum for temperatures as 

low as 123 K.98 

In Figure 2.6 a series of one-dimensional, variable-temperature 13C CP/MAS 

spectra of ZrCp4 are shown. A strong pentahapto peak at 112.8 ppm was visible at all 

temperatures studied. Already at room temperature, resonances due to the 

monohaptocyclopentadienyl groups were evident; therefore, higher temperature 
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Figure 2.6- 13C CP/MAS spectra of Zr(l'\5-C5H5)J (1'\ 1-C5H5) at different temperatures. 
The spectra are scaled to the height of the tallest peak, but that peak is truncated in these 
plots. Asterisks are used to denote spinning sidebands. Chemical shifts are in ppm from 
TMS. For each of these spectra, 512 scans were recorded with a recycle delay of 3 s. 
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experiments were performed to reach the fast-exchange limit. At 173 K, five distinct 

resonances from the carbons in the monohaptocyclopentadienyl ring were observed at 

63.7, 119.1, 124.3, 138.3, .and 141.0 ppm. A sixth resonance at 121.4 ppm was actually a 

sideband of the 63.7 ppm site; with the achievable spinning speeds of the probe, it was not 

possible to prevent the sidebands and centerbands from overlapping. Consequently, 

Herzfeld-Berger fits could not be performed on the monohapto carbons. The principal 

values of the pentahapto carbon chemical shielding tensor were determined to have the 

following values: cr11 = 157 ± 5 ppm, cr22 =156 ± 9 ppm, 0'33 = 23' ± 5 ppm, Tlcs = 0.0 ± 

0.1 ppm, oCS = -89 ± 5 ppm. To within the accuracy of the fitting procedure, th!' expected 

axial symmetry was observed. The 13C CSA of this compound has been previously 

measured by another group,95 but their measurements were on a static sample which 

prevented them from distinguishing betWeen monohapto and pentahapto cyclopentadienyl 

rings. 

Two-dimensional exchange experiments on ZrCp4 were attempted for 

· temperatures in the range of 198-298 K and for mixing times as long as 500 ms, but no 

cross peaks were observed. Ring rearrangement in _zrCp4 may occur on a slower 

timescale, however. 

2.3 Two-dimensional Exchange Spectroscopy 

While the one-dimensional spectra of HfCp4 in Section 2.2.2 indicated that motion 

of the monohaptocyclopentadienyl rings was occurring, the nature of that motion 

remained to be determined. A variety of possible dynamical processes such as monohapto 

ring flips, exchange between monohapto and pentahapto rings, [ 1 ,2] sigmatropic 

rearrangements, and [1,3] sigmatropic rearrangements may have been taking place. 

To probe the dynamics in solid HfCp4, several types of experiments could be 

performed. One possibility is one~dimensional magnetization transfer experiments105 .!06 

which can indicate exchange between a given pair of sites. However, in many ways, two­

dimensional experiments are preferable since they can provide information about many 

exchanging sites simultaneously. This examination of the dynamics of HfCp4 is believed 

to be the first instance in which two-dimensional exchange NMR was· used to study the 

fluxional motion of 11 1-C5H5 groups. 
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Figure 2.7 shows the pulse-sequence, coherence-transfer pathway, and phase cycle 

for the two-dimensional exchange experiment performed on HfCp4. In this sequence, the 

cross-polarization step creates carbon magnetization which evolves for a time period t1. 

Then this magnetization is flipped along the z-axis for a mixing period, 'tmix• after which 

another 90° pulse is applied and the signal recorded. If atomic rearrangement occurs 

during 'tmix• a two-dimensional pattern of peaks will result with off-diagonal peaks 

indicating which sites exchanged magnetization during the mixing time. The phase cycle 

shown in Figure 2.7 retains mirror-image coherence-transfer pathways to permit the 

construction of pure-phase two-dimensional spectra (see Section 1.5.2). Spin-temperature 
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Figure 2.7 - Pulse sequence, coherence-transfer pathway, and phase cycle for a two­
dimensional exchange experiment using hypercomplex data acquisition. 
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altemation47 and CYCLOPS phase cycling-46 of the last pulse are used to eliminate 

experimental artifacts. Proton decoupling is used during the acquisition to improve 

spectral resolution. 

Figure 2.8a shows the two-dimensional exchange spectrum of HfCp4 recorded at 

188 K with a mixing time of 50 ms. The experimental appcaratus and parameters were the 

same as those described in Section 2.2. Cross peaks indicated exchange between five 

pairs of resonances: (90.0, 113.0), (90.0, 130.7), (113.0, 126.5), (126.5, 127.9), and 

(127.9, 130.7). Unfortunately, the spectrum was not artifact-free. The (90.0, 113.0) and 

(113.0, 126.5) cross peaks were actually more intense than they appear in the contour plot 

since the two-dimensional spectrum had a negative intensity ridge at w2 = 113 ppm. In 

addition, there was a positive intensity ridge at ro1 = 113 ppm due to trnoise, an 

experimental artifact. This obscured two of the cross peaks; however, due to the 

symmetry of two-dimensional exchange spectroscopy, their presence can be inferred from 

the other dimension. The quality of the spectrum was not high enough to permit ·an 

estimation of the rate constant from the cross peak intensities, but useful information 

about the rearrangement mechanism could still be obtained. 

Several conclusions about peak assignments and the nature of the pnmary 

mechanism for rearrangement can be drawn from the locations of the cross peaks in the 

spectrum. First, the presence of cross peaks between the large peak at 113.0 ppm and 

some but not all of the monohapto peaks indicates that ring exchange between the 

monohapto and pentahapto groups cannot be the dominant rearrangement mechanism at 

this temperature. it also confirms that one of the carbon resonances of the T) 1-C5H5 group 

is indeed hidden underneath the T)5 -C5H5 resonance. Secondly, the presence of cross 

peaks between the 90.0 ppm resonance, which was assigned to the C I carbon (see Section 

2.2.2), and the peaks at 113.0 and 130.7 ppm indicates that the primary rearrangement 

mechanism is not ring flips because the C1 carbon would not exchange positions during a 

ring flip. Wh~n a longer mixing time (200 ms) was employed to allow multiple exchanges 

to occur, cross peaks were observed between all of the monohapto resonances (Figure 

2.8b). If we assume that significant spin diffusion has not occurred on this timescale (a 

reasonable assumption for natural abundance 13C in the absence of spin-diffusion driving 

mechanisms23 .IO?.Ios), this further indicates that the rearrangement mechanism is not ring 
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Figure 2.8 - Two-dimensional exchange spectra of Hf(ll5-CsHsh<ll 1-CsHsh. at 188 K. 
One hundred and twenty-eight t1 slices with twenty-four scans in each were recorded with 
a recycle delay of 3 s. Only positive contours are shown. In (a), a mixing time of 50 ms 
was used, while in (b), a 200 ms mixing time was used. 
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flips. Finally, the absence of equal-intensity cross peaks between all of the sites in Figure 

2.8a rules out the possibility of multiple sigmatropic rearrangement mechanisms occurring 

with nearly equal probability .. We can therefore conclude that a single type of sigmatropic 

rearrangement is the dominant mechanism, and that a single such rearrangement occurs in 

less than 50 ms at 188 K. 

The next step is to determine whether that mechanism is a [ 1 ,2] or a [ 1 ,3] 

sigmatropic rearrangement. Figure 2.9 depicts a schematic of the pattern of cross peaks 

observed in the two-dimensional exchange spectrum with the 50 ms mixing time. 

·Unfortunately, interpretation of this pattern requires that the five 11 1-C5H5 carbon 

130.7 127.9 126.5 113.0 9Q.O 
[ppm] [1 ,2] 

5 4 3 2 1 
~· 

90.0 1 0 0 1 90.0 

113.0) 3 0 0 2 113.0 

126.5 5 0 0 3 126.5 

127.9 2 0 0 4 127.9 

130.7 4 0 0 5 130.7 
[ppm] [ppm] 

4 2 5 3 1 
[1 ,3] 

130.7 127.9 126.5 113.0 90.0 
[ppm] 

Figure 2.9 - Diagram of the cross peaks observed in the two-dimensional exchange 
spectrum of HfCp4 and the possible peak assignments. The labels on the top and the right 
sides of this diagram indicate the carbon resonance assignments that correspond to a [I ,2] 
sigmatropic rearrangement. The labels on the bottom and the left sides of this diagram 
indicate the carbon resonance assignments that correspond to a [I ,3) sigmatropic 
rearrangement. 
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resonances be assigned. This is difficult to do a priori. Although one can assign the 90.0 

ppm resonance to the C 1 carbon with reasonable confidence (see Section 2.2.2), 

assignment of the remaining carbons is more difficult. One can make comparisons with 

solution-state studies of related compounds, but the perils of such an approach will be 

discussed in Section 2.4. For HfCp4, two possible assignment schemes are consistent with 

the experimentally determined pattern of cross peaks. The first, represented by the labels 

on the top and on the right hand side of Figure 2.9, would assign the 113.0 ppm resonance 

to the C2 carbon, the 126.5 ppm resonance to the C3 carbon, the 127.9 ppm resonance to 

the C4 carbon, and the 130.7 ppm resonance to the C5 carbon. The pattern of cross peaks 

would then be consistent with a [ 1 ,2] sigmatropic rearrangement in which C 1 ~C2, 

C2~C3, C3~C4, C4~C5, and C5~Cl. Alternatively, the assignment represented by 

the labels on the bottom and left sides of Figure 2.9 is possible. In the assignment, the 

113.0 ppm resonance would correspond to the C3 carbon, the 126.5 ppm resonance to the 

C5 carbon, the 127.9 ppm resonance to the C2 carbon, and the 130.7 ppm resonance to the 

C4 carbon. The pattern of cross peaks would then be consistent with a [ 1 ,3] sigmatropic 

rearrangement in which C1~C3, C2~C4, C3~C5, C4~Cl, and C5~C2. 

Knowledge of which NMR peaks were exchanging, even without knowing to 

which carbons they corresponded, permitted us to reexamine the one-dimensional 

variable-temperature spectra of Section 2.2.2 and extract Arrhenius parameters. The 

lineshapes could now be fit using a model in which magnetization hopped among the 

peaks according to the pattern depicted in Figure 2.9. In these fits, it was assumed that the 

chemical shifts were constant over the entire temperature range and that the increased line 

broadening at higher temperatures was entirely due to exchange. It was also assumed that 

exchange between the centerbands and sidebands was negligible. The monohapto peak at 

113.0 ppm could not be fit since it overlapped with the pentahapto peak, but it was 

assumed to have a similar intensity to the other four monohapto peaks. The relative 

intensities of the remaining four peaks were extracted from the 133 K spectrum and fixed 

to those values in the higher temperature simulations. Figure 2.10 shows the experimental 

spectra, the simulated spectra, and the rate constants extracted from the fits. 
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Figure 2.10 - Experimental and simulated spectra corresponding to a single sigmatropic 
rearrangement of the monohaptocyclopentadienyl groups in HfCp4. The peak at 113.0 
ppm in the experimental spectra is comprised of carbon atoms that are involved in the 
exchange as well as carbon atoms that are not involved. Only the exchanging carbons are 
simulated. 
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An Arrhenius plot of ln(k) vs. 1ff is shown in Figure 2.11; the error bars reflect a 

± 5 K uncertainty in the temperature. From this plot, the activation energy for the 

sigmatropic rearrangement that occurs in HfCp4 was found to be 
8 -1 

Ea = 24.4 ± 1.5 kJ/ (K mol) and the preexponential factor was A = 8.4x10 s . 

Once the resonances of the monohapto carbons are reliably assigned, the two­

dimensional exchange results can be used to definitively determine whether the 

rearrangement mechanism is a [ 1 ,2] or [1 ,3] shift. To assign the peaks correctly, however, 

independent experiments (such as INADEQUATE) will need to be performed on a doubly 
13C-labeled version of HfCp4. Since doubly-labeled cyclopentadienyl rings are difficult 

to synthesize, such experiments have not yet been performed. 
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Figure 2.11 - Arrhenius plot of the rate of sigmatropic rearrangement in the monohapto 
cyclopentadienyl rings of HfCp4 in the solid state. The activation energy is Ea= 24.4 ± 1.5 
kJ/(K mol) and the pre-exponential factor is A= 8.4 x 108 s· 1. 
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2.4 Comparison of HfCp4 and TiCp4 Exchange Spectra 

Since the crystal structure of Hf(115 -CsHsh(11 1-CsHsh is very similar to that of 

Ti(115 -C5H5h(11 1-C5H5h, it is interesting to compare our results with the results of a 

·recent solid-state NMR study of TiCp4.82 In this work, variable-temperature, one­

dimensional 13C CP/MAS experiments were performed on TiCp4 over the 165-369 K 

temperature range. Below 200 K, five distinct monohaptocyclopentadienyl resonances 
' 

were seen at 89.3, 114.9, 121.8, 126.8, and 136.3 ppm. A large pentahapto peak at 117.3 

ppm was also observed in all spectra. One-dimensional exchange experiments based on 

magnetization transfer were performed at 165 K, and lineshape analysis cf· the one­

dimensional, variable-temperature spectra was used to estimate the Arrhenius parameters 

for the ring-rearrangement process. The authors of the TiCp4 study concluded that a 

single dominant sigmatropic rearrangement was the primary motion at 165 K and that this 

rearrangement was a [ 1 ,2] shift. 

While their conclusion that a single sigmatropic rearrangement predominated is 

supported by their experimental evidence, their method of peak assignment is somewhat 

suspect. The authors noted that in solution studies ·of TiCp4 the C2 resonance is 

degenerate with the C5 resonance, and the C3 resonance is degenerate with the C4 

resonance.98 They therefore assumed that in the solid state, the C2 peak must lie next to 

the C5 peak, and the C3 peak must lie next to the C4 peak. Although this appears 

reasonable, our results for the structurally analogous HfCp4 compound show that this is 

not necessarily the case. The only two peak assignments consistent with the two­

dimensional exchange spectrum of HfCp4 (see Figure 2.9) require that the peaks in either 

the (C2, C5) or the (C3, C4) pair be separated by 17.7 ppm! This is, admittedly, quite a 

large separation for carbons with identical local electronic environments, but as the 

authors of the TiCp4 study point out, a plausible explaJ!ation for large splittings between 

monohapto carbon resonances in the solid state is a through-space perturbation of the local( 

electronic environment by the aromatic pentahapto rings.82 Regardless of the reason fo~ 

the splittings, it is clear that significant differences between solid and solution-state 

spectra make assignments based on solution-state studies unreliable. 
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The authors of the TiCp4 study continued their arguments for the peak assignments 

by comparing asymmetry parameters for the different sites and discussing expected ring 

current shifts. They did not, however, justify why they thought the asymmetry parameter 

was a valid criterion for assigning pairs of carbon resonances within 

monohaptocyclopentadienyl groups. The components of the chemical-shielding tensor 

can be quite sensitive to long-range interactions, 101 and the asymmetry parameters for the 

monohapto carbons in TiCp4 (ll = 0.54, 0.83, 0.87, 0.72, and 0.74) were significantly 

different from those measured in the HfCp4 analogue (see Table 2.1 ). 

The final assigi1ments made by the authors of the TiCp4 study were the following: 

C1=89.3 ppm, C3=114.9 ppm, C4=121.8 ppm, C2=126.8 ppm, and C5=136.3 ppm. 

These assignments were then used in combination with magnetization-transfer 

experiments and with lineshape analysis to infer that a [1 ,2] sigmatropic shift 

rearrangement was the dominant mechanism for the monohaptocyclopentadienyl rings in 

TiCp4 at 165 K. 

Although it may be tempting to make a one-to-one correspondence between the 

peaks in TiCp4 and those in HfCp4, the above discussion shows that such assumptions can 

be dangerous. Despite their similar structures, HfCp4 and TiCp4 have different crystal­

packing geometries, and the precise effect of such differences on the Ghemical shift is 

unknown. We therefore chose to perform the same two-dimensional exchange experiment 

(see Figure 2.7) directly on TiCp4. 

A sample of TiCp4 was synthesized by Dr. Murray S. Davies according to the 

method of Calderon et aJ.98 Due to the extreme sensitivity of this compound to moisture 

and oxygen, the sample was sealed in a Wilmad glass rotor insert, and the entire insert was 

placed into a 7.5 mm zirconia rotor. The two-dimensional experiment was performed by 

Professor Eric Munson and Michelle Douskey at the University of Minnesota on a similar 

apparatus to that described in Section 2.1. 

Figure 2.12 shows the two-dimensional exchange spectrum of TiCp4 recorded at 

183 K with a mixing time of 50 ms. Comparison with Figure 2.8 reveals that the same 

pattern of cross peaks is present in both HfCp4 and TiCp4. Therefore, by the arguments of 

Section 2.3, only two sets of peak assignments are possible. In one assignment, consistent 

with a [1,2] shift, the 114.9 ppm resonance corresponds to the C2 carbon, the 121.8 ppm 
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resonance to the C3 carbon, the 126.8 ppm resonance to the C4 carbon, and the 136.3 ppm 

resonance to the C5 carbon. Fo·r the other assignment, consistent with a [1,3] shift, the 

114.9 ppm resonance corresponds to the C3 carbon, the 121.8 ppm resonance to the C5 

carbon, the 126.8 ppm resonance to the C2 carbon, and the 136.3 ppm resonance to the C4 

carbon. The assignment proposed by the authors of the TiCp4 study cannot, therefore, be 

correct. As in the case of HfCp4, independent experimen~.:> will be required to determine 

whether a [ 1 ,2] or [ 1 ,3] sigmatropic rearrangement mechanism is occurring. 

This example highlights the utility of two-dimensional exchange spectroscopy. 

Unlike OT)e-dimensional experiments, which require one to make a series of assumptions, 

the two-dimensional experiments provide direct evidence of which sites are exchanging. 
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Figure 2.12- Two-dimensional exchange spectrum ofTi(ll5-C5H5h(ll 1-C5H5h at 183 K. 
Thirty-two t1 slices were recorded. Only positive contours are shown. The mixing time 
was 50 ms. 
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For the cases of HfCp4 and TiCp4, they have shown that the monohaptocyclopentadienyl· 

rings predominantly undergo a single type of sigmatropic rearrangement in the solid state 

and that only two sets of peak assignments are possible. When combined with an 

independent measurement of the connectivities between neighboring carbons (for 

instance, in an INADEQUATE experiment), the exchange spectra will enable the ring­

rearrangement mechanism to be definitively determined. 
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Chapter 3: Spin Locking of Quadrupolar Nuclei During 
MAS 

All of the experiments presented in Chapter 2 required cross polarization from 1 H 

to 13C to enhance the carbon ,sensitivity. Without such cross polarization, the carbon 

signal would have been too weak to be detected on a prac~ical timescale. The favorable 

properties of protons -- a high gyromagnetic ratio, high natural abundance, and typically 

short longitudinal relaxation times -- have made their use as a polarization source nearly 

ubiquitous in studies of organic, organometallic, and biological systems. 

However, many interesting inorganic materials lack protons: In such cases, 

another polarization source is necessary to facilitate the study of insensitive nuclei. While 

nuclei such as 23N a and 27 AI seem promising due to their 100% natural abundance and 

short relaxation times, they have spin-quantum numbers greater than 1/2 and therefore 

are subject to the quadrupolar interaction. This can create complications when attempting 

to cross polarize from them. 

Since cross polarization can only occur if both spins can be spin-locked long 

enough for magnetization to be transferre~, it is necessary to determine the conditions 

under which efficient spin locking is possible. In this chapter, the complications inherent 

in spin locking a quadrupolar nucleus will be examined by both experiments and 

simulations on a model aluminosilicate compound. 

3.1 Low Albite as a Model Compound 

Silicon is a major component of many technologically and geochemically 

important inorganic materials including zeolite's, glasses, minerals, and gels. Since these 

materials' often have limited long-range order, solid-state 29Si NMR has proven to be 

particularly useful in eliciting information about their structure. 109•110 However, the low 

natural abundance of 29Si ( 4. 7%) combined with its relatively low gyromagnetic ratio 

make 29Si NMR inherently insensitive. Furthermore, significant improvement of the 

signal-to-noise ratio by signal averaging is usually time-consuming due to the typically 

long T 1 relaxation times of 29Si (frequently on the order of minutes). Consequently, two­

dimensional experiments are often impractical, unless isotopic enrichment or cross 
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polarization (CP) 111 is used. If the silicate contains protons, cross polarization from 

protons to silicon can greatly enhance the 29Si NMR intensities. In this thesis, however, 

the case where protons are not present is investigated to see if cross polarization from 

quadrupolar nuclei can provide a significant enhancement of the 29Si sensitivity. 

Figure 3.1 depicts the crystal structure of the feldspar low albite (NaA1Si30 8) as 

determined by X-ray and neutron diffraction. 112 Low albite was chosen as a modef 

compound for 27 Al-to-29Si and 23Na-to-29Si cross-polarization experiments for several 

reasons. In many ways low albite is a typical inorganic aluminosilicate, composed of a 

framework of connected AI04 and Si04 tetrahedra and non-framework, charge-balancing 

counterions (in this case Na+).l 13 However, the analysis of cross polarization from the 

quadrupolar nuclei in low albite is simplified by the presence of only one crystallographic 

27 AI site and one 23Na site. Furthermore, low albite is highly ordered with the silicon 

occupying three distinct crystallographic T-sites in equal amounts. 112 Two of these sites 

are coordinated via bridging oxygens to one aluminum atom and three silicon atoms and 

are commonly denoted as Q4(1Al) sites. The superscript 4 indicates that all four oxygens 

are bridging, and the integer 1 indicates the presence of a single aluminum "nearest 

neighbor." The third silicon site is coordinated via bridging oxygens to two aluminum and 

8 Si(2AI) T2m site 

8 Si(1 AI) T1m site 

8 Si(1AI) T20 site 

~ , AI T10 site 

Q) Na+ 

Q 0 

Figure 3.1 - The structure of low albite (NaA1Si30 8) as determined by X-ray and neutron 
diffraction. Four crystallographically inequivalent tetrahedral sites are present: one is 
occupied exclusively by AI and the other three by Si atoms. 
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two silicon atoms and is denoted as a Q4(2Al) site. Assignment of these silicon sites to 

three distinct and narrow 29Si MAS NMR resonances can be found · in the 

. literature. 113•114·ll5·ll6•117 (Note that there is a mistake in the labeling of the crystallographic 

sites in Ref. 116.) Table 3.1 lists these assignments along with the distances between each 

Isotropic Number of Distance to 
Distance to 

. aluminum Shift a Crystallographic aluminum nearest 
[ppm] T-site nearest nearest 

sodiumb neighbors neighbor(s)b 

-91.8 T2m 2 
3.019 A 

3.291 A 
3.080 A 

-96.1 T20 I 3.132 A 3.494 A 

-103.9 Tim 1 3.156A 3.394 A 

Table 3.1 - Silicon sites in low albite (NaAISi30 8) .. 

a. Chemical shift values were refere~ced to an external TMS standard and are within I ppm of lit" 
erature values.II3,II4,115.II6,II7 

b. Distances were determined using neutron-diffraction data from Harlow et al. 112 

silicon site and its nearest aluminum and sodium neighbors. The 29Si isotropic chemical 

shifts follow the typical trends for aluminosilicates with more aluminum nearest neighbors 

corresponding to more deshielding within a given Qn group. 110 The sample of low albite 

used for the experiments in this thesis came from Cazadero, California, U.S.A. Figure 3.2 

shows the one-dimensional 29Si MAS spectrum of this sample. Although other 

researchers have reported seeing splittings in two of the 29Si resonances in low albite 

I I 
-85 

I I 
-90 

Si(2AI) Si(1AI) 
T2m T20 

Si(1AI) 
T1m 

I I I I I I I I I I I I I I I 

-105 -95 -100 

[ppm from TMS] 

I I I I 

-110 

Figure 3.2 - 29Si MAS NMR spectrum of low albite recorded at 11.7 T with a spinning 
speed of 2.4 kHz and a recycle delay of 2000 s. 
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(which they attributed to heteronuclear J-couplings of approximately 8-9 Hz in 

strength), 118 no such splittings were observed in our experiments. However, magnetic­

field inhomogeneity (due to sub-optimal shimming) may have obscured the J couplings. 

a) 

b) 

c) 
~ ----------------- --------------------

150 100 50 0 -50 

[ppm from AIN03 (aq)] 

Figure 3.3- 27 AI MAS spectra of low albite at (a) 9.4 T, 4kHz spinning speed, (b) 11.7 T, 
2.4 kHz spinning speed, and (c) 11.7 T, 500 Hz spinning speed. To a good approximation 
only the central transition is excited and detected. 

20000 10000 0 
[kHz] 

-10000 -20000 

Figure 3.4 - 23Na MAS spectra of low albite at 11.7 T, 2.4 kHz spinning speed. Only the 
central transition is excited/detected. 
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The 27 AI and 23Na MAS spectra of low albite at various field strengths and 

spinning speeds are shown in Figures 3.3 and 3.4. The 27 AI spectrum is relatively 

structureless at 11.7 T and a spinning speed of 2.4 kHz, but the 23Na spectrum shows a 

more typical powder pattern under the same conditions. Several sets ~_9uadrupolar 

parameters for these sites have been published in the literature 113•118.I 19 and are summarized 

in Table 3.2. 

Nucleus Cqcc [MHz] 11 Reference 

27 AI 3.37 0.634 Brunet a1. 119 

3.29 0.62 Kirkpatrick et al. 113 

3.32 0.64 Woessner et al. 118 

23Na 2.62 0.25 Brun et al. 119 

2.59 0.25 Kirkpatrick et a1. 113 

Table 3.2- Quadrupolarparameters in low albite (NaA1Si30 8) 

3.2 Spin Locking of Half-Integer Quadrupolar Nuclei 

Since cross polarization can only occur if both spins can be spin-locked long 

enough for magnetization to be transferred, it is necessary to determine the conditions 

under which efficient spin locking is possible. Both spin-112 and quadrupolar nuclei 

undergo relaxation during a spin lock, characterized by one or several rotating-frame 

relaxation time constants, TIp· However, the behavior of the central transition of a half­

integer quadrupolar nucleus during a spin lock is also influenced by the time dependence 

of the quadrupolar coupling under MAS, which can dramatically reduce the spin-locking 

efficiency for certain combinations of rf field strengths, spinning speeds, and quadrupolar 

coupling constants. A theoretical treatment of some of these interference effects has been 

given in the literature 120.I 21 •122.I 23 and will be summarized here. Throughout this chapter 

and the next, the S-spin refers to the quadrupolar nucleus (27 AI or 23Na) and the I-spin to 

the spin-112 nucleus cZ9Si). 

When a spin-lock field is applied to a quadrupolar nucleus, the rotating-frame 

Hamiltonian can be written (in units of energy) as 
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- -
J-{ = 1iro 1 sS~ + 1i~roS2 + J-{Q (3.1) 

where ro1s is strength of the rf-field used for the spin lock, ~ro is the offset of the 
-

irradiation from the Larrnor frequency, and 9fo_ is the rotating-frame quadrupolar 

Hamiltonian. The quadrupolar Hamiltonian in the rotating frame can· be expressed in 

terms of irreducible spherical tensor operators (see Section 1.2.5),6 and an operator form 

of static perturbation theory can then be applied.28 This procedure gives a first-order term 

;;/-~I) = n( ~Q)RQ TQ 
'"''-l...l 3 2, 0 2, 0 

(3.2) 

where R~ 0 and T~ 0 are spatial and spin tensors, respectively,6 and roQ is the quadrupolar 

coupling constant 

roQ = 2S ( 2S - 1) 1i = 

2 
3e qQ 67t 

2S (2S- 1) Cqcc. (3.3) 

The second-order contribution to the quadrupolar Hamiltonian is 

where (l)r_ is the Larmor frequency. 

