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EDITOR’S NOTE:

This article was generated from the session “Predictive models in ecotoxicology: bridging the gap between scientific

progress and regulatory applicability,” presented at the 27th SETAC Europe Annual Meeting (May 2017, Brussels, Belgium).
The session considered approaches used in ecotoxicology for understanding and predicting the effects of chemicals, from
QSAR to ecological modelling. This series aims to critically analyze and debate application examples and future
developments to increase the acceptability of predictive models by regulators, managers, NGOs, and other stakeholders.
ABSTRACT
A working group at the National Institute for Mathematical and Biological Synthesis (NIMBioS) explored the feasibility of

integrating 2 complementary approaches relevant to ecological risk assessment. Adverse outcome pathway (AOP) models

provide “bottom-up” mechanisms to predict specific toxicological effects that could affect an individual’s ability to grow,

reproduce, and/or survive from a molecular initiating event. Dynamic energy budget (DEB) models offer a “top-down”

approach that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations

related to the acquisition and processing of energy resources. Thus, AOP models quantify linkages between measurable

molecular, cellular, or organ-level events, but they do not offer an explicit route to integratively characterize stressor effects at

higher levels of organization. While DEB models provide the inherent basis to link effects on individuals to those at the

population and ecosystem levels, their use of abstract variables obscures mechanistic connections to suborganismal biology.

To take advantage of both approaches, we developed a conceptual model to link DEB and AOP models by interpreting AOP

key events as measures of damage-inducing processes affecting DEB variables and rates. We report on the type and structure

of data that are generated for AOP models that may also be useful for DEB models. We also report on case studies under

development that merge information collected for AOPs with DEB models and highlight some of the challenges. Finally, we

discuss how the linkage of these 2 approaches can improve ecological risk assessment, with possibilities for progress in

predicting population responses to toxicant exposures within realistic environments. Integr Environ Assess Manag

2018;14:615–624. �C 2018 SETAC

Keywords: Adverse outcome pathways Dynamic energy budgets Ecological risk assessment

Suborganismal processes Mechanistic
* Address correspondence to camurphy@msu.edu or

rogernisbet@ucsb.edu

Published 5 June 2018 on wileyonlinelibrary.com/journal/ieam.

gr Environ Assess Manag 2018:615–624 �C 2018 SETACDOI: 10.1002/ieam.4063



616 Integr Environ Assess Manag 14, 2018—CA Murphy et al.
INTRODUCTION
Ecological risk assessment is often based on estimates of

biological effect (or hazard), but in conjunction with exposure
it is intended to support decisions regarding the risks of
introduced chemicals on populations, communities, and
ecosystems (Landis et al. 2003). However, if we were to
require natural population- or community-level data on the
biological effect of chemicals, we would likely be estimating
the effect too late—usually after the exposure and potential
population decline has occurred. Thus, prospective ecologi-
cal risk assessment inevitably involves integrating information
at multiple levels of biological organization. There is no ideal
resolution of this problem—all approaches have pros and
cons (Rohr et al. 2016)—but to be effective and proactive, we
must measure the effect of a chemical and its breakdown
products over a range of doses in controlled laboratory
experiments. With over 80 000 chemicals and millions of
species, many of which are endangered (Zimmerman and
Anastas 2015), toxicity testing at the whole-organism level for
each species, each compound, and every potential combi-
nation is infeasible. Further, there are increasing concerns
surrounding animal welfare and regulations surrounding
animal testing. In 2007 in the US, the National Research
Council recognized the limitations in the current status of
toxicological testing and called for action to radically improve
toxicological evaluation for individuals. The shift required
much of the science that is focused on testing the harmful
effects of chemicals to move toward development of
techniques that are focused on in vitro and in silico testing
to extrapolate molecular- and cellular-level effects to the
whole organism (National Research Council 2007). This new
framework, designed for the protection of human health,
was adopted by environmental scientists and managers
to assess the risks of environmental chemicals to fish,
wildlife, and ultimately ecosystem health, and the frame-
work that originally extrapolated from the molecular to the
individual had to extend to the population level for
ecological risk assessment (Villeneuve and Garcia-Reyero
2011). In 2016, in support of this new framework, the US
passed bipartisan reforms to the Toxic Substance Control
Act that embraced alternative testing strategies that
include in vitro assays and in silico approaches (Nel and
Malloy 2017).
We propose a conceptual model that would allow for the

