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Abstract

The median survival of patients with idiopathic pulmonary
fibrosis (IPF) continues to be approximately 3 years from the
time of diagnosis, underscoring the lack of effective medical
therapies for this disease. In theUnited States alone, approximately
40,000 patients die of this disease annually. In November 2012,
the NHLBI held a workshop aimed at coordinating research efforts
and accelerating the development of IPF therapies. Basic,
translational, and clinical researchers gathered with
representatives from the NHLBI, patient advocacy groups,
pharmaceutical companies, and the U.S. Food and Drug
Administration to review the current state of IPF research and
identify priority areas, opportunities for collaborations, and
directions for future research. The workshop was organized into

groups that were tasked with assessing and making
recommendations to promote progress in one of the following
six critical areas of research: (1) biology of alveolar epithelial injury
and aberrant repair; (2) role of extracellular matrix; (3) preclinical
modeling; (4) role of inflammation and immunity; (5) genetic,
epigenetic, and environmental determinants; (6) translation of
discoveries into diagnostics and therapeutics. The workshop
recommendations provide a basis for directing future research and
strategic planning by scientific, professional, and patient
communities and the NHLBI.

Keywords: idiopathic pulmonary fibrosis; alveolar epithelial cells;
extracellular matrix; interstitial lung disease; inflammation
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Idiopathic pulmonary fibrosis (IPF) is
a chronic, progressive disease of unknown
cause that occurs primarily in older adults
and is defined by clinicopathologic criteria,
including the histologic and/or radiologic
pattern of usual interstitial pneumonia (1).
Since the NHLBI last convened a workshop
on IPF in 2001 (2), researchers have
generated important new insights into the
pathobiology of this disease; however, to
date this information has not been
translated into effective therapies.

To focus and coordinate ongoing basic
and translational research efforts in IPF, the
NHLBI convened a workshop on November
27 and 28, 2012. The workshop was
organized into six working groups focused
on important areas of perceived need and/or
opportunity in the field of IPF research. By
necessity, a number of areas of investigation
relevant to pulmonary fibrosis, including
some aspects of clinical science, were not
fully addressed in this forum. This report
summarizes discussions by each of the
working groups, highlights knowledge gaps,
and provides recommendations for strategic
planning and future research to better define
the pathogenesis of IPF and develop
effective therapies. In addition to the group
summaries presented here, expanded
summaries from two of the working groups,
summarizing the role of extracellular matrix
(ECM) in IPF and the use of preclinical
modeling (3), will be published separately.

Biology of Alveolar Injury and
Aberrant Repair

Epithelial Injury/Susceptibility in IPF
Recurrent and/or nonresolving injury to the
lung epithelium appears to be a key driver of
pulmonary fibrosis. Although the cause of

this injury in IPF remains enigmatic, the
footprints of lung epithelial injury are
manifest as increased epithelial cell death
and phenotypic alterations of surviving
epithelial cells (4). Emerging data support
the concept that altered (or “reprogrammed”)
alveolar epithelial cell (AEC) phenotypes,
including those produced by increased
endoplasmic reticulum stress, predispose to
further AEC injury and/or abnormal repair,
facilitating the development of pulmonary
fibrosis (5, 6). The timing and nature of
inciting and subsequent injuries to AECs, as
well as how other genetic, epigenetic, and
environmental factors affect disease
presentation, are poorly understood. This
working group suggested that the epithelial
abnormalities/dysfunction underlying fibrosis
be referred to as “reprogramming,” regardless
of whether the initial injury eventually leads
to cell death or only elicits profibrotic
responses. Better definition of the molecular
characteristics of AEC “reprogramming” is
needed to improve understanding of IPF
pathogenesis. In addition, studies to further
investigate epithelial interactions with
mesenchymal cells and matrix in animal
models and patient samples would be
beneficial. It is possible that the “lung-on-a-
chip” approach, which has been used to
model interactions between epithelial cells
and endothelial cells (7), could be modified
to incorporate mesenchymal cells and used
to study epithelial–mesenchymal cell
interactions, as could three-dimensional cell
culture systems or decellularized matrix/
bioreactor systems.