Because the R~ m terms in Equations (3.2) and (3.4) are orientation-dependent, 

the pattern of energy level spacings for a quadrupolar nucleus under a spin lock differs for 

different orientations of a crystallite with respect to the static magnetic field. This creates 

complications when a sample is spun about an angle other than 0° since the spinning 

process changes the orientations of the crystallites in a powder sample. 124 Considering 

just the first-order term of the quadrupolar Hamiltonian and applying the Wigner rotation 

matrices as shown in Section 1.4.2, one can write Equation (3.2) as 
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+ ~11 ° (D_~~!mca0.~0• y0
) + ni.2!mca0.~0• y0

)) J } 
= T0 · 1iQ (1Q)(a0 nO "'Q t) 

2, Q •I-' ' I ' ' 

(3.5) 

Here, aO, ~Q, and ..P. are Euler angles relating the principal-axis system of the quadrupolar 

interaction in a given crystallite to the reference frame of a rotor spinning about an axis 

oriented a! an angle 8 relative to the static magnetic field. For 8=0°, we see from Table I.I 

that 

(2) { I for m=O · 
d 0° -

-moC ) - Oform=-2,-I,I,2. 
(3.6) 

Thus only the time-independent (m=O) term of Equation (3.5) remains, and it is clearly 

seen that spinning about 0° is equivalent to not spinning at all. For 8=54.74° (the magic 
(2) 

angle), d0•0(54.74°) = 0, but the m:;t:O terms are non-zero. All first-order quadrupolar 

terms are, therefore, time-dependent under MAS, and the sign of Q (IQ) (a0 ,p0 , y 0 , t) 

can change zero~ two, or four times per rotor cycle. Figure 3.5 shows an energy-level 

diagram for the Hamiltonian of Equation (3.I) where S~5/2 and where only the first-order 
-

contribution to :Jfo_ is considered. The eigenvalues are plotted as a function of 

n<IQ) /ro
15

. When ln(IQ) /ro
15

1 is large, the eigenstates of Equation (3.I) are well­

defined and are labeled along each side of Figure 3.5. Four of these eigenstates are 

eigenvectors of Sz. The remaining two eigenstates, lc +) and lc), are eigenstates of the 

fictitious spin-I/2 operator4 on the central transition S~ 3 • 4) and are defined as 

+ _ I I I 
lc ) - J2 { 1

2
> + 1-2)} 

(3.7) 
- I I I 

lc) = -{1-)-1--)} J2 2 2 
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For small values of In< 1 
Q) I ffi 1 sl , the eigenstates of the Hamiltonian are linear 

combinations of these six eigenstates. A similar diagram can be drawn for the spin-3/2 

case (see Figure 3.6). 

Note that the ordering of the eigenstates in Figures 3.5 and 3.6 depends on whether 
,. (I Q) . . . . Of . I . h + . h . f h u IS positive or negative. particu ar mterest, t ere1ore, IS t e Issue o w at can 

happen to the spin-state populations when n ( l Q) changes sign (i.e. - undergoes a "zero 

crossing") and how this influences the efficiency of the spin lock. To characterize the 

possible scenarios, an adiabaticity parameter, a, has been defined120•12'· 12s 

(3.8) 

15 ~----~----~----~------~----~----~ 

10 

(f) .,.... 
8 5 
~ ....._ 
Q) 
:::J 

0 ro 
> c 
Q) 

-5 0> 
w 

-10 l-5/2) 

-15 
-6 -4 -2 0 2 4 6 

r\(10)/ 
~"' 001s 

-
Figure 3.5 - Eig~?I)alues of Equation (3.1) where S=S/2, ~W=O.Iw15 , and :HQ is 
approximated by :HQ_ • 
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where ror is the spinning speed. While the definition of the adiabaticity parameter can be 

refined to explicitly include individual crystallite orientatiq~s. 11 " 22" 26 Equation (3.8) is 

adequate for a qualitative description of the observed experimental behavior. For nuclei in 

which roQ » ffi 1 s, three regimes of spin-locking behavior have been defined based on the 

rate at which .Q ( 
1 
Q) changes sign. In the adiabatic-passage regime (a « 1) , the sign 

change is sufficiently slow that populations are transferred from their original eigenstate to 

the eigenstate that is derived by continuity. For the spin-5/2 case, this implies that the 
. + 

populations will oscillate between lc-) and 1±5/2) as depicted in Figure 3.7a. · In the 

sudden passage regime (a« 1) , the sign change of the first-order quadrupolar 

Hamiltonian occurs too quickly for the populations to follow, and the populations remain 

in their original eigenstates. This is depicted schematically in Figure 3.7b. In both of 

these regimes, efficient spin-locking of the central transition is possible (although, as we 

will show below, there are some additional considerations). In the intermediate regime 1.~ 

(a = 1 theoretically, a ::::: 0.4 experimentally120) the eigenstates are poorly defined, and 

spin locking is very inefficient. 

+ 
4 IC) 

en 
~ 

8 
~ 2 
Q) 
::J 

~ 0 
c 
Q) 
C> 
w -2 

-4 

-6 -4 -2 0 2 4 
r\ ( 1 0) I 
~" (1)1 s 

-
Figure 3.6 - Eigenvalues of Equation (3.1) where S=3/2, Aw=O.Iw15, and '~~- is 

- (I) ''I..! 
approximated by :HQ · . 
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a) 

b) 
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8 
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Q) 
::J 

«S 
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Q) 
C> 
w 
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1+5/2) 10 
lc+> .. :;. .... ;.. .... 

... .. .. ;,·;;,."' 
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~ 
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Figure 3.7 - Diagram of population transfers in different regimes. The patterned lines 
correspond to populations before and after a single zero crossing. (a) Adiabatic case. 
Populations are transferred to the eigenstates to which they are connected by continuity. 
(b) Sudden case. Populations remain in original eigenstates. 

88 



I 

This a.-dependent behavior has important implications for many experiments. In 

systems with vastly different Cqcc's, an rf field of a given strength may not lock all sites. 

Although this is a disadvantage for purposes of quantitation, researchers have exploited 

this property and used spin locks as filters for spectral editing. 127 

With quadrupolar frequencies of the magnitude of those listed in Table 3.2 and 

with ro15 restricted to relatively low values due to the large coil size128 used in some of the 

experiments (see Chapter 4), spin locking in our cross-polarization experiments is limited 

· to the sudden regime even at slow spinning speeds. In all simulations and measurements 

presented in Chapters 3, 4, and 5, a. is less than 0.02. 

3.3 Spin Locking in the Sudden Regime 

To analyze the detailed behavior of the aluminum spin-lock efficiency at slow 

spinning · speeds and low-rf fields, experiments were performed on a home-built 
. . 

spectrometer incorporating a Tecmag acquisition system operating at a proton Larmor 

frequency of 301.2 MHz, which corresponds to a 27 AI Larmor frequency of 78.5 MHz. 

A Chemagnetics MAS probe with a 4 mm pencil rotor was used, and spinning 

speeds were regulated to within ±5 Hz by a home-built spinning speed controller. 129 For 

each of the one-dimensional experiments 64 scans were summed with a recycle time of 5 

s. The MAS spinning speed was 4000 Hz, and the selective 90° pulse length on the 

aluminum central transition was 17 ~s, which corresponds to an rf-field strength of 

ro 1 51 ( 2n) = 4900 Hz. 

Spectra using eight different spin-lock times (tsL = 10 ~s, 1 ms, 5 ms, 10 ms, 20 

ms, 50 ms, 100 ms, and 200 ms) were recorded for each of twenty-eight different rf-field 

strengths in the range from ro15/ (27t) = 440Hz to ro 15/ (21t) = 4400Hz. This 

corresponds to a range of the adiabaticity parameter from a..= 5x10-5 to a. = 5x10-3
. 

The integral of the central transition of the Fourier-transformed spectrum was used as a 

measure of the spin-lock efficiency for the corresponding rf field strength. Figure 3.8a 

shows the spin-lock efficiency for spin-lock times ('tsL) of 10 ~s, 1 ms, and 10 ms. As 

expected, the intensity at tsL = 10 ~s is fairly constant and does not depend on the field 

strength. At longer spin-lock times, there is a very distinct dependence of the signal 

intensity on the rf-field strength. In addition to rotating-frame relaxation, there are dips at 
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Figure 3.8 - Spin-lock efficiency for 27 AI in albite during magic-angle spmmng 
( ror/ ( 21t) = 4000 Hz) as a function of the rf field strength. The 27 AI Larmor frequency is 
78.5 MHz. (a) Integrated intensity of the aluminum central transition at a function of the 
rf field strength for experiments with spin-lock times ('tsL) of IOIJ.s [ 0 ], 1 ms [ .6. ], and 10 
ms [ v ]. (b) Simulations of the "equilibrium" spin-lock efficiency for a spin-5/2 nucleus 
including both first- and second-order quadrupolar interactions and using the parameters 
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spin-lock field strengths approximately equal to one-third, two-thirds, and one times the 

rotor frequency. The measured intensities for spin-lock times of 1 ms and 10 ms are very 

similar which indicates that the decay due to the time dependence of the quadrupolar 

interaction is very fast and occurs during the first few rotor cycles. The main differences 

between the spin-lock times of 1 ms and I 0 ms occur at very low rf-field strengths and are 

most likely due to off-resonan.ce effects. 

The distinct dips in intensity found experimentally are clearly reflected in the 

numerical simulations shown in Figure 3.8b. These numerical simulations were 

performed using the NMR simulation package GAMMA. 130 To solve the Liouvi_lle-von­

Neumann equation for the time-dependent Hamiltonian, a small-step numerical 

integration with a time increment of 50 ns was performed. The· simulations included the 

second-order quadrupolar Hamiltonian (Equation (3.4)) but omitted all relaxation effects. 

The Hilbert space was limited to a one-spin system; therefore, all scalar and dipolar 

couplings to other spins were neglected. The chemical.,.shielding tensor and chemical­

shift offsets were also neglected in the simulations. A spinning speed of 4000 Hz and a 

27 AI Larmor frequency of 78.5 MHz were used. Three hundred different crystallite 

orientations were averaged using the method of Cheng et al. 38 (see Section 1.3) to 

approximate all crystallite orientations present in a powder sample. The simulated time­

domain data (intensity as a function of the spin-lock time) show a very rapid decay within 

the first I ms after which the intensity stabilizes and does not decay further due to the 

omission of relaxation effects from the numerical simulation. This equilibrium value is 

plotted as a function of the rf-field strength in Figure 3.8b. The simulations show the same 

characteristic dec_ays of the spin-lock efficiency for rf-field strengths equal to one-third, 

two-thirds, and one times the rotor frequency as found in the experiment. At least some of 

the differences between the measurements and the simulations are due to the limitation of 

the simulation to a one-spin system. A similar level of agreement between experiment and 

simulation was found for other spinning speeds (data not shown). 

A full theoretical analysis of the spin-lock behavior of quadrupolar nuclei under 

MAS is complicated by the fact that the Hamiltionian consists of a small time-independent 

term and a large time-dependent term. Consequently, perturbative approaches are not 

applicable, and analytical expressions for the interference process cannot be easily 
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derived. Numerical simulations were, therefore, performed to determine whether the 

interference effects between the mechanical sample rotation and the spin-lock field 

strength are due to the first-order or to the second-order terms of the quadrupolar 

Hamiltonian. Simulations of the spin-lock efficiency for 23Na (spin-3/2) and 27 AI (spin-

5/2) in low albite both with and without the second-order quadrupolar interaction were 

performed and are plotted as a function of the rf-field strength in Figure 3.9. The MAS 

frequency was set to ro/ (27t) = 2400Hz which was the frequency used in the cross­

polarization experiments of Chapter 4, and 300 different crystallite orientations were 

averaged. The rf-field strength was varied between ro1 sl (27t) = 0 Hz and 

ro 1s/ (27t) = 6800Hz for both the 23Na and 27 AI nuclei. These parameters result in 

values of a< 0.019 for 27 AI and a< 0.015 for 23Na, both well within the sudden passage 

regime. The Larmor frequencies were 130.31 MHz for 27 AI and 132:28 MHz for 23Na. 

The time increment for the numerical integration was 80 ns. There are clear differences in 

the positions of the resonance dips between the spin-3/2 and the spin-5/2 simulations, but 

they follow a general rule. The spin-lock efficiency for simulations without the second­

order quadrupolar interaction (denoted by D in both parts of Figure 3.9) shows strong 

dips for the condition 

(l)r S + 1/2 
(3.9) 

where N is a positive integer and S is the spin-quantum number of the spin-locked 

quadrupolar nucleus. At these dips, the efficiency decays to approximately 50% of the 

non-resonance value. The number of dips predicted by considering only the first-order 

quadrupolar interaction is, however, insufficient to characterize the experimentally 

observed spin-lock efficiency. 

In the simulations which include the both the first- and second-order quadrupolar 

interactions (denoted by 0 in Figures 1 and 2), the spin-lock efficiency decreases 

strongly when 

{l)r S + 1/2 
(3.10) 
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Figure 3.9 - (a) Simulations of the spin-lock efficiency for 23Na (S = 3/2) at an MAS 
frequency of W/(27t) =2400Hz both with [<>] and without [c] the second-order 
quadrupolar interaction. ·(b) Simulations of the spin-lock efficiency for 27 AI (S = 5/2) at 
an MAS frequency of ro/ (27t) = 2400Hz both with [ ()] and without [ [J] the second­
order quadrupolar interaction. Solid lines are guides to the eye. For all simulations the 
quadrupolar parameters of low albite were used. 113 · 11 
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This leads to twice as many dips in the rf field dependence of the spin-lock efficiency as 

compared to the simulations without the second-order quadrupolar interaction and agrees 

with our experiments. 

With increasing ro0 , the overall efficiency of the spin lock decreases due to the 

large second-order quadrupolar Hamiltonian. This is the reason for the generally poorer 

spin-lock efficiency for the 23N a in Figure 3.9a ( roQ = 8.11 x 10
6 

rad/s) compared to the 

27 AI in Figure 3.9b ( roQ = 3.1 Oxl 0
6 

rad/s) for the simulations which include both first­

and second-order terms. In making such comparisons, it is important to consider the 

values of ro0 rather than the more commonly tabulated Cqcc values (see Equation (3.3)) 

since the [2S (2S- 1)] -I scaling factor differs significantly for different values of S. In 

the case of low albite, for instance, the Cqcc for 23Na (S=312) is less than the Cqcc for 27 AI 

(S=5/2), but the value of ro0 for 23Na is greater than the value of ro0 for 27 AI. When 

~ 
(/) 
c 
Q) 
+-' c 

0 2000 4000 6000 
ro1 8/(21t) [Hz] 

Figure 3.10 - Simulations of the spin-lock efficiency for 23Na (S = 3/2) at an MAS 
frequency of W/ (21t) = 2400Hz and with wQ = 3.10x106 rad/s (Cqcc = 0.99 MHz) and 
11 = 0.63. Values are plotted both with [ 0] and without [ C] the second-order quadrupolar 
interaction, and solid lines are guides to the eye. Note that with a smaller <.OQ, the dips are 
much sharper than in Figure 3.9a. 
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smaller values of roQ are used in the simulations for 23Na (see Figure 3.1 0), the resonances 

at low rf-fields become sharper than in Figure 3.9a, and the SP.in-Iock efficiency at points 

between the resonances increases. 

The simulations shown in Figures 3.8b, 3.9 and 3.10 were performed for the case 

of on-resonance irradiation. When rf offsets of several hundred Hertz were incorporated 

into the simulations that only included the first-order contribution to the quadrupolar 

Hamiltonian (see Figure 3.11), the spin-locking behavior became qualitatively similar to 

the second-order case, and Equation 3.10 was obeyed. This is not surprising since both 

second-order shifts and rf offsets can be expressed as. linear combinations of fictitious 

spin-112 s;a, b) operators4 connecting the +m and -m states. 120 · 

Clearly, both first-order and second,.order terms of the quadrupolar Hamiltionian 

influence the spin-locking efficiency. However, it is important to consider the 

contributions of individual crystallite orientations to the powder average to determine 

whether the decreases in spin-lock efficiency are a property of the single-crystallite 

Hamiltonian itself or whether they are due to interference effects between different 

crystallite orientations. This has been partially _discussed in the literature123 and is 

examined here in more detail. 

Figures 3.12, 3.13, and 3.14 show spin-lock time dependences for a spin-5/2 

nucleus e7 AI in low albite) with (f-j) and without (a-e) the second-order quadrupolar 

interaction for four different orientations (a-d and f-i) and for the powder average (e and j). 

For the simulations of Figure 3.12, the spinning speed was 2400 Hz, and the rf field 

strength was 800 Hz; these values satisfy the resonance condition of Equation (3.1 0) but 

not that of Equation (3.9). This is reflected in the fact that the simulations which exclude 

the second-order quadrupolar interaction (Figure 3.12a-e) show a good spin lock with only 

small-amplitude oscillations. Consequently the powder average (Figure 3.12e) shows 

almost no decay. Inclusion of the second-order quadrupolar interaction has a large effect 

on the spin-lock behavior (Figure 3.12f-j). The spin-locked magnetization oscillates 

between the positive and negative x-axis at a frequency that depends strongly on the 

crystallite orientation. The interference between these different oscillation frequencies 

causes the fast decay observed in the powder (Figure 3.12j). 
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Figure 3.11 - Spin-lock efficiency as a function of resonance offset. The parameters of 
Figure 3.10 were used in these simulations. Values are plotted both with [ <>] and without 
[ CJ] the second-order quadrupolar interaction, and solid lines are guides to the eye. (a) 
Offset of 10Hz. The behavior is qualitatively the same as for the on-resonance case. (b) 
Offset of 100Hz. Extra resonances begin to grow in making the first order simulations 
similar to the second order case. (c) Offset of 500Hz. Except for a slight distortion at low 
frequencies, the first and second-order cases are very similar now. 

96 



0.2 ...,._ _______ .....,........,... 0.2 

) 
0.1 

a o 
-0.1 

f) o.6 
-0.1 

-0.2 -0.2 

0.21-----------....j 0.2 

b) o.6 
-0.1 

)
0.1 

g -0.~ 
-0.2 -0.2 

0.2 ~ .... ..... •• w 
I"'" -......... -......... ........ ·- 0.2 

) 
0.1 c 0 

-0.1 
h)0·6 

-0.1 
-0.2 -0.2 

0.2 0.2 

d) o.b 
-0.1 

i) 0.6 
-0.1 

-0.2 -0.2 
200 200 

100 100 

e) 0 j) 0 

-100 -100 

-200 
0 20 40 60 80 100 

-200 
0 20 40 60 80 

'tsL[ms] 'tsL [ms] 

Figure 3.12- Simulated spin-lock efficiency for 27 AI in low albite at an MAS frequency of 
ro/ (2n) =2400Hz and a spin-lock field strength of ro 1s/ (27t) = 800Hz. The Euler 
angles (aQ,~Q,fJ-) relate the principal-axis system of the quadrupolar interaction in a 
given crystallite to the reference frame of a rotor spinning at the magic angle. The 
simulations (a)-( e) were done without the second-order quadrupolar interaction while the 
simulations (f)-(j) include the second-order 3uadrupolar interaction. (a)-(d) and (f)-(i) 
show selected crystallite orientations with a =fJ-=o· and ~Q=10. ((a) and (f)), ~Q=30. 
((b) and (g)), ~Q=so· ((c) and (h)), ~Q=70. ((d) and (i)). The simulations in (e) and (j) 
show the average over 1154 different crystallite orientations. For this choice of spinning 
speed and rf field strength, only ~he resonance condition of Equation (3.1 0) is fulfilled. 
Therefore, the spin lock is very stable without the second-order quadrupolar interaction (e) 
but decays rapidly when the second-order quadrupolar interaction is included (j). 
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Figure 3.13 - Simulated spin-lock efficiency for 27 AI in low albite at an MAS frequency of 
ffi/ (2n) =2400Hz and a spin-lock field strength of ro 1sl (2n) = 1600Hz. The Euler 
angles (aQ,~Q,yO) relate the principal-axis system of the quadrupolar interaction in a 
given crystallite to the reference frame of a rotor spinning at the magic angle. The 
simulations (a)-(e) were done without the second-order quadrupolar interaction while the 
simulations (f)-(j) include the second-order guadrupolar interaction. (a)-(d) and (f)-(i) 
show selected crystallite orientations with a =fl=O' and ~Q= 10' ((a) and (f)), ~Q=30' 
((b) and (g)), ~Q=50' ((c) and (h)), ~Q=70' ((d) and (i)). The simulations in (e) and (j) 
show the average over 1154 different crystallite orientations. For this choice of spinning 
speed and rf field strength, the resonance conditions of Equation (3.9) and (3.1 0) are both 
fulfilled. Therefore, we see a fast decay of the spin-locked magnetization both with (j) and 
without (e) the second-order quadrupolar interaction. · 
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Figure 3.14- Simulated spin-lock efficiency for 27 AI in low albite at an MAS frequency of 
ro/ (27t) =2400Hz and a spin-lock field strength of ro 1sl (27t) = 1200Hz . The Euler 
angles (o.Q,~Q,{J.) relate the principal-axis system of the quadrupolar interaction in a 
given crystallite to the reference frame of a rotor spinning at the magic angle. The 
simulations (a)-( e) were done without the second-order quadrupolar interaction while the 
simulations (f)-(j) include the second-order guadrupolar interaction. (a)-(d) and (f)-(i) 
show selected crystallite orientations with o. =fl=o· and ~Q=1 o· ((a) and (f)), ~Q=30" 
((b) and (g)), ~Q=50" ((c) and (h)), ~Q=70" ((d) and (i)). The simulations in (e) and (j) 
show the average over 1154 different crystallite orientations. For this choice of spinning 
speed and rf field strength, neither the resonance condition of Equation (3.9) nor that of 
Equation (3.1 0) is fulfilled. Therefore, the spin lock is stable both with (j) and without (e) 
the second-order quadrupolar interaction. 
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For the simulations of Figure 3.13, the resonance conditions of Equations (3.9) and 

(3.10) are simultaneously satisfied by setting the spinning speed equal to 2400Hz and the 

rf-field strength equal to 1600Hz. In Figure 3.13 there are strong oscillations for both the 

simulations without (Figure 3.13a-e) and with (Figure 3.13f-j) the second-order 

quadrupolar interaction. However, when the second-order quadrupolar interaction is 

omitted, the oscillations are only between the positive maximum and zero (Figure 3.13a­

d) leading to a reduced but non-vanishing value for the powder average (Figure 3.13e). 

Inclusion of the second order interaction results again in oscillation between the positive 

maximum and its corr~sponding negative 'l:llue (Figure 3.13f-i). Consequently the 

powder average is almost zero (Figure 3.13j) due to the intt:rference of magnetization 

from different crystallite orientations. Simulations for spin-lock fields in between 

resonance points (see Figure 3.14) show only small oscillations about non-zero values and 

thus good spin-lock efficiency. Similar simulations were calculated for spin-3/2 nuclei 

(data not shown) and show the same general behavior as the spin-5/2 simulations 

discussed above. 

Note that the powder-averaged simulations of the spm lock at the resonance 

conditions (see, for instance, Figure 3.12j) show oscillations for short spin-lock times 

('tsL < 5 ms); such oscillations were also observed experimentally (data not shown). 

Fourier transformation of these reveals lineshapes that look qualitatively similar to rotary 

resonance spectra131 of spin-1/2 nuclei in which the chemical-shielding anisotropy is 

recoupled by setting the spin-lock field equal to one or two times the spinning frequency. 

Work is currently in progress to understand the nature of the lineshapes observed in the 

quadrupolar case and to determine whether the quadrupolar parameters can be extracted 

from such spectra. 

The resonance conditions defined by Equation 3.10 have an important 

consequence for cross-polarization experiments involving half-integer quadrupolar spins. 

Before setting up the cross-polarization condition, it is necessary to experimentally 

optimize the spin-lock efficiency of the quadrupolar nucleus for a given sample (i.e. -

given ffiQ) and spinning speed in order to avoid a severe loss of magnetization. 
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3.4 Direct measurement of the 27 AI an~ 23Na T lp 's in low albite 

In addition to losses due to inefficient spin locking, the magnetization of. 

quadrupolar nuclei under spin-lock conditions is further influenced by rotating-frame 

spin-latti~e relaxation. Unlike for the case of spin-1/2 nuclei, the rotating-frame behavior 

of a quadrupolar nucleus cannot in general be modeled by .• a single exponentiaP6•132•133 

~onsequently, no single relaxation time constant (T1p) can be defined. In our 

experimental observations, rotating-frame relaxation of aluminum and sodium in albite 

consists of at least two exponentially decaying components. Figure 3.15 shows such a 

decay for 27Al in albite for ro 15 / (27t) =500Hz and ro/ (27t) = 2400Hz (the values 

used in the cross-polarization experiments of Chapter 4). The ·solid curve in Figure 3.15 

corresponds to a least-squares fit of the data to a biexponential function of the form 

1.0 
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0.2 

0.0 
0 0.01 

I ( t) 
-t/tr -t/t, = A·e +B·e 

0.02 0.03 0.04 0.05 0.06 

'tsL [s] 
Figure 3.15 - Rotating-frame relaxation of 27 AI in albite at w1 8; ( 21t) = 500 Hz and 
W/ (21t) = 2400Hz. The solid line is a nonlinear least-squares fit of the experimental 
points to a biexponential function with time constants of 2.7 and 85 ms. 
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in which the fast-decaying component is characterized by a time constant 'tf = 2.7 ms; 

the slowly-decaying component is characterized by a time constant 't
5 

= 85 ms; and the 

-scaling parameters have values of A=0.13 and B=O. 71. The rotating frame relaxation of 
23Na in albite also requires more than one exponential for a good fit (see Figure 3.16). 

With typical cross-polarization contact times on the order of 'tcp = 10 ms to 

'tcp = 50 ms, the rotating-frame relaxation of the quadrupolar nuclei in low albite poses 

no problem for efficient cross polarization. 
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Figure 3.16 - Rotating-frame relaxation of 23Na in albite at w15 / (21t) =500Hz and 
W/ (21t) = 2400Hz. The solid line is a nonlinear least-squares fit of the experimental 
points to a biexponential function with time constants of 9.1 and 28 ms. Note that even 
with a biexponential, the first points are not well fit. However, a mono-exponential fit fails 
completely. · 
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Chapter 4: Cross Polarization of Quadrupolar Nuclei 
During MAS Using Low Radiofrequency 
Field Amplitudes 

Using the results of the spin-lock efficiency study of Chapter 3, the 27 Al-to-29Si 

.cross-polarization dynamics in low albite were investigated. Although cross polarization 

was achieved from both 27 AI and 23Na, we chose to concentrate on 27 AI since the cross­

polarized signals were more intense. As mentioned in Section 3.1, albite has three 

different silicon sites (see Table 3-: 1): two of which (Q4(1 AI)) have one aluminum atom 

and three silicon atoms as nearest neighbors while the tl).ird (Q4(2Al)) has two aluminum 

atoms and two silicon atoms as nearest neighbors. Based on simple models one might 

expect that the NMR signal intensity corresponding to the silicon with two aluminum 

atoms as nearest neighbors would be twice as intense as tho~~ of the silicons with only one 

aluminum atom as a nearest neighbor. 134 However, as a one-dimensional 29Si NMR 

spectrum acquired using 27 Al-to-29Si cross polarization shows, this is not true in the case 

of low albite (Figure 4.1 ). The two silicon sites in albite with one aluminum nearest 

neighbor ( 0 = -96.1 ppm and 0 = -103.9 ppm) have equal intensities while the site 

with two aluminum nearest neighbors ( o = -91.8 ppm) has a lower intensity. There is 

no significant difference in the line widths of the three lines: the full width at half­

maximum of a Lorentzian line fit was .:lro112 "" 35 Hz for all three lines. To investigate 

this behavior in more detail, we have performed cross-polarization contact-time 

dependence measurements as well as rotating-frame relaxation time measurements for the 

three silicon sites. 

