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With the growing reliance of modern supercomputers on accelerator-based architec-

tures such a GPUs, the development and optimization of electronic structure methods

to exploit these massively parallel resources has become a recent priority. While sig-

nificant strides have been made in the development of GPU accereated, distributed

memory algorithms for many-body (e.g. coupled-cluster) and spectral single-body

(e.g. planewave, real-space and finite-element density functional theory [DFT]), the

vast majority of GPU-accelerated Gaussian atomic orbital methods have focused on

shared memory systems with only a handful of examples pursuing massive paral-

lelism on distributed memory GPU architectures. In the present work, we present a

set of distributed memory algorithms for the evaluation of the Coulomb and exact-

exchange matrices for hybrid Kohn-Sham DFT with Gaussian basis sets via direct

density-fitted (DF-J-Engine) and seminumerical (sn-K) methods, respectively. The

absolute performance and strong scalability of the developed methods are demon-

strated on systems ranging from a few hundred to over one thousand atoms using up

to 128 NVIDIA A100 GPUs on the Perlmutter supercomputer.

a)dbwy@lbl.gov
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I. INTRODUCTION

Since its inception, quantum chemistry has relied on its ability to quickly adapt to an

ever evolving landscape of computer architectures to enable the next generation of scientific

applications. A particular emphasis has been placed on the leverage of distributed memory

parallelism to enable ab initio simulations of large molecular systems on the world’s largest

supercomputers1–4. The past two decades have been no different, with an enormous research

effort having been afforded to targeting the latest introduction into the high-performance

computing (HPC) ecosystem: graphics processing units (GPU)4–6. The use of GPUs in

quantum chemistry is relatively long standing, with applications ranging from single-body

methods such as Hartree-Fock (HF) and density functional (DFT) theories7–39, to many-

body methods3 such as coupled-cluster theory40–49, many-body perturbation theory50–56, and

configuration interaction and complete active space theories57–61 to name a few. Despite sig-

nificant advances in the development of GPU-accelerated quantum chemistry software, these

efforts are not yet as mature as their central processing unit (CPU) counterparts, and grow-

ing requirements for the desired scale and accuracy of ab initio simulations require further

development in this area. As such, the pursuance of improved, GPU-accelerated quantum

chemistry methods capable of leveraging the latest advances in modern HPC remains an

active area of research.

With the growing reliance of modern exascale HPC systems on accelerator architectures,62,63

recent years have seen the deployment of GPUs in distributed memory systems. This de-

ployment has in turn been accompanied by its own unique set of optimization challenges.

In particular, the increased local processing rate of GPU-accelerated compute nodes has ex-

posed bottlenecks involving communication and load imbalance which were less apparent on

the massively parallel CPU systems of years past63–65. As necessitated by the predominant

availability of consumer-grade, gaming-oriented GPU hardware, early development of GPU-

accelerated quantum chemistry methods focused on shared memory systems where host and

device memory spaces, while disjoint, are accessible to one another without the need for

communication across distributed memory networks. Due to their relative computational

cost, many-body methods (e.g., coupled cluster theory46–49) and spectral single-body meth-

ods (e.g., planewave27–32, real-space33,34, finite-element35, and wavelet36 discretizations of

DFT) were among the first to be successfully ported to distributed memory GPU architec-
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tures. The success of these developments has been, in large part, enabled by the prevalent

use of GPU optimized libraries for common operations, such as (multi-)linear algebra43,66–69

and fast Fourier transforms (FFT)70–72, in these applications. On the other hand, atomic

orbital (AO) single-body methods, such as Gaussian, Slater, and numerical atomic orbital

HF and DFT, present a unique challenge for GPU optimization due to their significant

dependence on domain-specific kernels (e.g. AO integrals and highly-specialized numerical

integration techniques) which exhibit less-regular compute patterns than those common

operations aforementioned. For Gaussian basis DFT in particular, kernels involving ma-

nipulation of the AO electron repulsion integral (ERI) tensor to form the Coulomb and

exchange matrices are among the most cumbersome for GPU architectures. As such, the

vast majority of both shared7,8,10,13,16,20,21,25,73–76 and distributed11,12,24,77 memory Gaussian

DFT GPU efforts have centered around optimization of these terms.

The primary innovations of the present work concern the evaluation of Coulomb and

exact-exchange matrices. Although the naive (based on 2-body 4-center ERI) approach for

evaluation of these contributions is simple and thus used by majority of implementations

on distributed heterogeneous platforms,11,12,23 their steep asymptotic scaling complicates

their application to large molecular systems. For the Coulomb matrix, the use of 4-center

integrals results in suboptimal O(N2) cost, whereas fast approaches with O(N) for the

Coulomb potential evaluation are well known78,79. More importantly, even if combined with

the fast O(N) treatment of the long-range contributions to the potential, the use of 4-center

integrals for the near-field contributions is still prohibitively expensive. The solution is

well known also: clever optimizations (like early integral digestion80–83) and/or numerical

approximations like density fitting84,85 can dramatically reduce the cost of Coulomb matrix

evaluation such that even with naive O(N2) evaluation its cost is dwarfed by the cost of the

exact exchange.

While with proper screening the exact exchange evaluation is O(N) in system size, the

use of 4-center integrals, again, results in suboptimally-high prefactor. Thus, there has been

a recent resurgence of interest in the development of numerical methods for the evaluation

of exact exchange for molecular systems. In these methods, one of the two ERI coordinate

integrations is replaced by a numerical integration. The general concept for this approach

has been around for over 30 years, beginning with the pseudospectral method on Friesner

and co-workers86,87 in the early 1980s. This class of techniques was revisited in the early
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2000s as the chain-of-spheres exchange (COSX) method of Neese, et al,88 and more recently

as the seminumerical exchange (sn-K) method of Laqua, et al.10 The primary differences

between these approaches are in their consideration of numerical sparsity, spatial locality,

and in their attempts to reduce the required size of the numerical quadrature to attain

a particular accuracy. We will adopt the sn-K nomenclature in the following. The sn-K

algorithm is particularly attractive for GPU hardware as there is a natural expression of

vectorization in the numerical quadrature which is superior to that of analytical integral

methods. Significant progress has been made in the development of GPU sn-K algorithms

for shared memory systems including multiple GPUs per node.10,13,14,89 These methods have

demonstrated a sizable performance improvement over analytical integral methods on GPU

architectures, but have yet to be explored in the context of distributed memory parallelism.

In addition to the Coulomb and exact exchange terms, hybrid AO DFT methods also

require the evaluation of the exchange-correlation (XC) potential matrix by numerical inte-

gration methods due to the non-linear nature of the XC energy functional. In contrast to AO

ERI methods, numerical integration methods developed for molecular DFT are much sim-

pler to port to GPU architectures7,17 and are able to heavily utilize optimized BLAS libraries

to attain near peak floating point performance on modern GPU hardware18. Recently, there

have been a number of works which have addressed key optimization challenges pertaining

to the distributed memory evaluation of the XC potential on GPU accelerated computing

clusters17,24. In this work, we extend the parallel integration infrastructure developed for

the XC potential by the authors17 to treat the Gaussian basis sn-K method on distributed

memory architectures.