extrapolation of toxicological effects to populations from
molecular-level responses to chemicals. This concept will
integrate 2 complementary modeling approaches relevant
to ecological risk assessment—adverse outcome pathway
(AOP) and dynamic energy budget (DEB) models. AOP
models provide “bottom-up” mechanisms to predict specific
toxicological effects that could affect an individual’s ability
to grow, reproduce, and/or survive from a molecular
initiating event (Ankley et al. 2010). Dynamic energy budget
models offer a “top-down” approach that reverse engineers
stressor effects on growth, reproduction, and/or survival by
compartmentalizing resources based on their acquisition and
processing.
Integr Environ Assess Manag 2018:615–624 wileyonlinelibrary.c
ADVERSE OUTCOME PATHWAYS AND
ECOTOXICOLOGY
An important bottom-up approach is called the AOP

framework (Ankley et al. 2010). The AOP framework was
conceptualized by integrating concepts across (eco)toxicol-
ogy (including the mode-of-action framework), which origi-
nally included chemical-specific mechanistic information,
into hazard assessment to aid in risk assessment and
understanding of stressor-mediated adverse outcomes
(Meek et al. 2003; Seed et al. 2005; Boobis et al. 2006,
2008). The AOP, however, is chemically agnostic and
conceptualizes the cause–effect relationships from the
(molecular) initiating event to higher-level adverse outcomes,
including changes at the population level, as a first step to
inform human and ecological risk assessment (Ankley et al.
2010; Villeneuve et al. 2014). The AOP framework has been
used as an effective tool for arranging information at the
suborganismal levels of organization and as an aid in
interpreting data from high-throughput screening methods
for the purpose of risk assessment. With these methods, the
potential for thousands of chemicals to interact with
molecular and cellular processes can be determined rapidly
and cost efficiently. For human health risk assessments, which
focus on the protection of the individual, AOPs that link
lower-level events to organismal level responses may be
sufficient to indicate risk. For example, adverse outcomes
may include cellular endpoints such as skin sensitization or
abnormal cell proliferation (Nel and Malloy 2017), but how
those interactions translate into effects on organismal
performance and ecological processes remains uncertain
(Margiotta-Casaluci et al. 2016). Ecological risk assessments
are generally concerned with the protection of populations,
food webs, or ecosystems, and there is a critical need to
develop AOPs that inform these higher levels of biological
organization (Rohr et al. 2017). Cellular and molecular data
may never be sufficient for prediction of ecological effects,
but they could be used to predict, for example, diverse
outcomes on individuals that relate to the general processes
of growth, survival, and reproduction, processes that are
included in population-level assessments (Kramer et al.
2011).
To improve the use of AOPs in ecological risk assessment

and to provide more accurate predictive models, we must
develop biologically based, quantitative extrapolation tools
ormodels that allow us to extrapolate cell- or tissue-level data
to organism-level endpoints by creating quantitative AOPs
(qAOPs). A qAOP can describe mathematically some or all of
the cause–effect relationships within a given AOP from a
molecular initiating event (MIE) to an adverse outcome.
qAOPs can be a series of quantitative response-response
relationships that describe transitions between key events
(KEs) and, ideally, stem from a mechanistic model, but
correlative information can also be useful (Conolly et al.
2017).
Quantifying the detailed mechanistic information neces-

