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ABSTRACT OF THE DISSERTATION

Scalable and Robust Statistical Inference Algorithms for Linking Genotypes to Phenotypes

by

Ali Pazokitoroudi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Sriram Sankararaman, Chair

With the advancements in DNA sequencing technology and the decreasing cost of sequenc-

ing, there has been exponential growth in the amount of genomic data generated. This

growth provides an unprecedented opportunity to access the genotypes of a large popula-

tion, including millions of genetic variants, and to collect hundreds of thousands of pheno-

typic measurements from the same individuals. This opens doors to systematically studying

the genetic architecture underlying complex traits and diseases. Genetic architecture refers

broadly to a complete understanding of all genetic contributions to a given trait as well as

to an awareness of the characteristics of this contribution.

During the past decade, variance components analysis has emerged as a robust statistical

framework for investigating the genetic architectures of complex traits. To gain accurate and

innovative insights into genetic architecture, applying flexible variance component models to

large-scale datasets is crucial. However, fitting such models necessitates the use of scalable

algorithms. Common approaches for estimating variance components involve searching for

parameter values that maximize the likelihood or the restricted maximum likelihood (REML)

[79]. Despite several algorithmic advancements [132, 63, 55, 61, 31, 70, 95], computing

REML estimates of variance components on extensive datasets like the UK Biobank [4],
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which consists of approximately 500,000 genotyped individuals, millions of single nucleotide

polymorphisms (SNPs), and hundreds of thousands of phenotypes, remains challenging.

This thesis introduces a set of scalable and robust statistical inference algorithms rooted

in variance component analysis. These algorithms are designed to estimate the variation

in a trait that can be explained by linear and non-linear functions of the genotype, such

as the interaction between alleles at a single genetic variant (dominance), the interaction

between genetic variants (epistasis), and the interaction between environmental factors and

genetic variants (GxE). Furthermore, these algorithms aim to estimate the distribution of

these effects across the genome.

By applying our methods to the UK Biobank dataset, we uncover valuable insights into

the genetic architecture of complex traits. Notable observations are as follows. First, we

observe that both per-allele squared additive and GxE effect size increase with decreasing

minor allele frequency (MAF) and linkage disequilibrium (LD). Second, testing whether

GxE heritability is enriched around genes that are highly expressed in specific tissues, we

find significant tissue-specific enrichments that include brain-specific enrichment for BMI

and Basal Metabolic Rate in the context of smoking, adipose-specific enrichment for WHR

in the context of sex, and cardiovascular tissue-specific enrichment for total cholesterol in

the context of age. Third, we detect epistasis effects between SNPs located on the same

chromosome and between SNPs located on different chromosomes. Fourth, our analyses

indicate a limited contribution of dominance heritability to complex trait variation.
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white British individuals, M = 459, 792 common SNPs with respect to

300 bins defined based on 10Mb base pairs. Here we plot the empirical

cumulative probability respectively of the enrichment. . . . . . . . . . . . . . . 49

2.17 Power as a function of annotation size. Each point represents a rejection

probability over 100 simulations. All simulations have h2
total = 0.7, N = 291, 273,

M = 459, 792, pcausal = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Calibration and power of GENIE in large-scale simulations (N = 291, 273

unrelated individuals, M = 459, 792 SNPs). a) Q-Q plot of p-values (of a

test of the null hypothesis of zero GxE heritability) when GENIE is applied to

phenotypes simulated in the absence of GxE effects. Each panel contains 100

replicate phenotypes simulated with additive heritability h2
g = 0.25 and varying

proportions of causal variants. Across all architectures, the mean of P (rejection

at p < t) are 7.5% and 0% for t = 0.05 and t = 0.05
200

respectively (7.5% is not

significantly different from the nominal rate of 5%; the p-value of a test of bias of

point estimates of h2
gxe is p = 0.75). b) The power of GENIE across genetic archi-

tectures as a function of GxE heritability. We report power for p-value thresholds

of t ∈ {0.05, 0.05
200

}. c) The accuracy of h2
gxe estimates obtained by GENIE. Across

all simulations, statin usage in UKBB was used as the environmental variable. . 81
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3.2 Effect of noise heterogeneity (NxE) on the accuracy of estimates of

GxE heritability in simulations. a) Comparison of GxE heritability es-

timates from GENIE under a G+GxE model to those from a G+GxE+NxE

model. Model G+GxE refers to a model with additive and gene-by-environment

interaction components. Model G+GxE+NxE refers to a model with additive,

gene-by-environment interaction, and noise heterogeneity (noise-by-environment

interaction) components. We simulated phenotypes with NxE effects and GxE

effects across N = 291, 273 individuals genotyped at M = 459, 792 SNPs. The

x-axis and y-axis correspond to the true GxE and the mean of the estimated GxE

(from 100 replicates), respectively. Points and error bars represent the mean and

± SE, respectively. b) Comparison of false positive rates of tests for GxE her-

itability across GENIE and MEMMA. We performed simulations with no GxE

heritability but with varying magnitudes of the variance of the NxE effect. We

compute the false positive rate as the fraction of rejections (p-value of a test of

the null hypothesis of zero GxE heritability < 0.05) over 100 replicates of pheno-

types simulated from N = 40, 000 individuals genotyped at M = 459, 792 SNPs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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3.3 Effect of Noise heterogeneity (NxE) on estimates of heritability asso-

ciated with GxSmoking across 50 quantitative phenotypes in UKBB.

Model G+GxE refers to a model with additive and gene-by-environment interac-

tion components where the environmental variable is smoking status. Model

G+GxE+NxE refers to a model with additive, gene-by-environment interac-

tion, and environmental heterogeneity (noise-by-environment interaction ) com-

ponents. a) We run GENIE under G+GxE and G+GxE+NxE models to assess

the effect of fitting an NxE component on the additive and GxE heritability es-

timates. b) Comparison of GxE heritability estimates obtained from GENIE

under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis). Black error

bars mark ± standard errors centered on the estimated GxE heritability. Color

of the dots indicate whether estimates of GxE heritability are significant under

each model. c) We performed permutation analyses by randomly shuffling the

genotypes while preserving the trait-E relationship and applied GENIE in each

setting under G+GxE and G+GxE+NxE models. We report the fraction of re-

jections (p-value of a test of the null hypothesis of zero GxE heritability < 0.05
200

that accounts for the number of phenotypes tested) over 50 UKBB phenotypes. 83

3.4 Estimates of GxSmoking heritability across phenotypes in UK Biobank.

a) GxSmoking heritability and b) the ratio of GxSmoking to additive heritabil-

ity. We applied GENIE to N = 291, 273 unrelated white British individuals and

M = 459, 792 array SNPs (MAF≥ 1%). Our model includes the environmen-

tal variable as a fixed effect and accounts for environmental heterogeneity. The

environmental variable is standardized in these analyses. Error bars mark ±2

standard errors centered on the point estimates. The asterisk and double asterisk

correspond to the nominal p < 0.05 and p < 0.05/200, respectively. . . . . . . . 84

xx



3.5 Estimates of GxSex heritability across phenotypes in UK Biobank. a)

GxSex heritability and b) ratio of GxSex to additive heritability. We applied

GENIE to N = 291, 273 unrelated white British individuals and M = 459, 792

array SNPs (MAF≥ 1%). Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. The environmental

variable is standardized in these analyses. Error bars mark ±2 standard errors

centered on the point estimates. The asterisk and double asterisk correspond to

the nominal p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . 85

3.6 Estimates of GxAge heritability across phenotypes in UK Biobank. a)

GxAge heritability and b) ratio of GxAge to additive heritability. We applied

GENIE to N = 291, 273 unrelated white British individuals and M = 459, 792

array SNPs (MAF≥ 1%). Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. The environmental

variable is standardized in these analyses. Error bars mark ±2 standard errors

centered on the point estimates. The asterisk and double asterisk correspond to

the nominal p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . 86

3.7 Estimates of GxStatin heritability across phenotypes in UK Biobank.

a) GxStatin heritability and b) ratio of GxStatin to additive heritability. We

applied GENIE to N = 291, 273 unrelated white British individuals and M =

459, 792 array SNPs (MAF≥ 1%). Our model includes the environmental variable

as a fixed effect and accounts for environmental heterogeneity. The environmental

variable is standardized in these analyses. Error bars mark ±2 standard errors

centered on the point estimates. The asterisk and double asterisk correspond to

the nominal p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . 87
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3.8 Per-allele squared GxE and additive effect sizes as a function of MAF

and LD. a) The squared per-allele GxE effect size for four selected pairs of trait

and environments (trait-E pairs). b) The squared per-allele additive effect size

for the same trait-E pairs. The x-axis corresponds to MAF-LD annotations where

annotation i.j includes SNPs in MAF bin i and LD quartile j where MAF bin 1

and MAF bin 2 correspond to SNPs with MAF ≤ 5% and MAF > 5% respectively

while the first quartile of LD-scores correspond to SNPs with the lowest LD-scores

respectively). The y-axis shows the per-allele GxE (or additive) effect size squared

defined as
h2
k

2Mkfk(1−fk)
where h2

k is the GxE (or additive) heritability attributed

to bin k, Mk is the number of SNPs in bin k, and fk is the mean MAF in bin k.

Error bars mark ±2 standard errors centered on the estimated effect sizes. . . . 88

3.9 Partitioning GxE heritability across 53 tissue-specific genes.. We plot

−log10(p) where p is the corresponding p-value of the tissue-specific GxE en-

richment defined as
h2
gxe,tissue/h

2
gxe,total

Mtissue/Mtotal
. For every tissue-specific annotation, we

use GENIE to test whether this annotation is significantly enriched for per-SNP

heritability, conditional on 28 functional annotations that are part of the base-

line LDSC annotations. The dashed and solid lines correspond to the nominal

p < 0.05 and FDR< 0.1 threshold, respectively. . . . . . . . . . . . . . . . . . . 89

3.10 Effect of an estimated standard error on controlling False positive rate

. a) We assessed the calibration of GENIE and MEMMA using their true SE

instead of the estimation of SE in simulations. MEMMA has biased estimates of

SE, leading to a high false positive rate even in the absence of a NxE effect. b)

We plot the ratio of true SE over the mean of estimated SE across 100 replicates

as a function of the variance of the NxE effect. . . . . . . . . . . . . . . . . . . 100

3.11 Comparison of h2
gxe estimates with B = 10 and B = 100 on large scale

data. We simulated phenotypes fromM = 459, 792 array SNPs andN = 291, 273

individuals where h2
g = 0.25, h2

gxe = 0 and the causal ratio is 10% . . . . . . . . . 101
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3.12 Accuracy of GENIE when applied to multiple environmental variables.

We evaluated h2
gxe estimates of GENIE for different values of σ2

gxe. We simulated

phenotypes with 10 environmental variables where σ2
g = 0.2, σ2

ge1 = σ2
ge2 = σ2

ge3 =

σ2
ge4 = σ2

ge5 = 0, σ2
ge6 = σ2

ge7 = σ2
ge8 = 0.10 and σ2

ge9 = σ2
ge10 = 0.01. Points and

error bars represent the mean and ±2 SE. Mean and SE are computed from 100

replicates. Here B is the number of random vectors used by GENIE with B = 10

the value that we use as default (we reported values of means, SEs, and p-values

of a test of the null hypothesis of no bias in the estimates of variance components

in Supplementary Table 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.13 Runtime scaling of GENIE. We evaluated the runtime of GENIE, MEMMA,

and GCTA(HE) with increasing sample size N (for a fixed number of SNPs

M = 459, 792 and single environmental variable). We fit single G and GxE

variance components. All methods were run on an Intel(R) Xeon(R) Gold 6140

CPU 2.30GHz with 187 GB RAM. Ten random vectors are used by GENIE and

MEMMA. The runtime of GCTA(HE) includes the computation of the GRM.

GENIE and GCTA(HE) are executed on a single core while MEMMA is run on

both a single core and four cores. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.14 Estimated additive variance component from three different models. In

this figure, G, GxE and NxE refer to additive, gene-by-environment, and noise-by-

environment components, respectively. Every model is named by a set of variance

components fitted jointly under that model. Estimates of additive components

under the three models where the environmental variable is a) smoking status, b)

sex, c) statin usage, and d) age. The estimates of additive heritability obtained

by GENIE are consistent under these three models across environmental variables. 104

xxiii



3.15 Effect of Noise heterogeneity (NxE) on estimates of heritability asso-

ciated with GxSex across 50 quantitative phenotypes in UKBB. Model

G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-

environment interaction and environmental heterogeneity (noise-by-environment

interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE

models to assess the effect of fitting a NxE component on the GxE and additive

heritability estimates. b) Comparison of GxE heritability estimates obtained

from GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis).

Black error bars mark ± standard errors centered on the estimated GxE heri-

tability. c) We performed permutation analyses by randomly shuffling, in turn,

the environmental values, phenotypes or genotypes and applied GENIE in each

setting under G+GxE and G+GxE+NxE models. We report the fraction of re-

jections (p-value of a test of the null hypothesis of zero GxE heritability < 0.001

that accounts for the number of phenotypes tested) over 50 UKBB phenotypes. 105
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3.16 Effect of Noise heterogeneity (NxE) on estimates of heritability asso-

ciated with GxAge across 50 quantitative phenotypes in UKBB. Model

G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-

environment interaction and environmental heterogeneity (noise-by-environment

interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE

models to assess the effect of fitting an NxE component on the GxE and additive

heritability estimates. b) Comparison of GxE heritability estimates obtained from

GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis). Black

error bars mark ± standard errors centered on the estimated GxE heritability.

Color of the dots indicate whether estimates of GxE heritability are significant

under each model. c) We performed permutation analyses by randomly shuffling

the genotypes while preserving the trait-E relationship and applied GENIE in

each setting under G+GxE and G+GxE+NxE models. We report the fraction of

rejections (p-value of a test of the null hypothesis of zero GxE heritability < 0.05
200

that accounts for the number of phenotypes tested) over 50 UKBB phenotypes. 106
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3.17 Effect of Noise heterogeneity (NxE) on estimates of heritability associ-

ated with GxStatin across 50 quantitative phenotypes in UKBB. Model

G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-

environment interaction and environmental heterogeneity (noise-by-environment

interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE

models to assess the effect of fitting a NxE component on the GxE and additive

heritability estimates. b) Comparison of GxE heritability estimates obtained

from GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis).

Black error bars mark ± standard errors centered on the estimated GxE heri-

tability. c) We performed permutation analyses by randomly shuffling, in turn,

the environmental values, phenotypes or genotypes and applied GENIE in each

setting under G+GxE and G+GxE+NxE models. We report the fraction of re-

jections (p-value of a test of the null hypothesis of zero GxE heritability < 0.001

that accounts for the number of phenotypes tested) over 50 UKBB phenotypes. 107

3.18 Estimated ratio of variance attributed to noise heterogeneity over ad-

ditive heritability for Smoking. Black error bars mark ±2 standard errors

centered on the estimated ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.19 Estimated ratio of variance attributed to noise heterogeneity over ad-

ditive heritability for Sex. Black error bars mark ±2 standard errors centered

on the estimated ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.20 Estimated ratio of variance attributed to noise heterogeneity over ad-

ditive heritability for Age. Black error bars mark ±2 standard errors centered

on the estimated ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.21 Estimated ratio of variance attributed to noise heterogeneity over addi-

tive heritability for Statin usage. Black error bars mark ±2 standard errors

centered on the estimated ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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3.22 GxSmoking across phenotypes in UK Biobank with the environmental

variable coded as binary. Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/200 respectively. . . . . . . . . . . . . . . . . . . . . . . . 112

3.23 GxSex across phenotypes in UK Biobank with the environmental vari-

able coded as binary. Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/50 respectively. . . . . . . . . . . . . . . . . . . . . . . . 113

3.24 GxStatin across phenotypes in UK Biobank with the environmental

variable coded as binary. Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/50, respectively. . . . . . . . . . . . . . . . . . . . . . . . 114

3.25 Effect of MAF-LD partitioning on estimated GxE heritability in sim-

ulation. We assessed the effect of MAF-LD partitioning on estimates of h2
gxe

in simulations. We ran GENIE in two settings: 1) fitting a model with a single

additive and a single GxE variance component, 2) fitting a model with eight addi-

tive and eight GxE components defined based on four LD annotations (quartiles

of LD scores) and two MAF annotations. we simulated phenotypes with GxE

effects and G effects from a subset of N = 40k individuals genotyped at array

SNPs M = 459, 792 by varying the coupling of MAF with effect size (a) and the

effect of local LD on effect size (b) (see Supplementary note S2 for details). Here

we have h2
g = h2

gxe = 0.25,h2
nxe = 0.05, and all SNPs are causal for both additive

and GxE effects. Each box plot represents estimates from 100 simulations. . . . 115

xxvii



3.26 GxSmoking across phenotypes from imputed SNPs in UK Biobank by

MAF-LD partitioning. Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . . . . . . . . 116

3.27 GxSex across phenotypes from imputed SNPs in UK Biobank by MAF-

LD partitioning.Our model includes the environmental variable as a fixed effect

and accounts for environmental heterogeneity. Error bars mark ±2 standard

errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and

p < 0.05/200, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.28 GxAge across phenotypes from imputed SNPs in UK Biobank by

MAF-LD partitioning. Our model includes the environmental variable as

a fixed effect and accounts for environmental heterogeneity. Error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . . . . . . . . 118

3.29 GxStatin across phenotypes from imputed SNPs in UK Biobank by

MAF-LD partitioning. Our model includes the environmental variable as a

fixed effect and accounts for environmental heterogeneity. Error bars mark ±2

standard errors. The asterisk and double asterisk correspond to the nominal

p < 0.05 and p < 0.05/200, respectively. . . . . . . . . . . . . . . . . . . . . . . 119

3.30 Comparing GxSex, GxSmoking, GxAge, and GxStatin estimates from

imputed SNPs (MAF≥ 0.1%) and array SNPs (MAF≥ 1%). In this anal-

ysis, we applied GENIE to imputed SNPs with MAF/LD stratification and array

SNPs with a single component. Black error bars mark ±2 standard errors. The

asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200

respectively. Color of the dots indicate whether estimates of GxE heritability are

significant under each model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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3.31 Effect of MAF-LD partitioning on estimated GxE heritability. We as-

sessed the effect of MAF-LD partitioning on estimates of h2
gxSmoking from array

SNPs and imputed SNPs. We ran GENIE in two settings: 1) fitting a model with

a single additive and a single GxE variance component, 2) fitting a model with

eight additive and eight GxE components defined based on four LD annotations

(quartiles of LD scores) and two MAF annotations. Black error bars mark ±2

standard errors centered on the estimates of h2
gxSmoking. Color of the dots indicate

whether estimates of h2
gxSmoking are significant under each model. . . . . . . . . 121

3.32 Per-standardized genotype GxE and additive heritability as a function

of MAF and LD. a) The per-standardized genotype GxE heritability for four

selected pairs of traits and environments (trait-E pairs). b) The per-allele addi-

tive heritability for the same trait-E pairs. The x-axis corresponds to MAF-LD

annotations where annotation i.j includes SNPs in MAF bin i and LD quartile

j where MAF bin 1 and MAF bin 2 correspond to SNPs with MAF ≤ 5% and

MAF > 5% respectively while the first quartile of LD-scores corresponds to SNPs

with the lowest LD-scores respectively). The y-axis shows the per-standardized

genotype GxE (or additive) heritability defined as
h2
k

2Mk
where h2

k is the GxE (or

additive) heritability attributed to bin k, Mk is the number of SNPs in bin k.

Error bars mark ±2 standard errors centered on the estimated effect sizes. . . . 122
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4.1 The accuracy of estimates of dominance and additive heritabilities in

simulations with no dominance heritability (N = 291, 273 unrelated in-

dividuals, M = 459, 792 array SNPs). In A and B: We plot estimates from

our method in the absence of dominance deviation effects under 16 different ge-

netic architectures. We varied the MAF range of causal variants (MAF of CV),

the coupling of MAF with effect size (a), and the effect of local LD on effect size

(b = 0 indicates no LDAK weights and b = 1 indicates LDAK weights. We ran

100 replicates where the true additive and dominance heritabilities of the pheno-

type are 0.5 and 0.0 respectively. We ran our method using a single dominance

bin and 24 additive bins formed by the combination of 6 bins based on MAF as

well as 4 bins based on quartiles of the LDAK score of a SNP. Black points and

error bars represent the mean and ±2 SE. Each box plot represents estimates

from 100 simulations. Box plot whiskers extend to the minimum and maximum

estimates located within 1.5× interquartile range (IQR) from the first and third

quartiles respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 The accuracy of estimates of dominance and additive heritabilities in

simulations with non-zero dominance heritability (N = 291, 273 unre-

lated individuals, M = 459, 792 array SNPs). In A, B: We plot estimates

from our method under 16 different genetic architectures. We varied the addi-

tive heritability h2
A, dominance heritability h2

D , and the proportion of dominance

causal variants (causal ratio). Black points and error bars represent the mean

and ±2 SE. Each boxplot represents estimates from 100 simulations.Box plot

whiskers extend to the minimum and maximum estimates located within 1.5×

interquartile range (IQR) from the first and third quartiles respectively. . . . . . 139
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4.3 Estimates of additive and dominance heritability for 50 quantitative

phenotypes in the UK Biobank (N = 291, 273 unrelated white British

individuals, M = 459, 792 common array SNPs ( MAF > 1%)). We ran

our method partitioning the additive component into 8 bins defined based on

two MAF bins (MAF≤ 0.05, MAF> 0.05) and quartiles of the LD-scores and a

single dominance bin. We summarize the estimates of additive and dominance

heritability across the 50 phenotypes. In A : Black error bars mark ±2 standard

errors centered on the estimated heritability. In B and C we plot the histogram

of h2
A and h2

D respectively. Point estimates and SE’s are reported in Table S2. . 140

4.4 Estimates of additive and dominance heritability for 50 quantitative

phenotypes in the UK Biobank (N = 291, 273 unrelated white British

individuals, M = 4, 824, 392 common imputed SNPs ( MAF > 1%) ). We

ran our method partitioning the additive component into 8 bins defined based on

two MAF bins (MAF≤ 0.05, MAF> 0.05) and quartiles of the LD-scores and a

single dominance bin. We summarize the estimates of additive and dominance

heritability across the 50 phenotypes. In A : Black error bars mark ±2 standard

errors centered on the estimated heritability. In B and C we plot the histogram

of h2
A and h2

D respectively. Point estimates and SE’s are reported in Table S3. . 141

5.1 Calibration in simulations. We applied FAME to phenotypes simulated from

genotypes with linear additive effects but no marginal epistatic (ME) effects. Phe-

notypes were simulated using genotypes measured on ≈ 300K unrelated white-

British individuals in the UK Biobank, with varying ratios of causal SNPs (Causal

ratio) and heritability (h2). We first ran GWAS to identify significant SNPs,

which were then used as target SNPs in a test of ME. We detected no significant

ME signals (p ≤ 5× 10−8) across all the settings. . . . . . . . . . . . . . . . . . 154
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5.2 Significant marginal epistasis (ME) loci. (a) Manhattan plot of the ME loci

across 53 complex traits in UKBB. Colored shapes denote significant trait-loci

pairs at p ≤ 5×10−8

53
; (b) Localization of ME signals. For each of 23 trait-loci pairs,

we tested whether the ME signals remained significant when testing against all

SNPs on the same chromosome as the target SNP (after removing SNPs in the

same LD block as the target SNP), which we term local, and against all SNPs on

chromosomes different from the chromosome containing the target SNP, which we

term distal. We then compared the overlap between the local and distal significant

signals (p ≤ 5×10−8

53
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Robustness in real data analysis (a) We assessed the robustness of ME signals

to population stratification. We tested the trait-loci pairs, which were significant

for ME signals, and repeated the test by varying the number of principal com-

ponents (PC=20 vs. PC=40). We plot the p-values from both analyses. (b) We

assessed the robustness of ME signals to the missingness of features. We tested

the trait-loci pairs, which were significant for ME signals in whole genome array

data, and repeated the test by switching to the imputed dataset. We plot the

p-values from both analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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CHAPTER 1

Introduction

If we trace our biological history back in time, we can identify a point where we were a single

cell called a zygote. This zygote was formed through the fusion of a father’s sperm and a

mother’s egg cell at the moment of conception. The zygote carries a complete set of genetic

material, including chromosomes inherited from both parents. Through subsequent divisions

and cellular differentiation, the zygote develops into an embryo and gradually transforms

into a fully formed organism. If we look at the inside of a zygote, it contains a total of

46 chromosomes. These chromosomes are organized into 23 pairs, with one set contributed

by the father’s sperm and the other set contributed by the mother’s egg cell. The 23 pairs

consist of one sex pair (either XX or XY) and 22 pairs of autosomes (non-sex chromosomes).

The combination of chromosomes in the zygote determines the individual’s genetic makeup

and various inherited traits.

Each chromosome can be represented as a string of four letters, which correspond to the

four nucleotide bases found in DNA: adenine (A), cytosine (C), guanine (G), and thymine

(T). These letters represent the sequence of nucleotides along the DNA strand of a specific

chromosome. The sequence of nucleotides along the DNA remains the same in all cells of

an organism. This sequence contains the genetic information necessary for the synthesis of

proteins and the regulation of various cellular processes. The differences between cells in

different tissues or organs lie in the way they are spatially organized in three-dimensional

space. This spatial arrangement helps determine which specific genes are expressed and

active in a particular tissue or cell type, leading to the development and specialization of

different cell types throughout the organism. Thus, while the genetic information remains

constant, the regulation and expression of genes in specific tissues contribute to the diversity
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and functionality of different cell types in an organism.

When comparing the DNA of different individuals, there are regions within the genomes

where there are variations or differences in the sequence of nucleotides. These variations

are known as Single Nucleotide Polymorphisms (SNPs). SNPs represent a type of genetic

variation where a single nucleotide (A, C, G, or T) at a specific position in the genome differs

among individuals. Although SNPs are widespread in the human genome, they represent only

a small portion of the entire genome. The human genome consists of billions of nucleotides,

and SNPs occur at specific positions throughout this vast genetic code. While SNPs are

relatively common, comprising millions of known variations, they still represent a small

fraction of the entire genome. Understanding the distribution and effects of these SNPs is

crucial for studying genetic diversity, disease susceptibility, and population genetics.

With the advancements in DNA sequencing technology and the decreasing cost of se-

quencing, there has been a significant and rapid expansion in the volume of genomic data

being generated. This growth provides an opportunity to access the genotypes of a large pop-

ulation, encompassing millions of genetic variants, and to collect hundreds of thousands of

phenotypic measurements from the same individuals.Researchers have tried to develop meth-

ods to link phenotypes to genotypes and environmental factors to understand the genetic

architecture underlying complex traits and diseases. Genetic architecture refers broadly to a

complete understanding of all genetic contributions to a given trait as well as to an awareness

of the characteristics of this contribution and how it interacts with non-genetic factors.

Heritability is a fundamental concept used to assess the contribution of genetic variation

to phenotypic variation. Broad-sense heritability encompasses all genetic factors that con-

tribute to phenotypic differences, while Narrow-sense heritability specifically focuses on the

additive genetic component, which refers to the genetic contribution that can be measured

as a linear function of genotypes.

Once the heritability of a phenotype has been established, the next step is to understand

how these genetic variations are distributed across the genome and how they contribute to

the phenotype. This process is known as partitioning heritability. Partitioning heritabil-
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ity involves dissecting the overall genetic contribution to a trait or phenotype into different

components, such as specific genes, genomic regions, pathways, or functional annotations.

This analysis helps to identify which parts of the genome are responsible for the observed

heritability and provides insights into the underlying genetic mechanisms. By partitioning

heritability, researchers can gain a more detailed understanding of how genetic factors con-

tribute to phenotypic variation, identify specific genes or genomic regions associated with

the trait, and unravel the biological pathways and functional annotations that are relevant

to the phenotype of interest.

The additive model assumes a linear relationship between genotypes and phenotypes.

However, evidence suggests that genetic factors can interact with each other or with en-

vironmental factors, resulting in non-linear effects on phenotypes. To gain a deeper un-

derstanding of genetic architecture, it is crucial to extend our linear models to incorporate

interaction terms. These interaction terms can include the interaction between alleles at a

single genetic variant (referred to as dominance), the interaction between different genetic

variants (referred to as epistasis), and the interaction between genetic variants and envi-

ronmental factors (referred to as GxE). By incorporating these interaction terms into our

models, we can better capture the complex interplay between genes and their environment,

which can significantly influence phenotypic outcomes. Considering these non-linear effects

and interactions allows for a more comprehensive understanding of the genetic architecture

of complex traits and diseases.

Over the past decade, considerable progress has been made in developing computational

and statistical tools to analyze genotype and phenotype data, enabling a deeper understand-

ing of the genetic architecture of complex phenotypes. These tools encompass estimating

heritability, partitioning heritability, quantifying the impact of non-linear effects (e.g., dom-

inance, epistasis, GxE), and identifying causal SNPs. However, challenges arise from the

nature of genetic data. Genetic data tend to be high-dimensional, containing a large number

of SNPs that are often highly correlated. Moreover, the scale of the data can be substan-

tial, requiring scalable and robust statistical methods to draw meaningful insights about the

3



underlying models of phenotypes. To overcome these challenges, it is necessary to employ

both scalable and robust statistical methods. Scalable approaches can efficiently handle the

large-scale nature of genetics data, while robust statistical methods ensure reliable and accu-

rate inferences from the data. By leveraging these methods, researchers can derive valuable

insights and uncover the complex relationships between genetic variants and phenotypes.

Variance components analysis has emerged as a robust statistical framework for investi-

gating the genetic architectures of complex traits. To gain accurate and innovative insights

into genetic architecture, it is crucial to apply flexible variance component models to large-

scale datasets. However, fitting such models necessitates the use of scalable algorithms.

Common approaches for estimating variance components involve searching for parameter

values that maximize the likelihood or the restricted maximum likelihood (REML) [79].

Despite several algorithmic advancements [132, 63, 55, 61, 31, 70, 95], computing REML es-

timates of variance components on extensive datasets like the UK Biobank [4], which consists

of approximately 500,000 genotyped individuals, millions of single nucleotide polymorphisms

(SNPs), and hundreds of thousands of phenotypes, remains challenging.

In this thesis, my collaborators and I focus on developing scalable and robust statistical

inference algorithms within variance components analysis frameworks. We aim to address

several important biological questions by analyzing large-scale genotype-phenotype data.

• Chapter 2: Our first objective is to quantify the amount of variation in phenotypes

that can be explained by a linear function of genotypes. Specifically, we investigate

the accuracy of the best linear predictor for phenotypes based on genotypes. Further-

more, we examine the distribution of this variation across the genomes in relation to

functional annotations, genes, pathways, as well as minor allele frequency (MAF) and

linkage disequilibrium (LD).