4.1 Previous Studies of Cross Polarization Involving Quadrupolar Nuclei 

Cross polarization to and from quadrupolar nuclei is becoming an increasingly 

popular technique. Although cross polarization under static conditions is easier to achieve 

and interpret, 135 the ubiquity of MAS probes and the development of the Multiple-
. ' 

Quantum Magic-Angle Spinning technique (see Chapter 6) has made an understanding of 

cross polarization to and from quadrupolar nuclei during MAS desirable. In this thesis, 
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we will only be concerned with the case of cross polarization to and from the central 

transition of an odd-half-integer quadrupolar nucleus, although multiple-quantum cross 

polarization is conceivable. 136·137.138 

The earliest CP/MAS experiments involving quadrupolar nuclei were largely 

empirical in nature.J39.I40.I41 In 1992, A. J. Vega extended his quadrupolar spin-lock 

theory 120 (see Section 3.2) to cross polarization121 and compared the effects of the adiabatiC 

and sudden regimes. He showed that cross polarization occurs continuously in the sudden 

regime although only a subset of the nuclei participate. The reason for this is that 

populations that were initially in a ±3/2 or ±512 state (see Figure 3.7b) are not 

interconverted to the central transition by sample rotation and, therefore, cannot 

participate in the cross polarization-process (although relaxation effects could, of course, 

alter the populations of different states). In the adiabatic regime, population 

int~rconversions do occur (see Figure 3.7a), permitting cross polarization from spin-1/2 

T2m T20 T1m 

I I I I I I I I I I I I I 

-90 -100 -110 

8 [ppm] 
Figure 4.1 - One-dimensional 29Si spectrum of low albite obtained with cross polarization 
from 27 AI. The crystallographic sites are indicated at the three different peaks. The peak 
at 8 = -91.8 ppm shows the lowest intensity although this silicon site has two nearest­
neighbor aluminum atoms. The other two lines at B = -96.1 ppm and 8 = -103.9 ppm 
have roughly the same intensity. 
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nuclei to a larger fraction of the quadrupolar spins. When cross polarizing from 

quadrupolar to spin-1/2 nuclei, however, the preparatory pulse will just excite populations 

that are initially in the central transition so these spins are the only ones which can 

participate. Since Vega's work, more applications of cross polarization .from quadrupolar 

nuclei have appeared in the literature. 134• 14~· 143 • 144 • 145 Although some of these papers 

included studies of the cross-polarization dynamics, erroneous assumptions were made in 

a few instances. In particular, simplifications which were incompatible with measured 

values were used in models of cross-polarization dynamics. 134 

Due to the inefficiency of spin locking and cross polarizing quadrupolar nuclei 

under MAS conditions, angle-reorientation experiments are desirable. Such experiments 

take advantage of the fact that when the rotor axis is parallel to the B0 field, time­

dependent terms ·in the Hamiltonian vanish (see Section 1.4.1) which leads to cross 

polarization that is as efficient as in a static sample. Such experiments have been . 

successfully performed, 122•144 and their advantage~ and disadvantages as compared to the 

MAS experiment will be discussed below (see Section 4.5) 

4.2 Experimental Parameters 

All cross-polarization experiments were performed on a Chemagnetics CMX-500 

spectrometer operating at a proton Larmor frequency of 500.1 MHz. The 27 AI frequency 

was 130.31 MHz; the 23Na frequency was 132.28 MHz; and the 29Si frequency was 99.34 

MHz. 

Figure 4.2 shows the circuit diagram for the home-built double-resonance MAS 

probe used in these experiments. The probe incorporated a Chemagnetics. "jumbo" 

spinning module with 14 mm outer diameter zirconia rotors. The volume of the rotors was 

approximately 2.8 mL. The spinning speed was controlled by a home-built spinning-

. speed controller to an accuracy of ±2 Hz. An MAS speed of 2400 Hz was used for all CP 

experiments and silicon T lp measurements described in this section. Typically, a 10-17 llS 

pulse was used for selective excitation of the central transition of aluminum. The cross 

polarization was optimized experimentally based on the spin-lock efficiency for the 

central transition of the quadrupolar nucleus as a function of the rf-field strength. At 

ro/ (21t) = 2400 Hz, the best spin-lock level for the 27 AI resonance was found to be 
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Si AI 
(99.34 MHz) 

c1 coil 
(130.311 MHz) 

c2 

C1 = C2 = 0.8-10 pF (Polyflon® NRP-VC-10-12) 

C3 = C 4 = C5 = 5-25 pF (Polyflon® NRP-VC-25-68) 

C6 = 0.8-1 OpF (Voltronics® V21 02) 

C7 = 2.2 pF (ATC~ 

C8 = 1 . 1 pF (ATe~ 

L1 ""' 0.11 J.tH (0.05" diameter round wire; 5.5 turn coil with L=0.56", W=0.32") 

L2 ::::: 0.23 J.tH (0.05"x0.05" square wire; 6.5 turn coil with L=0.50", W=0.38") 

coil ::::: 0.26 J.tH (0.05"x0.05" square wire; 5 turn coil with 16 mm inner diameter 

and L=20 mm) 

Figure 4.2 - Circuit diagram for the home-built double-resonance probe used in these 
experiments. The circuit is based on the "lumped-element" design of Doty et al.91 except 
tunable traps are used on both channels. The impedances are estimated using the coil 
formula 128•146 which neglects the effects of wire thickness and wire shape. At the power 
levels used for the CP experiments in this thesis, better than 40 dB isolation is observed on 
each channel. 
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ro 1 5/ ( 21t) :::= 500 Hz, which agrees well with the simulations of Figure 3.9b. The cross­

polarization sequence used in these experiments incorporates spin-temperature 

altemationY For the contact-time dependence study, cross-polarization signal intensities 

were measured for contact times ('tcp) between 0.5 ms and 500 ms. For these 

measurements, 128 scans of 1024 data points were summed with a recycle delay of 5 s. 

Sixteen dummy scans preceded the collection of data. The silicon rotating-frame 

relaxation times (T lp) were measured using the same parameters as for the CP time­

dependence studies but adding a spin-lock period after the CP contact time (Figure 4.3). 

On-resonance measurements were made for each site in both the CP dynamics aiid silicon 

T lp experiments to eliminate offset effects that are expected to occur at such low rf-power 

levels. 

4.3 Hartmann-Hahn Matching for Quadrupolar Nuclei 

Cross polarization is a process by which magnetization is transferred from one 

spin species to another. In solids, this typically occurs through the dipolar Hamiltonian 

although in some cases it can also occur through scalar J couplings. 147 The basic types of 

cross polarization that have been developed so far are based on either adiabatic 

demagnetization or spin locking;7 only the second case will be discussed in this thesis. 

To perform Hartmann-Hahn 111 cross polarization, each spin species is subjected to 

rf irradiation in the form of a spin-lock field, and the amplitudes of these spin-lock fields 

are adjusted to permit energy-conserving magnetization transfer between the two types of 

spins. Mathematically, this can be described as follows. 

27AI 

29Si 

Figure 4.3- Pulse sequence for measuring 29Si T 1pvalues as described in the text. 
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The Hamiltonian for cross polarization from many spins of type S to a single spin 

of type I is given (in the doubly rotating frame) byl48•149 

!J{ = LnL\rosk skz + hroiSLskx + hL\rollz + hroliiX + 
k k 

+ n L beff, Ski C2Skzlz) 
k 

+ n .Lkberr, sjsk [ 2Sjzskz- ~ csj+sk- + sj-sk+) J 
j> 

(4.1) 

where the effective dipolar coupling constants have the form (see Equations (1.68) and 

(1.71)) 

(4.2) 

For the static case, R~ 0 will simply be proportional to the second-rank Legendre 

polynomial of the cosine of the angle between the dipolar vector and the B0 field while in 

the MAS case, it will contain terms that oscillate with wr and 2wr (see Equation (1.109)) 

(4.3) 

Note that the choice of labels "I" and "S" in Equation ( 4.1) differs from the conventional 

usage but is consistent with the notation used in Chapter 3. 

For the case of on-resonance irradiation on both channels where 

lro1sl » lbeff, sisJ lbeff, sk11 and lw111 » lbeff, 5k11, it is convenient to used a "tilted" 

interaction frame which corresponds a rotation of n/2 about ( L Sky + IY) (see Section 

1.1.2)148 k 
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j 

(4.4) 

The last term in Equation (4.4) is non-secular and can usually be ignored. In this tilted 

frame, the direction of the spin lock on nucleus of a given type provides" the axis of 

quantization for that nucleus. 

For the moment, let us assume that all homonuclear dipolar couplings between the 

S-spins can be ignored. (Their effects will be reintroduced below.) What we would like to 

see is how polarization can be transferred between the S and I spins. Clearly, the third 

term on the right-hand side of Equation (4.4) is what couples the two species. Using 

Equations (1.52) and (1.53), it can be rewritten as 

(4.5) 

Equation ( 4.5) contains two terms that can potentially be used for polarization transfer 
' between the S andl spin systems: (1) a zero-quantum or "flip-flop" term (Sk+I- + Sk_l+) 

in which one spin flips down while the other flips up and (2) a double-quantum or "flop­

flop" term (Sk+I+ + Sk_I_) in which either both spins flip up or both spins flip down. 

If a quantum of S-spin magnetization equaled a quantum of 1-spin magnetization, 

the "flip-flop" term would provide an energy-conserving. mechanism for polarization 

transfer. Although the gyromagnetic ratios of different types of nuclei are not equal, it is 

possible to create a situation in which the quanta are the same by a judicious choice of rf­

field strengths. According to Hartmann and Hahn, 111 transfer of polarization between two 

different types of nuclei in a static sample can occur if the rf-amplitudes are matched 

according to the condition 
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where roll = -y1B 11 , ro15 = -y5B15 , and the transitions being matched are between 

quantum levels m H (m- 1) for each nucleus. For two spin-1/2 nuclei, Equation (4.6) 

reduces to 

(4.7) 

while when polarization is transferred between a spin-1/2 nucleus (I) and the central 

transition of a half-integer quadrupolar nucleus (S), Equation ( 4.6) simplifies to 

(4.8) 

Typically, the double-quantum term in Equation (4.5) ·is ignored since it is non-­

secular although in the case of small rf fields and high spinning speeds, energy-conserving 

double-quantum cross polarization can occur between two spin-1/2 nuclei. 150 However, it 

is interesting to note that because 29Si has a negative gyromagnetic ratio while 27 AI has a 

positive one, the relevant term in the dipolar Hamiltonian for 27 Al-to-29Si cross 

polarization is actually the "flop-flop" term. That is, the energy-conserving transition 
-

corresponds to one in which both spins flip the same way simultaneously (see Figure 4.4) . 

• 
• 
• 

' lttttt 
• 
• 
• 

Figure 4.4 - Schematic of cross polarization from the central transition of 27 AI to 29Si at 
the Hartmann-Hahn match. The opposite signs of the gyromagnetic ratios of the two spins 
causes the energy-conserving transition to be the "flop-flop" transition (e.g. - both spins 
change from spin up to spin down). 
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This is merely a technicality, however, and the general concepts that have been developed 

for cross polarizati<?n between spins with positive gyromagnetic ratios will be applicable 

here. 

When more than one nucleus of a given type is present in a sample, homonuclear 

dipolar couplings (the fourth term on the right-hand side of Equation (4.4)) will modify 

the effective spin-lock field felt by a given S spin, and, therefore, a slightly different spin­

lock field strength (ro11) will be required to match it. This leads to a broadening of the 

match condition of Equation (4.6) as depicted schematically in Figure 4.5a. Here, the 

number of crystallites fulfilling a given match condition is plotted as a function of the 

a) 

b) 

0 
offset from H-H match 

ro{(21t) 
I~ •I 

n=-1 n=O n=+ 1 
n=-2 n=+2 

0 offset from H-H match 

Figure 4.5- (a) Schematic of the match condition for the static and "slow" spinning cases 
( ro, <<rod) . Intensities are plotted as a function of Hartmann-Hahn mismatch. 

Homonuclear dipolar couplings lead to a distribution of match conditions for different 
crystallites, centered about the Hartmann-Hahn match condition. (b) Schematic of the 
Hartmann-Hahn match condition for the "fast" spinning case ( ro, ,, rod) . The match 
condition is split into sidebands spaced by Wr 
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deviation from -the exact Hartmann-Hahn match: 

Typical 

distributions for a static powder sample are symmetric and approximately Gaussian. 

Magic-angle spinning further modifies the Hartmann-Hahn match condition. For 

the case of transfer between two spin-112 nuclei, it has been shown 92•
150 that when the rate 

of rotation, ro ... equals or exceeds the strength of the homonuclear dipolar couplings, rod, 

the match condition of Equation (4.7) splits into distinct sidebands 

(4.9) 

where n is an integer (see Figure 4.5b ). These sidebands are a consequence of the fact that 

magic-angle spinning (see Equation (4.3)) makes the heteronuclear dipolar Hamiltonian 

time-dependent. Transforming Equation (4.4) to an interaction representation using 
-inro,tSz • -

R = e (see Equation (1.26)) and neglecting the time-dependent terms gives 

(4.10) 

where the homonuclear couplings have been ignored. For positive gyromagnetic ratios, it 

is clear that the match condition of Equation (4.9) permits energy-conserving 

magnetization transfer to occur via the Hamiltonian of Equation (4.10). To first order, 

Equation ( 4.1 0) is only valid for n = ± 1, ±2; thus, at short contact times the most 

efficient polarization transfer will occur for these. At longer contact times, however, 

equally efficient transfer occurs for the centerband due to higher-order processes, and less 

efficient transfer occurs for lnl > 2 .150•151 J cross polarization can also potentially 

contribute to the centerband signal. 147 As in the static case, the match conditions are 

broadened due to homonuclear couplings (see Figure 4.5) although the extent of 

broadening is reduced due to partial averaging by the sample spinning.92 

An analogous modification of the sta~ic cross-polarization condition has been 

proposed for transfer between a spin-1/2 nucleus and the central transition of a half­

integer quadrupolar nucleus under MAS 121 
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(4.11) 

· and has been observed experimentally. 134 Compared to the aluminum homonuclear 

dipolar couplings in low ·albite rod/ ( 27t) = 200 Hz, a speed of 2400 Hz is in the "fast" 

spinning limit. Therefore, the match condition is expected to split into sidebands under 

our experimental conditions. 

An additional complication occurs when nror is larger than the rf-field strength. 

This is depicted schematically in Figure 4.6 for the experimental conditions of Section 4.2. 

In these experiments the aluminum field strength was (l)IS/ (21t) :::::500Hz' and the 

spinning speed was Ol/ (27t) = 2400Hz. From Equation (4.11), the centerband for 

cross polarization from 27 AI to 29Si would be expected at a silicon fi~ld strength of 

ro 11 / (27t) = 1500Hz, the first positive (.n = +1) sideb~nd at ro 11 / (27t) = 3900Hz, 

a) 
n=-3 n=-2 n=-1 

-3~00 

b) 

-s7oo -3~oo 

I 
-900 

n=+ 1 n=+2 n=+3 

~I[Hz] 

n=O n=+1 n=+2 n=+3 

n=-2 n=-3 

1soo 3boo e~oo a7oo 
~[Hz] 

Figure 4.6 - Schematic of match conditions for our experiments as a function of the spin­
lock field strength on 29Si. (a) Hypothetical sideband positions based on Equation ( 4.11 ). 
(b) Folding-back of sidebands with negative intensity. 
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the second positive (n = +2) sideband at ro 11 / (27t) = 6300Hz, etc. However, the 

n = -1 and n = -2 sidebands would be expected at negative field strengths (Figure 

4.6a), which seems unphysical. Actually, a change in the sign of the field strength simply 

corresponds to a change in the direction of the quantization axis of one of the spins (i.e. - a 

shift from double-quantum to zero-quantum cross polarization). 150 By using the 

Hamiltonian of Equation (4.10) and projecting the initial density matrix onto the Zeeman 

terms of this Hamiltonian, the final density matrix can be approximated. 15° From this, one 

can determine that the cross-polarized signal in the vicinity of the Hartmann-Hahn match 

condition will have the following dependence on the spin-lock amplitudes 

( 4.12) 

The denominator in Equation (4.12) will always be positive, but the numerator will 

change sign depending on the relative magnitudes of ( S + 1 /2) lro 1 sl and ror This 

translates into a change in sign of the intensity of the cross-polarized signal. Thus, 

sidebands corresponding to negative values of ro 11 will be folded back around the 

frequency ro 11 / (27t) = 0 Hz and will appear at !ro 111 with negative intensity in the 

match condition spectrum (Figure 4.6b ). 150 

Figure 4.7 shows the experimentally measured intensity of the signal cross­

polarized from 27 AI to one of the 29Si peaks in low albite as a f~nction of the magnitude of 

the 29Si rf field strength, ron/(27t), for cross-polarization contact times of tcp = 10, 50, and 

750 ms. The experiments agree reasonably well with the predicted match condition 

profile sketched in Figure 4.6b; however, the precise positions of the centerband and 

sidebands are difficult to determine due to both the partial overlap of positive and negative 

sidebands and the difficulty of measuring low field strengths accurately. All three peaks 

show similar behavior although the maxima are shifted since the offset is of the same 

order of magnitude as the 27 AI spin-lock field. The relative intensities of all sidebands 

remained the same (within experimental error) for contact times ranging between 10 ms 

and 750 ms. 
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The interference between different sideband matching conditions as seen in Figure 

4.7 illustrates a second important consideration in setting up cross-polarization 

experiments involving half-integer quadrupolar nuclei at low rf powers. In addition to 

optimizing the quadrupolar spin-lock efficiency for a given spinning speed (as described 

in Chapter 3), one must make sure that the chosen spip-lo~k field strength and spinning 

speed create at least some sidebands of the match condition which do not interfere 

profoundly with other sidebands. Although the criteria for selecting efficient quadrupolar 

spin-lock field strengths eliminate some of the cases with the most destructive 

interference, there are other values of ro1s and ror which give a good spin lock for the 

quadrupolar nucleus but for which the interference between the cross-polarization match 

sidebands would be severe. 

Furthermore, ror must be kept very stable since any change in the spinning speed 

will shift the positions of the folded-back sidebands and ther~by alter the intensity of the 

cross-polarized signal (possibly even changing its sign). For our experimental parameters, 

slight changes in the spinning speed led to profound changes in the cross-polarized 

~ ·-en 

A 'tcp = 10 ms 
o 'tcP =50 ms 

. v 'tcP = 750 ms 

ffi 0.0'~~~___.!.~~-~~~~LS;z~L-~~~~ 
+-1 c 

0 1000 2000 3000 4000 5000 6000 

lro111/(2n) [Hz] 

Figure 4.7 - Intensity of signal cross-polarized from 27 AI to the Q4(2AI) 29Si site in Io~ 
albite. The pattern of matching condition sidebands agrees qualitatively with the expected 
pattern (see Figure 4.6b). · 
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intensities. The intensity of the peak at -91.8 ppm decreased by 34% when the spinning 

speed was changed from 2400Hz to 2300Hz. Only a 2% decrease would be expected 

from varying the MAS rate alone (see Section 1.4.1 ); the rest must be a consequence of 

changes in the match condition. Even spinning-speed fluctuations of 10 Hz produced 

noticeable effects. 

For both the CP contact-time dependence experiments and the silicon T lp 

measurements, the centerband match condition was used. This match condition had 

relatively little overlap with the folded sidebands for the chosen values of ro1s and ror as 

Figure 4.7 shows. NPte that the centerband match signal may contain both high-order 

dipolar and J contributions; no attempt was made to distinguish between the two effects. 

4.4 Cross-Polarization Dynamics for Quadrupolar Nuclei 

In order to analyze the CP contact-time dependence of the 29Si magnetization, the 

rotating-frame relaxation rate constants for all three silicon sites were measured on­

resonance at the rf-field strength used for the cross-polarization experiments. Eight 

different time points from 'tsL ~ 500 ms to 'tsL = 6 s were measured four times each 

and fitted to a monoexponential decay as shown in Figure 4.8. The relaxation times that 

were obtained are: T I p(O = -91.8 ppm) =5.8 ± 0.2 s' T Ip(o = -96.1 ppm)= 12.8 ± 1.1 s' 

and T I P(o = -103.9 ppm)= 11.5 ± 0.7 s. It is interesting to see that the silicon site with 

two aluminum nearest neighbors has aT lp of only one-half the value of that for the silicon 

sites with only one aluminum nearest neighbor. This proportionality between the rate. 

constant and the number of nearest neighbors suggests that the main relaxation pathway 

involves the aluminum atoms. 

Figure 4.9 shows the cross-polarization intensity as a function of contact time for 

all three silicon sites. The measurements were done as three separate on-resonance 

measurements to avoid resonance-offset effects due to the low spin-lock field strengths. 

The most remarkable feature of these measurements is that the maximum polarization 

reached for the site with two aluminum nearest neighbors is lower than the maximum 

intensities of the two silicon sites with one aluminum nearest neighbor. The contact time 

dependences were fit to a simple model based on the so-called "thermodynamic" 

description of cross polarization described by Mehring.7 In this model (depicted 
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schematically in Figure 4.1 0), the magnetization of a given spin species is parameterized 

in terms of a spin temperature. These species then interact with each other and with a 

"lattice" of other degrees of freedom according to first-order kinetic equations, subject to 

1.0 

0.5 

0.0 
2.5 

b) 
2.0 

1.5 

1.0 

0.5 

0.0 

c) 
2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
0 1 2 3 4 5 6 7 

'tSL [S] 
Figure 4.8 - 29Si T 1p measurements for the 29Si sites in low albite. The .error bars 
represent the standard deviation of four independent measurements. The solid lines are 
the best fits to the data points corresponding to T 1P values of (a) T 1p(0=-91.8 ppm)= 5.8 ± 
0.2 s, (b) T1p(0=-96.1 ppm)= 12.8 ± 1.1 s, and (c) T1p(0=-103.9 ppm)= 11.5 ± 0.7 s. 
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a) 

b) 

c) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

'tcp [s] 
Figure 4.9 - Cross-polarization time dependences for the three different crystallographic 
silicon sites in low albite: (a) the Q4(2Al) site at 0=-91.8 ppm, (b) and (c) the Q\IAl) sites 
at 0=-96.1 ppm and 0=-103.9 ppm, respectively. The fits through the experimental points 
are based on Equation (4.34) and the parameters extracted from the fit are summarized in 
Table 4.1. 
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the constraints imposed by the initial conditions and the law of conservation of energy. 

This simple model makes no assumptions about whether the mechanism for magnetization 

transfer is based on the dipolar-coupling interaction, the scalar-coupling interaction, or 

both. The derivation follows. 

The quantum-mechanical definition of magnetization for N1 spins of type I is given 

(4.13) 

. where the density matrix in the high-temperature approximation is given by Equation 

( 1.16) and the Zeeman Hamiltonian is 

NI 

1'-z = -1iyiBz L Ii, z · (4.14) 

i =I 

Here we have used Bz to indicate the magnetic field along which the spins are quantized. 

This may or may not be equal to the static field (Bo) depending on the frame of reference. 

If the spins are assumed to be non-interacting (the validity of this approximation will be 

discussed below), Equation ( 4.13) can be written as N1 multiplied by the magnetic 

moment of a single spin 

27 AI spins 
~Al 

Lattice ~L 

29Si spins 

~Si 

Figure 4.10 - Schematic of the phenomenological "thermodynamic" model of cross 
polarization which considers that each spin species can be described by a "spin 
temperature" and that both cross relaxation and relaxation to the "lattice" can be described 
by first-order kinetic equations. 
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( 4.I5) 

where the Zeeman Hamiltonian for a single spin (Equation (1.48)) is used in the density 

matrix. Substitution of Equations ( I.I6) and ( 1.48) into Equation ( 4.15) gives 

[ Tr {lz} + Tr {liyiBzl~} J 
(M) = NIIiyi. z ( 4.16) 

where Z is the partition function (Equation ( 1.15)). The trace of the lz operator vanishes, 

and Equation ( 4.16) can therefore be written as 

( 4.I7) 

where the inverse spin temperature for the I spins is defined as 

li 
~I = k T . 

B I 
(4.I8) 

The magnetization obeys the Curie law since it is inversely proportional to temperature, 

and C1 is known as the Curie constant. 

The Curie constant can be defined in terms of the following two functions 

1 1 
F (I) = = -----z Tr { 1} 

I 
=---

(21 + I) 
(4.19) 

and 

I 

G(l) = Tr{l~} = L m2 = 2 L m2 = I(l+ 1\(21+ 1). (4.20) 
m =-I m =I 

By comparison of Equations (4.16) and (4.17), one can show that the Curie constant is 

given by 

(4.21) 
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For spin-1/2 nuclei, C1 is evaluated by direct substitution of I= 112 into Equations ( 4.19) 

and (4.20). For cross polarization involving the central transition of a'spin-112 nucleus, a 

modification must be made. 135 

To understand the nature of this modification, one must consider what effect 

selective excitation has on the density matrix. The equilibrium density operator for a SJ?in-

5/2 nucleus in the lab frame is proportional to the lz operator and has the matrix form 

50 0 0 0 0 

0 3 0 0 0 0 
1 0 0 1 0 0 0 (4.22) Peq oc 2 

0 0 0 -1 0 0 

0 0 0 0 -3 0 

0 0 0 0 0 -5 

Application of a selective 90° pulse along they-axis will only affect the central transition. 

If the phase of this pulse and the receiver are alternated by 180° between scans,47 the 

residual z-magnetization will be cancelled out and the density matrix during the spin lock 

can be approximated by a fictitious spin-112 operator on the central transition (see Section 

1.2.5). 120 Switching to the "doubly rotating tilted frame" 152 in which the axis of 

quantization is along the effective field formed by the spin-lock field and the offset (see 

Figure 4.11) gives the matrix 

000 0 00 

000 0 00 

( 
alt, tilt) . 1 0 0 1 0 0 0 pt oc-
SL 2 0 0 0 -1 0 0 

000 0 00 

000 0 00 

(4.23) 

Equation (4.23), not (4.22), is the form of the density matrix that must be s~bstituted into 

Equation ( 4.15). It is effectively a spin-112 system which means that I= 112 is that value 

that must be substituted into the equation for G(l) (Equation (4.20)). However, the 

dimensionality of the matrix is still that of a spin-5/2 system so 1=5/2 must be substituted 

into the equation for F(l) (Equation ( 4.19)). This gives a Curie constant of 
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2 
= N51iy5 · F (S=5/2) · G (S=l/2) = (4.24) 

for the selectively excited aluminum atoms and a Curie constant of 

(4.25) 

for the silicon atoms during our cross-polarization experiments. 

With this modification in mind, we can follow Mehring's treatment and address the 

dynamics of the cross-polarization process. The equilibrium aluminum magnetization on 

the central transition is given by 

z 

x· 
Figure 4.11 - Schematic of the doubly rotating tilted frame from the point of view of the S 
spins. (The I spin case is analogous.) The S spins see a coordinate system that rotates at 
the S-spin Larrnor frequency while the I spins see a coordinate system that rotates at the 1-
spin Larrnor frequency. Thus, only offset terms remain along the z axis. The coordinate 
system is then "tilted" (by angles of 9s and 91 for the S and I spins, respectively) so that 
the effective field in the rotating frame defines a new z axis. For on-resonance irradiation, 
the tilting angle is 90 •. 152 
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where Cs is given by Equation (4.24). This is the initial condition at the start of the 

experiment. After a selective pulse is applied, .this magnetization is rotated by 90• and 

spin-locked with a field of strength B15. It is assumed that the pulse is short enough that 

no significant change in entropy will occur during the pulse. 149 Note that since this pulse 

is selective, the effective field strength is actually (S+li2)B15.27 Since the B1s field is 

much smaller than the Bo field, a non-equilibrium situation exists. The origin of the time 

axis is chosen to be the point at which the spin-lock field is turned on. The inverse spin 

temperature at the start of the spin lock can be found by equating the magnetizations and 

solving for ~s(t=O) 

(M5(t=0)) = (M5) eq 

~5(t=O)C5 ( (S + 1/2) B15) = ~5(t=oo)C5B0 (4.27) 
Bo 

= (S + 1/2) BIS. ~s(t=oo). 

