
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
ZotCare: A Novel mHealth Service Provider

Permalink
https://escholarship.org/uc/item/5h98172k

Author
Labbaf, Sina

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5h98172k
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

ZotCare: A Novel mHealth Service Provider

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sina Labbaf

Dissertation Committee:
Distinguished Professor Nikil Dutt, Chair

Professor Amir M. Rahmani
Professor Jessica L. Borelli

2023



Portions of Chapter 1 © 2023 Frontiers in Digital Health
Chapter 2 © 2023 Frontiers in Digital Health
Chapter 3 © 2023 Frontiers in Digital Health
Chapter 5 © 2023 Frontiers in Digital Health

Portions of Chapter 6 © 2023 Frontiers in Digital Health
Chapter 8 © 2023 Frontiers in Digital Health

All other materials © 2023 Sina Labbaf



DEDICATION

To my parents Reza & Zohreh, and their determination in a better future.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 Background and Related Work 6
2.1 Related mHealth Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 ZotCare: Service Orchestration 13
3.1 Collection Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Profile Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Real-time Processing, Intervention, and Integration (RPII) Services . . . . . 19
3.4 The Customizable ZotCare Dashboard . . . . . . . . . . . . . . . . . . . . . 21
3.5 ZotCare Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 ZotCare: Technical Challenges and Implementation of a mHealth Service
Data Pipeline 25
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Conventional Blocking Approach . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Double queue approach . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Double queue with watcher approach . . . . . . . . . . . . . . . . . . 29
4.1.4 Double Queue with watcher and worker manager . . . . . . . . . . . 31

4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Scalability with the number of participants . . . . . . . . . . . . . . . 33

5 ZotCare: Use Cases 35
5.1 Personal Mental Health Navigation Project . . . . . . . . . . . . . . . . . . . 35
5.2 The UNITE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Other Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



6 Discussion 46
6.1 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Intuitive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Artifacts 51
7.1 Access and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Code Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Future work 53

Bibliography 55

iv



LIST OF FIGURES

Page

1.1 An overview of a mHealth system . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 mHealth solutions comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 ZotCare services overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Conventional data pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Double queue pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Douple queue with storage watcher pipeline . . . . . . . . . . . . . . . . . . 31
4.4 Double queue with watcher and work manager method . . . . . . . . . . . . 32
4.5 System latency scale with the number of participants . . . . . . . . . . . . . 34

5.1 UNITE AI-assistant integration in ZotCare . . . . . . . . . . . . . . . . . . . 41
5.2 (A) mSavorUs, (B) UNITE, and (C) HowRU app used in MHN, UNITE, and

Brain & Sleep projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



LIST OF TABLES

Page

2.1 mHealth solutions summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 ZotCare objective data collection . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Zotcare RPII services features . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 MHN project studies summary . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 UNITE project studies summary . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Examples of other studies that utilized ZotCare . . . . . . . . . . . . . . . . 42

vi



ACKNOWLEDGMENTS

I want to thank the National Science Foundation for supporting my work through the Smart
and Connected Communities (S&CC) grant CNS-1831918. Also, the Department of Com-
puter Science at the University of California, Irvine (UCI), for admitting and supporting me
academically and financially to present this dissertation.

I also like to extend my gratitude to my advisors, Nikil Dutt, and Amir Rahmani, for their
support and guidance. Also, Jessica Borelli, the other dissertation committee member, for
providing feedback and participating in my defense.

My appreciation extends to my colleagues at Dutt Research Group, Health Science and
Technology Lab, and Institute of Future Health. Also, other collaborators from the Marco
Levorato Research Lab, Thrive Lab at the School of Social Ecology at UCI, the School of
Nursing at UCI, and the University of Turku, Finland.

Portion of Chapters 1, 2, 3, 5, 6, and 8 of this dissertation is a reprint of the material as it
appears in [15], used with permission from Frontiers in Digital Health. The co-authors listed
in this publication are Mahyar Abbasian, Iman Azimi, Amir M. Rahmani, and Nikil Dutt.

OpenAI’s ChatGPT was used in editing and proofreading this dissertation.

vii



VITA

Sina Labbaf

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Master of Science in Computer Science 2022
University of California, Irvine Irvine, California

Bachelor of Science in Computer Engineering 2017
University of Tehran Tehran, Iran

RESEARCH EXPERIENCE

Graduate Student Researcher 2018–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2017–2018
University of California, Irvine Irvine, California

viii



REFEREED JOURNAL PUBLICATIONS

ZotCare: A Flexible, Personalizable, and Affordable
mHealth Service Provider

2023

Frontiers in Digital Health

Objective prediction of next-day’s affect using multi-
modal physiological and behavioral data: Algorithm de-
velopment and validation study

2023

JMIR Formative Research

Sleep Patterns and Affect Dynamics Among College
Students During the COVID-19 Pandemic: Intensive
Longitudinal Study

2022

JMIR Formative Research

A technology-based pregnancy health and wellness in-
tervention (two happy hearts): case study

2021

JMIR Formative Research

Using multimodal assessments to capture personalized
contexts of college student well-being in 2020: Case
study

2021

JMIR Formative Research

REFEREED CONFERENCE PUBLICATIONS

Impact of COVID-19 Pandemic on Sleep Including HRV
and Physical Activity as Mediators: A Causal ML Ap-
proach

2023

BSN

Loneliness Forecasting Using Multi-modal Wearable
and Mobile Sensing in Everyday Settings

2023

BSN

Active Reinforcement Learning for Personalized Stress
Monitoring in Everyday Settings

2023

CHASE

ix



Personalized Stress Monitoring using Wearable Sensors
in Everyday Settings

2021

EMBC

Data Collection and Labeling of Real-Time IoT-Enabled
Bio-Signals in Everyday Settings for Mental Health Im-
provement

2021

GOODIT

Long-Term IoT-Based Maternal Monitoring: System
Design and Evaluation

2021

Sensors

CODE

ZotCare https://github.com/ZotCare

The project’s code respository

SOFTWARE

ZotCare Android
ZotCare Android Application
https://play.google.com/store/apps/details?id=org.healthscitech.zotcare

ZotCare Dashboard https://panel.healthscitech.org/

ZotCare Administrative Dashboard

x

https://github.com/ZotCare
https://play.google.com/store/apps/details?id=org.healthscitech.zotcare
https://panel.healthscitech.org/


ABSTRACT OF THE DISSERTATION

ZotCare: A Novel mHealth Service Provider

By

Sina Labbaf

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Distinguished Professor Nikil Dutt, Chair

The availability of mobile Internet and health devices is enabling new opportunities for

health researchers to access an immense amount of digital health data ubiquitously and

deliver intervention and treatment online and in real time. However, to take advantage

of these opportunities, the researchers need to build systems and applications to collect

these data, process them, and deliver actionable items accordingly, which requires building a

mobile health (mHealth) system. mHealth solutions are tools designed to assist researchers

in creating their desired mHealth systems, but these solutions often have limitations in

their setup time, cost, or customization level. This dissertaiton presents ZotCare, a service

platform that aims to resolve these limitations by offering ready-to-use mHealth solutions

in a shared environment to reduce the cost and provide a service orchestration that can be

customized to different types of study by providing tools for personalization and adaptation.

ZotCare’s contribution also extends to its methods in creating a data pipeline scalable to

the number of users, amount of occupied storage, and the load of different types of tasks

by considering the opportunities and limitations in mHealth research. This dissertation

will provide an introduction and background on mHealth solutions and ZotCare’s position.

Then, ZotCare’s service orchestration is explained to demonstrate its capabilities in creating a

customizable environment. This will be followed by ZotCare’s data pipeline design challenges

to indicate how ZotCare can run mHealth studies at scale. In the end, to showcase ZotCare’s

xi



practical contribution, several use cases of ZotCare in mHealth research will be provided,

followed by a short discussion on other contributions, artifacts, and future work.
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Chapter 1

Introduction

The widespread adoption of smartphones, wearable technologies, and other Internet-connected

health devices has led to the availability of reliable digital health data streams [10]. These

devices and applications have played a significant role in various domains, such as improving

lifestyles, achieving fitness goals, monitoring high-risk populations, and enhancing produc-

tivity [18]. Many vendors now offer access to the data streams generated by their products,

opening up new opportunities for researchers to explore ubiquitous remote monitoring by

leveraging different health data streams [29, 9, 7, 33, 6, 25]. For instance, studies such as [1]

and [17] have utilized Garmin smartwatches [7] to longitudinally monitor maternal sleep and

dementia patients’ caregivers, respectively. Furthermore, the rise in mobile Internet connec-

tivity [8] has provided researchers with the ability to promptly interact with participants,

facilitating the collection of supplementary information for data modeling or the delivery

of interventions within minutes or seconds. By capitalizing on these two opportunities, re-

searchers can not only collect accurate health data streams but also process the information,

engage with participants, and implement necessary interventions.

For health researchers, leveraging these opportunities necessitates developing and deploying
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mobile health (mHealth) applications. These applications perform tasks such as collecting

health data streams, processing the data, invoking actions, and receiving feedback. Figure

1.1 outlines a typical mHealth system composed of three critical components: the central

cloud server and separate interfaces for researchers/clinicians and participants. The cloud

server forms the foundation for data storage, model building, and action invoking aimed at

participants and researchers, all while ensuring the preservation of data integrity, security,

and participant privacy. The participant interface, another critical component, necessitates

real-time interaction capabilities with participants, as well as mechanisms for subjective and

objective data collection. Conversely, the researcher dashboard should be furnished with data

analysis and monitoring tools essential for executing a mHealth study. Each component op-

erates within a distinct segment of the technology stack and possesses specific functionalities,

giving rise to various development and deployment challenges. First, researchers face the

complex task of developing a diverse system encompassing various components, ranging from

mobile and wearable applications to web servers, requiring diverse programming skills and

knowledge. Moreover, after platform development, deploying and maintaining these appli-

cations can pose substantial obstacles due to the high frequency, longitudinal nature, and

potential scalability of health data streams. These challenges can impede research progress

and divert focus from the core experiments.

