UC Irvine
 UC Irvine Previously Published Works

Title

Trace preserving mappings of matrix algebras

Permalink

https://escholarship.org/uc/item/5h78752t

Journal

Duke Mathematical Journal, 36(2)

ISSN

0012-7094

Author

Russo, Bernard

Publication Date

1969-06-01

DOI

10.1215/s0012-7094-69-03638-2

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

TRACE PRESERVING MAPPINGS OF MATRIX ALGEBRAS

By Bernard Russo

1. Introduction. In his survey article on linear transformations of matrix algebras, M. Marcus [4; 838-839] states that not much can be said about a linear transformation T on the full $n \times n$ matrix algebra $M_{n}(F)$ over a field F if it is assumed only that $E_{1}(T(A))=E_{1}(A)$, for all A in $M_{n}(F)$, where $E_{1}(A)$ denotes the sum of all "principal 1 -square sub-determinants" of A. If F is the complex field, $E_{1}(A)$ is the trace of A, denoted by $\operatorname{tr}(A)$ in the sequel.

In this paper we show that if it is assumed only that $\operatorname{tr}(|T(A)|)=\operatorname{tr}(|A|)$ for all A in $M_{n}(C), C=$ the complex field, and that $T(I)=I=$ the identity matrix, then the transformation T is described as follows: there is a unitary matrix U in $M_{n}(C)$ such that either $T(A)=U A U^{*}$ for all A in $M_{n}(C)$; or $T(A)=U A^{t} U^{*}$ for all A in $M_{n}(C)$, where A^{t} is the transpose of A, A^{*} denotes the conjugate transpose of A, and $|A|$ denotes the positive root of $A^{*} A$.

Roughly speaking then, by introducing some analysis into an algebraic problem we obtain a complete solution. More precisely, the set $M_{n}(C)$, together with the function $A \rightarrow \operatorname{tr}(|A|)$, is a Banach space which is denoted by c_{1} in [2], and the transformation T is a linear isometry of this Banach space ontoitself.

The author has studied isometries of L^{p}-spaces, $1 \leq p<\infty$, associated with more general operator algebras, and the Theorem of this paper is contained in [5; Theorem 1]. Nevertheless the proof in the present paper is interesting for two reasons; namely, the extreme points of a certain convex set are determined, and only elementary facts about matrices are used, together with a result of Marcus on matrix algebras [3].
2. Preliminaries. We consider the algebra $M_{n}=M_{n}(C)$ of all $n \times n$ complex matrices as the algebra of all linear transformations on an n-dimensional complex inner product space H_{n}. By a projection we mean an element P in M_{n} such that $P^{*}=P^{2}=P$. We denote the idensity operator on H_{n} by I or I_{n}.

If B is a real or complex Banach space then the unit sphere S_{B} of B is the set $\{x \varepsilon B:\|x\| \leq 1\}$, and is a convex set, i.e. if $x, y \varepsilon S_{B}$, then $\lambda x+(1-\lambda) y \varepsilon S_{B}$ where $0 \leq \lambda \leq 1$ is arbitrary. A vector x in S_{B} is an extreme point of S_{B} if whenever $x=\lambda y+(1-\lambda) z$ with $0 \leq \lambda \leq 1$ and y, z in S_{B}, then $y=z$. Equivalently, x is an extreme point of S_{B} if and only if whenever $\|x+y\| \leq 1$ and $\|x-y\| \leq 1$ for some y in B, then $y=0$. It follows that extreme joints of S_{B} are mapped into extreme points by linear isometries of B onto B.

Received September 30, 1967. This research was supported in part by the National ScienceFoundation, under grant GP-5436.