• Chapter 3: In this chapter, we explore whether the effect of an environmental variable

on phenotype is influenced by the genetic background. We investigate the presence of

a GxE (Gene-Environment interaction) effect. If such an effect is detected, we analyze
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how it is distributed across the genomes, considering tissue-specific genes, functional

annotations, as well as MAF and LD.

• Chapter 4: Our focus in this chapter is to assess the contribution of the dominance

effect, which is the interactions between alleles at a specific locus to phenotypic varia-

tions, particularly in comparison to additive effects.

• Chapter 5: In this chapter, we explore interactions between different SNPs that con-

tribute to phenotypic variance. We investigate whether these SNPs interactions exist

and find their locations across the genomes. Boyang Fu is primarily responsible for the

real data analysis.
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CHAPTER 2

Partitioning heritability across genome

2.1 Background

Variance components analysis [71] has emerged as a versatile tool in human complex trait

genetics, enabling studies of the genetic contribution to variation in a trait [132] as well as

its distribution across genomic loci [136, 63], allele frequencies [136], and functional annota-

tions [136, 57, 34]. There is increasing interest in applying methods for variance components

analysis to large-scale genetic datasets with the goal of uncovering novel insights into the

genetic architecture of complex traits[21, 63]. A prominent example of the utility of these

methods is in the estimation of SNP heritability (h2
SNP ) [132], the variance in a trait ex-

plained by a given set of genotyped SNPs. Variance components methods for estimating

SNP heritability typically assume a genetic variance component that represents the fraction

of phenotypic variation explained by the SNPs included in the study and a residual vari-

ance component. Recent studies have shown that these “single-component” methods yield

biased estimates of SNP heritability due to the LD and MAF dependent architecture of

complex traits [18, 29]. On the other hand, flexible models with multiple variance compo-

nents [136, 63] that allows for SNP effects to vary with MAF and LD, have been shown to

yield more accurate SNP heritability estimates [18, 29]. Recent work has shown that SNP

heritability can be estimated with minimal assumptions about the genetic architecture [44];

however, this method cannot partition heritability across categories of SNPs of interest such

as functional or population genomic annotations. Partitioning heritability requires fitting

multiple variance components, thus creating the need for accurate and scalable methods that

can fit tens or even hundreds of variance components to large-scale genomic data to obtain
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accurate and novel insights into genetic architecture.

While the ability to fit flexible variance component models to large-scale datasets is es-

sential to obtain accurate and novel insights into genetic architecture, fitting such models re-

quires scalable algorithms. Approaches for estimating variance components typically search

for parameter values that maximize the likelihood or the restricted maximum likelihood

(REML) [79]. Despite a number of algorithmic improvements [132, 63, 55, 61, 31, 70, 95],

computing REML estimates of the variance components on data sets such as the UK

Biobank [4] (≈ 500, 000 individuals genotyped at nearly one million SNPs) remains challeng-

ing. The reason is that methods for computing these estimators typically perform repeated

computations on the input genotypes.

We propose a method that can jointly estimate multiple variance components efficiently.

Our proposed method, RHE-mc, is a randomized multi-component version of the classical

Haseman-Elston regression for heritability estimation [37, 145]. RHE-mc builds on our pre-

viously proposed method, RHE-reg [129], which uses a randomized algorithm to estimate a

single variance component. RHE-mc can simultaneously estimate multiple variance compo-

nents as well as estimate variance components associated with continuous annotations and

overlapping annotations. Unlike RHE-reg, RHE-mc uses a nonparametric block jackknife to

estimate standard errors with little computational overhead. Further, unlike REML estima-

tion algorithms, RHE-mc requires only a single pass over the input genotypes that results in

a highly memory efficient implementation. The resulting computational efficiency permits

RHE-mc to jointly fit 300 variance components in less than an hour on a dataset of about

300, 000 individuals and 500, 000 SNPs, about two orders of magnitude faster than state-of-

the-art methods. On a dataset of one million individuals and one million SNPs, RHE-mc

can fit 100 variance components in about 12 hours.

To demonstrate its utility, we first show that RHE-mc can accurately estimate genome-

wide and partitioned SNP heritability under realistic genetic architectures (the functional

dependence of SNP effect sizes on MAF and LD). We applied RHE-mc to 22 traits measured

across 291, 273 individuals genotyped at 459, 792 common SNPs (MAF> 1%) in the UK
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Biobank to obtain estimates of genome-wide SNP heritability. We then used RHE-mc to

partition heritability for the 22 traits across seven million imputed SNPs (MAF > 0.1%)

into 144 bins defined based on MAF and LD. We observe that the allelic effect size tends to

increase with lower MAF and LD across the traits considered. Finally, we partitioned heri-

tability for SNPs with MAF > 0.1% across 28 functional annotations. We recover previously

reported enrichment of heritability in annotations corresponding to conserved regions [21]

and also document enrichment of heritability in FANTOM5 enhancers in eczema, asthma,

autoimmune disorders, and thyroid disorders.

2.2 Materials and Methods

We aim to fit a variance components model that relates phenotypes y measured across N

individuals to their genotypes over M SNPs X:

y|ϵ,β1, . . . ,βK =
K∑
k=1

Xkβk + ϵ

ϵ ∼ D(0, σ2
eIN)

βk ∼ D(0,
σ2
k

Mk

IMk
), k ∈ {1, . . . , K}

where D(µ,σ2) is an arbitrary distribution with mean µ and variance σ2 . Each of the

M SNPs is assigned to one of K non-overlapping categories so that Xk is the N × Mk

matrix consisting of standardized genotypes of SNPs belonging to category k ( note that

the expected heritability is constant within categories when we use standardized genotypes

). βk denotes the effect sizes of SNPs assigned to category k which are drawn from a zero-

mean normal distribution with variance parameter σ2
k (the variance component of category

k) while σ2
e is the residual variance.

In this model, the genome-wide SNP heritability is defined as: h2
SNP =

∑K
k=1 σ

2
k∑K

k=1 σ
2
k+σ2

e
while

the SNP heritability of category k is defined as: h2
k =

σ2
k∑K

k=1 σ
2
k+σ2

e
. By choosing categories to

represent genomic annotations of interest, e.g., chromosomes, allele frequencies, and func-

tional annotations, these models can be used to estimate the phenotypic variation that can
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be attributed to the relevant annotation.

The key inference problem in this model is the estimation of the variance components:

(σ2
1, . . . , σ

2
K , σ

2
e). These parameters are typically estimated by maximizing the likelihood or

the restricted likelihood. Instead, RHE-mc uses a scalable method-of-moments estimator,

i.e., finding values of the variance components such that the population moments match the

sample moments [37, 30, 117, 33, 145]. RHE-mc uses a randomized algorithm that avoids

explicitly computing N × N genetic relatedness matrices that are required by method-of-

moments estimators. Instead, it operates on a smaller matrix formed by multiplying the

input genotype matrix with a small number of random vectors (Methods). The application

of a randomized algorithm for SNP heritability estimation using a single variance component

was proposed in our previous work, RHE-reg [129]. RHE-mc extends our previous work in

several directions. RHE-mc can efficiently fit multiple variance components (both non-

overlapping and overlapping) and can also handle continuous annotations. The resulting

algorithm has scalable runtime as it only requires operating on the genotype matrix one

time. Further, RHE-mc uses a streaming implementation that does not require all the

genotypes to be stored in memory leading to scalable memory requirements (Supplementary

Notes). Finally, RHE-mc uses an efficient implementation of a block Jackknife to estimate

standard errors with little computational overhead (Supplementary Notes).

2.2.1 Multi-component Linear mixed model

RHE-mc attempts to fit the following variance components model:

y|ϵ,β1, . . . ,βK =
K∑
k=1

Xkβk + ϵ

ϵ ∼ D(0, σ2
eIN)

βk ∼ D(0,
σ2
k

Mk

IMk
), k ∈ {1, . . . , K} (2.1)

Here y is a N -vector of centered phenotypes. Here each of the M SNPs is assigned to

one of K non-overlapping categories. Each category k contains Mk SNPs, k ∈ {1, . . . , K},∑
k Mk = M . Let Xk be a N ×Mk matrix where xk,n,m denotes the standardized genotype

9



for individual n at SNP m in category k. We have
∑

n xk,n,m = 0 and
∑

n x
2
k,n,m = N for

m ∈ {1, 2, . . . ,Mk}. Let βk be a Mk-vector of SNP effect sizes for the k-th category. In

the above model, σ2
e is the residual variance, and σ2

k is the variance component of the k-th

category. In this model, the total SNP heritability is defined as :

h2
SNP =

∑K
k=1 σ

2
k∑K

k=1 σ
2
k + σ2

e

(2.2)

The SNP heritability of category k is defined as:

h2
k =

σ2
k∑K

k=1 σ
2
k + σ2

e

, k ∈ {1, . . . , K} (2.3)

Enrichment in bin k is defined as:

ek =
h2
k/h

2
SNP

Mk/M
, k ∈ {1, . . . , K} (2.4)

2.2.2 Method-of-moments for estimating multiple variance components

To estimate the variance components, RHE-mc uses a Method-of-Moments (MoM) estimator

that searches for parameter values so that the population moments are close to the sample

moments [41]. Since E [y] = 0, we derived the MoM estimates by equating the population

covariance to the empirical covariance. The population covariance is given by:

cov(y) = E[yyT ]− E[y]E[yT ] =
∑
k

σ2
kKk + σ2

eIN (2.5)

Here Kk =
XkX

T
k

Mk
is the genetic relatedness matrix (GRM) computed from all SNPs of k-

th category. Using yyT as our estimate of the empirical covariance, we need to solve the

following least squares problem to find the variance components.

(σ̃2
1, . . . , σ̃

2
K , σ̃

2
e) = argmin(σ2

1 ,...,σ
2
K ,σ2

e)
||yyT − (

∑
k

σ2
kKk + σ2

eI)||2F (2.6)

The MoM estimator satisfies the following normal equations:T b

bT N

σ̃2
g

σ̃2
e

 =

 c

yTy

 (2.7)
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Here σ̃2
g =


σ̃2
1

...

σ̃2
K

, T is a K ×K matrix with entries Tk,l = tr(KkK l), k, l ∈ {1, . . . , K},

b is a K-vector with entries bk = tr(Kk) = N (because Xks is standardized ), and c is a

K-vector with entries ck = y
TKky. Each GRMKk can be computed in time O(N2Mk) and

O(N2) memory. Given K GRMs, the quantities Tk,l, ck, k, l ∈ {1, . . . , K}, can be computed

in O(K2N2). Given the quantities Tk,l, ck, the normal Equation (2.7) can be solved in

O(K3). Therefore, the total time complexity for estimating the variance components is

O(N2M +K2N2 +K3).

2.2.3 Randomized estimator of multiple variance components

The key bottleneck in solving the normal Equation (2.7) is the computation of Tk,l, k, l ∈

{1, . . . , K} which takes O(N2M). Instead of computing the exact value of Tk,l, we use an

unbiased estimator of the trace [48] based on the following identity: for a given N×N matrix

C, zTCz is an unbiased estimator of tr(C) (E[zTCz] = tr[C]) where z be a random vector

with mean zero and covariance IN . Hence, we can estimate the values Tk,l, k, l ∈ {1, . . . , K}

as follows:

Tk,l = tr(KkK l) ≈ T̂k,l =
1

B

1

MkMl

∑
b

zTbXkX
T
kX lX

T
l zb (2.8)

Here z1, . . . ,zB are B independent random vectors with zero mean and covariance IN . We

draw these random vectors independently from a standard normal distribution. Computing

Tk,l using the unbiased estimator involves four multiplications of sub-matrices of the genotype

matrix with a vector, repeated B times. Therefore, the total running time for estimating

the matrix T is O(NMB +K2NB).

Moreover, we can leverage the structure of the genotype matrix which only contains

entries in {0, 1, 2}. For a fixed genotype matrix Xk, we can improve the per iteration time

complexity of matrix-vector multiplication from O(NM) to O( NM
max(log3 N,log3 M)

) by using the

Mailman algorithm [59]. Solving the normal equations takes O(K3) time so that the overall

time complexity of our algorithm is O( NMB
max(log3(N),log3(M))

+K2(K +NB)).
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RHE-mc uses a block Jackknife to estimate standard errors. In Supplementary Notes, we

show how the block Jackknife estimates can be computed with little additional computational

overhead. Further, we also show how covariates can be efficiently included in the model

(Supplementary Notes).

2.2.4 Multi-component LMM with overlapping annotations

RHE-mc can also be applied in the setting where annotations overlap. Following [21], the

heritability of SNPs belong to annotation k is defined as:

h2
k =

∑
i∈Sk

∑
j:i∈Sj

σ2
j

Mj∑K
k=1 σ

2
k + σ2

e

, k ∈ {1, . . . , K} (2.9)

where Sk is the set of SNPs in k-th annotation and Mk = |Sk|. Enrichment in bin k is

defined as ek =
h2
k/h

2
SNP

Mk/M
.

2.2.5 Multi-component LMM with continuous annotations

We have described the derivation of RHE-mc using binary annotations. Following [28], we

can extend RHE-mc to support continuous-value annotations as follows :

y|ϵ,β1, . . . ,βK =
K∑
k=1

Xkβk + ϵ

ϵ ∼ D(0, σ2
eIN)

βk ∼ D(0,
σ2
k

Mk

diag(ak)), k ∈ {1, . . . , K} (2.10)

this model is totally similar to the model in Equation (4.1) except that here we assume

that the variances of effect sizes depend on continuous-valued annotation. Let ak be a Mk-

vector where ak,i is the value of k-th annotation at SNP i ( the elements of ak must be

non-negative). Let Sk be the set of SNPs belong to annotation k. In this model, the SNP

heritability of annotation k is defined as :

h2
k =

∑
i∈Sk

σ2
k

Mk
ak,i∑K

k=1

∑
i∈Sk

σ2
k

Mk
ak,i + σ2

e

, k ∈ {1, . . . , K} (2.11)
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To estimate the variance components of this new model, we only need to replaceXk with

Xkdiag(
√
ak) in the Equation (2.5) for every annotation k. We assessed the accuracy of

RHE-mc in estimating variance components with continuous annotation in Supplementary

Notes.

2.3 Results

2.3.1 Simulations

We performed simulations to compare the performance of RHE-mc with several state-of-the-

art methods for heritability estimation that cover the spectrum of methods that have been

proposed.

We considered two simulation settings. In the large-scale simulation setting, we simulated

phenotypes for the full set of UK Biobank genotypes consisting of M = 593, 300 array SNPs

and N = 337, 205 individuals. We obtained the individuals by keeping unrelated white

British individuals which are > 3rd degree relatives (defined as pairs of individuals with

kinship coefficient < 1/2(9/2))[4], and removing individuals with putative sex chromosome

aneuploidy. The small-scale setting was designed so that we could compare the accuracies

of RHE-mc to REML methods. In this setting, we simulated phenotypes from a subsampled

set of genotypes from the UK Biobank data genotypes used in large scale simulation [112].

Specifically, we chose randomly a subset of N = 10, 000 individuals from the large scale data.

Therefore, in small scale, we have M = 593, 300 array SNPs and N = 10, 000 individuals.

We simulated phenotypes from genotypes using the following model which is used in [44, 18]:

σ2
m = Scmw

b
m[fm(1− fm)]

a

(β1,β2, ..,βm)
T ∼ N (0, diag(σ2

1, σ
2
2, ..., σ

2
m))

y|β ∼ N (Xβ, (1− h2)IN) (2.12)

where S is a normalizing constant chosen so that
∑M

m=1 σ
2
m = h2. Here h2 ∈ [0, 1], a ∈

{0, 0.75} ,b ∈ {0, 1}, βm, fm and wm are the effect size, the minor allele frequency and
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LDAK score of mth SNP respectively. Let cm ∈ {0, 1} be an indicator variable for the causal

status of SNP m .The LD score of a SNP is defined to be the sum of the squared correlation

of the SNP with all other SNPs that lie within a specific distance, and the LDAK score of a

SNP is computed based on local levels of LD such that the LDAK score tends to be higher

for SNPs in regions of low LD [109]. The above models relating genotype to phenotype

are commonly used in methods for estimating SNP heritability: the GCTA Model (when

a = b = 0 in Equation 2.12), which is used by the software GCTA [134] and LD Score

regression (LDSC) [3], and the LDAK Model (where a = 0.75, b = 1 in Equation 2.12) used

by software LDAK [109]. Moreover, under each model, we varied the proportion and minor

allele frequency (MAF) of causal variants (CVs). Proportion of causal variants were set to be

either 100% or 1%, and MAF of causal variants drawn uniformly from [0, 0.5] or [0.01, 0.05]

or [0.05, 0.5] to consider genetic architectures that are either infinitesimal or sparse as well

genetic architectures that include a mixture of common and rare SNPs as well as one that

includes only common SNPs. The true heritability were chosen from {0.1, 0.25, 0.5, 0.8}

We generated 100 sets of simulated phenotypes for each setting of parameters and report

accuracies averaged over these 100 sets.

2.3.2 Comparisons

For the large-scale simulations, we compared RHE-mc to methods that rely on summary

statistics for estimating heritability. Among the summary statistic methods, LD score re-

gression (LDSC) [3] uses the slope from the GWAS χ2 statistics regressed on the LD scores to

estimate heritability. Stratified LD score regression (S-LDSC) [21] is an extension of LDSC

for partitioning heritability from summary statistics. SumHer is the summary statistic ana-

log of LDAK [107]. We ran S-LDSC with 10 binary MAF bin annotations defined such that

each bin contains exactly 10% of the typed SNPs; this is intended to mirror the 10 MAF

bin annotations in the S-LDSC “baseline-LD model” [28] (see Supplementary Table 5). To

run SumHer, we used the LDAK software to compute the default “LDAK weights” using in-

sample LD [109, 108, 107]. We then computed “LD tagging” using 1-Mb windows centered
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on each SNP as recommended [107]. To do a fair comparison we computed LD scores for

LDSC, S-LDSC, GRE, and SumHer by using in-sample LD among the M SNPs, and in all

simulations we aim to estimate the SNP-heritability explained by the same set of M SNP.

We described the parameter settings of summary statistic methods in Supplementary Notes.

For the small-scale simulations, we compared RHE-mc to GCTA-mc and HE-mc [134].

GCTA-mc and HE-mc are the extensions of GCTA and HE to a multi-component LMM

respectively where the variance components are typically defined by binning SNPs accord-

ing to their MAF as well as local LD [18]. We ran both GCTA-mc and RHE-mc using

24 bins formed by the combination of 6 bins based on MAF (MAF≤ 0.01,0.01 <MAF≤

0.02,0.02 <MAF≤ 0.03,0.03 <MAF≤ 0.4,0.04 <MAF≤ 0.05,MAF> 0.05 ) as well as 4

bins based on quartiles of the LDAK score of a SNP. We ran both GCTA-mc and RHE-mc

allowing for estimates of a variance component to be negative.

For comparisons of runtime, we compared RHE-mc to GCTA [134] and BOLT-REML [63]

which is a computationally efficient approximate method to compute the REML estimator.

We ran all methods with 22 components (one for each chromosome). We also ran RHE-

mc with ≈ 300 components (corresponding to 10 Mb bins) on the UK Biobank genotype

(Supplementary Figure 10). To create our largest dataset, we replicate individuals from

the UK Biobank and a subset of the imputed SNPs to obtain a dataset with one million

individuals and SNPs. We use the latest versions of BOLT-REML (Version 2.3.2) and GCTA

(Version 1.92.1) in our comparison. All comparisons are performed on an Intel(R) Xeon(R)

CPU 2.10 GHz server with 128 GB RAM.

2.3.3 Heritability estimates in the UK Biobank

We estimated SNP-heritability for 22 real complex traits (6 quantitative, 16 binary) in

the UK Biobank [4]. In this study, we restricted our analysis to SNPs that were present

in the UK Biobank Axiom array used to genotype the UK Biobank. SNPs with greater

than 1% missingness and minor allele frequency smaller than 1% were removed. Moreover,

SNPs that fail the Hardy-Weinberg test at significance threshold 10−7 were removed. We
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restricted our study to self-reported British white ancestry individuals which are > 3rd

degree relatives that is defined as pairs of individuals with kinship coefficient < 1/2(9/2) [4].

Furthermore, we removed individuals who are outliers for genotype heterozygosity and/or

missingness. Finally we obtained a set of N = 291, 273 individuals and M = 459, 792 SNPs

to use in the real data analyses. We included age, sex, and the top 20 genetic principal

components (PCs) as covariates in our analysis for all traits. We used PCs precomputed by

the UK Biobank from a superset of 488, 295 individuals. Additional covariates were used

for waist-to-hip ratio (adjusted for BMI) and diastolic/systolic blood pressure (adjusted for

cholesterol-lowering medication, blood pressure medication, insulin, hormone replacement

therapy, and oral contraceptives).

2.3.4 Heritability partitioning

In our initial analysis, we removed SNPs with greater than 1% missingness and minor allele

frequency smaller than 1%. Moreover, we removed SNPs that fail the Hardy-Weinberg test

at significance threshold 10−7 as well as SNPs that lie within the MHC region (Chr6: 25–

35 Mb) to obtain 4, 824, 392 SNPs. We restricted our study to individuals self-reported

British white ancestry individuals which are > 3rd degree relatives that is defined as pairs of

individuals with kinship coefficient < 1/2(9/2) [4]. Furthermore, we removed individuals who

are outliers for genotype heterozygosity and/or missingness. Finally, we obtained 291, 273

individuals. We partitioned SNPs into eight bins based on two MAF bins (MAF≤ 0.05,

MAF> 0.05) and quartiles of the LD-scores. For each bin k, we computed the heritability

enrichment as the ratio of the percentage of heritability explained by SNPs in bin k to the

the percentage of SNPs in bin k.

We considered an additional analysis in which we included SNPs with MAF > 0.1%

resulting in N = 291, 273 unrelated white British individuals and M = 7, 774, 235 imputed

SNPs (MAF > 0.1%). We defined 144 bins based on 4 LD bins and 36 MAF bins. The

four LD bins are defined based on quartile of LD-scores, and 36 MAF bins are defined

based on 9-quantile of the following four intervals: 0.001 ≤MAF≤ 0.01, 0.01 <MAF≤ 0.05,
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0.05 ≤MAF≤ 0.10 , 0.10 <MAF≤ 0.50.

2.3.5 Accuracy of genome-wide SNP heritability estimates in simulations

We assessed the accuracy of RHE-mc in estimating genome-wide SNP heritability as pre-

vious attempts at estimating SNP heritability have been shown to be sensitive to assump-

tions about how SNP effect size varies with MAF and LD[18]. Starting with genotypes

of M = 593, 300 array SNPs over N = 337, 205 unrelated white British individuals in the

UK Biobank, we simulated phenotypes according to 64 MAF and LD-dependent architec-

tures by varying the SNP heritability, the proportion of variants that have non-zero effects

(causal variants or CVs), the distribution of causal variants across minor allele frequencies

(CVs distributed across all minor allele frequency bins or CVs restricted to either common

or low-frequency bins), and the form of coupling between the SNP effect size and MAF as

well as LD. For RHE-mc, we partitioned the SNPs into 24 variance components based on

6 MAF bins as well as 4 LD bins . The key parameter in applying RHE-mc is the num-

ber of random vectors B which we set to 10. RHE-mc estimates were relatively insensitive

when we increased the number of random vectors B to 100 (Supplementary Figures 1 and

2, Supplementary Table 1)). Across these 64 architectures, RHE-mc is relatively unbiased

(a two-sided t-test of the hypothesis of no bias is not rejected across any of the architectures

at a p-value < 0.05) with the largest relative bias observed to be 0.5% of the true SNP

heritability (Supplementary Figure 3). We used a block Jackknife (number of blocks = 100)

to estimate the standard errors of RHE-mc and confirmed that the estimated standard errors

are close to the true SE (Supplementary Table 2).

We compared the accuracy of RHE-mc to state-of-the-art methods for heritability es-

timation that can be applied to large datasets (across architectures where the true SNP

heritability was fixed at 0.5). These methods, LDSC [3], SumHer [107], S-LDSC [22], and

GRE [44], all leverage summary statistics while RHE-mc requires individual genotype data.

We found that estimates from the summary-statistic methods tend to be sensitive to the

underlying genetic architecture: across 16 architecture relative biases range from −31% to
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27% for LDSC, −27% to 5% for S-LDSC, and −5% to 9% for SumHer (Figure 2.1). We also

compared to a recently proposed method (GRE [44]) that only estimates genome-wide SNP

heritability (without partitioning by MAF/LD) and observed that relative biases ranged

from 1% to 1.4% for GRE and from −1.5% to 0.5% for RHE-mc. We also considered ar-

chitectures in which only rare variants are causal and found RHE-mc is accurate relative

to other methods (Supplementary Figure 4). These results further emphasize that RHE-mc

can accurately estimate SNP-heritability through fitting multiple variance components.

We compared RHE-mc to the state-of-the-art REML-based variance component estima-

tion method, GCTA-mc (multi-component GREML [134, 18, 131]) and to exact multi-

component Haseman-Elston Regression (HE-mc) as implemented in GCTA[134]. We ran

each of these methods by partitioning SNPs into 24 variance components (6 MAF bins by

4 LD bins, see Methods). To make these experiments computationally feasible, we simu-

lated phenotypes starting from a smaller set of genotypes ( M = 593, 300 array SNPs and

N = 10, 000 white British individuals). Across 16 architectures where the true SNP heri-

tability was fixed at 0.25, the relative biases for RHE-mc range from −3.2% to 3.6%, and

from −3.2% to 5% for GCTA-mc (Figure 2.2). On average, RHE-mc has standard errors

that are 1.1 times larger than GCTA-mc (which range from 0.97 to 1.24) and 1.08 times

larger than HE-mc (which range from 1.00 to 1.21).

2.3.6 Accuracy of heritability partitioning in simulations

We also evaluated the accuracy of RHE-mc in partitioning SNP heritability in both small-

scale (M = 593, 300 SNPs, N = 10, 000 individuals) (Supplementary Figure 5) and large-

scale settings (M = 593, 300 SNPs, N = 337, 205 individuals) (see Supplementary Figure 6).

For these experiments, we restrict our attention to architectures for which the causal variants

(CVs) are chosen to lie within a narrow range of MAF. Since the variance components

correspond to bins of MAF and LD, a subset of the variance components would have no

causal SNPs and hence have a heritability of zero. We assess the accuracy of estimates of

heritability aggregated over these components (termed the non-causal bin) as well as the
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heritability aggregated over the remaining genetic components (termed the causal bin). For

example, variance components that correspond to MAF ∈ [0.01, 0.05] would be included

in the causal bin for an architecture that restricts the MAF of CVs to lie in the range

[0.01, 0.05]. For the small-scale simulations, we compared RHE-mc to GCTA-mc. We ran

both methods by partitioning the SNPs into 24 variance components based on 6 MAF bins

as well as 4 LD bins defined by quartiles of the measure of LDAK weight at a SNP . Across

the genetic architectures tested, estimates of heritability within each of the causal and non-

causal bins are highly concordant between RHE-mc and GCTA-mc (Supplementary Figure

5, Supplementary Table 3): for the causal bin, the relative bias ranges from −4% to 0.4%

for RHE-mc and −3.6% to 2% for GCTA-mc while, for the non-causal bin, the bias ranges

from 0 to 0.7% for RHE-mc and 0 to 1.4% for GCTA-mc (Supplementary Table 3). For

the large-scale settings, RHE-mc remains accurate: the relative bias ranges from −2.6% to

3.2% (causal bin) and the bias ranges from −0.5% to 0.2% (non-causal bin) over the genetic

architectures considered (Supplementary Figure 6, Supplementary Table 4).

Heritability partitioning has been used to estimate heritability attributed to functional

genomic annotations [21]. However, some of these annotations (such as FANTOM5 en-

hancers) are quite small covering < 1% of the genome. We explored the ability of RHE-mc

to accurately estimate heritability as a function of the size of the annotation. To this

end, we performed simulations using N = 291, 273 unrelated white British individuals and

M = 459, 792 common SNPs. We defined 8 annotations (4 MAF bins and 2 LD bins) in

which we fixed the enrichment of a selected bin and varied the proportion of SNPs in the se-

lected category. RHE-mc obtained accurate estimates of enrichment even when the selected

bin only contained 0.4% of the genome-wide SNPs (comparable to the size of FANTOM5

enhancers). RHE-mc estimates are well-calibrated: when the bin has zero enrichment, RHE-

mc rejected the null hypothesis of no enrichment in 5% of the simulations while attaining

high power to reject the null hypothesis even when the bin contained < 1% of the SNPs

(Supplementary Notes).
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2.3.7 Computational efficiency

We benchmarked the runtime and memory usage of RHE-mc as a function of number of

individuals, SNPs and variance components (Figure 2.3, Table 2.1). We ran RHE-mc with

B = 10 random vectors and 22 variance components where each chromosome forms a distinct

component. On a dataset of ≈ 300, 000 individuals and ≈ 500, 000 SNPs, RHE-mc can fit

22 variance components in less than an hour and ≈ 300 variance components (corresponding

to bins of size 10 Mb) with little increase in its runtime. On a dataset of one million

individuals and one million SNPs, RHE-mc can fit 100 variance components in a few hours.

Further, due to its use of a streaming implementation that only requires the genotypes

to be operated on once, the memory requirement of RHE-mc is modest: all experiments

required less than 60 GB. We compared the run time and memory usage of RHE-mc with

REML-based methods (GCTA [134] and BOLT-REML [63]) on the UK Biobank genotypes

consisting of around 500, 000 SNPs over varying sample sizes and observed that RHE-mc

achieves several orders-of-magnitude reduction in runtime. Summary-statistic methods such

as S-LDSC requires pre-computed inputs which depend on the runtimes of other softwares

making a direct comparison of speed difficult. Thus, we have restricted our comparison to

individual-level methods where the benchmarking can be done in a comparable manner.

2.3.8 Estimating total SNP heritability in the UK Biobank

We applied RHE-mc to estimate genome-wide SNP heritability for 22 complex traits (6

quantitative and 16 binary traits) measured in the UK Biobank . We analyzed N = 291, 273

unrelated white British individuals and M = 459, 792 SNPs genotyped on the UK Biobank

Axiom array (Methods). We ran RHE-mc with B = 10 and with SNPs divided into eight

bins based on two MAF bins ( 0.01 ≤MAF< 0.05, MAF≥ 0.05) and quartiles of the LD-

scores. We compared the estimates from RHE-mc to those from LDSC, S-LDSC, SumHer,

and GRE. Restricting our analysis to 18 traits for which the point estimate of genome-wide

SNP heritability from RHE-mc is > 0.05, the estimates from S-LDSC, GRE, SumHer and

LDSC were on average 2.5%, 10%, 25%, and 67% higher than RHE-mc (Figure 2.4). Relative
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to the simulation results, the estimates from S-LDSC are generally consistent with those from

RHE-mc. This is likely due to the fact that, in simulations, our application of S-LDSC used

only MAF bins. On the other hand, in real data, we used S-LDSC with the recommended

baseline-LD annotations (including functional annotations).

