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ABSTRACT 

A plausibility argument is made that the real and imaginary parts of the 

nucleon-nucleon scattering amplitude as a function of' the cosine of' the barycentric 

system scattering angle, for fixed energy, are analytic in the complex plane, with 

It is conjectured that in the real part singularities confined to the real axis. 
2 

there are poles at cos e = ±(1 + ~ ), 
2k 

where ~ is the pion rest mass and k 

the barycentric momentum, branch points at 
2 2 . 
~ 9!-L cos e = ±(1 + 2 ), ±(1 + ~ ), etc. 

k 2k 

The residues of' the poles ~re related directly to 2 g , the pion-nucleon coupling 

2 constant, and a procedure is outlined for determining g by an extrapolation of' 

experimental data on either backward or forward nucleon-nucleon scattering. 



A PROPOSAL FOR DETERMINING THE PION-NUCLEON COUPLING CONSTANT 

FROM NUCLEON~NUCLEON SCATTERING 

Geoffrey F. Chew' 

Radiation Laboratory 
University of California 

Berkeley, California 

May 14, 1958 

I. Introduction 

Dispersion relations have made feasible a systematic determination of the 

2 pion-nucleon coupling constant g from experimental measurements of the scattering 

1 2 of ~ mesons by nucleons. The method depends on the fact that g is the residue 

of a pole in the scattering amplitude for fixed•momentum transfer as a function 

2 of W , the square of the total energy in the barycentric system. Except for 

this residue, all other quantities occurring in the dispersion relations for 

pion-nucleon scattering are physically measurable. It has been pointed out2 that 

a somewhat similar situation exists for nucleon=nucleon scattering at fixed momentum 

transfer where again 2 
g occurs as the residue of a pole in the variable w2 • 

However, in this case~ there are extensive nonphysical contributions to the dis-

persian relations which make practical applications difficult. It is the purpose 

of this paper to point out that if one considers instead the real part of the 

N-N scattering amplitude at fixed energy as a function of ~' the square of the 

momentum transfer, then there is probably a pole of residue 2 
g located at 

2 2 
~ = -~ , where ~ is the pion rest mass. More important, a method is outlined 

for determining the residue by extrapolation from the physical region of positive 

~ ~. 

Lehmann has recently demonstrated that there exists a region of 

analyticity in the complex 62 plane which includes the physical region.3 We 

are conjecturing that once the pole in question has been removed this region of 

2 2 analyticity includes the point 6 = ~~ and that an extrapolation to determine 

the required residue is possible. 
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The physical idea underlying the present proposal is an old one, although 

it is usually stated in a different way, namely, that the nucleon-nucleon inter-

action at large distances is· dominated by single pion exchange, which in turn is 
' 

uniquely related to g2 and ~. 4 A rough correspondence of this statement to the 

existence of a pole at ~2 = -~2 may be seen if one believes that at high energies 

the outer fringe of the interaction•,. determines the real part of the forward 

scattering amplitude. Remembering the relation between momentum transfer and the 

angle of scattering in the barycentric system, 

cos e = 1 
~2 

2k2 ' 
(I .1) 

where k is the magnitude of the momentum of either particle in this system, one 

2 2 sees that although the point ~ = -~ always is unphysical, corresponding to 
2 

cos e = 1 + 2~2 > 1 , this point comes nearer and nearer to physical forward 

scattering as k2 increases. If, therefore, there is a pole at this point as a 

function of cos e and no other singularities in the immediate neighborhood, then 

the residue of this pole determines the asymptotic behavior of the real part of 

the forward scattering amplitude. 