The linear space M_{n} is a Banach space in the norm $\|A\|_{1}=\varphi(|A|)$, where φ is the normalized trace, i.e. $\varphi(A)=(1 / n) \operatorname{tr}(A)=(1 / n) \sum_{i=1}^{n} a_{i i}, A=\left(a_{i j}\right)$. We remark that $\varphi(A)=(1 / n) \sum_{i=1}^{n}\left(A \xi_{i}, \xi_{i}\right)$, where ξ_{1}, \cdots, ξ_{n} is any orthonormal basis for H_{n} and that $|\varphi(A)| \leq\|A\|_{1}$ (cf. [2]).
3. The extreme points. In this section and the next, X will denote the Banach space M_{n} with the norm $\|\cdot\|_{1}$, and S will denote the unit sphere of X.

Lemma 3.1. Let X_{h} denote the real Banach space consisting of all hermitian elements of X and let S_{h} be the unit sphere of X_{h}. An operator A in S_{h} is an extreme point of S_{h} if and only if $A= \pm n P$, where P is a one dimensional projection.

Proof. Let A be an extreme point of S_{h}. Since A is hermitian, $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$ where P_{1}, \cdots, P_{n} are one-dimensional pairwise orthogonal projections, and $\lambda_{1}, \cdots, \lambda_{n}$ are real numbers $[1 ; 156]$. The extremity of A implies that $\|A\|_{1}=1$. Furthermore, $A=\sum_{i=1}^{n}\left|\lambda_{i}\right|\left(\pm P_{i}\right),|A|=\sum_{i=1}^{n}\left|\lambda_{i}\right| P_{i}$, and $1=\|A\|_{1}=\varphi(|A|)=$ ($1 / n$) $\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Since A is extreme, $A= \pm n P_{i}, i=1,2, \cdots, n$.

Conversely, let P be a one-dimensional projection and suppose that $n P=$ $\frac{1}{2}(A+B)$ where $A, B \varepsilon S_{h}$. The proof will be complete if it is shown that $A=B$. Indeed, this will imply that $n P$ is an extreme point of S_{h} and since the $\operatorname{map} A \rightarrow-A$ is an isometry, it will follow that $-n P$ is also extreme. Now $\varphi(A)$ and $\varphi(B)$ are complex numbers of absolute value at most one, and $\varphi(A)+$ $\varphi(B)=\varphi(A+B)=\varphi(2 n P)=2$. Hence $\varphi(A)=\varphi(B)=1$. Also $1=|\varphi(A)| \leq$ $\|A\|_{1} \leq 1$, so that $\|A\|_{1}=1$ and similarly $\|B\|_{1}=1$. It follows that $|A|-A$ and $|B|-B$ are positive operators of trace zero, so that A and B are positive operators. Thus $2 n P=A+B \geq A$ and therefore A is a scalar multiple of P. The same is true of B and it follows easily that $A=n P=B$.

Lemma 3.2. For each A in $M_{n}, n\|A\|_{1} \geq\|A\|$, where $\|A\|$ denotes the norm of the linear transformation A.

Proof. If A is hermitian, say $A=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, then

$$
\|A\|=\max _{1 \leq i \leq n}\left|\lambda_{i}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|=n\left((1 / n) \sum_{i=1}^{n}\left|\lambda_{i}\right|\right)=n\|A\|_{1} .
$$

For a general A, let $A=U|A|$ be the polar decomposition so that U is unitary $[1 ; 169]$. Then $\|A\|=\|U|A|\|=\||A|\| \leq n\||A|\|_{1}=n\|A\|_{1}$.

Proposition 3.1. An operator A in S is an extreme point of S if and only if $A=n U P$, where U is a unitary matrix and P is a one-dimensional projection.

Proof. Let A be an extreme point of S. Letting $A=U|A|$ be the polar decomposition of A it follows (since $B \rightarrow U^{-1} B$ is an isometry of X) that $|A|$ is an extreme point of S. A fortiori, $|A|$ is an extreme point of S_{h}. By Lemma $3.1|A|= \pm n P$, so that $A=U|A|=n(\pm U) P$.