sary to develop qAOPs on a single species is challenging,
expensive, and labor and time intensive (Margiotta-Casaluci
�C 2018 SETACom/journal/ieam
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et al. 2016), and it is impractical to repeat for thousands
of species. Existing AOPs generally converge on single
biological endpoints as if independent (e.g., growth or
reproduction) and thus ignore the trade-offs implied by
resource limitation, e.g., through the competition for energy
among physiological processes. These trade-offs are partic-
ularly important for supply-type organisms such as fish,
reptiles, and insects. In supply-type organisms, which are the
majority of species, physiological processes such as growth
and reproduction are heavily dependent on environmental
conditions, such as food availability and temperature.
Therefore, for these organisms, if an AOP converged on
feeding rates, maintenance, or growth, the energetic trade-
offs between physiological processes would become more
important (Jager 2016). This is in contrast to demand-type
organisms, such as mammals and birds, in which growth and
reproduction schedules are preprogrammed, and it is up
to the organism to find appropriate resources to meet
the demand (Lika et al. 2014; Jager 2016). Furthermore,
important feedbacks exist at each level of organization.
Exposure to toxicants commonly triggers protective physio-
logical responses, such as enhanced synthesis of antioxidant
compounds, in response to oxidative stress (Klanjscek et al.
2012, 2016). Individual organismsmay also induce protective
(or other) changes in their physicochemical environment
(Stevenson et al. 2013) or their food environment (Martin et al.
2013b, 2014). Furthermore, some species may be capable of
relatively rapid adaptation to chronic chemical stress (Di
Giulio and Clark 2015; Nacci et al. 2016; Reid et al. 2016; Du
et al. 2015). In short, the AOP framework, in its current form, is
unable to provide a suitable framework for predictive
modeling and hence improved risk assessment. A suitable
framework should be able to explain the effects of toxicants
on an organism’s acquisition of resources from the environ-
ment and the consequences for energy-demanding traits
such as growth and reproduction (Jager et al. 2016). Because
of these limitations and the uncertainty surrounding the
quantitative linkages, the use of the AOP framework in
regulatory policy has been limited. However, where it can
make an effect is in “win–win” situations, such as screening
of potential new chemicals and prioritization of chemicals
for further testing (Elliott et al. 2017). It is also likely to
gain traction when development and acceptance of AOPs
are done with full transparency and engagement with
stakeholders (Elliott et al. 2017).

DYNAMIC ENERGY BUDGETS AND
ECOTOXICOLOGY

In contrast with the “bottom-up” AOP approach, DEB
theory (Jusup et al. 2017; Kooijman 1986, 2010; Nisbet et al.
2000) offers a “top-down” mechanistic conceptual frame-
work for connecting suborganismal to organismal processes.
The starting point for any study is a multicompartment
dynamical systems model of the performance (growth,
development, reproduction, mortality risk) in arbitrary
environments. Although core themes of DEB models are
conservation of energy and elemental matter, the theory also
Integr Environ Assess Manag 2018:615–624 DOI: 10.1002
makes intimate connections with physiology through as-
sumptions on homeostasis. The end result is that the DEB
approach offers unifying metabolic theory that can be
applied to any species with a small number of parameters
(Kearney et al. 2015). In addition, the theory can be used to
model effects of chemicals on individual organisms (e.g.,
Jager et al. 2006, 2011;Muller et al. 2010) and effects of other
environmental drivers and stressors in a single integrative
modeling framework (e.g., Muller and Nisbet 2014; Pieters
et al. 2006) Moreover, the approach offers the possibility to
extrapolate population-level and higher dynamics from an
individual-level energy budget by individual-basedmodeling
(Martin et al. 2013a, 2014; Gergs et al. 2014, 2016). This
suggests that there is potential to provide a connection from
an AOP to ecologically important levels of organization, but
only if we have somequantitative approach for relating qAOP
and DEB models.

Kooijman’sDEB theory captures themetabolic dynamics of
an individual organism through its entire life cycle, be it
ectothermic or endothermic, autotrophic or heterotrophic,
and is explicitly tied to food or substrate availability and
temperature. The life cycle of an individual is the primary
focus, from which sub- and supraorganismic levels are
considered. Thus, DEB theory can serve as a pivotal
framework for building process-based models that link
molecular-, cellular-, and tissue-level responses to apical
endpoints, such as survival, growth, and reproduction
(Murphy et al. 2018), and subsequently to those at higher
levels of ecological organization (Martin et al. 2013a,b;
Forbes et al. 2017; Gergs et al. 2014, 2016).

The first systematic body of work using DEB models
to interpreting toxicity data involved a suite of models
(Kooijman and Bedaux 1996) that established methodology
for using information from standardized toxicity tests to
obtain biology-based measures of no-effect concentrations
and other metrics that were independent of experimental
protocols (see Baas et al. [2010]). Wider applications of the
approach, now generally called DEBtox (for a freely available
introduction, see https://leanpub.com/debtox_book), fol-
lowed, as well as an Organization for Economic Cooperation
and Development (OECD) guidance document (OECD
2006). However, this guidance document appears to be
the extent of the incorporation of DEB into regulatory
practices to date.