Cell Origin(s) of the Myofibroblast
Myofibroblasts, and related mesenchymal
cells, are generally accepted as the cells
predominantly responsible for fibrotic
destruction/distortion of the lung in IPF (8).
Lineage tracing experiments in the lung and
other organs have identified diverse cellular
sources that may give rise to these
mesenchymal cells (9–14), but the
contributions of these potential cell(s)-of-
origin, as well as the potential contributions
of stem and differentiated resident cells,
circulating mesenchymal cells (fibrocytes),
or transdifferentiation from other lineages,
to expansion of the lung fibroblast
population remain to be definitively
determined. Furthermore, the stage of
mesenchymal cell differentiation at which
IPF myofibroblasts acquire hallmark
pathological properties, the mechanisms
underlying their pathological

differentiation, and the roles of signals from
epithelial cells, immune cells, and matrix in
this process all require better elucidation.
Progress in these areas would be greatly
facilitated by the identification of
mesenchymal cell markers able to
distinguish the different stages of
differentiation of these cells and
standardization of methods for isolation,
cultivation, and distribution of
mesenchymal cells from patients with IPF.

Role of Stem/Progenitor Cells in
Aberrant Repair
Although epithelial cell proliferation and
differentiation is a prominent feature of
repair after lung injury (15), the importance
of expansion and differentiation of small/
rare populations of preexisting epithelial
stem/progenitor cells in epithelial regeneration
is unclear (16, 17). Dedifferentiation of mature
epithelial cells followed by their proliferation
and differentiation is another plausible
mechanism for epithelial regeneration.
Depletion or loss of function of airway/
epithelial progenitors could favor fibrosis over
regeneration of functional lung tissue, but
determining the role of progenitor cell failure
in IPF will require better understanding of the
identity and biology of such cells.

Recommendations

1. Investigate the molecular basis of AEC
“reprogramming” in IPF.

2. Generate novel animal models of
pulmonary fibrosis focusing on
epithelial injury.

3. Study bidirectional cross-talk between
AEC and other cell types that contribute
to IPF.

4. Standardize identification and isolation
of human AECs, mesenchymal cells, and
decellularized lung matrices.

5. Identify distal airway and alveolar stem/
progenitor cells and clarify their
expansion or contraction in IPF.

6. Identify biomarkers of epithelial injury/
dysfunction/reprogramming in IPF.

Role of ECM

ECM Composition in IPF and Its
Bioactive Components
The matrisome, composed of almost 300
ECM proteins, is one of the most plastic and
rapidly evolving compartments of the

At a Glance Commentary

Scientific Knowledge on the Subject:
This report summarizes the latest research
as well as knowledge gaps in idiopathic
pulmonary fibrosis (IPF).

What This Study Adds to the Field:
The workshop recommendations
provide a basis for future strategic
planning in IPF research for the
scientific, professional, and patient
communities and for the NHLBI of the
National Institutes of Health.
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proteome (18). Beyond roles in providing
architectural support, many ECM
components are bioactive (i.e., deliver
important signals to fibroblasts and other
cells that they contact) (19–25). In addition,
ECM mechanical properties can influence
cellular phenotypes and organ fibrosis.
Newer applications of noninvasive imaging
modalities, such as microfocal X-ray
computed tomography (26) and magnetic
resonance elastography (27), allow for
assessment of tissue biomechanical
properties of the lung in vivo, but our
current understanding of ECM mechanics
in normal and IPF lungs is still limited.
In vitro, several groups have shown that
fibroblast function and myofibroblast
differentiation are tightly linked to the
deformability (i.e., the rigidity or stiffness)
of the ECM (28–32). “Outside-in”
transmission of mechanical forces to the
cell, and “inside-out” transmission of
traction forces from the cell to the ECM,
may both mediate profibrotic cellular
responses (33).

ECM Dynamics and
Fibrosis Resolution
Evidence suggests fibrosis of diverse organ
systems is at least partially reversible in
experimental animal models and in humans
(34, 35). For resolution of fibrosis to occur,
recruited/activated myofibroblasts must
be eliminated, and deposited ECM must
be degraded and cleared. In most cases,
it appears these processes occur
synchronously (36). Which of these
resolution mechanisms are subverted in IPF
is currently unknown.