We then applied RHE-mc to estimate genome-wide heritability attributable to imputed

variants. The genome-wide estimates of SNP heritability from RHE-mc on imputed SNPs

(MAF> 1%) are concordant with the estimates from array SNPs (2.8% higher on average).

We then analyzed M = 7, 774, 235 imputed genotypes with MAF > 0.1% using 144 bins

formed by 4 LD bins and 36 MAF bins (Methods). Genome-wide SNP heritability estimates

from RHE-mc on imputed SNPs (MAF> 0.1%) are 11.4% higher than RHE-mc on imputed

SNPs (MAF> 1%). (Figure 2.4, Supplementary Figure 7). Following previous work [44], we

have removed the MHC region to enable a systematic comparison since the estimation of LD

in the MHC region can be challenging; it would be of interest to compare methods when the

MHC is included.

2.3.9 Partitioning SNP heritability across allele frequency and LD bins

We used RHE-mc to partition SNP heritability of 22 complex traits across MAF and LD

bins. We analyzed M = 7, 774, 235 imputed SNPs with MAF > 0.1%. We used 144 bins

formed by 4 LD bins and 36 MAF bins . We compute the allelic effect size of SNPs in bin k as

h2
k

2fk(1−fk)Mk
where h2

k is the heritability estimated in bin k, fk is the mean MAF in bin k, and

Mk is the number of SNPs in bin k. We observe that allelic effect size increases with lower

MAF and LD. For height, in the lowest quartile of LD scores, SNPs with MAF ≈ 0.1% have

allelic effect sizes ≈ 27x ± 8 larger than SNPs with MAF ≈ 50%. Similarly, among SNPs

with MAF ≈ 50%, SNPs in the lowest quartile of LD scores have allelic effect sizes ≈ 5x± 1

larger than SNPs in the highest quartile (Figure 2.5 for height; other traits in Supplementary

Figure 9). While these trends have been observed in previous studies [28, 29, 120], the ability

of RHE-mc to jointly fit multiple variance components allows us to estimate effect sizes at

SNPs with MAF as low as 0.1%. We caution that negative heritability estimates in bins of
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lowest MAF and high LD score could be arise due to one or more of the following factors:

low number of SNPs in this bin (we did not constrain our variance components estimates

to be non-negative), the inadequacy of the assumed heritability model, and errors in the

imputed genotypes used for the analysis.

2.3.10 Partitioning heritability by functional annotations

The ability of RHE-mc to estimate variance components associated with a large number of

overlapping annotations enables us to explore the contribution a variety of functional genomic

annotations to trait heritability using individual-level data in the UK Biobank. We applied

RHE-mc to jointly partition heritability of 22 complex traits across 28 functional annotations

as defined in [21]. We restricted our analysis to N = 291, 273 unrelated white British

individuals and M = 5, 670, 959 imputed SNPs (we restrict to SNPs with MAF > 0.1%

which are also present in 1000 Genomes Project). We grouped the traits into five categories

(autoimmune, diabetes, respiratory, anthropometric, cardiovascular); for a representative

trait from each category, we report enrichment of each of the 28 functional annotations in

Figure 2.6 (see Methods; for all traits see Supplementary Figure 8). Our results are largely

concordant with previous studies [21, 29]: we observe enrichment of heritability across traits

in conserved regions (Z-score > 3 in 15 traits). We also observe an enrichment of heritability

at FANTOM5 enhancers (labeled Enhancer Andersson in Figure 2.6) in asthma, eczema,

autoimmune disorders (broad), hypothyroidism, and thyroid disorders (Z-score > 3) even

though these annotations cover only 0.4% of the analyzed SNPs .

2.4 Discussion

We have presented RHE-mc, an algorithm that can efficiently estimate multiple variance

components on large-scale genotype data. In light of increasing evidence for SNP effect sizes

that vary as a function of covariates such as MAF and LD and the bias associated with

methods that fit only a single variance component [18], the ability to define flexible models
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endowed with multiple variance components is important to obtain unbiased estimates of

fundamental quantities such as SNP heritability. We confirm that RHE-mc yields accurate

genome-wide SNP heritability estimates under diverse genetic architectures. In applications

to 22 complex traits in the UK Biobank, RHE-mc yields heritability estimates on array SNPs

that are lower on average relative to S-LDSC and SumHer. We have explored the utility of

RHE-mc in heritability partitioning analyses. These analyses show that allelic effect sizes

tend to increase with a decrease in MAF and LD consistent with previous studies [29]. We

also partitioned heritability across functional annotations to reveal enrichment of heritability

at FANTOM5 enhancers in specific traits such as asthma and eczema.

We discuss several limitations of RHE-mc as well as directions for future work. First,

the method-of-moments estimator underlying RHE-mc tends to yield slightly larger stan-

dard errors, on average, relative to REML estimators. The relative performance of the two

methods likely depends on a number of aspects of the study design such as sample size,

number of SNPs, the LD structure, relatedness patterns, and the underlying genetic ar-

chitecture. Nevertheless, our method is designed to be applicable to massive datasets for

which the heritability estimates are relatively precise. Developing scalable variance com-

ponents estimators that are as efficient as REML-based methods is an important direction

for future work. Second, this work has primarily explored the partitioning of heritability

across discrete annotations. While we have shown how the methodology can be extended to

continuous-valued annotations, it would be of interest to explore variation in trait heritabil-

ity as a function of the value of an annotation. On the other hand, the ability of RHE-mc

to fit many annotations allows the annotation to be divided into a sufficiently large num-

ber of bins. Third, we have applied RHE-mc to binary traits available in the UK Biobank

treating these traits as continuous. Methods that explicitly model binary traits as well as

the underlying ascertainment involved in case-control studies are likely to lead to more ac-

curate heritability estimates [33, 125]. For example, the PCGC method [33] is an extension

of HE regression and it would be of interest to develop a scalable randomized PCGC esti-

mator. Fourth, RHE-mc requires access to individual-level genotype and phenotype data.
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Methods that only require summary statistic data (GRE [44], LDSC [3], and SumHer [107])

have the advantage of being applicable to datasets where acquiring access to individual-level

data can be challenging [44]. Finally, our method could potentially lead to improvements in

association testing, trait prediction, and understanding of polygenic selection.
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Figure 2.1: Comparison of estimates of genome-wide SNP heritability from RHE-mc with LDSC, GRE , S-LDSC

, and SumHer in large-scale simulations (N = 337, 205 unrelated individuals, M = 593, 300 array SNPs). a: We

compared methods for heritability estimation under 16 different genetic architectures. We set true heritability to 0.5 and varied

the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a = 0 indicates no coupling of MAF

and a = 0.75 indicates coupling of MAF), and the effect of local LD on effect size (b = 0 indicates no LDAK weights and b = 1

indicates LDAK weights) . Each boxplot represents estimates from 100 simulations. b: Relative bias of each method (as a

percentage of the true h2) across 16 distinct MAF- and LD-dependent architectures. Each boxplot contains 16 points; each

point is the relative bias estimated from 100 simulations under a single genetic architecture.Points and error bars represent

the mean and ±2 SE. In a and b, boxplot whiskers extend to the minimum and maximum estimates located within 1.5×

interquartile range (IQR) from the first and third quartiles, respectively . Here, we run RHE-mc using 24 bins formed by the

combination of 6 bins based on MAF as well as 4 bins based on quartiles of the LDAK score of a SNP . We run S-LDSC with

only 10 MAF bins (see Supplementary Table 5 ). To do a fair comparison, for every method, we computed LD scores and

LDAK weights by using in-sample LD, and in all simulations we aim to estimate the SNP-heritability explained by the same

set of M SNPs.
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Figure 2.2: Comparison of SNP heritability estimates from RHE-mc with GCTA-mc (GCTA with multiple

variance components) and HE-mc(HE with multiple variance components) (N = 10, 000 unrelated individuals,

M = 593, 300 array SNPs). In a, b, c and d: We compared heritability estimates from these methods under 16 different

genetic architectures. We varied the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a),

and the effect of local LD on effect size (b = 0 indicates no LDAK weights and b = 1 indicates LDAK weights . We ran 100

replicates where the true heritability of the phenotype is 0.25. We run RHE-mc, HE-mc and GCTA-mc using 24 bins formed

by the combination of 6 bins based on MAF as well as 4 bins based on quartiles of the LDAK score of a SNP . Across all

different genetic architectures, the relative biases range from −3.2% to 3.6% for RHE-mc, and from −3.2% to 5% for GCTA-mc,

and from −2.6% to 1.45% for HE-mc . On average, RHE-mc has SEs that are 1.1 and 1.08 times larger than GCTA-mc and

HE-mc respectively. Black points and error bars represent the mean and ±2 SE. Each boxplot represents estimates from 100

simulations. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5× interquartile range (IQR)

from the first and third quartiles, respectively. The SE’s are computed from 100 simulations (Note that GCTA-mc did not run

successfully on all 100 simulations).
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Figure 2.3: Comparison of running time of RHE-mc, GCTA-mc, and BOLT-REML. We compared runtime of RHE-

mc, GCTA-mc, and BOLT-REML with increasing sample size N (for a fixed number of SNPs M = 459, 792 and components

K = 22).
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Figure 2.4: Estimates of genome-wide SNP heritability from RHE-mc, LDSC, S-LDSC, GRE, and SumHer for

22 complex traits and diseases in the UK Biobank. We restricted our analysis to N = 291, 273 unrelated white British

individuals. We applied all methods to M = 459, 792 array SNPs (MAF> 1%). We ran S-LDSC with baseline-LD model. For

every method, LD scores or LDAK weights are computed using in-sample LD among the SNPs, and we aim to estimate the

SNP-heritability explained by the same set of SNPs. RHE-mc was applied to array SNPs with 8 MAF/LD bins. Black error

bars mark ±2 standard errors centered on the estimated heritability. We used a block Jackknife (number of blocks = 100) to

estimate the standard errors. In supplementary Figure 7, we also report RHE-mc estimates of genome-wide SNP heritability

on M = 4, 824, 392 imputed SNPs (MAF > 1%) with 8 MAF/LD bins and M = 7, 774, 235 imputed SNPs (MAF > 0.1%) with

144 MAF/LD bins .
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Figure 2.5: Per-allele squared effect size of height as a function of MAF: We applied RHE-mc to N = 291, 273 unrelated

white British individuals and M = 7, 774, 235 imputed SNPs. SNPs were partitioned into 144 bins based on LD score (4 bins

based on quartiles of the LD score with i denoting the ith quartile) and MAF (36 MAF bins) . Per-allele effect size squared for

bin k is defined as
h2
k

Mk∗2fk∗(1−fk)
where h2

k is the heritability attributed to bin k, Mk is the number of SNPs in bin k, and fk

is the average MAF in bin k. Each point represents the estimated allelic effect size. Bars mark ±2 standard errors centered on

the estimated allelic effect size. See Supplementary Figures for results on all 22 traits.
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Figure 2.6: Enrichment of heritability across 28 functional annotations: We applied RHE-mc to N = 291, 273 unrelated

white British individuals and M = 5, 670, 959 imputed SNPs (MAF > 0.1% and present in 1000 Genomes Project). SNPs were

partitioned based on 28 functional annotations that were defined in a previous study [21]. We grouped 22 traits in the UK

Biobank into five categories (autoimmune, diabetes, respiratory, anthropometric, cardiovascular). Here we plot enrichment of

five traits (one representative trait per category). Each bar represents the estimated enrichment. Black error bars mark ±2

standard errors centered on the estimated enrichment. Annotations are ordered by the proportions of SNPs in that annotation

(given in parentheses). See Supplementary Figure 8 for results on all 22 traits.
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Parameters Running time (hour)

N M K RHE-mc GCTA-mc BOLT-REML

10,000 459,792 22 < 1 1.3 1

100,000 459,792 22 < 1 - 40

291,273 459,792 22 < 1 - 162

291,273 459,792 300 < 1 - -

291,273 4,824,392 8 3.2 - -

1, 000, 000 1, 000, 000 8 3 - -

1, 000, 000 1, 000, 000 100 12.4 - -

Table 2.1: Comparison of running time of RHE-mc, GCTA-mc, and BOLT-REML. Here M , N and K are the number

of SNPs, individuals and variance components respectively. RHE-mc can run efficiently even on datasets with one million

individuals and SNPs as well as efficiently computing hundreds of variance components. All comparisons were performed on an

Intel(R) Xeon(R) CPU 2.10 GHz server with 128 GB RAM.

2.5 Supplementary Notes

2.5.1 Computing the standard errors of the estimates

We obtain standard errors for RHE-mc using a block jackknife [56]. A jackknife subsample

is created by leaving out a subset of observations from a dataset. The jackknife estimate

of a parameter can be found by estimating the parameter for each subsample, omitting

the i-th jackknife block. A naive way to compute jackknife estimate requires computing

the estimator of the parameters for every sub-sample. For instance, in our problem, if we

define J jackknife blocks, then we need to run RHE-mc for every sub-sample which takes

O(J( NMB
max(log3(N),log3(M))

+K2(K+NB))). We propose an efficient way to compute the jackknife

estimate in time O( NMB
max(log3(N),log3(M))

+ JK2(K +NB)).

Let X be a N ×M matrix of standardized genotypes where N and M are the numbers

of individuals and SNPs, respectively. To generate J jackknife subsamples, we partition X

into J non-overlapping blocks X(1), . . . ,X(J) such that X = [X(1),X(2), . . . ,X(J)] . Note
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that for every j, X(j) is a N ×Mj matrix where Mj is the number of SNPs in the j-th block.

We create the j-th jackknife subsample by removing the j-th block X(j) from X. To

estimate the variance components of the j-th jackknife subsample, we need to compute the

corresponding quantities of the jth subsample in the normal equations (Methods). LetK
(−j)
k

be the GRM of the k-th partition which is created by removing the j-th block X(j) from

X where k ∈ {1, . . . , K}, j ∈ {1, . . . , J}. In Algorithm 1, we show how we can compute

̂
tr(K

(−j)
k K

(−j)
l ) and yTK

(−j)
i y, for all k, l ∈ {1, . . . , K}, j ∈ {1, . . . , J} efficiently.

2.5.2 Including covariates

We can extend the LMM to include covariates as follows:

y|ϵ,β1, . . . ,βk =Wα+
∑
k

Xkβk + ϵ (2.13)

Here W is a N × C matrix of covariates while α is a C-vector of fixed effects.

It is easy to see that the matrix V = IN−W (W TW )
−1
W T is symmetric and idempotent

(V 2 = V ) of rank N − C. Therefore, we consider the eigendecomposition of V = EDET ,

where D is a diagonal matrix with N −C ones and C zeros on the diagonal (we can assume

that first N −C elements are one). Now let the matrix UN×(N−C) represent the first N −C

columns of E. It is not hard to see that U satisfies UTU = IN−C , UU
T = V , UTW = 0.

Now we multiplying by UT on both sides of the above equation:

UTy = UT
∑
k

Xkβk +U
Tϵ (2.14)

cov(UTy) = E[UTy(UTy)T ]− E[UTy]E[UTy] (2.15)

The matrix UT is constant and the vector y is random. Therefore, we have E[UTy] =

UTE[y].

UTy(UTy)T = (UT
∑
k

Xkβk +U
Tϵ)(UT

∑
k

Xkβk +U
Tϵ)

T
= (2.16)
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∑
i

∑
j

UTX iβi(U
TXjβj)

T + (UTϵ)
∑
i

(UTX iβi)
T +

∑
i

UTX iβi(U
Tϵ)T +UTϵ(UTϵ)

T

Hence

E[UTy(UTy)T ] =
∑
k

σ2
gk

Mk

(UTXk)(U
TXk)

T + σ2
ϵU

TU (2.17)

Using Kk =
XkX

T
k

Mk
, we have:

cov(UTy) = UT (
∑
k

σ2
gk
Kk)U + σ2

ϵIN−C (2.18)

The MoM estimator is obtained by solving the following ordinary least squares problem:

(σ̃2
1, . . . , σ̃

2
K , σ̃

2
e) = argmin(σ2

1 ,...,σ
2
K ,σ2

e)
||UTy(UTy)T −UT (

∑
k

σ2
kKk)U − σ2

ϵIN−C ||2F (2.19)

We need to solve the following normal equations to estimate the variance components.

T b

bT N − C



σ2
1

...

σ2
k

σ2
e

 =

 c

yTV y

 (2.20)

Here V = IN −W (W TW )−1W T and T is a K ×K matrix where Tk,l = tr(KkV K lV ),

and b is a K−vector where bk = tr(V Kk), and c is a K- vector where ck = yTV KkV y.

Commonly, the number of covariates C is small (tens to hundreds) so that including covari-

ates does not significantly affect the computational cost. The cost of computing the elements

of the normal equations 2.20 includes the cost of inverting W TW which is a C × C matrix

and multiplying W by a real-valued N -vector which can be done in O(C3 +NC).

2.5.3 Streaming version

Here we describe the streaming version of RHE-mc algorithm. In the Methods section, we

showed that our MoM estimator satisfies the following normal equation.T b

bT N

σ̃2
g

σ̃2
e

 =

 c

yTy

 (2.21)
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Here σ̃2
g =


σ̃2
1

...

σ̃2
K

, T is a K ×K matrix with entries Tk,l = tr(KkK l), k, l ∈ {1, . . . , K},

b is a K-vector with entries bk = tr(Kk) = N (because Xks is standardized ), and c is a

K-vector with entries ck = y
TKky. Here we estimate Tk,l as follows :

Tk,l = tr(KkK l) ≈ T̂k,l =
1

B

1

MkMl

∑
b

zTbXkX
T
kX lX

T
l zb (2.22)

Here z1, . . . ,zB are B independent random vectors with zero mean and covariance IN .

We read genotype matrixXk for every k ∈ {1, . . . , K} block by block. We define J blocks

over Xk by partitioning the columns of Xk to J groups such that Xk = [Xk
(1) . . .Xk

(J)].
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Algorithm 1 Streaming version of RHE-mc

1: for k = 1 to K do

2: for j = 1 to J do

3: Read Xj
k

4: for b = 1 to B do

5: Z(k,j,b) =X
j
kX

j
k

T
zb

6: end for

7: v =Xj
k

T
y

8: H(k,j) = vT v

9: Release the memory allocated to Xj
k

10: end for

11: end for

12: Let Uk,b,0 =
∑

j Z(k,j,b), and

13: Let Uk,b,j = Uk,b,0 − Z(k,j,b), for every k, b, j.

14: Let Vk,0 =
∑

j Hk,j ,

15: Let Vk,j = Vk,0 −Hk,j for every k, j

16: for j = 0 to J do

17: for every pair of genotype matrices k and l do

18: T̂k,l =
1
B

1
MkMl

∑
b U

T
(k,j,b)U(l,j,b)

19: end for

20: for every genotype matrix k do

21: ck = 1
Mk

V 2
(k,j)

22: end for

23: Solve the normal equation for jth sub-sample (j = 0 corresponds to the original genotype matrix

used for computing the point estimates)

24: end for

25: Compute the jackknife SE from the point estimates of J sub-samples.

In the above algorithm, the 3-D matrices Z and U need O(JKBN) memory, the 2-D

matrices V and H need O(JN) memory. So the total space complexity will be O(JKBN).

The total running time of this implementation is O( NMB
max(log3(N),log3(M))

+JK2(K+NB))). For

simplicity, we assume that the streaming blocks are the same as jackknife blocks. However,

we can set the size of the streaming blocks to be different from the jackknife blocks to make
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the algorithm more efficient in terms of memory usage.

2.5.4 Parameter settings for summary statistics methods

For running LDSC we computed the LD score of each SNP within 2-Mb windows centered

on the SNP. We ran LD score regression with an unconstrained intercept and with regression

weights that account for correlations between association statistics at SNPs in LD and het-

eroscedasticity [3]. To prevent the LDSC software from dropping high-effect SNPs we used

the following flags –not-M-5-50 and –chisq-max 99999.

In simulations, we ran S-LDSC with 10 binary MAF bins, which are defined such that each

bin contains 10% of the typed SNPs; this is done to reflect the 10 MAF bin annotations in

the S-LDSC baseline-LD model [28] (see Table 2.6 for the details of MAF bins). In analyzing

the 22 real complex traits, we run S-LDSC with baseline-LD model[28].

To run SumHer, first we computed the default LDAK weights using in-sample LD [109].

After that we computed LD tagging using 1-Mb windows centered on each SNP and setting

α = −0.25 as recommended [107]. We used default values for the other parameter settings

for running SumHer.

To do a direct comparison among LDSC, S-LDSC, and SumHer, we ran an in-sample LD

version of each method meaning that we used same set of SNPs to compute LD scores and

LDAK weights, perform the regression, and estimate SNP-heritability.

2.5.5 Continuous annotations

We assessed the accuracy of RHE-mc in estimating variance components with continuous

annotation. We simulated a phenotype with true heritability 0.5 from 9K individuals and

15k SNPs under the GCTA model. We ran RHE-mc with single component, no annotations,

and standardized genotypes. We next ran RHE-mc with single component, non-standardized

genotypes, where we added a continuous annotation defined as 1/var(i) for SNP i where

var(i) is the variance of SNP i across individuals. We obtain a concordant estimate of

genome-wide SNP heritability 0.45±0.03 in the first case and 0.46±0.03 in the second case.
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2.5.6 Power as a function of annotation size

To quantify the power of RHE-mc as a function of the size of an annotation, we performed

simulations using N = 291, 273 unrelated white British individuals and M = 459, 792 com-

mon SNPs. We defined 8 annotations (4 MAF bins and 2 LD bins) in which we fixed the

heritability of a selected bin and varied the proportion of SNPs in the selected category. We

then plotted the probability of rejection; the results are displayed in Supplementary Figure

11 . Furthermore, we simulated phenotypes in which we fixed the enrichment of a selected

bin and varied the size of the selected bin, the results are displayed in Supplementary Table

6.
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2.6 Supplementary Figures

Figure 2.7: Comparison of RHE-mc heritability estimates with B = 10 and B = 100 random vectors on large-scale

simulated data (M=590K array SNPs and N=337K individuals): We ran RHE-mc with 24 bins( based on 6 MAF

bins and 4 LDAK bins, see Methods). Here x-axis represents the bins (i.j denotes the bin defined based on i-th ldak bin and

j-th MAF bin) and y-axis represents the heritability. Boxplot whiskers extend to the minimum and maximum estimates located

within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each box plot represents estimates from

100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on estimated heritability, respectively.

Mean and standard errors (SE’s) are computed from 100 replicates.

Figure 2.8: Comparison of RHE-mc estimates with B=10 and B=100 on small scale data (M=590K array SNPs and N=10k

individuals): We simulated 100 phenotypes such that the true total heritability is 0.25. Here x-axis represents the RHE-mc

estimates when B = 10, and y-axis represents RHE-mc estimates when B = 100.
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Figure 2.9: Accuracy of genome-wide SNP heritability estimated by RHE-mc across 64 distinct MAF- and LD-

dependent architectures in genome-wide simulations (N = 337, 205 unrelated individuals, M = 593, 300 array

SNPs). For simulating the phenotypes, we chose true heritability from {0.1, 0.25, 0.5, 0.8}, varied the ratio of causal variants

(causal ratio ∈ {0.01, 1.0}), varied the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a = 0

indicates no coupling of MAF and a = 0.75 indicates coupling of MAF), and the effect of local LD on effect size (b = 0 indicates

no LDAK weights and b = 1 indicates LDAK weights) . We ran RHE-mc using 24 bins formed by the combination of 6 bins

based on MAF as well as 4 bins based on quartiles of the LDAK score of a SNP . Boxplot whiskers extend to the minimum

and maximum estimates located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each

box plot represents RHE-mc estimates from 100 simulations.
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Figure 2.10: Comparison of estimates of genome-wide SNP heritability from RHE-mc with LDSC, S-LDSC ,

and SumHer when only rare variants are causal in large-scale simulations (N = 337, 205 unrelated individuals,

M = 593, 300 array SNPs). We compared methods for heritability estimation under different genetic architectures when

only rare variants are causal. We set true heritability to 0.5, the MAF range of causal variants (MAF of CV) to be between

[0.009, 0.011] and varied the coupling of MAF with effect size (a = 0 indicates no coupling of MAF and a = 0.75 indicates

coupling of MAF), and the effect of local LD on effect size (b = 0 indicates no LDAK weights and b = 1 indicates LDAK

weights) . Here, we run RHE-mc using 24 bins formed by the combination of 6 bins based on MAF as well as 4 bins based

on quartiles of the LDAK score of a SNP . We run S-LDSC with 10 MAF bins (see Supplementary Table S5 ). To do a fair

comparison, for every method, we computed LD scores and LDAK weights by using in-sample LD, and in all simulations we

aim to estimate the SNP-heritability explained by the same set of M SNPs. Boxplot whiskers extend to the minimum and

maximum estimates located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each box

plot represents estimates from 100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on

estimated heritability respectively. Mean and standard errors (SE’s) are computed from 100 simulations.

40



Figure 2.11: Comparison of RHE-mc (red color) with GCTA-mc(blue color) in estimating partitioned heritability

under 8 different genetic architectures on small-scale simulated data (M = 590k array SNPs and N = 10k

individuals): We partition SNPs into 24 bins based on 6 MAF bins and 4 LDAK bins (Methods). True total SNP heritability

is 0.25. Here x-axis represents the partitions (i.j denotes the bin defined based on i-th ldak bin and j-th MAF bin. The lower

bin number denotes the lower MAF (LDAK weights). For example, bin 1.6 contains SNPs which are in the first quartile of

LDAK weights and MAF> 0.05 ). y-axis represents the heritability. Each boxplot shows the distribution of estimates from 100

simulations. Note that GCTA-mc did not run successfully on all 100 simulations. Boxplot whiskers extend to the minimum

and maximum estimates located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each

box plot represents estimates from 100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on

estimated heritability respectively. Mean and standard errors (SE’s) are computed from 100 replicates.
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Figure 2.12: Partitioned heritability estimates from RHE-mc on large-scale simulated data (M = 590K array

SNPs and N = 337K individuals): We ran RHE-mc with 24 bins based on 6 MAF bins and 4 LDAK bins (Methods) over 8

different genetic architectures. Here x-axis represents the partitions (i.j denotes the bin defined based on i-th ldak bin and j-th

MAF bin) and y-axis represents the heritability. Boxplot whiskers extend to the minimum and maximum estimates located

within 1.5× interquartile range (IQR) from the first and third quartiles, respectively. Each box plot represents estimates from

100 simulations. Diamond points and error bars represent the mean and ±2 SE centered on estimated heritability respectively.

Mean and standard errors (SE’s) are computed from 100 replicates.
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Figure 2.13: Estimates of genome-wide SNP heritability from RHE-mc for 22 complex traits and diseases in the

UK Biobank: We restricted our analysis to N = 291, 273 unrelated white British individuals. First, we applied RHE-mc to

M = 459, 792 array SNPs (MAF> 1%) with 8 MAF/LD bins. Second, we applied RHE-mc to M = 4, 824, 392 imputed SNPs

(MAF > 1%) with 8 MAF/LD bins(Methods). Third, we applied RHE-mc to M = 7, 774, 235 imputed SNPs (MAF > 0.1%)

with 144 MAF/LD bins (Methods). Black bars mark ±2 standard errors centered on estimated heritability.
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Figure 2.14: Enrichment of heritability across 28 functional annotations: We applied RHE-mc to N = 291, 273

unrelated white British individuals and M = 5, 670, 959 imputed SNPs (MAF > 0.1% and present in 1000 Genomes Project).

SNPs were partitioned based on 28 functional annotations that were defined in a previous study [21]. We grouped 22 traits in

the UK Biobank into five categories (autoimmune, diabetes, respiratory, anthropometric, and cardiovascular). Black bars mark

±2 standard errors centered on estimated enrichment. Annotations are ordered by the proportions of SNPs in that annotation

(given in parentheses)
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Figure 2.15: Per-allele effect size squared of 22 traits as a function of MAF: We applied RHE-mc to N = 291, 273

unrelated white British individuals and M = 7, 774, 235 imputed SNPs. SNPs were partitioned into 144 bins based on LD score

(4 bins based on quartiles of the LD score with i denoting the ith quartile) and MAF (36 MAF bins) . Per allele heritability

for bin k is defined as
h2
k

Mk∗2fk∗(1−fk)
where h2

k is the heritability attributed to bin k, Mk is the number of SNPs in bin k, and

fk is the average MAF in bin k. Points represent estimated per-allele heritability. Bars mark ±2 standard errors centered on

estimated per-allele heritability.
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Figure 2.16: Partitioning of genome-wide SNP heritability from RHE-mc for 22 complex traits and diseases in

the UK Biobank (N = 291, 273 unrelated white British individuals, M = 459, 792 common SNPs with respect

to 300 bins defined based on 10Mb base pairs. Here we plot the empirical cumulative probability respectively of the

enrichment.
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Figure 2.17: Power as a function of annotation size. Each point represents a rejection probability over 100 simulations.

All simulations have h2
total = 0.7, N = 291, 273, M = 459, 792, pcausal = 0.05.
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2.7 Supplementary Tables

Number of random vectors Point estimate (true SE) Point estimate (SE of the

estimator due to random-

ization)

10 0.24 (0.06) 0.24 (0.02)

100 0.24 (0.05) 0.25 (0.001)

Table 2.2: Comparison of RHE-mc estimates with B=10 and B=100 on a small scale (M=590K array SNPs

and N=10k individuals). Here, we quantify the contribution of randomization to the SE of the estimator. The true

total heritability is 0.25. We first computed the SE of RHE-mc for B = 10 and B = 100 from 100 simulation replicates

(second column). We then computed the SE of the estimates (due to the randomization) for a single replicate. For B = 10,

randomization contributes about a third of the total SE ( 0.02
0.06

).
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Genetic architecture SE

Percentage of causal SNPs MAF of causal SNPs MAF-LD coupling True SE Jackknife SE

0.01 [0.01,0.05] a=b=0 0.012 0.013

0.01 [0.01,0.05] a=0,b=1 0.018 0.015

0.01 [0.01,0.05] a=0.75,b=0 0.016 0.015

0.01 [0.01,0.05] a=0.75,b=1 0.013 0.013

0.01 [0.0,0.5] a=b=0 0.009 0.013

0.01 [0.0,0.5] a=0,b=1 0.016 0.014

0.01 [0.0,0.5] a=0.75,b=0 0.018 0.019

0.01 [0.0,0.5] a=0.75,b=1 0.012 0.015

0.01 [0.05,0.5] a=b=0 0.012 0.015

0.01 [0.05,0.5] a=0,b=1 0.021 0.017

0.01 [0.05,0.5] a=0.75,b=0 0.014 0.014

0.01 [0.05,0.5] a=0.75,b=1 0.015 0.017

1.0 [0.0,0.5] a=b=0 0.007 0.007

1.0 [0.0,0.5] a=0,b=1 0.007 0.007

1.0 [0.0,0.5] a=0.75,b=0 0.006 0.006

1.0 [0.0,0.5] a=0.75,b=1 0.007 0.008

Table 2.3: Comparison of true SE with jackknife SE under 16 different genetic architectures: We defined 100

blocks over SNPs to estimate block jackknife SE. We ran RHE-mc with 24 bins based on 6 MAF bins and 4 LDAK score bins.

