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Real time genetic compensation defines the dynamic demands 
of feedback control

Patrick Harrigan1, Hiten D. Madhani1,2,#, and Hana El-Samad1,2,#,*

1Dept. of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University 
of California, San Francisco, San Francisco, CA 94158, USA

2Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA

SUMMARY

Biological signaling networks use feedback control to dynamically adjust their operation in real 

time. Traditional static genetic methods such as gene knockouts or rescue experiments often can 

identify the existence of feedback interactions, yet are unable to determine what feedback 

dynamics are required. Here, we implement a new strategy, closed loop optogenetic compensation 

(CLOC), to address this problem. Using a custom-built hardware and software infrastructure, 

CLOC monitors in real time the output of a pathway deleted for a feedback regulator. A minimal 

model uses these measurements to calculate and deliver— on the fly—an optogenetically-enabled 

transcriptional input designed to compensate for the effects of the feedback deletion. Application 

of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic 

requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and 

traditional genetics, presents a broadly applicable methodology for defining the dynamic function 

of biological feedback regulators.

eTOC Summary:

An optogenetic-based method is developed to explore the temporal requirements for a gene 

product to produce a dynamic phenotype.
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INTRODUCTION

The classical genetic complementation experiment tests whether phenotypes produced by a 

mutation can be rescued by the wild-type allele (Collins et al., 2006). This experiment, 

however, does not reveal whether the time-dependent regulation of the corresponding gene 

or gene product is important for maintaining the wild-type phenotype. Such knowledge is 

particularly germane to feedback regulation in signaling and transcriptional networks where 

the dynamic interplay between pathway activity and feedback activation enables cells to 

monitor and adjust the activity of upstream components in real time. Feedback regulation is 

a widespread cellular strategy that underlies diverse cellular behaviors including perfect 

adaptation (Leibler et al., 1999), multi-stability (Xiong and Ferrell, 2003) and oscillations 

(Tsai et al., 2008). In these contexts, feedback plays a dominant qualitative role that can be 

assessed by inference since its loss usually induces visible disruption of a phenotype—for 

example loss of oscillations (Lahav et al., 2004) or perfect adaptation (Muzzey et al., 2009). 

However, the majority of feedback loops seem to play quantitative roles, fine tuning the 

operation of cellular pathways to demands and fluctuations in the environment (Nevozhay et 
al., 2009). Such regulation is challenging to understand quantitatively because the input-

output relationship of many interconnected signaling components must be measured and 

modeled mathematically (Garmendia-Torres, Goldbeter and Jacquet, 2007; Howell et al., 
2012; Werner et al., 2008). Mathematical predictions need then to be iteratively tested in 

painstaking fashion (Harreman et al., 2004; Cirit, Wang and Haugh, 2010; Dixit et al., 
2014).

We describe here a general method to study cellular feedback regulation that employs and 

updates the conceptual framework of genetic compensation experiments (Figure 1A). In this 

approach, we define a quantitative, dynamic phenotype associated with the loss of a 

pathway-controlled regulator: the time-dependent difference between the output of the wild 

type and mutant pathways. We use this information and a minimal mathematical model to 

compute continuously, for every time point at which the output is measured, how much of 
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the missing regulator needs to be added back into the cell in order to rescue this phenotype 

and restore wild-type output dynamics. We then inject the computed level of the regulator 

into the mutant cell using an optogenetic construct that controls its transcription. In this 

closed loop optogenetic compensation (CLOC) approach, both fully and partially 

compensatory inputs produce focused hypotheses about the temporal demands on the 

feedback regulator. Below we describe how we have applied CLOC to three well-studied 

negative regulators of the yeast pheromone response MAPK pathway, the dual-specificity 

MAPK phosphatase Msg5, the DEP-RGS protein Sst2, and the Gα protein Gpa1. Our 

studies reveal distinct dynamic requirements for each of these pheromone-induced 

regulatory factors and reveals the power of elucidating the time scales of gene function, 

which cannot be fully interrogated by compensation with static genetic alleles.

RESULTS

In silico feedback control of yeast mating pathway dynamics by automated optogenetic 
expression of negative regulators

The yeast mating pheromone response pathway is a model signal transduction network 

(Bardwell, 2005) where extensive work mapping pathway components and interactions has 

identified numerous feedback regulators (Kaffman, Rank and O’Shea, 1998; Ren et al., 
2000; Gruhler et al., 2005). In this pathway, the binding of mating pheromone to the G-

protein-coupled receptor Ste2 (a cells) or Ste3 (α cells), is transduced by a MAP kinase 

cascade into the activation of the transcription factor Ste12. Ste12 drives the expression of 

genes required for mating as well as genes encoding for pathway components that regulate 

upstream signaling. We investigated three such negative regulators whose transcription is 

stimulated by pheromone: Sst2 (Dietzel and Kurjan, 1987), Msg5 (Doi et al., 1994), and 

Gpa1 (Nakayama et al., 1988) (Figure 1B). Gpa1 is α subunit of the receptor-controlled G 

protein that inhibits the Gβγ complex (Ste4-Ste18), which, once freed from inhibition, is the 

key activator of the MAPK cascade. Msg5 is the dual specificity phosphatase that 

dephosphorylates and inactivates the MAPK Fus3. Sst2 is the DEP-RGS protein that 

enhances GTP hydrolysis by Gpa1, terminating signaling and promoting receptor down-

regulation. While these three negative regulators are well-studied, how their temporal 
regulation by the MAPK pathway shapes signaling dynamics is not well-understood.