From the form of Equation (4.27), one can see that the spins are cooled by the spin­

locking process. They will, therefore, relax back to the lattice with a time constant T {~) 
The Hartmann-Hahn match condition, however, has provided another relaxation 

pathway: the energy-conserving flip-flop transitions of Equation ( 4.5). In this 

phenomenological approach, it is assumed that the rate at which these transitions occur 

can be described by a cross relaxation rate constant, T CP. The cross relaxation is 

constrained by the requirement of conservation of energy 

(4.28) 

Using the Curie law definition of magneti_zation (Equation ( 4.17) ), Equation ( 4.28) 

becomes 

(4.29) 
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where a generalized version of the Hartmann-Hahn condition has been used to describe 

the effective applied field strengths. Substitution of the Curie constants gives 

where 

A= (S+l/2)N1 

(I+ 1/2) N5 . 

(4.30) 

(4.31) 

When the Hartmann-Hahn match condition is met, the term in parentheses in Equation 

(4.30) equals one. 

Using the constraint of Equation (4.30), one can write first-order rate equations 

that describe the cross polarization process 

(4.32) 

where k1 and ks are the relaxation rate constants for the I and S spins respectively and ksi 

is the cross-polarization rate constant. Using the initial conditions of 

~1(0) = 0 

~s(O) = So 
(4.33) 

where S0 is a constant representing the initialS-spin magnetization (see Equation (4.27)), 

one can solve Equation (4.32) to obtain the following equation for the intensity of the I 

spin as a function of contact time 

So~ksi - (ks + ki + ksi (I +A) - W) 'tcp/2 
I(tcp) = ----w--- · [ e (4.34) 

- (ks + ki + ksi (1 +A) + W) tcP/2 
-e ] 

where 
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(4.35) 

Note that Equation (4.34) does not make any simplifying assumptions about the 

relative magnitudes of the different parameters. Although in our case k1 is several orders 

of magnitude smaller than ks and k51, we chose not to make any approximations based on 

this fact since k1 could be independently and directly measured. It is also important to 

realize that assumptions which may be valid for systems with an abundance of protons 
'. 

(such as the assumption that 'A is small) will often not be appropriate for systems that do 

not contain protons. Unwarranted simplifications have been made in the literature134 and 

may have led to incorrect conclusions. 

This phenomenological theory of cross polarization has several liiJlitations. It 

assumes that a common spin temperature is rapidly reached among spins of a given type 

even though this may not be true for a system of dilute spins with a small gyromagnetic 

ratio (where ·heteronuclear and homonuclear couplings are of the same magntitude). 148 

Thermodynamics also cannot be rigorously applied to isolated pairs of spins. Another 

problem with the phenomenological approach is that it incorrectly describes the behavior 

of the system when the spin-lock amplitudes are rnismatched. 149 A more rigorous 

treatment of cross polarization 148•
149 has shown that, due to quantum-mechanical 

constraints, a system will often not reach its true equilibrium state but rather a metastable 

quasi-equilibrium. The quasi-equilibrium approach provides a more accurate description 

of cross polarization under mismatched conditions and predicts a broadened match 

condition (see Figure 4.5a) although the predicted lineshape is Lorentzian rather than the 

Gaussian typically observed. The quasi-equilibrium approach does not address cross­

polarization dynamics, however. Still another concern (particular to our situation) is that 

the fictitious spin-1/2 approximation may break down for quadrupolar nuclei. 

Despite its deficiencies, the phenomenological model has been widely applied with 

some degree of success to studies of CP dynamics at the Hartmann-Hahn match which 

leads us to consider it here. An important caveat is that parameters extracted from this · 

model should not be viewed as true thermodynamic variables but as dependent in some 

(unspecified) way on the experimental conditions. 
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Equation ( 4.34) can now be compared with the experimentally measured curves 

for cross polarization dynamics from 27 AI to 29Si in low albite. For the silicon sites with 

one aluminum nearest neighbor, A is equal to 3 (see Equation ( 4.31)) while for the silicon 

site with two aluminum nearest neighbors, A equals 3/2. Although most of the intensity in 

the 29Si MAS spectrum of low albite at m/ (21t) = 2400Hz is concentrated in the 

centerbands, a few low-intensity sidebands are present for each site. Thus, a small 

correction factor, ~. is included for each site so that the centerband intensities can be 

directly compared. ~ represents the fraction of the total intensity of a given site that is in 

the centerband.' Because the principal values of the 29Si chemical shielding tensors in low 

albite are known (see Chapter 5), 153 ~ can be calculated. At W/ ( 21t) = 2400 Hz, ~ is 

equal to 0.76, 0.83, and 0.81 for the 8 = -91.8 pprri, 8 = -96.1 ppm, and 

8 = -103.9 ppm sites respectively. These values are quite similar to each other and 

show that for our case, this is indeed a small correction. However, for slowly-spun 

samples that contain sites with vastly different chemical-shielding anisotropies, the 

differences in ~ would be significant. 

To determine the cross-polarization time dependences, the measured values (see 

Figure 4.8) of the silicon r~tating-frame relaxation times ( k1 = 1 /T 1(~ ) were used, and 

three-parameter fits were performed to extract values for S0, ks, and ksi· The results of the 

best fits are summarized in Table 4.1. The rate constants for the cross-polarization process 

Isotropic Shift kl=lff lp (I) ks=lff tp (S) ksi=lffcp 
So [ppm] [s-l]a [s-1] [s-1] 

-91.8 0.17 45 2.8 17 

-96.1 0.08 29 2.2 22 

-103.9 0.09 33 2.4 25 

· Table 4.1 - Parameters from cross-polarization time-dependence fits 

a. TIp (l)•s for silicon were measured by independent experiments and used as fixed parameters. 

are, as expected, all in the same range since the distances to the nearest-neighbor 

aluminum atoms are very similar (see Table 3.1). However, the initial S-spin 
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magnetizations and the aluminum relaxation rate constants show a rather large and 

unexpected variation. Since there is only one aluminum site, one would expect to obtain 

similar values for these two parameters. 

Although there is only one crystallographic aluminum site in low albite, it is 

conceivable that there could be different TIp relaxation rates for aluminum atoms in 

different magnetic environments. Figure 4.12a shows a schematic view of the two 

possible ~nvironments, an S2I system (for Q4(2Al) sites) and an SI system (for Q4(1Al) 

sites). To determine if the magnetic environments were a significant factor, aluminum TIp 

a) 
Si 

"""/ """/ """/ Si Si""" Si 
/ ./ 

/ 

"'-si """Si Si/ 

/""" Si /""" /""" 
0 4(1 AI) Q4(2AI) 

b) 
27AI 

Figure 4.12 - (a) Possible magnetic environments in low albite. (b) Pulse sequence for 
indirect 27 AI T1 measurement. A spin-lock on the 27 AI channel is followed by cross 
polarization to ~9Si to separately measure the T 1p's of aluminum atoms in different 
magnetic environments. 
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values were measured indirectly using to the pulse sequence of Figure 4.12b. The results 

of such measurements are shown in Figure 4.13. The fast-decaying portion of the 

biexponential (see Section 3.4) could not be reliably measured due to the finite rise time of 

the pulse on the 29Si channel, but the slow time constants are the same for all three sites to 

within experimental error. Variations in aluminum T lp values are, therefore, not the 

reason for the low intensity of the Q4(2Al) site. 

Another potential method for deconvolving the rate parameters would be to 

perform "drain" experiments as a function of contact time. 143
•
154 Such experiments would 

consist of two parts: (a) Hartmann-Hahn cross polarization from 29Si to 27 AI followed by 

detection of the 29Si FID, and (b) a spin-lock only on the 29Si spins followed by detection 

of the 29Si FID. Phase modulation of the spin lock on the 27 AI spins during part (a) would 

prevent 27 Al-to-29Si polarization transfer and eliminate the effect of the 27 AI T lp on the 

signal. Taking the difference between experiments (b) and (a) and normalizing to 

experiment (b) would give a signal with an intensity that depends only on A and T CP. A 

0.80 

0.60 

0.40 

0.20 

0.02 0.04 

'tsL [s] 

0.06 0.08 

Figure 4.13 - Indirect T lp measurements for the aluminum atoms near the three different 
silicon sites in low albite. The circles correspond to the 0=-91.8 ppm site; the diamonds 
correspond to the S=-96.1 ppm site; and the squares correspond to the S=-1 03.9 ppm site. 
To within the accuracy of the measurement, the slow time constants are the same in all 
three cases. 

128 



single-parameter fit could therefore be used, permitting a more reliable determination of 

Tcp Unfortunately, the long T 1 of the 29Si spins makes 29Si-to-27 Al cross polarization 

impractical. 

To determine how sensitive the contact-time-dependence fits are to the parameters, 

Equation (4.34) was used to generate simulated curves for several sets of parameters. 

Specifically, pairs of curves with identical values of S0 and ks (the mean values of those 

listed in Table 4.1) were generated for ~3/2 (the Q4(2Al) site) and for ~3 (the Q4(1Al) 

sites). The other parameters were varied but were constrained to have the same order of 

magnitude as the values in Table 4.1. A few of these curves are plotted in Figure 4.14a-d 

with the dotted lines corresponding to the Q\2Al) site and the solid lines corresponding to 

one of the Q\ 1 AI) sites. In Figure 4.14a, the k1 and ks1 values from Table 4.1 were used 

(along with the appropriate values of~). and the maximum CP intensity for the site with 

two aluminum nearest neighbors was found to be higher than that for the _site with one 

aluminum nearest neighbor. However, the maxima of these simulated curves appeared 

especially sensitive to the value of k51. With just slight variations in the value of ks1 

(Figure 4.14b-d), the relative i~tensities of the Q4(2Al) and the Q4(1Al) sites changed 

considerably. In most cases, they were within a few percent of each other, but sometimes 

the Q4(2Al) site was more intense than the Q4(1Al) site and other times the converse was 

true. Thus, there is no simple relationship between the maximum intensity of the cross­

polarized signal and the number of nearest-neighbor aluminum atoms for the conditions of 

our experiments. 

In view of these simulations, our experimental observation that the maximum 

intensity reached for the site with two aluminum nearest neighbors is lower than the 

maximum intensities of the two silicon sites with ':me aluminum nearest neighbor is not 

surprising and agrees qualitatively with the phenomenological theory. In fact, precise 

quantitative agreement between our data and Equation (4.34) is not expected. The spin­

temperature model we have used assumes an exponential decay of the spin-locked 

magnetization, but as pointed out in Chapter 3, the relaxation of 27 Al in low albite is at 

least biexponential. The fact that there is no simple way to incorporate biexponential 

relaxation processes is one of the limitations of the phenomenological model. However, 

Equation (4.34) is still a useful approximation. The values ofT{~) extracted from the fits 
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(see Table 4.1) all fall into the physically reasonable range of being larger than the fast­

decaying component and smaller than the slowly-decaying component of the measured 

rotating-frame relaxation of 27 Al in low albite (see Figure 3.15). 

a) 1 ,----------. b) 1---------, 

o~~~~~~~~~~ o~~~~~~~~~~ 

0 0.5 1 0 0.5 1 

e) 1 f) 1 

o~~~~~~~~~~~ o~~~~~~~~~~~ 

0 0.5 1 0 0.5 1 

g) 1 -rep [s] 

o~~~~~~~~~~ 

0 0.5 

-rep [s] 
1 

Figure 4.14 - Simulated cross-polarization time-dependence curves showing the 
sensitivity of the relative intensities to slight variations in cross-polarization rate 
constants. In all simulations, S0=21 and ks=36 s- 1 (the average of the values in Table 4.1) 
for both curves. The dotted line represents the cross-polarized silicon intensity for a 
Q\2Al) site, and the solid line represents the cross-polarized silicon intensity for a 
Q4(1AI) site. The following parameters are held constant in all simulations for the 
Q4(1Al) site (solid line): ~ = 0.83, k1 = 0.08 s- 1, ks1 = 2.2 s- 1, and A.= 3. In all of the 
simulations for the Q4(2Al) site (dotted line), two parameters are held constant:~= 0.76 
and k1 = 0.17 s- 1

, and the others vary as follows: (a) A.= 3/2, k51 = 2.8 s- 1; (b) A.= 3/2, ks1 
=2.4s- 1;(c) A=3/2,k51 =2.2s-1;(d) A=312,k51 =2.0s- 1;(e) A=2.78,k51 =2.6s- 1;(f) 
A.= 2.78, ks1 = 2.4 s-1; (g) A.= 2.78, k51 = 2.2 s- 1 
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Cross-polarization intensities often cannot be quantitatively interpreted even for 

the relatively simple case of cross polarization between two spin-112 nuclei. When 

quadrupolar nuclei are involved, there is the additional complication that a selective pulse 

on the central transition will not uniformly excite all possible crystallite orientations. 

Thus, the value of A for the Q4(2Al) site would be expected to deviate from 3/2. As 

discussed in Section 1.2.5, only 9/35 = 25.7 % of the aluminum spins are expected to be 

excited by a selective pulse on the central transition.27 From simple statistics, one can 

calculate the probabilities that a given 29Si nucleus in a Q\2Al) site has zero, one, or two 

excited aluminum neighbors. Since spin-temperature alternation47 eliminates all direct 

(non-cross-polarized) 29Si signal, one only needs to be concerned with the case~ of one or 

two excited aluminum atoms. Taking the weighted average of these two cases gives A = ' 
2.78. While this is significantly different from the value of A= 1.5 used in the fits above, 

an examination of the simulations in Figure 4.14e-g reveals that the same general behavior 

is observed, but the values of k51 are slightly shifted. Since the values of A and k51 are 

highly correlated, their effects are difficult to deconvolve, and the matter was not pursued 

further. 

It is conceivable to correct for all these unknown scaling factors by explicitly 

taking the experimental conditions into consideration and simulating the relevant part of 

the spin system numerically. 151 Such an approach may enable quantitative extraction of 

relative intensities. from cross-polarization spectra involving half-integer quadrupolar 

nuclei. 

4.5 Prognosis for Cross-Polarization from Quadrupolar Nuclei Using 
Low-Rf Field Strengths 

In general, the improvement in signal-to-noise ratio that can be obtained by using 

cross polarization depends on two factors: (1) the gyromagnetic ratio of the two spins and 

(2) their longitudinal relaxation times. The relaxation time determines how fast an 

experiment can be repeated, and a shorter relaxation time has the advantage of permitting 

faster signal averaging. In low albite, the signal-to-noise ratio per unit time was enhanced 

by a factor of five for the 27 Al-to-29Si. cross-polarization experiment relative to the direct­

excitation experiment when both were optimized. The enhancement for the 23Na case was 
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a factor of two (see Figure 4.15). Although in a single scan the signal obtained by cross 

polarization is actually less intense than the direct-excitation signal, there is a still a gain 

in the signal-to-noise ratio per unit time due to the faster repetition rate in the cross­

polarization spectrum (5 s) compared to the direct-excitation spectrum (2000 s). 

The cross-polarization experiment gives less signal per scan than the direct 

excitation experiment because the cross-polarization efficiency for quadrupolar nuclei is 

usually very low for a sample spun about an angle greater than 30• from the static field as 

a consequence of the time-dependence of the first-order quadrupolar interaction. 11 •122 

Although switched-a~gle spinning experiments take advantage of the increased cross­

polarization efficiency for samples spun about an axis parallel to the static magnetic 

Single Pulse 

----------~------~~------o_n __ 
2
_
9
Si 

23Na-to-29Si 
Cross Polarization 

27 Al-to-29Si 
Cross Polarization 

I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-85 -90 -95 -1 00 -1 05 -11 0 
Frequency (ppm from TMS) 

Figure 4.15 - Relative intensities for constant time experiments. All three of these spectra 
were acquired by signal averaging for 8000 s although the recycle delays (and, hence, 
number of scans) differed from experiment to experiment due to differences in T 1. (The 
delays were 2000 s, 2 s, and 5 s for the 29Si, 23Na-to-29Si, and 27 Al-to-29Si experiments, 
respectively.) The experiments were normalized by the square root of the number of scans 

· so that the noise levels were the same. 
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field, 122•144 they cannot be performed on conventional MAS equipment. Furthermore, the 

design of switched-angle spinning probes which are capable of spinning about an axis 

parallel to the static field155•156 precludes the use of a large volume rotor, but use of a large 

rotor greatly enhances sensitivity. Thus, despite the loss in intensity per scan, cross 

polarization from quadrupolar nuclei during MAS can still be a useful technique in many 

cases.· 

It is possible to enhance the cross-pplarized signal further by performing a linear­

amplitude ramp during the spin lock on the spin-1/2 channel (see Figure 4.16). 157•158 .1 59 

Such a ramp is typically centered at an amplitude equal to the center of one of the match 

conditions (see Figure 4.5b; in our case, we used the centerband), and the amplitude is 

stepped over the full width of that condition. The variation in amplitude compensates for 

dipolar broadening and field inhomogeneity, permitting a larger fraction of the crystallites 

in the sample to be Hartmann-Hahn matched than in the constant-amplitude case. For 

sufficiently small ramp slopes, the process can be considered quasi-adiabatic. In 

principle, equivalent results will be obtained regardless of whether the slope of the ramp is 

positive or negative or whether the ramp is performed on the S or I channel. Our 

experiments had to be performed with the ramp on the 29Si side, however, since the spin 

lock on 27 AI was so small. This led to an additional 40% signal enhancement and a slight 

modification of the cross-polarization parameters (see Figure 4.17). However, the relative 

heights of the three peaks did not change. More complicated amplitude-modulation 

techniques have also been developed, 160•161 but they require specialized' hardware. 

Furthermore, they are highly optimized for pairs of spin-112 nuclei and may not be easily 

generalizable to quadrupolar systems. For these reasons, they were not pursued further. 

29Si 

Figure 4.16 - Linear ramp sequence for enhancing cross-polarized signal intensity by 
matching to all crystallites. 
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In heterogenous samples, quantitation can be improved in some cases by 

performing a chain of cross polarization steps in which the source spins are allowed to 

b) 

1.0 

0.5 

o.o~~~~~~~~~~~~~~~~~~~~ 

1.5~~~~~~~~~~~~--~~~----~~~-, 

1.0 

0.5 

o.o~~~~~~~~~~~~~~~~~~~~~ 

0.0 0.1 0.2 0.3 0.4 0.5 

tcp [s] 

Figure 4.17 - Comparison of cross polarization dynamics for experiments performed using 
a Hartmann-Hahn match (circles) and linear amplitude ramp (squares). (a) The 0=-96.1 
ppm site. (b) The 0=-91.8 ppm site. Although intensities were enhanced by 40% by using 
the ramp, the CP dynamics were not substantially altered, and the relative intensities of the 
Q\IAl) and Q\2Al) sites remained the same. 
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relax completely between contact periods. 162•163 Since such a method is not practical for 

use in two-dimensional experiments, we chose not to explore it with our system. 

In addition to large differences in T 1 times, two other conditions must be fulfilled 

for cross polarization from quadrupolar nuclei to be advantageous: ( 1) the quadrupolar 

coupling constant must be small enough to allow efficient spin locking, and (2) the T 1 p 

relaxation times of both spins must be long compared to the inverse of the cross-relaxation · 

rate constant. 

a) 

b) 

10000 5000 0 

[Hz] 

-5000 -10000 

Figure 4.18 - 29Si spectra of dehydrated zeolite Na-A. (a) Direct 29Si signal. Thirty-two 
scans were recorded with a recycle delay of 20 s. The broad downfield peak is due to glass 
ampule in which the sample was sealed. (b) 27 Al-to-29Si CP signal. 1056 scans were 
recorded with a recycle delay of 0.5 s. The spectra are scaled to the same noise level to 
permit a direct comparison of signal intensities. J 
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In samples where the spin-112 nucleus has a relatively shortT 1, cross polarization 

from quadrupolar nuclei, although still possible, may not lead to a signal-to-noise 

enhancement. Figure 4.18 shows two 29Si spectra of dehydrated zeolite Na-A, both 

acquired with 10.7 minutes of signal averaging. The experimental parameters were 

similar to those described in Section 4.2. The spectra are scaled to the same noise level, 

allowing a direct comparison of signal intensities. Although the cross-polarized spectrum 

eliminates the background 29Si signal from the glass ampule, the signal-to-noise per unit 

time is approximately the same in both cases. However, the presence of a cross-polarized 

signal can be useful in heteronuclear correlation experiments even if it does not lead to 

signal enhancement (as will be demonstrated in Chapter 6). 
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Chapter 5: Applications of Cross Polarization from 
Quadrupolar Nuclei to Aluminosilicates 

An advantage of the faster repetition rate for 27 Al-to-29Si cross polarization is the 

increased feasibility of two-dimensional experiments since a five-fold increase in signal 

enhancement corresponds to a twenty-five fold savings in time. In this chapter and the 

next, we present two-dimensional experiments which demonstrate applications of cross 

polarization from quadrupolar nuclei. 

5.1 Isotropic-Anisotropic Corretation Spectroscopy 

Due to its typical high resolution and sensitivity to local atomic environments, 

solid-state 29Si NMR has been used extensively to study a wide range of materials and 

materials-related problems. Most of the chemical information obtained using 29Si NMR 

has utilized the isotropic chemical shift. Through empirical relationships, information 

about aluminum occupancy of next-nearest neighbor positions, Si-0-T bond angles, and 

Si-0 bond lengths have been obtained. 110" 64 

The chemical shift is strongly dependent on the-local electronic environment and 

on the orientation of a crystallite relative to the static m&gnetic field. To fully characterize 

the local atomic environment, both the isotropic and the anisotropic components of the 

chemical shift need to be determined. For single crystals the complete orientation­

dependent chemical-shielding tensor can be determined by measuring NMR spectra as a 

function of orientation of the crystal about three axes relative to the magnetic field6 or by a 

more efficient technique that involves the sudden reorientation of th~ crystal during a two­

dimensional NMR experiment. 165
•166" 67 For powders, the chemical-shielding interaction 

can be determined from NMR spectra of a static or slowly rotating sample. When 

multiple atomic sites are present, however, the powder patterns will often overlap, 

precluding the determination of· the chemical-shielding parameters from a simple one­

dimensional spectrum. 

The problem of spectral overlap can be overcome by the use of two-dimensional 

NMR techniques, which combine the high resolution of an isotropic chemical-shift 

spectrum in one dimension with the high information content but low resolution of an 
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anisotropic spectrum in a second dimension. Two-dimensional isotropic-anisotropic 

correlation techniques have led to the greater utilization of the anisotropic chemical shift 

for the characterization of the local atomic environment, for the study of molecular 

motion, and for comparisons with theoretical calculations.23 

Recently, many isotropic-anisotropic correlation techniques have been developed 

including: Magic-Angle Hopping (MAH), 168 Magic-Angle Turning (MAT), TOSS­

reTOSS, 169 Switched-Angle Spinning (SAS), 170.171 •172 Variable-Angle Correlation 

SpectroscopY (VACSY),90.173 experiments involving changes in the spinning speed174
•
175 

and variations of the above. All of these techniques involve reorientation of the powder 

sample either by hops between discrete positions (MAH), by sample spinning (MAT, 

TOSS-reTOSS, and the variable speed techniques), or by a combination of the two 

(VACSY, SAS). VACSY, SAS and the variable speed techniques will not be discussed 

further in this thesis since they cannot be carried out with a conventir:mal MAS set-up. 

The Magic-Angle Hopping experiment also requires special equipment but will briefly be 

mentioned because it is the conceptual predecessor of Magic-Angle Turning. 

5.2 Magic-Angle Hopping 

Magic-Angle Hopping (MAH) 168•176 was one of the first techniques developed to 

produce isotropic-anisotropic correlation spectra. The experiment makes use of the fact 

that anisotropic second-rank interactions will be averaged to zero under transformations 

that have cubic (or higher) symmetry. 177 Rapid magic-angle spinning is one example of 

such a transformation, but it can be shown 11 that three discrete 120° "hops" about the 

magic-angle axis also suffice to average out the chemical-shielding anisotropy. A 

derivation of this property as it applies to the MAH experiment will not be presented here, 

but the same principle will be discussed in more detail in Section 5.3.1 in relation to MAT. 

Figure 5.1 shows the Magic-Angle Hopping pulse sequence (with the conventional 

use of the label S for the directly detected spins). The evolution period is divided into 

three segments, each of which occurs at a different rotor phase angle. Z-filters4 are used to 

store one component of the magnetization along the static field while the sample is 
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reoriented. At the end oft., only the isotropic part of the chemical shift remains. Two­

dimensional Fourier transformation leads to a spectrum in which isotropic shifts are 

correlated with static powder patterns. 

While the MAH experiment is conceptually elegant, it requires a specialized probe 

design 176 which, although commercially available, is not found in many NMR 

laboratories. Another drawback of.the experiment is that static powder patterns have poor 

signal-to-noise compared to MAS sideband patterns. Both of these problems can be 

circumvented by performing slow-spinning variations of the experiment. 

5.3 Isotropic-Anisotropic Correlation by Slow Spinning 
' . 

The MAH pulse sequence of Figure 5.1 can, in fact, be applied to rotating samples 

as was first shown by Gan. 178 In this experiment, the pulses are synchronized with the 

sample rot~tion so that t 1 evolution occurs after the sample has rotated by 120· 

increments. In the limit that t1 is much smaller than the rotor period (requiring rotation { 

rates of less than I 00 Hz), it is possible to view the slow-spinning experiment as an 

approximation to the discrete hopping experiment. 

s go· go· go· 

~ h 3 op 

go· 
.!J 
3 

() 

Figure 5.1 - The Magic-Angle Hopping experiment. The sample is static during each 
portion of the evolution period. Z-filters are used to store' a component of the 
magnetization as the sample is reoriented by 120• about the magic-angle axis. These 
positions correspond to three vertices of an octahedron. At the end of the t1 period, the 
chemical shift anisotropy has been averaged out. 

I 
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Using such a slow spinning speed is not the best way to perform the experiment, 

however, since it leads to distorted powder patterns ~hich are difficult to interpret. A 

better approach is to spin at a fast enough rate that distinct spinning sidebands appear in 

the anisotropic dimension. This will improve the signal-to-noise and, hence, the reliability 

of fits of the CSA parameters. In addition, when the S-spin chemical-shielding anisotropy 

is greater than the S-spin homonuclear dipolar coupling (as is the case for nuclei with low 

gyromagnetic ratios and low natural abundance such as 13c or 29Si), it will be possible to 

choose a spinning rate that makes the sideband intensities independent of the dipolar 

interaction. To theoretically describe the case where the evolution period is a significant 

fraction of the rotor period, one must consider the time-dependence explicitly 11 as will be 

shown below (Section 5.3.1 ). 

The pulse sequence of Figure 5.1 is not the only possible sequence that can be used 

to implement this concept. Variants using 180° pulses have been developed by Gann et 

al. 179 and Hu et al. 18° Collectively, these experiments are known as Magic-Angle Turning 

experiments, 11 .! 80 and they will be discussed in detail in the following sections. 

