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TRACE PRESERVING MAPPINGS OF MATRIX ALGEBRAS

By BERNARD RUSSO

1. Introduction. In his survey article on linear transformations of matrix
algebras, M. Marcus [4; 838-839] states that not much can be said about a
linear transformation T on the full n X n matrix algebra M,,(F) over a field F
if it is assumed only that EI(T(A)) El(A), for all A in Mn(F), where E(A)
denotes the sum of all "principal 1-square sub-determinants" of A. If F is the
complex field, E(A) is the trace of A, denoted by tr (A) in the sequel.

In this paper we show that if it is assumed only that tr (IT(A)I) tr (IA[)
for all A in M,,(C), C the complex field, and that T(I) I the identity
matrix, then the transformation T is described as follows: there is a unitary
matrix U in Mn(C) such that either T(A) UAU* for all A in Mn(C); or
T(A) UA*U* for all A in Mn(C), where A is the transpose of A, A* denotes
the conjugate transpose of A, and IAI denotes the positive root of A*A.
Roughly speaking then, by introducing some analysis into an algebraic.

problem we obtain a complete solution. More precisely, the set M,,(C), to-
gether with the function A --, tr (IA]), is a Banach space which is denoted by
c in [2], and the transformation T is a linear isometry of this Banach space oato
itself.
The author has studied isometrics of L-spaces, 1 _< p < , associated with

more general operator algebras, and the Theorem of this paper is contained in
[5; Theorem 1]. Nevertheless the proof in the present paper is interesting for
two reasons; namely, the extreme points of a certain convex set are determined,
and only elementary facts about matrices are used, together with a result of
Marcus on matrix algebras [3].

2. Preliminaries. We consider the algebra Mn Mn(C) of all n X n complex
matrices as the algebra of all linear transformations oa an n-dimensional com-
plex inner product space H, By a projection we mean an element P in M,
such that P* p2 p. We denote the idensity operator oa Hn by I or In

If B is a real or complex Banach space then the unit sphere S. of B is the set.
{x B Iixll -< 1}, and is a convex set, i.e. if x, y S, then x -P (1 )y S,
where 0 _< ) _< 1 is arbitrary. A vector x in S. is an extreme point of S if
whenever x y -P (1 )z with 0 _< _< 1 and y, z in S. then
y z. Equivalently, x is an extreme point of S. if and only if when-
ever[Ix - y[] _< 1 and ]Ix Y[I -< 1 for some y in B, then y 0. It follows that
extreme joints of S. are mapped into extreme points by linear isometrics of
B onto B.
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The linear space M. is a Banach space in the norm
is the normalized trace, i.e. o(A) (l/n) tr (A) (l/n)
We remark that o(A) (l/n) =1 (A ), where 1 . is any or-
thonormal basis for H. and that ](A)] _< IIAI[, (cf. [2]).

3. The extreme points. In this section and the next, X will denote the
Banach space Mn with the norm I[" Iil, and S will denote the unit sphere of X.

LEMMA 3.1. Let Xh denote the real Banach space consisting o] all hermitian
elements of X and let Sh be the unit sphere of X An operator A in S is an
extreme point o] Sh if and only i] A -4-nP, where P is a one dimensional pro-
jection.

Proo]. Let A be an extreme point of S. Since A is hermitian, A 7=1P
where P1 P, are one-dimensional pairwise orthogonal projections, and
hi, "’", , are real numbers [1; 156]. The extremity of A implies that [[A[[1 1.
Furthermore, A---Z= ]X[(+/-P), [A[-Z= ]X[P, and I=[[A][I=([A[)
(l/n) =1 [,[. Since A is extreme, A +/-nP, i 1, 2, ,n.

Conversely, let P be a one-dimensional projection and suppose that nP
1/2(A -+- B) where A, B S The proof will be complete if it is shown that
A B. Indeed, this will imply that nP is an extreme point of S and since the
map A -+ -A is an isometry, it will follow that --nP is also extreme. Now
q(A) and (B) are complex numbers of absolute value at most one, and (A)
q(B) (A+B) (2nP) =2. Hence(A) q(B) 1. Also1=
[[A[[1 _< 1, so that [[A[[1 1 and similarly lIB[J1 1. It follows that [A A
and ]B[ B are positive operators of trace zero, so that A and B are positive
operators. Thus 2nP A + B >_ A and therefore A is a scalar multiple of P.
The same is true of B and it follows easily that A nP B.

LEMM 3.2. For each A in Mn n I[A[[1

_
IA[], where ][A I[ denotes the norm

o] the linear transformation A.