The remainder of this work is organized as follows. In Sec. II we review the salient

aspects of Gaussian basis DFT necessary to develop parallel algorithms for the evaluation

of the Coulomb (Sec. II B) and exact-exchange (Sec. II D) matrices. In Secs. II E and II F,

we described the extension of the distributed memory integration procedure developed for

the XC potential (Sec. II C) to treat sn-K on GPU clusters. In Sec. III, we demonstrate

the strong scaling performance of the developed methods for a range of systems and, finally,

discuss future outlook for further development of distributed memory GPU algorithms based

on the methods presented in this work in Sec. IV.
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II. THEORY AND IMPLEMENTATION

A. The Hybrid Kohn-Sham Fock Matrix

Given a set of basis functions, B = {φµ : R3 → R}Nb
µ=1, the hybrid Kohn-Sham (KS) Fock

matrix , F ∈ RNb×Nb , is given by90,91

F = h + J[D]− cxK[D] + Vxc[D], (1)

where h is the core Hamiltonian which contains the free-particle (kinetic) Hamiltonian and

the electron-nuclear interaction potential, and D is the basis-discretized one-particle density

matrix. J, K, and Vxc are the density-dependent (as denoted by [ · ]) Coulomb, exact-

exchange, and exchange-correlation (XC) potential matrices, respectively, which describe

the mean-field electron-electron interactions in the hybrid KS model as modulated by the

exact-exchange parameter cx ∈ R+. For real-valued basis functions and density matrices,

these matrices take the forms91

Jµν =
∑
λκ

(µν|λκ)Dλκ (2)

Kµν =
∑
λκ

(µλ|νκ)Dλκ (3)

V xc
µν =

∫
R3

d3rφµ(r)
δExc[ρ(r)]

δρ(r)
φν(r) (4)

where Exc is the XC energy functional evaluated at the electon density, ρ : R3 → R

ρ(r) =
∑
µν

Dµνφµ(r)φν(r) (5)

and

(µλ|νκ) =

∫∫
R3

d3rd3r′
φµ(r)φλ(r)φν(r

′)φκ(r
′)

|r− r′|
(6)

is the electron-repulsion integral (ERI) tensor.

In this work, we take B to be comprised of contracted, atom-centered Gaussian-type

orbitals (GTO), however, we note that the general principles presented here may be extended

to other atom-centered ansätze, such as Slater-type orbitals (STO), as well. We denote the

atomic center of φµ as Rµ in the following. GTO Fock matrix construction is dominated by

the three density-dependent terms which must be evaluated for each new density in e.g., an

SCF optimization or dynamics simulation. In the remainder of this section, we examine the

scalable evaluation of these terms on distributed memory GPU architectures.
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B. The Coulomb Matrix via Density-Fitting J-Engine

Efficient evaluation of the Coulomb potential Eq. (2) takes advantage of the density

fitting (DF; also known as the Resolution-of-the-Identity) approximation of the two-electron

integrals:

(µν|λκ) ≈
∑
KL

(µν|K)(V−1)KL(L|λκ) (7)

where 3- and 2-center Coulomb integrals involving the (auxiliary) density-fitting basis {χK :

R3 → R}Naux
K=1 were introduced:

(µν|K) =

∫∫
R3

d3rd3r′
φµ(r)φλ(r)χK(r′)

|r− r′|
(8)

VLK =

∫∫
R3

d3rd3r′
χL(r)χK(r′)

|r− r′|
. (9)

DF approximation of Eq. (2) leads to the following factorization of the Coulomb potential:

VL =
∑
λκ

(L|λκ)Dλκ, (10)

DK =
∑
L

(V−1)KLVL, (11)

Jµν
DF
≈
∑
K

(µν|K)DK , (12)

with VL and DK representing the Coulomb potential of the exact density ρ and the robust

approximation of ρ in the DF basis, respectively. DF-based evaluation of J costs O(N3)

in the traditional approach where the Cholesky factorization of the positive-definite matrix

V is computed and stored (this allows to amortize its cost over the SCF iterations). In

practice, however, the cost is largely controlled by the evaluation of O(N2) nonnegligible

Coulomb 3-center AO integrals in Eqs. (10) and (12). While for 3-center AO integrals dedi-

cated optimization of AO integral evaluation is possible,92–94 including specific developments

for the GPU architectures,95 optimal evaluation of Eqs. (10) and (12) involves blurring the

line between the integral evaluation and density contraction via several related ideas80–83

that is often dubbed the J-engine approach. The original J-engine approaches were demon-

strated in the context of Eq. (2); Kussmann et al.13 recently illustrated the utility of the

McMurchie-Davidson-based96 J-engine83 in the DF context. Here we only briefly recap the

DF-based J-engine (“DF-J-engine”) formalism using the established notation97 for Gaussian

AO integrals.
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An uncontracted primitive Cartesian Gaussian with exponent ζa ∈ R+ and non-negative

integer Cartesian “quanta” a ≡ {ax, ay, az} centered at Ra ≡ {Ax, Ay, Az} will be denoted

by

φa(r) ≡ xaxA y
ay
A z

az
A exp(−ζar2A), (13)

with rA ≡ {xA, yA, zA}, xA ≡ x − Ax, etc. la ≡ ax + ay + az ≥ 0 is colloquially referred to

as the “angular momentum” of a Gaussian. Closely related to the Cartesian Gaussian is a

Hermite Gaussian:

Λã(r) ≡
(

∂

∂xA

)ãx ( ∂

∂yA

)ãy ( ∂

∂zA

)ãz
exp(−ζar2A). (14)

A primitive Cartesian Gaussian and a product of two primitive Cartesian Gaussians can be

expressed as linear combinations of Hermite Gaussians,

φa(r) =

ãx≤ax∑
ãx=0

E ãx
ax

ãy≤ay∑
ãy=0

E ãy
ay

ãz≤az∑
ãz=0

E ãz
az Λã(r) ≡

∑
ã

Eã
aΛã(r), (15)

φa(r)φb(r) =

p̃x≤ax+bx∑
p̃x=0

(Ex)
p̃x
axbx

p̃y≤ay+by∑
p̃y=0

(Ey)
p̃y
ayby

p̃z≤az+bz∑
p̃z=0

(Ez)
p̃z
azbz

Λp̃(r) ≡
∑
p̃

Ep̃
abΛp̃(r),

(16)

with ζp ≡ ζa + ζb, Rp ≡ ζaRa+ζbRb

ζa+ζb
, and Eã

a ≡
∏

i=x,y,z E
ãi
ai

, Ep̃
ab ≡

∏
i=x,y,z (Ei)

p̃i
aibi

.

The Hermite-to-Cartesian transformation coefficients are evaluated straightforwardly by

recursion.96

The use of Eqs. (15) and (16) allows to express a 3-center Coulomb integral over primitive

Cartesian Gaussians as a linear combination,

(ab|c) =
∑
p̃,c̃

Ep̃
abE

c̃
c(p̃|c̃), (17)

of the Coulomb integral between two primitive Hermite Gaussians:

(p̃|c̃) ≡
∫∫

R3

d3rd3r′
Λp̃(r)Λc̃(r

′)

|r− r′|
. (18)

The latter can be evaluated directly,

(p̃|c̃) ≡ (−1)lc̃(p̃ + c̃)(0), (19)
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from the auxiliary integral,

(r̃)(m) ≡
(

∂

∂xR

)r̃x ( ∂

∂yR

)r̃y ( ∂

∂zR

)r̃z
(0)(m), (20)

with (0)(m) related to the Boys function Fm(x):

(0)(m) ≡ (−2ρ)m
2π5/2

ζpζc
√
ζp + ζc

Fm(ρ|Rp −Rc|2), (21)

Fm(x) ≡
∫ 1

0

dy y2m exp(−xy2), (22)

ρ ≡ ζpζc
ζp + ζc

. (23)

Auxiliary integrals are evaluated recursively,

(r̃ + 1i)
(m) =r̃i(r̃− 1i)

(m+1) + (Pi − Ci)(r̃)(m+1), (24)

starting from (0)(m).