To study the dynamic requirements of these pheromone controlled pathway regulators, we 

constructed feedback deficient mutants (sst2∆, msg5∆, gpa1∆) in which the endogenous 

Ste12 inducible copy of each gene is knocked out and replaced with a corresponding 

optogenetically inducible copy (Figure 1C). This effectively replaces the native Ste12-

activated expression of the feedback regulators with expression that can be experimentally 

activated with light. Light-based inputs, which can be easily varied in time and magnitude, 

are particularly well suited for fine, dynamic control of gene expression. We used a modified 

version of a previously reported cryptochrome based optogenetic expression 

system(Kennedy et al., 2010) in which the cytochrome protein Cry2phr is fused to the Gal4 

DNA binding domain and its interacting partner Cib1 is fused to the activation domain of 

Rtg3 (Rothermel, Thornton and Butow, 1997). Upon stimulation by blue light, Cry2phr-

Gal4DBD undergoes a conformational change that enables it to bind Cib1-Rtg3AD and 
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drive expression from the pGAL1 promoter of either Sst2 (Opto-Sste2), Msg5 (Opto-Msg5), 

or Gpa1 (Opto-Gpa1). The Cry2phr-Gal4DBD optogenetic construct was effective at 

expressing these proteins, and we observed robust and dose dependent repression of pathway 

output upon exposure to blue light, as measured by a pheromone-responsive pAGA1-YFP 
reporter (McCullagh et al., 2010) (Figure S1-S3)

To assess the impact of removing Sst2, Msg5 or Gpa1 on mating pathway-signaling 

dynamics, we used α-factor to induce each feedback deficient mutant in the dark (with no 

induction of Opto-Msg5, Opto-Sst2, or Opto-Gpa1) and compared its pathway output to that 

of the wild type (Figure 1D). In sst2∆ cells, the difference in pathway output relative to wild-

type increases steadily over time while in msg5∆ cells this difference remains roughly 

constant for the duration of the experiment after an initial rise. Unlike the other mutants, 

gpa1∆ cells display a quantitative and reproducible increase in basal signaling prior to 

pheromone addition. This initial difference in pathway activity decreases during early 

induction and then increases as gpa1∆ reaches a higher maximum pathway activity than wild 

type.

One strategy for restoring wild type pathway dynamics in the feedback deficient mutants 

would be to iteratively test predetermined optogenetic inputs until one that restores wild type 

output is found. This strategy, referred to in engineering as open-loop control, requires a 

predictive understanding of how pathway output changes as a function of optogenetic input 

and can therefore be unreliable if this function is affected by day to day variation in pathway 

behavior (Milias-Argeitis et al., 2011, 2016; Del Vecchio et al., 2017; Rullan et al., 2017). 

The alternative ‘closed-loop’ approach would leverage the same strategy that endogenous 

cellular feedback loops use to produce robust signaling dynamics, namely to monitor the 

pathway output in real time and correspondingly adjust the activity of the feedback 

regulators (Figure 2). In our case, this entails real-time, in silico adjustment of the 

optogenetic input to change in vivo regulator expression and in this fashion, staple the output 

of the mutant to that of the wild type. Similar closed loop control schemes have recently 

been used to control intracellular processes in live cells (Milias-Argeitis et al., 2011; 

Toettcher et al., 2011; Uhlendorf et al., 2012; Lugagne et al., 2017). Historically, they form 

the basis of patch clamp studies in neurobiology (Hodgkin and Huxley, 1952) where a 

controller-supplied current that is updated in real-time to compensate for neuron voltage 

changes serves as a proxy for measuring endogenous neuron currents.

To accomplish closed-loop control, we designed and fabricated an automated yeast 

culturing, light delivery, and cytometric measurement device (Figure 2A). The device 

consists of eight temperature-controlled and aerated yeast incubators with individually 

addressable and integrated blue light-emitting diodes (LED) for light delivery. A selection 

valve and syringe pump is used to automate the addition of fresh media and α-factor to the 

cultures as well as the injection of culture into a flow cytometer to measure pathway activity. 

The device is controlled via customized code that allows the user to set experimental 

parameters including measurement frequency and the timing of α-factor introduction 

(Supplemental Information).
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The device uses a particular closed loop control strategy, model predictive control (MPC) 

(Borrelli, Bemporad and Morari, 2017), to determine the appropriate optogenetic input for 

CLOC from real-time output measurements of the mating pathway (Figure 2B). Although 

MPC requires the construction of a rudimentary model of the system, it has the advantage 

over system-agnostic control schemes such as the classical proportional-integral-derivative 

method in that it is better suited for systems with significant delays such as those inherent to 

transcription and translation (Fiore et al., 2016). MPC is better able to circumvent these 

delays since by design it considers what input is needed now to adequately guide the system 

in the future. We chose a two-state ordinary differential equation (ODE) model that yielded a 

simplified description of how pAGA1-YFP expression responds to both mating pheromone 

(α-factor) and light in the feedback deficient mutants (Supplemental Information). The 

two variables described in the model represent the dynamics of light induced expression of 

the feedback regulator and the measured fluorescent output in response to this regulator. 