Several open-source software platforms have been developed to facilitate mobile health

(mHealth) studies [11, 27, 2]. These platforms offer a range of tools encompassing servers,

mobile applications, and analytics tools, providing researchers with diverse possibilities. Re-

searchers can also reprogram these platforms to suit their specific requirements. While

mHealth platforms can reduce the need for extensive development, the deployment burden

still rests on the researchers. Additionally, the costs associated with deployment are typically

borne by a single organization, making it relatively more expensive for smaller organizations

conducting smaller-scale studies.
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Smartwatch
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Participants Front-end

Interface

Connect devices
Collect questionnaires
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Researchers Dashboard

Cloud

Data storage
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Remind Participants

mHealth System

Monitor participants
View and analyze data
Create data processing pipelines
Personalize and adapt
Send reminders

Figure 1.1: An overview of a mHealth system

Alternatively, researchers can utilize online services for conducting their mHealth studies

[12, 3]. These services are platform solutions provided and deployed by service providers.

They are designed to share resources between different organizations and studies, reducing

the time and effort required for developing and deploying a custom mHealth application.

By sharing resources, these services effectively cut down costs. Typically, these services

offer researchers a dashboard for reconfiguring the services with various options. However,

the available configurations may not provide the necessary flexibility required for real-time

studies.

Despite the significant advances in existing mHealth solutions, a pressing demand for a com-

prehensive solution that integrates three essential features into a unified package persists.

Firstly, such a solution should offer a ready-to-use setup that eliminates the requirement for

computer programming or infrastructure skills, ensuring accessibility for researchers with-

out technical expertise. Secondly, the solution should prioritize affordability by reducing

3



deployment costs through resource sharing and providing reusable components. Lastly, the

solution must exhibit flexibility by offering components that can be combined in various

ways to accommodate the diverse and evolving demands of modern mHealth studies, such

as personalization.

Building a service that is capable of providing these features by design also comes with several

technical challenges in the implementation. These features need to meet certain criteria to

meet the requirements of a healthcare service. First, this solution needs to be scalable.

Scalability for mHealth solutions comes with additional challenges compared to traditional

systems since mHealth services operate on real-time, high-frequency data. This increases

the burst load on the system while putting a deadline on the end-to-end latency. Besides

that, the size of the data is big and can cause disruptions in database systems as more data

is stored in the system. Second, these solutions need to execute the logic provided by their

users (researchers). This can raise many potential problems. The problems are in security,

reliability, and especially resource sharing. This solution needs to implement measures to

provide an acceptable quality of service regardless of the load of the processes and their type

in the system.

Dissertation organization

The organization of the rest of this document will be as follows. First, Chapter 2 presents the

background on mHealth solutions. In this chapter, different categories of mHealth solutions

will be introduced and examples will be provided for each category. These solutions will be

analyzed based on different metrics to highlight the gap that exists between these solutions

and the solutions that are demanded by researchers. At the end of the chapter, I will

introduce ZotCare and explain how ZotCare can contribute to closing that gap.

Chapter 3 will discuss ZotCare’s service orchestration. This service orchestration explains

how ZotCare’s services can work in tandem to provide the environment for researchers that

4



is capable of providing the necessary features for their studies. This chapter will introduce

different services and components in ZotCare and explain how end users such as researchers

and participants can interact with the system.

Chapter 4 will take a deeper look at building a data pipeline for ZotCare. Configuring

and building data pipelines pose major challenges for building a mHealth solution. In this

chapter, I will discuss how ZotCare can handle many of the technical challenges faced in

building these data pipelines.

Chapter 5 showcases past and current studies that have utilized ZotCare as their mHealth

solution. In this chapter, I introduce each study and then discuss how ZotCare was used in

the study. Along with that, I will discuss the challenges that these studies faced and how

ZotCare could contribute to addressing them.

Chapter 6 touches on some of the other critical aspects faced in building Zotcare, including

privacy and security contributions, standardization, and design.

Chapter 7 lists all the artifacts that were produced from or by ZotCare. This list includes

services and software, codes, datasets, and related publications.

The thesis concludes in chapter 8 with a discussion of future work and limitations of ZotCare.

5



Chapter 2

Background and Related Work

The adoption of mHealth solutions within healthcare applications has witnessed a significant

surge, fueled by the shared objective of improving healthcare delivery and outcomes, as

highlighted by [19]. These solutions encompass a wide array of features that greatly facilitate

the implementation of mHealth studies. One key aspect is the ability of mHealth solutions

to seamlessly integrate wearable devices and diverse data sources, thereby enabling real-time

health monitoring. These solutions can also provide data visualization and analytic methods,

promote interoperability, and support interventions while ensuring the privacy and security

of users.

In the implementation of mHealth solutions, it is crucial to consider and explore three key

aspects. The first aspect pertains to the setup time required to initiate and configure mHealth

studies using the chosen solution. This setup time encompasses various phases, including

system design, development, and deployment, each demanding a significant amount of time

and effort. These stages involve designing the system architecture, developing the necessary

functionalities, and deploying the infrastructure to support the intended mHealth studies.

The second aspect to be considered is the associated costs involved in the development and
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deployment of the mHealth solution. Development costs encompass the investment of human

resources and time required for designing and developing the system infrastructure. This

includes the efforts of software engineers, data scientists, and other relevant professionals.

In addition, ongoing modifications and enhancements may require additional development

efforts. Deployment costs encompass the procurement of necessary processing resources, such

as servers or cloud infrastructure, as well as ongoing maintenance and operational expenses.

The third aspect revolves around the customization capabilities offered by the mHealth solu-

tion. Customization can be viewed across three distinct levels: development, configurability,

and programmability. At the development level, customization refers to the ability to tai-

lor the solution to meet specific research requirements and objectives. This may involve

creating new functionalities or modifying existing ones. Configurability, on the other hand,

allows users to adapt the solution’s settings and parameters to align with the unique needs of

their mHealth studies. Programmability refers to the capability of leveraging programming

interfaces or APIs to integrate the solution with other systems or to extend its functionalities.

At the development level of customization, researchers are advised to allocate additional

efforts to introduce new functionalities and tailor existing mHealth solutions to their specific

needs. This level of customization entails direct involvement with the underlying codebase of

the solution, thereby necessitating a high level of programming expertise. Researchers must

possess the technical skills required to modify the existing code, introduce new functional-

ities, or make changes to the underlying algorithms. Moving to the configurability level of

customization, researchers can customize the solution by reconfiguring the available features

within the provided framework. This level of customization does not demand extensive tech-

nical expertise and programming skills. Instead, researchers can make adjustments to the

system’s settings, parameters, or options offered by the solution. While configurability pro-

vides a certain degree of customization, it may be limited to predefined configurations and

settings, constraining researchers from making substantial modifications beyond the available

7



options. Finally, at the programmability level of customization, researchers can leverage the

solution’s programming interfaces or APIs to customize its behavior based on specific situa-

tions and conditions. In contrast to development-level customization, programmability-level

customization offers researchers the ability to incorporate their own functionalities into the

system with minimal effort, without requiring extensive technical expertise. In the following,

we will provide an overview of existing mHealth solutions, highlight their limitations, and

subsequently present the advantages of our solution, ZotCare, in addressing and bridging

these gaps.

2.1 Related mHealth Solutions

The existing landscape of mHealth solutions can be broadly categorized into two primary

classifications: platforms and services. Platforms encompass comprehensive frameworks that

integrate various components of mHealth solutions through the utilization of one or multiple

open-source software. One such platform is Radar-base by [27], which focuses on remote

monitoring and data collection. It facilitates the integration of data from multiple sensors

and devices, enabling comprehensive monitoring capabilities. Another notable open-source

platform is mCerebrum by [11], which provides tools for real-time monitoring, data process-

ing, and personalized health interventions based on mobile sensor data. These platforms

offer a wide range of features, including data integration, real-time monitoring, analytics,

and decision support tools. The Bridge Platform [2] by Sage Bionetworks is another note-

worthy example, providing an open-source software framework for digital health research

studies. It allows researchers to develop mobile apps, securely collect participant data, and

foster participant engagement while emphasizing privacy and data sharing.

However, deploying and utilizing these platforms for mHealth studies require substantial

effort, as setting up the necessary software can extend the setup time of studies. Technical

8



challenges may arise, particularly for researchers lacking expertise in Internet infrastructure.

Moreover, these platforms are typically designed to operate within a single organization or

study, making the deployment costs exclusive to that particular organization. Consequently,

this exclusivity can disproportionately affect smaller-scale studies, potentially rendering the

deployment financially burdensome. Another significant challenge associated with these plat-

forms is the limited availability of customization methods. While the open-source nature of

these platforms provides some level of customizability at the development level, implementing

additional features and functionalities typically necessitates the involvement of technically

skilled developers. This dependency on technical expertise may hinder researchers’ ability

to efficiently add or modify elements within the platform to suit their specific requirements.