The key to DEBtox is the concept of “physiological mode
of action” (pMoA) that summarizes how a stressor affects
parameters associated with processes involving energy
acquisition and use. For example, Kooijman’s standard
model contains parameters characterizing rates of resource
assimilation, maintenance, turnover of energy reserves
(linked to homeostasis), energy allocation priorities, and
“efficiencies” or “yield coefficients” characterizing the con-
sequences of biochemical or thermodynamic constraints.
Absent other information, any of these physiological param-
eters could change in response to within-organism levels of
contaminant. Modeling toxicity requires coupling the DEB
representation of physiological processes to toxicokinetic (TK)
�C 2018 SETAC/ieam.4063
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618 Integr Environ Assess Manag 14, 2018—CA Murphy et al.
and toxicodynamic (TD) submodels (Ashauer et al. 2011;
Ashauer and Escher 2010). TK models describe the dynamics
ofbioaccumulation, elimination, andchemical transformations
of chemical contaminants within an organism. Toxicodynamic
(TD), sometimes called “toxic effect,” models describe
processes leading from toxicant interaction with a biological
target to effects, which is achieved bymaking assumptions on
the dominant pMoAs. TK-TD modeling, in general, has been
included into the European Food Safety Authority (EFSA)
guidance documents for risk assessment (EFSA 2013).
DEBtox models have been used to analyze chronic toxicity

data under (assumed) constant exposure conditions (e.g.,
Jager et al. 2006; Jager and Selck 2011; Goussen et al. 2015)
or time-varying exposure (Pieters et al. 2006) and to analyze
effects resulting from chemical mixtures (Jager et al. 2010).
These models have usually been applied to organism growth
and reproduction data to identify the likeliest pMoA.
However, in many cases, when the available data is limited
in diversity (e.g., only reproduction data at the end of a
standardized toxicity test), those data could be equally well
described by several pMoA candidates. Identification of a
pMoA typically requires a data set including time-resolved
measurements and multiple endpoints (Muller et al. 2010;
Jager et al. 2016). Furthermore, sublethal chemical effects
might not be adequately described by a single pMoA; rather,
it is conceivable that some chemicals affect multiple pMoAs
(e.g., maintenance and feeding), and DEBtox integrates the
affected pMoA. This is in contrast to qAOPs or qAOP
networks that converge on a single adverse outcome.
In parallel with advances relating to chronic toxicity via

DEBtox, there have been advances in modeling survival that
use toxicokinetic-toxicodynamic (TK-TD) approaches but do
not consider detailed physiological processes that cause
mortality. These have, to a great extent, been reconciled
within the General Unified Threshold model for Survival
(GUTS; Jager et al. 2011), which invokes a dose metric,
assumedproportional to the hazard (i.e., per capitamortality)
rate, and may include processes such as bioaccumulation,
distribution within the organism, biotransformation and
elimination, damage accrual and recovery, and physiological
compensation processes. Of particular importance for this
paper is the abstract dynamic variable damage, described
by Ankley et al. (1995) and related to the physiogically
determined component of mortality. The definition of
“damage” is context specific, but common examples would
be damagedmembranes or organelles, “wrong” proteins, or
DNA damage (Kooijman 2010, chapter 6). The complexity of
the dynamic equations for damage differs among studies,
depending on data availability and the processes considered
in the approach. Approaches can include a 1 parameter-
scaled damage model and damage accrual and recovery
(Jager et al. 2011; Ashauer et al. 2007; Klanjscek et al. 2016).
Previouswork suggests that the damage conceptmay have

value for linking qAOP and DEB. An early study of receptor
kinetics by Jager and Kooijman (2005) analyzed survival of
organisms exposed to organophosphorus pesticides. This
remarkably simple model assumed that functional receptors
Integr Environ Assess Manag 2018:615–624 wileyonlinelibrary.c
are knocked out by the chemical, and functional receptors
are turned into nonfunctional ones. Veltman et al. (2014)
extended this approach to predict Na loss and acute
mortality in several aquatic species. Enzyme (acetylcholines-
terase) inhibition was also considered in the time-dependent
accrual of damage on the molecular level to explain
differential sensitivity at the organism level inDaphniamagna
(Kretschmann et al. 2011, 2012).
The appealing simplicity and generality of DEB theory