This model is a parsimonious and generic description, and we chose it with the explicit 

intent of developing a generalized approach without the need for detailed mechanistic 

models. During a typical CLOC experiment, we induce signaling using α-factor and 

measure the pAGA1-YFP output via flow cytometry. The MPC controller uses this 

measurement to estimate the states of the ODE model and then selects a light input that the 

model predicts minimizes the future difference between the activity of the mutant pathway 

and the desired wild type pathway (Figure 2C). This light input is then applied to the 

mutants for 15 minutes, at which point the operation is repeated. The states of the model are 

re-estimated based on the current measurements of pAGA1-YFP and a new light input is 

selected and administered.

Using our automated closed-loop control device, we performed time-dependent genetic 

compensation of sst2∆, msg5∆, and gpa1∆ strains with Opto-Sst2, Opto-Msg5, and Opto-

Gpa1 respectively. In each case, we initially tested constant-light induction of the negative 

regulator in open loop—that is without changing light input as a function of pAGA1-YFP 
measurements—for a range of light intensities. The open loop response of the mutants was 

then used for the initial parameterization of the controller ODE model (Figures S1-S3). In 

cases where this parameterization was insufficient for obtaining satisfactory CLOC, we 

adopted a procedure in which we iteratively refit the model parameters using data from 

CLOC experiments that only achieved partial compensation (Figures S2-S3). This is akin to 

closed-loop system identification (Ljung, 1999), a procedure used to ensure that a low 

resolution empirical model still captures the properties of a system (such as important time-

scales) required for efficient closed loop control. Examination of iterative trials, that 

achieved either satisfactory or partial compensation revealed striking differences for the 

dynamic requirements for each of the three regulators.

Constant Opto-Sst2 induction rescues wild-type dynamics

We first attempted to rescue wild-type signaling dynamics in an sst2∆ mutant using constant 

open loop induction of Opto-Sst2. Given the often-assumed canonical role of SST2 as a 

feedback regulator (Chasse et al., 2006), we were surprised to find that constant induction of 

Opto-Sst2 at an appropriate light intensity was sufficient to rescue wild type signaling 

dynamics in sst2∆ (Figure 3B). Constant induction above or below this level achieved partial 
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compensation, initially driving signaling to wild type levels before eventually resulting in 

pathway over attenuation or over activation compared to wild type (Figure 3C trials 1–5). 

These data strongly indicate that constant pheromone-induced expression of SST2 suffices 

to program the wild-type response to mating pheromone and that this response does not 

require a dynamic transcriptional feedback mechanism. This is further corroborated by the 

light inputs used in CLOC, which resemble fluctuations about a constant light intensity 

(Figure 3C trial 6). Constant induction of Opto-Sst2 was similarly sufficient in rescuing 

wild type dynamics for experiments performed at a higher concentration of α-factor (Figure 
S4A).

Further examination of the MPC inputs revealed an interesting trend: even when induction 

of opto-Sst2 is switched off for a period of time during CLOC, we didn’t observe a 

corresponding over activation of signaling in sst2∆ cells until approximately one hour later. 

(Figure 3C trial 7). To directly test this observed delay, we carried out an experiment in 

which we expressed Opto-Sst2 at the optimal level for 1 hour and then turned off its 

induction. We observed that there is indeed a one hour delay before sst2∆ output deviates 

from wild-type levels (Figure 3C trial 8). This slow pathway reaction to shutoff of Opto-

Sst2, which could be related to the half-life of Sst2, the responsiveness of the pathway, or 

both, is consistent with the apparent lack of a temporal requirement for the regulation Sst2.

Dynamic requirement for Opto-Msg5 to rescue wild-type signaling

In contrast to our findings on SST2, we could not find any level of constant Opto-Msg5 

expression that rescues wild type signaling dynamics in msg5∆ (Figure S2A). Instead, we 

observed a tradeoff in which a constant induction of Opto-Msg5 that was strong enough to 

drive early signaling of msg5∆ cells to wild type levels also resulted in over-attenuation of 

the output at later times (Figure 4C trial 2). Dialing down the constant light intensity could 

reduce this over-attenuation but at the cost of initial over-activation (Figure 4C trial 1). The 

tradeoff between the need for sufficient initial attenuation and its incurred subsequent over-

attenuation suggested that a dynamic opto-Msg5 input was needed to circumvent this 

limitation of constant induction.

We next carried out CLOC experiments using a model parameterized from the collected 

open loop data. In these first experiments, the MPC attempted to prevent the problem of over 

attenuation by stopping induction of Opto-Msg5 after signaling in msg5∆ cells had been 

restored to wild type levels (Figure 4C trials 3–4). However, this still resulted in poor 

compensation, as pathway signaling was slow to recover from its initial attenuation even in 

the absence of opto-Msg5 induction. This is likely due to the excess Opto-Msg5 molecules 

produced during the overzealous initial pulse that persist in the cell and continue to repress 

pathway output for an extended period of time. This suggested that initial expression of 

Msg5 is crucial for wild type signaling dynamics and that mistakes of over-production 

cannot be promptly corrected. Furthermore, it was evident that the model parameters used in 