Conversely, services encompass pre-built solutions that are tailored to specific healthcare

needs. These solutions are designed to address particular aspects of healthcare and offer

a more focused approach. For instance, ilumivu [12] provides a closed-source service that

facilitates remote patient monitoring and data collection through user-friendly mobile ap-

plications. This service emphasizes patient engagement and includes features for symptom

tracking, medication adherence, and communication with clinicians. Ethica [3], another

closed-source service, places emphasis on privacy-preserving data collection and analysis. It

ensures compliance with privacy regulations while enabling remote monitoring and research

data collection.

These services offer ready-to-use features and intuitive interfaces, enabling researchers to

swiftly adopt and utilize these mHealth solutions without requiring extensive technical ex-

pertise. By providing a streamlined and straightforward setup process, these services enable

researchers to initiate their studies promptly, leveraging the available features and mini-

mizing setup time. In terms of costs, services typically entail lower expenses compared to

platforms. This is primarily due to the fact that the deployment, maintenance, and resource

management burdens are assumed by the service providers. Consequently, these costs are
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distributed among different studies that utilize the shared resources, making it more cost-

effective for researchers. However, services generally offer limited customizability options,

particularly with regard to advanced functionalities. Customization opportunities mainly re-

volve around configuring existing features to align with researchers’ needs. Researchers may

encounter limitations when attempting to tailor these services to their specific workflows or

integrate additional features beyond those provided by the service.

The choice between platforms and services depends on various factors, including specific

requirements, available resources, researchers’ technical expertise, and study objectives. Dif-

ferent solutions offer distinct trade-offs in terms of setup time, costs, and customization

capabilities. Services generally offer shorter setup times and lower costs compared to plat-

forms. The pre-built nature of services allows for swift deployment and immediate utilization

of the provided features. However, researchers may face limitations in customizing these ser-

vices to align precisely with their experimental needs. The available configurations may

be restricted to the options provided by the service, potentially constraining researchers in

their experimentation. On the other hand, platforms provide a more comprehensive range of

customization options. This level of customization, however, typically necessitates expertise

in modifying the underlying codebase. Furthermore, there is a distinction in the burden and

costs associated with deployment and maintenance between platforms and services. With

platforms, the responsibility of deployment and maintenance lies with the researchers, en-

tailing additional efforts and costs. In contrast, services assume these burdens on behalf of

the researchers, sharing the costs across different organizations utilizing the service.

Figure 2.1 provides a comprehensive overview of the key steps involved in conducting a

mHealth study and illustrates how platforms and services can aid researchers in each stage

of the process. Notably, the figure highlights the advantage of services in facilitating the

deployment phase, specifically in building the mHealth system infrastructure. Conversely,

services may have limitations in terms of personalization and adaptability, which are ad-
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dressed by platforms during the system development stage. Table 2.1 presents a summary of

the distinctions between state-of-the-art mHealth solutions, focusing on three key aspects:

customization, cost, and setup time.

Customization

Development

Deployment

Design
Pl

at
fo

rm
s

ExperimentCustomization

Development

Deployment

Design

Personalization and Adaptation

Se
rv
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Programmable Customization

Programmable Services

Personalization and Adaptation

Development
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Design

Z
ot

C
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mHealth Study

Experiment

No Personalization
and Adaptation

Personalization
and Adaptation

through Development
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Adaptation through

Programmable Services
in Experiment
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Figure 2.1: mHealth solutions comparison

Our primary objective is to introduce ZotCare, a comprehensive programmable service or-

chestration, that combines the advantages of both platforms and services while remaining

within the services category. ZotCare is specifically designed to operate within a shared envi-

ronment, accommodating multiple organizations, studies, and researchers. This shared envi-

ronment facilitates reduced setup time and costs compared to traditional mHealth platforms.
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ZotCare offers extensive customization options across various levels, including development,

configurability, and programmability. These customization capabilities allow for seamless

implementation of new features and functionalities tailored to specific research needs. No-

tably, ZotCare excels at the programmability level, providing researchers with a diverse set

of tools to achieve the personalization and adaptation required in modern mHealth studies.

Figure 2.1 illustrates how researchers can leverage ZotCare’s programmable services to at-

tain personalized and adaptive features within their experiments, eliminating the need for

additional development efforts. At the development level, researchers can utilize the open-

source version of ZotCare, similar to existing platforms, enabling independent deployment

and utilization. Table 2.1 summarizes the distinctions between ZotCare and other commonly

used platforms and services in the field of mHealth studies. In the subsequent section, we

will delve into a detailed discussion of ZotCare’s capabilities.

Table 2.1: mHealth solutions summary

Customization level
Development Configurability Programmability Cost Setup time

Platforms
mCerebrum yes no no exclusive high
Radar-base yes no no exclusive high
Bridge yes no no exclusive high

Services
ilumivu no yes no shared low
Ethica no yes no shared low
ZotCare yes yes yes shared low

12



Chapter 3

ZotCare: Service Orchestration

ZotCare constitutes a Health Cybernetics platform, specifically designed to operate as a

closed-loop real-time monitoring-intervention system. Its purpose is to cater to the require-

ments of researchers, clinicians, and community health workers engaged in conducting stud-

ies or delivering digital health services. This comprehensive platform enables ubiquitous

monitoring of individuals, encompassing both general populations and those at heightened

risk, while also providing mHealth interventions. Additionally, it offers a direct avenue for

end-users to engage in self-management.

ZotCare encompasses fundamental components essential for conducting mHealth studies

across the entire health technology stack. Notably, it provides services that streamline

data collection through the utilization of intelligent devices, such as wearables and portable

devices. Furthermore, it enables bidirectional interactions between study participants and

researchers through gateway devices, including smartphones. Augmenting its capabilities,

ZotCare’s cloud services provide data analysis and visualization, facilitate the construction

and execution of real-time predictive models, and initiate actions necessary to enable just-

in-time adaptive interventions (JITAI).
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The primary aim of ZotCare is to enable the expeditious and convenient advancement of

mHealth solutions catering to users possessing varying degrees of programming and engi-

neering expertise, irrespective of their level of technological literacy. Consequently, through

utilizing ZotCare services, researchers can efficiently diminish the time and expenses asso-

ciated with the implementation and deployment of monitoring systems, enabling them to

focus their endeavors on study design, conceptualization, and participant engagement.
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Figure 3.1: ZotCare services overview

Figure 3.1 illustrates a comprehensive overview of ZotCare services and interfaces. The Data

Collection Services facilitate the ingestion of data from diverse devices, applications, and

services. Once collected, the data undergoes processing and is stored as a continuous stream

within ZotCare. The Profile Services assume responsibility for the storage and processing of

data in the form of key-value pairs. This storage mechanism enables the creation of profiles

for participants and groups, serving as a repository for personalized study-related data and

models, as further elucidated subsequently. Through the Real-time Processing, Intervention,

and Integration (RPII) Services, researchers possess the capability to incorporate adaptive,

intelligent, and real-time components into their studies. These components are capable

of triggering various actions based on the data obtained from the Profile and Collection
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services. In conjunction with these services, ZotCare provides two interfaces: a customizable

dashboard and a user-facing mobile application. The customizable ZotCare dashboard serves

as a web application, offering researchers an interface for accessing and modifying ZotCare

services pertinent to their respective studies. Researchers can employ the dashboard to

manage collected data, recruit participants, and customize it for clinical purposes if desired.

The ZotCare application, on the other hand, functions as a user-facing mobile application

for participants. It allows them to interact with ZotCare services, enabling functionalities

such as receiving reminders, engaging in ecological momentary assessments (EMAs), and

benefiting from adaptive mobile health interventions. Moreover, ZotCare facilitates the

integration of contextual and behavioral monitoring applications, commonly referred to as

lifelogging applications. The subsequent sections delve into further details regarding ZotCare

services and provide insights into how researchers can effectively leverage these services to

construct their closed-loop mHealth solutions.

3.1 Collection Services

The Collection Services assume the responsibility of acquiring and integrating participants’

data within ZotCare. Given the multifaceted nature of mHealth studies, various types of data

are typically employed. Objective physiological, behavioral, and contextual data, alongside

subjective self-reported data, constitute the principal data types utilized in the context of

mHealth studies. Furthermore, third-party vendors and applications offer diverse method-

ologies for data collection, encompassing direct sensor readings as well as indirect data ac-

quisition through their server-side APIs. To accommodate these disparate data types and

collection methods, ZotCare incorporates a range of features that enable the acquisition of

data through diverse channels, subsequently presenting them to researchers in a cohesive

and standardized format.
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The Collection Service possesses the capability to gather physiological data from prominent

fitness and well-being devices. These devices encompass wearable options, such as smart-

watches and rings, and portable devices, like smart blood pressure monitors and scales. These

devices are capable of providing physiological data in processed formats, and in some cases,

as raw data. The raw data typically comprises inertial measurements (accelerometer and gy-

roscope), photoplethysmography (PPG), electrocardiogram (ECG), air pressure, luminosity

sensor data, and other sensor readings, contingent upon the specific type and model of the

device. On the other hand, processed data generally entails higher-level derived physiological

metrics such as heart rate, heart rate variability, sleep quality, steps, exercise data, weight,

and other relevant parameters. These metrics are derived from the raw sensor readings by

the respective vendors.

To facilitate the collection of such data, ZotCare has been integrated with various healthcare

device vendors. Presently, ZotCare offers support for Samsung, Garmin, Empatica, and

Fitbit smartwatches, as well as Oura rings for smart wearables. Additionally, ZotCare can

integrate with Withings smart scales and blood pressure monitors. It is important to note

that the list of supported devices is continually expanding, as indicated in Table 3.1. For

certain devices that provide a software development kit (SDK) and open access to their

operating system/firmware (e.g., Samsung Active watches running Tizen OS), ZotCare offers

a native smartwatch application. This application enables direct access to the raw signals

from these devices and transmits them to the ZotCare back-end. Researchers also have the

flexibility to incorporate new devices through direct connections or by utilizing third-party

services, utilizing standard open authentication (OAuth) methods.