Efficient evaluation of Eqs. (10) and (12) involves contracting densities with Hermite-to-

Cartesian transformation coefficients of the ket functions (Eqs. (16) and (15), respectively)

to produce “Hermite” densities which can be stored and reused for every bra function in

Eqs. (10) and (12), as illustrated here for a single primitive shell contribution to Eq. (10):

∑
ab

(c|ab)Dab
Eq. (17)

=
∑
ab

(∑
c̃p̃

E c̃
c(c̃|p̃)Ep̃

ab

)
Dab (25)

=
∑
c̃

E c̃
c

(∑
p̃

(c̃|p̃)Dp̃

)
, (26)

where

Dp̃ ≡
∑
ab

Ep̃
abDab (27)

and the order of evaluation is indicated by the parentheses. Refactorization of Eq. (25) via

Eq. (26) is the key idea of J-engine: it leads to great FLOP reduction which is easily rational-

ized as follows: instead of multiplying “matrix” (c̃|p̃) by “matrix” Ep̃
ab, then evaluating the

inner product with “vector” Dab, in the J-engine factorization the inner product of “matrix”

(c̃|p̃) with “vector” Dp̃ is evaluated directly. This can also be viewed as early “digestion”

of the integrals; more general framework for early digestion of the integrals beyond the J

matrix evaluation has been considered by Gill et al.82
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Equations (10) and (12) of the DF-J-engine approach were implemented in the open-

source LibintX library95,98 and Eq. (11) was implemented using the TiledArray library for

distributed tensor contractions.66,99 Evaluation of Eq. (10) in LibintX proceeds as follows:

1. CPU: construct a batch of ab shell pairs with same lket = la + lb such that Dab is

local, copy to mapped memory buffers;

2. GPU: launch a kernel to transform current batch of Dab to Dp̃ (Eq. (27));

3. GPU: launch kernels to evaluate Hermite integrals (Eq. (19)) and their contributions

to the Coulomb potential (Eq. (26)) for all shells c (one kernel per lc);

4. repeat for the next ab batch.

Note after launching the GPU kernels, the CPU starts to work on preparing the density

and metadata for the next batch, thus the GPU and CPU work overlaps. Note that no

significant metadata is kept persistent between SCF iterations to allow GPU memory use

by other application stages.

Evaluation of Eq. (12) in LibintX is only slightly more complicated:

1. CPU: construct a batch of ab shell pairs with same lbra = la + lb such that Jab is

local;

2. GPU: launch a kernel to evaluate Ep̃
ab;

3. GPU: launch kernels to evaluate Hermite density Dc̃ ≡
∑

cE
c̃
cDc, Hermite integrals

(Eq. (19)), and their contributions to the Coulomb potential in the Hermite basis,

Jp̃ =
∑
c̃

(p̃|c̃)Dc̃, (28)

(this is analogous to the first step in Eq. (26), but adapted to the evaluation of Eq. (12))

for all shells c (one kernel per lc);

4. GPU: launch kernel to transform Jp̃ to Jab via

Jab =
∑
p̃

Ep̃
abJp̃ (29)

5. CPU: store Jab shell-sets

9



6. repeat for the next ab batch;

CPU and GPU work is again overlapped, with the CPU thread starting to work on steps

1-3 of the next batch while the work on the previous batch is being completed; step 4 is

scheduled only after completion of the previous batch’s step 5.

The distributed memory work distribution in LibintX’s DF-J-engine is statically deter-

mined by the distribution of the user-provided density matrix among ranks and by the

expected distribution of the J matrix result. This design decision is motivated by the desire

to simplify the API of the LibintX library and avoid mandating the density to be in any

particular data structure or distribution manner; the user provides the density to the library

in the form of a C++ lambda function (closure) that provides one block of the density ma-

trix at a time (or fails to provide it if it is not located on the current node). Production

computations in Sec. III provided density and stored the resulting J matrix as a block-sparse

distributed array (DistArray) object of the TiledArray framework.67,99 Tiling of the density

matrix was determined by the k-means-based clustering of the atoms,100 with tiles divided

evenly among ranks (for p distributed ranks, the first n2/p tile ordinals assigned to rank

0, the next n2/p tile ordinals assigned to rank 1, etc.; note than due to sparsity actual tile

counts per rank are lower and end up being problem dependent). In evaluation of Eq. (10),

each rank evaluates all contributions that involve the tiles of the density matrix that are

screened our and that reside on that rank; each rank produces contributions to all elements

of vector VL, thus these contributions are reduced across all ranks before evaluating Eq. (11).

A similar lambda-based mechanism is used by LibintX to return the distributed J matrix

to the user and distribute the work in evaluation of Eq. (12).

In the interest of keeping the focus on the distributed-memory parallelization, the kernel-

level implementation details of LibintX’s DF-J-engine will be kept to a minimum here. Each

GPU thread evaluates the entire set of “1-center” auxiliary integrals (Eq. (24)), converts

them to “2-center” integrals via Eq. (19) and “digests” them via Eq. (26) (or its analog

for Eq. (12)) for a single primitive shell. This allows the algorithm to completely eliminate

thread divergences since every thread in a thread block performs exactly the same com-

putation. This approach is radically different from the work distribution when computing

integrals95 in which multiple threads cooperatively evaluated shell components; this is pos-

sible due to the greatly reduced memory requirements of the DF-J-engine compared to the

AO integral engine. A key feature of the kernel implementation is the use of compile-time

10



(templates and constexpr) C++ programming instead of custom code generation, similarly

to how the 3-center integral evaluation (rather than the J-engine) was implemented earlier.95

C. The Exchange-Correlation Potential Matrix

Unlike J, which may be assembled directly from analytical integrals, the integrals involved

in Vxc (Eq. (4)) must be evaluated numerically due to the nonlinear nature of Exc and its

functional derivatives. As detailed elsewhere7,101–103, for atom centered bases, Vxc may be

efficiently evaluated via

V xc
µν ≈

∑
i∈Q

ΦµiZνi + ZµiΦνi (30)

Φµi = φµ(ri) (31)

where Φ is the collocation matrix and Q = {(wi, ri)}Ng

i=1 is a numerical quadrature consisting

of nodes, ri ∈ R3, and grid weights, wi ∈ R. For molecular calculations, due to the irregular

nature of the integrands in the vicinity of nuclear charges, Q is typically taken as the union

of spherical quadratures (R × S2) origined at each atomic center coupled with a modified

weight partitioning scheme to account for overlapping regions. We refer the reader to Refs.

104–112 for more comprehensive discussions regarding the construction of generic molecular

quadratures. In this work, atomic grids are constructed according to the Mura-Knowles

(MK) scheme107 with Lebedev-Laikov113 angular grids, and we use the molecular weight

partitioning scheme of Stratmann, et al105. In addition, angular grids are radially pruned

according to the scheme of Treutler, et al109.