CLOC were not sufficiently tuned to account for the important timescales of the signaling 

process.
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Therefore we refitted the model parameters using these initial CLOC trials. With the refitted 

model, CLOC converged on a strategy of pulsing of Opto-Msg5 expression (Figure 4C trials 
7–8). This strategy alleviated the shortcomings of previous trials by adjusting the first Opto-

Msg5 pulse duration and timing to drive initial pathway output to the level of wild type 

without excess production of Opto-Msg5. Subsequent Opto-Msg5 pulses were then 

administered, as the impact of the previous pulse of Opto-Msg5 is lost. This interpretation is 

supported by non-optimal CLOC trials in which the initial pulse of Opto-Msg5 induction 

was too long (Figure 4C trial 5) or strong (Figure 4C trial 6) and drove pathway output 

below wild type. In both cases, the second Opto-Msg5 was not administered. We again 

observed similar results for CLOC experiments conducted at a higher concentration of α-

factor (Figure S3B). Furthermore, experiments performed using a more complex model did 

not significantly improve pathway control and generated qualitatively similar light inputs 

(Figure S2G-J). Taken together, these experiments indicate that dynamic pulses of MSG5-

mediated feedback enable fine control of pathway dynamics while avoiding over attenuation.

To further test this hypothesis and ensure that the model was not generating needlessly 

complicated light inputs, we conducted CLOC experiments in which the LEDs were 

purposefully turned off before the MPC could administer the third pulse seen in successful 

CLOC trials. (Figure 4C trial 9). Without a third pulse, we consistently observed that 

pathway activity rose above the wild type level at the end of the experiment.

Interestingly, while different successful CLOC experiments always generated a pattern of 

dynamic pulsing, the magnitude and timing of these pulses varied quantitatively between 

experiments, likely as a response to biological variability in the pathway (Milias-Argeitis et 
al., 2016). Our control scheme potentially accounts for this variability and adjust 

quantitatively to it in real-time. To further test this idea, we conducted an experiment in 

which the CLOC light input generated using the real-time measurement of one sample of 

msg5∆ (Figure S2L) was simultaneously applied in open loop to biological replicates of this 

culture (Figure S2M). This ‘quasi-open loop’ input did not reliably rescue wild type 

signaling, as the magnitude and timing of the light pulses were often inappropriate given the 

particular quantitative circumstances of the biological replicates (Figure S2M Trials 2–4).

Taken together, these data support a hypothesis in which a dynamic endogenous MSG5 
feedback loop generates on-demand pulses of Msg5 whose timing and magnitude are fined-

tuned by cellular circumstances. These pulses of Msg5 expression in feedback seem to be 

crucial to maintain wild type signaling demands in the pathway following α-factor 

stimulation. Notably, a previous report has found pulses of Fus3 activity in cells exposed to 

mating pheromone for prolonged periods (Hilioti et al., 2008), which may be related to the 

pulsatile requirement for Msg5 transcription identified here.

Dynamic requirement for Opto-Gpa1 to rescue pheromone-independent basal signaling

Unlike sst2∆ or msg5∆ strains, the gpa1∆ strain displays increased basal signaling compared 

to wild type (Figure 1D). We first attempted to rescue wild type signaling in gpa1∆ cells 

without correcting for this basal signaling difference. However, all open loop induction 

schemes of Opto-Gpa1 starting concurrently with pheromone induction failed in a 

prototypical way. Low constant expression of Opto-Gpa1 drove output down from its high 
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basal state, eventually reaching the wild type level but only around two hours after induction 

(Figure 5C trial 1). Higher Opto-Gpa1 expression shortened this time, but at the cost of over 

attenuation of signaling due to over-production of Gpa1 (Figure 5C trial 2). These data 

suggested that basal expression of Gpa1 in cells prior to stimulation is required for proper 

signaling dynamics after α-factor exposure.

Next, we asked whether constant open-loop expression of Opto-Gpa1 that precedes 

pheromone exposure could rescue the post-induction signaling dynamics of gpa1∆ cells. We 

therefore induced Opto-Gpa1 for 3.5 hours before pathway activation by α-factor. After 

addition of α-factor, constant Opto-Gpa1 induction was either stopped (Figure 5C trials 3–
4) or continued (Figure 5C trial 5). Light intensities strong enough to drive basal signaling 

in gpa1∆ cells to wild type levels resulted in over attenuation after pheromone addition, even 

in the absence of continued expression of Opto-Gpa1. While weaker constant induction of 

Opto-Gpa1 before α-factor addition avoided this over attenuation, it did not fully restore 

basal signaling in gpa1∆ cells (Figure 5C trial 5 inset) and if not continued after pheromone 

exposure, also resulted in pathway over-activation at around 30 minutes after induction 

(Figure 5C trial 5).

We therefore hypothesized that dynamic compensation of gpa1∆ is necessary to fully rescue 

wild type basal signaling and immediate dynamics after pheromone exposure without 

causing over attenuation. To perform CLOC of both basal signaling activity and induction 

dynamics, we parameterized a model using all the data generated by the constant light 

responses of the gpa1∆ strain (Figure S4A). CLOC experiments using this initial model 

were able to satisfactorily rescue wild type basal signaling, generally through strong initial 

induction of Opto-Gpa1 that is subsequently ramped down prior to pheromone addition 

(Figure 5C trials 6–7). However, this induction strategy did not avoid the issue of over 

attenuation following α-factor addition seen in the constant Opto-Gpa1 experiments.