Jackknife SE yields estimates of true SE with relative bias −3% on average over 16 genetic architectures. True h2 is fixed to

0.5 across all settings.
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Genetic architecture Heritability

MAF of causal SNPs MAF/LD coupling Causal bin Non-causal bin

[0.01, 0.05] a = b = 0 0.501 ± 0.006 0.000 ± 0.004

[0.01, 0.05] a = 0, b = 1 0.498 ± 0.007 0.000 ± 0.003

[0.01, 0.05] a = 0.75, b = 0 0.500 ± 0.008 0.002 ± 0.004

[0.01, 0.05] a = 0.75, b = 1 0.490 ± 0.007 0.001 ± 0.003

[0.05, 0.5] a = b = 0 0.501 ± 0.036 -0.001 ± 0.030

[0.05, 0.5] a = 0, b = 1 0.487 ± 0.012 0.005 ± 0.005

[0.05, 0.5] a = 0.75, b = 0 0.508 ± 0.026 -0.005 ± 0.023

[0.05, 0.5] a = 0.75, b = 1 0.490 ± 0.009 0.000 ± 0.005

Table 2.5: Heritability contribution of causal vs non-causal bins on large-scale simulated data (M = 590K array

SNPs and N = 337K individuals): We ran RHE-mc with 24 bins based on 6 MAF bins and 4 LDAK bins (Methods).

Standard errors are computed from 100 replicates. The percentage of causal SNPs and true h2 are fixed to 0.01 and 0.5,

respectively, across all the settings.
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MAF bin Range Number of SNPs

1 [0, 0.0126) 59330

2 [0.0126, 0.020) 59330

3 [0.020, 0.029) 59330

4 [0.029, 0.0433) 59330

5 [0.043, 0.0658) 59330

6 [0.065, 0.106) 59330

7 [0.106, 0.170) 59330

8 [0.170, 0.260) 59330

9 [0.260, 0.373) 59330

10 [0.373, 0.5) 59330

Table 2.6: MAF bins which are used in running S-LDSC over the large scale simulated data.

True enrichment Proportion of SNPs point estimate SE Pr(rejection at p< 0.05)

2 0.4% 2.06 0.4 100%

1 0.4% 1.02 0.14 100%

0 0.4% 0.0 0.02 0.5%

2 0.01% 2.18 1.07 30%

Table 2.7: Power as a function of annotation size. SE, point estimate, and probability of rejections are computed from

100 replicates. All simulations have h2
total = 0.7, N = 291, 273, M = 459, 792, pcausal = 0.05.
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Trait Heritability

Chromosome MAF/LD 10Mb

Autoimmune Traits 0.064± 0.005 0.054± 0.006 0.070± 0.004

Auto Immune Traits (Sure) 0.011± 0.002 0.023± 0.006 0.029± 0.001

Dermatologic Diseases 0.020± 0.003 0.0172± 0.003 0.021± 0.001

Psoriasis 0.017± 0.002 0.014± 0.005 0.022± 0.003

Rheumatoid Arthritis 0.008± 0.002 0.008± 0.002 0.010± 0.003

Eczema 0.124± 0.007 0.104± 0.005 0.13± 0.006

Hypothyroidism 0.097± 0.008 0.081± 0.005 0.11± 0.007

Thyroid 0.095± 0.009 0.081± 0.008 0.109± 0.008

Diastolic Blood Pressure 0.170± 0.005 0.145± 0.004 0.173± 0.003

Systolic Blood Pressure 0.172± 0.006 0.146± 0.004 0.171± 0.004

Cardiovascular Diseases 0.165± 0.006 0.134± 0.005 0.17± 0.004

Hypertension 0.179± 0.006 0.150± 0.005 0.183± 0.006

High Cholesterol 0.099± 0.015 0.070± 0.008 0.102± 0.003

Diabetes (any) 0.069± 0.004 0.058± 0.003 0.072± 0.003

Endocrine and Diabetes Diseases 0.064± 0.004 0.053± 0.003 0.065± 0.003

Type 2 Diabetes 0.068± 0.004 0.057± 0.003 0.069± 0.005

BMI 0.330± 0.014 0.264± 0.007 0.328± 0.013

Height 0.583± 0.026 0.492± 0.017 0.59± 0.021

Waist-hip Ratio 0.196± 0.009 0.167± 0.007 0.2± 0.005

Asthma 0.122± 0.009 0.101± 0.006 0.127± 0.007

Smoking Status 0.130± 0.004 0.111± 0.003 0.132± 0.002

Respiratory and Ear-nose-throat Diseases 0.086± 0.007 0.071± 0.004 0.091± 0.004

Table 2.8: Estimates of genome-wide SNP heritability from RHE-mc for 22 complex traits and diseases in the

UK Biobank (N = 291, 273 unrelated white British individuals, M = 459, 792 common SNPs). We run RHE-mc

with 8 bins defined based on two MAF bins (MAF≤ 0.05, MAF> 0.05) and quartiles of the LD-scores. Furthermore, we run

RHE-mc with 22 bins defined based on chromosome number. On average, partitioning based on chromosome numbers leads

21% higher estimates of genome-wide SNP heritability for 22 traits than partitioning based on MAF and LD. For instance, it

leads 18% and 13% higher estimates of heritability for height and BMI respectively. We also partitioned SNP based on 10 Mb

genomic regions (300 variance components).
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CHAPTER 3

Gene-by-Environment interactions effects

3.1 Background

Understanding the contribution of additive and non-additive genetic effects to complex trait

variation is a central question in human genetics. A possible source of non-additive effects

arises from interactions between genetic and environmental factors. These gene-environment

interactions (GxE) have been investigated at the level of individual genetic variants in a

number of studies. In functional genomics, the effect of variants that on gene expression

have been found to be modulated by environmental factors such as age, tissue, cell type, or

other genetic variants[1, 32, 53]. In the context of complex traits, GxE has been observed

for specific variants and exposures like lifestyle factors [138, 135, 94, 73], air pollution [19],

and microbe exposure[49]. While these studies have provided insights into novel mechanisms

and pathways underlying trait variation, the small effects of individual genetic variants do

not allow us to quantify the overall contribution of GxE to variation to a complex trait.

GxE are also important in understanding sources of heritability, i.e., the maximal pro-

portion of variation in a trait that can be explained by genetic variation [118]. While there

has been substantial attention focused on estimating narrow-sense heritability from genome-

wide SNP genotype data (termed SNP heritability) [132], understanding the factors that

contribute to the gap between SNP heritability and heritability estimates from family stud-

ies remains an area of active research with GxE effects being a plausible explanation for this

gap. Recent work [74] suggests that genetic predictors of complex trait do not generalize

even within an ancestry group, in part, due to the role of GxE. Finally, the availability of

large data sets like the UK biobank which contains ≈ 300, 000 individuals, millions SNPs
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and hundreds of environmental factors offers the opportunity to systematically understand

the role of GxE.

Linear mixed models (LMMs) have emerged as a powerful tool to estimate SNP heritabil-

ity by aggregating the effects of a large number of SNPs [133]. In these models, the model

parameters, i.e., variance components, associated with additive genetic effects are related to

the SNP heritability. More recently, LMMs have also been extended to estimate GxE [52, 12]

by jointly fitting variance components associated with additive genetic effects and GxE.

The most common approach to estimating variance components attempts to maximize the

likelihood or the restricted maximum likelihood (REML) [79, 133] (termed genome-based

REML or GREML when applied to SNP genotypes). Computing GREML estimators can

be challenging even for estimating only the additive genetic variance components. Many of

the efficient algorithms for computing GREML estimates leverage the specific structure of

LMMs with a single additive genetic variance component [60, 146, 64] and cannot be easily

extended to the setting where we have additive and GxE variance components.

3.2 Materials and Methods

We consider the problem of inferring the proportion of variance in a trait that can be ex-

plained by GxE given genotypes collected from N individuals across M SNPs and L envi-

ronmental variables.

Specifically, we first consider a model that aims to estimate GxE across all of the L

environmental variables and M SNPs. This setting is applicable when a large number of

environmental variables have been measured (e.g., features extracted from brain MRI images

or questionnaire data) and it is unclear which of these contributes to GxE. In this setting,

we propose a randomized method-of-moments (MoM) variance components estimation al-

gorithm to jointly estimate the additive genetic variance component and the GxE variance

components. Our MoM estimator is valid under general distributions on the effect sizes

and residual error unlike REML which requires an assumption of normally distributed effect
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sizes and normally distributed residual error. On the other hand, our MoM estimator is

less statistically efficient relative to REML. Importantly, our randomized MoM algorithm is

computationally efficient. Our proposed algorithm has runtime complexity O(N(M + L)B)

for N individuals, M SNPs, L environments and a parameter B that controls the number

of random matrix-vector multiplications where B << M . Further, the randomized MoM

estimator allows estimation is a streaming algorithm (it requires making a single pass over

the genotype and the environmental variables) and does not explicitly compute the GxE

matrix leading to a substantial memory efficiency.

While the previous model is useful in quantifying the total GxE, it is often of interest

to identify and interpret specific environmental variables that are involved in GxE. We

extend our model to this setting, where we are fitting a GxE variance component for each

environmental variable.

3.2.1 Single-component GxE model

LetX denote aN×M genotype matrix, E denote aN×Lmatrix of environmental variables,

and y denote a N -vector of phenotypes. Define H =X ⊙E as the N ×ML matrix formed

by taking products of a column in X with each column in E. We assume the following

model:

y = Xβ +Hα+ ϵ

ϵ ∼ D(0, σ2
eIN)

β ∼ D(0,
σ2
g

M
IM)

α ∼ D(0,
σ2
ge

M
IML) (3.1)

Here D(µ,Σ) is an arbitrary distribution with mean µ and covariance Σ. In this model,

σ2
e , σ

2
g , and σ2

ge are the residual variance, genetic variance and gene-by-environment variance

components respectively. Here β denotes M -vector of SNPs effect sizes and α denotes ML-

vector of GxE effect sizes.
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We assume without loss of generality that y is centered and the columns of X and H

are standardized. To estimate the variance components of our LMM, we use a Method-

of-Moments (MoM) estimator that searches for parameter values so that the population

moments are close to the sample moments. Since E [y] = 0, we derived the MoM estimates by

equating the population covariance to the empirical covariance. The population covariance

is given by:

cov(y) = E[yyT ]− E[y]E[yT ] = σ2
g

1

M
XXT + σ2

ge

1

ML
HHT + σ2

eI (3.2)

Using yyT as our estimate of the empirical covariance, we need to solve the following least

squares problem to estimate the variance parameters :

(σ̃2
g , σ̃

2
ge, σ̃

2
e) = argmin(σ2

g ,σ
2
ge,σ

2
e)
||f(y)f(y)T −

(
σ2
g

1

M
XXT + σ2

ge

1

ML
HHT + σ2

eI

)
||2F
(3.3)

The MoM estimator satisfies the normal equations:
1

M2 tr(XX
TXXT) 1

M2L
tr(XXTHHT) 1

M
tr(XXT)

1
M2L

tr(XXTHHT) 1
(ML)2

tr(HHTHHT) 1
ML

tr(HHT)

1
M
tr(XXT) 1

ML
tr(HHT) N



σ̃2
g

σ̃2
ge

σ̃2
e

 =


1
M
yTXXTy

1
ML
yTHHTy

yTy


(3.4)

In this work, we explore randomized estimators that permit efficient computation of the

entries of the linear system in Equation 3.4. Here we propose an unbiased estimator of the

term tr(HTHHTH) that can be computed in time O(N(M +L)B) which is linear in sizes

of both genotype and environment matrices (In Section 3.5.2 of the Supplementary Notes, we

describe an alternate estimator that can be computed in time O(NMLB) time complexity

that might be practical for a small number of SNPs or environmental variables).

Approximate computation in O(N(M + L)B) time

The computational bottleneck in solving system 3.4 is the evaluation of tr(HTHHTH). We

propose an unbiased randomized estimator to compute tr(HTHHTH) withO(N(M+L)B)
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time complexity for a parameter B. Given B, we form 2B random vectors: wb = ub ⊗ vb

where ub ∈ RM ,vb ∈ RL are independent random vectors with mean zero and covariance

IM and IL respectively. Let rb =Hwb, b ∈ {1, . . . , B}. Then our estimator Γ is defined as:

Γ ≡ 1

B

B∑
b=1

(rT2b−1r2b)
2

(3.5)

We will show in Theorem 1 that Γ is an unbiased estimator of tr(HTHHTH). We

also propose an alternate randomized estimator that also has O(N(M +L)B) complexity in

Section 3.5.3 in the Supplementary Notes. While our software implements both estimators,

we focus on the estimator that we described in this section, which is better suited for a

streaming implementation and forms the basis of all our results.

Lemma 1 Suppose that X and E are N ×M genotype and N × L environment matrices

respectively. Define H = X ⊙E as the N ×ML matrix. Assume that wt = ut ⊗ vt where

ut ∈ RM ,vt ∈ RL are independent random vectors with mean zero and covariance IM and

IL, t ∈ {1, 2} respectively. Let rt =Hwt, t ∈ {1, 2}. Then (rT1 r2)
2
is an unbiased estimator

of tr(HTHHTH).

Proof:

E
[
(rT1 r2)

2
]

= E
[
(rT1 r2)(r

T
2 r1)

]
= E

[
wT

1H
THw2w

T
2H

THw1

]
= E

[
tr(wT

1H
THw2w

T
2H

THw1)
]

= E
[
tr(HTHw2w

T
2H

THw1w
T
1 )
]

(cyclic property of trace)

= tr(E
[
HTHw2w

T
2H

THw1w
T
1

]
) (linearity of trace and expectation)

= tr(HTHE
[
w2w

T
2

]
HTHE

[
w1w

T
1

]
) (independence of w1,w2)

= tr(HTHHTH) (E
[
wtw

T
t

]
= I, t ∈ {1, 2})

□
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Lemma 2 Suppose that X and E are N × M and N × L matrices respectively. Define

H = X ⊙ E be an N × ML matrix. Define w = u ⊗ v where u ∈ RM ,v ∈ RL are two

arbitrary vectors. Hw can be computed in O(N(M + L)).

Proof: Denoting X =


xT
1

...

xT
N

, E =


eT1
...

eTN

, where xn, n ∈ {1, . . . , N} are M -vectors and

en, n ∈ {1, . . . , N} are L-vectors, we have:

H =


hT

1

...

hT
N

 =


(x1 ⊗ e1)T

...

(xN ⊗ eN)T



hT
nw = (xn ⊗ en)T (u⊗ v)

=
(
xn

T ⊗ enT
)
(u⊗ v)

=
(
xn

Tu
)
⊗
(
en

Tv
)
, Using the mixed-product property of ⊗

= (xT
nu)(e

T
nv) ≡ bncn (3.6)

Thus, we have:

Hw =


hT

1

...

hT
N

w =


hT

1w
...

hT
Nw



=


b1c1
...

bNcN

 , From Equation 3.6

= b⊙ c

where b =Xu, c = Ev. Thus, we can compute r in O(NM +NL). □

Theorem 1 Γ is an unbiased estimator of tr(HTHHTH) that can be computed in O(N(M+

L)B).
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Proof: Since each term (r2b−1r2b)
2 is an unbiased estimator of tr(HTHHTH) (Lemma 1),

Γ is an unbiased estimator of tr(HTHHTH) (with variance 1
B
times that of each term).

Since rb = Hwb can be computed in O(N(M + L)) (Lemma 2), each term of Γ can be

computed in time O(N(M + L)) so that Γ can be computed in O(N(M + L)B). □

The additional terms that involve H in Equation 3.4 are tr(HHT), tr(XXTHHT),

and yTHHTy. We use the property that rt
Trt is an unbiased estimator of tr(HHT),

(yTrt)
2
is an unbiased estimator of yTHHTy and ∥XTrt∥22 is an unbiased estimator of

tr(XXTHHT) to obtain analogous estimators for each of these quantities. Given rt, each

of these estimators can be computed in time O(N) and O(NM) respectively (see Lemma 6

in Supplementary Notes 3.5.4) .

3.2.2 Multi-component GxE model

LetX denote a N×M genotype matrix, E denote aN×Lmatrix of environmental variables,

C denote a N ×P matrix of fixed-effect covariates, and y denote a N -vector of phenotypes.

We assume the following linear mixed model:

y = Xβ +
L∑
l=1

(X ⊙E:l)αl +
L∑
l=1

(IN ⊙E:l)δl +Cγ + ϵ

β ∼ D(0,
σ2
g

M
IM)

αl ∼ D(0,
σ2
gxe,l

M
IM)

δl ∼ D(0, σ2
nxe,lIN)

ϵ ∼ D(0, σ2
eIN) (3.7)

Here D(µ,Σ) denotes an arbitrary distribution with mean µ and covariance Σ, E:l denotes

l-th column of E, and ⊙ denotes row-wise Kronecker product. β denotes the M -vector of

SNP effect sizes, αl denotes the M -vector of genetic effect sizes in the context of environment

l (GxE effects) while δl denotes the N -vector of NxE effect sizes for environment l, and ϵ

denotes the N -vector of noise. σ2
e , σ

2
g , σ

2
gxe,l, and σ2

nxe,l denote the residual variance, additive
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genetic, gene-by-environment, and noise-by-environment variance components respectively.

These variance components can then be transformed into the additive heritability or the

proportion of variance explained by additive effects (h2
g associated with σ2

g) and the GxE

heritability or the proportion of variance explained by interactions of genetics with a given

environment (h2
gxe,l associated with σ2

gxe,l).

We assume without loss of generality that y is centered and the columns of X and E

are standardized. To estimate the variance components of our LMM, we use a Method-

of-Moments (MoM) estimator that searches for parameter values so that the population

moments are close to the sample moments. Since E [y] = 0, we derived the MoM estimates

by equating the population covariance to the empirical covariance. For simplicity, we exclude

the matrix of covariates C from the model in the following derivation as the covariates can

be efficiently projected out of the phenotype, genotypes, and interaction terms with minimal

additional cost.

For compactness, we denote Z0 = X, Z l = X ⊙ El for l = 1, .., L, Z l = IN ⊙ E:l for

l = L+ 1, .., 2L, and Z2L+1 = IN . The population covariance is given by:

cov(y) = E[yyT ]− E[y]E[yT ] =
2L+1∑
l=0

σ2
lK l (3.8)

where

K l =


Z lZ

T
l

M
, l = 0, .., L

Z lZ
T
l , l = L+ 1, .., 2L+ 1

and

σ2
l =



σ2
g , l = 0

σ2
gxe,l, l = 1, .., L

σ2
nxe,l, l = L+ 1, .., 2L

σ2
e , l = 2L+ 1

Using yyT as our estimate of the empirical covariance, we need to solve the following
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least squares problem to find the variance components.

σ̃2 = argminσ2||yyT −
2L+1∑
l=0

σ2
lK l||2F (3.9)

The MoM estimator satisfies the following normal equations:

T = σ2q (3.10)

where T is matrix with entries Tij = tr(KiKj), i, j ∈ {0, .., 2L + 1}, and q and σ̃2 are

vectors with entries cl = y
TK ly, for l ∈ {0, .., 2L+ 1}.

Given estimated σ̃2, the heritability associated with component i for a component that

represents additive genetic or GxE effects (equivalently, the proportion of variance explained

by component i is defined as follows:

h2
i =

σ̂2
i tr(Ki)∑

k σ̂
2
ktr(Kk)

(3.11)

The aforementioned definition of heritability holds when the matrices Z’s columns have

zero means, and N is large. To explicitly ensure that the columns of GxE matrices also have

zero means, a column consisting of all ones is included in the covariate matrix. Consequently,

when the covariates are projected out of the GxE matrices, it guarantees that all columns

have zero means.

Computing the coefficients of the system of linear equation 3.10 presents computational

challenges. The main computational bottleneck is the evaluation of the quantities Tij for

i, j ∈ {0, . . . , 2L + 1} which requires O(N2M). Therefore, the total time complexity for

exact MoM is O(N2ML + L3) imposing challenging memory or computation requirements

for Biobank-scale data (N in the hundreds of thousands, M in the millions, L in the hundreds

or thousands).

Instead of computing the exact value of Tij, GENIE uses a randomized estimator of the

trace [48]. This estimator uses the fact that for a given N × N matrix C, wTCw is an

unbiased estimator of tr(C) (E[wTCw] = tr[C]) where w be a random vector with mean

zero and covariance IN . Hence, we can estimate the values Tij, i, j ∈ {0, . . . , 2L + 1} as
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follows:

Tij = tr(ZiZ
T
i ZjZ

T
j ) ≈ T̂ij =

1

B

∑
b

wT
b ZiZ

T
i ZjZ

T
j wb (3.12)

Here w1, . . . ,wB are B independent random vectors with zero mean and covariance IN . In

GENIE, we draw these random vectors independently from a standard normal distribution.

Note that computing Tij by using the above estimator involves matrix-vector multiplications

which are repeated B times. Therefore, the total running time is O(LNMB).

Moreover, we can leverage the structure of the genotype matrix which only contains

entries in {0, 1, 2}. For a fixed genotype matrix Xk, we can improve the per iteration

time complexity of matrix-vector multiplication from O(NM) to O( NM
max(log3(N),log3(M))

) by

using the Mailman algorithm [59]. Solving the normal equations takes O(L3) time so that

for a small number of components (L), the overall time complexity of our algorithm is

O( LNMB
max(log3(N),log3(M))

+ L2NB + L3).

Although the model defined in Equation 3.7 is beneficial in quantifying the total GxE

effects for a given E, it is interesting to identify and interpret the interaction of E with specific

regions of the genome, such as SNPs with a particular range of minor allele frequencies or

SNPs that lie within genes expressed specifically in a tissue. Following our previous work [81],

the genotype componentX can be assigned to T (potentially overlapping) components with

respect to a set of annotations (such as MAF/LD or functional annotations). Thus, we

extend our model as follows:

y =
T∑
t=1

X tβt +
T∑
t=1

L∑
l=1

(X t ⊙E:l)αtl +
L∑
l=1

(IN ⊙E:l)δl +Cγ + ϵ

βt ∼ D(0,
σ2
g,t

M
IM)

αtl ∼ D(0,
σ2
gxe,tl

M
IM)

δl ∼ D(0, σ2
nxe,lIN)

ϵ ∼ D(0, σ2
eIN) (3.13)

Here X t is the genotype of annotation t with Mt SNPs, αtl refers to the effect sizes of SNPs

in annotation t in the context of environment l. Analogously, σ2
gxe,tl refers to the variance
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component for SNPs in annotation t in the context of environment l while h2
gxe,tl refers to

the GxE heritability associated with annotation t in the context of environment l.

Given estimated GxE heritabilties under the above model, we define the enrichment of

genetic effects in annotation t in the context of environment l (also termed GxE enrichment)

as follows :

Enrichment(gxe, t, l) =
h2
gxe,tl/

∑T
t=1(h

2
gxe,tl)

Mt/M
, t ∈ {1, . . . , T}, l ∈ {1, . . . , L} (3.14)

GENIE uses the same randomized trace estimator approach to efficiently estimate GxE

heritability.

3.3 Results

3.3.1 Calibration and power

We assess the false positive rate of tests of GxE heritability based on GENIE in simulations

under different genetic architectures with no GxE heritability. For each architecture, we

simulated 100 phenotype replicates across N = 291, 273 unrelated white British individuals

in the UKBB and M = 459, 792 SNPs with MAF > 1% genotyped on the UK Biobank

genotyping array. We chose statin usage in the UKBB as the environmental variable. We

varied the percentage of causal SNPs while fixing the additive heritability at h2
g = 0.25. We

ran GENIE with B = 10 random vectors (see Section on Effect of the choice of the number

of random vectors).

Across all simulations, the false positive rate of rejecting the null hypothesis of no GxE

heritability is controlled at levels 0.05 and 0.05/200 (we consider this threshold which controls

for the number of trait-E pairs that we test in UKBB): the average P (rejection at p < t) is

4% and 0% for t = 0.05 and t = 0.05/200 respectively (Figure 3.1a)).

To measure the power of GENIE to detect GxE heritability, we simulated phenotypes

with a non-zero GxE heritability. Across genetic architectures, we varied the GxE heritability

while fixing the additive heritability at 0.25 and the percentage of causal SNPs at 10% (these
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are the default parameters of our simulations unless otherwise specified). We simulated 100

replicates for every genetic architecture. Let h2
gxe(i) be the estimate of h2

gxe and SEi be

the jackknife estimate of the standard error on the i-the replicate for i ∈ {1, .., 100}. We

computed the p-value of a test of the null hypothesis of no h2
gxe on the i-th replicate from the

Z-score defined as h2
gxe(i)/SEi for i ∈ {1, .., 100}. We reported the percentage of replicates

with p-value< t as the power of GENIE on a given genetic architecture for a p-value threshold

of t.

GENIE has adequate power to detect GxE effects with h2
gxe ≥ 0.02 in a sample of

300K unrelated individuals at p < 0.05 (Figure 3.1b)). Additionally, across all genetic

architectures, GENIE yields unbiased estimates of GxE heritability (Figure 3.1c)).

Next, we assessed the accuracy of GENIE in a setting where we have multiple environ-

mental variables. We simulated phenotypes from a sub-sampled set of UKBB genotypes

choosing a subset of N = 10, 000 individuals and 20, 000 SNPs on chromosome 1 of the UK

Biobank Axiom array. We considered a setting with L = 10 environmental variables with

σ2
g = 0.2, five environmental variables with σ2

gxe = 0, three environmental variables with

σ2
gxe = 0.1 and two with σ2

gxe = 0.01. We generated 100 replicates of simulated phenotypes

for each set of parameters. We find that GENIE obtains estimates of h2
gxe that are accurate

across the environmental variables (Supplementary Figure 3.12, Supplementary Table 3.1).

3.3.2 Effect of the choice of the number of random vectors

We explored the choice of the number of random vectors in two ways. First, we quantified

the contribution of randomization to the SE of the GxE estimator in GENIE. We simulated

100 phenotypes where h2
gxe = 0 and the causal ratio is 10%. We compared the SE of

GxE estimates with B = 10 random vectors run 100 times over one of the replicates (the

contribution of the randomization to the SE) to the SE of GxE estimates across 100 replicates

to determine that, with B = 10, randomization contributes to about a third of the total SE.

Second, we verified that our GxE estimates are highly correlated for the choice of random

vectors B = 10 vs B = 100 (Pearson’s ρ = 0.97; Supplementary Figure 3.11). These results
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lead us to conclude that B = 10 random vectors provide stable estimates, and we use this

setting in our remaining analyses.

3.3.3 Noise heterogeneity

Previous studies have shown that accounting for noise heterogeneity (NxE component) is

essential to avoid false positives and inflation in estimates of GxE effects [113, 76, 12]. To

demonstrate the importance of modeling NxE, we simulated phenotypes in the presence of

NxE effect such that h2
gxe = σ2

nxe ∈ {0, 0.04, 0.08, 0.10} (we set σ2
nxe to 0.04 when h2

gxe = 0).

We ran GENIE, in turn, with and without NxE component. Across all simulations, the

model that does not account for the NxE component (G+GxE) yields statistically significant

upward bias in its GxE estimates (relative bias ranges from 2.5% to 69% across genetic

architectures) while the model that fits a noise heterogeneity component (G+GxE+NxE)

achieves unbiased estimates of GxE (Figure 3.2a)).

Further, we compared the calibration of tests of GxE from GENIE with MEMMA [52],

a recently proposed scalable method for GxE heritability estimation (we did not include

GPLEMMA in this comparison as the model underlying GPLEMMA aims to infer a linear

combination of multiple environmental variables that maximizes h2
gxe while our experiments

all focus on the setting of a single environmental variable). First, we simulated phenotypes

with neither GxE effects nor NxE effects from a subset of N = 40k unrelated white British

individuals. In this setting, MEMMA has an inflated false positive rate while GENIE is

calibrated (Figure 3.2b)). The inflated false positive rate for MEMMA in the absence of the

NxE effect can be explained by a bias in their estimates of the SE of the variance components

(Supplementary Figure 3.10). We then explored the setting with noise heterogeneity but no

GxE. The false positive rate of MEMMA increases as it does not model noise heterogeneity

while GENIE has a controlled false positive rate across all simulations (Figure 3.2b)).
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3.3.4 Computational efficiency

We evaluated the runtime of GENIE, MEMMA, and GCTA(HE) (which implements an exact

method-of-moments estimator) with increasing sample size (N ∈ {10K, 50K, 100K, 290K})

for a fixed number of SNPs (M = 459, 792) and a single environmental variable. We ran

all methods to fit a single G and GxE variance component. All methods were run on an

Intel(R) Xeon(R) Gold 6140 CPU 2.30GHz, with 187GB RAM. GENIE and MEMMA were

run with ten random vectors. The runtime of GCTA(HE) includes the time to compute the

GRMs. We ran GENIE and GCTA(HE) on a single core while we ran MEMMA on both a

single core and four cores. We set a maximum time limit of two days as a constraint for all

methods. We could run GCTA(HE) on a dataset of up to 50K samples. GENIE is highly

scalable and can estimate GxE on about 300K individuals and roughly 500K SNPs within

an hour, approximately 30 times faster than MEMMA run on four cores (Supplementary

Figure 3.13).