5.3.1 Theory of Magic-Angle Thrning Experiments 

To show how Magic-Angle Hopping and Magic-Angle Turning experiments lead 

to an isotropic spectrum in the ffi1 dimension, the theory behind such experiments will be 

outlined. Related derivations can also be seen in the Ph.D. theses of Baltisberger11 and 

Gann. 181 

Figure 5.2 shows a schematic of a generalized MAHIMAT type of experiment. It is 

not meant to represent a particular pulse sequence but will serve as a framework for the 

following discussion. The periods labeled 8 will be constructively added in several of the 

pulse sequences to form the evolution period, t 1. (In one case, 180 the evolution period is 

formed slightly differently, but the same formalism can still be used.) r represents the 

number of basic building blocks (groups of pulses) used to construct the sequence, and N 

and K are integers. The isotropic echo is formed at the time 't'. In the following derivation, 

we will assume that ~he pulses are short enough relative to the rotor period that their finite 

width can be neglected. 
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During an MAT experiment, the magnetization evolves under the secular 

chemical-shift Hamiltonian (see Section 1.2.3) 

· :Hcs = Q(t)lz (5.1) 

where the time-dependent frequency of the chemical shift for a single crystallite is given 

by (see Equations (1.108) and (1.60)) 

(5.2) 

The { C1} are constants, and A~~ defines the orientation of the chemical shift principal 

values relative to the rotor axis (via the Euler angles acs, ~cs, and f 5). In the zeroth­

order average Hamiltoni~n approximation, the phase acquired during the evolution period 

of an MAT pulse sequence can be determined by integrating Equation (5.2) over time and 

making use of the fact that the pulse sequence contains repetitive building blocks '~ 

f-l [ (Nt,j/K) +0 Nt,(j +. 1)/K ] 

<l>('t') = I J f Q(t)dt + K f Q(t)dt 

j = 0 N't,j/K (Nt,j/K) + 0 

't' 

+ L f Q(t)dt. 

fN't/K 

,. ,, ,, ,, ,, 
•' ,, ,, ,, 
•' ,, ,, ,, 
:: I 

/ 

~ ------~--------~ 

Figure 5.2 - Generalized MAHIMAT type experiment. The basic building block is 
repeated r times, and the periods o contribute to the evolution. N and 1C are integers; 
restrictions on their values are described in the text. 
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Here, the terms J, K, and L have been introduced to describe the effect of the pulses on the 

spins since the types of pulses that are applied dictate how the phase accumulates in the 

transverse plane (e.g. - a 180. pulse reverses the sign of the phase of a given crystallite182). 

Thus, Equation (5.3) represents the combined effects of the pulse sequence on both spin 

space and geometrical space. 

Substituting Equations (5.2) and (1.36) into Equation (5.3) and factoring out the 

m=O term gives 

<I>( 't') 

(5.4) 

{

1-1[ (Nt,j/JK)+O ~imrot Nt,(j+l)/K -imro,t] 

X L J e r dt + K f e dt 
j = 0 Nt,j/K (N't,j/K) + 0 

Integrating Equation (5.4) and using the fact that Wr'tr = 21t leads to 

{ 
r _ 1 ( imN2nJj 

X [ ( J _ K) e -imro,o _ J + Ke- (imN2n) IK] .L e --K-

J = 0 
-imro,'t' - (im1N2n) /K 

+L(e -e ) }. 

For the chemical-shielding interaction, I can only have the values 0 or 2. Under MAS 

d. . d (2) 1 d h con 1t10ns, o. 0 equa s zero, an t e m=O term in Equation (5.5) simplifies to 
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KrN't ( rN't ) C
0

cr. { ro ( J- K) + r + L 't'- __ r } 
ISO 1( , 1( 

(5.6) 

where the summation over j has been performed. 

The remaining terms in Equation (5.5) contain the anisotropic parts of the 

chemical-shielding interaction. To see how these terms can be made to vanish, it is useful 

to perform the sum over j explicitly. Since it is a geometric series, it·can be analytically 

evaluated 

r- 1 ( _im~21t)j 1 _ e- (imfN21t) IK 

~ e =-----£-.J 
1 

-(imN21t)/K .. 
j = o - e 

The denominator cannot equal zero which means that 

mN · 
- -::F integer; m= ± 1, ±2. 

1C 

(5.7) 

(5.8) 

The lowest value of 1C for which this relation can be satisfied is K = 3 ; then it will hold 

for all values of N that are not multiples .of 3. This constrains the number of rotor cycles 

over which an MAT-type experiment can be performed. All MAT sequences published to 

date use K=3. Note that similar principles have been used to remove spinning sidebands 

for odd-half-integer quadrupolar nuclei although in that case five 72° rotations about the 

angle 63.43 ° are necessary. 179 

It is now necessary to consider specific details of the pulse sequences to 

demonstrate how the different flavors of MAT produce isotropic spectra in w1. For the 

experiment of Gan178 (see Figure 5.3), the 90° pulses act as z-filters. Therefore, evolution 

in the transverse plane will only occur during the periods 8 and during the acquisition. 

This corresponds to the case where 1=1, K=O, and L=1; thus,' Equation (5.6) becomes 

(5.9) 

and the anisotropic term is given by 
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-imroo (. rN2 )/ -imrot' (. rN2)' (. N2 )/ ( e r - 1) ( 1 - e- tm 1t 1() + ( e r -e..,. tm 1t ' 1() ( 1 - e- tm 1t 1() 

( 1 _ e- (imN21t) /K) 
(5.10) . 

In the sequence of Figure 5.3, two blocks of pulses are applied (r=2). When the time 

interval between the end of the last block and the start of acquisition is set equal to D, one 

can show (after a lot of algebra) that the numerator in Equation (5.10) is zero. Thus, the 

anisotropy is eliminated, and a purely isotropic echo is formed. Furthermore, it is easy to 

see that Equation (5.9) reduces to C0criso { 3or} soD must equal t1/3. 

In the experiments of Gann et al. 179, evolution occurs in the trr.::sverse plane 

throughout the entire pulse sequence. The 180. pulses will simply change the sign of the 

chemical-shift Hamiltonian, corresponding to 1= 1, K=-1, and L= 1. Equation (5.6), 

therefore, becomes 

(5.11) 

From Figure 5.5, we see that r=K=3. This means that the sum in Equation (5.7) equals 

zero and the anisotropic term has the form 

-imro,t' -imN21t 
(e - e ) (5.12) 

which vanishes whenever t' is an integer multiple of the rotor. period. Thus, a series of 

isotropic echoes spaced at integer multiples of the rotor period will be recorded during the 

acquisition period. 183 These are the well-known MAS rotational echoes, and when 

Fourier-transformed they lead to sidebands in the frequency domain.39 The spin echo (due 

to the 180. pulses) will occur when t' = 2Ntr (see Equation (5.11)) soD is ttf6. 

The experiments of Hu et al. 180 need to be described somewhat differently because 

of their unconventional evolution scheme. Still, the above formalism can be used if D is 

replaced by (Nt/6 +E) for the positive evolution experiment (see Figure 5.7). The 

accumulation of phase is described by 1=1, K=-1, L=-1, and Equation (5.6) becomes 

(
Ntr ) rNtr ( rNtr) C0cr. { 6 - + E ---- t'- -- } . 

ISO 6 1( 1( 
(5.13) 
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Since r=K=3, the anisotropic terms again vanish whenever 't' is an 'integer number of 

rotor periods. The spin echo will be formed at 't' = N'tr, and, therefore, and E=t1/6. 

Clearly, isotropic echoes can be formed by all three pulse sequences. In the next 

two sections we will examine experimental aspects of the techniques and compare their 

performance as applied to low albite. 

5.3.2 MAT with 90° Pulses 

Figure 5.3 shows the first version of the MAT experiment proposed by Gan 178 in 
·· .. 

1992. The pulse sequence is identical to the MAH sequence of Figure 5.1 except that the 

sample is continuously rotated rather than discretely jumped. While the sequence 

successfully eliminates the anisotropy in the ro1 dimension (as demonstrated in the 

previous section), it cannot be used to generate pure absorption-mode lineshapes in that 

dimension, despite assertions to the contrary.ll· 178 (The earlier MAH paper168 did not claim 

to be· phase-sensitive, and spectra were displayed in the absolute value mode.) The reason 

that pure-phase spectra cannot be obtained can be seen by inspecting the pulse sequence 

and coherence-transfer pathway shown in Figure 5.3. The 90• pulse after the second z­

filter restores both + 1 and -1· quantum coherences, but the detector records only one of 

R 

.....__ N'tr ___. 

3 
2 
1 ) ( p 0 

-1 
-2 

N'tr 
3 

) 

decouple 

go· 
..!.! 
3 

' 
Figure 5.3 - The original MAT experiment178. Note that the pulse sequence fails to retain 
both the +I and -1 coherences throughout the entire evolution period, preventing pure 
absorption-phase spectra from being recorded. 
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them (the -1 quantum coherence in this figure). However, no pulse separates the last 

portion of the t 1 period from the acquisition period, t2. Thus, the evolution of the + 1 

quantum coherence during the last part of the t 1 period is not recorded, prohibiting phase­

sensitive detection in co1.4 Simply applying whole-echo acquisition to the sequence with 

only 90° pulses as has been suggested 11 does not alleviate this problem since a whole echo 

cannot be obtained for small values of t 1. It is possible to add a 180° pulse after the last 

90°, however, 184 in a combined hypercomplex/whole-echo acquisition experiment (see 

Figure 1.7d). This not only produces pure-absorption lineshapes but also can eliminate 

probe-ringdown effects. 185 Variations which incorporate echoes in each segment of the t 1 

period to suppress artifacts due to relaxation also exist. 185·! 86 

It is, however, possible to obtain a pure-phase, isotropic-anisotropic spectrum 

using only 90° pulses. A sequence that does this was also proposed by Gan 183 and is 

depicted in Figure 5.4. Like the originalMAT experiment, the symmetry of 120° rotations 

about the magic-angle axis is exploited, but the definition of t1 used in this experiment is 

somewhat unconventional. By varying both the time at which signal acquisition is begun 

and the phase cycling of the receiver, experiments with effectively different signs of t1 can 

be recorded as described elsewhere. 183 The experiment labeled p+ in Figure 5.4 
iC0 0"i

51 
{3 (t 1/2)} 

corresponds to a t1-domain signal proportional to e ' (neglecting relaxation) 
iCocriso {3 (-tl/2)} 

while the experiment labeled p- corresponds to e . To process the data, 

one must first apodize the p+ and p- data sets separately since the echo maxima shift in 

opposite directions in increments of half the t1 dwell time. Hypercomplex cosine and sine 

data sets can be then formed by linear combination of these two data sets, and Fourier. 

transformation in both dimensions gives a skewed spectrum. It is tempting to think that 

one should shear the spectrum by using Equation (1.141) with f= 1/3 to obtain more easily 

interpretable results. However, the rotational echoes present in the t2 dimension of the p+ 

and p- data sets lead to sidebands in the two-dimensional spectrum, and shearing would 

produce anisotropic shapes that are difficult to interpret. 183 

The pulse sequence of Figure 5.4 was applied to low albite, but the quality of the 

recorded spectrum was poor (data not shown) with dispersive contributions to the 

lineshape even in the unsheared spectrum. A possible reason for this is the combination of 

a long 29Si T 2 relaxation time and weak heteronuclear couplings in low albite. The pulse. 
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sequences of Figures 5.1, 5.3, and 5.4 were designed under the assumption that the 

magnetization which remains in the transverse plane after the first 90° pulse of the z-filter 

will completely dephase before the second 90° pulse.186 While this is a good 

approximation for 13c spins coupled to many protons, 168 it may not be valid for our case 

where the heteronuclear couplings are weak and transverse relaxation slow. Although, in 

principle, it w0uld be possible to create a longer phase cycle that eliminates the effect of 

this residual magnetization, there is· a better alternative for samples with long T 2 times. 

s <1>7 <j>R+ 

t2 
p+ 

.11/ ~I\ 
v IV 

s <!>7 <j>R-
3 I 

t1 ..!J I ..!J I t .. ·. I 

:''GP··. 2 2 I 2 2 
I 

' I Ill\ 

p-

N'tr .._N'tr--.. I IV ...._ __.. 
3 3 

<1>1: .0202 0202 0202 0202 0202 0202 0202 0202 
<1>2: 1111 1111 1111 1111 1111 1111 1111 1111 
<1>3: 0000 0000 0000 0000 0000 0000 0000 0000 
<1>4: 3300 3300 3300 3300 3300 3300 3300 3300 
<Ps: 1111 1111 1111 1111 1111 1111 1111 1111 
<Ps: 3300 0033 3300 0033 3300 0033 3300 0033 

-<Pi 1111 1111 2222 2222 3333 3333 0000 0000 
<l>R+: 0220 3131 1331 0202 2002 1313 3113 2020 
<l>R-: 0220 1313 1331 2020 2002 3131 3113 0202 

Figure 5.4 - Pure-phase pulse sequence for isotropic-anisotropic correlation spectroscopy 
using only 90" pulses. 183 Spin-temperature altemation47 and CYCLOPS46 have been 
added to the originally published phase cycle. When applied to organic samples, 
-heteronuclear decoupling must be used during the evolution and detection periods. 
Details are described in the text: 
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By using tso· pulses, it is possible to avoid the z-filters (and the loss of magnetization that 

goes along with them) and keep all of the magnetization in the transverse plane. Methods 

for doing this will be described in the following section. 

5.3.3 MAT with 180° Pulses 

Variations of the MAT experiment which use tso· pulses rather than 90• pulses 

provide a convenient alternative for samples with sufficiently long T 2 times. 185 As shown 

in Section 5.3.1, such experiments take advantage of the same symmetry properties of 

second-rank tensors that the MAH experiment exploits. By keeping the magnetization in 

the xy-plane, the loss of magnetization that comes from using a z-filter is avoided. 

Figure 5.5 shows one such pulse sequence developed by Gann (not to be confused 

with Gan) et al,. 179 and Figure 5.6 shows a spectrum of low albite acquired with this 

sequence. While the sensitivity of the spectrum is quite good, the resolution is rather poor. 

This is due to the fact that the experiment is a constant-time experiment, which limits the 

maximum value of t 1, leading to truncation artifacts. From the pulse spacing in Figure 

5.5, it is easy to see that t1 must be less than 2Ntr Increasing the value of N leads to 

improved resolution for a given dwell time, and the value of N also must be large enough 

that the entire echo can be acquired if one wishes to avoid phase distortions. However, 

due toT 2 relaxation, there is a practical limit on the total number of rotor cycles which can 

be used before the sensitivity becomes prohibitively low. 

go· 

I CP I 

3 3 3 
Figure 5.5 - Pulse sequence of Gann et al. 179 for performing an MAT experiment with 180' 
pulses. The 180' pulses are phase cycled in steps of 180' to retain the ±1 coherences at all 
times. Spin-temperature altemation47 and CYCLOPS46 are also used. An echo is formed 
for n=N as described in Section 5.3.1. Because the whole echo is acquired for all t1 points, 
only a single data set needs to be collected. 
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The spectrum shown in Figure 5.6 was acquired with N=1. Interestingly, the most 

intense peak in the t2 dimension occurred at two rotor periods after the last 180° pulse 

--- rather than one. The reason for this artifact is not yet understood, though it may be related 

to the fact that the number of rotor cycles over which the experiment was performed was 

quite small, causing one of the rotational echoes to be coincident with the last 180° pulse. 

Pulse-length or timing imperfections and other sources of experimental error also cannot 

be ruled out. The data was processed using whole-echo acquisition (see Section 1.5.2) , 

with the most intense peak used as the center of the echo. Surprisingly, using the "wrong" 

echo gave results which were in good agreement with those obtained from other pulse 

sequences. This was most likely due to the fact that the ap?dization applied to the t2 

dimension suppressed much of the signal from the other rotational echoes, so the majority 

of the signal was determined by one rotary echo. Since all of the rotary echoes have the 

same shape (differing from each other only by a phase shift),39 similar isotropic­

anisotropic correlation spectra can, in principle, be obtained from any one of them. 183 

Still, the results obtained from this method should be viewed as suspect until the nature of 

the artifact is fully understood. 
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Figure 5.6 - Isotropic/anisotropic correlation spectrum of low albite acquired using the 
pulse sequence of Figure 5.5. The dwell time in the t1 dimension was 300 ll.S while that in 
the t2 dimension was 100 ll.S. Fifteen t1 points (with 1024 scans in each) and 512 t2 points 
were acquired, but the data was zero filled to form a 128 x 512 data set. The total 

. experimental time was 21.5 hours. The spinning speed was-470Hz and 29Si 180' pulse 
length was 28 llS. The experiment was performed with N= 1. 
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Figure 5.7- Pulse sequence of Hu et al. 180 for performing the MAT experiment with 180. 
pulses. Two data sets are collected corresponding to positive and negative increments of 
E, and the data are processed as described in the text. Phases are cycled as described in the 
caption of Figure 5.5. 

Another method for performing the MAT experiment with 180° pulses was 

developed by Hu et al. and is shown in Figure 5.7. 180 As in Gann's experiment, a series of 

180° pulses is used to keep the magnetization in the xy-plane at all times. To obtain pure­

phase spectra with this sequence, two data sets must be recorded. These data sets are 

acquired with the same phase cycle and differ only in the spacing between pulses. In one 

data set, the time between the cross polarization pulse and the first 180° pulse is given by 

(N't/6 +E) while in the other data set it is given by (Nt/6- E) . In both cases, the 

value of E is incremented from slice to slice by one-sixth of the t1-dimension dwell time. 

A linear combination of the data sets gives the amplitude-modulated sine and cosine data 

sets, which can then be processed in the usual way. 

An experiment that uses hypercomplex data acquisition will be less sensitive (by a 

factor of ,fi) than one that uses whole-echo acquisition since twice as many data points 

must be acquired to obtain pure-phase spectra. However, it is not necessary to wait 

several rotor periods for the formation of an echo. The experiment of Hu et al. is also a 

constant time experiment 180 and is subject to a more stringent condition (t1 < Ntr) than that 

of Gann et al. 179 Figure 5.8 shows a spectrum acquired with N=4. 
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Figure 5.8 - Isotropic/anisotropic correlation spectrum of low albite. acquired using the 
pulse sequence of Figure 5.7. The dwell time in the t1 dimension was 300 l.lS while that in 
the t2 dimension was 100 l.lS. Fifty-seven hypercomplex t1 points (with 512 scans in each) 
and 512 t2 points were acquired, but the data was zero filled to form a 128 x 512 data set. 
The total experimental time was 82 hours. The spinning speed was 470Hz and 29Si 180. 
pulse length was 28 l.lS. The experiment was performed with N=4. 

5.3.4 TOSS-reTOSS 

MAT is not the only way to obtain isotropic-anisotropic correlation spectra of 

spinning samples. Another method174 makes use of a technique known as TOtal 

Suppression of Sidebands (TOSS). 182•187 Like the versions of MAT which use 180° pulses, 

TOSS exploits the fact that 180° pulses can generate echoes of spin components while 

sample spim1ing generates rotational echoes. 

By cleverly positioning the 180° pulses, one can allow the spin echoes and their 

corresponding rotational echo manifolds to interfere· in such a way that the anisotropic 

contributions to the FID cancel out, and the isotropic contributions (the centerbands of the 

frequency spectrum) add constructively over the powder. 182 Unlike in the case of MAT, 

this constructive interference is not a true echo, and the magnetization vectors themselves 

are not aligned at that point. Consequently, rotational echoes will not be formed. 169.!88 

The conditions for sideband suppression can be determined by looking at the total phase 

evolution23 as was done in the MAT case 
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a a+b a+b+c 

<1>(-r') = I nct)dt- I nct)dt + I nct)dt 
0 a (5.14) 

a+b+c+d 

I ,n(t)dt+ I il(t)dt 

a+b+c a+b+c+d 

where the 180° pulses change the sign of the phase. The goal is to find a set of pulse 

spacings {a, b, c, d, e} that causes the anisotropies to cancel out for all crystallites. In 

addition, the spacings are chosen so that at the end of the fifth interval, the isotropic echo 

is also refocused. Beginning acquisition at that point permits an FID that corresponds to a 

sideband-free spectrum to be recorded. Many possible sets of pulse spacings have been 

given in the literature; 182 .1 89 one set of values is listed in the caption of Figure 5.9. 

The trajectories of the crystallites can be refocused by applying the TOSS 

sequence in reverse. Kolbert et al. 169 showed that by inserting an t1 evolution period 

between a TOSS sequence and a reversed TOSS sequence, an isotropic-anisotropic 

correlation spectrum can be recorded. This sequence is known as TOSS-reversedTOSS 

(TOSS-reTOSS or TOSS-"deTOSS") and is shown in Figure 5.9a. 

Like the versions of MAT that use 180° pulses, the TOSS-reTOSS experiment can 

only be used on samples with T 2 's that are longer than several rotor periods, and all three 

experiments are susceptible to artifacts from imperfect 180° pulses. The TOSS-reTOSS is 

not a constant time experiment which means there is no restriction on t1. This does not 

prove to be much of an advantage compared to the pulse sequence of Figure 5.7 since the 

TOSS and reTOSS steps themselves have a combined duration of 4.5'tr before the first t1 

point is even taken. A disadvantage of the TOSS-reTOSS experiment is the fact that it 

produces phase-twist lineshapes 191 (see Figure 5.10). This can be remedied by performing 

an experiment with whole-echo acquisition as shown in Figure 5.11. Another potential 

problem with TOSS-reTOSS is the question of the centerband intensity which is distorted 

in the TOSS experiment. 169 The reverse TOSS part of the sequence is predicted to undo 

this distortion, however. 191 In fitting the TOSS-reTOSS experiments performed with a 

152 



s 
d e e d c b 

d ' e e ' d 
Figure 5.9 - (a) Original TOSS-reTOSS sequence 169 for isotropic-anisotropic correlation 
spectroscopy. No phase cycling was applied to the 180. ·pulses since phase-cycling does 
not affect the efficiency of TOSS. 190 (b) TOSS-reTOSS combined with whole-echo 
acquisition for obtaining pure-phase spectra. The 180. pulses are cycled in steps of four to 
retain only the p=-1 coherence.The timings in both sequences are given by: a=0.1226'tr 
b=0.0773'tr c=0.2236'tr d=1 ~0433'tr and e=0.7744'tr The echo delay must satisfy the 
condition .1=a+n'tr where n is an integer. 
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Figure 5.10 - Isotropic/anisotropic correlation spectrum of low albite acquired using the 
pulse sequence of Figure 5.9a. The dwell time in the t1 dimension was 300 j.!S while that 
in the t2 dimension was 100 j.!S. Sixty-one hypercomplex t1 points (with 512 scans in 
each) and 512 t2 points were acquired, but the data was zero filled to form a 128 x 512 data 
set. The total experimental time was 88 hours. The spinning speed was 470 Hz and 29Si 
180. pulse length was 34 j.!s. 
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spinning speed of 680 Hz (see Tables 5.1, 5.2, and 5.3), the centerband intensity was 

excluded from the fits. It was included in the fits of the data acquired with a spinning 

speed of 470Hz. No systematic effect was observed. 
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Figure 5.11 - Isotropic/anisotropic correlation spectrum of low albite acquired using the 
pulse sequence of Figure 5.9b. The dwell time in the t1 dimension was 300 JlS while that 
in the t2 dimension was 100 11s. Sixty-four t1 points (with 512 scans) and 10'24 t2 points 
were acquired, but the data was zero filled to form a 128 x 512 data set. The total 
experimental time was 46 hours. The spinning speed was 470 Hz and 29Si 180. pulse 
length was 34 !lS. The time allowed for echo formation was 5'tr= 10.6 ms. 

5.4 Application of Isotropic-Anisotropic Correlation Methods to Low 
Albite 

The isotropic-anisotropic correlation spectra presented in Figures 5.6, 5.8, 5.10, 

and 5.11 were recorded under similar experimental conditions. All used a spinning speed 

of 470Hz (controlled with a home-built spinning speed controller), a dwell time in the t1 

dimension of 300 ~s, 27 AI excitation field strengths of 4.5-6 kHz, 29Si 180° pulse field 

strengths of 2.4-2.8 kHz, and a recycle delay of 5 s between scans. Other parameters are 

listed in the figure captions. The signal-to-noise was calibrated by recording one­

dimensional spectra before and after each two-dimensional experiment; to within 

experimental error, the intrinsic signal-to-noise ratio was constant in all experiments. 

Variations in the quality of the two-dimensional spectra are due to different methods of 

data acquisition, different numbers of t1 points recorded, and pulse-sequence-dependent 

artifacts as discussed in Section 5.3. All data. were apodized with exponential line 

broadenings of 100 Hz in the anisotropic dimension and 50 Hz in the isotropic dimension. 
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The t1 dimension was zero-filled to 128 points in all cases. The number of t2 points was 

512 for all experiments except the TOSS-reTOSS experiment with whole echo acquisition 

where 1024 points were used. The contours levels in all four figures range from 10 to 

100% in steps of 10%. The spectra were referenced to an external standard ofTMS. 

The cross-polarization conditions were optimized experimentally. At 

CO/ (27t) = 470Hz, the best 27 AI spin lock (in the sudden regime) occurred at a field 

strength of 1070 Hz. The 29Si spin lock field strength was matched to it empirically, and 

optimum contact times were found to be 8 ms. 

The principal values of the CSA were extracted by performing Herzfeld-Berger"0 

fits. Spectra acquired with a spinning speed of 680Hz (data not shown) were fit using the 

program Speedyfit99 provided by Dr. H. J. M. de Groot. The program used Herzfeld­

Berger lookup tables to simulate spinning sideband manifolds and can fit spectra with 

overlapping sites provided they have eight or fewer sidebands. Figure 5.12 shows an 

Experimental 

Simulated 

Difference 

Figure 5.12 - Typical results of the Speedyfit99 program for determining principal values 
of the CSA tensor from MAS spectra. The experimental spectrum corresponds to the -
91.8 ppm site as recorded using the pulse sequence of Figure 5.7 with a spinning speed of 
680Hz. The results are listed in the fourth row of Table 5.1. 
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example of a typical fit from this program. Spectra acquired with a spinning speed of 470 

Hz had more sidebands and were fit using a program that utilized Floquet theory and was 

written with GAMMA130 by Dr. Matthias Ernst. 

pulse rorf(27t) cru 0'22 0'33 
11

cs 8cs 
sequence [ppm] [ppm] [ppm] [ppm] 

Figure 5.5 470Hz -61 ± 3 -88 ± 3 -126 ± 3 0.8 ± 0.1 -35 ± 4 

Figure 5.5 680Hz -60± 7 -88 ± 6 -127 ± 8 0.8 ±0.3 -36 ± 8 

Figure 5.7 470Hz -62±2 -89 ± 1 -125 ± 3 0.8 ± 0.1 -33 ± 3 

Figure 5.7 680Hz -64±4 -90±3 -122 ±4 0.9±0.2 -30 ± 5 

Figure 5.9a 470Hz -54± 7 -89 ± 3 -132 ± 9 0.9 ±0.3 -40± 9 

Figure 5.9a 680Hz -60±4 -88 ± 3 -127 ±4 0.8 ±0.2 -35 ±4 

Figure 5.9b 470Hz -62 ± 1 -86± 6 -127 ± 7 0.7 ±0.2 -35 ± 7 

average N/A -60± 3 -88 ± 1 -127 ± 3 0.8 ± 0.1 -35 ± 3 

Table 5.1 - Principal values of the 29Si T2m site (-91.8 ppm) in low albite as determined_ by various 
isotropic-anisotropic correlation techniques using 27 Al-to-29Si CP. The error bars represent the accuracy of 
the fit and not the inherent accuracy of the pulse sequence. The unweighted average and standard deviation 
of all experiments is given in the last row. 

pulse rorf(21t) cru 0'22 0'33 
11

cs 8cs 
sequence [ppm] [ppm] [ppm] [ppm] 

Figure 5.5 470Hz -77 ± 3 -94 ± 3 -118±3 0.8 ± 0.2 -22 ±4 

Figure 5.5 680Hz -73 ± 7 -93 ± 5 -123 ± 7 0.7 ±0.3 -27 ± 7 

Figure 5.7 470Hz -76±2 -95 ± 1 -118±2 0.9±0.2 -21 ± 3 

Figure 5.7 680Hz -74 ± 2 -93 ± 1 -121 ± 2 0.8 ± 0.1 -25 ± 2 

Figure 5.9a 470Hz -75 ± 3 -94± 3 -119±3 0.9 ±0.2 -23 ± 4 

Figure 5.9a 680Hz -72 ±4 -93 ± 3 -123 ± 4 0.8 ±0.2 -27 ±4 

Figure 5.9b 470Hz -76 ± 1 -94 ± 1 -118± 1 0.8 ± 0.1 -22 ± 1 

average N/A -75 ±2 -94 ± 1 -120± 2 0.8 ± 0.1 -22 ± 2 

Table 5.2 - Principal values of the 29Si T20 site (-96.1 f.Pm) in low albite as determined by various 
isotropic-anisotropic correlation techniques using 27 Al-to-2 Si CP. The unweighted average and standard 
deviation of all experiments is given in the last row 
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pulse m.J(27t) cru cr22 cr33 
TICS 0cs 

sequence [ppm] [ppm] [ppm] [ppm] 

Figure 5.5 470Hz -85 ± 3 -100 ± 3 -127 ± 3 0.6±0.2 -23 ±4 

Figure 5.5 680Hz -80±5 -98 ± 5 -134±6 0.6 ±0.3 -30± 6 

Figure 5.7 470Hz -85 ± 2 -100 ± 1 -127 ± 2 0.7 ± 0.1 -23 ± 3 

Figure 5.7 680Hz -82±2 -99±2 -131 ± 2 0.6 ± 0.1 -27 ± 2 

Figure 5.9a ·470Hz -83 ± 3 -101 ± 3 -128 ± 4 0.8 ±0.2 -24± 5 

Figure 5.9a 680Hz -81 ± 3 -99 ± 3 -133 ± 3 0.6±0.2 -29 ± 3 

Figure 5.9b 470Hz -83 ± 1 -100 ± 1 -128 ± 1 0.7 ± 0.1 -24± 1 

average N/A -83 ± 2 -100± 1 -130±3 0.7 ± 0.1 -26± 3 

Table 5.3 - Principal values of the 29Si Tlm site (-103.9 ppm) in low albite as determined by various 
isotropic-anisotropic correlation techniques using 27 Al-to-29Si CP. The unweighted average and standard 
deviation of all experiments is given in the last row. 