Using these data, we then performed a second round of model fitting for additional CLOC 

experiments. These experiments resulted in more tapered Opto-Gpa1 expression strategies 

that rescued basal signaling gpa1∆ (Figure 5C trials 8 inset) without causing severe over 

attenuation immediately post α-factor induction. The same light induction strategy 

generated similar results for gpa1∆ CLOC experiments conducted at a higher concentration 

of α-factor (Figure S4C). These data indicate that a carefully calibrated basal expression of 

Gpa1 is needed at the time of pheromone addition in order to start approaching post-

induction wild-type dynamics (Figure 5C, compare trials 6 and 7 with trial 8).

Notably, we observed that many quantitatively different Opto-Gpa1 induction patterns could 

rescue wild type pAGA1-YFP levels without extensive over-expression of Gpa1 at the time 

of pheromone induction. These strategies resulted in similar rescue of post-pheromone 

dynamics and showed only a weak dependence on post-pheromone Opto-Gpa1 expression 

(Figure 5C compare trials 8 and 9, also compare trials 1 and 2 to trials 8 and 9). Taken 

together, these data strongly suggests that negative feedback via transcription of GPA1 plays 

a critical role in setting the level of Gpa1 during basal signaling, and that this initial level is 

critical for producing the wild-type dynamics after pheromone induction.
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DISCUSSION

Feedback loops have mostly been studied in contexts where they generate dramatic 

qualitative behavior, such as the positive feedbacks that produce the sharp switching (Xiong 

and Ferrell, 2003) used for cellular differentiation or the negative feedbacks that produce 

oscillations (Pomerening, Kim and Ferrell, 2005) used in setting biological rhythms. It is 

widely accepted, however, that hundreds if not thousands of feedback loops decorate a cell 

and that the large majority of these do not create cellular phenotypes but instead contribute 

quantitatively to them. Understanding these feedbacks requires knowing both their 

dynamics, when and how strongly they are active, and more importantly what happens when 

these dynamics are disrupted. Despite previous elegant attempts (Santos, Verveer and 

Bastiaens, 2007; Yu et al., 2008), systematic tools are scarce to efficiently generate 

hypotheses pertaining to these questions. The approach presented here takes a first step in 

this direction by combining two powerful ideas, genetic compensation and control theory. 

Adding a dynamic dimension to classical genetics by defining phenotype as time-dependent 

signaling, we ask control theory to determine how much and how often introduction of a 

deleted feedback component can rescue wild-type signaling dynamics in a mutant strain. We 

then use this time trace of the introduced compensatory feedback and its success or failure in 

rescuing wild type signaling to generate hypotheses about the dynamism, timescale of 

action, sensitivity, and other hallmarks of the endogenous feedback loop.

In the context of the yeast mating pheromone response pathway, we suggest that the 

dynamic optogenetic input required for time-dependent genetic compensation of its 

feedback regulators serves as a proxy for endogenous Ste12 driven feedback expression, 

allowing for quantitative characterization of the feedback regulators’ temporal expression 

requirements in the context of native pathway signaling. With this as a guiding principle, we 

determined that the extensively studied feedback loop involving SST2, whose dynamic 

induction in response to pheromone has largely been assumed to be essential for signaling 

(Dixit et al., 2014), appears to have no temporal requirement for generating wild type 

induction dynamics in response to a step input of α-factor. Instead static expression of Sst2 

is sufficient to generate wild type signaling dynamics. By contrast, our studies suggest that 

the feedback loop involving the phosphatase MSG5 is exquisitely dynamic, pulsing 

repeatedly to fine-tune pathway dynamics. Our data also suggest that GPA1 is involved in 

dynamic feedback, but one that is important mostly during basal signaling.

Such hypotheses generated by CLOC can be used to prioritize further mechanistic 

investigations of these regulators. In the case of MSG5, CLOC suggests that future 

exploration of transcriptional bursting will likely be productive. For SST2, the observed lack 

of a dynamic expression demand might redirect future investigation of this feedback away 

from mean pathway output and towards other functional phenotypes. The hypothesized role 

of GPA1 in the regulation of basal activity suggests that future investigation should be aimed 

at whether its promoter is uniquely sensitive to low Ste12 activity.

Importantly, these operational definitions and hypotheses of the three feedback loops could 

not be achieved by direct measurement of pheromone induced GPA1, SST2, and MSG5 
transcription dynamics alone. Typically, measuring an increase or decrease of a gene product 
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in a given circumstance does not demonstrate its functional relevance to this circumstance. 

To make such a determination classically, one would observe the effect of a disruption to this 

gene and rescue this effect by complementation with the wild type allele. Our methodology 

provides a direct parallel to this in that it does not simply correlate a dynamic transcriptional 

profile with a signaling output, but tests the sufficiency of this profile to produce the 

signaling output. By doing so, we provide a measure of causality.