Proo]. If A is hermitian, say A diag (kl ), then

[]A[[-- max
l<_i<_n i=l i=l

For a general A, let A U IA] be the polar decomposition so that U is unitary
[1; 169]. Then [IAII

PROPOSITION 3.1. An operator A in S is an extreme point o] S if and only
i] A nUP, where U is a unitary matrix and P is a one-dimensional projection.

Proo]. Let A be an extreme point of S. Letting A U ]A] be the polar
,decomposition of A it follows (since B
is an extreme point of S. Afortiori, [A is an extreme point of S. By Lemma
3.1 IA[ -+-uP, so that A U [A n(V)P.



TRACE-PRESERVING MAPPINGS 299

For the converse it is sufficient, as in the proof of Lemma 3.1 to prove that
nP is an extreme point of S for P a one dimensional projection. Accordingly
.supposenP 1/2(A q-B)withA, BS. Then2n 1[2nPII I[A q-Bl[ <_
I[A]I q-lIB[] _< n ][A[]I q-n ]]BI[1 _< 2n, by Lemma 3.2. Hence ]]A[] IlBll- n.
Trivially PAP nP PBP. Let 1 be an orthonormM basis for
H,, chosen so that belongs to the range of P. Then I (nP) (PAP)
(l/n) [:=1 (PAP, ) (PAP,, l)/n (AI, )/n, so that (A, ) n.
Since [[A[[ _< n, we have equality in the Schwarz inequality so A n,
and similarly B n,. Since I] ]A[ ][ n, n is an eigenvalue of [A[. Since
([A l) 1, the multiplicity of n is one and all other eigenvalues of IA] are zero.
Let v be an orthonormal basis for H consisting of eigenvectors for
[A[ chosen so that ]A[ v, n,1 and IA[ , 0, i 2, ..., n, [1; 156]. Writing

[:=1 (, v,)v, we have nl A = (, v)Av,
7= (1, )U IA[ v ( vl)nUv Again we have equality in the Schwarz
inequality so that is a scalar multiple of v in particular is orthogonal to
72, It is now easy to check that A and nP agree on the orthonormal
basis 1, 2, v. The proof is complete.

4. The Theorem.

THEOREM. Let T be a linear trans]ormation o] M(C) onto M(C) such that
tr (IT(A)I) tr (IAI) ]or each A in M(C) and T(I) I. Then there is a unitary
matrix U in M(C) such that either T(A) UAU* for all A in M(C); or T(A)
UAU* ]or all A in M(C).

LEMMA 4.1. Let K K. K be (n 1)-dimensional subspaces o]
H where n >_ 3 and 2

_
r

_
n--l. Then the dimension o] K1 (’ K (’ (’ K,

is not less than n r; in particular K K (% K, {0}.

Proo]. Induction based on the equation dim (K /% K)
dim ((K (% (% K_) (% K) -dim ((K (% V’ K,-1) + K) +
dim (K (% V’ K_) - dim (K).

LEMMA 4.2 I] E E and E E are all projections, then
EE O i] i j.

Proo]. An easy induction.

LEMMA 4.3. Suppose that I ?__ V where V* V Q is a one di-
mensional pro]ection, i 1, n. Then V Q /or i 1, n; and
QQ O ]or i ].

Proo]. Applying Lemma 4.1 to the ranges of I Q for i j, there is for
each fixed ], a non-zero vector . such that Q. 0 for i ]. Then V; 0
for i ] and thus V. I. ; 0. Let P. be the projection on the non-
zero subspace V. }. Then 0 P _< Q. and since Q. is one-dimen-
sional, P Q V; Since ] is arbitrary, the proof of the first part of the
lemma is complete. The rest follows from Lemma 4.2.
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Proo] o] the theorem. The mapping T is an isometry of the Banach space X
onto itself. Let V be a unitary matrix in Mn(C). Then V -1 hP and
I ,’..1 P where P Pn are pairwise orthogonal one-dimensional
projections and [hl 1, i 1, n [1; 161]. Using Proposition 3.1 V
T(P) UQ where Q is a one dimensional projection and U is a unitary
matrix, i 1, ,n. It follows that T(V) :.-ih,VandI T(I)
’. VwhereV*V, Q i 1, n. Thus byLemma4.3 T(V) isa
unitary matrix, i.e. T maps the unitary group of Mn(C) into itself. The result
now follows from a theorem of Marcus [3; 155].

i. Remarks. 1. We have assumed in the theorem that T(I) I. As
shown in [5], this assumption is not esseatial in general. However, it does seem
to be essential here for an elementary proof (cf. Lemma 4.3).

2. It is curious to note that whereas the theorem of Marcus used above is
valid in more general operator algebras [6; Corollary 2], it is not used in the
proof of [5, Theorem 1].

Addendum. The ideas of this paper have been extended to cover the infinite
dimensional case. Details will appear in the Proc. Amer. Math. Soc.
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