3.3.5 Estimating GxE in the UK Biobank

We applied GENIE to estimate additive heritability (h2
g) and GxE heritability (h2

gxe) for

fifty quantitative phenotypes measured in UKBB across unrelated white British individu-

als. These fifty phenotypes fall into eight broader phenotypic categories (blood biochem-

istry, kidney biomarkers, anthropometry, lipid metabolism biomarkers, blood pressure, liver

biomarkers, lung, and glucose metabolism biomarkers) that have been analyzed in prior

works [80, 124]. Following these studies, we applied a rank-based inverse normal transfor-

mation to all phenotypes. We considered, in turn, smoking status, sex, age, and statin

usage as environmental variables. We included each environmental variable as a fixed effect

in the relevant analyses. First, we explored the importance of modeling noise-environment

interactions (NxE) in real data (building on our simulation results). We then analyzed, in

turn, common SNPs genotyped on the UK Biobank array (MAF> 1%), and then common

and low-frequency imputed SNPs (MAF ≥ 0.1%). For select combinations of phenotypes

and environmental variables, we also applied GENIE to partition GxE heritability across
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MAF-LD annotations and to estimate GxE heritability in genes expressed in specific tissues.

Robustness of GENIE in the UK Biobank

We first assessed the robustness of GENIE by estimating h2
g under three different models: G,

G+GxE, and G+GxE+NxE where each model is named by the set of variance components

fitted jointly. The additive heritability estimates were highly correlated across the models

(Pearson’s correlation ρ ≥ 0.98 for every pair of models), leading us to conclude that GENIE

provides robust estimates of additive heritability across different models (Supplementary

Figure 3.14). We observe a significant difference in h2
g for a handful of trait-E pairs when

estimated with G+GxE and G+GxE+NxE that include alcohol frequency intake, overall

health, and hair color with both smoking status and sex as environmental variables, and

alcohol frequency intake and overall health with age.

Our simulations in the previous section revealed the importance of modeling noise het-

erogeneity (Figure 3.2). To investigate the consequences of modeling NxE in real data, we

fit, in turn, models without and with NxE (in addition to G and GxE components). The

number of trait-E pairs with significant h2
gxe (p < 0.05/200) decreased from 135 under the

G+GxE model to 69 under the G+GxE+NxE model: decreasing from 40 to 21 for smoking

(Figure 3.3b)), 27 to 29 for sex (Supplementary Figure 3.15b)), 28 to 12 for age (Supple-

mentary Figure 3.16b)), and 40 to 7 for statin usage (Supplementary Figure 3.17b)). For

traits with significant h2
gxe, the magnitudes of the estimates varied across the two models:

ratio of h2
gxe estimates under the G+GxE+NxE to the G+GxE model were 137% on average

(range: 43− 350%), 110% (70− 224%), 131% (99− 166%), and 42% (21− 72%) for smok-

ing (Figure 3.3a)), sex (Supplementary Figure 3.15a)), age (Supplementary Figure 3.16a)),

and statin (Supplementary Figure 3.17a)) respectively. The magnitude of noise heterogeneity

across trait-E pairs can be substantial: 0.05%, 164%, 10%, and 14% of the additive heritabil-

ity on average for smoking, sex, age, and statin, respectively (Supplementary Figures 3.18,

3.19, 3.20, and 3.21).

To further investigate the effect of modeling NxE, we performed permutation analyses by
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randomly shuffling the genotypes while preserving the trait-E relationship (a setting where

there is expected to be no GxE by construction while the relationship between phenotype

and E is preserved). We applied GENIE under the G+GxE and G+GxE+NxE models to

each trait-E pair. The false positive rate of rejecting the null hypothesis of no GxE across

the trait-E pairs is substantially inflated under the G+GxE model while being controlled

under the G+GxE+NxE model (Figure 3.3c), Supplementary Figures 3.15c), 3.16c), and

3.17c) for smoking, sex, age, and statin respectively). These results indicate that modeling

NxE is critical to avoid spurious findings of GxE.

Gene-by-Smoking Interaction

We applied GENIE to estimate the proportion of phenotypic variance explained by gene-by-

smoking interactions (h2
gxSmoking) for 50 quantitative phenotypes. We find 21 traits showing

statistically significant evidence for h2
gxSmoking (p < 0.05/200) with h2

gxSmoking about 6.1% of

h2
g on average (Figure 3.4). Two of the traits with the largest h2

gxSmoking were basal metabolic

rate and body mass index (BMI) with estimates of 2.4% and 2.3% respectively (estimates

remained significant when we used the binary coding of the smoking status variable ob-

tained by merging the categories of never and previous; Supplementary Figure 3.22). Our

estimates are consistent with a previous study of that analyzed BMI and lifestyle factors in

the UKBB to find significant GxE for smoking behavior [93]. The h2
gxSmoking estimates for

basal metabolic rate and BMI are about 11% and 7% of their respective h2
g estimates.

Gene-by-Sex Interaction

We find 29 traits with statistically significant h2
gxSex (p < 0.05/200) with h2

gxSex/h
2
g observed

to be 8.7% on average (Figure 3.5). Serum testosterone levels showed the largest h2
gxSex of

11% with the h2
gxSex nearly as large as h2

g consistent with prior work showing differences

in genetic associations [96, 105] and heritability [147] across males and females. Beyond

testosterone, we observe significant h2
gxSex for several anthropometric traits, such as waist-

hip-ratio adjusted for BMI (WHR) (h2
gxSex = 4.3% and

h2
gxSex

h2
g

= 20%), and lipid measures
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(results consistent for binary encoding; Supplementary Figure 3.23) consistent with previ-

ous work documenting sex-specific differences in the genetic architecture of anthropometric

traits [89, 127, 88, 90, 2, 147]. Consistent with prior GWAS that identified genetic variants

with sex-dependent effects [15, 54], our analyses of serum urate levels show substantial point

estimates of h2
gxSex, although these estimates are not statistically significant.

Gene-by-Age Interaction

We find 12 traits with statistically significant h2
gxAge (p < 0.05/200) with h2

gxAge/h
2
g observed

to be 4.3% on average (Figure 3.6). Lipid and blood pressure measures show some of the

largest h2
gxAge (about 2.5% for LDL-C and total cholesterol and 1.9% for diastolic blood

pressure). Previous studies have found genetic variants in the SORT1 gene to have age-

dependent effects on LDL cholesterol [101] and nominal evidence for age-dependent genetic

effects on blood pressure regulation [104]. We find that BMI shows evidence for significant

h2
gxAge while WHR does not, expanding on prior work that identified age-dependent genetic

variants for BMI but not for WHR in GWAS [127]. Interestingly, we used a standardized

encoding of age so that GxAge effects capture the interaction of genetic effects on the pheno-

type as a function of deviation from the mean age in UKBB while previous studies typically

focus on changes in genetic effects in bins of age. It is plausible that other codings of age,

e.g., coding age to measure interactions as a function of older vs. younger individuals, could

yield differing results.

Gene-by-Statin Interaction

We find seven traits that show statistically significant evidence for h2
gxStatin (p < 0.05/200)

with an average ratio of h2
gxStatin to h2

g across traits of 5.2% (Figure 3.7). We find that

LDL and total cholesterol show significant h2
gxStatin (1.7% and 1.6% respectively) while HDL

cholesterol with a point estimate of h2
gxStatin of 0.4% does not (results consistent for binary

encoding; Supplementary Figure 3.24). We observe the largest estimates of h2
gxStatin for

HbA1c and blood glucose measurements (2% and 1.2% respectively) which are interesting
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in light of statin usage being shown to be associated with a small increase in risk for Type-2

Diabetes [97].

Estimating GxE heritability from imputed SNPs

We applied GENIE to estimate h2
gxSmoking, h

2
gxSex, h

2
gxAge ,and h2

gxStatin attributable to M =

7, 774, 235 imputed SNPs with MAF ≥ 0.1%. Prior work has shown that analyzing common

and low-frequency variants with a single variance component can result in biased estimates

of additive heritability [109, 18]. A solution to this problem involves fitting multiple variance

components obtained by partitioning SNPs based on their frequency and local LD scores (as

quantified by the LD-scores [3] or the LDAK scores [109]) [108, 18, 29, 107]. We follow this

approach by partitioning SNPs into eight annotations based on quartiles of the LD-scores

and two MAF annotations (MAF< 5% and MAF> 5%; Methods).

We performed simulations to show that GENIE applied with SNPs partitioned based on

MAF and LD scores can accurately estimate h2
gxe across varying MAF and LD-dependent

genetic architectures while using a single component for all SNPs can lead to substantial

biases (Supplementary Section 3.6; Supplementary Figure 3.25). We applied GENIE using

MAF-LD partitions to jointly estimate h2
g and h2

gxe (Supplementary Figures 3.26, 3.27,

3.28, and 3.29). While estimates of h2
gxe from imputed SNPs are largely concordant with

the estimates obtained from array SNPs, we identify nine trait-E pairs for which the h2
gxe

estimates are significantly different (p < 0.05/200). In all these cases, h2
gxe estimates from

imputed SNPs are higher than those from array SNPs. For example, we estimate h2
gxSmoking

for BMI = 6.5 ± 0.5% which is larger than our estimate based on array SNPs as well as a

previous estimate of 4.0± 0.8% based on common HapMap3 SNPs [93]. Restricting to traits

with significant GxE in both array and imputed SNPs, we observed that the average ratio

(
h2
gxe(imputed)

h2
gxe(array)

) is 1.79 (2.31, 1.63, 1.17, and 1.17 respectively for GxSmoking, GxSex, GxAge,

and GxStatin; Supplementary Figure 3.30). Across trait-E pairs with significant h2
gxe, the

average h2
gxe is 2.8% on the imputed data compared to 1.5% on array data while the ratio

of
h2
gxe

h2
g

is 14.3% on the imputed data compared to 6.8% on the array data (averaged across
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trait-E pairs, we estimate h2
gxe = 0.9% on imputed vs 0.7% on array data).

We explored the impact of fitting multiple variance components based on MAF and LD

by applying GENIE to fit a single GxE and additive variance component using Smoking

status as the environmental variable. While ten traits showed significant h2
gxSmoking in both

analyses, five traits were exclusively significant in the MAF-LD model while one was ex-

clusively significant in the single-component model. Restricting to traits with significant

GxSmoking in both models, h2
gxSmoking estimates in the MAF-LD model were about 3x those

from the single-component model on average (Supplementary Figure 3.31). We also inves-

tigated whether MAF-LD partitioning affected estimates of h2
gxSmoking obtained from array

SNPs. We find that h2
gxSmoking estimates are largely concordant whether obtained from a

single component or a MAF-LD partitioned model (ratio of 0.99 on average) consistent with

the array SNPs being relatively common (MAF > 1%).

Our analysis suggests that partitioning by MAF and LD is helpful for estimating h2
gxe from

both common and low-frequency SNPs and the inclusion low-frequency SNPs can increase

estimates of h2
gxe for specific traits.

Partitioning GxE heritability across MAF and LD annotations

Previous studies that have shown that the additive SNP effects increase with decreasing

minor allele frequency (MAF) and local levels of linkage disequilibrium (LD) [28, 81, 98, 141],

likely due to the effects of negative selection. However, the MAF-LD dependence of SNP

effects in the context of specific environmental factors has not been empirically explored.

Our analyses in the preceding section, showing differences in the genome-wide h2
gxe estimates

when partitioning by MAF and LD vs. fitting a single variance component, suggest that

GxE effects are expected to vary by MAF and LD in a pattern that is distinct from what

would be expected when fitting a single variance component which assumes that the effect

size at a SNP varies with its allele frequency f as 1
f(1−f)

while not varying with local LD (for

a fixed value of the allele frequency f).

To explore the MAF-LD dependence of GxE effects, we used GENIE to partition h2
gxe
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across MAF and LD annotations (while also simultaneously partitioning additive heritability)

of M = 7, 774, 235 imputed SNPs divided into eight annotations based on quartiles of LD-

scores and two MAF bins (low-frequency bins with MAF< 5% and high-frequency bins with

MAF≥ 5%). Within each of these eight bins, we defined the per-allele squared effect size as

β2
k =

h2
k

2Mkfk(1−fk)
where h2

k is the GxE (or additive) heritability attributed to bin k, Mk is

the number of SNPs in bin k and fk is the mean MAF in bin k.

For the sake of presentation, we selected one phenotype with high genome-wide GxE

heritability for each of the four environmental variables analyzed (Figure 3.8; See the Sup-

plementary Data 1 for results on all trait-E pairs). Across bins of MAF and LD, the mag-

nitude of additive allelic effects tends to be larger than those of the GxE effects consistent

with the genome-wide results. We observe that the per-allele squared GxE effect size β2
gxe

tends to increase with lower MAF within a given quartile of LD score and to increase with

lower bins of LD score for a fixed MAF bin (Figure 3.8a). These trends are analogous to

the relationship observed for additive per-allele effect sizes (Figure 3.8b). Across the trait-E

pairs, restricting to the lowest quartile of LD scores, low-frequency SNPs tend to have higher

per-allele GxE effect sizes compared to high-frequency SNPs: the ratio of β2
gxe in low vs high

MAF bins is 8.2± 11.2, 24.6± 19.7, 3.4± 2.1, and 3.7± 1.2 for HbA1c-statin, BMI-smoking,

LDL-age, and testosterone-sex respectively. In the highest quartile of LD scores, we found

no statistically significant differences in β2
gxe across low and high MAF SNPs in any of the

four trait-E pairs (we also plot the per-standardized genotype additive and GxE heritability,

h2
k

Mk
, in Supplementary Figure 3.32).

Partitioning GxE heritability across tissue-specific genes

The ability of GENIE to simultaneously estimate multiple, potentially overlapping, additive

and GxE variance components enables us to explore how h2
gxe is localized across the genome.

Specifically, we set to answer the question of whether h2
gxe is enriched in genes specifically

expressed in a given tissue as a means to identify tissues that are relevant to a trait in a

specific environmental context.
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We applied GENIE to estimate h2
g and h2

gxe across each of 53 sets of genomic annotations

defined as regions around genes that are highly expressed in a specific tissue in the GTEx

dataset [23]. For each of the four environmental variables, we analyzed only traits with

genome-wide significant h2
gxe based on our prior analyses of the array SNPs. For every set of

tissue-specific genes, we followed prior work [23] by jointly modeling the tissue-specific gene

annotation as well as 28 genomic annotations that are part of the baseline LDSC annotations

that include genic regions, enhancer regions, and conserved regions [21]). Specifically, our

model has 29 additive variance components and 29 GxE variance components and estimates

the additive and GxE heritability that can be attributed to genes specifically expressed in

a tissue while controlling for the effects of the background annotations. A positive h2
g,tissue

represents a positive contribution of genetic effects in a tissue to additive heritability [23].

Analogously, a positive h2
gxe,tissue represents a positive contribution of genetic effects in this

tissue to trait heritability in the context of the specific environment. We test estimates of
h2
gxe,tissue/h

2
gxe,total

Mtissue/Mtotal
(
h2
g,tissue/h

2
g,total

Mtissue/Mtotal
) to answer whether a tissue of interest is enriched for GxE

(additive) heritability conditional on the remaining genomic annotations included in the

model (Methods).

We first verified that our approach is able to detect previously reported enrichments for

additive effects such as brain-specific enrichment for BMI and adipose-specific enrichment

for WHR (Figure 3.9) [23]. Across 69 trait-E pairs with significant genome-wide GxE that

we tested, we observed significant enrichment of h2
gxe,tissue (FDR < 0.10) for at least one

tissue in five trait-E pairs (we plot four of these pairs in Figure 3.9 since the results from the

fifth LDL cholesterol-age are highly correlated with cholesterol-age). Across these trait-E

pairs, we document differential patterns of enrichments for GxE effects compared to additive

effects. BMI exhibits brain-specific enrichment of h2
gxSmoking and h2

g while WHR exhibits

enrichment of h2
gxSex and h2

g in adipose and breast tissue (in addition to the enrichment of h2
g

in the uterus and cardiovascular tissues). The adipose tissue-specific enrichment of h2
gxSex in

WHR is notable in light of known instances of genes that are associated with WHR in adipose

tissue in a sex-dependent manner. ADAMTS9, a gene involved in insulin sensitivity [89],
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is specifically expressed in adipose tissue and has been shown to be located near GWAS

hits for WHR that are specific to females [103, 127, 89]. The transcription factor, KLF14,

is located near a sex-dependent GWAS variant for WHR, type-2 Diabetes, and multiple

other metabolic and anthropometric traits [106]. Further, the expression level of this gene

is associated with the GWAS variant in adipose but not other tissues [106]. We also find

instances where tissues that are enriched for h2
gxe are distinct from those that are enriched for

h2
g. We observe that the enrichment of h2

gxSex for basal metabolic rate in brain and adipose

tissues is distinct from the tissues that are enriched in h2
g for the same trait (cardiovascular

and digestive tissues) (Figure 3.9). Fitting this trend, we find that h2
gxAge for cholesterol

shows enrichment in cardiovascular tissues while h2
g shows liver-specific enrichment. Finally,

we find suggestive evidence that the liver is the most significantly enriched tissue for h2
gxStatin

in HbA1c (p = 0.02) as well as for h2
gxSex in testosterone (p = 0.005) although neither

enrichment is significant at FDR of 0.10. These enrichments recapitulate known biology:

the liver-specific enrichment of GxStatin effects for HbA1c reflect the tissues in which the

target of statins (HMG-CoA-reductase) is expressed [110] while the liver-specific enrichment

of GxSex for testosterone is consistent with previous findings implicating CYP3A7, a gene

involved in testosterone metabolism that is specifically expressed in the liver and lies within a

locus that contains one of the strongest GWAS signals for serum testosterone in females [105]

3.4 Discussion

We have described GENIE, a method that can jointly estimate the proportion of variation in

a complex trait that can be attributed to GxE and additive genetic effects. GENIE can also

partition GxE heritability across the genome with respect to annotations, such as functional

and tissue-specific annotations or annotations defined based on the minor allele frequency

(MAF) and local linkage disequilibrium (LD score) of each SNP to localize signals of GxE.

GENIE provides well-calibrated tests for the existence of a GxE effect and has high power

to detect GxE effects while being scalable to large datasets.

Our simulations and real data analysis results confirm the importance of including noise
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heterogeneity in GxE models. In UKBB data analyses, we observed about half of trait-

E pairs with significant h2
gxe under the G+GxE model are no longer significant under the

G+GxE+NxE model. Consistent with this observation, we estimate a substantial contribu-

tion of noise heterogeneity to trait variation.

After accounting for noise heterogeneity, we observe significant genome-wide h2
gxe across

more than a quarter of the trait-E pairs analyzed. Our finding has implications for un-

derstanding trait heritability by moving beyond the definition of narrow-sense heritability

that only includes additive genetic effects. Based on our analyses, it is conceivable that

approaches that can jointly model the hundreds of environmental variables measured in

Biobank-scale datasets will further increase estimates of h2
gxe. Additionally, our recovery

of additional h2
gxe from low-frequency SNPs (0.1% ≥ MAF < 1%) point to traits where

an understanding of GxE effects can benefit from whole-exome and whole-genome studies.

Further, our results point to traits where GxE has the potential to improve genome-wide

polygenic scores (GPS) of complex traits (since h2
gxe quantifies the maximum predictive ac-

curacy that is achievable by a linear predictor based on GxE effects). In the context of sex as

an environmental variable, sex-specific GPS has been shown to provide improved accuracy

over agnostic scores [91, 25, 2, 147]. GxE has also been recently proposed as a possible

explanation for why GPS may not generalize beyond the cohort on which these predictors

were trained [74] so that modeling GxE in relevant traits could improve their transferability.

Our finding that allelic effects for GxE increase with decreasing MAF and LD analogous to

the relationship observed for additive allelic effects motivates an evolutionary understanding

of these trends and can inform what we expect to learn from studies of rare genetic vari-

ation. Finally, our identification of sets of genes that are enriched for GxE can offer clues

on trait-relevant tissues and pathways and has the potential to inform functional genomic

studies [14, 20].

We discuss the limitations of our work as well as directions for future research. First,

GENIE does not explicitly model G-E correlations [76]. While such correlations can lead to

biases in estimates of GxE in the fixed-effect setting [16], it has been shown that, in the poly-
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genic setting, the GxE variance component estimates remain unbiased when G-E correlations

are independent of the polygenic GxE effects [12]. Nevertheless, there are plausible settings,

where such correlations can lead to false positive or biased estimates of GxE, e.g., where the

phenotype directly affects the environmental variable. Developing scalable methods that are

accurate in these settings is an important direction for future work. Second, estimates of

GxE heritability are sensitive to the scale on which traits and environmental variables are

measured and how environmental variables are encoded. In this work, we analyze quantile-

normalized traits (following prior studies) and encode discrete environmental variables using

a univariate parameterization (either as a 0-1 vector for each environmental variable or as a

standardized version). It might be preferable to work with traits measured on their original

scale and to encode each level of discrete environmental variables by a separate 0-1 covariate

(leading to k environmental covariates for a k-valued environmental variable). While such

choices would necessarily be guided by domain knowledge and interpretability, GENIE sup-

ports easy-to-use and rapid exploration of the consequences of these choices and can aid in

assessing the robustness of these choices (we have explored a limited space of these choices

here). Third, the environmental variable relevant for GxE may not be measured directly or

accurately so that the environmental variable that is measured in a dataset is best viewed as

a proxy for the relevant latent environmental covariate. On a related note, while GENIE can

model the impact of heterogeneous noise resulting from observed environmental variables by

introducing NxE components, it is important to note that the heterogeneous noise may also

arise due to non-observed environmental variables. Several recent works have tried to test for

GxE when the environmental variables are not observed [139, 67]. These issues along with

the possibility of reverse causality, i.e., where the trait affects the environmental variable,

warrant caution in any causal interpretation of our results (although it might be possible to

overcome some of these limitations in specific analyses such as GxSex). Fourth, the model

underlying GENIE is not applicable to binary traits (either with or without ascertainment).

GENIE can be extended to be applicable to binary traits (e.g., disease status) along the

lines proposed in the context of additive [33, 125] and GxE estimation [12].
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Figure 3.1: Calibration and power of GENIE in large-scale simulations (N = 291, 273 unrelated individuals,

M = 459, 792 SNPs). a) Q-Q plot of p-values (of a test of the null hypothesis of zero GxE heritability) when GENIE is applied

to phenotypes simulated in the absence of GxE effects. Each panel contains 100 replicate phenotypes simulated with additive

heritability h2
g = 0.25 and varying proportions of causal variants. Across all architectures, the mean of P (rejection at p < t) are

7.5% and 0% for t = 0.05 and t = 0.05
200

respectively (7.5% is not significantly different from the nominal rate of 5%; the p-value

of a test of bias of point estimates of h2
gxe is p = 0.75). b) The power of GENIE across genetic architectures as a function of

GxE heritability. We report power for p-value thresholds of t ∈ {0.05, 0.05
200

}. c) The accuracy of h2
gxe estimates obtained by

GENIE. Across all simulations, statin usage in UKBB was used as the environmental variable.
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Figure 3.2: Effect of noise heterogeneity (NxE) on the accuracy of estimates of GxE heritability in simulations.

a) Comparison of GxE heritability estimates from GENIE under a G+GxE model to those from a G+GxE+NxE model. Model

G+GxE refers to a model with additive and gene-by-environment interaction components. Model G+GxE+NxE refers to a

model with additive, gene-by-environment interaction, and noise heterogeneity (noise-by-environment interaction) components.

We simulated phenotypes with NxE effects and GxE effects across N = 291, 273 individuals genotyped at M = 459, 792 SNPs.

The x-axis and y-axis correspond to the true GxE and the mean of the estimated GxE (from 100 replicates), respectively. Points

and error bars represent the mean and ± SE, respectively. b) Comparison of false positive rates of tests for GxE heritability

across GENIE and MEMMA. We performed simulations with no GxE heritability but with varying magnitudes of the variance

of the NxE effect. We compute the false positive rate as the fraction of rejections (p-value of a test of the null hypothesis of zero

GxE heritability < 0.05) over 100 replicates of phenotypes simulated from N = 40, 000 individuals genotyped at M = 459, 792

SNPs.
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Figure 3.3: Effect of Noise heterogeneity (NxE) on estimates of heritability associated with GxSmoking across

50 quantitative phenotypes in UKBB. Model G+GxE refers to a model with additive and gene-by-environment interaction

components where the environmental variable is smoking status. Model G+GxE+NxE refers to a model with additive, gene-by-

environment interaction, and environmental heterogeneity (noise-by-environment interaction ) components. a) We run GENIE

under G+GxE and G+GxE+NxE models to assess the effect of fitting an NxE component on the additive and GxE heritability

estimates. b) Comparison of GxE heritability estimates obtained from GENIE under a G+GxE+NxE model (x-axis) to a

G+GxE model (y-axis). Black error bars mark ± standard errors centered on the estimated GxE heritability. Color of the dots

indicate whether estimates of GxE heritability are significant under each model. c) We performed permutation analyses by

randomly shuffling the genotypes while preserving the trait-E relationship and applied GENIE in each setting under G+GxE

and G+GxE+NxE models. We report the fraction of rejections (p-value of a test of the null hypothesis of zero GxE heritability

< 0.05
200

that accounts for the number of phenotypes tested) over 50 UKBB phenotypes.
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Figure 3.4: Estimates of GxSmoking heritability across phenotypes in UK Biobank. a) GxSmoking heritability and

b) the ratio of GxSmoking to additive heritability. We applied GENIE to N = 291, 273 unrelated white British individuals

and M = 459, 792 array SNPs (MAF≥ 1%). Our model includes the environmental variable as a fixed effect and accounts

for environmental heterogeneity. The environmental variable is standardized in these analyses. Error bars mark ±2 standard

errors centered on the point estimates. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200,

respectively.
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Figure 3.5: Estimates of GxSex heritability across phenotypes in UK Biobank. a) GxSex heritability and b) ratio

of GxSex to additive heritability. We applied GENIE to N = 291, 273 unrelated white British individuals and M = 459, 792

array SNPs (MAF≥ 1%). Our model includes the environmental variable as a fixed effect and accounts for environmental

heterogeneity. The environmental variable is standardized in these analyses. Error bars mark ±2 standard errors centered on

the point estimates. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.6: Estimates of GxAge heritability across phenotypes in UK Biobank. a) GxAge heritability and b) ratio

of GxAge to additive heritability. We applied GENIE to N = 291, 273 unrelated white British individuals and M = 459, 792

array SNPs (MAF≥ 1%). Our model includes the environmental variable as a fixed effect and accounts for environmental

heterogeneity. The environmental variable is standardized in these analyses. Error bars mark ±2 standard errors centered on

the point estimates. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.7: Estimates of GxStatin heritability across phenotypes in UK Biobank. a) GxStatin heritability and

b) ratio of GxStatin to additive heritability. We applied GENIE to N = 291, 273 unrelated white British individuals and

M = 459, 792 array SNPs (MAF≥ 1%). Our model includes the environmental variable as a fixed effect and accounts for

environmental heterogeneity. The environmental variable is standardized in these analyses. Error bars mark ±2 standard errors

centered on the point estimates. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200,

respectively.
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Figure 3.8: Per-allele squared GxE and additive effect sizes as a function of MAF and LD. a) The squared per-allele

GxE effect size for four selected pairs of trait and environments (trait-E pairs). b) The squared per-allele additive effect size for

the same trait-E pairs. The x-axis corresponds to MAF-LD annotations where annotation i.j includes SNPs in MAF bin i and

LD quartile j where MAF bin 1 and MAF bin 2 correspond to SNPs with MAF ≤ 5% and MAF > 5% respectively while the

first quartile of LD-scores correspond to SNPs with the lowest LD-scores respectively). The y-axis shows the per-allele GxE (or

additive) effect size squared defined as
h2
k

2Mkfk(1−fk)
where h2

k is the GxE (or additive) heritability attributed to bin k, Mk is

the number of SNPs in bin k, and fk is the mean MAF in bin k. Error bars mark ±2 standard errors centered on the estimated

effect sizes.
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Figure 3.9: Partitioning GxE heritability across 53 tissue-specific genes.. We plot −log10(p) where p is the corre-

sponding p-value of the tissue-specific GxE enrichment defined as
h2
gxe,tissue/h

2
gxe,total

Mtissue/Mtotal
. For every tissue-specific annotation,

we use GENIE to test whether this annotation is significantly enriched for per-SNP heritability, conditional on 28 functional

annotations that are part of the baseline LDSC annotations. The dashed and solid lines correspond to the nominal p < 0.05

and FDR< 0.1 threshold, respectively.
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3.5 Supplementary Notes

3.5.1 Exact computation

tr(HHTHHT) = tr(HTHHTH)

=
LM∑
i,j

(
HTH i,j

)2
(3.15)

=
LM∑
i,j

(
∑
k

HkiHkj)(
∑
l

HliHlj) (3.16)

=
LM∑
i,j

N∑
k,l

HkiHkjHliHlj

Using the expression in Equation 3.16, exact computation of tr(HHTHHT) requiresO(N(ML)2)

time.

Write Hki = GkaEkb where i = ρ(a, b) for some invertible mapping ρ that maps pairs

(a, b) ∈ {1, . . . ,M} × {1, . . . , L} to i ∈ {1, . . . ,ML}.

=
LM∑
i,j

N∑
k,l

HkiHkjHliHlj

=
M∑
a,c

L∑
b,d

N∑
k,l

GkaEkbGkcEkdGlaElbGlcEld

=
N∑
k,l

(
M∑
a,c

GkaGkcGlaGlc

)(
L∑
b,d

EkbEkdElbEld

)

=
N∑
k,l

(
M∑
a

GkaGla

)(
M∑
c

GkcGlc

)(
L∑
b

EkbElb

)(
L∑
d

EkdEld

)

=
N∑
k,l

(
M∑
a

GkaGla

)2( L∑
b

EkbElb

)2

(3.17)

This computation requires O(N2(M + L)) time.

Thus, exact computation can be achieved in O(min
(
N2(M + L), N(ML)2

)
) time. The

additional terms that involve H in Equation 3.4 is tr(XXTHHT). We have the following

decomposition:

HHT = (XXT) · (EET),
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where the product is element-wise (this can be seen from the steps in deriving (3.17)). We

also note that similarly:

tr(XXTHHT) =
N∑
i,j

(XXT)2ij · (EET)ij.

This yields an O(N2(M + L)) exact algorithm for calculating all quantities in (3.4). We

would like to avoid explicit computation of H forming a N × ML matrix in solving the

normal equation.

3.5.2 Approximate computation in O(NMLB) time

Lemma 3 [48] Let A be an M ×M matrix and w ∈ RM a random vector with mean zero

and covariance IM . Then wTAw is an unbiased estimator of tr(A).

Lemma 4 Let A be an ML ×ML matrix. Suppose that u ∈ RM ,v ∈ RL are independent

random vectors with mean zero and covariance IM and IL respectively. Then wTAw is an

unbiased estimator of tr(A) where w = u⊗ v.