comes with a price; model quantities and processes have a
relatively high level of abstraction. Auxiliary assumptions (that
may be organism specific) link abstract variables to quantities
that can be measured directly such as length, wet or dry
weight, respiration, time to/length at first brood, egg output,
and so on (Lika et al. 2011). Yet there is a large body of
literature on methods for estimating DEB model parameters,
including routine multivariate, nonlinear regression (or
analogous likelihood) methods (Kooijman et al. 2008), a
computer-intensive state-space method (Fujiwara et al.
2005), a Bayesian approach (Johnson et al. 2013), and an
innovative, heuristic “pseudo-Bayesian” approach (Lika et al.
2011) that is currently the most widely used approach to the
estimation of DEB parameters (called AmP, http://www.bio.
vu.nl/thb/deb/deblab/add_my_pet/).

LINKING AOP TO DEB
qAOP and DEB models have contrasting strength and

weaknesses. The approach presented here attempts to
reduce the weaknesses and strengthen the advantages of
either method. Both the AOP and the DEB approaches have
the ultimate goal of informing predictions on ecologically
important processes, most of which occur at population,
community, or ecosystem levels (Fig. 1). The DEB modeling
framework has the potential to integrate suborganismal
processes from the AOP framework, to fine tune the
mechanism by which a stressor operates, and to potentially
incorporate high-throughput testing, potentially from previ-
ously developed assays in ToxCast (https://www.epa.gov/
chemical-research/toxcast-dashboard). The importance of
our overarching goal of using information on suborganismal
toxicity for population dynamic projections was highlighted
by Martin et al. (2014) who constructed an individual-based
population model for Daphnia interacting with their algal
food. They found that the outcome commonly depends
strongly on the suborganismal mode of action. Indeed, when
consumer-resource interactions are considered, toxicity
mediated by different physiological processes that lead to
the same outcome in a standard reproduction test may cause
drastically different effects at the population level. These
ranged from almost no effect to extinction, with contrasting
effects on total population and biomass of stressors that
involve different pMoAs. For example, a direct effect on
reproduction caused a decrease in equilibrium population
abundance but little change in population biomass, whereas
a pMoA that changed the growth efficiency led to a reduction
in population biomass accompanied commonly by an
increase in total population. Stressors that changed feeding
�C 2018 SETACom/journal/ieam
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Figure 1. A conceptual model to link AOPs to DEB for a particular stressor or contaminant scenario will first require an inventory of the key events affected in

different organs and at different levels of biological organization, such as molecular, cellular, organ-level responses. The dynamic energy budget integrates the

key events and acts as a pivot to population-level outcomes. Ce¼ concentration of toxicant external to the organism; Ci¼ concentration inside the organism;

MIE¼molecular initiating event; VTG¼ vitellogenin.

Linking AOP to DEB—Integr Environ Assess Manag 14, 2018 619
and assimilation or maintenance concentration of toxicant
external to the organism rates caused simultaneous reduc-
tions in abundance of biomass. These different responses
were accompanied by substantial changes in size and
structure, potentially of ecological importance for zoo-
plankters in a food web.

Essentially, anAOP represents a pathway that is integral to a
DEB, andwepropose that translations fromone toanother are
possible by using the damage variable introduced in the
preceding section. Within the AOP, KEs and adverse out-
comes that occur at the molecular, cellular, organ, and whole-
organism level can influence DEB parameters and hence have
a significant effect on the damage variable(s). A theory that
offers semimechanistic submodels for connecting damage to
fluxeswas recentlydeveloped (Muller et al. 2018) andprovides
a flexible framework. This potentially integrates theAOP into a
more holistic DEBmodel that uses a relatively small number of
variables andparameters to integrate allmetabolic processes,
that allows for trade-offs of energy between growth,
reproduction, and survival in multivariate environments, and
thus generates population-relevant outputs.
Table 1. Proposed variables and equations used to characterize re