The results of fits from all four experiments are listed in Tables 5.1, 5.2, and 5.3. 

Summations over several ro1 slices were used to produce anisotropic spectra for fitting 

except in the case of the poorly phased TOSS-reTOSS spectra where only one slice was 

used. To within experimental error, all four pulse sequences give similar results for low 

albite. The error bars reflect the quality of the fits and not the intrinsic accuracy of the 

experiment. Due to the small number of experiments performed and the absence of an 

independent and accurate way to directly measure the 29Si CSA parameters in low albite, 

no general conclusions about the reliability of the pulse sequences could be drawn. 

Correlations between anisotropic chemical-shift parameters and number of 

bridging oxygens have been reported for Qn(OAl) sites,192•193 but the influence of 27 AI on 

the 29Si anisotropy parameters is not currently understood. To date, few such compounds 

have been measured, and ab initio calculations on silicates are in their infancy. 194 Cross 

polarization from quadrupolar nuclei to 29Si may enable CSA parameters to be determined 

for a variety of silicates, providing a database for empirical correlations. 
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5.5 Experiments on Low Microcline 

Principal values of the chemical-shielding anisotropy have also been determined 

for the mineral low microcline (KA1Si30 8) by performing isotropic-anisotropic 

correlation experiments which utilized 27 Al-to-29Si cross polarization. Low microcline 

has the same framework structure as low albite (see Figure 3.1) and analogous peak 

assignments. 117 Cross-polarization experimental parameters (e.g. - optimum power levels 

and contact times) for the isotropic-anisotropic correlation experiments were similar to 

those of low albite (see Section 5.4), and as in the case of albite, the cross-polarized signal 

for the Q4(2Al) site (at -94.0 ppm) was consistently less intense than that of one of the 

Q\lAl) sites (at -99.5 ppm) for a range of spinning speeds. (The other Q\lAl) site could 

not be used for comparison since the peak contained contributions from albite present in 

the sample.) 
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Figure 5.13 - Isotropic and anisotropic spectra of 29Si in low microcline recorded using 
the pulse sequence of Figure 5.9b with 27 Al-to-29Si cross polarization. The spinning 
speed was 500Hz, and the 29Si 180. pulse length was 58 IJ.S. Sixty-three t1 slices were 
recorded with 512 scans in each and a recycle delay of 5 s. The delay for formation of the 
echo was five rotor periods. 
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Figure 5.13 shows the isotropic projection and several anisotropic slices from a 

TOSS-reTOSS experiment (whole-echo version) performed on low microcline. Due to 

the domains of low albite nearly always found in natural samples of low microcline, 195 the 

isotropic 29Si spectrum has many closely spaced peaks. The principal values of the 

chemical-shielding tensors could not have been determined from a one-dimensional MAS 

experiment. However, they are easily determined from the two-dimensional spectrum and 

are summarized in Table 5.4. 

Isotropic ' 
0cs 

Shift ro/(2rt) cru 0'22 
0'33 [ppm] Tlcs 

[ppm] [ppm] [ppm] [ppm] 

-94.0 500Hz -62 ± 7 -92±2 -128 ± 6 0.9 ± 0.3 -34± 6 

-94.0 680Hz -63 ±8 -92 ± 11 -127 ± 9 0.9±0.7 -34±9 

-96.4 500Hz -77 ± 3a -94 ± 1a -118±2a 0.8 ± 0.1a -22 ± 2a 

.-96.4 680Hz -73 ± 9a -92 ± lla -125 ±lOa 0.7 ± 0.7a -28 ±lOa 

-99.5 500Hz -79 ±6 -96± 5 -123 ± 6 0.7 ± 0.4 -24 ± 7 

-99.5 680Hz -75 ± 6 -92 ± 8 -132 ± 6 0.5 ± 0.4 -32 ± 7 

Table 5.4- Principle values of 29Si chemical-shielding tensors in low microcline as determinedb from fits of 
anisotropic slices recorded with the pulse sequence of Figure 5.9b. The corresponding experimental data are 
presented in Figure 5.13. 

a. Since our sample of low microcline, like almost all samples found in nature, 195 contains 
domains of nearly pure albite, the peak at -96.4 ppm is actually due to an overlap of albite and 
microcline resonances. 

b. These values differ from those. published by De Paul et al. 196 due to an error in the original cal­
culation. 

5.6 Validity of Using Cross Polarization from Quadrupolar Nuclei 

One potential concern when using cross polarization from quadrupolar nuclei to 

determine chemical-shielding anisotropy powder patterns is whether the cross­

polarization process significantly distorts such patterns. For spin- I nuclei such as 14N, the 

cross-polarization match condition has been shown to be highly dependent on the 

orientation of the quadrupolar nucleus. 197 While similar studies have not been performed 

for cross polarization from odd-half-integer quadrupolar nuclei, the shape of the 23Na 

central transition powder pattern after a spin lock126 has been shown to be distorted in 
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some cases due to different effective adiabaticity parameters for individual crystallites. 

The general trend for a.<1 is that the low-frequency side of the powder pattern loses 

intensity. Even when only spin-112 nuclei are involved in cross polarization, distorted 

powder patterns have been observed and attributed to Hartmann-Hahn mismatch and to 

anisotropic cross-polarization and relaxation rates. 163 

Although we have optimized the spin-lock efficiency so that as many crystallites 

as possible are available for cross polarization and performed the experiments at the 

Hartmann-Hahn match, distortions could still have conceivably occurred. To test this, 

we have recorded slow-spinning, 29Si direct-excitation spectra of low albite at several 

different spinning speeds. Figure 5.14 shows one such spectrum along with a simulation 

based on the parameters from the fourth row of Tables 5.1, 5.2, and 5.3. A Herzfeld­

Berger spinning sideband analysis was performed on a different spectrum (not shown) 

recorded at a spinning speed of 1065 Hz. Due to baseline distortions, the quality of this 

a) 

b) 

-15 -35 -55 -75 -95 -115 -135 -155 -175 -195 

[ppm from TMS] 

Figure 5.14 - (a) 29Si NMRspectrum of low albite recorded at 11.7 T with a spinning 
speed of 575 Hz. Twenty-four scans were acquired with a recycle delay of 2000 s. (b) 
Simulated 29Si spectrum based on the parameters of the fourth row in Tables 5.1, 5.2, and 
5.3. Gaussian lines with widths of 135 Hz were used to simulate the sidebands. 
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spectrum was not high, but the three sites could be partially resolved in several of the 

sidebands. The results of the analysis are summarized in Table 5.5. At first glance, the 

Isotropic cru [ppm] 0"22 [ppm] 0"33 [ppm] ,cs ocs [ppm] Shift [ppm] 

-91.9 ± 0.1 . -61 ± 7 -84± 7 -130 ± 8 0.6± 0.3 -39 ± 8 

-96.1 ± 0.1 -75 ± 4 -93 ± 5 -120 ± 4 0.8± 0.4 -24±4 

-103.8 ± 0.1 -89 ± 5 -92 ± 10 -131 ± 6 0.1 ± 0.5 -27 ±6 

Table 5.5 - Chemical shielding parameters derived from a Herzfeld-Berger analysis of a 29Si direct­
excitation MAS specti1Jm of low albite (spinning_ speed = 1065 Hz). 

agreement between these parameters and the previously measured ones (see Tables 5.1, 

5.2, and 5.3) does not look very good. However, the error bars for the direct-excitation 

spectrum are quite substantial due to the severe peak overlap, and except for the value of 

,cs for the T1m site, the results from the cross-polarization experiments all fall within the 

error bars.of the values listed in Table 5.5. While this does not rule out the possibility of 

distortions, it is encouraging that the two data sets are not inco!l.sistent. 

5.7 REDOR Experiments 
-
Another example of a potential application of cross polarization from quadrupolar 

nuclei is in heteronuclear experiments between spin-112 and quadrupolar nuclei. As 

mentioned in Section 1.2.4, the strength of the dipolar coupling between two spins is 

inversely proportional to the cube of the distance between them. Thus, in systems which 

effectively contain isolated spin pairs, a measurement of the dipolar-coupling constant 

translates into a direct determination of the internuclear distance. The Spin-Echo DOuble 

Resonance (SEDOR)5 technique is the simplest method for measuring internuclear 

distances between . a pair of unlike nuclei. In the SEDOR experiment, a 90° pulse 

generates transverse magnetization on the I spins in a static sample. Application of a 180° 

pulse at a time 't later, will reverse the effects of the heteronuclear dipolar couplings, field 

inhomogeneities, and the chemical-shift interactions so that they rephase, leading to the 

formation of an echo at the time 2't. However, if 180° pulses are applied to the I and S 

spins simultaneously, the heteronuclear dipolar coupling continues to dephase during the 
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second half of the experiment. Taking the difference between the spectra with and without 

the 180° pulse on the S spins gives a residual signal that is due to the heteronuclear dipolar 

interaction. 

In many cases, the high resolution associated with magic-angle spinning is 

desirable, thus a technique has been developed by Gullion et al. 198•199 to measuring 

heteronuclear distances in rotating samples. This technique is known as Rotational-Echo 

DOuble Resonance (REDOR). Conceptually, it is similar to SEDOR, but since sample 

spinning itself averages out the weak heteronuclear interactions, a series of rotor­

synchronized 180° pulses is required to produce the appropriate dephasing and rephasing 

behavior. 

In the most common version of REDOR, 200 two experiments are performed. In 

one, a rotor-synchronized Hahn-echo is applied to the spin species which will be detected, 

and series of 180° pulses is applied to the other channel every half a rotor period except 

when the 180° pulse is applied in the first channel. This sequence .vill refocus all 

interactions except for the heteronuclear dipolar interaction. The phase accumulation for a 

given crystallite can be calculated (in an analogous manner to that of Section 5.3.1 with 

the relevant interaction now being the heteronuclear dipolar interaction), and from this, 

the FID of a powder sample can be determined.200 In the other experiment, the 180° pulse 

on the detected channel is left out, and both dipolar and CSA interactions will be 

refocused. Taking the difference between the two FIDs and normalizing gives a measure 

of the heteronuclear dipolar coupling, which can be expressed in an analytical form using 

Bessel functions2ot 

(5.15) 

where d is the dipolar coupling constant and n is the total number of rotor periods over 

which the experiment is performed. 

Figure 5.15 shows a variation of the REDOR experiment suitable for use with 
27 Al-to-29Si CP. The train of 180° pulses was applied to the detected spins based an 

experiment which was designed to minimize resonance offsets.202 Although offset effects 
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were not a major concern in our case, this approach meant that only one tso· pulse needed 

to be applied in the 27 AI channel. This differs from other sequences which used REDOR 

to measure distances between quadrupolar and spin-112 nuclei. 134 

An important aspect of the pulse sequence of Figure 5.15 is the fact that the 29Si 

magnetization is generated by cross polarization from 27 AI. This does more than just 

. enhance the sen~itivity of the 29Si signal. If a 90• pulse were directly applied to the 29Si 

instead, the REDOR curve would have to be modified to account for that fact that some 
29Si nuclei would be dipolar-coupled to 27 AI nuclei that were not in central-transition 

states .. A selective tso· pulse on the 27 AI would only influence those that were in the 

central transition, leading to a decreased maximum of the ~S/S0 curve.204 By using cross 

27AI 

29Si 

-4--------- n 'tr _______ ____,~ 

<1>1: 0202 0202 
<1>2: 1111 1111 
<1>3: 2020 2020 
<1>4: 0000 0000 
<l>s: 3322 1100 
<I> a: 0000 0000 
<1>7: 1111 1111 
<l>a:. 0000 0000 
<j>g: 1111 1111 
<J>R: 0231 2013 

Figure 5.15 - A version of the REDOR experiment which can be used with cross 
polarization from quadrupolar nuclei. The bracketed parts of the sequence can be 
repeated, allowing the experiment to be performed over n=6+4N cycles where N=O, 1 ,2, 
etc. XY-4 or XY-8 phase cycling is used for the bracketed pulses.202 The 27 AI spins are 
used as a magnetization source, and a flipback pulse203 restores their magnetization to 
along the z-axis. Two data sets are recorded: one with and one without the 180" pulse on 
the aluminum. 
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polarization in the sudden regime (where the eigenstates of the 27 AI do not change), one 

pre-selects only those 29Si sites which are coupled to central-transition 27 AI states. The 

REDOR experiment can then be treated, to a good apiJroximation, as one between two 

spin-112 nuclei. 

Note that the recently developed Rotational-Echo Adiabatic-Passage DOuble 

Resonance (REAPDOR)205•206 experiment takes the opposite approach and attempts to 

observe the dipolar dephasing from all of the quadrupolar states. This is accomplished by 

using the interplay between an applied rf field and sample spinning in the adiabatic regime 

(see Section 3.2). In place of the 180° pulse on the quadrupolar channel in a REDOR 

experiment, REAPDOR uses intense rf irradiation to alter the quantum states of the 

quadrupolar nuclei, preventing dipolar refocusing by the pulses on the spin-1/2 channel. 

A predicted difference signal with two adjustable parameters (the dipolar-coupling 

constant and the fraction of spins which undergo the adiabatic passage) can then be 

calculated and compared with experiments. 
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Figure 5.16 - 27 AJJ29Si REDOR of the T20 site in low albite. The x's represent 
experimental data points (from two sets of experiments) acquired using the pulse sequence 
of Figure 5.15, with a spinning speed of 2.2 kHz, a 27 AI 180" pulse length of 33 j.l.s, and a 
29Si 180" pulse length of 52 J..l.S. Due to T 2 relaxation, the experiment could not be 
performed over more than 30 rotor cycles. The solid curve represents a simulation of the 
REDOR signal obtained using Equation (5.15) (truncated at k=10) with d=210 Hz. 
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Figure 5.16 shows the results of REDOR applied to the T20 site in -low albite 

using 27 Al-to-29Si CP. To a good approximation, this 29Si site should see only one 

~~aluminum (with a coupling constant of 210 Hz). Although the first experimental data 

point falls along the predicted curve, subsequent points due not. However, the theory of 

REDOR was developed assuming that the 180. pulses were ideal (i.e. - of negligible 

length). Each 180. pulse in our experiment was 11% of the length of the rotor cycle; this 

was the minimum pulse length achievable with a 100 W amplifier on our large coil probe. 

Ignoring the effects of dipolar coupling during the pulse is probably not valid in this case, 

and either the theory or experiment should be adjusted accordingly. 

Other researchers have also used REDOR with quadrupolar nuclei. In many cases, 

the results were not quantitative, but this is to be expected because the approximation of 

isolated spin pairs was not valid. 127•134.!43•203•207 In cases where there were effectively 

isolated spin pairs,204•208 reasonable values for the dipolar-coupling . constants were 

extracted (though no independent X-ray confirmation was possible), but only points at the 

beginning of the REDOR curve (before ~S/S0 reached a value of 0.5) were examined. 
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Chapter 6: High-Resolution Heteronuclear Correlation 
between Quadrupolar and Spin-1/2 Nuclei 
using Multiple-Quantum Magic-Angle 
Spinning 

In Chapters 3 and 4, the issues involved in cross polarization from quadrupolar 

nuclei were discussed, and in Chapter 5 several applications were demonstrated. In all of 

those applications, however, the quadrupolar nucleus was not directly observed. In this 

chapter, recent advances in the high-resolution spectroscopy of quadrupolar nuclei will be 

reviewed. Then a new technique that combines cross polarization from quadrupolar 

nuclei with the Multiple-Quantum Magic-Angle Spinning technique will be introduced. 

This new technique is capable of producing high-resolution heteronuclear correlation 

spectra in which one of the dimensions is from a half-integer quadrupolar nucleus. 

6.1 Methods for Obtaining High-Resolution Spectra of Quadrupolar 
Nuclei 

Although magic-angle spinning leads to high-resolution spectra for spin-1/2 

nuclei, it fails to fully remove the second-order quadrupolar anisotropy. Consequently, 

MAS spectra of half-integer quadrupolar nuclei generally contain broad asymmetric peaks 

(see Section 1.4). The shapes of such peaks contain structural information (via the 11 and 

Cqcc parameters), but when multiple sites are present in a sample, the resolution is 

frequently poor. Fortunately, several techniques have been developed to produce high­

resolution spectra of quadrupolar nuclei. 

In Section 1.2.5 it was shown that the ( +m f-7 -m) transitions of a quadrupolar 

nucleus are unaffected to first order by the quadrupolar Hamiltonian. When second-order 

perturbation theory is applied, the frequencies of these transitions are affected in an 

orientation-dependent manner. For a sample spun at an angle 8 with respect to the static 

field, the (+m H -m) transition frequency of an individual crystallite is given by (see 

Equation ( 1.114)) 
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(6.1) 

in the fast-spinning limit where aO and BQ are the Euler angles that define the orientation 

of the crystallite with respect to the axis of rotation; P2 and P4 are Legendre polynomials; 

S is the spin-quantum number of the quadrupolar nucleus; and the { Cn(S,m)} are scaling 

coefficients that depend on which ( +m H -m) coherence is excited. To obtain narrow 

resonances from quadrupolar nuclei in powder samples, the second and third terms on the 

right-hand side of Equation (6.1) must be made to vanish for all values of a.O and BQ. This 

can be accomplished either by manipulation of the physical space (using sample 

reorientation) or by ma!lipulation of the spin space (using rf pulses). 

6.1.1 DOuble Rotation (DOR) 

The technique of DOuble Rotation (DOR) eliminates the second-order 

quadrupolar anisotropy of the central transition by spinning the sample about two axes 

simultaneously. One axis is at an angle of 54.74° (the magic angle) with respect to the B0 

field, and the second axis is at 30.56. withrespect to the magic-angle axis. Figure 6.1 

shows a schematic of the rotor orientations in a DOR probe. Technical details of the probe 

design and other experimental considerations can be found in the Ph.D. thesis of K. T. 

Mueller10 while theoretical aspects are discussed in the thesis of B. Sun.209 

81=54.74° 

82=30.56° 

Figure 6.1 - Schematic of DOuble Rotation (DOR). An external rotor rotates at the magic 
angle while an internal rotor simultaneously spins at an angle of 30.56. relative to the 
external rotor. 
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To understand how DOR works, it is necessary to extend Equation (6.1) to the case 

of simultaneous rotation about two axes. This can be done by using an additional Wigner 

rotation matrix in a generalization of Equation ( 1.1 08) 

n = -lm" = -lm' = -l (6.2) 

Substituting Equation (6.2) into Equations (1.100) and (1.113) gives for m=l/2 and rapid 

spinning 10 

(6.3) 

As in the single-axis case, the derivation is lengthy and is described elsewhere. 10•209 

However, the functional form of Equation (6.3) is quite similar to the single-axis case; the 

only difference is that the terms P1(cos8) are replaced by products P1(cos8 1)P1(cos8 2). 

The same substitution will also be made for Legendre polynomials appearing in other 

frequency expressions (e.g.- the chemical-shielding and dipolar anisotropies). 

It is now clear how to eliminate the quadrupolar anisotropy by DOR. All that must 

be done is to choose 8 1 and 82 such that one angle is a zero of the second-order Legendre 

polynomial (the magic angle) and the other is a zero of the fourth-order Legendre 

polynomial (either 30.56° or 70.12°). Then all the anisotropic terms will disappear 

simultaneously. For technical reasons (such as filling factor and sensitivity) the 

combination of angles shown in Figure 6.1 is most suitable for DOR experiments.210 

In addition to eliminating the second-order quadrupolar broadening, DOR can, in 

principle, also average out the dipolar couplings and the chemical-shielding anisotropy 

since one of the rotors is spun at the magic angle. In practice, however, averaging of any 

of these anisotropies by DOR is incomplete since the outer rotor can only be spun at slow 

speeds (about 1 kHz). Thus, DOR spectra typically show a multitude of sidebands,2 11 
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which can make it difficult to identify the isotropic. peaks from examination of a single 

spectrum. A comparison of DOR spectra recorded at different speeds, however, permits 

one to distinguish isotropic peaks from sidebands since the isotropic peaks will not shift· 

their positions as a function of spinning speed. 

Since DOR at least partially averages out dipolar couplings, it works well for 

highly abundant quadrupolar nuclei. It also works well for sample~ with shortT 1 times (in 

contrast to DAS) because the averaging process is continuous. That same continuity is 

also a disadvantage, however, because it essentially limits DOR to being a one­

dimensional technique. Methods whj~h average out the quadrupolar interaction 

. sequentially are inherently more versatile since they permit a two-dimensional correlation 

of the completely averaged (isotropic) quadrupolar spectrum with an incompletely 

averaged (anisotropic) quadrupolar spectrum. Two such methods will be discussed below. 

6.1.2 Dynamic-Angle Spinning (DAS) 

Dynamic-Angle Spinning (DAS) also involves spatial manipulation of the sample 

to eliminate the quadrupolar anisotropy of the central transition. A schematic of a basic 

DAS experiment is shown in Figure 6.2. Many variants of this sequence exist and are 

discussed extensively elsewhere. 11 In this section, we will not be concerned with the 

modes of data acquisition but will just illustrate the principle behind the experiment. 

Some of these data-acquisition issues are relevant for MQMAS, however, and will be 

discussed in Section 6.1.3. 

In the DAS experiment, the sample is spun about an axis oriented at 8 1 degrees 

with respect to the static field and magnetization evolves for a time t1 I ( k + 1) . A 90° 

pulse stores one component of the evolving magnetization along the z-axis while the axis 

of sample rotation is quickly reoriented to the angle 82. Another 90° pulse returns the 

magnetization to the transverse plane, and the magnetization now evolves at the second 

angle for a time k t 1 I ( k + 1) . The angles of the two axes and the amount of time spent at 

each angle are chosen such that the anisotropic quadrupolar evolution of the central 

transition at the first angle is cancelled out by the evolution at the second angle, leading to 

the formation of an isotropic echo. Mathematically, these can be derived as follows. The 

signal at the time t1 can be calculated from Equation (6.1) 
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(6.4) 

1 + A2(a.~)C2 (S,2) [P2 ( cos8 1) 

1 + A4(a.~)C4 (S,2 ) [P 4 ( cos8 1) 

To cancel out the orientation-dependent terms A2(aQ,~Q) and A4(aQ,~Q) in Equation 

(6.4), the two angles of rotation and the time ratio k must be chosen such that 

go· 

t/(k+1) 

X 

P 2 (cos 8 1) = -k · P 2 (cos 82) 

P4 (cos8 1) = -k · P4 (cos82). 

go· go· 

hop kt/(k+ 1) 

y 

X 

Figure 6.2 - Schematic of DAS experiment showing the timing of the rf pulses, the 
reorientation of the rotor axis, and the anisotropic lineshapes at each angle. 
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Then Equation (6.4) simplifies to 

(6.6) 

which is a purely isotropic frequency. The indirect (ro1) dimension of a DAS experiment 

will, therefore, show peaks at positions given by (in ppm) 

. 106 c2 { -3 [s c s + 1) - ~] · ( 2)} c6.7) = O.(CS) + - . ~ . 1 + :!]_ 
ISO (J)L 00L 40S 2 (2S- 1) 2 3 

= o.<cs> + 0_<2Q). 
ISO ISO·. 

The first term on the right-hand side of Equation (6.7) is the isotropic chemical shift. The 

second term on the right-hand side of Equation (6.7) is often called the second-order 

isotropic quadrupolar shift. It can be extracted from DAS experiments or, with less 

accuracy, from fits of quadrupolar powder lineshapes. Note that this shift is inversely 

proportional to the Larmor frequency; DAS experiments performed at different fields will, 

therefore, have different isotropic shifts even when these shifts are expressed in ppm. 

·Many combinations of 81, 82, and k satisfy Equations (6.5) and are plotted in Figure 6.3. 

Note that the magic angle is not one of the possible solutions. For technical reasons 

related to sideband positions, only two solutions are practical for DAS experiments. 11 One 

is the set eel= 37.38°, e2 = 79.19°, k = 1) and the other is the set (81 = 63.43°, e2 = 0.00°, 

k = 5). The latter set is compelling because of the possibility of correlating isotropic 

chemical shifts with full, static powder lineshapes (obtained by spinning about 0.00°), but 

specialized probe designs, which are not currently commercially available, are required to 

irradiate samples at 0.00°. 

Although the P2(cos8) contribution to the quadrupolar anisotropy is refocused in 

the ro1 dimension of a DAS experiment (see Equation (6.5)), the homonuclear dipolar 

couplings, which also have a P2(cos8) spatial dependence, will not be refocused. This is 

171 



due to the fact that the z-filter does not store all of the relevant spin operators for dipolar 

coupling, prohibiting complete reversal of the dipolar Hamiltonian in the second half of 

the experiment. 122 Thus, DAS will not work well fqr samples with strong dipolar 

couplings. DAS also can only be performed on samples with T 1 relaxation times that 

exceed the time it takes to reorient the sample (typically 30-50 ms). However, many 

quadrupolar nuclei (such as 17 0) do have sufficiently long T 1 's to permit DAS 

experiments to be performed. 

An advantage of DAS over DOR is its inherent two-dimensional nature which 

permits the correlation of a high-resolution isotropic spectrum with site-specific, 

anisotropic powder patterns. From such powder patterns, quadrupolar parameters can be 

determined. Figure 6.4 shows an 170 DAS spectrum of AlP0~-5 acquired with k=5 and 

sheared (see Section 1.5.2). Two oxygen sites are present in the sample, and their 

quadrupolar parameters were extracted from lineshape simulations. 

Many variations and extensions of the DAS experiment have been developed and 

an in-depth discussion of most of them can be found in the thesis of J. H. Baltisberger. 11 
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Figure 6.3 - Angle pairs which are solutions to Equations (6.5). For each value of k 
(which is the ratio of the time spent at 82 to the time spent at 8 1), the corresponding values 
of 8 1 and 82 can be read off. Note that the magic angle (represented by a dotted line) is 
not one of the solutions to Equations (6.5). 
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Figure 6.4 - 170 DAS spectrum of A1P04-5 showing the two sites and fits of .the 
anisotropic lineshapes for 92=63.43". 

6.1.3 Multiple-Quantum Magic-Angle Spinning (MQMAS) 

While DOR and DAS use spatial manipulation of the sample to achieve high­

resolution spectra of quadrupolar nuclei, the Multiple-Quantum Magic-Angle Spinning 

(MQMAS) technique achieves high resolution by manipulating the { Cn(S,m)} terms of 

Equation (6.1) while spinning only at the magic angle. Like DAS, MQMAS does its 

averaging sequentially. First, a multiple-quantum coherence connecting the states +m 1 

and -m 1 is excited and allowed to evolve for, a time period t 1 I ( k + I) . This is then 

converted to a single-quantum coherence between the + 112 and -112 states. The single­

quantum coherence will evolve, .and an isotropic echo will be generated at a time 

kt 1 I (k +I) after the conversion. 