While the phenotype we adopt here is time-dependent signaling, the same framework is 

applicable to other quantitative phenotypes, such as noise regulation or dose response 

alignment (Yu et al., 2008). For example, Sst2 was postulated to be a noise regulator in the 

mating pathway (Dixit et al., 2014). By defining the phenotype to be rescued as the 

difference in cell-to-cell variability of signaling of the sst2∆ strain as compared to wild type, 

a modified version of the general CLOC framework that uses Opto-Sst2 expression to 

control population variation could be used to generate concrete quantitative hypothesis about 

the noise regulatory role of the SST2 feedback loop. Similarly, while we use optogenetic 

transcriptional control, our methodology could easily accommodate a number of existing 

optogenetic tools that modulate a variety of post transcriptional processes including cAMP 

signaling (Stierl et al., 2011) and subcellular localization of proteins (Yumerefendi et al., 
2015), and thus be expanded to a general set of tools for the investigation of different types 

of feedback regulation. In fact, iterative applications of CLOC that place different aspects of 

a gene’s regulation under optogenetic control could be used to systematically isolate and 

characterize their individual contributions to the feedback. For example, Gpa1 

downregulates the pathway by tethering Fus3 to the membrane and this interaction is also 

upregulated in feedback upon pheromone stimulation (Metodiev et al., 2002). This binding 

could be placed under optogenetic control and CLOC repeated using this new control point 

in order to determine whether this aspect of GPA1 feedback is also relevant prior to 

pheromone stimulation.

Such extensions of the method are facilitated by the use of a simple empirical model to 

devise the “rescue” control sequence. This aspect defies biological intuition where it is often 

considered that mechanistic models are most useful, a reasonable statement when direct 

analysis of the model is intended. Since the hypothesis generating entity here is the rescue 

sequence itself, we limited the granularity of the model, using a generic representation that 

can produce such a rescuing sequence while still being generalizable to other systems and 

applications. This is analogous to the historical use of the voltage clamp in neurobiology, in 

which an electronic circuit that does not mechanistically model the voltage gated ion 

channels of a neuron nonetheless provides valuable information about their operation and 

quantitative characteristics.

Overall, we believe CLOC to be a broadly applicable tool that can update the classical 

genetics toolbox with a method that facilitates the study of one of the most essential aspects 

of life—the ability to self-regulate through feedback.
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STAR METHODS

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Hana El-Samad (hana.el-samad@ucsf.edu). To request 

reagents please submit a form to UCSF at https://ita.ucsf.edu/researchers/mta.

Experimental model and subject details

The yeast Saccharomyces cerevisiae was used in this study. The specific strain used is 

w303a.

Plasmid and strain construction—All plasmids and strains used in this study are listed 

in tables S1 and S2. Plasmids contain single integration constructs selectable using 

auxotrophic markers. They were linearized by digestion with Pme1 and transformed into 

yeast using standard lithium acetate protocols. Annotated sequences are available on 

Addgene. The cryptochrome optogenetic expression constructs were PCR amplified from 

Addgene plasmids 28244 and 28245 and modified using Gibson Assembly. The gene 

encoding the secreted protease BAR1 (Manney, 1983) was knocked out in all reported 

strains to ensure that α-factor was not extracellularly degraded during experiments. This was 

done by amplifying a nourseothricin resistance cassette flanked on either side by 70 base 

pairs of homology to the genomic sequence immediately upstream and downstream of the 

BAR1 gene and transforming this amplicon into yeast. SST2, MSG5, and GPA1 deletions 

were similarly accomplished using the amplification of a kanamycin resistance cassette. To 

control for previously reported basal expression in the dark from the cryptochrome 

optogenetic system, feedback deficient mutants are compared to wild type strains 

transformed with a copy of the optogenetic expression system and the corresponding light 

inducible allele.

Media and growth conditions—Single colonies are picked from YPD (yeast extract, 

peptone, 2% glucose) agar plates into 50 mL of YPD media and grown overnight at 30 

degrees Celsius to an optical density of 0.2. 8 mL of this culture is added to 22 mL of YPD 

in a 50 mL conical tube containing a magnetic stir bar and incubated on the yeast incubator 

array for 1 hour prior to the start of an experiment.

Method details

Automated closed loop control device—The device hardware consists of custom 

fabricated, LED-enabled yeast incubator arrays coupled to a liquid handling module and a 

three-laser flow cytometer (LSR II, Becton Dickinson) (Supplemental Information). Each 

incubator array consists of four temperature controlled and magnetically stirred chambers 

designed for liquid culturing of yeast in 50 mL conical tubes (Falcon, Becton Dickinson). 

Temperature control is achieved using a thermocouple and PID regulated resistive heating. 

Stirring is achieved using magnets mounted to a rotor using a laser cut adapter to turn 

magnetic stir bars. Chambers are light isolated and contain a heat sink on which three 

individual LEDs can be mounted. Custom fabricated caps allows for liquid to be moved in 

and out of the conical tubes using flexible tubing and standard one-piece fluidic fittings 
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(PEEK No-Twist, VICI). Multiple incubator arrays can be attached to the liquid handling 

module, and we used 2 arrays for a total of 8 chambers in all experiments presented above. 

Liquid handling is accomplished using the two syringe pumps (Cavro XCalibur Pump, 

Tecan) of a High Throughput Sampler (Becton Dickinson) and a stream selector (Valco SD 

selector, VICI). The liquid handling module allows for the movement of yeast culture from 

an individual incubator to the cytometry for measurement or to a waste reservoir for culture 

dilution. Fresh media and α-factor can likewise be moved into individual incubators. A 

complete schematic of this fluidics setup is shown in the supplemental information.