For the converse it is sufficient, as in the proof of Lemma 3.1 to prove that $n P$ is an extreme point of S for P a one dimensional projection. Accordingly suppose $n P=\frac{1}{2}(A+B)$ with $A, B \varepsilon S$. Then $2 n=\|2 n P\|=\|A+B\| \leq$ $\|A\|+\|B\| \leq n\|A\|_{1}+n\|B\|_{1} \leq 2 n$, by Lemma 3.2. Hence $\|A\|=\|B\|=n$. Trivially $P A P=n P=P B P$. Let ξ_{1}, \cdots, ξ_{n} be an orthonormal basis for H_{n} chosen so that ξ_{1} belongs to the range of P. Then $1=\varphi(n P)=\varphi(P A P)=$ $(1 / n) \sum_{i=1}^{n}\left(P A P \xi_{i}, \xi_{i}\right)=\left(P A P \xi_{1}, \xi_{1}\right) / n=\left(A \xi_{1}, \xi_{1}\right) / n$, so that $\left(A \xi_{1}, \xi_{1}\right)=n$. Since $\|A\| \leq n$, we have equality in the Schwarz inequality so $A \xi_{1}=n \xi_{1}$, and similarly $B \xi_{1}=n \xi_{1}$. Since $\||A|\|=n, n$ is an eigenvalue of $|A|$. Since $\varphi(|A|)=1$, the multiplicity of n is one and all other eigenvalues of $|A|$ are zero. Let $\eta_{1}, \cdots, \eta_{n}$ be an orthonormal basis for H_{n} consisting of eigenvectors for $|A|$ chosen so that $|A| \eta_{1}=n \eta_{1}$ and $|A| \eta_{i}=0, i=2, \cdots, n,[1 ; 156]$. Writing $\xi_{1}=\sum_{i=1}^{n}\left(\xi_{1}, \eta_{i}\right) \eta_{i}$, we have $n \xi_{1}=A \xi_{1}=\sum_{i=1}^{n}\left(\xi_{1}, \eta_{i}\right) A \eta_{i}=$ $\sum_{i=1}^{n}\left(\xi_{1}, \eta_{i}\right) U|A| \eta_{i}=\left(\xi_{1}, \eta_{1}\right) n U \eta_{1}$. Again we have equality in the Schwarz inequality so that ξ_{1} is a scalar multiple of η_{1}; in particular ξ_{1} is orthogonal to $\eta_{2}, \cdots, \eta_{n}$. It is now easy to check that A and $n P$ agree on the orthonormal basis $\xi_{1}, \eta_{2}, \cdots, \eta_{n}$. The proof is complete.

4. The Theorem.

Theorem. Let T be a linear transformation of $M_{n}(C)$ onto $M_{n}(C)$ such that $\operatorname{tr}(|T(A)|)=\operatorname{tr}(|A|)$ for each A in $M_{n}(C)$ and $T(I)=I$. Then there is a unitary matrix U in $M_{n}(C)$ such that either $T(A)=U A U^{*}$ for all A in $M_{n}(C)$; or $T(A)=$ $U A^{t} U^{*}$ for all A in $M_{n}(C)$.

Lemma 4.1. Let $K_{1}, K_{2}, \cdots, K_{r}$ be $(n-1)$-dimensional subspaces of H_{n}, where $n \geq 3$ and $2 \leq r \leq n-1$. Then the dimension of $K_{1} \cap K_{2} \cap \cdots \cap K_{r}$ is not less than $n-r$; in particular $K_{1} \cap K_{2} \cap \cdots \cap K_{r} \neq\{0\}$.

Proof. Induction based on the equation $\operatorname{dim}\left(K_{1} \cap \cdots \cap K_{r}\right)=$ $\operatorname{dim}\left(\left(K_{1} \cap \cdots \cap K_{r-1}\right) \cap K_{r}\right)=-\operatorname{dim}\left(\left(K_{1} \cap \cdots \cap K_{r-1}\right)+K_{r}\right)+$ $\operatorname{dim}\left(K_{1} \cap \cdots \cap K_{r-1}\right)+\operatorname{dim}\left(K_{r}\right)$.