Several different pulse schemes have been used for the excitation and conversion 

of the coherences. The original experiment was performed using two selective 90° pulses 

with a short delay (tens to hundreds of JlS) between them for excitation. The first pulse 

generated ±1 quantum coherences and the second pulse converted them to multiple­

quantum coherences.42 Excitation of a multip.le-quantum coherence is also possible with a 
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single long pulse.53•212 Although to first order weak rf-fields selectively excite only the 

central transition, higher-order treatments show that multiple-quantum coherences can 

also be excited to a limited extent. This has' been described theoretically for the case of a 

single crystal.213•214 For on-resonance irradiation with lro
15

/Q (IQ)I « 1, it can be shown 

that the effective nutation frequency of ann-quantum transition is of the order214•137 

(6.8) 
( JQ) n- I 

(Q ) 

where Q ( 
1 
Q) is defined in Equation (3.5). Because this nutation frequency is small, very 

long pulse lengths are needed to generate appreciable amounts of multiple-quantum 

coherence.214 

Extension of the single-crystal treatment to a powder sample is not 

straightforward. 121 This is due to the orientation dependence of Q ( 
1 
Q) , which means that 

different crystallites will nutate with different frequencies even in a static sample. 

Furthermore, the above method of excitation only works for the case where ro1s is 

significantly larger than (1)~::; -m for all values of m,214 and the scheme was predicted to 

fail entirely for powder samples. 121 

Nonetheless, brute-force application of longer pulses has met with some success. 

As expected, the excitation efficiency is highly dependent on crystallite orientation and 

quadrupolar parameters as well as rf-field strength and spinning speed.53•212 Optimal pulse 

lengths and strengths will, therefore, differ from sample to sample. The only general 

consensus that has been reached so far is that high values of the rf-field strength (hundreds 

of kHz) are superior to low values43 although this does not preclude performing the 

MQMAS experiment with modest field strengths (see Figure 6.6). 

The conversion of the multiple-quantum coherence to the single-quantum 

coherence is even less efficient than the excitation.212 Fortunately, even a highly 

inefficient conversion step will not significantly distort the anisotropic central-transition 

powder patterns recorded during t2, provided the spinning speed exceeds the width of 

these patterns.43 The relative intensities of the different sites are distorted, however, and 

the intensities in the isotropic dimension cannot be used for quantitative purposes. At the 
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time of this writing, no MQMAS pulse sequence reliably produces quantitative spectra; 

improvement of the excitation and conversion schemes is currently an active area of 

research. 

Figure 6.5 shows a schematic of the single-pulse excitation version of the 

MQMAS experiment. As in the case of DAS, the conditions necessary to eliminate the 

anisotropy can· be easily determined. The signal at the time t1 can be calculated from 

Equation (6.1) as follows 

p 

Excitation 

_t_1 
1+ k 

Conversion 

+m1,--------~--------~~------------------------

0 

-1----~~------------~~-------------
-m 1 

Figure 6.5- Schematic of MQMAS experiment. In this chapter, the time t1 is defined, for 
theoretical simplicity, as the time required for the formation of the isotropic echo. 
However, pure-phase spectra cannot be obtained using the times (t1 ,t2) unless extra read 
pulses are added.215 In practice, it is easier to start the acquisition immediately after the 
reconversion pulse (using the times t 1' and t2' ), and then shear the resulting two­
dimensional spectrum as described in the text. 
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To eliminate the anisotropy, the last two terms on the right-hand side of Equation (6.9) 

must be set to zero. At the magic angle, P2(cos8) equals zero. To eliminate the remaining 

term, the only condition that must be met is 

(6.10) 

s m C0(S,m) C2(S,m) C4(S,m) 

3 l 3 24 54 -
2 2 

3 3 
-9 0 -42 

2 2 

~ l 8 64 144 
2 2 

5: 3 
6 120 228 -

2 2 

5: 5' 
-50 -40 -300 -

2 2 

Table 6.1 - Table of scaling coefficients used to describe the second-order quadrupolar frequency of a 
+m H -m coherence (see Equation (6.Il2). The values were calculated according to the formulas 

2 2 
C0 (S,m) = 2m[S(S+l)-3m], C2 (S,m) = 2m[8S(S+l)-12m -3] and C4 (S,m) = 
2m [18S (S + 1) -34m2 -5] .43 

Note that a similar type of experiment could be performed while spinning at one of the 

zeros of the fourth-order Legendre polynomial (8=30.56° or 8=70.12 °) and eliminating the 

quadrupolar anisotropy by choosing k according to 

(6.11) 

This experiment is known as Multiple-Quantum Variable Angle Spinning and can be used 

to extract chemical-shift parameters. 216 In this thesis, only the magic-angle version will be 

discussed, and values of k will be chosen according to Equation (6. 10). The values of 

{ Cn(S,m)} for S=3/2 and S=5/2 are listed in Table 6.1; values for S>512 are tabulated 

elsewhere.4M 3•216 For an MQMAS experiment on a spin-3/2 system, only one value of k is 
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possib~e (k=7 /9). For higher values of S, there is a choice of multiple-quantum coherences 

and, therefore, more than one possible value of k. For instance, for a spin-5/2 system, 

excitation of the triple-quantum coherence gives k=-19/12 while excitation of the five­

quantum coherence gives k=-25112. 

The isotropic second-order quadrupolar frequency that results from the MQMAS 

experiment is given (in ppm) by 

(2Q) tl (2Q) ktl 
(t)m '--'-m (8). k-1 +(I) I 1(8). k-1 

I "' I + +:z +-+ -:z + · 
(6.12) 

A comparison of Equations (6.12) and (6.6) shows that the second-order isotropic 

quadrupolar shift in the MQMAS experiment differs from that in a normal MAS or DAS 

experiment. The isotropic chemical shift will also be scaled since the chemical shift of an 

n-quantum coherence is n times that of a single-quantum coherence. For an MQMAS 

experiment, a weighted average of the two isotropic shifts can b~ calculated53 

(6.13) 

From Equations (6.7), (6.12), and (6.13), the observed shifts in the MQMAS experiment 

will, therefore, be given by 

(6.14) 

where oi~~Q) is the conventional "second-order quadrupolar shift" for the central 

transition (see Equation (6.7)) and k is given by Equation (6.10). 

Figure 6.6 shows 23Na 3Q/IQ MQMAS spectra of sodium pyrophosphate 

(Na4P20 7) acquired using a single pulse for excitation and using hypercomplex shifted­

echo detection (see Section 1.5.2). Five-radian pulses with lengths of 15.6 j.lS 

(corresponding to ro15/(27t) = 25.5 kHz) were used for both the excitation and 
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reconversion. After a delay of 3.5 ms, a softer 180° pulse with a field strength of 15.6 kHz 

was used to form an echo. The detection period (t2') was begun immediately after this 

pulse. The first pulse was cycled in steps of 60° to select the ±3 coherence transfer 

pathways and the third pulse was cycled in 45° increments. The data were processed by 

constructing echo and anti-echo data sets according to Equations (1.129) and (1.130).53 

The top (unsheared) spectrum was obtained by directly Fourier transforming both 

dimensions of both data sets (using Equation (1.140) where f = k/ ( 1 + k) ), reversing 

the rot' dimension of the anti-echo data set, and summing the spectra. This leads to a 

spectrum in which the multiple-quantum spectrum along rot' is directly correlated with 
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Figure 6.6 - 23Na MQMAS spectrum of sodium pyrophosphate (Na4P20 7). Both the 
unsheared and sheared 2D spectra are shown as well as the isotropic dimension and 
corresponding anisotropic powder patterns. Sixty hypercomplex pairs of t1 slices with 96 
scans in each were acquired with a 0.5 s recycle delay and a 30 j.ls dwell time. Asterisks 
are used to denote spinning sidebands. 
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the single-quantum MAS spectrum along ro2 ' . Because the anisotropic portions of each 

dimension are related, sharp diagonal peaks result.43 Site-specific, quadrupolar-broadened 

MAS lineshapes can be seen by taking skew projections along axes parallel to 

(1} ' _ kro , 211 
I - 2 · 

It is often more convenient, however, to view the spectrum with the ·isotropic 

dimension along one axis and the anisotropic dimension along the other as was done for 

the chemical-shift interaction in Chapter 5. One way to accomplish this is by shearing the 

spectrum (see Section 1.5.2). The lower spectrum in Figure 6.6 was obtained by Fourier 

transforming both data sets with respect to t2' and then applying a phase correction of 
+ikm2\ 

1 
• -ikm/t1 

1 

e to the echo spectrum and e to the anti-echo spectrum. The rest of the 

processing was the same as in the unsheared case. Because shearing effectively redefines 

the time dimensions, the spectral width of the ro1 dimension in the sheared spectrum will 

be a factor of (k + 1) smaller than the ro
1

' dimension in the unsheared spectrum, 

necessitating a rescaling of this axis. Direct isotropic/anisotropic correlation spectra can 

also be obtained by delaying the acquisition until the isotropic echo is formed215 although 

additional pulses will be n~eded to obtain pure-phase spectra (see Section 1.5.2). 

The MQMAS technique has been applied to many samples in the two years since it 

was developed. It has several advantages over previous methods. Since it is performed at 

the magic angle, 'the dipolar couplings will be averaged out, and there is no restriction on 

T 1 relaxation times. In addition, the experiment can be performed on conventional MAS 

equipment. However, the efficiency of the multiple-quantum excitation and conversion is 

strongly dependent on Cqcc which makes obtaining signals with quantitative intensities 

difficult. Furthermore, excitation of high-order (n>3) multiple-quantum coherences in a 

powder sample is difficult unless the quadrupolar coupling constants are small. A 

discussion of the advantages and disadvantages of MQMAS relative to DAS is found in 

the literature:216 

We were interested in seeing if the MQMAS experiment could be combined with 

cross polarization (using conditions similar to those discussed in Chapter 4) to yield a new 

technique for examining heteronuclear distances in solids. Before discussing our 

technique, it is useful to review previous heteronuclear correlation experiments in solids. 
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6.2 Heteronuclear Correlation and Quadrupolar Nuclei 

6.2.1 MAS- and DAS-Based Techniques 

HETeronuclear CORrelation (HETCOR) experiments were first used in the 

solution state to probe through-bond connectivities via J-couplings.4' 218 They were later 

applied to solids under both static and MAS conditions.219•220•221 In the solid-state cases, 

the experiments rely on residual dipolar couplings. The connectivities that are measured 

are therefore "through-space" rather than "through-bond," and the results are inherently 

qualitative. Nonetheless, solid-state HETCOR experiments have provided useful 

information about proximities of different chemical species in many systems. They have 

been used to characterize surface-adsorbate interactions and to assign peaks in 

complicated spectra. 

The most basic version of the HETCOR experiment in solids is simply a two­

dimensional extension of cross polarization in which the pulse that generates the 

transverse magnetization is separated from the Hartmann-Hahn matched pulses by a time 

period t1 which frequency-labels the source spins (see Figure 6.7).221 The resulting two­

dimensional spectrum will then show cross peaks between sites in the MAS spectrum of 

the first nucleus and sites in the MAS spectrum of the second nucleus that are spatially 

near enough for polarization transfer to occur between them. More complicated pulse 

sequences exist for cases in which homonuclear decoupling is necessary. In addition, 

there are variants which utilize a TEDOR-type coherence transfer step in place of the 

cross polarization. 134' 207 

I 
s 

Figure 6.7- Basic pulse sequence for HETCOR experiment. 
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Figure 6.8 - 27 Al/29Si MAS HETCOR spectrum of low albite. Both a two-dimensional 
contour plot as well as individual slices along the ro2 dimension are shown. For 
comparison, the lD MAS spectrum of 27 AI is also shown. Note that the 27 AI lineshape 
correlated with the silicon site with two aluminum nearest neighbors is distorted. 
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When the MAS spectrum of a quadrupolar nucleus is sufficiently well-resolved, 

experiments which correlate the central transition of a quadrupolar nucleus with a spin-1/2 

nucleus can also be performed. 134.142" 43•207•222 Figure 6.8 shows an 27 AlP9Si MAS 

HETCOR spectrum of low albite performed using 27 Al-to-29Si CP with a linear amplitude 

ramp on the 29Si (see Figure 4.16). The proximity of the aluminum atoms to each type of 

silicon site is evidenced by the presence of three cross peaks, although the peak intensities, 

as in the one-dimensional CP case, are not quantitative. 

If only one site of a given type is present, however, it is not necessary to perform a 

two-dimensional experiment since the same qualitative information is obtainable from a 

one-dimensional cross-polarization experiment. The HETCOR experiment is most useful 

for samples which have multiple sites, but spectra of quadrupolar nuclei are often not 

well-resolved under MAS. To extend the applicability of heteronuclear-correlation 

techniques to more samples containing quadrupolar nuclei, a high-resolution 

heteronuclear correlation technique which combines Dynamic-Angle Spinning (DAS) 

with cross polarization was developed by Jarvie et al. 223 (see Figure 6.9). In this 

23Na io~io~opj~j~oplce J 

rotor 
. angle 
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31p 
go· go· 

CP·.·.·• hop 
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Figure 6.9 - The DASIHETCOR experiment of Jarvie et al.223 The experiment requires 
three rotor axis reorientations per scan (plus one between scans). A DAS experiment 
removes the quadrupolar anisotropy during the evolution period. Cross polarization is 
then performed at a rotor angle of o· (where it is most efficient). The sample is 
subsequently reoriented to the magic angle for high-resolution detection of the spin-1/2 
nucleus. 
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experiment, the sample was first spun sequentially about the angles 79.19° and 37.38° with 

respect to the Bo field. The evolution times at the first and second angles were chosen 

such that an isotropic echo was formed at the end of the t1 evolution period (see Section 

6.1.2). The magnetization was stored along B0 using a z-filter while the sample was 

reoriented a second time to 0.00°. Cross polarization from the quadrupolar nucleus to the 

spin-112 nucleus was carried out at this angle (where cross polarization from quadrupolar 

nuclei is most efficient11 .t 22). After a third reorientation (and z-filter on the spin-112 

nucleus), the spin-112 signal was finally recorded at the magic angle. While this 

experiment gives high resolution in both the quadrupolar and spin-1/2 dimensions, it 

requires three rotor axis reorientations during each scan and, therefore, cannot be used to 

study nucl~i with short T 1 's such as 27 AI or 11B. It also cannot be performed on 

conventional equipment. The MQMAS-HETCOR experiment we developed circumvents 

these problems. 

6.2.2 MQMAS-HETCOR 

The pulse sequence, coherence-transfer pathway, and phase cycle for the pure­

absorption mode MQMAS/HETCOR experiment is shown in Figure 6.1 0. As written, this 

sequence can be used to correlate a spin-3/2 nucleus (such as 23Na) with a spin-112 

nucleus (such as 31 P). The same prinCiples can be applied to construct analogous pulse 

sequences involving higher multiple-quantum coherences if other .odd-half integer 

quadrupolar nuclei are to be studied. The sequence depicted in Figure 6.10 shows that the 

MQMAS evolution period is divided into two parts as described by Equation (6.12). A 

single pulse is used for excitation of the triple-quantum coherence of the quadrupolar 

nucleus and a second pulse converts the triple-quantum coherence into single-quantum 

coherence.214•224 At the end of the evolution period (when the isotropic echo is forrned), 

magnetization is transferred to the spin-112 nucleus by Hartmann-Hahn cross polarization, 

and then the 31 P spectrum is recorded. The result is a heteronuclear correlation 

experiment acquired under MAS with high-resolution in both dimensions. 

The phase cycle shown in Figure 6.10 enables the collection of pure-absorption 

mode two-dimensional spectra by retaining a pair of "mirror-image" coherence-transfer 

pathways during the evolution period t 1.4 The desired tripl~-quanturnlsingle-quantum 
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<t>1 <t>2 

23Na 
t1 kt1 

<t>3 

31p 

1+ k 1+ k 

3--~,~----~,.-----------
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<t>4 

p 0 .... ~-------------------

-1 --~,--------~~----------
-2--~,------~,~----------
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<1>1 o· 6o· 12o· 180"240"3oo· 

<1>2 (0")6 (90")6 (180")6 (270")6 

<1>3 o· 

<1>4 (0")24 (90")24 (180")24 (270")24 

<I>R 
(0" 180")3 (180" 0")3 (90" 270")3 (270" 90")3 
(180" 0")3 (0" 180")3 (270" 90")3 (90" 270")3 

Figure 6.10 - Pulse sequence, coherence-transfer pathway, and phase cycle for MQMAS/ 
HETCOR. "Mirror image" coherence-transfer pathways are retained during the evolution 
period so that two-dimensional pure absorption lineshapes can be obtained. The 96-step 
phase cycle incorporates CYCLOPS46 cycling and spin-temperature alternation.47 The 
second data set needed for States-type processing can be generated by shifting the phase 
of <1>3 by 90". 
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pathways for the MQMAS portion of the experiment are 0 ~ 3 ~ 1 and 0 ~ -3 ~ -1 . 

The phase of the first pulse is cycled through 60. steps to retain ~Pt=+3 and ~p 1 =-3; the 

phase of the second pulse is cycled through steps of 90· to retain ~p2=-2 and ~p2=+2 (see 

Section 1.5). The accumulated phase at the end of t1 is given by 

(6.15) 

For the phase cycle and the two desired paths of Figure 6.1 0, this corresponds to 

{co·, 'i8o·, o·, I8o·, o·, 1806
: 18o·, oo, 18o·, o·, 18o·, o·) 2} . (6.16) 

When this is combined with a constant-phase CP pulse, spin-temperature alternation is 

automatically achieved.47 

Note that any residual triple-q\,lantum coherences that were not converted to , 

single-quantum coherences by the second pulse could potentially also be transferred in a ·-. 

cross"polarization step since the effective nutation frequency of the triple-quantum 

coherence (Equation (6.8)) would match the nutation frequency of the spin-112 nucleus at 

some point during the rotor cycle. However, such coherences (corresponding to the paths 

0 ~ 3 ~-3 and 0 ~ -3 ~ -3 )', would accumulate phases 

{co·, 18o·, o·, 18o·, o·, 18o·, o·,18o·, o·, I8o·, o·, 180.) 
2

} . (6.17) 

Proper cycling of the receiver in accordance with Equation ( 6.16) will cancel out such 

triple-quantum signals . 

. To obtain a pure-phase, two-dimensional spectrum with frequency discrimination 

in the ro1 dimension, two amplitude-modulated data sets must be collected and processed 

according to the method of States et al.51 In our experiment, this second data set is 

generated by using a phase cycle identical to that shown in Figure 6.1 0, except with 

<!>3=90.. Finally, CYCLOPS46 phase cycling of <1>4 is included to eliminate receiver 

imbalance. The complete phase cycle has 96 steps. 
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To test the MQMASIHETCOR pulse sequence, experiments were performed on a 

sample of anhydrous sodium trimetaphosphate (Na3P30 9) which was prepared according 

the method of Jarvie et al.223 This is the same sample that was used to demonstrate the 

feasibility of the DAS/HETCOR experiment,223 and its crystal structure (as determined by 

X-ray studies225) is depicted in Figure 6.11. Sodium trimetaphosphate is known to have 

two crystallographically distinct sodium sites and two crystallographically distinct 

phosphorous sites; in both cases, the "general" site has twice the population of the 

"mirror" site. Table 6.2 indicates the nearest Na-P distances. 

Figure 6.12 shows the 23Na MQMAS spectrum of sodium trimetaphosphate 

recorded at 11.7 T using shifted-echo, hypercomplex processing and shearing.53 

The MQMAS/HETCOR spectrum of sodium trimetaphosphate is shown in Figure 

6.13. The spectrum was recorded on a Chemagnetics CMX-500 spectrometer using a 7.5 

mm Chemagnetics probe that was double-tuned to 131.894 MHz for 23Na and 201.850 

MHz for 31 P. Each of the first two pulses was 16 J..Ls, corresponding to a 37t ivtation on the 

central transition of sodium. This served to partially suppress the direct excitation of the 

P (general) 

a (general) 

P (mirror) 

·=--- P (general) 
Na (general) 

Figure 6.11 -The crystal structure of Na3P30 9 as determined by X-ray crystallography.225 

The crystal has orthorhombic symmetry. The two types of sodium and phosphorous sites 
are indicated. Note that there are twice as many general sites as mirror sites. The nearest 
Na-P distances are listed in Table 6.2. 
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Na(mirror) to Na(mirror) to Na(general) to Na(general) to 
P(mirror) P(general) 

" 
P(mirror) P(general) 

3.466 A 3.301 A 3.299 A 3.323 A 
4.686 A 3.434 A 3.380 A 3.452 A 

[5.728 AJ 5.675 A 5.458 A 3.584 A 
5.816 A 5.622 A 0 

4.614 A 
[5.892 AJ [5.987AJ 4.770 A 

0 

4.810 A 
· 4.905 A 
5.530 A 

[5.702 AJ 
0 

[5.765 A] 

Table 6.2 - Nearest distances between sodium and phosphorous sites in anhydrous sodium trimetaphosphate 
as calculated from the X-ray structure.225 All distances of under 6 A are listed. The unbracketed distances 
were used to estimate theoretical peak intensities . 

. single-quantum coherence.53 The cross-polarization contact time was 10 ms and the 

spinning speed was 5 kHz. The n=-1 match-condition sideband (see Section 4.3) was used 

for cross polarization .and corresponded to a spin-lock strength of 4.6 kHz. This gave 

adiabaticity parameters of a< 0.005 for the spin lock on both 23Na sites, which is well 

within the sudden regime ... Thirty-five complex t1 points consisting of 960 scans in each 

were collected with a recycle delay of 3 s. The projections in· each dimension show that 

two peaks are observed for each nucleus, corresponding co the crystallographically distinct 

-2.5 

~ 0 
C\J --8 

2 . 5 I!::;::;:::;:::;:::;::::;:::;::;::::;::;:::;::;::;;::;:::;:::;:::;::;:::;:::! 

2.5 0 -2.5 
rot'(27t) [kHz] 

\ 
\ 

\ 
\ 

5 

5 

2.5 

2.5 

0 -2.5 

0 -2.5 
[kHz] 

Figure 6.12- Sheared 23Na MQMAS spectrum ofNa3P30 9. Thirty-one t1 slices with 24 
scans in each were acquired with a 3 s recycle delay. 
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sites.225 The two phosphorous peaks are at -18.7 and -15.5 ppm with respect to 85% 

H3P30 4 at 0 ppm, and the two peaks in the 23Na spectrum are at -6.1 and -21.5 ppm with 

respect to solid N aCl at 0 ppm. 

Table 6.3 lists the quadrupolar parameters and isotropic chemical shifts 

(referenced to solid NaCl) for the two sodium sites in Na3P30 9 as previously determined 

by Koller et aJ.226 from fits of a one-dimensional MAS spectrum recorded at 9.4 T. The 

values we obtained from fits of anisotropic slices of an MQMAS spectrum recorded at 4.2 

T are also listed. By using these parameters and Equations (6.7) and (6.14), it was 

possible to predict the positions of the peaks in DAS and MQMAS experiments performed 

at various field strengths. These predictions are listed in Table 6.3 and are compared with 

experimental results when they are available. Note that the measured values reported in 

Jarvie's paper223 were referenced to 0.1 M NaCI, which has a chemical shift of o=-7 .2 ppm 

relative to solid NaC1.226 To make the comparison easier, all shifts are listed in the table· 

relative to solid NaCl. 

23Na 

""" 0 -12.5 M 

0... 
M 

I -15 
~ <=> 0 0 
L() 

-17.5 <X) 

~· E @ 
0 -20 .... -E -22.5 Q. 
Q. 

0 -10 -20 

ppm from solid NaCI 

Figure 6.13- 23NaJ31 P MQMAS/HETCOR spectrum of Na3P30 9 recorded with a cross 
polarization contact time of 10 ms and a spinning speed of 5kHz. Thirty-five complex t1 
points consisting of 960 scans in each were collected with a recycle delay of 3 s. 
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Parameter Source 
General 

Mirror Site 
Site 

·-· 
Cqcc 

~ Koller et al. 1.57 MHz 2.20MHz 

T1 Koller et al. 0.55 0.70 

().(CS) 
ISO 

Koller et al. -5.60ppm -14.80 ppm 
-

Cqcc our measurements 1.57 MHz 2.20MHz 

T1 our measurements 0.55 0.64 

().(CS) 
ISO 

our measurements -5.20 ppm -15.07 ppm 

calculation based on the 
DAS 

oiso (9.4 T; calculated) quadrupolar parameters of -11.7 ppm -27.4 ppm 
Koller et al. 

calculation based on the 
DAS 

Oiso (9.4 T; calculated) quadrupolar parameters -11.3 ppm -27.4 ppm 
we determined 

DAS 
oiso (9.4 T; measured) measured by Jarvie et al. -9.7 ppm -26.1 ppm 

calculation based on the 
DAS 

Oiso ( 11.7 T; calculated) quadrupolar parameters of -9.5 ppm -22.9 ppm 
Koller et al. 

calculation based on the 
DAS 

oiso (11.7 T; calculated) quadrupolar parameters -9.1 ppm -23.0 ppm 
we determined 

calculation based on the 
MQMAS 

Oiso (11.7 T; calculated quadrupolar parameters of -7.0 ppm -21.3 ppm 
Koller et al. 

calculation based on the 
MQMAS 

Oiso (11.7 T; calculated) quadrupolar parameters -6.2 ppm -22.1 ppm 
we determined 

MQMAS 
Oiso (11.7 T; measured) our measurements -6.1 ppm -21.5 ppm 

Table 6.3 - Quadrupolar parameters, predicted shifts, and measured shifts for the 23Na sites in Na3P30 9. 

Shifts calculated both from the parameters of Koller et al.226 and from our param~ters are listed ;nd are 
compared to the DAS/HETCOR experiment of Jarvie et ai.223 and to our MQMAS/HETCOR experiment. 
Predicted shifts for a DAS experiment at 11.7 T are also tabulated. All shifts are reported relative to solid 
NaC1 at 0 ppm. 
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The positions of the peaks we measured in our MQMASIHETCOR experiment 

agree, within experimental error,. with the theoretically predicted shifts. (The DAS shifts 

of Jarvie et al. appear to deviate more from the predicted shifts, but the peaks are quite 

broad and the resolution relatively low in the ro1 dimension. These factors could explain 

at least some of the discrepancy.) 

The 2-D MQMASIHETCOR spectrum (Figure 6.13) shows four distinct cross 

peaks between the two 31 P and two 23Na resonances. Correlation between the two nuclei 

is principally through dipolar coupling, which results from both sodium sites being in 

close proximity to both phosphorous sites. As in the DAS version of the experiment, the 

measured intensities of the cross peaks in this new experiment may not yet be considered 

quantitative. Cross polarization is often not quantitative even when quadrupolar nuclei are 

absent, but in an idealized HETCOR experiment between spin-1/2 nuclei (using the pulse 

sequence of Figure 6. 7), peak intensities would be influenced by three factors: (1) the 

population statistics (how many nuclei of each type are present), (2) the distances between 

heteronuclei (which determine the rate of cross polarization), and (3) the relative 

relaxation times (T1p) of spins. in different sites. If the T1p's for a given isotope are 

similar, relative cross-peak intensities will be proportional to the rates of cross relaxation 

which in turn are proportional to heteronuclear second moments.227 We can estimate 

"ideal" relative intensities for the cross peaks in our system by using the distances from 

Table 6.2 to calculate second moments. In this approximation, we assume that we can 

average the angular-dependent terms over all powder orientations8 so all that remains is to 

calculate the sum L 1 /r~ over the nearest Na-P distances (the number of terms in the 

sum being determih~~ by the population statistics). The "ideal" relative intensities would 

then be 1:0.7:0.7:0.3 for the Na(general)/P(general), Na(general)/P(rnirror), Na(mirror)/ 

P(general), and Na(mirror)/P(mirror) cross peaks, respectively. 