Proof:

E
[
wTAw

]
= E

[
ML∑
i,j

wiAijwj

]

=
ML∑
i,j

E [wiAijwj]

=
ML∑
i,j

AijE [wiwj]

=
M∑
a,c

L∑
b,d

Aρ(a,b)ρ(c,d)E [uavbucvd]

Here (a, b) = ρ−1(i) and (c, d) = ρ−1(j).If i ̸= j, then either a ̸= c or b ̸= d so that

E [uavbucvd] = 0. Otherwise if i = j, then a = c and b = d so that E [uavbucvd] = E [u2
av

2
b ] =

E [u2
a]E [v2b ] = 1.
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E
[
wTAw

]
=

M∑
a=c

L∑
b=d

Aρ(a,b)ρ(c,d)

=
ML∑
i

Aii

= tr(A)

□

Theorem 2 Suppose that X and E are N ×M genotype and N ×L environment matrices

respectively. DefineH =X⊙E as the N×ML. Assume that w = u⊗v where u ∈ RM ,v ∈

RL are independent random vectors with mean zero and covariance IM and IL respectively.

Then wTHTHHTHw is an unbiased estimator of tr(HTHHTH) with O(NMLB) time

complexity.

Proof: In Lemma 4 we showed that θ̂ ≡ wTHTHHTHw is an unbiased estimator of

tr(HTHHTH). To compute θ̂, we consider the following intermediate computations:

r = Hw (3.18)

s = HTr (3.19)

θ̂ = sTs (3.20)

Based on Lemma 2 , we can compute r in O(NM + NL). Given r, we can compute

s =HTr =
∑

n(xn⊗en)rn in O(NML) time so that θ̂ can be computed in O(NML) time.

Given B random vectors, we can compute θB = 1
B

∑B
b=1w

T
bH

THHTHwb in O(NMLB)

time. □

3.5.3 Alternate estimator of tr(HTHHTH) in O(N(M + L)B) time

Given mutually independent random vectors u ∈ RM ,v ∈ RL, z ∈ RL whose components

are i.i.d. random variables each with mean zero and variance one. Let b = Xu, c = Ev,

F = diag(b)X, and G = diag(c)E.
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Lemma 5 θ̂ = F TG
2

Proof:

F TG = XTdiag(bc)E

=
∑
n

bncnxne
T
n

F TG
2

= tr
((
F TG

)T
F TG

)
= tr

(∑
n′

bn′cn′xn′eTn′

)T∑
n

bncnxne
T
n


= tr

(∑
n

∑
n′

bncnbn′cn′en′xT
n′xne

T
n

)
=

∑
n

∑
n′

bncnbn′cn′tr
(
en′xT

n′xne
T
n

)
=

∑
n

∑
n′

bncnbn′cn′eTnen′xT
n′xn

=
∑
n

∑
n′

rnrn′eTnen′xT
nxn′

=
∑
n

∑
n′

rnrn′eTnen′xT
nxn′

=
∑
n

∑
n′

rnrn′
(
eTn ⊗ xT

n

)
(en′ ⊗ xn′) , Mixed-product property

=
∑
n

∑
n′

rnrn′(en ⊗ xn)
T (en′ ⊗ xn′)

=

(∑
n

rn(en ⊗ xn)
T

)(∑
n′

rn′ (en′ ⊗ xn′)

)
= sTs = θ̂

□

Theorem 3 θ̃ ≡ F TGz
2
is an unbiased estimator of tr(HTHHTH).
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Proof:

E
[
θ̃|u,v

]
= E

[
F TGz

2|u,v
]

= E
[
zTGTFF TGz|u,v

]
= E

[
tr
(
zTGTFF TGz

)
|u,v

]
= E

[
tr
(
GTFF TGzzT

)
|u,v

]
= tr

(
GTFF TGE

[
zzT|u,v

])
= tr

(
GTFF TG

)
= F TG

2

= θ̂, Lemma 5

E
[
θ̃
]

= E
[
E
[
θ̃|u,v

]]
= E

[
θ̂
]

= tr(HTHHTH)

□

We can compute b and F in O(NM) time while c and G can be computed in O(NL)

time. z1 = Gz can be computed in O(NL) time while z2 = F Tz1 can be computed in

O(NM) time so that θ̃ = ∥z2∥22 can be computed in O(M) time. Thus, θ̃ can be computed

in O(N(M + L)) time.

3.5.4 Computation of other terms involving HHT

Lemma 6 Suppose that X and E are N ×M genotype and N × L environment matrices

respectively. Define H = X ⊙ E as the N × ML. Assume that wt = ut ⊗ vt where

ut ∈ RM ,vt ∈ RL are independent random vectors with mean zero and covariance IM and

IL respectively. Let rt = Hwt. Then (yTrt)
2
and ∥XTrt∥22 are unbiased estimators of

yTHHTy and tr(XXTHHT) respectively.
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Proof:

E
[
(yTrt)

2
]

= E
[
(yTrt)(y

Trt)
]

= E
[
(yTHwt)(y

THwt)
]

= E
[
(wT

t H
Ty)(yTHwt)

]
= E

[
tr(wT

t H
TyyTHwt)

]
= E

[
tr(HTyyTHwtw

T
t )
]

(cyclic property of trace)

= tr(E
[
HTyyTHwtw

T
t

]
) (linearity of trace and expectation)

= tr(HTyyTHE
[
wtw

T
t

]
)

= tr(HTyyTH) (E
[
wtw

T
t

]
= I)

= tr(yTHHTy) (cyclic property of trace)

= yTHHTy

Further, we have :

E
[
∥XTrt∥22

]
= E

[
(XTrt)

T(XTrt)
]

= E
[
rTt XX

Trt
]

= E
[
(wT

t H
TX)(XTHwt)

]
= E

[
tr(wT

t H
TXXTHwt)

]
= E

[
tr(HTXXTHwtw

T
t )
]

(cyclic property of trace)

= tr(E
[
HTXXTHwtw

T
t

]
) (linearity of trace and expectation)

= tr(HTXXTHE
[
wtw

T
t

]
)

= tr(HTXXTH) (E
[
wtw

T
t

]
= I)

= tr(XXTHHT) (cyclic property of trace)

□
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3.5.5 Computing the standard errors of the estimates

(σ̃2) = argminσ2 ||yyT −
K∑
k=1

σ2
kKk||2F (3.21)

where KK = IN and Ki =
XiX

T
i

Mi
for i = 1, .., K − 1. The MoM estimator satisfies the

following normal equations:

T = σ2q (3.22)

T is a K ×K matrix with entries Tk,l = tr(KkK l), k, l ∈ {1, . . . , K}, and q is a K-vector

with entries qk = y
TKky. We have:

σ̃2 = T−1q

(3.23)

The covariance matrix of σ̃2 is:

Cov
[
σ̃2
]

= T−1Cov [q]T−1

we have :

Cov [q] = E[qqT ]− E[q]E[q]T

where :

Cov [q]ij = E[yTKiyy
TKjy]− E[yTKiy]E[yTKjy]

Lemma 7 For a random vector z ∼ N (0,C) and symmetric matrices A and B, we have :

Cov
[
zTAz, zTBz

]
= 2tr(CACB)

Proof:

Cov
[
zTAz, zTBz

]
= E

[
zTAzzTBz

]
− E

[
zTAz

]
E
[
zTBz

]
(3.24)
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E
[
zTAzzTBz

]
= E

∑
i,j

ziAijzj

∑
k,l

zkBklzl


= E

∑
i,j,k,l

AijBklzizjzkzl


=

∑
i,j,k,l

AijBklE [zizjzkzl] (3.25)

=
∑
i,j,k,l

AijBkl[E [zizj ]E [zkzl] + E [zizk]E [zjzl] + E [zizl]E [zkzj ]] (3.26)

=
∑
i,j,k,l

AijBkl[CijCkl + CikCjl + CilCjk] (3.27)

=
∑
i,j,k,l

AijBklCijCkl +
∑
i,j,k,l

AijBklCikCjl +
∑
i,j,k,l

AijBklCilCjk

=
∑
i,j,k,l

AijCijBklCkl +
∑
i,j,k,l

AijCikBklCjl +
∑
i,j,k,l

AijCilBklCjk

=
∑
i,j

AijCij

∑
k,l

BklCkl +
∑
i,j,k,l

AijCikBklCjl +
∑
i,j,k,l

AijCikBlkCjl (3.28)

= tr(AC)tr(BC) + 2
∑
i,j,k,l

AijCikBklCjl (3.29)

= tr(AC)tr(BC) + 2
∑
j,k

(∑
i

AjiCik

)(∑
l

BklClj

)
(3.30)

= tr(AC)tr(BC) + 2
∑
j,k

(AC)jk(BC)kj (3.31)

= tr(AC)tr(BC) + 2tr(ACBC) (3.32)

Equation 3.25 follows by linearity of expectation while Equation 3.26 follows from an application

of Isserlis’ theorem and Equation 3.27 follows from the fact that z ∼ N (0,C). Equation 3.28

follows by grouping factors in the first term and by interchanging indices l and k in the second term.

Equation 3.29 follows from the fact thatB is symmetric so that Bkl = Blk so that the last two terms

are identical. Equation 3.30 uses the fact that matrices A and C are symmetric. Equation 3.31 is
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the definition of matrix multiplication, and Equation 3.32 follows from the definition of the trace.

E
[
zTAz

]
= E

∑
i,j

ziAijzj


= E

∑
i,j

Aijzizj


=

∑
i,j

AijE [zizj ]

=
∑
i,j

AijCij

= tr(AC) (3.33)

Equation 3.24 follows by combining Equations 3.32 and 3.33. □

By using Lemma 7 and the following fact E(xy) = cov(x, y) + E(x)E(y) we have :

Cov [q]ij = 2tr(ΣKiΣKj) + tr(KiΣ)tr(KjΣ)− (tr(KiΣ)tr(KjΣ))

= 2tr(ΣKiΣKj)

Replacing Σ by its estimate, yyT and Σ by its estimate Σ̃ =
∑K

k=1 σ̃
2
kKk, the plug-in

estimate of Cov [q]kl :

̂Cov [q]kl = 2yTKkΣ̃K ly

= 2yTKk

(
K∑
t=1

σ̃2
tKt

)
K ly

= 2

(
K∑
t=1

σ̃2
ty

TKkKtK ly

)

= 2
K∑
t=1

σ̃2
t

(
wT

k

X tX
T
t

Mt

wl

)

wherewt =Kty, t ∈ {1, . . . , K}. Therefore, Ĉov [q]kl can be computed in timeO( NMK2

max(log3(N),log3(M))
).
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3.6 Simulations of MAF and LD-dependent genomic architectures

To simulate MAF and LD-dependent architectures, we simulated phenotypes from genotypes

using the following model that extends prior models of additive genetic architecture [18, 45]

to include GxE effects:

σ2
g,m = Scmw

b
m[fm(1− fm)]

a

(β1,β2, ..,βm)
T ∼ N (0, diag(σ2

g,1, σ
2
g,2, ..., σ

2
g,m))

σ2
gxe,m = S

′
c
′

mw
b
m[fm(1− fm)]

a

(α1,α2, ..,αm)
T ∼ N (0, diag(σ2

gxe,1, σ
2
gxe,2, ..., σ

2
gxe,m)) (3.34)

y|β,α ∼ N (Xβ + (X ⊙E)α, (1− h2
g − h2

gxe − h2
nxe)IN + h2

nxe(IN ⊙E))

where h2
g, h

2
gxe, h

2
nxe ∈ [0, 1], a ∈ {0, 0.75}, b ∈ {0, 1}. Here S and S

′
are normalizing

constants chosen so that
∑M

m=1 σ
2
g,m = h2

g,
∑M

m=1 σ
2
gxe,m = h2

gxe. Additive and GxE effect

sizes are denoted by β and α respectively. fm and wm are the minor allele frequency and

LD score of mth SNP respectively. In this model, cm, c
′
m ∈ {0, 1} are indicator variables for

the causal status of SNP m (cm = 1 and c
′
m = 1 for all SNPs). The LD score of a SNP

is defined to be the sum of the squared correlation of the SNP with all other SNPs that

lie within a specific distance. Setting a = 0, b = 0 for additive effects results in the GCTA

model where the per-standardized genotypic effect sizes at a SNP do not vary with MAF

or LD score [134, 3] while setting a = 0.75, b = 1 results in the LDAK model [109]. Our

simulations assume that the GxE effects follow the same coupling as the additive effects. We

used phenotypes from N = 40k individuals genotyped at M = 459, 792 SNPs on the UKBB

array.
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3.7 Supplementary Figures
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Figure 3.10: Effect of an estimated standard error on controlling False positive rate . a) We assessed the calibration

of GENIE and MEMMA using their true SE instead of the estimation of SE in simulations. MEMMA has biased estimates of

SE, leading to a high false positive rate even in the absence of a NxE effect. b) We plot the ratio of true SE over the mean of

estimated SE across 100 replicates as a function of the variance of the NxE effect.
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Figure 3.11: Comparison of h2
gxe estimates with B = 10 and B = 100 on large scale data. We simulated phenotypes

from M = 459, 792 array SNPs and N = 291, 273 individuals where h2
g = 0.25, h2

gxe = 0 and the causal ratio is 10% .
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Figure 3.12: Accuracy of GENIE when applied to multiple environmental variables. We evaluated h2
gxe estimates of

GENIE for different values of σ2
gxe. We simulated phenotypes with 10 environmental variables where σ2

g = 0.2, σ2
ge1 = σ2

ge2 =

σ2
ge3 = σ2

ge4 = σ2
ge5 = 0, σ2

ge6 = σ2
ge7 = σ2

ge8 = 0.10 and σ2
ge9 = σ2

ge10 = 0.01. Points and error bars represent the mean and

±2 SE. Mean and SE are computed from 100 replicates. Here B is the number of random vectors used by GENIE with B = 10

the value that we use as default (we reported values of means, SEs, and p-values of a test of the null hypothesis of no bias in

the estimates of variance components in Supplementary Table 1)
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Figure 3.13: Runtime scaling of GENIE. We evaluated the runtime of GENIE, MEMMA, and GCTA(HE) with increasing

sample size N (for a fixed number of SNPs M = 459, 792 and single environmental variable). We fit single G and GxE variance

components. All methods were run on an Intel(R) Xeon(R) Gold 6140 CPU 2.30GHz with 187 GB RAM. Ten random vectors

are used by GENIE and MEMMA. The runtime of GCTA(HE) includes the computation of the GRM. GENIE and GCTA(HE)

are executed on a single core while MEMMA is run on both a single core and four cores.
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Figure 3.14: Estimated additive variance component from three different models. In this figure, G, GxE and NxE

refer to additive, gene-by-environment, and noise-by-environment components, respectively. Every model is named by a set

of variance components fitted jointly under that model. Estimates of additive components under the three models where the

environmental variable is a) smoking status, b) sex, c) statin usage, and d) age. The estimates of additive heritability obtained

by GENIE are consistent under these three models across environmental variables.
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Figure 3.15: Effect of Noise heterogeneity (NxE) on estimates of heritability associated with GxSex across 50

quantitative phenotypes in UKBB. Model G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-environment interaction and environmental het-

erogeneity (noise-by-environment interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE models to

assess the effect of fitting a NxE component on the GxE and additive heritability estimates. b) Comparison of GxE heritability

estimates obtained from GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis). Black error bars mark ±

standard errors centered on the estimated GxE heritability. c) We performed permutation analyses by randomly shuffling, in

turn, the environmental values, phenotypes or genotypes and applied GENIE in each setting under G+GxE and G+GxE+NxE

models. We report the fraction of rejections (p-value of a test of the null hypothesis of zero GxE heritability < 0.001 that

accounts for the number of phenotypes tested) over 50 UKBB phenotypes.

105



0.1

0.2

0.3

0.4

0.5

G

h2  (G
)

a

−0.02

−0.01

0.00

0.01

0.02

GxE

h2  (G
xA

ge
)

Model G+GxE G+GxE+NxE

●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

●

●

0.00

0.01

0.02

−0.02 −0.01 0.00 0.01

h2 (GxAge) from G+GxE

h2  (G
xA

ge
) 

fr
om

 G
+

G
xE

+
N

xE

Significant ● ● ● ●Both G+GxE G+GxE+NxE Neither

b

●

●0.0

0.2

0.4

0.6

G+GxE G+GxE+NxE
Model

P
(R

ej
ec

tio
n 

at
 p

<
0.

05
/2

00
)

Permuted Genotypesc

Figure 3.16: Effect of Noise heterogeneity (NxE) on estimates of heritability associated with GxAge across 50

quantitative phenotypes in UKBB. Model G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-environment interaction and environmental hetero-

geneity (noise-by-environment interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE models to assess

the effect of fitting an NxE component on the GxE and additive heritability estimates. b) Comparison of GxE heritability

estimates obtained from GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis). Black error bars mark ±

standard errors centered on the estimated GxE heritability. Color of the dots indicate whether estimates of GxE heritability

are significant under each model. c) We performed permutation analyses by randomly shuffling the genotypes while preserving

the trait-E relationship and applied GENIE in each setting under G+GxE and G+GxE+NxE models. We report the fraction

of rejections (p-value of a test of the null hypothesis of zero GxE heritability < 0.05
200

that accounts for the number of phenotypes

tested) over 50 UKBB phenotypes.
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Figure 3.17: Effect of Noise heterogeneity (NxE) on estimates of heritability associated with GxStatin across 50

quantitative phenotypes in UKBB. Model G+GxE refers to a model with additive and gene-by-environment interaction

components. Model G+GxE+NxE refers to a model with additive, gene-by-environment interaction and environmental het-

erogeneity (noise-by-environment interaction ) components. a) We run GENIE under G+GxE and G+GxE+NxE models to

assess the effect of fitting a NxE component on the GxE and additive heritability estimates. b) Comparison of GxE heritability

estimates obtained from GENIE under a G+GxE+NxE model (x-axis) to a G+GxE model (y-axis). Black error bars mark ±

standard errors centered on the estimated GxE heritability. c) We performed permutation analyses by randomly shuffling, in

turn, the environmental values, phenotypes or genotypes and applied GENIE in each setting under G+GxE and G+GxE+NxE

models. We report the fraction of rejections (p-value of a test of the null hypothesis of zero GxE heritability < 0.001 that

accounts for the number of phenotypes tested) over 50 UKBB phenotypes.
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Figure 3.18: Estimated ratio of variance attributed to noise heterogeneity over additive heritability for Smoking.

Black error bars mark ±2 standard errors centered on the estimated ratio.
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Figure 3.19: Estimated ratio of variance attributed to noise heterogeneity over additive heritability for Sex.

Black error bars mark ±2 standard errors centered on the estimated ratio.
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Figure 3.20: Estimated ratio of variance attributed to noise heterogeneity over additive heritability for Age.

Black error bars mark ±2 standard errors centered on the estimated ratio.
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Figure 3.21: Estimated ratio of variance attributed to noise heterogeneity over additive heritability for Statin

usage. Black error bars mark ±2 standard errors centered on the estimated ratio.
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Figure 3.22: GxSmoking across phenotypes in UK Biobank with the environmental variable coded as binary.

Our model includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Black error bars

mark ±2 standard errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200 respectively.
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Figure 3.23: GxSex across phenotypes in UK Biobank with the environmental variable coded as binary. Our

model includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/50 respectively.
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Figure 3.24: GxStatin across phenotypes in UK Biobank with the environmental variable coded as binary. Our

model includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/50, respectively.
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Figure 3.25: Effect of MAF-LD partitioning on estimated GxE heritability in simulation. We assessed the effect

of MAF-LD partitioning on estimates of h2
gxe in simulations. We ran GENIE in two settings: 1) fitting a model with a single

additive and a single GxE variance component, 2) fitting a model with eight additive and eight GxE components defined

based on four LD annotations (quartiles of LD scores) and two MAF annotations. we simulated phenotypes with GxE effects

and G effects from a subset of N = 40k individuals genotyped at array SNPs M = 459, 792 by varying the coupling of

MAF with effect size (a) and the effect of local LD on effect size (b) (see Supplementary note S2 for details). Here we have

h2
g = h2

gxe = 0.25,h2
nxe = 0.05, and all SNPs are causal for both additive and GxE effects. Each box plot represents estimates

from 100 simulations.
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Figure 3.26: GxSmoking across phenotypes from imputed SNPs in UK Biobank by MAF-LD partitioning. Our

model includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Black error bars mark

±2 standard errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.27: GxSex across phenotypes from imputed SNPs in UK Biobank by MAF-LD partitioning.Our model

includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Error bars mark ±2 standard

errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.28: GxAge across phenotypes from imputed SNPs in UK Biobank by MAF-LD partitioning. Our model

includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Error bars mark ±2 standard

errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.29: GxStatin across phenotypes from imputed SNPs in UK Biobank by MAF-LD partitioning. Our

model includes the environmental variable as a fixed effect and accounts for environmental heterogeneity. Error bars mark ±2

standard errors. The asterisk and double asterisk correspond to the nominal p < 0.05 and p < 0.05/200, respectively.
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Figure 3.30: Comparing GxSex, GxSmoking, GxAge, and GxStatin estimates from imputed SNPs (MAF≥ 0.1%)

and array SNPs (MAF≥ 1%). In this analysis, we applied GENIE to imputed SNPs with MAF/LD stratification and array

SNPs with a single component. Black error bars mark ±2 standard errors. The asterisk and double asterisk correspond to the

nominal p < 0.05 and p < 0.05/200 respectively. Color of the dots indicate whether estimates of GxE heritability are significant

under each model.
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Figure 3.31: Effect of MAF-LD partitioning on estimated GxE heritability. We assessed the effect of MAF-LD

partitioning on estimates of h2
gxSmoking from array SNPs and imputed SNPs. We ran GENIE in two settings: 1) fitting a

model with a single additive and a single GxE variance component, 2) fitting a model with eight additive and eight GxE

components defined based on four LD annotations (quartiles of LD scores) and two MAF annotations. Black error bars mark

±2 standard errors centered on the estimates of h2
gxSmoking . Color of the dots indicate whether estimates of h2

gxSmoking are

significant under each model.
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Figure 3.32: Per-standardized genotype GxE and additive heritability as a function of MAF and LD. a) The

per-standardized genotype GxE heritability for four selected pairs of traits and environments (trait-E pairs). b) The per-allele

additive heritability for the same trait-E pairs. The x-axis corresponds to MAF-LD annotations where annotation i.j includes

SNPs in MAF bin i and LD quartile j where MAF bin 1 and MAF bin 2 correspond to SNPs with MAF ≤ 5% and MAF > 5%

respectively while the first quartile of LD-scores corresponds to SNPs with the lowest LD-scores respectively). The y-axis shows

the per-standardized genotype GxE (or additive) heritability defined as
h2
k

2Mk
where h2

k is the GxE (or additive) heritability

attributed to bin k, Mk is the number of SNPs in bin k. Error bars mark ±2 standard errors centered on the estimated effect

sizes.
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3.8 Supplementary Tables

Method Variance Mean SE Bias Test of bias

component p-value

GENIE G 0.2005 0.0382 5e-04 0.9006

GENIE GxE1 -0.0021 0.027 -0.0021 0.4302

GENIE GxE2 0.0035 0.0257 0.0035 0.1778

GENIE GxE3 -1e-04 0.0275 -1e-04 0.9692

GENIE GxE4 0.0016 0.0245 0.0016 0.5094

GENIE GxE5 0.0017 0.0267 0.0017 0.5159

GENIE GxE6 0.0974 0.0278 -0.0026 0.3449

GENIE GxE7 0.0981 0.0266 -0.0019 0.4673

GENIE GxE8 0.0975 0.0257 -0.0025 0.3329

GENIE GxE9 0.0098 0.0263 -2e-04 0.9537

GENIE GxE10 0.0094 0.0257 -6e-04 0.8082

Table 3.1: Accuracy of GENIE in the setting of multiple environmental variables: We reported the bias, and SE of

GENIE under different settings with L = 10 environmental variables. Bias, mean and SE are computed from 100 replicates.

We report p-value of a test of the null hypothesis of no bias in the estimates of variance components.
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CHAPTER 4

Dominance effects

4.1 Background

Variation in complex traits can be partitioned into variation due to additive, dominance

and epistatic effects [24]. Despite decades of theoretical and experimental efforts, the quan-

tification of non-additive genetic variation in outbred populations such as humans remains

challenging [7, 42, 66, 47, 84]. One approach to estimate non-additive sources of heritability in

humans have been focused on comparing phenotypic similarity between close relatives [116].

These estimates, however, can be biased by confounding due to shared environmental fac-

tors. Further, the limited sample sizes of family and twin studies lead to large standard

errors in estimates of non-additive effects. An alternative approach relies on the analysis of

unrelated individuals. The relatively small estimates of dominance heritability from prior

studies [42, 148] suggest that achieving sufficient power to detect dominance heritability will

require the analysis of large numbers of unrelated individuals and methods that can be run

on these large sample sizes.

To this end, we extend our previously proposed variance components method [82] to

jointly estimate the heritability due to additive and dominance deviation effects attributed to

SNPs genotyped across hundreds of thousands of individuals. Additive variance refers to the

variance in genotypic value (the conditional mean of phenotype given genotype) explained

by regression of the genotypic value on an additive representation of the genotype while

dominance variance denotes the residual variance that is not explained by a model with only

additive effects. Using this definition, the additive variance component captures the variance

attributed to breeding values and includes both additive and dominant genetic effects [?,
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119]. The additive (dominance) heritability refers to the ratio of the additive (dominance)

variance to the phenotypic variance. Further, our method can jointly fit multiple additive

and dominance variance components thereby allowing it to provide unbiased estimates of

heritability for genetic architectures in which SNP effect sizes vary as a function of minor

allele frequency (MAF) and linkage disequilibrium (LD).

Our method obtains unbiased estimates of additive and dominance heritability under a

range of MAF and LD-dependent architectures while controlling the false positive rate of

rejecting the null hypothesis of no dominance heritability under genetic architectures that

assume no dominance. Applying our method to a total of 50 continuous traits measured

in 291, 273 unrelated white British individuals in the UK Biobank, we find that additive

heritability is 21.86% on average while dominance heritability is 0.13% on average (about

0.48% of the heritability attributed to additive effects) across common array SNPs (M =

459, 792 SNPs, MAF > 1%). Analyzing common imputed SNPs (M = 4, 824, 392, MAF

> 1%), we find that additive heritability is 22.83% on average while dominance heritability

is 0.06% on average (about 0.47% of the heritability attributed to additive effects). We find

no evidence for traits that have non-zero dominance heritability after correcting for multiple

testing (p < 0.05
50

). Based on the power estimates of our method, we estimate that dominance

heritability is unlikely to exceed 1% for the traits analyzed.

4.2 Materials and Methods

4.2.1 Additive and dominance variance components model

We are interested in estimating how much extra genetic variance can be explained by dom-

inance variation on top of a model with only additive effects. We aim to fit a variance

components model that relates phenotypes y measured across N individuals to their addi-

tive values and dominant deviations over M SNPs (while allowing for multiple additive and
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dominance components).

y =
K∑
i=1

X iβi +
L∑

j=1

Djαj + ϵ

ϵ ∼ D(0, σ2
eIN)

βi ∼ D(0,
σ2
A,i

Mi

IMi
), i ∈ {1, . . . , K}

αj ∼ D(0,
σ2
D,j

Mj

IMj
), j ∈ {1, . . . , L}

Here D(µ,Σ) is an arbitrary distribution over a random vector with mean µ and covariance

matrix Σ. SNPs are partitioned into K additive categories and L dominance categories

where X i and Dj are the N ×Mi and N ×Mj matrices consisting of standardized additive

and dominance deviation encodings of SNPs belonging to additive category i and domi-

nance category j respectively, σ2
e is the residual variance, and σ2

A,i and σ2
D,i are the variance

component of i-th additive and dominance categories respectively.

Our representation captures dominance deviation, which is different from the dominance

effect of markers[119]. We encode additive and dominance deviation effects using a repre-

sentation that leads to uncorrelated variance components [148, 119]. For alleles A and B at

a SNP with the frequency of allele B denoted by fB, the additive and dominance deviation

encodings of the genotypes are defined as follows :

vA(AA) = 0, vA(AB) = 1, vA(BB) = 2

vD(AA) = 0, vD(AB) = 2fB, vD(BB) = (4fB − 2)

The proportion of phenotypic variance explained by additive variation (additive heritability)

at all SNPs is defined as:

h2
A =

∑K
i=1 σ

2
A,i∑K

i=1 σ
2
A,i +

∑L
j=1 σ

2
D,j + σ2

e

(4.1)

The proportion of phenotypic variance explained by dominance deviation (dominance heri-

tability) at all SNPs is defined as:

h2
D =

∑L
j=1 σ

2
D,j∑K

i=1 σ
2
A,i +

∑L
j=1 σ

2
D,j + σ2

e

(4.2)
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The proposed model extends previous models by introducing the component correspond-

ing to dominance deviation effects in addition to the additive effects [82]. Further, the pro-

posed model allows for the joint estimation of multiple additive and dominance components,

e.g., corresponding to SNPs with varying minor allele frequency (MAF) and linkage dise-

quilibrium (LD) annotations that have been previously shown to lead to relatively unbiased

estimates of SNP heritability [18, 82].

The key inference problem in this model is the estimation of the variance components:

(σ2
A,σ

2
D, σ2

e) where σ
2
A = (σ2

A,1, .., σ
2
A,K) and σ

2
D = (σ2

D,1, .., σ
2
D,L). We use a scalable method-

of-moments estimator, i.e., finding values of the variance components such that the popu-

lation moments match the sample moments [37, 30, 117, 33, 145]. Our method uses a ran-

domized algorithm that avoids explicitly computing genetic relatedness matrices. Instead,

it operates on a smaller matrix formed by multiplying the input genotype matrix with a

small number of random vectors allowing it to scale to large samples. We estimate stan-

dard errors (SE) using an efficient block Jackknife over SNPs with 100 blocks. To estimate

the variance components, we use a Method-of-Moments (MoM) estimator that estimates

parameter values so that the population moments are close to the sample moments [41].

Since E [y] = 0, we derived the MoM estimates by equating the population covariance to the

empirical covariance. The population covariance is given by:

cov(y) = E[yyT ]− E[y]E[yT ] =
∑
i

σ2
A,iKA,i +

∑
j

σ2
D,jKD,j + σ2

eIN (4.3)

Here KA,k =
XkX

T
k

Mk
(KD,k =

DkD
T
k

Mk
) is the additive (dominance) genetic relatedness matrix

(GRM) computed from all SNPs of k-th category. Using yyT as our estimate of the em-

pirical covariance, we need to solve the following least squares problem to find the variance

components.