ECM Model Systems
The translation of accumulating knowledge
of matrix biology to the development of new
diagnostic biomarkers and therapeutic
agents for IPF could be facilitated by
improved ECM model systems. A variety of
culture systems are available that mimic the
mechanical properties and dimensionality
of tissues in vivo. One widely used system is
mechanically tunable polyacrylamide gels
that impart known stiffness to the matrix
(28, 29, 31, 37–39). These matrices can be
coated with ECM proteins to provide
a biologically relevant culture substrate with
appropriate (normal) or augmented
(fibrotic) stiffness. Alternatively,
decellularized human lung ECM (from
explanted control and IPF lungs) can be
sliced on a vibratome to create individual

culture “discs” that retain both their native
stiffness and their ECM composition (40).
The decellularized system has the
advantages of using fully human matrices
and allowing the direct study of matrices
from human diseases (or relevant animal
models). Further improvements in ECM
models are needed to incorporate other
mechanical features, including viscosity,
flow, stretch, hydrostatic pressure, and
heterogeneity.

Recommendations

1. Characterize IPF lung ECM and
determine how it influences profibrotic
cellular phenotypes.

2. Identify ECM components and their
receptors that promote fibrotic
remodeling.

3. Elucidate mechanisms of matrix
stiffening and cell responses to increased
stiffness.

4. Determine the lung’s capacity to resolve
fibrosis and identify strategies to
augment it.

5. Develop model systems that better
simulate the lung ECM environment.

Preclinical Modeling

Usefulness of Animal Models in IPF
Although many investigators have relied on
animal models to study the pathogenesis of
pulmonary fibrosis, none of the models
currently available fully recapitulates the
progressive nature of IPF or the histology of
usual interstitial pneumonia. In addition,
clinical trials based on efficacy signals from
animal models (in particular the bleomycin
model) have thus far failed to yield an
effective medical therapy, leading some to
question the usefulness of animal models for
studies of IPF pathogenesis and treatment.
However, this view discounts valuable
insights into mechanisms of fibrosis
generated from animal studies (41).

Mouse Models of Pulmonary Fibrosis
Although intratracheal installation of
bleomycin remains the most commonly used
model of lung fibrosis, other exogenous
agents, including silica, radiation, fluorescein
isothiocyanate, and asbestos, have also
been helpful in elucidating pathogenic
mechanisms (3). Overexpression of
endogenous fibrogenic mediators, such as

transforming growth factor (TGF)-b, IL-13,
and TGF-a (3, 42), can also be used to
model lung fibrosis. TGF-b overexpression
by adenoviral delivery (43) or by
doxycycline-regulated transgenic expression
in epithelial cells (44) highlights the ability of
this cytokine to promote epithelial cell
apoptosis, myofibroblast differentiation, and
production of other profibrotic mediators (3,
43–45). Genetic models have been developed
based on mutations identified in patients
with familial interstitial pneumonia,
including surfactant protein C (46, 47),
surfactant protein A2 (48), and telomerase
components (49, 50). Surprisingly, modeling
these mutations has not yet resulted in
spontaneous development of fibrosis,
although some have produced an increased
susceptibility to fibrotic stimuli (51–53),
indicating that genetic models have potential
to improve understanding of “gene-by-
environment” interactions in IPF. As new
genetic links to disease are identified, either
as rare variants in familial cases or common
variants in sporadic IPF, mouse modeling
holds promise in dissecting additional
pathways pertinent to fibrosis.

Other Approaches to Model Human
Pulmonary Fibrosis
IPF is age dependent in humans (54), and
recent strides have been made in modeling
fibrosis in older animals (55–58). In
addition, genetic deletion of the receptor
for advanced glycation end products
(RAGE) (55) or relaxin (57) results in
spontaneous age-related lung fibrosis. Such
models will be important in helping
elucidate biological changes that occur with
aging that make the lung more susceptible
to fibrosis. Additionally, recent advances
have been made to “humanize” mouse
fibrosis models using approaches such as
infusion of human IPF fibroblasts into
immunodeficient NOD/SCID/Beige mice
(59, 60).