Furthermore, to augment data collection capabilities within ZotCare, we have seamlessly

integrated the AWARE smartphone-based logging framework [4] to enable the passive col-

lection of behavioral and contextual data. Through AWARE, researchers can leverage partic-

ipants’ smartphones to gather data from various sensors, including location, accelerometer,
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battery status, light intensity, temperature, and more. AWARE also allows the extraction of

contextual information from participants’ daily lives, such as screen lock/unlock events, ap-

plication usage patterns, step count, and even communication activities such as notifications,

text messages, and phone calls.

To encompass the collection of self-reported subjective data within ZotCare, we have incor-

porated an Interaction sub-service into the system. This feature empowers researchers to

design and deploy dynamic questionnaires, indicators, and interactive tasks using the Interac-

tion’s functionality. The ZotCare front-end application effectively handles these Interactions,

capturing participants’ responses along with detailed metadata for comprehensive analytics.

Moreover, the Interactions feature serves as a versatile tool for various purposes, including

EMAs, information delivery, assessments, recommendations, and interventions. Researchers

have the flexibility to update questions, EMAs, and other interactive components on-the-fly

using the ZotCare dashboard, granting them dynamic control over the study’s data collection

processes.

Table 3.1: ZotCare objective data collection

Device Data type Integration type Dev stage
Samsung Tizen watches raw/processed direct supported
WearOS-enabled watches raw/processed direct under-dev
Empatica E4 wristband raw/processed direct/third-party under-dev
Garmin processed third-party supported
Whitings devices (BP, Scale, etc.) processed third-party supported
Fitbit processed third-party under-dev
Oura processed third-party supported
AWARE raw/processed direct supported

3.2 Profile Services

The Profile Services within ZotCare assume the responsibility of storing specific information

pertaining to groups or individual participants. Researchers can program these profiles to
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establish key-value storage for data management purposes. In the case of participant pro-

files, the programmed key-value storage consists of a predetermined set of keys established

by the researchers for all participants. However, individual values can be stored per key for

each participant, allowing for personalized data storage. For group profiles, a single value is

associated with each key, which can be replicated across different groups. This replication

enables the creation of distinct groups, such as control and intervention groups, or allows

for customization of shared resources, such as the ZotCare Frontend application. Each key

within the profiles can be configured with a variety of features. Researchers have the flexibil-

ity to choose whether the values associated with these keys should be stored on participants’

edge devices or in the cloud. Additionally, researchers can determine whether these values

should be visible to the participants, depending on the study’s specific requirements and

privacy considerations.

The Profile Services play a crucial role in enabling researchers to personalize and adapt

their studies over time, particularly in advanced studies that require participant engagement,

personalized interactions, or the utilization of statistical or AI models. However, studies that

primarily focus on monitoring and passive data collection may not extensively utilize this

service. Within participants’ profiles, researchers can store a range of important dates and

times, such as join date, delivery date, significant personal events, and preferred notification

times. Additionally, characteristics such as height, weight, and fitness level can be recorded.

Serializable entities, such as personal AI models or statistical models, as well as files like

images, audio recordings, or voice recordings, can also be stored within participants’ profiles.

Group profiles, on the other hand, contain information that is shared among the members

of a specific group. This may include timing information for different stages of the study

or shared AI models. Furthermore, group profiles can include customization data specific

to each study, such as differentiating between intervention and control groups or specifying

menu items. The information stored within profiles serves multiple purposes within the
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Real-time Processing, Intervention, and Integration Services. It allows for the adaptation

of study procedures based on individual participant characteristics. Researchers can also

leverage profile information within Interactions to customize and personalize the individual

experiences of participants. Furthermore, profiles can be used to locally store personal

identifiers such as names, addresses, and photos, instead of saving them on servers. This

enables further customization of the participant’s experience while preserving their privacy.

Overall, the Profile service provides researchers with a versatile tool for personalization,

adaptation, and customization, enhancing the effectiveness and participant-centric nature of

their studies.

3.3 Real-time Processing, Intervention, and Integra-

tion (RPII) Services

ZotCare offers researchers a comprehensive suite of Real-time Processing, Intervention, and

Integration (RPII) Services, which equip them with the capability to transform data into

knowledge, incorporate intelligence into their studies, and effectively close the loop within

their solutions.

Through the RPII Services, researchers gain the ability to process data derived from the

Profile and Collection services, enabling them to extract meaningful insights and execute

subsequent actions based on the processed data. These services can be leveraged at various

stages of the data processing pipeline, encompassing tasks such as data pre-processing, AI

model development, collection of smart labels and EMAs, scheduling adaptive interventions,

and sending intelligent reminders.

By utilizing the RPII Services, researchers are empowered with complete control over the
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flow of data within their studies. This enables them to dynamically analyze and respond to

data in real-time, facilitating the integration of intelligence into their research and ultimately

closing the loop within the solution they have developed.

Within ZotCare, each study is capable of containing multiple Real-time Processing, Inter-

vention, and Integration (RPII) instances, which play a pivotal role in enabling dynamic

and intelligent functionality. Each RPII instance consists of three essential components:

Triggers, Conditions, and Actions . Triggers serve as indicators that determine when

an RPII unit is to be executed. These triggers can be categorized as either data-driven,

responding to incoming new data, or chronological, based on fixed times or frequencies.

Conditions, on the other hand, evaluate the data to determine if any adaptations or actions

need to be performed. Based on the specified conditions and the available data, the RPII

instance can make informed decisions regarding the subsequent actions. Actions within an

RPII instance are programmable functions that can trigger internal modifications within

the ZotCare environment or invoke external functionalities. Researchers have the flexibility

to program RPII instances with various internal functions within ZotCare, including data

fetching, participant grouping and filtering, data processing, AI model building, and writing

to data streams or profile values. Furthermore, ZotCare supports external actions such as

sending emails, push notifications to the ZotCare mobile application, and accessing external

resources. To provide an overview of these features, a comprehensive summary is presented

in Table 3.2, which outlines the various logic features supported by ZotCare.

Moreover, ZotCare offers seamless integration options for external systems with its RPII

services. Researchers are provided with dedicated endpoints to access ZotCare from their

own machines and servers, facilitating the integration of external resources into the ZotCare

environment. To streamline the process of utilizing ZotCare externally, an SDK is avail-

able, designed to simplify the interaction with ZotCare and offer additional features. The

SDK enables researchers to fetch, cache, and process data, as well as invoke actions within
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Table 3.2: Zotcare RPII services features

Component Type Options Dev stage
Triggers Data incoming data supported

Chronological cron expressions supported
Conditions Fetch data streams & profiles supported

Filter data streams & profiles supported
If / Else - supported
Inferring AI models - under-dev

Actions Send Email templates & plain supported

Send Push Notification
ZotCare &
Firebase [5] &
OneSignal [24]

supported

Write Profile - supported
Training AI models - under-dev

ZotCare, all without the need to handle complex authentications or intricate API calls. By

leveraging these integration capabilities, researchers can utilize their own resources to replace

or supplement ZotCare’s RPII components, enhancing the flexibility and adaptability of the

system to suit their specific requirements.

3.4 The Customizable ZotCare Dashboard

The ZotCare dashboard serves as a customizable interface that facilitates interaction between

users (such as researchers and clinicians) and ZotCare services. Researchers can create

different study groups through the dashboard. Each group can be configured to utilize the

ZotCare services for the purpose of that specific research or product.

The ZotCare dashboard incorporates a dedicated section for user management. Within this

section, researchers can recruit new participants for their studies. This can be achieved

through the utilization of random IDs for direct recruitment or by utilizing sign-up links

for anonymous recruitment. Additionally, the dashboard enables researchers to edit user

information and profile values as needed. Furthermore, the ZotCare dashboard offers a com-
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prehensive suite of data analysis capabilities, ensuring that researchers have the necessary

tools to derive valuable insights from their research data. Researchers can leverage the pro-

vided tools to visualize data in its original format or apply sophisticated aggregation and

filtering techniques to create visually informative charts and graphs. Moreover, the dash-

board empowers researchers to employ their domain knowledge and expertise by facilitating

direct annotation of data within the platform. These annotations are seamlessly stored as

new data streams within ZotCare, contributing to a rich and comprehensive dataset for

further analysis.

In addition to user management and data analysis functionalities, the ZotCare dashboard

provides researchers with effective tools for managing their services within the platform.

Through an intuitive interface, researchers can easily activate, modify, or review the configu-

rations of their services. While certain services, such as collection services, entail straightfor-

ward setup steps, others, such as programmable services like RPII, profile, and interactions

services, necessitate more advanced configurations. To streamline this process, the dash-

board offers interactive editors that facilitate researchers in editing, debugging, and testing

these programmable services, ensuring a seamless and efficient management experience.

ZotCare also incorporates a fine-grained access control mechanism that allows users to have

specific permissions within individual studies. This feature enables researchers to involve

different collaborators in their study, assigning them distinct roles based on their access

scope. These roles can range from recruiters or data analysts to study managers or clinicians.