The syringe pumps, stream selector, and LED driver are each serially addressable and are 

concurrently controlled during experiments by custom software (LabView, National 

Instruments) used to coordinate their individual actions. Additionally, this software 

processes the cytometry data generated during the experiment in real time. This data is then 

passed to a MatLab program that implements the model predictive control algorithm and 

dictates the appropriate optogenetic inputs to the LED driver. All model files required for 

fabrication of device parts are available upon request and a bill of materials is provided in 

the supplemental information.

Automated culture measurements—The LabView software is used to specify for each 

experiment the number of culture samples, a sample frequency, a number of outgrowth 

measurements, and a dilution volume. At each measurement time point, culture is sampled 

iteratively from each incubator within the array. A sample consists of moving culture from 

an incubator into the cytometer for measurement, diluting by replacing culture with a 

volume of fresh media, and then clearing the fluidics lines by pushing an air bubble through 

the lines and into a waste reservoir. This clearing was sufficient to prevent mixing of 

subsequent samples (data not shown). For sst2∆ and msg5∆, we used a sampling frequency 

of 8 minutes and a dilution volume of 1mL. For gpa1∆ we used a sampling frequency of 12 

minutes to accommodate the time required for the higher dilution volume of 2 mL needed to 

maintain exponential growth during the longer experiments. For each experiment, cultures 

are first measured for a specified number of outgrowth time points (3 for sst2∆ and msg5∆ 

and 18 for gpa1∆) in order to estimate basal pAGA1-YFP signaling. Before the first 

measurement after the outgrowth period, 1 mL of YPD containing α-factor is added to each 

incubator such that the final culture concentration is either 0.5 nM α-factor (Figure 3–5) or 1 

nM α-factor (Figure S4) and the dilution media is replaced by YPD containing the 

appropriate concentration of α-factor. 6 µM α-factor stocks are kept in ten percent ethanol 

and are used to create the induction media. Light induction begins concurrently with either 

α-factor addition for experiments with msg5∆ and sst2∆ or the first culture measurement in 

the case of gpa1∆. In order to prevent phototoxicity during induction of the light inducible 

alleles, blue light is administered at the specified intensity during a 2 second pulse repeated 

every 2 minutes. Given the previously reported half-life of activation of the cryptochrome 

protein, these light pulse trains are sufficient to achieve constant activation. Two incubators 

within the array are always used as internal controls for α-factor concentration and receive 

no blue light during the duration of an experiment. A detailed description of protocol and 

sequential steps used by the automated device for sampling, cleaning, diluting, and induction 
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including the settings for valve positions and syringe actions are included in the 

supplemental information.

Quantification and statistical analysis

Cytometry measurements are processed by the device software in real time by discarding the 

first 750 events of a sample in addition to any events with no measured fluorescence. All 

fluorescence measurements (FITC-H) are then normalized to cell volume by dividing by 

side scatter (SSC-H) and pAGA1-YFP levels taken as the median FITC-H/SSC-H value of 

the population. These levels are reported as fold change over basal with the basal level 

estimated as the median of the measurements taken at the time of pheromone addition (0 

hours). For a given time point, the difference in signaling between the wild type and mutant 

strain (compensation) is calculated as the log2 of the ratio of the mutant output to the wild 

type output. The total difference is calculated by summing the absolute value of each time 

point difference that exceeds the standard deviation observed for biological repeats (n=3) at 

that time (gray shaded region) in the wild type strain in the absence of light.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

Classical genetic complementation tests do not reveal temporal requirements

Closed-loop optogenetic compensation (CLOC) defines such dynamic demands

CLOC dynamically comaplements a knockout mutant using real-time in silico feedback

Application to the yeast mating pathway illuminates transcriptional feedback control

Harrigan et al. Page 16

Cell. Author manuscript; available in PMC 2019 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 |. Mutants of SST2, MSG5, and GPA1, three pheromone-induced negative regulators of 
the yeast mating pathway have different signaling dynamics phenotypes.
(A) Illustration of the concept of time dependent genetic compensation. Deletion of a 

feedback regulator causes a difference in the pathway output of the mutant as compared to 

the wildtype. This difference is time-varying. As a result, rescue of this quantitative dynamic 

phenotype requires the time-varying exogenous expression of the missing gene. (B) 

Schematic of the wild type pheromone response pathway. (C) The different mutants for 

pheromone responsive regulators (Sst2, Msg5 and Gpa1). Rescue of these mutations will be 

carried out using an optogenetic construct. (D) The α-factor response for sst2∆ (i), msg5∆ 
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(ii), and gpa1∆ (iii) strains compared to the wild type response. Top panels: Fold change 

pAGA1-YFP expression as a function of time for the wild type and feedback deficient strain 

after pathway induction with 0.5nM α-factor. Bottom Panels: Difference of pAGA1-YFP 
expression between the wild type and feedback deficient strains. Zero indicates no 

difference. Shaded region represents the standard deviation when comparing three biological 

repeats of wild type signaling. This region will help us define successful compensation to 

wild type given experimental error and biological variability.
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Figure 2 |. Synthetic optogenetic compensation control (CLOC).
(A) Schematic showing the LED-enabled yeast incubation array and liquid handling device 

used for real time cytometry measurement and light delivery. (B) Block diagram showing the 

design of the closed control strategy used to implement CLOC. An in silico computational 

controller continuously compares desired pathway output to mutant pathway output and 

determines the appropriate optogenetic expression of a pathway regulator to carry out the 

genetic compensation of the mutant output. (C) Schematic of model identification and model 

predictive control used in in silico computations. The output of the mutant pathway in 

response to constant light input is used to parameterize an initial model. In an initial set of 

CLOC experiments, model predictive control uses this model to determine appropriate light 

inputs in order to carry out the dynamic compensation. If compensation is not satisfactory, 

model identification is repeated with all generated data, including suboptimal CLOC trials. 