(σ̃2
A, σ̃

2
D, σ̃2

e) = argmin(σ2
A,σ2

D ,σ2
e)
||yyT − (

∑
i

σ2
A,iKA,i +

∑
j

σ2
D,jKD,j + σ2

eIN)||2F (4.4)

For simplicity, we denote Ki = KA,i for i = 1, .., K,KK+j = KD,j for j = 1, .., L and
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J = K + L. The MoM estimator satisfies the following normal equations:T b

bT N

σ̃2

σ̃2
e

 =

 c

yTy

 (4.5)

Here σ̃2 =

 σ̃2
A

σ̃2
D

, T is a J × J matrix with entries Tk,l = tr(KkK l), k, l ∈ {1, . . . , J},

b is a J-vector with entries bk = tr(Kk) = N (because Xks and Dks are standardized ),

and c is a J-vector with entries ck = yTKky. Each GRM Kk can be computed in time

O(N2Mk) and O(N2) memory. Given J GRMs, the quantities Tk,l, ck, k, l ∈ {1, . . . , J},

can be computed in O(J2N2). Given the quantities Tk,l, ck, the normal Equation (4.5)

can be solved in O(J3). Therefore, the total time complexity for estimating the variance

components is O(N2M + J2N2 + J3)

The key bottleneck in solving the normal Equation (4.5) is the computation of Tk,l,

k, l ∈ {1, . . . , J} which takes O(N2M). Instead of computing the exact value of Tk,l, we

use an unbiased estimator of the trace [48] based on the following identity: for a given

N ×N matrix C, zTCz is an unbiased estimator of tr(C) (E[zTCz] = tr[C]) where z be

a random vector with mean zero and covariance IN . Hence, we can estimate the values Tk,l,

k, l ∈ {1, . . . , J} as follows:

Tk,l = tr(KkK l) ≈ T̂k,l =
1

B

1

MkMl

∑
b

zTb EkE
T
kElE

T
l zb (4.6)

where Ei matrix can be standardized additiveXi or dominance Di matrix. Here z1, . . . ,zB

are B independent random vectors with zero mean and covariance IN . We draw these

random vectors independently from a standard normal distribution. Computing Tk,l using

the unbiased estimator involves four multiplications of sub-matrices of the genotype matrix

with a vector, repeated B times. Therefore, the total running time for estimating the matrix

T is O(NMB + J2NB).
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4.2.2 Simulations

We simulated phenotypes for UK Biobank genotypes consisting of M = 459, 792 array SNPs

and N = 291, 273 unrelated white British individuals (see Section on UK Biobank data).

We simulated phenotypes from genotypes using the following model:

σ2
A,m = Scmw

b
m[fm(1− fm)]

a

(β1,β2, ..,βm)
T ∼ N (0, diag(σ2

A,1, σ
2
A,2, ..., σ

2
A,m))

σ2
D,m = S

′
c
′

m

(α1,α2, ..,αm)
T ∼ N (0, diag(σ2

D,1, σ
2
D,2, ..., σ

2
D,m))

y|β,α ∼ N (Xβ +Dα, (1− h2
A − h2

D)IN) (4.7)

where h2
A, h

2
D ∈ [0, 1], a ∈ {0, 0.75} ,b ∈ {0, 1}. Here S and S

′
are normalizing constants

chosen so that
∑M

m=1 σ
2
A,m = h2

A,
∑M

m=1 σ
2
D,m = h2

D. Additive and dominance deviation effect

sizes are denoted by β and α respectively. fm and wm are the minor allele frequency and

LDAK score of mth SNP respectively. In this model, cm, c
′
m ∈ {0, 1} are indicator variables

for the causal status of SNP m .The LD score of a SNP is defined to be the sum of the

squared correlation of the SNP with all other SNPs that lie within a specific distance, and

the LDAK score of a SNP is computed based on local levels of LD such that the LDAK score

tends to be higher for SNPs in regions of low LD [109] . The above models relating genotype

to phenotype are commonly used in methods for estimating SNP heritability: the GCTA

Model (when a = b = 0 in Equation 4.7), which is used by the software GCTA [134], and

the LDAK Model (where a = 0.75, b = 1 in Equation (4.7)) used by software LDAK [109].

Moreover, under each model, we varied the proportion and minor allele frequency (MAF) of

causal variants (CVs). Proportion of causal variants were set to be either 100% or 1%, and

MAF of causal variants drawn uniformly from [0, 0.5] or [0.01, 0.05] or [0.05, 0.5] to consider

genetic architectures that are either infinitesimal or sparse as well genetic architectures that

include a mixture of common and rare SNPs as well as one that includes only common SNPs.

We generated 100 sets of simulated phenotypes for each setting of parameters.

In experiments to assess the false positive rate, the additive heritability was set to 0.5
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while the dominance heritability was set to 0. We computed p-values of a test of the null

hypothesis of no h2
D by computing the Z-score of the estimated h2

D to its standard error

and computing a p-value of the two-tailed test. Let h2
D(i) be the estimate of h2

D while ŜEi

is the jackknife estimate of standard error on the i-the replicate for i ∈ {1, .., 100}. We

computed the p-value of a test of the null hypothesis of no h2
D on the i-th replicate from

the Z-score defined as h2
D(i)/ŜEi for i ∈ {1, .., 100} To test the bias of the estimator, for

every simulation setting, first we compute mean(ĥ2
D) and SE(ĥ2

D) from all replicates, then

we reported p-values of a test of no bias from the Z-score defined as
mean(ĥ2

D)−h2
D

SE/10
.

4.2.3 Power

To assess the power of our method to detect dominance heritability, we considered simula-

tions under different genetic architectures with a non-zero dominance heritability. Across

16 different genetic architectures, we vary the additive and dominance heritabilities and

proportion of causal dominance variants (Methods). We simulated 100 replicates for every

genetic architecture. Let h2
D(i) be the estimate of h2

D while ŜEi is the jackknife estimate of

standard error on the i-the replicate for i ∈ {1, .., 100}. We computed the p-value of a test of

the null hypothesis of no h2
D on the i-th replicate from the Z-score defined as as h2

D(i)/ŜEi

for i ∈ {1, .., 100}. Finally, we reported the percentage of replicates with p-value< t as the

power of our method on a given simulated genetic architecture for a p-value threshold of t.

4.2.4 UK Biobank Data

We applied our method to UK Biobank data. We restricted our study to self-reported

British white ancestry individuals which are > 3rd degree relatives that is defined as pairs

of individuals with kinship coefficient < 1/2(9/2) [4]. Furthermore, we removed individuals

who are outliers for genotype heterozygosity and/or missingness. We removed SNPs with

greater than 1% missingness and minor allele frequency < 1%, and that fail the test of

Hardy-Weinberg equilibrium at significance threshold 10−7. Finally we obtained a set of

N = 291, 273 individuals and M = 459, 792 SNPs to use in the real data analyses. We
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included age, sex, and the top 20 genetic principal components (PCs) as covariates in our

analysis for all traits. We used PCs precomputed by the UK Biobank from a superset of

488, 295 individuals. Additional covariates were used for waist-to-hip ratio (adjusted for

BMI) and diastolic/systolic blood pressure (adjusted for cholesterol-lowering medication,

blood pressure medication, insulin, hormone replacement therapy, and oral contraceptives).

Further, we also analyzed M = 4, 824, 392 imputed SNPs with MAF > 1% minor allele

frequency (excluding SNPs with missingness > 1% and SNPs that fail the Hardy-Weinberg

test at significance threshold 10−7) across N = 291, 273 unrelated white British individuals.

4.3 Results

4.3.1 Accuracy of estimates of dominance heritability in simulations

Previous studies estimate a relatively small contribution of dominance heritability for com-

plex traits [148] so that we would like to test the false positive rate of a test of the hypothesis

of no dominance heritability. To assess the false positive rate of our method, we performed

simulations in the absence of dominance deviation effects (M = 459, 792 SNPs, N = 291, 273

individuals). Since additive SNP effects tend to vary as a function of MAF and LD patterns

at the SNP [18, 29] and SNP heritability estimates tend to be sensitive to these assumptions,

we simulated phenotypes according to 16 MAF and LD-dependent architectures by varying

the additive heritability, the proportion of variants that have non-zero effects (causal variants

or CVs), the distribution of causal variants across minor allele frequencies (CVs distributed

across all minor allele frequency bins or CVs restricted to either common or low-frequency

bins), and the form of coupling between the SNP effect size and MAF as well as LD. The

key parameter in applying our method is the number of random vectors B which we set

to 10.The key parameter in applying RHE-mc is the number of random vectors B.We have

performed a set of experiments to explore the choice of B. We simulated 100 phenotypes

based on M = 459, 792 array SNPs and N = 291, 273 individuals where h2
A = 0.25 and

h2
D = 0.02, pcausal(A) = 1 and pcausal(D) = 0.02. We observe that the Pearson’s correlation
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coefficients (r) between estimates with B = 10 and estimates with B = 100 are 0.94 (additive

heritability) and 0.91 (dominance heritability). Therefore, B = 10 is sufficient for the appli-

cations considered. To obtain unbiased estimates, we also do not constrain the estimates of

the variance components (allowing for negative estimates).

Recent studies have shown that methods that fit a single additive variance component

yield biased estimates of SNP heritability due to the LD and MAF dependent architecture

of complex traits [18, 29, 44] while models that allow for SNP effects to vary with MAF

and LD obtain relatively unbiased estimates [18, 29, 82]. Thus, we ran our method using 24

bins for additive effects (based on 6 MAF and 4 LD bins) and a single bin for dominance

deviation effects (although our method allows for fitting multiple dominance bins). Across

the range of genetic architectures, we obtained accurate estimates of h2
A when we jointly fit

additive and dominance heritability: biases range from −2×10−3 to 2×10−3 where h2
A = 0.5

(Figure 4.1). We also obtain unbiased estimates of h2
D with biases ranging from −5×10−5 to

6×10−4 where h2
D = 0.0 (Figure 4.1). Importantly, the false positive rate of rejecting the null

hypothesis of no dominance heritability across 16 diverse genetic architecture is controlled at

level 0.05 (see Table 4.1). We performed additional simulations that demonstrate accurate

heritability estimates for a smaller sample size of N = 10, 000 individuals.

Next, we considered simulations under genetic architectures with a non-zero dominance

heritability. We evaluated the accuracy of additive and dominance heritability estimates

across 16 different genetic architecture where we vary the additive and dominance heritabili-

ties and proportion of causal dominance variants. We ran our method using 24 bins for addi-

tive effects (based on 6 MAF and 4 LD bins) and a single bin for dominance deviation effects.

We obtained accurate estimates of h2
A and h2

D when we jointly fit additive and dominance

heritability : biases range from −1.6×10−3 to 2.7×10−4 where h2
D ∈ {0.05, 0.02, 0.01, 0.001}

for dominance heritability while the biases range from −2.3 × 10−3 to 1.4 × 10−4 where

h2
A ∈ {0.5, 0.25} for additive heritability (Figure 4.2).

In addition, we observe high power (> 95% for a p-value threshold of 0.05) to detect

dominance heritability as low as 1% in a sample size of ≈ 300, 000 (Table 4.2). A more
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realistic assessment of power would consider the multiple testing burden incurred when test-

ing a collection of phenotypes with the goal of discovering traits with significant dominance

heritability. Assuming we test fifty phenotypes (matching our analyses of the UK Biobank),

we estimate 100% power to detect h2
D = 2% and > 50% power to detect h2

D = 1% in a

sample of ≈ 300, 000 individuals (p < 0.05
50

).

We performed simulations to compare the accuracies of RHE-mc to REML and HE

regression implemented in the GCTA software. For computational reasons, we simulate

phenotypes from a subsampled set of 10, 000 genotypes across M = 459, 792 array SNPs

from the UK Biobank data. We simulated 100 phenotypes where h2
A = 0.25 and h2

D = 0.05,

pcausal(A) = 1 and pcausal(D) = 0.05. All three methods obtain unbiased estimates of

additive and dominance heritability. The standard error of RHE-mc is 3% and 12% larger

than REML(GCTA) for additive and dominance heritability respectively. The standard error

of RHE-mc is same as HE(GCTA) for additive heritability and 3% less than HE(GCTA) for

dominance heritability.

Further, we evaluated the accuracy of the jackknife estimate of standard error in simula-

tions (N = 291, 273 unrelated individuals, M = 459, 792 array SNPs) across diverse genetic

architectures. We observe that the jackknife SE yields estimates with relative bias −1.7%

on average over 13 genetic architectures.

Finally, we performed experiments to measure the extent to which we are able to capture

additive and dominance variation of causal SNPs when only a subset of causal SNPs are

observed due to imperfect tagging. In the first set of experiments, we simulated phenotypes

based on array SNPs (N = 291, 273 unrelated individuals, M = 459, 792 array SNPs) where

h2
A = 0.25 and h2

D = 0.02, the proportion of causal variants in the additive component is var-

ied between 1% and 100% while the proportion of causal variants in the dominance variance

component is set to 1%. We ran RHE-mc on genotypes with varying proportions of observed

causal SNPs, pobserved ∈ {0%, 50%, 75%, 100%}. While estimates of additive heritability re-

main relatively unbiased, estimates of dominance heritability are biased downwards with the

magnitude of the bias being proportional to the percentage of observed causal SNPs. These
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experiments suggest that dominance heritability is more sensitive to imperfect tagging than

additive heritability (although this sensitivity might also be partly explained by the smaller

magnitudes of the dominance heritability in our simulations). To further explore this issue,

we repeated this experiment using M = 4, 824, 392 imputed genotypes with MAF > 1%

with the same genetic architecture used in the analysis of array SNPs. We observe that

both additive and dominance heritability estimates are relatively unbiased even when the

percentage of observed causal SNPs is as low as 0%. These observations likely reflect the

better tagging of SNPs that encode additive and dominance genotypes in the imputed data.

4.3.2 Additive and dominance effects in the UK Biobank

We applied our method to estimate additive and dominance heritability for 50 quantitative

traits in the UK Biobank [4] by partitioning the additive component into 8 bins (based

on two MAF bins (MAF≤ 0.05, MAF> 0.05) and quartiles of the LD-scores) and a single

dominance bin. We restricted our analysis to N = 291, 273 unrelated white British individual

and M = 459, 792 SNPs (MAF> 1%) that were present in the UK Biobank Axiom array.

Further, we chose a subset of 50 traits out of a total of 57 traits that have evidence for

non-zero additive heritability (Z-score > 3).

Across the 50 traits, we observe that the average additive heritability (h2
A) is 21.86%

(standard deviation of 9.21% across traits) (Figure 4.3). On the other hand, we estimate

average dominance heritability (h2
D) to be 0.13% (SD = 0.39%). On average, we observe

that dominance heritability is about 0.48% of additive heritability. We find no evidence for

traits that have statistically significant non-zero dominance heritability after correcting for

multiple testing (p < 0.05
50

).

Applying our method with a single additive component (no MAF/LD partitioning), we

obtain an average h2
A = 27.72% (SD=12.14% ) and average h2

D = 0.17% (SD=0.42%) across

50 traits with no evidence for statistically significant non-zero h2
D(Table S4).

To assess the effect of population stratification on our results, we repeated our analyses

retaining the first 10 PCs and 40 PCs. While our original results with first 20 PCs suggested
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that average h2
D = 0.13% (SD=0.39%), we observe average h2

D = 0.13% (SD= 0.38%) with

the first 10 PCs while average h2
D = 0.11% (SD= 0.42%) with the first 40 PCs. Across these

analyses, none of the traits show evidence for non-zero h2
D estimates that are statistically

significant.

To explore the impact of imperfect tagging of causal variants on our results, we analyzed

M = 4, 824, 392 imputed genotypes with MAF > 1%. We observed average h2
A = 22.83%

(SD=9.49%) across the 50 traits (Figure 4.4; Pearson’s correlation between the point esti-

mates of h2
A across array and imputed genotypes is 0.998) with no statistically significant

differences between the h2
A estimates (p < 0.05

50
). On the imputed genotypes, we estimated

average h2
D to be 0.06% (SD=0.19%) with the dominance heritability being about 0.47% of

additive heritability. We also did not observe any statistically significant differences between

the h2
D estimates across array and imputed genotypes suggesting that imperfect tagging of

common causal SNPs (MAF > 1%) is unlikely to explain our results. Although we did not

find evidence for statistically significant non-zero h2
D after correcting for multiple testing, we

found suggestive evidence for non-zero dominance heritability for blood biochemistry traits:

aspartate, basal metabolic rate, blood reticulocyte count , glucose, and calcium (p < 0.05).

4.4 Discussion

The contribution of non-additive genetic effects to complex trait variation has been intensely

debated [7, 42, 11, 148, 47]. Here, we have extended our previously developed variance com-

ponents method [82] to jointly estimate multiple additive and dominance variance compo-

nents on biobank-scale genotype-trait data. We find that our method accurately estimates

additive and dominance heritability across a range of MAF and LD-dependent genetic archi-

tectures. While tests for the existence of a dominance component have well-controlled false

positive rates, our method has high power to detect dominance components with h2
D >= 1%

in a sample of ≈ 300K unrelated individuals. In application to 50 quantitative traits in the

UK Biobank with genotypes measured across 459, 792 array SNPs (MAF > 1%) as well as

genotypes measured across 4, 824, 392 imputed SNPs (MAF> 1%), we observe substantial
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additive heritability (21.86% on average for array SNPs, 22.83% on average for imputed

SNPs). On the other hand, estimates of dominance heritability tend to be low (0.13% for ar-

ray and 0.06% for imputed SNPs) so that we do not find any trait with statistically significant

evidence of dominance heritability.

While a previous study [148] estimated a 3% dominance heritability (point estimate aver-

aged across 79 traits), we estimate a dominance heritability of 0.13% (point estimate averaged

across 50 traits). The differences in the point estimates could be due to the differences in

the set of phenotypes and individuals analyzed as well as methodology used. However, our

results are concordant with Zhu et al. in that we find no statistically significant estimate of

dominance heritability across the traits analyzed. Further, Zhu et al. analyzed a 7,000 indi-

viduals which leads to larger SEs than our results based on 300K individuals. The authors

of Zhu et al. note that the power to estimate a dominance heritability of 0.05 with a sample

size of 7,000 is only about 12%. On the other hand, our power calculations indicate that

it is unlikely that h2
D is larger than 1% at the traits analyzed. Taken together, our results

suggest that systematic identification of dominance heritability will require analysis of even

larger sample sizes than the ≈ 300K individuals that we analyzed here. While the growth

of Biobank-scale datasets will facilitate such estimates, such analyses will also require the

development of novel methods that can analyze data at scale.

We discuss several limitations of our study as well as directions for future work. The

analysis of dominance variance that we have undertaken relies on a specific encoding of

dominance and additive effects that leads to uncorrelated components [148]. Due to the

choice of this representation, the additive variance component that we estimate includes a

contribution from dominant genetic effects while the dominance variance component quan-

tifies the extra genetic variance that can be explained by dominance deviation on top of

the additive only model. Alternative encodings might be associated with different statisti-

cal and biological interpretation [47]. Second, while our analysis has focused primarily on

common SNPs (MAF > 1%), previous work has shown that dominance deviation effects

tend to decay faster due to imperfect tagging relative to additive effects leading to a larger
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bias in estimates of these effects [148]. The concordance of our results across array and im-

puted genotypes suggests that our estimates of dominance heritability attributed to common

SNPs are likely to be robust although we would still underestimate the contribution from

low-frequency SNPs. The scalability of our method allows for the exploration of alterna-

tive encodings and low-frequency variants at scale. Finally, while our current work focuses

on quantitative traits, methods that have previously proposed to estimate heritability in

case-control studies [33, 125] can be extended to estimate dominance heritability for binary

traits.
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(A) The accuracy of estimates of dominance heritability

(B) The accuracy of estimates of additive heritability

Figure 4.1: The accuracy of estimates of dominance and additive heritabilities in simulations with no dominance

heritability (N = 291, 273 unrelated individuals, M = 459, 792 array SNPs). In A and B: We plot estimates from

our method in the absence of dominance deviation effects under 16 different genetic architectures. We varied the MAF range

of causal variants (MAF of CV), the coupling of MAF with effect size (a), and the effect of local LD on effect size (b = 0

indicates no LDAK weights and b = 1 indicates LDAK weights. We ran 100 replicates where the true additive and dominance

heritabilities of the phenotype are 0.5 and 0.0 respectively. We ran our method using a single dominance bin and 24 additive

bins formed by the combination of 6 bins based on MAF as well as 4 bins based on quartiles of the LDAK score of a SNP.

Black points and error bars represent the mean and ±2 SE. Each box plot represents estimates from 100 simulations. Box plot

whiskers extend to the minimum and maximum estimates located within 1.5× interquartile range (IQR) from the first and

third quartiles respectively.
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Figure 4.2: The accuracy of estimates of dominance and additive heritabilities in simulations with non-zero

dominance heritability (N = 291, 273 unrelated individuals, M = 459, 792 array SNPs). In A, B: We plot estimates

from our method under 16 different genetic architectures. We varied the additive heritability h2
A, dominance heritability h2

D

, and the proportion of dominance causal variants (causal ratio). Black points and error bars represent the mean and ±2 SE.

Each boxplot represents estimates from 100 simulations.Box plot whiskers extend to the minimum and maximum estimates

located within 1.5× interquartile range (IQR) from the first and third quartiles respectively.
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Figure 4.3: Estimates of additive and dominance heritability for 50 quantitative phenotypes in the UK Biobank

(N = 291, 273 unrelated white British individuals, M = 459, 792 common array SNPs ( MAF > 1%)). We ran

our method partitioning the additive component into 8 bins defined based on two MAF bins (MAF≤ 0.05, MAF> 0.05) and

quartiles of the LD-scores and a single dominance bin. We summarize the estimates of additive and dominance heritability

across the 50 phenotypes. In A : Black error bars mark ±2 standard errors centered on the estimated heritability. In B and C

we plot the histogram of h2
A and h2

D respectively. Point estimates and SE’s are reported in Table S2.
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Figure 4.4: Estimates of additive and dominance heritability for 50 quantitative phenotypes in the UK Biobank

(N = 291, 273 unrelated white British individuals, M = 4, 824, 392 common imputed SNPs ( MAF > 1%) ). We

ran our method partitioning the additive component into 8 bins defined based on two MAF bins (MAF≤ 0.05, MAF> 0.05)

and quartiles of the LD-scores and a single dominance bin. We summarize the estimates of additive and dominance heritability

across the 50 phenotypes. In A : Black error bars mark ±2 standard errors centered on the estimated heritability. In B and C

we plot the histogram of h2
A and h2

D respectively. Point estimates and SE’s are reported in Table S3.
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Genetic architecture P(rejection at p < t) Test of bias

% of causal SNPs MAF of causal SNPs MAF/LD coupling t = 0.05 t = 10−3 p-value

0.01 [0.01,0.05] a=b=0 6% 0% 0.192

0.01 [0.01,0.05] a=0,b=1 5% 0% 0.006

0.01 [0.01,0.05] a=0.75,b=0 6% 1% 0.011

0.01 [0.01,0.05] a=0.75,b=1 8% 0% 0.187

0.01 [0.0,0.5] a=b=0 4% 0% 0.388

0.01 [0.0,0.5] a=0,b=1 8% 0% 0.415

0.01 [0.0,0.5] a=0.75,b=0 4% 0% 0.593

0.01 [0.0,0.5] a=0.75,b=1 2% 0% 0.367

0.01 [0.05,0.5] a=b=0 7% 0% 0.046

0.01 [0.05,0.5] a=0,b=1 4% 0% 0.813

0.01 [0.05,0.5] a=0.75,b=0 6% 1% 0.105

0.01 [0.05,0.5] a=0.75,b=1 1% 0% 0.855

1.0 [0.0,0.5] a=b=0 2% 0% 0.196

1.0 [0.0,0.5] a=0,b=1 5% 0% 0.298

1.0 [0.0,0.5] a=0.75,b=0 7% 0% 0.522

1.0 [0.0,0.5] a=0.75,b=1 2% 0% 0.130

Table 4.1: Calibration of tests of dominance heritability. We assess the false positive rate of tests of dominance heritability

based on our method in the absence of dominance deviation effects under 16 different genetic architectures. We varied the MAF

range of causal variants (MAF of CV), the coupling of MAF with effect size (a), and the effect of local LD on effect size (b = 0

indicates no LDAK weights and b = 1 indicates LDAK weights. Probability of rejection is computed from 100 replicates. We

report p-value of a test of the null hypothesis of no bias in the estimates of h2
D.
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Genetic architecture Power ĥ2
D Test of bias

Additive Dominance t = 0.05 t = 10−3 Mean SE p-value

h2
A = 0.5 pcausal(D) = 1, h2

D = 0.05 100% 100% 0.05 0.003 0.432

h2
A = 0.5 pcausal(D) = 0.01, h2

D = 0.05 100% 100% 0.049 0.003 0.596

h2
A = 0.5 pcausal(D) = 1, h2

D = 0.02 100% 100% 0.02 0.002 0.351

h2
A = 0.5 pcausal(D) = 0.01, h2

D = 0.02 100% 100% 0.02 0.002 0.869

h2
A = 0.5 pcausal(D) = 1, h2

D = 0.01 97% 68% 0.01 0.002 0.901

h2
A = 0.5 pcausal(D) = 0.01, h2

D = 0.01 98% 67% 0.0099 0.002 0.730

h2
A = 0.5 pcausal(D) = 1, h2

D = 0.002 11% 2% 0.0018 0.0025 0.738

h2
A = 0.5 pcausal(D) = 0.01, h2

D = 0.002 10% 1% 0.0019 0.0027 0.590

h2
A = 0.25 pcausal(D) = 1, h2

D = 0.05 100% 100% 0.049 0.003 0.434

h2
A = 0.25 pcausal(D) = 0.01, h2

D = 0.05 100% 100% 0.048 0.003 2.5e-06

h2
A = 0.25 pcausal(D) = 1, h2

D = 0.02 100% 100% 0.02 0.002 0.889

h2
A = 0.25 pcausal(D) = 0.01, h2

D = 0.02 100% 100% 0.02 0.002 0.476

h2
A = 0.25 pcausal(D) = 1, h2

D = 0.01 93% 73% 0.01 0.002 0.744

h2
A = 0.25 pcausal(D) = 0.01, h2

D = 0.01 93% 66% 0.0098 0.002 0.632

h2
A = 0.25 pcausal(D) = 1, h2

D = 0.002 9% 0% 0.0017 0.0024 0.373

h2
A = 0.25 pcausal(D) = 0.01, h2

D = 0.002 12% 1% 0.0017 0.0026 0.292

Table 4.2: Accuracy and power to detect dominance heritability in simulations (N = 291, 273 unrelated individ-

uals, M = 459, 792 array SNPs). We assess power, bias, and SE of our method in the presence of dominance and additive

heritability under 16 different genetic architectures. Power, mean and SE are computed from 100 replicates. We report p-value

of a test of the null hypothesis of no bias in the estimates of h2
D . Here, pcausal(A) = 1 and pcausal(D) denote the proportion of

additive and dominance causal variants respectively. h2
A and h2

D denotes total additive and dominance heritabilities. For both

components, we assumed GCTA model which is defined as setting a = b = 0 in Equation 4.7. Power is reported for p-value

threshold of t ∈ {0.05, 0.001}.
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CHAPTER 5

Epistasis effects

5.1 Background

Genome-wide association studies (GWAS), the dominant approach to identify genetic vari-

ants that modulate a trait, have successfully identified hundreds of thousands of associations

across thousands of traits primarily by testing a linear additive model. Approaches that at-

tempt to quantify the aggregate effects of genetic variants across the genome (using variance

components analysis) have shown that additive effects explain a substantial proportion of

trait variation for many complex traits, i.e., the narrow-sense heritability of complex traits

is substantial. Interactions in the effect of genes or genetic variants on a trait (epistasis) [8]

have been hypothesized to play an important role in human complex trait variation and

disease risk [84, 123].

Understanding the nature and contribution of epistasis is important for elucidating the

genetic architecture of complex traits and disease etiology and improving the accuracy of

genetic prediction. Epistasis is one of the factors that could explain the gap between the ac-

curacy of linear models for predicting traits from genetic variants and the expected accuracy

based on family-based studies (termed the missing heritability problem). Recent studies ana-

lyzing the estimates of genetic effects across ancestral populations [78] and the transferability

of genetic predictors both within [75] and across ancestries [68, 69] suggest that genetic in-

teractions could explain why genetic effects differ across ancestral populations and that lack

of transferability of genetic predictors both within and across ancestries. Nevertheless, our

understanding of the role of epistasis in human traits is limited [5].

Over the past decade, a number of methods to detect epistasis have been developed. The
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first class of methods explicitly search for pairs of genetic variants (usually single nucleotide

polymorphisms or SNPs) that have a non-linear effect on a trait. While allowing for an

unbiased search for epistasis (analogous to GWAS enabling an unbiased approach to detect

associations), these methods pose serious challenges. Exhaustively searching all pairs of SNPs

is computationally difficult (scaling quadratically in the number of SNPs). Further, testing

such a large number of hypotheses while controlling the false positive rate requires imposing

stringent significance thresholds (scaling quadratically in the number of SNPs if a Bonferroni

correction were to be used) which, in turn, reduces power. Efforts to solve this problem

have involved the use of statistical techniques [144, 143, 114, 121, 36, 142], algorithmic

innovations [85] or hardware infrastructure [50, 35, 62, 100, 140, 40, 122, 46, 126]. Alternate

strategies have attempted to reduce the set of SNPs analyzed either restricting to analysis to

SNPs identified in GWAS [111, 17, 58] or that are biologically functional [65, 6]. An alternate

approach to detect epistasis aims to test for the aggregate epistatic effect across SNPs. These

approaches parallel the development of variance components analysis (also known as mixed

models) that have improved power to detect additive genetic effects in aggregate (in contrast

to GWAS, which aims to identify individual effects). In this framework, it is of interest to

test if the effect of a SNP on a trait is modulated by an individual’s genetic background.

Such tests of marginal epistasis [9, 10] can improve power on account of the reduced multiple

testing burden (that now scales with the number of SNPs) and due to the aggregation of a

number of weak epistatic signals.

Even with the potential improvements in power, it is likely the case that tests of marginal

epistasis need to be applied to datasets with large samples to identify robust signals of

epistasis [27, 123, 43]. The availability of datasets that contain genetic and phenotypic

information across hundreds of thousands of individuals offers an opportunity to detect

epistasis with confidence. Estimating marginal epistasis from large data sets such as the

UK Biobank consisting of ≈ 500, 000 individuals genotyped at nearly one million SNPs is

computationally intractable.