Recommendations

1. New treatments should be studied
during the fibrogenic phase, as well as
the initiation or inflammatory phase, of
preclinical models.

2. Evaluation of fibrosis should incorporate
both biochemical measures of ECM
deposition and histological assessments
of lung architecture.

3. The role of aging should be further
investigated in current models.

NHLBI WORKSHOP

216 American Journal of Respiratory and Critical Care Medicine Volume 189 Number 2 | January 15 2014



4. Expansion of humanized models of lung
fibrosis is encouraged.

The Role of Inflammation
and Immunity

Adaptive Immune Cells in IPF
Although the lack of efficacy of
immunosuppressive drugs in IPF has led
some to suggest inflammation may not
play a role in this disease (61), some
inflammation/immune activation is
consistently found in the lungs of patients
with IPF (61–63). Studies in animal lung
fibrosis models have also identified
important roles for some adaptive immune
cells, including CD41 T cell subsets
(64–66).

Fibrocytes in IPF
Fibrocytes have been implicated in
the immunopathogenesis of many
diseases characterized by fibrosis and
remodeling (67). Identified by the
coexpression of leukocyte markers
such as CD45, ECM proteins such
as collagen Ia, and pluripotency markers
such as CD34 (68), fibrocytes are detected
with increased frequency in the lungs
(69) and circulation of patients with
IPF. Elevations in circulating fibrocytes
predicted reduced event-free survival
in a prospectively recruited cohort of
subjects with IPF (70). Animal modeling
has also suggested a potential role for
fibrocytes in the development and/or
maintenance of pulmonary fibrosis (71–74).
These cells combine the proinflammatory
properties of monocytes and the
tissue remodeling properties of fibroblasts
and consequently could participate
in fibrosis through a number of
mechanisms (67); however, studies to
date have not definitively determined their
role in IPF.

Macrophages in IPF
Macrophages possess many functions that
would be expected to promote fibrosis,
including regulation of fibroblast proliferation,
recruitment, and activation (75); direct
regulation of ECM components (76); and
secretion of profibrotic cytokines and growth
factors. Macrophages may also possess
antifibrotic properties, however (75, 77, 78).
Several recent studies have attributed these
opposing functions to different macrophage

populations distinguished along the lines
of classical (M1) and alternative (M2)
macrophage activation (72, 79, 80), with M1
macrophages being antifibrotic and M2
macrophages being either profibrotic or
regulatory. However, this classification may be
overly simplistic, given recent human studies
that demonstrate that IPF mortality is
associated with increased concentrations of
mediators associated with both M1 and M2
macrophages (81, 82). Although macrophages
may be functionally important in IPF, many
questions about their contributions to this
disease remain unanswered.

Targeting Inflammatory Cells
and Mediators in IPF
Endogenous mediators and mechanisms that
naturally slow the progression of fibrosis may
be able to be exploited therapeutically, and
their identification is consequently of great
interest (77). These mediators and
mechanisms may include immunosuppressive
cytokines like IL-10, decoy receptors like
IL-13Ra2 and IL-1RA, regulatory T cells,
and various monocyte/macrophage
subpopulations that have been shown to
suppress inflammation and fibrosis (83).

Recommendations

1. Better define the roles and importance
of specific immune/inflammatory cell
populations at all stages of IPF.

2. Investigate whether specific immune
cells or the cytokines they secrete can be
manipulated to ameliorate lung fibrosis.

3. Characterize and exploit endogenous
pathways that inhibit inflammation and
fibrosis.

Genetic, Epigenetic, and
Environmental Determinants

Progress in IPF Genomics
In the last decade, significant progress has
been made in identifying genetic causes and
genomic characteristics of pulmonary
fibrosis. The association of IPF with
a common single-nucleotide polymorphism
in the promoter of the MUC5B gene (84)
was recently confirmed by two genome-
wide association studies, which also
identified other IPF-associated
chromosomal loci (85, 86). These
additional loci include Toll interacting
protein (TOLLIP), which negatively
regulates Toll-like receptor signaling, and

genes associated with cell–cell adhesion and
DNA repair. The MUC5B promoter and
TOLLIP variants associated with IPF have
both been linked to survival (86, 87), and
the MUC5B promoter variant is also
associated with interstitial lung
abnormalities and fibrosis in the general
population (88). Rare variants in genes for
surfactant proteins (A and C) (46, 89) and
telomerase components (49, 90) have
similarly been identified in familial and
sporadic IPF. Although these findings
transform our current understanding of the
genetic predisposition to IPF, additional
studies that use whole genome, whole exome,
and targeted region sequencing are required
to identify all rare risk alleles for IPF in both
coding and noncoding regions (91).