For practical reasons, some of which are discussed below in Sec. IV, the 

region of very high energy may not be most suitable for the determination of 

(For example, one needs a complete set of phase shifts in order to obtain the 

real part of the amplitude, and phase-shift analysis of experiments has so far 

2 
g • 

been possible only at energies sufficiently low that inelastic processes may be 

neglected.) We are basing our hopes then on the possibility of bridging by analytic 

continuation an appreciable gap between the physical region and the position of the 

pole. 

gap in 

The practical accuracy of 
2 

~ 

2k2 ' 
cos e, which is 

such a continuation presumably requires that the 

be small compared with the interval in cos 9 

2 
2k = M Tt , if M 

is the nucleon mass and Tt the laborato~y kinetic energy, we have the requirement 



or 
T.e >> j..Lf2M = 10 Mev • 

(L2) 

This means the energy must be high enough so that nonzero orbital angular 

momenta are important. In the old way of describing the principle exploited here 

such a circumstance would be obvious. The "tail" of the interaction can be 

isolated only in states that are prevented by an angular momentum barrier from 

penetrating to short distances. 

II. The Single Pion Exchange Term 

A motivation for our conjecture concerning the pole at ~2 = -j.l
2 can be 

given in terms of Feynman diagrams. The diagram shown in Fig. 1, when renormalized, 

yields a term 

2 
g 

Cu, T r
5

u )(ii, 
P 1 a P1 P 2 

' where 

= (p - p ')2 2 2 

(IL2) 

A corresponding term with p1 ' and p2 ' exchanged also occurs, but a little 

thought about more complicated diagrams shows that none of them becomes infinite 

2 2 
for ~ ~ -j..L • Also the modification of the pion propagator and of the vertex 

2 functions in this limit are entirely absorbed by the renormalization of g and 

j..L. Thus, in perturbation theory, the scattering amplitude when evaluated in the 

2 2 neighborhood of ~ = -j..L is exactly represented by the renormalized Born 

approximation. 

Confirmation is given by the circumstance that the term obtained from 

Eq. (II:2) by exchanging p1 ' and p2 ' has been singled out for a special role 

in the dispersion-relation discussion of the scattering amplitude as a .function of 
2 2 2 

w = -(pl + p2) = -(pl' + p2') ' 
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for fixed momentum transfer. 2 Here the denominator is 

(p P ')2 + "2 = w2 1 - 2 .... 4~ 2 
+ f-1. 

UCRL-8283 

so that there is a pole at w2 = 4M
2 

- f-1.
2 

+ 62, and in the neighborhood of this 

(IL3) 

pole the renormalized Born approximation is exact. In the present discussion, 

where w2 is fixed, we regard this exchange term as giving rise to a second pole 

In terms of cos e, the location of this pole is very natural: whereas 
' 2 

the denominator in Eq; (II.2) vanishes at cos e = 1 + 2~2 , (II.3) vanishes 

at cos e = -1 ~· With identical particles one of course expects symmetry 

(or antisymmetry) with respect to cos e. 

It seems very plausible, therefore, that a determination of the scattering 

amplitude near either of these two poles corresponds to a measurement of the 

value of 2 
g • We need information, however, about the location of other 

2 singularities in the 6 complex plane before we can formulate an appropriate 

procedure for continuation from the physical region. 

III. 
. 2 

The Location of Singularities in the ~ Plane 

To make a guess about the singularities of the scattering amplitude as a 

function of 62 , let us consider, instead of nucleon-nucleon scattering as 

indicated in Fig. 2(a), the process of nucleon-antinucleon scattering, as 

indicated in Fig. 2(b). In perturbation theory we could obtain the NN amplitude 

from the NN by making the substitutions5 

Notice that the variable 

q I = 
1 

62 = (pl- pl')2 

= (ql + %)2 

~I= (III.l) 

(III .2) 
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becomes the negative energy squared in the NN case, while 

= 

= -(q 
1 

UCRL-8283 

( III.3) 

becomes a negative (exchange) momentum transfer squared. In the NN 
2 case t:;. · 

and w2 are both positive whereas they become both negative in the NN case. 

Nevertheless we shall optimistically assume that the location of singularities of 

the scattering amplitude considered-as a function of ti
2 for 

NN case can be carried over to the NN case. 