Lemma 4.2 If E_{1}, \cdots, E_{k}, and $E_{1}+\cdots+E_{k}$ are all projections, then $E_{i} E_{i}=0$ if $i \neq j$.

Proof. An easy induction.
Lemma 4.3. Suppose that $I_{n}=\sum_{i=1}^{n} V_{i}$, where $V_{i}^{*} V_{i}=Q_{i}$ is a one dimensional projection, $i=1, \cdots, n$. Then $V_{i}=Q_{i}$ for $i=1, \cdots, n$; and $Q_{i} Q_{i}=0$ for $i \neq j$.

Proof. Applying Lemma 4.1 to the ranges of $I-Q_{i}$ for $i \neq j$, there is for each fixed j, a non-zero vector ξ_{i} such that $Q_{i} \xi_{i}=0$ for $i \neq j$. Then $V_{i} \xi_{i}=\mathbf{0}$ for $i \neq j$ and thus $V_{i} \xi_{j}=I \xi_{i}=\xi_{i} \neq 0$. Let P_{i} be the projection on the nonzero subspace $\left\{\xi: V_{j} \xi=\xi\right\}$. Then $0 \neq P_{i} \leq Q_{i}$; and since Q_{i} is one-dimensional, $P_{i}=Q_{i}=V_{i}$. Since j is arbitrary, the proof of the first part of the lemma is complete. The rest follows from Lemma 4.2.

Proof of the theorem. The mapping T is an isometry of the Banach space X onto itself. Let V be a unitary matrix in $M_{n}(C)$. Then $V=\sum_{i=1}^{n} \lambda_{i} P_{i}$ and $I=\sum_{i=1}^{n} P_{i}$, where P_{1}, \cdots, P_{n} are pairwise orthogonal one-dimensional projections and $\left|\lambda_{i}\right|=1, i=1, \cdots, n[1 ; 161]$. Using Proposition $3.1 V_{i} \equiv$ $T\left(P_{i}\right)=U_{i} Q_{i}$, where Q_{i} is a one dimensional projection and U_{i} is a unitary matrix, $i=1, \cdots, n$. It follows that $T(V)=\sum_{i=1}^{n} \lambda_{i} V_{i}$ and $I=T(I)=$ $\sum_{i=1}^{n} V_{i}$ where $V_{i}^{*} V_{i}=Q_{i}, i=1, \cdots, n$. Thus by Lemma $4.3 T(V)$ is a unitary matrix, i.e. T maps the unitary group of $M_{n}(C)$ into itself. The result now follows from a theorem of Marcus [3; 155].
5. Remarks. 1. We have assumed in the theorem that $T(I)=I$. As shown in [5], this assumption is not essential in general. However, it does seem to be essential here for an elementary proof (cf. Lemma 4.3).
2. It is curious to note that whereas the theorem of Marcus used above is valid in more general operator algebras [6; Corollary 2], it is not used in the proof of [5, Theorem 1].

Addendum. The ideas of this paper have been extended to cover the infinite dimensional case. Details will appear in the Proc. Amer. Math. Soc.

References

1. P. R. Halmos, Finite Dimensional Vector Spaces, New York, 1958.
2. C. A. McCarthy, c_{p}, Israel J. Math., vol. 5(1967), pp. 249-271.
3. M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J., vol. 26 (1959), pp. 155-164.
4. M. Marcus, Linear operations on matrices, Amer. Math. Monthly, vol. 69(1962), pp. 837847.
5. B. Russo, Isometries of $L^{p-s p a c e s}$ associated with finite von Neumann algebras, Bull. Amer. Math. Soc., vol. 74(1968), pp. 228-232.
6. B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebras, Duke Math. J., vol. 33(1966), pp. 413-416.

University of California, Irvine