Profiling of Pulmonary Fibrosis Using
Novel Techniques
Going beyond genetics, the application and
integration of other “omics” approaches,
including analyses of coding and noncoding
RNA, the epigenome, and the microbiome,
to pulmonary fibrosis should enhance
our ability to understand, diagnose, and
ultimately treat IPF. Classical gene
expression profiling studies have progressed
in IPF from characterizations of small
numbers of human or mouse lung samples
to analyses of large cohorts that have led to
identification of multiple relevant genes
(92–95). Progress has been made in novel
profiling of IPF as well: mechanistically
relevant changes in microRNA expression
profiles in IPF lung have been described
(96–98), and studies aimed at determining
the lung methylome are ongoing (99, 100).
Investigators can now access the Lung
Genomics Research Consortium website
(http://www.lung-genomics.org/lgrc) and
download mRNA, microRNA, methylation,
and SNP profiles of carefully phenotyped
IPF lungs. Although the increased
availability of omics data is encouraging,
the availability of omics information has
not yet translated to personalized medicine
approaches that are more precise,
predictive, and participatory.

Gene-to-Function Analyses
Current success in identifying individual genes
and pathways in IPF has not yet been
accompanied by mechanistic understanding
of how these genetic, epigenetic, and
microRNA changes result in human disease.
Pathways identified by genomic approaches
should be studied in preclinical models to
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understand disease-relevant mechanisms.
Additionally, profiling methods could help
identify preclinical animal model(s) that most
closely mimic human IPF. An unbiased
profiling approach could lead to libraries of
relevant animal models and allow detailed
phenotyping not possible fromhuman studies.

Gene–Environment Interactions
A better understanding of the role of
environmental factors in IPF requires
further epidemiological efforts, including
studies in “at-risk” populations, such as
carriers of known disease-associated gene
variants. Tools are being developed in
environmental sciences to precisely
measure real-time exposures and the
body burden of previous exposures,
which should be applied to study IPF
whenever possible. Probing the human
transcriptome or epigenome for evidence
of “profibrosis” exposures and “fibrosis-
cumulative” injuries could also have
significant impact.

Going Beyond IPF to Understand IPF
One of the key challenges in interpreting
omics information in IPF is that it is difficult
to determine which findings of these types
of studies are specific to IPF. To better
understand IPF, we need to break down
individual disease-specific “silos” and
consider using genomic, transcriptomic, and
epigenetic approaches to compare (1) IPF
with other lung diseases such as autoimmune
and exposure-related interstitial lung diseases
and interstitial lung diseases in children; (2)
IPF with fibrotic diseases of liver, kidney,
heart, and skin, and (3) IPF with fibrotic lung
diseases in other species. These comparative
studies may facilitate drug development,
particularly of agents that may be effective for
multiple fibrotic diseases.

Recommendations

1. Use genomic approaches to identify
novel pathways that influence the
development of human IPF.

2. Identify exposure signatures to better
understand gene–environment
interactions in IPF.

3. Compare omics of IPF to other lung
diseases, fibrosis in other organs, and
pulmonary fibrosis in other species.

4. Support integrated studies using omics
data to develop personalized approaches
to IPF.

Translation of Discoveries
into Diagnostics
and Therapeutics

Progress in Clinical and Translational
Studies in IPF
Numerous recent accomplishments in
this area include: standardization of IPF
diagnosis (1), improved understanding
that IPF progression is highly variable
(1), development of novel clinical staging
systems, prediction models (101–103)
and potential biomarkers of disease
activity (104, 105), and recent
publications of practice-altering data
from clinical trials conducted by the
IPFnet, a network of IPF clinical research
centers, and industry.