2 
fixed W in the 

Following the oy now familiar approach of contraction of the S-matrix 

6 element, applied here to NN scattering, one sees that if a "normal" dispersion 

relation exists for fixed w2 = -(q1 - ~') 2, then the singularities in ti
2 

are 

associated with the possible vanishing of the two expressions 

and 

(~ - ~') 
2 2 + m 

2 
+ m 

2 
+ m 

(III.4) 

' 
( III.4) 

where m ranges over the mass values of states that can be reached from the NN 

system. The lowest mass state of this kind is the single ~ meson, and it gives 

rise precisely to the two poles discussed above. The next lowest masses belong 

to the two-pion state. We expect then two branch points corresponding to 2 2 
m = 41-l , 

with cuts to +cxJ. More complicated states give rise to further pairs of branch 

points on the real axis. 

k2 according to 

and 

Changing variables from 8
2 2 and W to cos e and 

(III. 5) 
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cos e = 

we find the corresponding singularities in cos 8 2 for fixed k : 

Poles at 

Branch points at 

2 
cos e = ±(1 + 11.2 ) , 

2k 

cos e = ±(1 
2 2 

+ ~ ), 
k 

2 
±(1 + ~) 

2k ' 

(III.6) 

(III. 7) 

etc. 

This whole procedure of course amounts to nothing more than an optimistic 

conjecture. Our guess (III.7) may be partially checked, however, against recent 

rigorous results obtained by Le~nn. 3 Lehmann proves that the NN scattering 

amplitude as a function of cos e for fixed w2 is free from singularity, at 

least within an ellipse whose foci are at ±1 and whose semimajor axis is of 

length 

X (k2
) ll 

( 2MJ.t + fJ.2)2 

= + 
4k2(k2 M2) 0 + 

(III.8) 

One may confirm that this region never includes the singularities whose existence 

2 we have conjectured, although at k 
1 

= - Mil. 2 
our poles lie exactly on the 

boundary. At all other energies they are outside Lehmann's ellipse. 

Lehmann proves further that the imaginary part of the scattering amplitude 

as a function of cos e is analytic within a larger ellipse, whose semimajor axis 

is 2X2 
0 

1 or 

For small k2 this ellipse includes not only our poles but also our first 

(III.9) 

conjectured branch points, which at first sight is somewhat surprising. (Our poles 

have real residues and therefore are singularities only in the real part of the 
I 

amplitude.) If one, however, believes that a two dimensional spectral representation 
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exists, which exhibits simultaneously the behavior of w2 ~d 62 in the complex 

plane, then it becomes plausible that the imaginary part of the amplitude has a 

wider. domain of analyticity than does the real part. 

For example, suppose the scattering amplitude (excluding the poles) could 

be expressed by representations of the form, 

where 

dm2 
2 2 2 2 2 

( m
1 

- W )( m
2 

+ 6 ) ' 

2 2 7 
~(m1 , m

2
) is real, as suggested by Mandelstam in connection with 

pion-nucleon scattering. Then, for fixed w2 in the physical region, 

= ' 

where <:>a 

s 2 2 
2 2 dm2 e<ml ' m2 ) 

Re G(W , m2 ) = p 
2 w2 ' 1 

(2M)2 ml "' 

and 

2 2 2 2 Im G(W , m2 ) = 1f f (W ' m2 ) 

(fiLlO) 

(IILll) 

(IIL12) 

(IIL13) 

It follows from (IIL12) and (IIL13) that Re G(W2, m.2
2) is in general non-zero 

2 2 2 for a wider range of m2 than is Im G(W, m2 ) •. Corresponding~y, from (III.ll), 

the branch points of Re T(w2, 62) exte~d over the wider range of the 62 real 

2 2 axis then they do for Im T(W , 6 ). 