The auxiliary matrix Z ∈ RNb×Ng is method-dependent; the form of which depends on

Exc. Within the spin-restricted generalized-gradient approximation (GGA), Z takes the

form101,102

Zµi =
wi
2

(Eρ
i Φµi + 4Eγ

i (∇ρ(ri) · ∇Φµi)) , (32)

E
ρ/γ
i =

∂ε(ρ(r), γ(r))

∂ρ/γ

∣∣∣∣
r=ri

(33)

ρ(ri) =
∑
µ

FµiΦµi, ∇ρ(ri) = 2
∑
µ

Fµi∇Φµi, (34)

Fµi =
∑
ν

DµνΦνi, (35)

11



where ε : R2 → R is the GGA energy density which depends on ρ and γ = ∇ρ · ∇ρ. Similar

expressions have been derived for spin-generalized and meta-GGA XC functionals13,101,103,114.

This evaluation scheme for Vxc is particularly attractive for GPU architectures due to

the fact that the most compute-intensive operations can be implemented using level-3

(Eq. (30) via SYR2K and Eq. (35) via GEMM) and level-1 (Eq. (34) via DOT115) BLAS

operations7,13,17. As such, these operations can leverage heavily optimized GPU BLAS li-

braries, leaving only a small number of DFT-specific kernels (e.g. Eqs. (31) to (33)) to be

optimized by the chemistry-domain developer. We will examine specific details regarding

the use of GPU BLAS libraries for this application in Sec. II F.

D. The Seminumerical Exact-Exchange Matrix

Although K can be evaluated directly from Coulomb integrals as in Eq. (3), this is rarely

the most efficient approach due to the steep rise of the computational cost of the 4-center

integrals with the angular momenta. As detailed elsewhere10,86–88, the ERI tensor may be

factorized on a quadrature grid via

(µλ|νκ) ≈ 1

2

∑
i∈Q

wiAµλiΦνiΦκi + (µλ↔ νκ) , (36)

Aµλi =

∫
R3

d3r
φµ(r)φλ(r)

|r− ri|
, (37)

where A is the 3-center Coulomb potential (3c-CP) integral tensor, and Φ and Q are the

collocation matrix and quadrature discussed in Sec. II C. Inserting Eq. (36) into Eq. (3), we

obtain a simple expansion for K10,86–88,

Gµi =
∑
λ

wiAµλiFλi, (38)

K̃µν =
∑
i

GµiΦνi, (39)

Kµν ≈
1

2

(
K̃µν + K̃νµ

)
, (40)

where F is same intermediate given in Eq. (35) for the evaluation of Vxc. This method for K

assembly will be referred to as seminumerical exchange10 (sn-K) in the following. Apart from

the use of common intermediates, there exists a striking similarity between Eqs. (38) to (40)

and the Vxc assembly in Eqs. (30), (32), (34) and (35). As has been posited elsewhere10,88,
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sn-K can reuse many of the same algorithmic primitives as those used for the evaluation

of Vxc. One might even be tempted to implement Eq. (38) via BLAS, but we (as have

others10,88) have found this to be inefficient in practice, particularly on GPU architectures.

We present the scheme by which we perform the combined evaluation of Eqs. (37) and (38)

in Appendix A.

E. Batching and Screening of Numerical Integrals

Each of the expressions in Eqs. (30) to (35), (38) and (39) is local with respect to the

numerical quadrature, and thus may be partitioned along their grid indices (i) with final

results (e.g., Eqs. (30) and (39)) being recovered as a sum over locally integrated interme-

diates. This partitioning has clear ramifications in the context of parallelism which will be

discussed in Sec. II F. Grid point locality also allows for the exploitation of the spatial spar-

sity of B and various operators (e.g. Eq. (37)), which in turn takes the nominal O(N2
bNg)

scaling of these numerical schemes to methods which scale (near-)linearly with respect to

system size.10,88,102,105

As the sparsity profiles of spatially adjacent grid points are similar, it is canonical to batch

these grid points into subsets Qj such that Q =
⋃
j Qj with Qj ∩Qk = ∅ for j 6= k. Several

approaches for quadrature grid batching have been suggested in various contexts.10,102,105

In this work, we utilize an octree-based partition scheme which has been used in previous

studies by the authors.17 In general, the octree approach will yield more spatially local

quadrature batches than other approaches10, but will also yield batches of irregular sizes

which potentially leads to load imbalance between tasks. We discuss the implications of

this irregularity in the following. Given a partitioning {Qj}Nbatch
j=1 , one may construct sets

of important quantities which are approximately considered non-negligible for a particular

integrand (e.g., K or Vxc). The simplest of these sets, which is required for both numerical

integrands considered in this work, pertains to negligible basis functions,

Bj = {φµ | ∃ri ∈ Qj s.t. |φµ(ri)| ≥ εB}, (41)

where εB is a basis tolerance. For GTO bases, Eq. (41) may be quickly determined by

encircling each basis function with a sphere of radius rcutµ such that |φµ(r − Rµ)| < εB

∀|r−Rµ| > rcutµ , and only keeping those elements of B for which their non-negligible sphere
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spatially overlaps Qj10,17,88,105. This process formally scales O(NbNbatch) as each basis shell

must be checked against each Qj. It is worth noting that in scenarios where the nuclei

remain stationary for several Fock builds, e.g., in a self-consistent field optimization (SCF),

Bj need only be computed once and reused for subsequent iterations. This process of basis

screening is the primary mechanism by which sparsity may be exploited in the numerical

integration of Vxc105. For example, given Bj, the compute-intensive Eq. (35) becomes

F
xc,(j)
µi =

∑
ν∈Bj

Dxc,(j)
µν Φ

(j)
µi , µ ∈ Bj, i ∈ Qj, (42)

where Dxc,(j), Fxc,(j) and Φ(j) are contiguous batch local matrices pertaining to Qj.

The case is significantly different for the sn-K method as basis function and integral

screening alone can only produce O(N2) scaling116. Several methods have been suggested

for density-dependent screening in the sn-K method.10,86–88,117. Due to its simple form and

demonstrated ability to generate sufficient sparsity for near-linear scaling, we adopt the sn-

LinK screening approach of Laqua, et al10 in this work, though we note that other schemes

could be employed with only minor modifications of the overall algorithm design. In the

sn-LinK method, a list of basis pairs, Vj, is selected for each Qj such that

Vj = {(φµ, φν) | εE(j)
µν ≥ εE ∨ εK(j)

µν ≥ εK}, (43)

where εK and εE are tolerances which screen shell-pair contributions to K and Tr[KD] (the

exact-exchange energy), respectively, and

εE(j)
µν = F̃K,(j)

µ F̃K,(j)
ν Ãµν , (44)

εK(j)
µν = max

(
F̃K,(j)
µ , F̃K,(j)

ν

)
φ̃(j)Ãµν , (45)

F̃K,(j)
µ =

∑
ν∈Bj

|Dµν |Φ̃(j)
ν , (46)

Ãµν = max
i∈Qj

|Aµνi|, Φ(j)
ν = max

i∈Qj

|
√
wiΦνi|, φ̃(j) = max

i∈Qj

√
wi
∑
µ∈Bj

|Φµi|. (47)

To avoid re-computation of the 3c-CP integrals in the screening procedure, Ãµν is approxi-

mated with global upper-bound estimates from the appendix of Ref. 118 in practice10. We

refer the reader to Laqua, et al.10 for further details pertaining to the veracity of this screen-

ing procedure for sn-K. Given Vj, block-sparse expressions similar to Eq. (42) can be derived
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for sn-K, e.g.,

F
K,(j)
λi =

∑
ν∈Bj

D
K,(j)
λν Φ

(j)
νi , G

K,(j)
µi =

∑
(·,λ)∈Vj

wiAµλiF
K,(j)
λi , µ, λ ∈ Vj, i ∈ Qj. (48)

The (·, λ)-sum pertaining to G
K,(j)
µi indicates only inclusion of terms for which ∃φµ such that

(φµ, φλ) ∈ Vj. Both the B-collision detection and the evaluation of performance critical Vj-

intermediates (e.g., Eq. (46) can be implemented as a single, large dimension-GEMM over

tasks) are executed on the GPU in this work.