Development of Patient Cohorts with
Standardized Phenotyping and
Longitudinal Clinical Data
In IPF, disease heterogeneity continues to
pose challenges for studies of the human
disease, management decisions, and clinical
trials. The benefits of establishing well-
defined cohorts of patients with IPF with
standardized, comprehensive, and
longitudinal clinical and biological data to
guide future clinical investigations, as well as
bench research, cannot be overemphasized.
For example, the contributions of
gastroesophageal reflux (106) and
autoantibodies (107) to the pathogenesis of
IPF, and their role exacerbations, could be
further characterized from such cohorts.
The establishment of these cohorts could
also facilitate validation studies of genetic
variants (86, 87), biomarkers (81, 108),
and clinical characteristics (63) that have
been linked to IPF progression. The
major obstacle to the creation of these
cohorts is lack of coordinated efforts
among the key stakeholders (clinicians,
investigators, patient advocacy groups/
foundations, and clinical trial sponsors
including government agencies and
pharmaceutical companies). The working
group supports coordinating national/
international efforts to create desired IPF
cohorts by standardizing clinical
phenotyping of patients with IPF at
baseline and over time and linking these
data to longitudinal biologic samples, and
using these cohorts for genetic,
biomarker, clinical, and other studies to
develop novel IPF diagnostics and
therapeutics.

Biological Sample Repositories
Translational research linking molecular
pathways to disease phenotypes requires
comprehensive biorepositories of tissue and
biologic samples from carefully phenotyped
clinical cohorts. Currently available
biorepositories have been collected through
the NHLBI-supported Lung Tissue Research
Consortium (LTRC), a multicenter
observational study (Correlating Outcomes
with biochemical Markers to Estimate
Time-progression in IPF [COMET]),
IPFnet, the National Disease Research
Interchange, and a few individual academic
centers, including the Pittsburgh genomic
and proteomic analysis of disease
progression in IPF (GAP) program. Going
forward, biorepository efforts to support
translational research need to be
expanded in a systematic and coordinated
fashion, in conjunction with efforts to
establish well-defined IPF cohorts
advocated above. Standardization of
sample collections, agreements to make
these biorepositories open-access
resources, and regulatory aspects of
clinical research still remain to be worked
out by all stakeholders.

Qualification and Validation
of Biomarkers
Biologically relevant biomarkers will
improve the diagnostic approach to, the
clinical management of, and the
performance of therapeutic trials for IPF.
Obstacles to the development of robust
biomarkers, including the investment
required for their validation and disease
heterogeneity, remain, but a pathway for
biomarker development, qualification, and
validation has been defined (109).
Numerous potential biomarkers have been
examined in the IPF population, including
measures of pulmonary physiology, chest
imaging, patient-reported measures, and
tissue and molecular markers. Physiologic
measures including FVC, diffusing capacity
of the lung for carbon monoxide, TLC,
exercise tolerance, and measures of
oxygenation have all been used as measures
of disease severity, progression, and
responsiveness to therapeutic interventions
(1). Lung imaging studies, particularly
high-resolution computed tomography,
play an integral role in IPF diagnosis and
may be useful in assessment of disease
severity. Structural patterns and
semiquantitative measures of individual
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radiographic features have been used to
define disease progression, and evolving
quantitative measures of imaging
may improve our ability to monitor
disease progression and therapeutic
responsiveness. Several instruments of
patient-reported outcomes, adapted from
other lung disorders and including various
measures of dyspnea and health-related
quality of life, have been used to assess
longitudinal IPF progression and
therapeutic response (110). Future
collaborative research to develop useful
IPF biomarkers by combined efforts of
academic consortia, pharmaceutical
companies, patient advocacy groups, and
the National Institutes of Health is
endorsed by the working group.