Mandelstam7 has shown that representations of the type (III.lO) are 

compatible with fourth order perturbation theory. We do not here rest our case 

on the validity of Mandelstam's particular conjecture, but believe that the 

general feature described is likely to be present in a correct two dimensional 

representation. 



IV. Possible Continuation Procedures 

One can think of many possible procedures for performing the required 

continuation from the physical region, -1 < cos 9 < 1, to the poles at 
2 

cos e ~ ±(1 + ~ ). A detailed investigation of the kind of information 
2k 

available from experiment, as well as the theoretical complications due to spin 

and isotopic spin, must be made before one can say which procedures are practical. 

Such an investigation is under way and the results will be reported at a later 

time. Here we.merely mention a few general considerations. 

In principle it is possible to work directly with measured differential 

elastic-scattering cross sections. That is to say, the location of singularities 

of the absolute square of the scattering amplitude is the same as for the amplitude 

itself. The poles are of second order but their strength is still simply related 

to 2 
g • One might think that this method of approach allows the use of experiments 

at very high energy where the poles come close to the physical region. However, 

when inelastic processes are frequent the imaginary part of the elastic-scattering 

amplitude has a strong maximum at small angles (the familiar diffraction peak), 

which tends to obscure the behavior of the real part. At backward angles for n-p 

scattering the maximum in the imaginary part should be less pronounced. 

Roughly speaking, in order to find 2 
g directly from a forward angular 

distribution, one could multiply the exp~rimental distribution by 

2 2 

+ 2~2) J [ cos 9 - (1 ' 
(IV.l) 

plot against cos e, and hope that the resulting function is smooth enough to be 

extrapolated to the required point. The procedure for backward scattering would 

be analogous. The difficulty with this approach is that the complete NN amplitude, 

because of spin and isotopic spin, is made up of ten scalar amplitudes which may 

interfere with one another so as to obscure the behavior of the individual fUnctions. 



-10-

For example, p-p scattering in the region of a few hundred Mev is roughly isotropic 

--showing little of the forward and backward peaking which is expected from the 

influence of our poles and which is present in n-p angular distributions. Evidently 

cancellations are at work in the p-p amplitude •. 

Should the pole in the backward n-p scattering be of sufficient prominence 

to warrant detailed analysis, a possible procedure is the following: 

Defining 

X = 
2 

(1 + 2~2 ) + cos e 
' 

(IV.2) 

dcr 2 one may, after multiplying the experimental points for d~ by x , attempt a least 

squares fit with a form 

A 
2 

+ Bx + Cx + 

The coefficient A is the desired quantity, being proportional to 
4 8 

g • 

(IV.3) 

The range of experimental points which may be used is determined by the distance 

from the pole to the nearest branch point as given by (III.7). Since a power 

series converges within a circle whose boundary contains the nearest singularity, 

experimental points in the range 

-1 > cos e > 
2 

-1 + L k2" (IV.4) 

are suitable. In other words, the physical range available is twice the distance 

of extrapolation. No doubt more sophisticated extrapolation procedures are 

possible, which further extend the useful physical range. 

If at some energy a complete set of phase shifts and mixing parameters 

were available, one could construct the ten separate scalar amplit1ades for each 

of which the residue of the poles is related to 

2 

2 
g 0 

cos e .,. ( 1 + ~ ) , 
2k 

Multiplying any one by 
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one would hope to find a smooth function in the small-angle (or largetiangle) region 

that could be extrapolated. 

Evidently the program outlined here may be regarded as a check on local 

field theory as applied to strong coupling phenomena. We are predicting that the 

constant g2, determined by the proposed extrapolation procedure, will not'only be 

the same for all ten scalar amplitudes but will also be independent of energy and 

have the same value as that determined by pion-nucleon and photopion dispersion 

relations. 
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FIGURE CAPTIONS 

Figure 1: The single pion exchange diagram for nucleon~nucleon scattering. 

Figure 2: Diagrams showing the relation between (a) nucleon-nucleon and (b) nucleon~ 

antinucleon scattering. 
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