There are several key differences in screening processes for sn-K in comparison with the

XC integration:

1. As this procedure is density-dependent, Vj must be reevaluated each new density and

its cost cannot generally be amortized over e.g., an SCF optimization.

2. While the matrix multiplication in Eq. (46) can be restricted over ν ∈ Bj, the µ-index

must be over the entire basis set B in order to check for all possible non-trivial elements

of Vj. Therefore, Eq. (46) formally scales O(NbNbatch) assuming Bj can be screened to

an amortized constant.105 While this formally scales the same as B-screening, it will

be accompanied by a much larger prefactor (GEMM vs scalar collision detection).

3. Eq. (43) scales O(NbNbatch) as each non-negligible shell-pair (which asymptotically

scales O(Nb)) must be checked against every Qj.

We discuss the implications of this screening procedure on the overall performance and

scalability of numerical integration procedures in Sec. III.

F. Load Balancing and Parallel Numerical Integration

In addition to enabling the screening of basis functions and operator integrals, the lo-

cality of the numerical integration procedure considered in this work is also particularly

advantageous for distributed memory implementations17,24,31. As the batch-local quantities

discussed in the previous subsection are independent, they may be executed concurrently

and assembled a postiori via collective reduction operations to form final integrands. The

general distributed memory scheme explored in this work is a simple three step process

(Alg. 1) that is the same for both the sn-K and XC integrations17.

15



1: Input: Density matrix D, basis set B.

2: Output: Desired integrand X ∈ {Vxc,K}

3: Qlocal ← Generate balanced local quadrature batches . Alg. 2

4: Preallocate fraction of device memory.

5: Send quadrature independent data (e.g. D) to the device . cpu/gpu

6: Xlocal ← 0 . gpu

7: while Qlocal 6= ∅ do

8: Qbatch ← Subset of Qlocal s.t. X-intermediates saturate device memory. . cpu

9: Send Qbatch data (e.g. {Bj}local, {Vj}local) to device . cpu/gpu

10: Qlocal ← Qlocal \ Qbatch . cpu

11: Xlocal ← Xlocal +Qlocal contributions to X . gpu

12: end while

13: X←(All)reduce(Xlocal) . collective

Algorithm 1. General scheme for the parallel, GPU-accelerated evaluation of Vxc or K

Due to the varying extent to which sparsity can be realized between differing spatial

regions, there is a significant potential for load imbalance in parallel implementations of

molecular integration which rely on grid partitioning.17,24,25 The optimal task assignment

problem for irregular work is NP-Hard119, but reasonable solutions can be obtained using

heuristic driven methods. A recent distributed memory DFT application24 has adopted a

dynamic load balancing scheme to address this problem. At large processor counts, dy-

namic load balancing algorithms rely on the ability to overlap the costs associated with the

generation, assignment, and communication of tasks with their execution on local proces-

sors. Given the fine-granularity and large number of tasks generated by the octree-batching

algorithm discussed in the previous section, the communication costs associated with the

memory requirement of each task (e.g., Qj, Bj and Vj) far outweigh their associated compu-

tational work. Instead, we have developed a static load balancing procedure for molecular

integration which allows for the a priori distribution of work without the need to carefully

balance the overlap of local work and task communication. In this static load balancing

scheme, a heuristic cost, Wj, is associated with each task and is subsequently assigned to a

rank via a greedy algorithm illustrated in Alg. 2. For the XC integration, the work heuristic
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is given by17

Wj =
(
|Bj| × (9 + 2|Bj|) +N2

A + 3
)
× |Qj|. (49)

Algorithm 2 is a replicated procedure which allows for near optimal task assignment given

work heuristics which properly rank the relative computational costs between different tasks.

As such, while being communication-free, it constitutes a scaling bottleneck due to Amdahl’s

law. Similar algorithms based on prefix-sums have been suggested for the distributed gen-

eration of tasks119 However, we have found that because Alg. 2 is able to globally optimize

task assignment (via the sort of all tasks on Wj), it generally is able to obtain a more optimal

task partitioning than those based on prefix sums. Due to the fact that Bj in particular

can be computed once-per-nuclear configuration, the scaling bottleneck associated with the

replicated nature of Alg. 2 can be amortized over several Fock builds for the XC integration.

For the sn-K integration, the problem becomes slightly more difficult. While it would

be possible to generalize Eq. (49) to account for |Vj|, replication of Eqs. (43) and (46) on

each processor for all tasks would be a considerable bottleneck due to the steep scaling and

prefactors associated with sn-K screening discussed in the previous subsection. Given an

initial work partitioning generated by e.g., Eq. (49), Vj may be computed locally, and could

in principle be re-balanced according to the distributed prefix-sum algorithms previously

mentioned. Apart from generally obtaining less-optimal work partitions than Alg. 2, for

hybrid DFT simulations which require the evaluation of both Vxc and K, this procedure

would require rebalancing the work distribution at every SCF step, which would in turn

incur significant communication overhead. Instead, we have chosen to reuse the same task

distribution for both sn-K and the XC integration based on Alg. 2 and Eq. (49). We examine

the veracity of this reuse to yield balanced work for both sn-K and the XC integration in

Sec. III.

If screened sufficiently well, the dimensions of the packed batch-local sub-matrices in

Eqs. (31) and (32) will be small which means that the GEMM operations in e.g., Eqs. (42)

and (48) will be of low dimension. While this screening leads to a significant decrease in the

required computational work, any particular GEMM operation (or other kernel invocation)

will not constitute enough work to occupy the resources of a GPU. While it is possible to

concurrently execute GPU kernels via streaming (as has been explored in other works for

GPU-accelerated sn-K integration10), the large number of kernels invoked for large systems

partitioned by the octree-method would incur significant kernel launch overhead. As has
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1: Input: Quadrature batches {Qj}Nbatch
j=1

2: Output: Local quadrature batches Qlocal ⊂ {Qj}

3: world size ← Number of ranks

4: world rank ← Index of this rank

5: T ← [ ]

6: for j ∈ [1, Nbatch] do

7: Tj = (Qj ,Wj) . Eq. (49)

8: end for

9: T ← Sort T by Wj

10: G ← zeros( world size )

11: Qlocal ← [ ]

12: for j ∈ [1, Nbatch] do

13: I ← arg minJ GJ . global

14: GI ← GI + Wj . global

15: if I = world rank then

16: Qlocal ← Qlocal ∪Qj . local

17: end if

18: end for

19: return Qlocal

Algorithm 2. Replicated load balancing algorithm for distributed memory molecular integration.

been demonstrated in previous studies regarding the XC integration17,18, the use of batched

kernels to concurrently execute logically identical tasks can lead to large performance im-

provements over concurrent stream injection for fine task granularity. The challenge for

DFT applications is in that the dimensions of Bj and Vj can vary drastically in different

spatial regions. For the evaluation of batched GEMM operations (e.g., Eqs. (42) and (48)

batched over j indices), standard solutions to the problem exist in community GPU linear

algebra libraries in the form of variable-sized batched BLAS.120,121

For sn-K, the batched evaluation of Eq. (39) is a straight-forward application of variable-

sized batched GEMM as was applied to the formation of Eq. (42) for the XC integration.