The Performance and Impact of
Phase I/II/III Clinical Trials
Although a number of high-quality phase III
studies have been performed, the majority of
completed clinical trials in IPF have been
phase II. Standardization of these studies has
improved considerably and proven the
feasibility of high-quality, large, global,
randomized controlled trials in this disease.
Recognized obstacles for trial performance
include confusion over strategies to enrich
cohorts for measurable disease progression
and current debate regarding the optimal
primary endpoint (111–114). Although
physiological variables have been correlated
with survival, whether we have identified
a valid surrogate for survival in pivotal
clinical trials remains controversial and
a key area for future discussion and
investigation. The most common study
approach has included the use of American
Thoracic Society, European Respiratory
Society, Japanese Respiratory Society, and
Latin American Thoracic Association
criteria for IPF diagnosis and the
physiologic primary endpoint of FVC,
which some advocate as the most practical
clinical endpoint for IPF trials (112, 114).
Some experts have recently proposed that,
in the absence of validated surrogate
endpoints, all-cause mortality and
nonelective hospitalizations would be more
appropriate clinical endpoints than FVC
in future phase III clinical trials (111).
Although these two endpoints may be ideal
in IPF, other experts have countered that
IPF clinical trials based on them would be
prohibitively large and/or expensive (114),
as only a minority of patients with
physiologically mild to moderate disease

experience disease progression over the
course of clinical trials A possible solution
to this controversy is to use a cohort
enrichment strategy that would allow for
a more homogenous study population that
experiences an increased number of events,
and development of such a strategy is
critically needed. Further study of the
larger, clinically annotated, longitudinal
collections of human IPF patient samples
advocated by this working group above
could also increase the efficiency of IPF
clinical studies, by enabling clinical and
molecular-based strategies to determine
patient numbers, maximize statistical
power, and promote future surrogate
biomarker evaluation. At present, however,
the lack of integrated clinical infrastructure,
the cost of clinical drug development,
concerns over intellectual property, and the
high failure rate of drugs investigated to
date all pose challenges for IPF clinical trial
efforts.

Recommendations

1. Establish national/international cohorts
of phenotypically and geographically
diverse patients with IPF.

2. Develop/expand centralized open-access
biorepositories of tissues from patients
with IPF and appropriate control
subjects.

3. Develop an IPF-specific patient-
reported outcome tool.

4. Develop, select, and validate IPF
biomarkers and imaging techniques.

5. Facilitate clinical trials by establishing
an infrastructure with regional IPF
centers of excellence.

6. Clinical trials should incorporate cohort
enrichment and systematic biomarker
strategies, should use clinically
meaningful endpoints when possible,
and should complement patient cohort
establishment and biological sample
collection efforts.

Summary

The goal of this workshop was to
summarize important aspects of basic
and translational research in IPF,
define areas of need in this field, and
provide recommendations for future
research. In addition to the specific
recommendations made by each working
group, discussions at the workshop
highlighted areas of exceptional need
and/or potential to advance the field that
are summarized in Table 1. Given the
progress that has been made in
understanding the biology of pulmonary
fibrosis over the last decade, we are
optimistic that effective therapies for
IPF can be identified in coming years. This
outcome will be enhanced and accelerated
by transparent and coordinated efforts
among all stakeholders. n

Table 1: Areas of Exceptional Needs or Opportunities in Idiopathic Pulmonary
Fibrosis Research

Development of systems and new approaches to define the molecular characteristics of
“reprogrammed” alveolar epithelial cells and interactions of these cells with key
components of their environment, including (myo)fibroblasts.

Standardization of methods for collection and distribution of human cell types important in
IPF (including AECs and fibroblasts).

Refinement of methodology to investigate functional components of the ECM.
Collaboration among researchers with interests in different organs/systems to expedite
identification of common disease mechanisms and conserved therapeutic targets.

Development of better preclinical models that incorporate the effects of aging and relevant
genetic information.

Integration of “omics” data and incorporation of gene–environment studies.
Establishment of large, rigorously phenotyped patient cohorts using standardized definitions
for long-term clinical and biological data.

Enhancement of biorepositories using samples and data from carefully phenotyped patients
with longitudinal data

Further development and validation of patient-reported outcomes and biomarkers and
establishment of an iterative process to incorporate results of ongoing studies into
improved design of future therapeutic trials

Definition of abbreviations: AEC = alveolar epithelial cell; ECM = extracellular matrix; IPF = idiopathic
pulmonary fibrosis.
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