Eventually, CLOC trials converge on a satisfactory dynamic compensation strategy. (See 

Table S4)
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Figure 3 |. CLOC experiments indicate that there are no dynamic requirements for 
compensation of SST2.
(A) Simplified schematic of a CLOC experiment where compensation of the mutant is 

carried out through optogenetic expression of Sst2. (B) The optogenetic input resulting in 

the best compensation along with its compensation error is shown on the left. This plot also 

shows the numerical values of the axes. The same scale and values are used in panel C. (C) 

For all trials, mutant strains are induced with 0.5 nM α-factor at time 0 hours and pAGA1-
YFP is then measured for 3 hours. Compensation of mutants is carried out through 

optogenetic expression of Sst2. Results of different trials are shown as rows in tables with 

three columns. The first column shows the light input as a function of time, the second 

column shows the resulting difference in signaling output between compensated mutant and 

wild type as a function of time, and the third column shows the sum of the differences shown 

in the second column. Light inputs were given in either open loop (input is dashed), closed 

loop (input is solid color). For hypothesis testing, input prescribed by CLOC was 

implemented (input in blue solid color) until some point in time when the control was 

purposefully shut off (would-be input in dashed black line). (See Figure S1, Figure S4, and 

Table S3)
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Figure 4 |. CLOC experiments indicate that dynamic compensation of MSG5 is necessary to 
rescue msg5Δ mutant output to wild type pathway output.
(A) Compensation of the mutant is carried out through optogenetic expression of Msg5. (B) 

The optogenetic input resulting in the best compensation along with its compensation error 

is shown on the left. This plot also shows the numerical values of the axes. The same scale 

and values are used for panel C. (C) For all trials, mutant strains are induced with 0.5 nM α-

factor at time 0 hours and pAGA1-YFP is then measured for 3 hours. Compensation of 

mutants is carried out through optogenetic expression of the deleted regulator Sst2. Results 

of different trials are shown as rows in tables with three columns. The first column shows the 

light input as a function of time, the second column shows the resulting difference in 

signaling output between compensated mutant and wild type as a function of time, and the 

third column shows the sum of the differences shown in the second column. Light inputs 

were given in either open loop (input is dashed), closed loop (input is solid color). For 

hypothesis testing, input prescribed by CLOC was implemented (input in blue solid color) 

until some point in time when the control was purposefully shut off (would-be input in 

dashed black line). (See Figure S2, Figure S4, and Table S3)
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Figure 5 |. CLOC experiments indicate that the basal error for gpa1∆ needs to be corrected in 
order to restore post α-factor signaling dynamics.
For all trials, mutant strains are induced with 0.5nM α-factor at time 0 hours and pAGA1-
YFP measured for time −3.5 to 0 hours (basal) and 0 to 3 hours (induction). (A) 

Compensation of the mutant is carried out through optogenetic expression of GPA1. (B) 

Optogenetic input resulting in the best compensation, along with its compensation error. (C) 

Results of different trials are shown as rows in tables with three columns. The first column 

shows the light input as a function of time, the second column shows the resulting difference 

in signaling output as compared to wild type as a function of time, and the third column 
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shows the sum of the differences shown in the second column. Basal difference (light 

purple) is the difference at the time of α-factor induction while the induction difference is 

the sum of all difference after α-factor induction (dark purple). Light inputs were given in 

either open loop (input is dashed), closed loop (input is solid color). Insets compare pAGA1-
YFP output of the wild type (solid line) and gpa1∆ (dashed line) strains for the 

accompanying trial immediately after α-factor addition (See Figure S3, Figure S4, and Table 

S3). The plots have the same scale and axes values as in (B).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Yeast Extract Alfa Aesar Cat# 26769

Peptone BD Biosciences Cat# 211677

Glucose Sigma-Aldrich Cat# D9434

Alpha-Factor Mating Pheromone VWR Scientific Cat# H-
2925.0001

Ethanol Sigma-Aldrich Cat# E7023

Experimental Models: Organisms/Strains

S. cerevisiae Strains, see Table S1 This paper N/A

Recombinant DNA

PCR template for cryptochrome optogenetic
expression constructs

PubMed 21037589 pGal4BD-
CRY2PHR (Addg
ene plasmid #
28244)

PCR template for cryptochrome based
optogenetic expression constructs

PubMed 21037589 pGal4AD-CIB1
(Addgene
plasmid # 28245)

Yeast integrating plasmids, see Table S2 This paper N/A

Software and Algorithms

LabView software for automated closed loop
control device

This paper doi:10.17632/6ddxgbs9sm.1

Other

Automated closed loop control device See Table S4 See Table S4
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