Batching of Eq. (38) can be achieved hierarchically over three dimensions (1) {Qj}, (2)
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(µ, ν) ∈ Vj within Qj, and at the lowest level (3) i ∈ Qj. The kernel-level details for (3) are

given in Appendix A. For any batched kernel algorithm, the natural challenge is to decide

which task to batch together to execute concurrently on the device. For the algorithms

presented here, we make the simple choice of executing as many tasks as will fit into device

memory (Alg. 1). While this choice does mitigate kernel launch overhead and allows for

the overlap of host data manipulations with GPU activity, it also introduces significant

pressure on the GPU scheduler to effectively execute large numbers of independent tasks

with variable amounts of work. However, we have seen that for DFT applications that this

device-saturation approach is capable of yielding excellent utilization of GPU resources on

an array of modern GPU hardware.17,18.

In the large processor limit, the reduction step poses a considerable bottleneck for large

Nb as the message size for the (All)reduce operation scales O(N2
b ). While standard MPI

collectives are often sufficient for small Nb, we have found that for NVIDIA hardware,

the NVIDIA Collective Communication Library (NCCL )122 all-reduce primitive can yield

significant strong scaling improvements for large Nb. NCCL provides collective primitives with

an API similar to that of MPI with the addition of a CUDA stream argument which allows

for its injection into asynchronous workflows. The all-reduce algorithm and exact choice

of communication routes are selected by NCCL at runtime based on the system topology

allowing for optimal performance on a wide-range of hardware configurations and message

sizes. We will examine the comparison of MPI and NCCL collectives for this application in

Sec. III.

III. NUMERICAL RESULTS

The methods presented in this work are made publicly available as a part of the open-

source GauXC library for exascale Gaussian basis DFT (XC and sn-K)17,18,103 and the LibintX

library for Gaussian AO integrals (DF-J-engine).95 Each of these libraries were developed to

be modular, reusable GPU-based components under the NWChemEx Exascale Computing

Project and are freely available on GitHub98,123 for use in other electronic structure pack-

ages. As present, these methods have been integrated into the NWChemEx124 and MPQC125

computational chemistry software packages. In the present study, all numerical results were

obtained using MPQC; however, as the focus of this work is on the parallel construction of
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Molecule NA Nb Naux

Taxol 113 1,032 3,599

Olestra 453 3,181 11,633

Crambin 642 5,559 19,500

Ubiquitin 1,231 10,292 36,419

TABLE I. Representative systems considered in this study. NA is the number of atoms, Nb is given

for Cartesian 6-31G(d) and Naux for def2-tzvp-j.

Grid Name Nrad Nang

Grid1 50 302

Grid2 30 110

TABLE II. Spherical atomic quadratures consisting of Nrad radial point and Nang angular points

used in this work. Angular resolution has been pruned according to the scheme of Ref. 109

hybrid DFT Fock matrices, the performance characterizations presented here are expected

to be representative of any software integration involving these libraries. All numerical ex-

periments were carried out on the GPU partition of the Perlmutter (PM) supercomputer at

the National Energy Research Scientific Computing Center (NERSC). Each PM GPU node

has 4 NVIDIA A100 GPUs (40GB HBM2e RAM) and 1 AMD EPYC 7763 CPU (64 cores

@ 3.5GHz). The GPUs within a PM node are connected via NVLink and are connected to

the CPU via PCI-e. Internode communication is facilitated through the HPE Slingshot 11

interconnect. All numerical experiments were configured with 1 MPI rank per GPU (4 ranks

per node, 16 threads per rank) and the threads of each MPI rank were bound to respective

NUMA domains (of which there are 4 per PM node). GPU Batched BLAS operations for

the sn-K and XC integrations were provided by the MAGMA library120,121.

As have been utilized in other studies17,24, we have included experiments with 4 test

molecules, the specifics of which can be found in Tab. I. The geometries for Taxol, Olestra and

Ubiquitin were taken from Ref. 17 and the Crambin geometry was taken from Ref. 24. Each

of these geometries can be found in the Supplemental Information. All experiments utilize

the Pople 6-31G(d) basis set126–128 with Cartesian d-functions for B, def2-tzvp-j fitting basis

for DF-J129, and the PBE0 hybrid XC functional130. GPU evaluation of the XC functional
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FIG. 1. Strong scaling of distributed memory Fock algorithm for Grid1. (a) Presents the overall

timings and (b) illustrates the parallel efficiency relative to single-node performance
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FIG. 2. Strong scaling of distributed memory Fock algorithm for Grid2. (a) Presents the overall

timings and (b) illustrates the parallel efficiency relative to single-node performance

was performed using the open source ExchCXX library131. All calculations were performed

with εB = εE = εK = 10−9 and with a maximum grid partition size of 4096. Evaluation

of 3-center integrals in Eqs. (10) and (12) is screened using user-provided screener that is

provided by the user via the LibintX API. All computational experiments used the default

(Schwarz) screener of 3-center AO integrals which omitted evaluation of integral sets below

the 64-bit floating point epsilon (≈ 2 ∗ 10−16).

Figures 1 and 2 show the strong scaling performance and parallel efficiency (PE) of the

overall Fock matrix construction for two different integration grids (summarized in Tab. II).

The same grid is used for both XC and sn-K. PE is measured relative to single-node (4 GPU)
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Grid1 Grid2

Molecule DF-J XC sn-K Fock XC sn-K Fock

Taxol 63.2 69.4 107.5 240.0 95.1 256.9 423.6

Olestra 113.5 320.5 438.0 872.0 363.6 565.9 1,043.3

Crambin 177.8 968.6 1,512.6 2,659.0 1,043.4 2,226.4 3,448.8

Ubiquitin 378.8 2,268.0 3,674.0 6,320.8 2,443.1 5,653.1 8,465.6

TABLE III. Minimum time to solution for considered systems on 128 NVIDIA A100 GPUs. All

times are given in millisections (ms)

performance and all results are presented with the NCCL reduction optimization discussed in

Sec. II F. For the larger grid (Grid1), we see that excellent PE (> 80%) is achieved for all

considered problems out to 16 GPUs and maintains a very reasonable PE (> 70%) out to

32 GPUs except for Taxol which exhibits 64%. This result is comparable with the achieved

PE in other recent distribution memory Fock algorithms at similar GPU counts.23,24 For

Crambin, > 70% PE is maintained out to 64 GPUs and achieves 52% PE at 128 GPUs. For

the largest problem (Ubiquitin), >90% PE is maintained out to 32 GPUs, > 75% PE out to

64 GPUs and achieves 61% PE at 128 GPUs. For small problems (Taxol and Olestra) and the

smaller grid (Grid2), strong scaling stagnation is encountered immediately. Apart from the

self-evident increase in available local work exhibited by the larger test problems and grids,

the smaller test problems expose bottlenecks (such as communication and load imbalance)

in the relative performance and scalability of the individual Fock matrix components. The

minimum time to solution for these problems, including individual component timings, are

accounted in Tab. III.