In the MQMAS/HETCOR experiment, even further factors affect the cross-peak 

intensities. First, as discussed in Chapters 3 and 4, cross-polarization dynamics of 

quadrupolar nuclei are complicated under magic-angle spinning conditions by the time 

dependence of the first-order quadrupolar interaction. This is not the case for the DAS/ 

HETCOR experiment since the polarization transfer occurs at 0° to B0, permitting 

attainment of the full, static cross-polarized intensity. 11 The second factor that complicates 
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the quantification of the MQMAS/HETCOR experiment is that both the excitation of the 

triple-quantum coherence and its conversion back to single-quantum coherence depend 

strongly upon the rf excitation power and the quadrupolar parameters.212 For the 

excitation and conversion pulses that we used (see Figure 6.12), the site with the greater 

Cqcc had one-quarter the intensity of the other site, despite the fact that its population is 

one half that of the other site. The measured relative cross-peak intensities for the 

spectrum in Figure 6.13 are 1:0.5:0.2:0.1 for Na(general)/P(general), Na(general)/ 

P(mirror), Na(mirror)/P(general), and Na(mirror)/P(mirror), respectively, which deviates 

from the ideal case due to these complications. Modifications of the original MQMAS 

experiment to make the intensities closer to quantitative have been proposed by Wu et 

a1.,228 and this is currently an active area of research in many laboratories. However, it is 

important to note that the qualitative appearance of our MQMAS/HETCOR spectrum is 

similar to the DAS version; the DAS experiment is also not strictly quantitative.223 . 

The advantage of combining the MQMAS experiment with the HETCOR 

experiment is immediately obvious when Figure 6.13 is compared with a normal MAS 

HETCOR spectrum of Na3P30 9 (Figure 6.14). Even though the second-order quadrupolar 

interaction has not been completely averaged, the 23Na dimension for this sample still 

exhibits relatively high resolution because of the significant differences in Cqw 11, and 

oi~~S) between the two sites. However, even for this ideal case it is clear that the 

MQMAS/HETCOR experiment gives superior resolution. For more complex systems 

where the 23Na dimension is not so well resolved, such as sodium phosphate glasses, the 

MQMAS/HETCOR experiment should be of significant utility. 

In principle, the heteronuclear correlation experiment could be appli~d in reverse, 

transferring the magnetization from 31 P to 23Na and then performing the 3Q/1Q MQMAS 

experiment to obtain high resolution in the 23Na dimension (possibly with direct cross 

polarization of the triple-quantum transition which would occur nine times faster than 

single-quantum cross polarization for a given spin-lock field strength on the 31 P 

channeJI36•138). However, performing the experiment in this way has two major 

drawbacks. The first is that the experiment would, in effect, become a three-dimensional 

~xperiment, increasing the time required to collect the data. The second disadvantage is 

that the T 1 of sodium is typically much shorter than that of phosphorous due to the 
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efficiency of quadrupolar relaxation mechanisms. For example, in Na3P30 9 the delay 

between scans necessary to prevent significant saturation of the signal is 3 s for 23N a and 

660 s for 31 P; performing cross polarization from 31P to 23Na would increase the 

experimental time prohibitively. 

Although cross polarization is less efficient for samples spun at the magic angle 

than for samples spun at an angle of 0° with respect to the static field, 122 the MQMAS/ 

HETCOR experiment has several advantages compared to the DAS version. The main 

advantage is that high-resolution HETCOR spectra may be obtained from quadrupolar 

nuclei using a conventional MAS NMR probe. Our experiments were performed using an 

unmodified Chemagnetics probe with a 7.5 mm rotor and an rf field strength of only 42 

kHz for the multiple-quantum coherence excitation. As double-resonance MAS probes 

are available in most solid-state NMR laboratories, this simplification will enable this 

~ 

q, -12.5 
0... 

(") 

I -15 
eft 
~ -17.5 

E e -2o -§_ -22.5 
c. 

23Na 

3IP 

0 -10 -20 

ppm from solid NaCI 

Figure 6.14 - A conventional two-dimensional 23NaP 1P MAS HETCOR spectrum of 
Na:t30 9 recorded under similar conditions to those in Figure 6.13. The 90· pulse length 
of 3Na was 27 !lS, the cross polarization contact time was 10 ms, and the spinning speed 
was 5 kHz. Thirty-two complex t1 points consisting of 256 scans were collected with a 
recycle delay of 3s. 
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experiment to be widely applied. In contrast, the DAS/HETCOR experiment 223 requires a 

static-coil dynamic-angle spinning probe that is capable of cross polarization at 0° with 

respect to B0;155•156 such probes are riot currently commercially available. 

A second advantage of the MQMAS/HETCOR experiment is that, potentially, the 

resolution of the 23Na dimension will be greater than that observed in the DAS/HETCOR 

experiment, hence increasing the possibility of separating signals from sites with similar 

chemical environments.216 This arises from scaling of the chemical and quadrupolar shifts 

in the 3Q/1 Q MQMAS experiment on an S=3/2 nucleus by 17/8 and -5/4, respectively 

(see Equation (6.14) and Table 6.1). In Table 6.3, peak positions for both a DAS and an 

MQMAS experiment at 11:7 T were caiculated for the sodium sites in Na3P309. 

Although the numerical values differ slightly depending on which set of quadrupolar 

parameters are used, the dispersion in the MQMAS spectrum is greater than that in the 

DAS spectrum in both cases. 

A third advantage of the MQMAS/HETCOR experiment, and the most important 

for its application to a wide variety of materials, is that samples with short T 1 's may be 

investigated. DAS/HETCOR is limited to samples where T 1 is gr.eater than about 150 ms 

since the typical time required to flip the spinning axis is about 40 ms, and the experiment 

requires three sample reorientations (see Figure 6.9). This has previously excluded the 

study of rriany 27 AI and 11B systems. 
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Chapter 7: Reversal of Radiofrequency-Driven Spin 
Diffusion· by Reorientation of the Sample­
Spinning Axis 

The previous three chapters have examined heteronuclear polarization transfer in 

the form of cross polarization. In this chapter, we will be concerned with homonuclear 

polari~ation transfer, or "spin diffusion," in systems of spin-112 nuclei. In particular, we 

will demonstrate that it is ·possible to reverse the process of rf-driven spin diffusion by 

changing the orientation of the sample-spinning axis relative to the static magnetic field. 

7.1 Previous Polarization-Echo Experiments 

The ability to manipulate the nuclear spin Hamiltonian during the course of an 

NMR experiment has permitted the observation of a variety of echo effects. The well­

known echo experiments by Hahn229 demonstrated that inhomogeneous interactions could 

be refocused by two radiofrequency pulses. Since then, spin echoes have also been 

observed· in. homogeneously broadened systems. The "magic-echo experiment" 

introduced by Schneider et aJ.230 and Rhim et aJ.231 showed that it was possible to induce a 

"time reversal" of the free-induction decay (FID) in a dipolar-coupled spin system. Llor et 

al. 232 reported the observation of the time reversal of isotropic many-body spin couplings 

in zero-field NMR. 

More recently, several experiments have demonstrated the possibility of 

refocusing the process of homonuclear polarization transfer, or "spin diffusion,"233 in 

extended spin systems. Exploiting the fact that the truncated dipolar Hamiltonians in the 

rotating and laboratory frames have opposite signs,5 Zhang et aJ.234 designed a pulse 

sequence to refocus proton spin diffusion in a static sample. Karlsson et a1.235 and 

Tomaselli et al. 236 showed that the polarization-transfer process could also be refocused 

under MAS237
•238 conditions by using rotational-resonance recoupling239•240 or rotor­

synchronized multiple-pulse sequences. The formation of such polarization echoes 

clearly demonstrates the deterministic quantum-mechanical nature of the "spin-diffusion" 

.process even though it can in some cases be approximated by a diffusion 

equation. s.233.24I .242 
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·. The dependence of the NMR Hamiltonian on both spatial and spin variables7'8 

suggests that the process of spin diffusion might also be reversible by a mechanical 
. . 

sample reorientation. It has previously been shown that a "magic echo" of the free-

induction decay can be induced in an oriented liquid-crystalline sample by changing the 

angle between the director and the external magnetic field.243 In this chapter, it will be 

shown that a time. reversal of spin diffusion can be achieved by switching the axis of 

sample rotation during a radio-frequency-driven spin-diffusion experirrient.244 

7.2 Spin Diffusion 

The term "spin diffusion" is commonly used to refer to the transfer of polarization 

among like nuclei.23•i42 This process is meditated through the zero-quantum "flip-flop" 

term in the dipolar Hamiltonian (the second term on the right in Equation (1.72)) and is 

very efficient when the nuclei have the same resonance frequency. When the nuclei have ,­

different frequencies, however, the "flip-flop" is not energy-conserving, and polarization:~. 

transfer will not occur unless the system can obtain compensating energy· from another·. 

source. 

Among protons, spin diffusion occurs readily since chemical-shift differences are 

small relative to dipolar couplings. However, the oppo~ite is true for rare spins such as 

natural abundance 13C. The rate constant for spin diffusion, Wjk• between two spins Sj · 

and Skin a static sample can be estimated using Fermi's Golden Rule1•8 

(7.1) 

where s is a pulse-sequence-dependent scaling factor, and beff,jk is the effective dipolar 

coupling frequency (explicit examples of which will be given below). The term Fjk(O) is 

the intensity of the normalized zero-quantum spectrum of the two spins at frequency 

zero;8
•
245

•
246 it represents the fraction of transitions which will be energy-conserving. The 

zero-quantum line is centered at the difference frequency ( nj- Qk) of the two spins (see 

Figure 7.1) which means that the closer their frequencies, the greater the value of Fjk(O). 
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For natural-abundance 13C spins, chemical-shift differences will often be much 

greater than the dipolar-coupling frequency, which would seem to imply that Fjk(O), and, 

hence, the rate of spin diffusion, would be zero. However, coupling to an abundant proton 

bath can broaden the zero-quantum line so that spin diffusion is possible. This mechanism 

is commonly known as "proton-driven" spin diffusion although it is important to realize 

that the magnetization is not transferred to the protons during this process.23 

Proton-driven spin diffusion can be measured using a two-dimensional pulse 

sequence that is identical to that used to measure chemical exchange (see Figure 2.7). 

After cross polarization and a frequency-labeling period (t1), spin diffusion is permitted to 

occur during a mixing time (in the range of hundreds of milliseconds to hundreds of 

seconds), and then the signal is recorded. Such experiments have been used to determine 

relative tensor orientations248•249 and to probe proximities in heterogeneous materials23 

The rate of proton-driven spin diffusion tends to be very slow because Fjk(O) , though not 

zero, is still small (see Figure 7.1a). However, the rate of spin diffusion among rare spins 

can be significantly enhanced by coupling the system to mechanical rotation of the sample 

a) b) 

Figure 7.1 - Schematic of zero-quantum lineshapes for (a) proton-driven and (b) rf-driven 
spin diffusion between a pair of spins. The zero-quantum lineshape is assumed to be 
Lorentzian247 and is centered at the difference frequency of the two spins. The rate of spin 
diffusion is proportional to the intensity of the zero quantum lineshape at zero frequency. 
The rf-driving process both narrows the width of the zero-quantum line and moves its 
center closer to zero frequency, dramatically enhancing the rate of spin diffusion. 
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during MAS ("rotor-driven" spin diffusion)239•240 or by using rf fields to reduce chemical­

shift differences ("rf-driven" spin diffusion).244' 250 The faster rates permit studies of short­

range order . 
. ~-· . 

In rf-driven spin diffusion, a spin-lock field of strength ro1s is applied to the dilute 

S spins (13C, 15N) during the mixing time.244•250 This spin-lock field scales the chemical­

shift differences among the S spins virtually to zero and decouples them from the 

abundant I spins ( 1 H). These effects enhance the rate of spin diffusion among the dilute 

spins by several orders of magnitude by moving the center of the zero-quantum line closer 

to ro = 0 and by narrowing its linewidth (see Figure 7.lb).244•245 For a spin-lock field 

which is applied a.long the x,-axis in the rotating frame and exceeds the dipolar interactions 

in its strength, the average Hamiltonian which drives the spin-diffusion process in a static 

sample is given to zeroth order by 

(7.2) '/ 

where sis a scaling factor that equals -~ for an on-resonance, continuous-wave (cw) spin 

lock5 and bjk is an effective dipolar coupling frequency 

(7.3) 

The angle of the internuclear vector of the spins j and k with respect to the external 

magnetic field is given by t}jk, and djk is the dipolar coupling constant. 

The truncated Hamiltonian of Equation (7 .2) is rendered time-dependent by 

sample rotation about an axis inclined at an angle e from the direction of B0.7•251 Under 

the condition lsbjkl « ror « ro 1s, zeroth-order average-Hamiltonian theory can again be 

applied to the Hamiltonian already truncated by the rf field. This approximation 

corresponds to neglecting all of the time-dependent terms, and the secular Hamiltonian for 

the spin-diffusion process in the rotating sample becomes · 
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Note that the effective dipolar frequency bjk(rjk' ~jk) now depends on the angle between 

the internuclear vector and the rotor axis and that the Hamiltonian is proportional to the 

second-order Legendre polynomial of the cosine of the angle between the rotor and the 

static magnetic field. In the case of magic-angle spinning, P2(cos54.74°) equals zero, 

and special recoupling sequences are needed to drive the spin diffusion.252•236 

7.3 Reversal of Rf-Driven Spin Diffusion 

7 .3.1 Pulse Sequence and Experimental Apparatus 

The presence of the scaling te'fm P 2( cos 8) in Equation (7 .4) provides the 

experimenter with the possibility of switching the sign of the Hamiltonian that governs rf­

driven spin diffusion by changing the orientation of the rotor axis relative to B0. The rf 

pulse sequence shown in Figure 7.2 takes advantage of this property and represents a new 

type of polarization-echo experiment. 234.236 

Hartmann-Hahn cross polarization 111 '227 is used to polarize the S spins during a 

preparation period 'tcp while the sample is spun about an axis oriented at the angle 

81=35.25° relative to B0. After a frequency-labeling period t1, a cw spin-lock is applied. 

For a time 't 1, rf-driven spin diffusion occurs with a scaling factor of 

Pi cos 35.25 °) = 0.5. During the time '!2, the sample is rapidly reoriented to 82=90°, 

and the spins evolve under a driving Hamiltonian with a scaling factor of 

P 2( cos 90°) = -0.5 . The signal is then acquired for a time t2. It is easily seen that the 
-iPlcosE> 1)Jlst 1/tz -iP2(cosE>2)Jlst/h . . . 

propagator e e IS the umty operator If 't 1 = 't2 , and an 

echo occurs at that point in time, even for many-body interactions. Obviously, an echo 

can also be formed with other combinations of 81 and 82. 

Although a polarization echo could also be observed in a one-dimensional 

experiment with selective excitation, the two-dimensional version4 allows one to 

distinguish the contributions of spin diffusion from those ofT 1 P relaxation. 

To implement the echo pulse sequence of Figure 7 .2, a home-built double­

resonance probe in which a stationary coil surrounds a movable stator (see Figure 7.3) was 

used. A stepper motor connected to a Whedco IMC-1151-1-A controller was used to 

rapidly reorient the rotor axis during the experiment to within ±0.62° .10•90 Details of the 
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probe design, which was originally developed for use in DAS experiments, are described 

elsewhere. 10•155 The use of such a probe permitted continuous application of the rf spin 

lock during the mechanical hop. It was not possible to avoid irradiating the S-spins during 

the hop by using ~ storage pulses253 since the full dipolar order could not be retained. 122 

All spectra in this chapter were recorded on a home-built spectrometer90 with a 1H 

Larmor frequency of 301.2 MHz and a 13c Larmor frequency of 75.7 MHz. Adamantane 

was purchased from Aldrich and used without further purification. The amount of time 

go· 
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'tcp I 

35.25° 

e -------
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Figure 7.2 - Pulse sequence for refocusing rf-driven spin diffusion by sample 
reorientation. Hartmann-Hahn cross polarization 11 L227 is used to enhance the polarization 
of the S spins. The--S spins are frequency-labeled during the evolution time, t1. For the 
entire mixing period, spin diffusion among the S spins is driven by a cw spin lock.244•250 

In the defocusing period, 'CJ> the sample is spun at the angle e1 =35.25.. During the 
refocusing time, 't2, the rotation axis is rapidly reoriented to 92=90., and the rf-driven spin 
diffusion is time reversed at t 2 = t 1 . Proton decoupling is applied during both the 
evolution (t 1) and detection (t2) periods. 

199 

' 

... \ 

.. . , 



necessary to reorient the sample was approximately 10 ms. The spinning speed was 5.3 

kHz; the rf field strengths were ro 11 / (27t) =ro1s/ (27t) =20 kHz; and the cross­

polarization contact time was 5 ms. The 13C carrier frequency was positioned exactly 

between the two 13C resonances in adamantane for the most efficient chemical-shift 

scaling during the cw driven spin diffusion period. 244•245·250 

7.3.2 Build-up of Cross-Peak Intensity 

The build-up of the cross-peak intensity during the time -r1 with -r2=0 (see Figure 

7 .2) scales linearly with IP z( cos 8 1 )I. Here, we interpret the rf-driven spin diffusion as a 

deterministic quantum-mechanical process described by the Hamiltonian, "34~) .(Equation 

(7.4)). This can be seen by performing a series expansion about -r1=0.7'8 Assuming that 

our system has two distinguishable sites, the intensity of the A~ B cross peak is given 

by 

removable 
endcap 

n=O 

stator housing 

string 

rt coil 
I 

..__ air supply~ 

fixed 
endcap 

Figure 7.3 - Probe design used in experiments. The stator housing was attached to a 
pulley which was controlled by a stepper motor so that the rotor angle could be varied 
during the course of the experiment. 10•155 The stationary coil permitted rf irradiation to be 
continuously applied during the reorientation. 
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where F~ is the s~m magnetization for the spins of type B and the Mn denote the 

moments of the series expansion5·7•8 

M = n (7.6) 

The scaling behavior can be observed experimentally by performing 13C rf-driven 

spin diffusion on polycrystalline adamantane for different values of P2( cos 8 I) . The 

largest value for lsbjkl/ (27t) is 11 Hz for the carbons in. natural-abundance adamantane 
- ' 

so the condition Is bjkl « ror « roi s can ~~sily be satisfied. In our experiments, 

ro/ (27t) = 5.3 kHz and roi 5/ (27t) = 20 kHz. Figure 7.4 shows the buildup of the 

normalized cross-peak intensity from rf-driven spin diffusion in adamantane as a function 

of I p z( cos e I )I X 't' I for three different angles e I· To within experimental error, all three 

sets of data points lie on the same curve. 

The same scaling behavior results when first-order, time-dependent perturbation 

theory 1•8•23 is used to describe the polarization-transfer process. The spin-diffusion rate, 

Pjk• between two spins Sj and Skin a rapidly rotating sample can be written as 1
•
8 

Note that the rate constant was calculated using Fermi's Golden Rule (see Equation (7.1)) 

and taking into account the sample rotation (see Equation (7.4)). In the ideal case of rf­

driven spin diffusion, the abundant I spins are completely decoupled from the S spins and, 

therefore, Fjk(O) scales with lsP 2(cos0I)bjki-I. This leads to 

(7.8) 

Equations (7.7) and (7.8) predict that the rf-driven spin-diffusion rate constant, Wjk• scales 

with 1/r:k in contrast to the proton-driven case where Wjk is proportional to 1/r?k .245·246 
. J 
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It is interesting to compare the experimental polarization-transfer dynamics with 

statistical approaches. The three curves shown in Figure 7.4 result from a 

phenomenological, ad-hoc model of the spin-diffusion process in natural-abundance 13C 

adamantane assuming a master equation for the polarization (pi = ( S i)) exchange 

d 
dtp = w. p. (7.9) 

W represents the polarization-exchange matrix where Wjk is evaluated according to 

Equation (7.7) with 81=0· and the diagonal elements are defined as Wjj = - L W kj to 
k . 

conserve the sum polarization.4 An fcc lattice of 1000 adamantane molecti1es was 

0.2r-----~----~~----~-----T------r-----~----~------~ 

+ .t. 

0.18 

0.16 

ro 0.14 -0 
~0.12 

en en 
0 0.1 
~ 
(.) 

0.08 ., 

+ e = o· 
0.04 • e = 35.25. 

0.02 • e =go· 

0~--~----~----~--~----~----~--~----~ 
0 20 40 60 80 100 120 140 160 

Figure 7.4 - Experimental build-up of the normalized rf-driven spin diffusion cross-peak 
intensity in 13C natural-abundance adamantane as a function of IP 2(cos6 1) x td for 8 1=0·, 
35.25., and 90·. The curves were numerically calculated from a kinetic master equation 
for the polarization exchange process (Equation (7.9)) and represent three different model 
assumptions used for the evaluation ofWjk as described in the text. Qualitative agreement 
with the experimental data is obtained when a uniform and constant normalized zero­
quantum intensity of Fjk(O) = F(O) = (7 ± 2) xl 0-

2 s is assumed. 

202 



constructed with a nearest distance of 6.6 A. between molecular centers.254 Due to the fast 

rotational dynamics of adamantane molecules at 300 K, the intramolecular dipolar 

interactions are averaged to zero, and the observed polarization transfer reflects only 

intermolecular dipolar interactions. The S-spin lattice sites were occupied by using a 

random number generator and considering the probabilities of 13CH2 and 13CH 

occurrence at natural abundance.255 It was assumed th~t no 111ore than two 13C atoms were 

present in a single molecule. The matrix elements, Wjk• of W were evaluated separately 

for each dipolar-coupled spin pair using Equation (7.7) with 91=0·. 

The three curves in Figure 7.4 represent three different model assumptions used 

for the evaluation of Wjk· The dotted curve~was generated using the approximation that 

( ( 1- 3cos
2
pjk) 

2
)powder = 4/5 for each spin pair.8 The dashed curve was obtained by 

performing an explicit powder average over 1000 orientations using the method of Cheng 

et ai.38 (see Section 1.3). The solid curve was obtained by additionally taking into account 

the fast rotation<il diffusion of the adamantane molecules on their lattice sites which leads 

to a motionally averaged internuclear distance (rjk) and angle ( pjk) .255 All three curves 

represent an average over 100 different randomly occupied S-spin lattices. Qualitative 

agreement with the experimental data is obtained when a uniform and constant normalized 

zero-quantum intensity of Fjk(O) = F(O) = (7 ± 2) xl0-
2 

s is assumed. This leads to a 

linewidth of the normalized S spin zero-quantum spectrum of 10-14 Hz assuming a 

Lorentzian or Gaussian shape and agrees well w.ith the strength of the 13C-13C dipolar 

couplings in natural-abundance adamantane <lsb;axl/ (27t) = 11 Hz) . 

The time dependence of the polarization transfer is clearly non-exponential due to 

the statistical distribution of the 13c spins on the lattice sites. For 1: 1 ~ 30 ms, the 13CH 

and 13CH2 pairs on neighboring moh~cules predominantly contribute to the cross-peak 

intensities. For longer times, more remote spin packets (within th~ next nearest neighbor 

shell for the plotted time range) start to contribute as well, leading to a flattening of the 

build-up curve. Due to the isotopic dilution and the crystal structure of adamantane, the 

spin-diffusion dynamics appear to follow the predictions made for coupled clusters of 

spins. 177 
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7.3.3 Spin-Diffusion Echoes 

Figure 7.5 shows a set of three two-dimensional spectra of adamantane obtained 

with 't1=30 ms and different values of 'tz. In Figure 7.5a, 'tz=O ms and the sample was 

spun at 9 1=35.25.. Rf-driven spin diffusion proceeded according to the Hamiltonian of 

Equation (7 .4) with the scaling factor P l cos e 1) = 0.5 , and the spin-diffusion cross 

peaks are clearly visible. Figure 7 .5b shows the spectrum corresponding to the 

polarization echo. In this experiment, the S-spin system evolved under a Hamiltonian 

with a scaling factor of P l cos 91) = 0.5 for 't1 =30 ms. The sample was then reoriented, 

and the evolution continued with a scaling factor of P 2( cos 92) = -0.5 for 'tz=50 ms. The 

opposite signs of the scaling factor during 't 1 and 't2 cau.sed the evolution of the 

polarization transfer to refocus, and the cross-peak intensity approached zero. Since a 

finite time was required for the sample reorientation, the polarization echo was delayed 

and occurred at 't2 = 1.3't1 . Figure 7.5c shows the case w~ere 'tz was much greater than 

't1. In this spectrum, the cross-peak intensity has recovered and reached a value exceeding 

that shown in Figure 7 .Sa. 

The complete time evolution of the echo is depicted in Figure 7.6. The normalized 

cross-peak intensities are plotted as a function of total mixing time for 't1=30 ms (Figure 

·7.6a) and 't1=70 ms (Figure 7.6b). For the experiments with the shorter 't1 time, the 

refocusing of the spin diffusion is nearly complete, but at longer times the echo, though 

sharp, is weaker in amplitude. The reason for this is unclear. One possibility is that the 

strength of the 13C rf field used in these experiments (ro1s/(27t)=20 kHz) may not 'be 

sufficient to fully decouple the abundant proton spins. The residual heteronuclear dipolar 

coupling Hamiltonian, .94s, and the homonuclear dipolar coupling among the I spins, .94
1

, 

will not be inverted by the sample reorientation since the spinning speed (ro/(27t)=5.3 

kHz) is not fast compared to these interactions. Consequently, the S-spin polarization 

echo amplitude will be damped. The flatness of the echo peak in Figure 7 .6a is due to the 

finite time required for sample reorientation. The evolution during the reorientation is 

difficult to quantify since it is not known precisely how much time the sample spends at 

each angle. Furthermore, the scaling factor, P2(cos9), varies non-linearly withe, and the 
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Figure 7.5 - Experimental two-dimensional 13C · rf-driven spin diffusion spectra of 
adamantane. For the two-dimensional spectra, 90 complex t1 points consisting of 16 
scans in each were collected according to the method of States et al.51 The delay between 
experiments was 3.5 s. (a) Rf-driven spin diffusion spectrum obtained at 81=35.25' (no 
axisreorientation) with a mixing time of -r1=30 ms. Cross peaks due to spin diffusion are 
clearly visible. (b) Echo experiment obtained using the pulse sequence of Figure 7.2 with 
-r1=30 ms and -r2=50 ms. The spin diffusion has been refocused, and the cross-peak 
intensity is nearly zero. Note that the orientation of the diagonal peaks has changed due to 
the sign change of P2(cos8) (which affects residual chemical-shift, dipolar, and bulk 
susceptibility interactions during the evolution and detection periods). (c) Experiment 
obtained using the pulse sequence of Figure 7.2 with t 1=30 ms and -r2=110 ms. The 
longer evolution at the second angle Jed to a recovery of the cross-peak intensities. In all 
three spectra, the con.tours are at 3, 5, 7, 9, 11, 13, and 15% of the maximum signal 
intensity. 
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Figure 7.6 - Time evolution of the normalized cross-peak intensity in adamantane. The 
circles and asterisks show the cross-peak build-up as a function of mixing time for rf­
driven spin diffusion at angles of 9 1::::35.25. and 90·, respectively. The crosses show the 
cross-peak intensities as a function of time for the echo experiment of Figure 7.2 with (a) 
• 1=30 ms and (b) 1 1=70 ms. The time at which the hop is initiated is indicated by a 
vertical line in each graph. 
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sign change occurs at an angle (8=54.74°) that is closer to 35.25° than to 90°. For these 

reasons, the echo position will be sensitive to instabilities in the mechanical reorientation 

process, leading to a broadening of the echo maximum for t 1 = thop . 

In summary, a new type of polarization echo has been introduced. We have 

experimentally demonstrated that the spin-diffusion process can be refocused by a 

mechanical sample_ reorientation. Rf-driven 13C polarization echoes were observed for 

mixing times on the order of 100 ms, which is more than two orders of magnitude longer 

than the time scale for previously observed proton dipolar echoes.234•236 Although rf­

driven spin diffusion in adamantane can be qualitatively described by a master equation 

for polarization exchange, such an approach obviously fails to describe the formation of 

the echoes. 
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