Each collaborator is granted access only to the relevant parts of the dashboard that align

with their assigned role. This stringent access control is crucial for safeguarding the privacy

and integrity of the study, ensuring that each collaborator can only view and utilize the

components that pertain to their specific responsibilities.
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3.5 ZotCare Mobile Application

The ZotCare mobile application serves as an interface for facilitating ZotCare services to

participants. This mobile app functions as a front-end interface, enabling various ser-

vices, including mHealth interventions, multimedia interactions, and interactive profiles

through its components. Additionally, the ZotCare app acts as an assistant to partici-

pants, aiding them in device setup and facilitating communication between participants

and researchers/clinicians. The primary purpose of the app is to provide participants with

interactive ”interactions.” These interactions encompass a range of components, such as

multiple-choice, numerical, time, data, and text input, as well as sliders, among others.

These components are well-suited for various purposes, such as EMAs, questionnaires, and

data labeling, which are commonly employed in mHealth studies. Furthermore, interactions

are equipped with multimedia features, including videos, images, audio, and audio-video

recorders. Extensive research has demonstrated the effectiveness of these multimedia tools

for both assessment and mHealth interventions, as evidenced by studies presented in Chapter

5.

Moreover, interactions can incorporate customized components that researchers can create

and incorporate, allowing for further customization and enhancement of their studies. Pre-

vious studies using ZotCare have showcased the utilization of such components for interven-

tions, such as interactive breathing exercises, mindfulness-oriented image galleries, relational

savoring exercises, and educational materials. Additionally, these components have been em-

ployed in assessments, such as cognitive games (e.g., finger tapping, word pair memory tests,

rule-switching games, etc.). In addition to the visible components, interactions can include

condition statements, representation configurations, variables, and metadata. These features

provide researchers with a broader set of tools for personalization and customization.

Furthermore, participants have the ability to grant authorization to ZotCare, via the ap-

23



plication, to access their health data from third-party services, such as Oura and Garmin.

This integration allows for seamless retrieval of pertinent health information. Additionally,

the app offers comprehensive instructions and troubleshooting steps for devices and appli-

cations that establish a direct connection with ZotCare, including Samsung and AWARE.

Furthermore, participants can access certain features of the Collection and Profile services

through the ZotCare app. These services provide participants with valuable functionalities

and data management capabilities. The ZotCare app serves as a means for researchers and

participants to maintain a continuous connection. This connection is facilitated through

various means, including reminders, notifications, and messages. Researchers can choose to

automate these communications through the RPII services or manually trigger them using

the dashboard.

A general version of the ZotCare app is readily available for installation and use on Android

and iOS smartphones. However, the app’s flexibility allows for customization to accommo-

date different research studies. Researchers possess the capability to modify the app’s colors,

logos, menus, and other visual aspects to align with the specific requirements of their study.

Moreover, they can also modify the app’s components to create tailored ”Interactions” with

additional functionalities. By leveraging the Profiles feature, researchers can further person-

alize the app’s appearance to suit individual studies or specific participant requirements.
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Chapter 4

ZotCare: Technical Challenges and

Implementation of a mHealth Service

Data Pipeline

Besides the features that ZotCare provides directly to the researchers, the system must meet

specific technical criteria to be useful for mHealth studies. The end-to-end latency of the

processing pipeline needs to be reliable and scalable. This pipeline starts by receiving the

data through a web endpoint, storing the data, running the RPII instance associated with

the data, and invoking actions based on the result. Since ZotCare’s collection service can

process high-frequency raw sensor data, processing and storing the data can introduce new

challenges to the scale of the system.

The first challenge is how the system would scale compared to the number of partici-

pants. As the number of participants increases, the time it takes to store the data or process

the RPII instance would either stay the same or increase as well. This causes the upload

requests from the participants to queue in the web server. In other applications, the increase
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in queue time might not be a big issue, however, for limited resources in wearable devices,

this time can increase the device’s awake time and energy consumption, and ultimately cause

the requests to fail or drop out.

The second challenge is how the system would respond as the amount of data in the

storage increases. High-frequency raw data can take up a high volume of storage space and

since the data is constantly generated by wearable devices, it grows faster than conventional

data. Since it is essential in mHealth applications to find these data efficiently, there is a

need to index the raw data. However, a big index tree causes both read and write requests

to slow down. And if the index tree grows bigger than the memory limit of the database it

can cause additional failure and slow down to read and write processes. This will slow down

both the writing operations of the data collection service and reading operations of the RPII

service and ultimately slow down the end-to-end latency of the system.

The third challenge in the ZotCare data processing pipeline is the systems quality of service

against different RPII process tasks. Some RPII tasks might need access to many data

points such as downloading data or retraining a machine learning model. However, some

other tasks can be quick but have a short deadline such as inference tasks. However, in a

system that can process all these tasks homogeneously, this can cause the longer tasks with

lower priority to block the resources for shorter tasks that have higher priorities.

4.1 Method

To introduce ZotCare’s data’s data pipeline architecture, This section will start with a

conventional API server design architecture. At each step of the process, we will explain the

problems with the architecture and how it can be improved considering the characteristics

of the mHealth data and application.
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4.1.1 Conventional Blocking Approach

The conventional approach to designing a server architecture is to design a typical web server

to receive the data, store the information, run the necessary processes, and return the result

to the participant. The request for storing the data will occupy a connection in the API

server for the duration of storage and processing of the information. The use of this approach

is common in general use web-servers and is supported by most web-server platforms.

The benefit of this approach is that the requests are processed immediately and the end-to-

end response time of the data processing pipeline is short. However, this approach queues

the requests at the API level and keeps the connection with the uploading device alive. As

the storage time can potentially be long and the RPII instance process can take a random

time, these queues can be long and accumulate over time. Besides the mHealth devices that

upload the data are usually performed on battery and the wait time for requests can consume

the limited energy.

API 
Queue

Storage

RPII Logic

1 2

3
4

Figure 4.1: Conventional data pipeline

4.1.2 Double queue approach

To improve the conventional approach, we can consider limitations and opportunities that

exist in mHealth systems and change the system’s design based on them.

1. The RPII actions are often asynchronous.
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RPII actions often fall into categories such as push notifications, email reminders, collecting

more data, etc. These actions need to go through other Internet services and be delivered

asynchronously. Besides that, the result of these actions depends on the human response

time and availability which makes a couple of seconds of delay negligible.

2. Upload requests are initiated by low-power wearables and gateway devices.

The devices that send the upload requests are often initiated wearables and gateway devices

such as smartphones, smartwatches, smart home devices, etc. These devices are low-power

and efficient and usually have a short timeout on web requests. This limits the response

time for the conventional method.

Using an additional queue after the API queue can internalize the wait time of the requests.

The first queue of API accepts the data, stores them temporarily, closes the connection, and

creates a new task in a broker queue. There are two workers on the broker queue: a storage

worker and an RPII worker. The storage worker gets the data from the temporary storage

stores the data in an indexed database, and creates a new task in the broker queue for the

RPII worker to process the data. The RPII worker can read the data from the storage,

process the data, and invoke the actions asynchronously to the participant or researchers.

Since the actions are asynchronous, they can be initiated even after the request connection

is closed.

In this approach, the queue for storing and processing the data happens internally in the

server and can be done with more resources and more efficiently compared to low-power

wearable and edge devices. This causes the wearable devices to get off the API queue as

soon as possible, save power, and prevent the wearable requests from timing out. However,

this approach comes with the cost of losing access to synchronous actions, and needing

temporary storage that can delay the end-to-end latency of the system. Even though this

approach helps with the scale of the system to the load of the participants, it does not affect
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the challenges of the storage scale.
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Figure 4.2: Double queue pipeline

4.1.3 Double queue with watcher approach

The nature of mHealth studies creates distinct characteristics in storing and accessing data

streams that can be used to improve the double queue approach further.

1. The chance of receiving a data decreases with its age

Even though the mHealth data can come out of order, the chances of receiving older data

decrease with the age of that data. This is because older data often gets priority in syn-

chronization, and it becomes less probable for old data not to synchronize while new data is

uploaded constantly.

2. Most of the processing focuses the recent data

The RPII instances often perform one of the following tasks: 1- updating a trained model

with recent data and labels, 2- running the model on current data to make an inference 3-

retraining the entire model with a new hypothesis. These tasks create a pattern of accessing

the data since both the update and inference tasks need access to the recent data, and

access to the older data only happens as a sequential stream. Besides the RPII access,

researchers often want to see the recent data with more detail in the dashboard to create a
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hypothesis or assess participants’ states and only use a summary of the older data to control

the involvement of the participants.

This access pattern can create a different data service that keeps the old and recent data in

separate storage systems. The new data can be stored in highly-indexed storage optimized

for high access granularity and supports out-of-order insertions called a hot storage. When

the data reaches specific criteria, it can be transferred to an ordered, low-indexed storage

system called a cold storage. In this approach, the storage worker stores the data in the hot

storage the same way as in the double queue approach. However, reading the data has to go

through a gateway service that can choose between hot storage and cold storage based on

the age of the data. There is also a need for a watcher service in the system to transfer the

old data from the hot storage to the cold storage as they reach a specific limit.

The hot storage, cold storage, and storage watcher systems need to be configured according

to each data stream and application. For instance, consider the case where the hot storage

is indexing the data based on minutes, and the cold storage is indexing the data based on

days. This will cause the index tree in the cold storage to be 1440 times smaller than the

hot storage, while the read time from cold-storage will only increase a constant amount.

Choosing the right policy for storage watcher can also affect the scale of the system. for

instance, using only age as the policy can cause high-usage summary data to be retired while

they are accessed with high frequency, and they do not occupy a big portion of the index

tree might cause the system to slow down. However, a fusion of age, demand, and index size

can create an optimum policy for the storage watcher.