Figures 3 and 4 illustrate the strong scaling of the J, K (sn-K) and Vxc components

relative to the total Fock formation for the Olestra and Ubiquitin test cases at various grid

sizes. The textual annotations denote the wall-time percentage of each component relative

to the overall Fock build. For the Ubiquitin test case (Fig. 3), sn-K dominates the overall

Fock build by a large margin at all GPU counts, and the strong scaling of the Fock build is

virtually identical to that of sn-K (as illustrated by the parallelity of the scaling plots). As

such, the overall scaling behaviour of the Fock build is insensitive to the scaling behaviours

of J and XC. The opposite case is illustrated for Olestra (Fig. 4), where the J-build and XC
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FIG. 3. Strong scaling of individual Fock matrix components for Ubiquitin 6-31G(d)/def2-tzvp-

j/PBE0 using (a) Grid1 and (b) Grid2 for the XC and sn-K integration. Annotations depict the

relative contribution of each component to the overall Fock timings.
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FIG. 4. Strong scaling of individual Fock matrix components for Olestra 6-31G(d)/def2-tzvp-

j/PBE0 using (a) Grid1 and (b) Grid2 for the XC and sn-K integration. Annotations depict the

relative contribution of each component to the overall Fock timings.

integration constitute a much more considerable portion of the overall Fock build than was

exhibited for Ubiquitin, particularly at large GPU counts. As such, we can conclude that

the scaling behaviours of J and XC have a much more measurable impact on the overall

strong scaling of the Fock build for smaller systems.

The performance and scaling behaviour of the XC integration via the algorithms presented

in this work (modulo the NCCL reduction) have been explored in other works.17,18 In Fig. 5 we

examine the scalability of the 3 primary components of the DF-J algorithm: DF-V (Eq. (10)),
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DF-D (Eq. (11)) and DF-J (Eq. (12)). For Ubiquitin, the integral-driven DF-V and DF-J

exhibit > 65% PE for up to 32 GPUs where as the scaling of the TiledArray GEMV in

DF-D stagnates immediately. Lack of scaling in the latter can be attributed to the lack of

computational intensity exhibited by distributed GEMV. For Olestra, DF-D and DF-J exhibit

immediate scaling stagnation while DF-V demonstrates > 50% PE for up to 32 GPUs.

For the sn-K algorithm (Fig. 6), we examine the strong scaling of the local integration

(LocalWork), shell-pair screening (Screen), and collective reduction (Allreduce) for both

grid sizes. Host-to-device and device-to-host data movement timings are included in the

LocalWork timings. For Grid1 the overall sn-K integration is dominated by the local in-

tegration at all considered GPU counts. However, for Grid2, the slight deviation of the

sn-K scaling from the LocalWork scaling can be attributed to the growing importance of the

reduction and screening operations in the strong scaling limit. In Fig. 6(c), we see that for

Grid1, the LocalWork timings exhibit near perfect strong scaling > 95% out to 64 GPUs

and degrades only to 88% at 128 GPUs. The LocalWork timings for Grid2 and the Screen

timings Grid1 exhibit reasonable scalability (> 60%) out to 32 GPUs but quickly stagnate

thereafter. These results indicate that the reuse of the XC scheduling heuristic discussed

in Sec. II F is viable for the a priori scheduling of sn-K integration tasks given enough

distributable work.

While remaining communication free, it is important to note that the chosen work distri-

bution scheme for sn-K requires the reevaluation of Eqs. (43) and (46) for Qlocal at each SCF

step. Due to the fact that the scaling of each of these terms is linear in Ng, it is expected

4 8 16 32 64 128

102

103

(a)

nGPU

T
im

e
/

m
s

X

VX

J

4 8 16 32 64 128

101

102

(b)

nGPU

T
im

e
/

m
s

X

VX

J

4 8 16 32 64 128
0

50

100

(c)

nGPU

P
a
ra

ll
e
l

E
ffi

c
ie

n
c
t

%

X (Ubi) VX (Ubi)

J (Ubi) X (Olestra)

VX (Olestra) J (Olestra)

FIG. 5. Component strong scaling of the distributed DF-J algorithm presented in Sec. II B for

(a) Ubiquitin and (b) Olestra 6-31G(d)/def2-tzvp-j. (c) Illustrates the parallel efficiencies of these

components for both problems.
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that the work associated with sn-K screening will decrease as the quadrature batches are dis-

tributed amongst independent ranks. However, in the large processor limit where there are

very few tasks per rank, there remains a large prefactor associated with the formation of Vj
which scales O(Nb). As such the scaling stagnation of the Screen timings can be attributed

to the O(Nb) prefactor of the screening procedure overtaking the scalable distribution the

quadrature batches in the large processor limit.

It is expected that the cost of the reduction operation will grow with growing processor

counts as the connectivity of both Allreduce communication graphs grows logarithmically

with the number of processors. To demonstrate the performance of the NCCL reduction
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optimization, we compare the Ubiquitin XC/sn-K reduction with MPI Allreduce from the

Cray MPI library in Fig. 7. As we can see, NCCL improves the overall communication cost

by about a factor of 4 at all GPU counts, except for 1 node at which the speedup is 15.

The reason for this speed up can be attributed to the fact that the 4 GPUs on a PM are

connected via NVLink, which allows for a very fast intranode reduction to take place prior

to triggering internode communication over the Slingshot interconnect. This fast intranode

reduction is clearly present in the 1 node case where no internode communication is triggered.

When using the MPI reduction primitives, sn-K and XC exhibit a 20% reduction in parallel

efficiency due to the growing relative communication cost in the strong scaling limit.

The consistent stagnation of strong scaling behaviour as problem size (e.g. Ng and/or

Nb) decreases can be attributed to two primary factors (1) communication overhead and

(2) a lack of divisible work to be distributed amongst independent ranks leading to load

imbalance in the large processor limit. The communication overhead (Fig. 7) represents a

slow growing, nearly constant cost with processor count, which means that even in the case

of perfect strong scaling for the local work of the Fock build, communication will eventually

dominate the strong scaling behaviour. While these scaling inefficiencies are considerable

in the large processor limit, It is important to contextualize the scaling behaviour of these

smaller problems in reference to their overall wall time at this scale (Tab. III). For example,

while the DF-J algorithm becomes a considerable wall time contribution for the smaller

problems in the strong scaling limit, the overall wall time for this operation is <0.4s for

all problems considered. Further, the 128 GPU timing for sn-K is under <=0.6s for Olesta

and Taxol, <3s for Crambin and < 6s for Ubiquitin. Due to the small timing margins

at this scale, it is unlikely that further algorithmic optimization would overcome inherent

bottlenecks to significantly change the presented scaling results.

IV. CONCLUSIONS

In this work, we have presented a set of GPU accelerated, distributed memory algo-

rithms for the evaluation of the performance-critical Coulomb and exact-exchange matrices

for Gaussian basis DFT. For the Coulomb matrix, we developed a DF-based J-engine im-

plementation capable of efficient execution on distributed memory heterogeneous platforms.

This work extends our recent developments of algorithms for evaluation of 3-center inte-
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grals on accelerated architectures.95 For the exact-exchange matrix, we have developed a

distributed memory sn-K algorithm which extends recently developed numerical integration

methods for the Gaussian basis XC potential17. These methods were implemented in the

open-source LibintX and GauXC libraries and are publicly available on GitHub98,123. We have

demonstrated the absolute and strong scaling performance of the presented algorithms for a

representative set of molecular systems out to 128 NVIDIA A100 GPUs on the Perlmutter

supercomputer. For the largest problem considered (Ubiquitin), total Fock construction via

our methods exhibited > 90% parallel efficiency out to 32 GPUs and achieved 61% efficiency

out to 128 GPUs for a total Fock matrix duration of approximately 8.5s. While degraded

strong scalability was exhibited for the smaller problems considered due to communica-

tion overhead and load imbalance, the magnitude of their effects on overall scalability are

magnified relative to low execution time of these operations and are small on an absolute

scale.