We study the problem of testing whether the effect of a SNP on a trait is modulated
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by the individual’s genotype at the remaining SNPs. Given genotypes collected from N

individuals across M SNPs, we consider a model that aims to estimate and test the marginal

epistatic effect defined as the combined pairwise interaction effects between a given SNP

and all other SNPs while controlling for linear, additive effects [9]. We present the FAst

Marginal Epistasis test, to test for ME of a SNP on a trait. Our algorithm is a streaming

randomized method-of-moments estimator that has a runtime sub-linear in the size of the

genotype matrix thereby able to test for epistasis of a single SNP with a background of half

a million SNPs across ≈ 300K individuals in a few hours.

5.2 Materials and Methods

5.2.1 Marginal epistasis model

To identify SNPs involved in epistasis while retaining statistical power, we focus on identify-

ing SNPs that have non-zero interaction effect with any other variants based on the following

model :

y = Xβ +Eα+ ϵ

ϵ ∼ N (0, σ2
eIN)

β ∼ N (0,
σ2
g

M
IM)

α ∼ N (0,
σ2
gxg

M − 1
IM−1) (5.1)

WhereX denotes a N ×M genotype matrix, y denotes a N -vector of phenotypes and E

denotes a N ×M − 1 gene-by-gene interaction matrix defined as E =X−i ⊙X:i where X:i

is the i-th column of X and X−i is formed by excluding vector X:i from X. Here N (µ,Σ)

is a normal distribution with mean µ and covariance Σ. In this model, σ2
e , σ

2
g , and σ2

gxg are

the residual variance, genetic variance and gene-by-gene variance components respectively.

Here β denotes M -vector of SNPs effect sizes, and α denotes M − 1-vector of GxG effect

sizes.

We assume without loss of generality that y is centered and the columns of X are stan-
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dardized. To estimate the variance components of our LMM, we use a Method-of-Moments

(MoM) estimator that searches for parameter values so that the population moments are

close to the sample moments. Since E [y] = 0, we derived the MoM estimates by equating

the population covariance to the empirical covariance. The population covariance is given

by:

Σ = cov(y) = E[yyT ]− E[y]E[yT ] = σ2
g

1

M
XXT + σ2

gxg

1

M − 1
EET + σ2

eI (5.2)

Using yyT as our estimate of the empirical covariance, we need to solve the following least

squares problem to estimate the variance parameters :

(σ̃2
g , σ̃

2
gxg, σ̃

2
e) = argmin(σ2

g ,σ
2
gxg ,σ

2
e)
||yyT −

(
σ2
gK1 + σ2

gxgK2 + σ2
eK3

)
||2F (5.3)

where K1 =
1
M
XXT, K2 =

1
M−1

EET and K3 = IN . The MoM estimator satisfies the

following normal equations:

T = σ2q (5.4)

where T is a 3 × 3 matrix with entries Tkl = tr(KkK l), k, l ∈ {1, 2, 3}, and q is a 3-vector

with entries ck = y
TKky. To compute the variance of the σ̃2 = (σ̃2

g , σ̃
2
gxg, σ̃

2
e)

T , we have:

σ̃2 = T−1q

(5.5)

therefore, the covariance matrix of σ̃2 is:

Cov
[
σ̃2
]

= T−1Cov [q]T−1

where

Cov [q] = E[qqT ]− E[q]E[q]T
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such that

Cov [q]ij = E[yTKiyy
TKjy]− E[yTKiy]E[yTKjy] (5.6)

= 2tr(ΣKiΣKj) + tr(KiΣ)tr(KjΣ)− (tr(KiΣ)tr(KjΣ))

= 2tr(ΣKiΣKj)

In the derivation 5.6, the vector y is assumed to be a zero-mean Gaussian random vector

(see Chapter 3 for the details of derivation).

5.2.2 Computational challenges

Computing the coefficients tr(KkK l) of the system of linear equation 5.4 and Cov [q]ij

require O(N2M) time complexity and O(NM) memory usage imposing challenging memory

and computation requirements for Biobank-scale data (N in the hundreds of thousands,

M in the millions ). To perform hypothesis testing, we are required to compute p-values.

There are two well-known approaches; the first is a normal test requiring the point estimate

and standard error, which is appropriate when we have large sample sizes N . The second

approach is called the Davies method [13], valid in small sample sizes but its time complexity

is O(N3M), which is not feasible when we have large sample sizes. Therefore, existing

methods for estimating and testing epistatic effects can not be applied to Biobank-scale

data sets.

As demonstrated in Chapter 3, similar to our methodology for estimating GxE effect, we

can efficiently estimate the variance components and their associated standard errors in the

model 5.1.

5.3 Results

5.3.1 Calibration

First, we assessed FAME in terms of controlling type I error by applying it to simulated

data in the absence of gene-gene interaction effects. We simulated phenotypes based on
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genotypes from unrelated white British individuals in the UK Biobank (M = 459, 792 SNPs,

N = 291, 273 individuals). We simulated phenotypes by varying the additive heritability

σ2
g ∈ {0.25, 0.5}, the proportion of variants p ∈ {0.01, 0.10} that have non-zero additive

effects (causal variants). We assessed the calibration of FAME when applied to two sets of

target SNPs. The first set consists of randomly chosen SNPs. The second set consists of

SNPs that were identified to have a significant additive effect from a GWAS (p < 5× 10−8)

and were chosen to mirror our real data analyses.

While FAME is calibrated when the target ME SNPs are selected at random, the p-

values tend to be inflated when the target SNPs are selected from a GWAS, we believe this

is partially due to the correlation between the linear component and ME component due

to the linkage disequilibrium around the target SNP. To address this issue, we exclude the

SNPs within the LD block around the target SNP when constructing the matrix Et. This

approach effectively controlled the type-I error across different settings with no significant

ME signal detected across any of the settings (Figure 5.1).

5.3.2 Estimating marginal epistasis in the UK Biobank

We attempted to test for marginal epistasis in 53 quantitative traits measured across N =

291, 273 unrelated white British individuals with genotypes measured across M = 459, 792

SNPs on the UK Biobank array. To identify sets of target SNPs to test for ME, we chose

SNPs that were found to be associated with the trait in a GWAS. Specifically, we ran GWAS

on each trait, including as covariates sex, age, and the top 20 genetic PCs. For each trait, we

selected SNPs with p-value p < 5×10−8

53
that we then pruned to remove high-LD SNPs (using

a window size of 500 SNPs, we computed r2 between each pair and removed one of them if

r2 > 0.1, shifting the window by 1 SNP, and repeating the process). We tested for ME at

each remaining SNP using the model defined in Equation 5.1 in which we accounted for the

linear additive effect of genome-wide SNPs and included age, sex, and the top 20 PCs as

fixed effects. We excluded SNPs in the LD block surrounding the target SNP in these tests.

We applied FAME to test for ME at SNPs associated with 53 quantitative traits across

149



≈ 300 K unrelated white British individuals in the UK Biobank. Testing 16, 914 trait-loci

associations, we identified 23 trait-loci pairs across traits demonstrating strong evidence of

ME signals ( p < 5×10−8

53
). We further partitioned the ME signals across the genome to

identify 6 trait-loci pairs with strong evidence of local (within-chromosome) ME while 20

show evidence of distal (cross-chromosome) ME. Our results provide evidence for epistatic

effects underlying complex traits that can now be interrogated in large sample sizes (Figure

5.2).

5.3.3 Studying loci with significant ME effects

We observe the largest ratio of h2
gxg to h2

gwas at SNP rs628031 (chr6:160,560,845) that shows

significant ME for serum lipoprotein A levels (lipoA). This variant is a non-synonymous

polymorphism that changes methionine to valine in the protein product of the organic cation

transporter gene OCT1 (also known as SLC22A1). OCT1 mediates the uptake and efflux of

cationic metabolites in the liver that includes as its substrates a variety of drugs including

metformin that is widely used to treat type 2 diabetes [102]. Genetic variation in OCT1 has

been shown to modulate the response to metformin and to other drugs [102].

SNP rs964184 (chr11:116,648,917) shows significant ME for multiple traits: Apolipopro-

tein B, cholesterol, and triglycerides with substantial ME effects (
h2
gxg

h2
gwas

= 5.14, 7.83, and

0.59 respectively). This variant lies in the 3’ UTR region of the ZPR1 gene (also referred

to as ZNF259) that encodes a zinc finger protein that is known to play a regulatory role in

cell proliferation and signal transduction [26]. The promoter region of ZPR1 is known to be

bound by transcription factors that play a role in insulin sensitivity, cholesterol metabolism,

and obesity. rs964184, as well as other variants in ZPR1, have been found to be asso-

ciated with serum LDL-C [115], HDL-C [51], triglyceride levels [115, 77, 92] and risk for

coronary artery disease (CAD) [99] in diverse populations. A regulatory role for rs964184

has been suggested based on its location in a DNaseI hypersensitive region and its overlap

with an enhancer that is active in tissues relevant for lipid biology [77]. Further, rs964184

has been association with DNA methylation of a CpG site in the promoter region of the
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APOA5 gene [72], potentially explaining the association between DNA methylation level at

this site and triglyceride levels [83]. Integrative analyses of genotype and gene expression

data have shown rs964184 to play a regulatory role: being a cis-eQTL for genes PCSK7,

SIDT2, TAGLN, and BUD13 while also a trans-eQTL for TMEM165, YPEL5, PPM1B, and

OBFC2A [137]. Further, mediation analyses revealed that a substantial proportion of the

effect of rs964184 on HDL-C and triglycerides is mediated through its trans association with

PPM1B and YPEL5 [137].

5.3.3.1 Robustness

Population stratification in GWAS is commonly accounted for by including principal compo-

nents (PCs) computed from genotype data as covariates in the analysis [86, 87]. A concern

is that this approach might not adequately correct for the confounding effects of population

stratification on tests of ME effects. To explore the effect of population stratification, we

reran our analyses on trait-loci pairs previously discovered as significant with the number

of PCs included as covariates increased to 40 (from 20). We observe a high correlation in

the p-values when using 40 vs 20 PCs (Figure 5.3; ρ = 0.973). Importantly, most of the

significant trait-loci pairs remain significant after including the top 40 PCs, indicating that

our findings are robust to population stratification.

A second concern with our analyses arises from the fact that the UK Biobank array

includes only a subset of all SNPs, which could lead to the inference of spurious non-linear

effects [38, 16, 128].

To address this concern, we analyzed our significant ME signals on imputed genotypes

across unrelated white British individuals and 4, 824, 392 SNPs (MAF > 1%). We observed

19 out of the 23 significant trait-loci pairs detected on the array SNPs also demonstrate

significance (p ≤ 5×10−8

53
) on the imputed SNPs (the remaining four loci had p-values p ≤ 10−6

on the imputed SNPs). We observed considerable p-value correlation ρ = 0.613 of ME

between array SNPs and imputed SNPs (Figure 5.3).
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5.4 Discussion

We have presented a method for testing marginal epistasis (ME) in Biobank-scale data.

FAME yields calibrated results in simulations. Applying FAME to 53 quantitative phe-

notypes in the UK Biobank, we found 16 trait-loci pairs with significant signals of ME, a

vast majority of which remain significant after testing with additional PCs to correct for

population stratification, and on imputed genotypes to reduce the impact of missing causal

SNPs.

While these observations provide strong evidence for epistatic effects in genetic variants

that have been discovered to be associated with complex traits using GWAS, our results

have several limitations. Firstly, it is plausible that the impact of population structure

on epistatic effects might not be well-modeled by approaches, such as including principal

components based on common genetic variants as covariates, that have successfully tested

additive effects. Secondly, prior studies have shown that epistasis tests can have inflated false-

positive rates due to imperfect tagging of causal variants that have large additive effects [39].

Our simulations show that FAME is robust to imperfect tagging of causal variants. Further,

the replication of signals discovered using array SNPs on imputed SNPs, which are unlikely

to miss causal variants common in the population, makes the issue of missing causal variants

less likely. Nevertheless, it is plausible that the distributions of causal variants and the LD

patterns between causal and genotyped variants could be complex, impacting our method’s

calibration. While the number of loci showing ME effects is small (in part due to the stringent

p-value threshold that we impose and the GWAS selection strategy that we used to identify

target SNPs), we observe that the proportion of variance explained by ME is comparable

to, and sometimes substantially larger than, the proportion of variance explained by GWAS.

These results suggest that the polygenic background can substantially modulate the effect of

genetic variants on traits and has implications for efforts to annotate genetic variants and to

understand how genetic effects vary across populations [78]. We caution, however, that since

we are analyzing SNPs with significant ME and GWAS signals, the effect size estimates are

likely to be biased upwards due to winner’s curse [130].
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We further partitioned the ME signal within and across chromosomes to detect both

within and cross-chromosomal signals and found 6 within chromosomal signals, a strict

subset of the 20 cross-chromosomal signals. This observation suggests that the epistatic

signal that we detect is likely to be polygenic so the approach of testing for the aggregate

effects as we do here is likely to be more powerful than an approach that aims to identify

specific pairs of SNPs. While our current application of FAME has focused on genome-

wide signals of ME where we test a single target SNP against a background set consisting

of SNPs across the genome (excluding those in the LD block as the target), the model

underlying FAME is flexible, and can be applied to test for epistasis in other settings. For

example, FAME can be extended to test for interactions of a target SNP or other covariates

(such as polygenic scores) with a background set of SNPs where the set is defined based on

functional annotation, such as genes or pathways. The ideas underlying FAME allow such

tests to be applied to biobank-scale data. Such an approach can improve our understanding

by localizing the ME signal. Despite its scalability, FAME is still not efficient enough to

perform genome-wide scans of ME, which, in turn, led us to focus on testing for ME at

GWAS loci. Extending the scope and efficiency of FAME presents important directions for

future work.
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Figure 5.1: Calibration in simulations. We applied FAME to phenotypes simulated from genotypes with linear additive

effects but no marginal epistatic (ME) effects. Phenotypes were simulated using genotypes measured on ≈ 300K unrelated

white-British individuals in the UK Biobank, with varying ratios of causal SNPs (Causal ratio) and heritability (h2). We first

ran GWAS to identify significant SNPs, which were then used as target SNPs in a test of ME. We detected no significant ME

signals (p ≤ 5× 10−8) across all the settings.
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(a) Manhattan plot of FAME p-value distribution
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Figure 5.2: Significant marginal epistasis (ME) loci. (a) Manhattan plot of the ME loci across 53 complex traits in UKBB.

Colored shapes denote significant trait-loci pairs at p ≤ 5×10−8

53
; (b) Localization of ME signals. For each of 23 trait-loci pairs,

we tested whether the ME signals remained significant when testing against all SNPs on the same chromosome as the target

SNP (after removing SNPs in the same LD block as the target SNP), which we term local, and against all SNPs on chromosomes

different from the chromosome containing the target SNP, which we term distal. We then compared the overlap between the

local and distal significant signals (p ≤ 5×10−8

53
).
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Figure 5.3: Robustness in real data analysis (a) We assessed the robustness of ME signals to population stratification.

We tested the trait-loci pairs, which were significant for ME signals, and repeated the test by varying the number of principal

components (PC=20 vs. PC=40). We plot the p-values from both analyses. (b) We assessed the robustness of ME signals to

the missingness of features. We tested the trait-loci pairs, which were significant for ME signals in whole genome array data,

and repeated the test by switching to the imputed dataset. We plot the p-values from both analyses.
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CHAPTER 6

Conclusions

In this thesis, our primary focus was on the development of scalable and robust statistical

models within the framework of variance component analysis. Our objective was to study im-

portant questions in human genetics through the analysis of large-scale genotype-phenotype

data.

Chapter 2 introduced the RHE-mc method, which aimed to quantify the proportion of

phenotypic variation that can be explained by a linear function of genotypes. We estimated

the heritability of a set of complex traits and partitioned the heritability across the genomes,

taking into account functional annotations, genes, pathways, as well as minor allele frequency

(MAF) and linkage disequilibrium (LD).

In Chapter 3, we presented a novel method called GENIE, which explored the influence

of genetic background on the effect of an environmental variable on phenotype. Specifically,

we investigated the presence of a Gene-Environment interaction (GxE) effect and examined

how this interaction was distributed across the genomes, considering tissue-specific genes,

functional annotations, MAF, and LD.

Chapter 4 focused on assessing the contribution of interactions between alleles at a specific

locus to phenotypic variations, beyond the additive effects. We quantified the magnitude of

these interactions and examined their impact on phenotype variations.

In Chapter 5, we introduced the FAMEmethod, which aimed to delve into the exploration

of interactions between different SNPs contributing to phenotypic variance. We investigated

the presence of SNPs interactions and their genomic locations.
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CHAPTER 7

Future directions

Looking toward future works, several potential directions exist to extend our proposed meth-

ods. First, we can apply our proposed methods to binary traits available in the UK Biobank,

treating these traits as continuous. Developing methods that explicitly model binary traits

and the underlying ascertainment involved in case-control studies is likely to lead to more

accurate heritability estimates [33, 125]. For example, the phenotype correlation-genotype

correlation (PCGC) method [33] presents an extension of HE regression that could be of

interest to explore, aiming to develop a scalable randomized PCGC estimator.

Secondly, jointly analyzing multiple genomics datasets is critical for detecting weak yet

important genetic signals. However, privacy concerns often restrict data sharing between dif-

ferent sources. To address this bottleneck, developing secure and scalable methods to analyze

genomic databases without explicit data sharing becomes imperative. This problem poses

significant challenges as existing methods for privacy-preserving computations often intro-

duce computational bottlenecks, hindering their application to large-scale genomic datasets

and statistical models. Leveraging ideas from our current work, we can explore the develop-

ment of cryptographic protocols for genomic analysis that preserve privacy while maintaining

scalability.
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7.1 Randomized PCGC

Assume the following linear mixed model, which relates phenotypes to genotypes.

y|ϵ,β = Xβ + ϵ (7.1)

ϵ ∼ N (0, σ2
eIN)

β ∼ N (0,
σ2
g

M
IM)

cov(y) = E[yyT ]− E[y]E[yT ] =
∑
k

σ2
kKk + σ2

eIN

Here K = XXT

M
is the genetic relatedness matrix (GRM) computed from all SNPs. Using

yyT as our estimate of the empirical covariance, we need to solve the following least squares

problem to find the variance components.

(σ̃2
e , σ̃

2
g) = argmin(σ2

g ,,σ
2
e)
||yyT − (σ2

gK + σ2
eI)||2F (7.2)

= argmin(σ2
g ,σ

2
e)

N∑
i=1

N∑
j=1

|yiyj − (σ2
gKi,j + σ2

e)|2

In this model, we assume that the individuals comprise a random sample from the popula-

tion and the phenotype is an additive polygenic quantitative trait (E[yiyj] = σ2
gKi,j + σ2

e)).

PCGC regression is based on the simple idea that the heritability of a trait controls the

strength of the relationship between genotype and phenotype. In the general case, the re-

lationship among genetic correlation (Ki,j ), phenotypic correlation (yiyj ), and the genetic

variance component σ2
g can be expressed as

E[yiyj] = f(σ2
g ,Ki,j) (7.3)

where the function f depends on (i) the design of the study and (ii) the properties of the

phenotype. Following [33], f can be approximated by a Taylor series at Ki,j = 0 as follows:

f(σ2
g ,Ki,j) = ci,jσ

2
gKi,j + o(Ki,j) (7.4)
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where

ci,j =
ϕ(ti)ϕ(tj)[1− (Pi + Pj)α + PiPjα

2)]

didj
(7.5)

where P−K
P (1−K)

= α ,di =
√

Pi(1− Pi)(Ki + (1−Ki)
K(1−P )
P (1−K)

), K is the fraction of cases in the

population, P is the probability that an individual in the study is affected, ti is individual-

specific liability threshold, Ki is an individual-specific of being effected condition on her/his

specific covariates, and Pi is an individual-specific of being effected condition on both her/his

specific covariates and the fact is selected for study. In this situation, we need to solve the

following least squares problem to find the variance components

(σ̃2
e , σ̃

2
g) = argmin(σ2

g ,σ
2
e)

N∑
i=1

N∑
j=1

|yiyj − f(σ2
g ,Ki,j)|2 (7.6)

= argmin(σ2
g ,σ

2
e)
||yyT − (σ2

gK ◦C + σ2
eI)||2F

where C is a N ×N matrix where ci,j =
ϕ(ti)ϕ(tj)[1−(Pi+Pj)α+PiPjα

2)]

didj

The MoM estimator satisfies the following normal equations :tr((K ◦C)(K ◦C)) tr(K ◦C)

tr(K ◦C) N

σ̃2
g

σ̃2
e

 =

yT (K ◦C)y

yTy

 (7.7)

In the following, we discuss the efficient computation of all elements of the normal equa-

tions.

Lemma 8 tr[XXT ◦C] can be estimated in O( NMB
max(log3 N,log3 M)

).

Proof:

tr[XXT ◦C] =
N∑
i=1

ci,i

M∑
j=1

x2
i,j (7.8)

=
N∑
i=1

M∑
j=1

(
√
ci,ixi,j)

2 (7.9)

= tr[(
√

diag(C)X)(
√
diag(C)X)T ]
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diag(C) can be computed in O(N). tr[(
√

diag(C)X)(
√
diag(C)X)T ] can be estimated

in O( NMB
max(log3 N,log3 M)

) by using Hutchinson estimator and mailman algorithm described in

Chapter 2 and 3.

□

Lemma 9 Let X be a N × M matrix. Let α and β be N-vectors. Then we have the

following :

K =XXT ◦αβT = (diag(α)X)(diag(β)X)T (7.10)

Proof: Every element of matrix K can be written as :

Ki,j = αiβjX
T
i,:Xj,: (7.11)

= αiβj

M∑
k=1

xi,kxj,k (7.12)

=
M∑
k=1

(αixi,k)(βjxj,k) (7.13)

Therefore, we have K = (diag(α)X)(diag(β)X)T

□

Lemma 10 tr[(K ◦C)(K ◦C)] can be computed in O( NMB
max(log3 N,log3 M)

).

Proof: Let C be a N ×N matrix where ci,j =
ϕ(ti)ϕ(tj)[1−(Pi+Pj)α+PiPjα

2)]

didj
. Assume that ψ

is a N -vector such that ψi =
ϕ(ti)
di

, and p is a N -vector such that pi = Pi. Matrix C can be

expressed as follows:

C = ψψT + (αψ ◦ P )(αψ ◦ P )T − α(ψ ◦ P )ψT − αψ(ψ ◦ P )T (7.14)

let γ = ψ ◦ P , then we have

C = ψψT + α2γγT − αγψT − αψγT (7.15)
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Let A1 =K ◦ (ψψT ), A2 =K ◦ (α2γγT ),A3 =K ◦ (αγψT ), A4 =K ◦ (αψγT )

We have :

tr[(K ◦C)(K ◦C)] =
4∑

i=1

tr[AiAi] (7.16)

+ 2(tr[A1A2] + tr[A3A4]− tr[A1A3]− tr[A1A4]− tr[A2A4])

Each term in 7.16 can be estimated efficiently using the Hutchinson trace estimator. For

instance:

tr[A1A4] = tr[K ◦ (ψψT )K ◦ (αψγT )] (7.17)

= tr[(diag(ψ)X)(diag(ψ)X)T (diag(αψ)X)(diag(γ)X)T ]

□

Lemma 11 yT (K ◦C)y can be computed in O( NMB
max(log3 N,log3 M)

).

Proof:

yT (K ◦C)y = yT (XXT ◦ (ψψT + α2γγT − αγψT − αψγT ))y (7.18)

= yT (XXT ◦ (ψψT ))y + yT (XXT ◦ (α2γγT ))y (7.19)

− yT (XXT ◦ (αγψT ))y

− yT (XXT ◦ (αψγT ))y

Each term in can be estimated efficiently using the Hutchinson trace estimator.

□
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7.2 Secure variance component analysis

Here we discuss the challenge of variance component analysis when the data are distributed

among multiple parties. Our goal is to propose a secure and scalable approach that allows

us to estimate variance components on a combined database without explicitly merging the

information sources. The problem becomes particularly relevant when the data involve ge-

nomic data, and the parties involved are data centers or biobanks. In such cases, privacy

barriers prevent the direct sharing of data among parties, and database owners may have re-

strictions or preferences in sharing their data. Nevertheless, fitting an LMM on the combined

dataset may yield better statistical properties compared to analyzing individual, incomplete

datasets. To address this, we propose a protocol that enables the computation of necessary

quantities for fitting an LMM on the merged data. This protocol involves a sequence of steps

where each party performs local computations and transmits messages to other parties. Our

aim is to achieve cryptographic security by following a ”semi-honest” model. This model

assumes that each party will adhere to the protocol and use their true input values but also

maintains curiosity about the secret inputs of other parties. The security of the protocol re-

lies on ensuring that the messages exchanged during its execution do not reveal information

about the secret inputs belonging to each party.

Suppose that we have P parties and each party owns yp which is an outcome Np-vector

(e.g. phenotypes), and Xp which is a Np ×M design matrix (e.g. genotype matrix), where

Np is the number of individuals in p-th data set and M is the number of features(e.g. SNPs),

N ≪ M . The goal is to estimate the variance components of the following LMMs:

y|ϵ,β = Xβ + ϵ

ϵ ∼ D(0, σ2
eIN)

β ∼ D(0,
σ2
g

M
IM) (7.20)

where y = (y1...yP )
T is a N -vector, and X = (X1...XP )

T is a N × M matrix where

N =
∑P

p=1Np.
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To estimate the variance components of the LMM, we use a Method-of-Moments (MoM)

estimator that searches for parameter values so that the population moments are close to

the sample moments. According to the above model, the theoretical covariance of y is :

cov(y) = E[yyT ]− E[y]E[yT ] =
σ2
g

M
XXT + σ2

eIN (7.21)

Using yyT as our estimate of the empirical covariance, we need to solve the following least

squares problem to estimate the variance components.

(σ̃2
e , σ̃

2
g) = argmin(σ2

g ,,σ
2
e)
||yyT − (σ2

gK + σ2
eI)||2F (7.22)

It turns out that the MoM estimator satisfies the following normal equations: 1
M2 tr(XX

TXXT ) 1
M
tr(XXT )

1
M
tr(XXT ) N

σ̃2
g

σ̃2
e

 =

 1
M
yTXXTy

yTy

 (7.23)

As we discussed the Chapter 2, instead of computing the exact value of tr(XXTXXT ), we

use Hutchinson’s estimator of the trace [48] as follows:

tr(XXTXXT ) ≈ 1

B

∑
b

zTbXX
TXXTzb (7.24)

Here z1, . . . ,zB are B independent random vectors with zero mean and covariance IN .

Our method draws these random vectors independently from a standard normal distribution.

Therefore, the total running time will be O(NMB), which is linear in the size of the design

matrix. It turns out that B ≈ 10 is sufficient.

Without loss of generality, suppose we have two parties. Fist party owns (y1,X1) and

second party owns (y2,X2). To solve the corresponding normal equation 7.23 , we need

secure and efficient computation of the elements of 7.23.

First, we start with tr(XXTXXT ):

tr(XXTXXT ) ≈
∑
b

zTbXX
TXXTzb (7.25)
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we have X = (X1,X2)
T . Let wb = XXTzb, then wb can be partitioned to wb =

(wb1,wb2)
T where

wb1 =X1X1
Tzb1 +X1X2

Tzb2 = vb11 + vb12 (7.26)

wb2 =X2X2
Tzb2 +X2X1

Tzb1 = vb22 + vb21 (7.27)

here zb = (zb1, zb2)
T where zbi is a Ni-vector. Therefore, we have

tr(XXTXXT ) ≈
∑
b

zTbXX
TXXTzb =

∑
b

wb
Twb (7.28)

=
∑
b

wb1
Twb1 +wb2

Twb2 (7.29)

=
∑
b

(vTb11vb11 + 2vTb11vb12 + v
T
b12vb12) + (vTb22vb22 + 2vTb22vb21 + v

T
b21vb21)

Scalars vTbiivbii and vectors vbii for i ∈ {1, 2} can be computed locally by the respective

party without the need for interaction between the parties. Computing the other terms

(e.g. vTb12vb12,vb12) needs interactions between two parties. For example, to compute vb12 =

X1X2
Tzb2, second party can compute ub2 = X2

Tzb2 locally, and computing X1ub2 needs

interactions between two parties.

Outcome vector can be decomposed as y = (y1,y2)
T . Let ri =X

T
i yi, then we have

yTXXTy = rT1 r1 + r
T
2 r2 (7.30)

Each of these terms can be computed locally by the respective party, enabling efficient

computation of the overall expression. Importantly, this protocol allows for data transmission

between parties that is independent of the size of the dataset, denoted by N and M . Thus,

the efficiency and scalability of the approach are maintained regardless of the dataset’s

dimensions. Furthermore, it is worth noting that this protocol can be extended to involve

more than two parties, expanding its applicability to a broader range of scenarios involving

distributed data analysis.
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[5] Örjan Carlborg and Chris S Haley. Epistasis: too often neglected in complex trait
studies? Nature Reviews Genetics, 5(8):618–625, 2004.

[6] Gary K Chen and Duncan C Thomas. Using biological knowledge to discover higher
order interactions in genetic association studies. Genetic epidemiology, 34(8):863–878,
2010.

[7] James M Cheverud and Eric J Routman. Epistasis and its contribution to genetic
variance components. Genetics, 139(3):1455–1461, 1995.

[8] Heather J Cordell. Epistasis: what it means, what it doesn’t mean, and statistical
methods to detect it in humans. Human molecular genetics, 11(20):2463–2468, 2002.

[9] Lorin Crawford, Ping Zeng, Sayan Mukherjee, and Xiang Zhou. Detecting epistasis
with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS
genetics, 13(7):e1006869, 2017.

[10] Lorin Crawford and Xiang Zhou. Genome-wide marginal epistatic association mapping
in case-control studies. bioRxiv, page 374983, 2018.

[11] James F Crow. On epistasis: why it is unimportant in polygenic directional selection.
Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544):1241–
1244, 2010.

[12] Andy Dahl, Khiem Nguyen, Na Cai, Michael J Gandal, Jonathan Flint, and Noah
Zaitlen. A robust method uncovers significant context-specific heritability in diverse
complex traits. The American Journal of Human Genetics, 106(1):71–91, 2020.

166



[13] Robert B Davies. Algorithm as 155: The distribution of a linear combination of χ 2
random variables. Applied Statistics, pages 323–333, 1980.

[14] Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon,
Nemanja D Marjanovic, Danielle Dionne, Tyler Burks, Raktima Raychowdhury, et al.
Perturb-seq: dissecting molecular circuits with scalable single-cell rna profiling of
pooled genetic screens. cell, 167(7):1853–1866, 2016.
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