This architecture scales well with the number of participants while it has the benefit of not

slowing down as the amount of stored data goes up. However, accessing the older data from

cold storage can be slower, but as discussed, accessing the old data happens less frequently

than the recent data.
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Figure 4.3: Douple queue with storage watcher pipeline

4.1.4 Double Queue with watcher and worker manager

As discussed in section 4.1.3, the processes in the RPII worker often follow a similar access

pattern.

1. Processes that access the recent data and have a short deadline: inference, updating

models

2. Processes that access all the data and have a longer deadline: model retrain, download

data

Since the RPII instances are programmed by the users, the system doesn’t have information

on which category of process is running. However, the data access pattern of each of these

processes and their run time can determine that.

This information can be used to create a worker manager wrapper around the workers. The

work manager can monitor the access of the worker to the data and its run time. In the

cases that the worker is taking more than the limit on time or requesting the amount of data

bigger than the limit, the manager can halt the worker after processing some of the data

and put it in an inactive state. The manager then can resume the work later to allow the

shorter processes to go through.

The limits on time, the limit on the amount of data, and the inactive time between executions
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can be set based on experiments or can be set dynamically by monitoring the load in the

broker queue and the total amount of requested data. Finding the right policies for the

worker manager can change the performance of the system and the maximum end-to-end

latency of the data pipeline.

This approach can enhance the performance of the system on shorter processes. However, it

can cause the longer processes to take longer. Another potential downside of the system is

that a bad policy for the worker manager can create starvation for the longer processes and

cause them to accumulate and take more resources. One of the notable challenges of this

approach is that it limits the RPII worker’s actions. Some of the data and processes in the

RPII worker (i.e., multi-task processing) might not be serializable, or pausing and restoring

the state of the worker might have a big overhead.
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Figure 4.4: Double queue with watcher and work manager method

4.2 Experiments and Results

ZotCare has been implemented using a Python Flask web server. Flask is a quick and easy

Python framework for server development. Since it is a Python framework it makes it easier

to integrate with the commonly used machine learning and data science libraries. The hot

storage used in ZotCare is using MongoDB. MongoDB makes it easy to create complex

indices for the data and have different data with different formats merged in a single tree.

This makes MongoDB a good option for ZotCare since the studies can have a dynamic
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access pattern and different shapes and formats. RabbitMQ and Celery were utilized to

implement the broker queue and workers. Both of these tools are the most commonly used

task distribution and broker services in Python and are scalable and distributable as the

system is facing more load.

The experiments were done on an emulated server environment using docker-compose. Docker-

compose is a software tool that is capable of creating a cluster-like environment within a host

and creating different instances of the components in that environment. It provides features

for creating networks and volumes to connect these components together. Docker-compose

also allows its users to create limitations on processing and memory specifications for each of

these components which makes it a good candidate for our experiments. The total process-

ing power of each approach was balanced to the same total to eliminate the effect of adding

more processing units for workers and brokers in different approaches.

4.2.1 Scalability with the number of participants

This experiment compares the conventional approach and the double queue approach in

handling the number of participants who are actively uploading data. This experiment can

show how effective the double queue approach is in providing a quality of service for the end-

to-end latency of the system and its ability to lower the API wait time. In this experiment,

we assumed that the participants would respawn over a period of three minutes with unified

distribution. First, each participant will log in to the system, and then upload 2400 data

points every three minutes. We changed the number of participants, reverted the database,

and ran each of the experiments for a total time of 15 minutes. It was assumed that the RPII

worker task takes about 2 seconds in total. This number is based on research by Tazarv et al.

[31]. Figure 4.5 shows the end-to-end latency of the conventional method vs the latency of

the double stack method split between the API processing time and the rest of the processing
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time consumed by the storage and RPII workers. As shown in Figure 4.5 the API response

time for the double stack method is almost negligible against the end-to-end latency. As

observed, the conventional method is faster than the double stack method by less than 5%

for 500 and 1000 users but the double stack method surpasses the conventional method by

more than 75% at 2500 participants and the gap will only grow after that.
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Figure 4.5: System latency scale with the number of participants
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Chapter 5

ZotCare: Use Cases

ZotCare has been utilized as a service within diverse mHealth research studies. The function-

alities of ZotCare were devised to meet the requirements of these studies and were adapted

accordingly based on their specific utilization. The initial studies availed themselves of

preliminary versions of ZotCare, encompassing provisions for multi-modal data collection.

Subsequently, ZotCare broadened its spectrum of services and characteristics to address the

requirements for customization and governance. In the following, we will begin by providing

an overview of select studies that used ZotCare services for purposes encompassing data

collection, data modeling, and intervention. Subsequently, we will delineate the challenges

encountered and describe the integration of ZotCare into these aforementioned studies.

5.1 Personal Mental Health Navigation Project

The Mental Health Navigation (MHN) project develops a proactive, personalized approach

to monitor, estimate, and guide individuals toward their desirable mental health state [26].

MHN monitors a multimodal stream of objective and subjective information to build in-
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ference models to determine participants’ mental states, context, and lifestyle. Using the

constructed personal model and the current state, a navigator system can steer the partici-

pants using interventions at each step. The MHN project comprised two studies, the Affect

study and the Loneliness study. The Affect study focused on investigating the connection

between college students’ psychophysiological signals and sleep on their mood [13]. Due to

the onset of the COVID-19 pandemic during the midst of the Affect study, a revision was

made to expand the study’s objectives to encompass the impact of COVID-19 and subse-

quent lockdown measures on the lives and emotional well-being of college students [22, 16].

The subsequent phase of the MHN project referred to as the Loneliness study, was primarily

dedicated to the real-time evaluation of the mental well-being of college students, along with

the provision of just-in-time adaptive interventions for those individuals requiring support

[34]. Moreover, the Loneliness study encompassed the collection of life-logging and contex-

tual data, enabling the inference of participants’ virtual (through smartphones) and physical

communication levels. By integrating the acquired life-logging and contextual data with the

pre-existing models established in the Affect study, the accuracy of the loneliness assess-

ment models was significantly enhanced. Consequently, the Loneliness study successfully

developed adaptive interventions, leveraging these refined models, with the ultimate aim of

mitigating the adverse mental state experienced by the participants.

Both the Affect and Loneliness studies employed the utilization of ZotCare as a means to

gather bio-signal and EMA data and administer mHealth interventions. The Affect study

specifically utilized the Samsung smartwatch and Oura ring to continuously capture phys-

iological signals, monitor sleep quality, and track levels of physical activity. In addition to

these devices, the Loneliness study incorporated the use of AWARE to gather life-logging

data. Furthermore, a customized ZotCare mobile application, namely mSavorUs (Figure 5.2

A), was developed and employed for the participants. This tailored application not only

retained all the features of the original ZotCare application but also provided supplementary

custom features for relational savoring exercises and interventions. The interventions within
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the mSavorUs application were personalized by incorporating participants’ names and photos

sourced from their memories, utilizing locally stored profiles. To implement the interventions

in the Loneliness study, the RPII services were utilized. These services were employed both

directly for delivering conditional notifications and via an API form to establish a connection

with a machine learning agent maintained within a separate cluster. The volume of data

collected in each of these studies exceeded 200 gigabytes, with a total of 4.5K and 14.9K

labels collected for the Affect and Loneliness studies, respectively.

Table 5.1: MHN project studies summary

Study # DurationCollection
Service

Profile Ser-
vice

RPII Service

MHN
Affect
[35]

20 3-12
months

• Samsung
watch
• Oura ring
• ZotCare
app

- -

MHN
Lone-
liness
[34]

20 1 year • Samsung
watch
• Oura ring
• ZotCare
app
• AWARE

Local (name
and memory
images)

• Build mood prediction
models
• Trigger interventions
based on mood
• Send conditional re-
minders

The initial deployment of ZotCare for the MHN Affect study presented various challenges

that underscored the necessity for additional features or services to address them effectively.

Given the study’s incorporation of multiple data collection dimensions, including the Sam-

sung smartwatch, Oura ring, AWARE framework, and questionnaires, study coordinators

faced difficulties in monitoring the status of all dimensions and promptly informing par-

ticipants about any potential issues and interruptions in data collections. Interruptions

occasionally occurred in the ZotCare collection services running on participants’ devices due

to factors such as high battery consumption, device inactivity, or inadvertent shutdowns by

participants. To overcome this challenge, ZotCare implemented a summary report generator

within the data collection service. These daily summaries could be utilized by researchers
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through ZotCare dashboards to assess the status of participant data and facilitate timely

follow-up when necessary. Additionally, interactive troubleshooting components were in-

tegrated into ZotCare Interactions, accessible via the ZotCare mobile application. These

troubleshooting components systematically analyzed the participants’ collected data and

provided step-by-step instructions for resolving any data communication issues that may

have arisen. Through the implementation of these additional features and services, Zot-

Care effectively tackled the challenges encountered during the MHN Affect study. This

ensured efficient data monitoring, facilitated effective troubleshooting, and ultimately en-

hanced participant engagement and study outcomes. Moreover, during the course of the

Loneliness study, the construction of the real-time inference model necessitated computa-

tional resources that surpassed the capacity of the ZotCare backend services available at that

time. To address this challenge, the researchers leveraged the RPII capability of ZotCare, en-

abling integration with external resources. The team successfully employed the RPII service

to execute an inference model within a cluster, which was triggered by ZotCare web-hooks.

The obtained data was subsequently retrieved through the ZotCare SDK, processed, and

intervention scheduling was performed using ZotCare API calls. This strategic approach

effectively resolved the issue of resource limitations and facilitated the seamless integration

of just-in-time adaptive interventions by harnessing the capabilities of external resources.