While results of the present work indicate a promising future for distributed memory,

GPU accelerated algorithms for Gaussian basis DFT, there remain several areas for explo-

ration in future work. The efficient evaluation of the Coulomb potential described here can

be combined straightforwardly with fast [O(N)] approaches for evaluation of Coulomb po-

tential, such as the fast multipole method (FMM) that can be applied in both non-periodic79

and periodic132,133 settings, as well as the Ewald summation134 for periodic systems. While

the seminumerical method was only applied to the problem of exact exchange in this work,

similar approaches have been developed for treatment of correlated many-body methods as

well135,136. Pursuance of many-body extensions to the presently developed distributed mem-

ory sn-K method will be the subject of future work by the authors. Finally, as has recently

been demonstrated for the XC integration18, the modular nature GauXC library allows for

rapid development of performance portable DFT methods by separating the implementation

details of performance critical kernels from their inclusion in high-level workflows, thereby

exposing the highest potential and flexibility for targeting current an emerging accelerator

hardware with minimal developer effort. The pursuance of performance portable DF-J and

sn-K algorithms will also be pursued by the authors in upcoming work.
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Appendix A: Three-Center Coulomb Potential Integrals

In this section, we present our approach for the direct evaluation of the contributions

arising from the 3c-CP integrals to the sn-K intermediate G (Eq. (38)). As opposed to the

McMurchie-Davidson approach taken for the DF-J-engine in Sec. II B, we have adopted the

Obara-Saika GTO integral recursions97,137 for the evaluation of G. We refer the reader for

Sec. II B for notation regarding basis functions and integrals used in this section.

For a particular shell pair φa, φb ∈ B, and grid point ri ∈ Q, we define the auxiliary

integrals, Θn
a and Ξab where

Θn
a+1q = (Rp −Ra)qΘ

n
a − (P− ri)qΘ

n+1
a +

aq
2(ζa + ζb)

(
Θn

a−1q −Θn+1
a−1q

)
, (A1)

Ξa(b+1q) = Ξ(a+1q)b + (Ra −Rb)qΞab, (A2)

and

Θn
0 = Fn((ζa + ζb)|Rp − ri|2), Ξa0 = Θ0

a, Aabi ≡ Ξab. (A3)

Fn is the Boys function defined in Eq. (22). Will refer to Eqs. (A1) and (A2) as the

vertical (VRR) and horizontal (HRR) OS recursions, respectively, in the following. In the

canonical two-step OS algorithm, VRR intermediates are constructed and assembled into

target integrals via the HRR. For brevity, the following discussion considers the case that

φa and φb are primitive GTO functions. This may be generalized to contracted functions

by contracting the Θ intermediates with basis coefficients between the VRR and HRR137.

There are two important aspects of these expressions for the 3c-CP

1. In contrast to their application to the evaluation of ERIs137, only the Θ0 intermediates

are required for the assembly of target integrals via the HRR. As such, for a particular

a and b, the VRR recursion requires the evaluation of many intermediate quantities

which do not contribute to the HRR.

2. Both the HRR and VRR are independent in the grid point, and are thus well suited

to be parallelized in this dimension. On GPU architectures, each thread can indepen-

dently perform the same VRR and HRR steps for different grid points (batch level

parallelism) with minimal thread divergence. However, adopting this simple approach

can be resource (e.g. register and shared memory) intensive, which can hinder the

number of thread blocks that can be executed concurrently on a particular SM.
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FIG. 8. A pre-order tree transversal approach for the evaluation of the VRR expressed in Eq. (A1).

The nodes and edges of this tree represent intermediate integrals and and their VRR connections,

respectively. Grey tiles represent temporary terms which must be computed to form the Θ values

(red) required for the HRR. Only one path through the VRR tree transversal is shown for brevity.

In the following, we develop an efficient algorithm for the transversal of the VRR and HRR

recursions for the sn-K method to minimize GPU resource requirements.

VRR Implementation. Figure 8 depicts our approach for implementing the VRR in

the context of the sn-K method. First, we cast the recursion as a tree traversal, where the

nodes of the tree represent the intermediate integrals and the edges between nodes represent

the direct connections between the integrals via the VRR. The levels of the tree represent

Θn intermediates with the same total angular momentum, L, with the root of the tree

representing the state L = 0. For a target a and b, L ∈ [0, la + lb + 1], storage is kept to a

minimum by performing a pre-order transversal of the VRR tree. This allows for the direct

storage of Θ0 intermediates without having to form all elements of a tree level simultaneously.

For example, via the pre-order transversal depicted in Fig. 8, only 15 Θ values need to be

held simultaneously in 30 single-precision GPU registers (15 x 2 FP64) to evaluate every

target integral for la = lb = 2 as compared to 20 Θ values for a breath first search traversal.

Additionally, 30 double precision intermediate values must be stored in shared memory,

values that are needed for the HRR step. In general, our approach of the VRR step requires

(la + lb + 1) (la + lb + 2) single precision GPU registers, and
∑lb

i=1 (la + i+ 1) (la + i+ 2)

single precision intermediate values in the GPU shared memory. The quantities must be
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FIG. 9. The construction of the Ξa(b) column by column and the subsequent merger with the

contraction with the elements of Fa/bi to form G. The full 3c-CP integral tensor is never fully

materialized.

multiplied with the total number of threads within an execution block to get the total

resources needed. For small angular momenta (e.g., la/b < 2), we do not utilize shared

memory and keep all values in registers, includning the intermediate values. This has shown

to provide the best performance at the expense of an increased register count.

Merged HRR Implementation. Given the required Θ0 intermediates from the VRR,

Figure 9 depicts our approach for merging the HRR with the contraction with elements of

Fa/bi to directly form its contributions to Ga/bi in Eq. (38). In this approach, the full 3c-CP

integral tensor (which quadratically grows with angular momenta) need not be materialized

in order to perform the contraction in Eq. (38). For example, for la = lb = 2, the full 6x6

integral tensor occupies 72 single-precision (32 x 2 FP64) registers alone, which would consti-

tute a significant bottleneck for resource utilization on modern GPU hardware, particularly

when vectorizing over many grid points. In our approach, we only need to materialize a

single column of the target integral at a time, which in the preceding example only requires

12 registers (a 6-fold reduction). Additionally, we need 36 single precision registers to store

the values from Fa/bi and the results for Ga/bi. The values for Fa/bi can be pre-loaded to

hide the latency of reading data from the GPU main memory. In general, for the HRR step

our approach needs 2 ∗ (la + 1) (la + 2) + (lb + 1) (la + 2) single precision GPU registers.

This values must be multiplied with the total number of threads within an thread block to
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obtain the final resource utilization.

For the GPU implementation, we have constructed device kernels for different angular

momenta. More specifically we have constructed an in-house code generator that performs

the pre-order traversal and fuses the horizontal recursion with the other contractions, and

generates CUDA code. The current implementation exploits the independent execution

across the grid points, each GPU thread executing the same VRR and HRR but on different

grid points. For small angular momenta, we don’t utilize shared memory and keep all

intermediate values in registers. For larger values, we make use of shared memory, which

is dynamically allocated given the angular momenta. Therefore the main strategy, given a

shell pair of angular momenta la and lb, is to first group the grid points for that specific

shell pair, launch a specialized kernel on the GPU and perform the batched VRR and HRR

computations, and finally obtain the contracted Ga/bi stored in device memory.
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31E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Va-

liev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn,

J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bo-

gatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev,
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