5.2 The UNITE Project

Smart, Connected, and Coordinated Maternal Care for Underserved Communities (UNITE)

is a research project funded by the United States National Science Foundation, with the pri-

mary objective of developing innovative technologies to enhance the physical and emotional

well-being of underserved pregnant women and their newborns. The UNITE initiative en-

deavors to revolutionize conventional maternal care practices, which have traditionally been
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delivered within homes or clinics, by integrating an AI-supported remote monitoring system.

The project comprises three distinct phases, each with its specific focus and objectives. The

initial phase, known as the “Feasibility” phase, concentrated on assessing the viability of

remote maternal health monitoring. This involved investigating the level of engagement ex-

hibited by pregnant women with the technology, taking into account their individual health

conditions [14]. The second phase of UNITE encompassed a series of small-scale randomized

controlled trials (MicroRCTs), which sought to examine various aspects of maternal well-

being, such as stress management or physical training, and assess their impact on pregnancy

outcomes [32]. Currently, the project is in its third phase, an ”AI-assisted” study aimed at

exploring the efficacy of incorporating AI assistants and nurses into the care loop for moth-

ers. Within this phase, an AI-enabled exercise recommendation system has been deployed

alongside the recommendations provided by healthcare providers. This human-in-the-loop

mHealth approach has resulted in the development of a personalized, step-by-step recom-

mender system that adapts to the specific pregnancy conditions and physical measures of

each individual mother.

The Feasibility phase of the UNITE project primarily focused on the collection of data and

subsequent analysis during the post-study phase. Given the vulnerable nature of the study

group consisting of pregnant mothers, it was imperative to implement a triage system to

swiftly identify and report any potentially risky situations. To fulfill this requirement, the

UNITE initiative incorporated ZotCare’s RPII services. By integrating data-driven triggers

within the RPII unit, the behavior of participants could be assessed, enabling immediate

alerts to be sent to researchers when necessary.

In the second phase of UNITE, known as the MicroRCT phase, the team explored an alter-

native approach to collecting labels. Instead of adhering to fixed times and frequencies, the

possibility of employing smart labels was investigated, aiming to maximize the information

obtained while minimizing participant interruptions. By utilizing statistical and active ma-
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Table 5.2: UNITE project studies summary

Study # Duration Collection
Services

Profile Ser-
vices

RPII Ser-
vices

UNITE
Feasibility
Study [14]

25 6-10
months

• Samsung
watch
• Oura ring
• ZotCare app

- • Triage system
for early risk
assessment

UNITE
Stress De-
tection [32]

14 30 days • Samsung
watch
• ZotCare app

- • Using stat
models to trig-
ger EMAs

UNITE
Stress De-
tection [31]

18 2 months • Samsung
watch
• ZotCare app
• AWARE

- • Using re-
inforcement
learning to
trigger EMAs

UNITE
Exercise
Recom-
mender
System [20]

20 4 months • Samsung
watch
• Oura ring
• ZotCare app

• Create a
physical pro-
file (height,
weight)
• Indicators
(exercise, set,
repetition,
duration, in-
tensity)
• AI sugges-
tions
• Store models

• Triage system
for risky behav-
iors
• Exercise rec-
ommender en-
gine

chine learning models within the RPII services, the UNITE team could send notifications

to participants, prompting them to provide labels at more opportune times, resulting in

improved accuracy and heightened participant engagement [31].

During the AI-assisted recommender system phase, the main challenge revolved around es-

tablishing a cohesive loop involving the participants, the AI recommender engine, and health

providers. To address this challenge, the Profile and RPII services were leveraged, providing

the necessary flexibility. Three sets of profiles were employed: one for participants to input

their physical measurements, another for health providers to input their assessments, and

a final one for the AI recommender engine to store its recommendations. The RPII service

played a crucial role in executing the recommender engine by utilizing the physical measure-
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ments and health providers’ assessments from the Profile services, as well as participants’

bio-signals, progress, and feedback from the Collection services. Figure 5.1 illustrates the

adoption of the services within this solution. The process begins with Step (1), where par-

ticipants input their physical measurements through the UNITE mobile app (Figure 5.2 B).

This information is then used by the nurses to recommend the participants’ initial exercise

regimen. In Step (2), the recommender engine utilized this information to train its models,

infer the next set of exercise regimen recommendations, store the recommendations within

the participant’s profile, and notify the health providers of the ongoing process. The health

providers, in Step (3), evaluated the final exercise regimen for each participant based on the

suggestions provided by the recommender engine. Steps (2) and (3) continue in a continuous

loop throughout the duration of the study. This system effectively assists health providers

in processing a significant amount of information and providing frequent assessments.

Prole

Providing
measurements

Interaction

Personalized
exercise regimen

Interaction

Collection

Objective response
to exercise intensity

Prole

Mothers
measurements

Nurse-
recommended regimen

AI-recommended
regimen

RPII

Training the AI-agent

Recommending 
a new regimen

(1) Nurse’s initial recommendation
(2) AI’ s training and recommendation
(3) Nurse recommendation based on AI

Subjective feedback
about exercise intensity

Figure 5.1: UNITE AI-assistant integration in ZotCare
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5.3 Other Projects

As the services provided by ZotCare continued to develop, they began to be utilized by

researchers and universities outside of the original project, encompassing a diverse array of

research studies. These studies varied in terms of their contextual settings, languages used,

time zones, and specific requirements. The expanding scope of applications enabled ZotCare

to adapt and enhance its functionalities, thereby providing researchers with a wider range of

features to facilitate their studies effectively. Some example studies are listed in Table 5.3.

Table 5.3: Examples of other studies that utilized ZotCare

Study Description # DurationCollection
Service

Profile
Service

RPII Ser-
vice

Sleep &
Menstra-
tion [30]

Subjective study on
the affect of menstrua-
tion on sleep

20 2
months

ZotCare app
(customized
with cogni-
tive tests)

- -

PREVENT
[23]

Daily well-being of
pregnant women
around COVID-19
pandemic

38 30 days • Samsung
watch
• ZotCare
app (in
Finnish)

- -

D-CCC
[28]

D-CCC was proposed
to assist community or-
ganiztions to monitor
elderly

5 2
months

• ZotCare
app
• Oura ring
• Withings
Blood Pres-
sure Monitor
• Withings
Scale

- • Interven-
tions to pro-
mote physical
and mental
well-being

Sleep &
Brain
study

Impact of sleep quality
on memory and cogni-
tive performance

TBD TBD • ZotCare
app (cus-
tomized with
cognitive
tests)

• Custom
notifi-
cation
times

• Notification
scheduler

SERVE
OC (ongo-
ing)

Serve OC is focused on
preventing high blood
pressure and improv-
ing health among fam-
ilies

1000 3 Years • Withings
Blood Pres-
sure Monitor

• Family
label
• Preg-
nant label
• Re-
search
Groups

• Missing
data detec-
tion
• Abnormally
detection
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Two research projects, namely “Sleep & Menstruation” [30] and “Sleep & Brain,” were con-

ducted to investigate subjective sleep assessment and cognitive abilities through the use of

questionnaires and cognitive tasks. The first project examined the impact of menstruation

on sleep patterns, while the second project explored the relationship between sleep and cog-

nitive abilities. Both projects incorporated traditional questionnaires to gather information

on various aspects of sleep, including duration, quality, and mood. Standard question forms

components such as multiple-choice, text input, sliders, and time pickers were utilized to en-

sure comprehensive data collection. Figure 5.2 (C) shows a snapshot of such a questionnaire

in the mobile application. Furthermore, interactive cognitive tasks, designed to resemble

games, were employed to assess participants’ cognitive skills. The flexibility of ZotCare’s

capabilities in creating customized interaction components proved invaluable for researchers.

This allowed them to focus on designing the tasks themselves without the need for devel-

oping a separate interactive mobile application. By leveraging ZotCare’s functionalities,

researchers could streamline the data collection process and efficiently collect data. Given

that some questionnaires needed to be administered before bedtime or upon waking up, Zot-

Care’s profile and logic services were utilized to personalize the timing and availability of the

questionnaires for each individual participant. This customization ensured that participants

received questionnaires at the appropriate times based on their specific sleep schedules and

preferences.

In addition to its utilization in the aforementioned studies conducted in the United States,

ZotCare has also been employed in research studies conducted in other countries and across

different languages. One notable example is the “PREVENT” study conducted in Finland.

This study specifically focused on maternal care and aimed to assess the daily well-being of

pregnant women during the challenging circumstances imposed by the COVID-19 pandemic

[23]. The “PREVENT” study leveraged ZotCare’s localization features to adapt the platform

to the Finnish language and timezone. This ensured that the study participants in Finland

could access and interact with ZotCare’s services seamlessly in their native language and
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(A) (B) (C)

Figure 5.2: (A) mSavorUs, (B) UNITE, and (C) HowRU app used in MHN, UNITE, and
Brain & Sleep projects

within the context of their local time zone.

The Digital Health for the Future of Community-Centered Care (D-CCC) [28] research

project aims to explore the integration of technology and community health workers in order

to enhance healthcare delivery for underserved communities. Specifically focusing on the

elderly population, the project seeks to develop a symbiotic relationship between humans

and technology, enabling the design of new technologies that can assist community health

workers in providing more effective support. ZotCare played a crucial role in alleviating

the burden on participants who were unfamiliar with using advanced technologies. By pro-

viding user-friendly interfaces and intuitive interactions, ZotCare facilitated the seamless

integration of technology into the participants’ lives. Moreover, ZotCare enabled the con-

tinuous monitoring of participants’ device usage patterns and their overall health status.

This feature helped researchers and community health workers gain valuable insights into
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the participants’ well-being and promptly address any emerging issues. The ZotCare dash-

board proved to be an invaluable tool in monitoring vital signs trends among participants,

such as heart rate and blood pressure. Additionally, the ZotCare application allowed for the

subjective capture of daily symptoms, including pain and fatigue, as well as adverse events

such as falls. The customization of the ZotCare dashboard specifically catered to the needs

of health providers involved in this study. It enabled them to receive intelligent alerts in the

event of abnormalities in vital signs or adverse events, and also provided visualizations of

the collected data, empowering them to make informed decisions regarding participant care.

The SERVE OC study is a community-focused research initiative spanning three years on a

population of 1,000 individuals. With a culturally-tailored approach, the research is facili-

tated by dedicated community health workers (CHWs). These CHWs play a pivotal role in

engaging and guiding families in setting goals, refining skills, and managing risks to fortify

their resilience against hypertension. With this approach, this research is seamlessly woven

into participants’ everyday lifestyles and well-being. SERVE OC uses ZotCare to longitudi-

nally monitor each individual’s blood pressure using Whitings Blood Pressure Monitor. It

also employs RPII services to process these blood pressure data and detect subtle irregular-

ities for each individual, sending customized notifications to their respective CHWs.
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Chapter 6

Discussion

The position of the project in terms of its features for researchers has been discussed in

Chapter 3 and its technical contributions in building a data pipeline has been brought up

in 4. This chapter will be dedicated to exploring some other aspects of the project that are

worth mentioning.

6.1 Security and Privacy

In order to uphold the integrity of ZotCare’s services, it is imperative to prioritize the secu-

rity and privacy aspects of the platform. Robust security measures have been implemented

to safeguard data and communication channels against potential threats posed by unautho-

rized individuals attempting to manipulate, delete, or disrupt data storage and transmission

processes. Privacy considerations within ZotCare are designed to empower participants by

granting them control over their personal data. This includes ensuring the protection of

identifiable information, thereby safeguarding the privacy of participants. Security and pri-

vacy present unique challenges within service-based environments compared to platforms,
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as multiple organizations share the same resources. Consequently, it becomes necessary to

implement measures to safeguard information from both internal and external sources.

Collected data from participants may consist of both objective sensitive data, such as location

information and passwords, as well as subjective data that, based on responses provided in

Interactions and Profiles, may reveal sensitive information. Similar security and privacy

risks exist across other services as well. For instance, programmable services, including RPII

services, are susceptible to malware injection. It is worth noting that researchers’ mistakes,

such as data overwriting, large or repeated queries, and infinite loops, can also introduce

malware vulnerabilities.

To address these security challenges, ZotCare has implemented a gateway service that reg-

ulates authentication, authorization, and scope through standard encryption methods. This

entails a two-step process in which the gateway first verifies the identity of the requester and

subsequently checks if the requester has the necessary access permissions to the requested

resource. Privacy concerns extend beyond the scope of data collection and storage and begin

with participant recruitment. In cases where studies possess knowledge of their participants,

researchers can manage deidentification processes on their end, enrolling participants in Zot-

Care using anonymous IDs. However, for studies that allow individual participant sign-ups,

ZotCare can deidentify data associated with participant emails, enabling participants to uti-

lize their emails for password retrieval and receiving notifications. Nevertheless, researchers

only have access to anonymous IDs. ZotCare does not currently support deidentification of

collected data at this stage. It is important to note that both researchers and users have

the option to disable the collection of sensitive data across all ZotCare services, providing

an additional layer of privacy control.
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6.2 Standardization

ZotCare collaborates with various third-party vendors, each offering APIs for data collection

and action invocation. These APIs come with unique specifications related to permissions,

consent, authentication, and data transfer protocols. While some APIs use standardized

protocols like OAuth for permission and authentication or SMTP for email, they often vary

in methods and formats, even for similar types of data. For example, accelerometer data

from different devices can be returned in distinct metrics and formats.

There has been progress in API protocol standardization, easing the process of integrating

diverse vendors into ZotCare. Email protocols and OAuth are good examples where stan-

dardization simplifies integration for both ZotCare and researchers. Yet, challenges remain,

particularly in achieving universal standardization for all types of data and actions.

Two primary solutions exist to address these challenges. The first involves partnering with

intermediary third-party services that offer a unified API by harmonizing protocols from

various vendors. This approach, however, might compromise some features available through

direct integration. The second is the pursuit of global standardization, requiring all vendors

to adhere to stringent protocol and data format standards. While this could streamline

integration, it would be resource-intensive and could limit the introduction of new metrics

and data types.

For instance, ZotCare’s integration with OneSignal [24], a third-party service for sending

push notifications to Android and iOS devices, simplifies the notification process but restricts

certain platform-specific features. On the global standardization front, organizations like

Open mHealth [21] aim to create reusable and standardized mobile health studies. However,

many vendors in the ZotCare ecosystem have yet to adopt these standards.
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6.3 Intuitive Design

An intuitive system design enables users to fully engage with a platform’s capabilities without

requiring excessive time spent on learning. The interface is self-explanatory, allowing users to

intuitively understand how to interact with it, enhancing the user experience and operational

speed. For ZotCare, which aims to facilitate research and expedite production, particularly

for researchers without a technical background, intuitive design is essential. It broadens the

system’s accessibility and lowers the learning curve.

However, challenges abound in implementing intuitive design within ZotCare. Primarily,

the system’s programmable services, often rich in meta-variables, configurations, and condi-

tions, can become convoluted. Debugging adds another layer of complexity, as programming

and execution often occur in separate environments. For example, interactions may be

programmed in the researcher’s dashboard but executed on ZotCare’s mobile application,

complicating debugging errors and tracing them back to their source.

Addressing these user experience (UX) challenges requires a multi-faceted approach, encom-

passing UI enhancements and underlying infrastructure changes. On the UI front, a more

structured, hierarchical interface can guide the user through the study design process more

logically than a flat listing interface. For instance, the dashboard could be designed to fol-

low the workflow of setting up a new study, presenting users with the relevant options at

each stage. Additional UI improvements might include graphical helpers for text-based ser-

vices and visual connections between interacting components. This could simplify navigation

because unique identifier keys link various services in ZotCare.

Creating traceable logs can help identify and resolve errors more effectively on the infras-

tructure side. For example, if an error occurs during the rendering of an interaction, Zot-

Care could log the error at each stage, allowing for targeted troubleshooting. Implementing

higher-level plugins can foster a community among ZotCare researchers, enabling them to
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share solutions. Such a plugin could, for example, send morning notifications based on

Oura’s sleep data and be activated with a single click utilizing different services in tandem.

Finally, modularization can simplify the UI by allowing researchers to compartmentalize

various aspects of their projects, making debugging and implementation more manageable.

For example, profile keys can be used in different places and for different solutions, but they

are all programmed on the same screen. This screen might overflow the researchers with

information and make it challenging to debug their solutions.
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Chapter 7

Artifacts

7.1 Access and usage

ZotCare services are available for researchers and health practitioners who would like to

run mHealth studies or try a new approach to reaching their clients or patients. Manuals,

documentation, and tutorials for ZotCare services are available and will be updated at this

address: https://futurehealth.uci.edu/zotcare/. Researchers can fill out the mHealth study

form on this webpage to demo the services and use them in their next mHealth study. Besides

the services, ZotCare apps for Android and iOS are also available for download.

7.2 Code Repositories

Many lines of code and software were built to create ZotCare. These codes are valuable for

other researchers who want to use ZotCare in an exclusive environment for their studies, are

interested in mHealth research experiments, or are trying to create branches to add features

or build new services on top of ZotCare. The source code for ZotCare will be available in
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Github under this repository: https://github.com/ZotCare.

7.3 Data sets

A considerable amount of data has been generated as a byproduct of using ZotCare in

different studies. These data hold great value in future research. These datasets contain

multiple data collection modalities, often covering more aspects than the study’s primary

purpose. This allows researchers from different backgrounds to explore this data through

their perspectives. Besides that, there are many methods of processing and experimenting on

each dataset, which creates opportunities to get better results even on the explored aspects

of a dataset. We plan to curate some of the datasets generated by studies using ZotCare

and make these available to the public via the UCI Institure for Future Health.
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Chapter 8

Future work

The future of ZotCare will predominantly hinge on two principal enhancements: the in-

tegration of new features and the introduction of novel services. Additional features can

be incorporated into the existing services without altering the current orchestration, for

instance, augmenting support for new devices, introducing new types of profiles, or incorpo-

rating new actions and triggers into RPII services. Other relevant features, such as chatbots,

could serve as beneficial additions to ZotCare’s interactions. Furthermore, there is potential

for increasing the programmability of AI components within the system. The system could

be trained to suggest correlations and models congruent with researchers’ experimental ob-

jectives, mitigating the need for manual programming. Alterations in service orchestration

would pose a more significant challenge, as the services must retain their flexibility, mini-

malism, and comprehensiveness. Nevertheless, with the burgeoning demand in the mHealth

sector, the team will explore opportunities for redesigning the service orchestration.

While programmable services offer a high level of customization, they adhere to stringent

syntax and rules, necessitating a learning phase for researchers. Besides that, some func-

tionalities and patterns in mHealth systems often repeat in a similar way between studies,
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such as smart personalized notifications, standard data processing methods, and standard

adaptive interventions. In order to make it simpler for researchers, efforts are underway

to incorporate more templates and straightforward, high-level configurations in the form of

modules. These modules can be available to researchers to add standard mHealth func-

tionalities to their studies without the need to learn knowledge over ZotCare programmable

services or recreate standard functionalities that have been done before.
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