Variables

K ¼ K1;K2; :::f g¼ set of suborganismal key events from AOP

R ¼ R1;R2; :::f g¼ set of damage-related variables—may overlap with

Q ¼ Q1;Q2; :::f g¼ set of internal toxicant-related concentrations

B ¼ B1;B2; :::f g¼ set of DEB model variables

E ¼ E1;E2; :::f g ¼ set of environment variables

Dynamics

dB
dt ¼ functions of B;R;E;Q

dR
dt ¼ functions ofQ;R;Kðonly occasionallyBÞ
dQ
dt ¼ functions of B;Q� TK model

Integr Environ Assess Manag 2018:615–624 DOI: 10.1002
Murphy et al. (2018) proposed a conceptual model for
mechanistically linking AOP to DEB (Table 1; Figure 2). The
mathematical structure, shown in Table 1, recognizes
five types of variables and their causal connections. KEs are
measurable endpoints in an AOP (e.g., Figure 2). These KEs
either represent, or are themselves,measures of damage that
is manifest at the level of cells, organs, or of the entire
organism.Damage is caused, directly or indirectly, by internal
toxicant concentrations—the accumulation of damage being
described by some TK/TD representation. Damage affects
the processes in a bioenergetic model. This flow of causal
connections restricts the form of dynamic equations we can
use (see Table 1 for a list of variables and functional
dependencies).

In applications that we can currently envision, the model of
the complete organism will use dynamic (differential or
difference) equations to describe “performance”—growth,
development, reproduction, damage, and risk of mortality.
These are described by the DEB model, which is tightly
coupled to the body burden dynamics (growth affects
internal toxicant concentration and vice versa), and also to
sponse to toxicity within an organism (from Murphy et al. 2018)

K

�C 2018 SETAC/ieam.4063



Figure 2. Key event network (mode of action) translates to some measure of damage that would have to be related to key rates or allocations (indicated by red

arrows) in dynamic energy budgetmodels. Here, 2 different AOPs are represented, the first related to reproduction and the second related to growth.Whilemore

complex relationships are likely, we show here for clarity a simple 1-to-1 relationship between an MIE and a DEB parameter (indicated by larger red arrows).

Estrogen receptor assays (e.g., those used in screening programs like ToxCast, https://www.epa.gov/chemical-research/toxcast-dashboard) can inform

vitellogenesis, egg production, and population trajectories (https://aopwiki.org/aops/30) and could potentially link to the partitioning rule in DEB that

determines what proportion of energy goes toward reproduction or growth but also to the utilization of material in the reproductive buffer. Similarly, information

from PPARa assays (such as those included in ToxCast screening—Toxcast lists 3 assays, 2 are human liver cell based [for cis and trans config] and one is cell free).

PPARa antagonism leads to reduced ability to obtain energy from fatty acids and reduces the production of ketone bodies and ultimately results in increased

muscle protein catabolism that reduces body weight in an individual (https://aopwiki.org/aops/6). Again, 1 AOP may actually link to more than 1 flux in DEB.

620 Integr Environ Assess Manag 14, 2018—CA Murphy et al.
the damage dynamics. Changes in internal concentrations
are described by a TK submodel. The damage variables will
commonly be conceptually different from the higher-level
processes with the causal link unknown or only vaguely
understood, but explicit connection is possible, e.g., oxida-
tive stress involves production of reactive oxygen species
from both “routine” metabolism and from toxicity.
We see potential in using statistical methodologies to

identify appropriate connections in Figure 2, recognizing that
information on pathways effected by toxicants comes
increasingly from ’omics (e.g., transcriptomics, proteomics,
lipidomics, metabolomics)-based data (Murphy et al. 2018).
Lists of features such as genes, metabolites, or proteins that
are significantly changed as a result of a given perturbation
can be used to identify higher-level biological processes that
are potentially affected in response to exposure. Combina-
tions of these biological processes are represented by DEB
rates and fluxes. With small model organisms such as
Daphnia, this may be the only approach available, as data
on the effects of contaminants is measured at either the
molecular level or the whole-organism level, and to link AOP
to DEB the molecular information would have to be directly
translated to DEB rates.
For larger organisms such as fish, organ-level data are

available and in our NIMBioS working group, we are
exploring mechanistic approaches to link qAOPs to DEBs
via endocrine disruption as the stressor, and rainbow trout
(Oncorhynchus mykiss) as the target species. We were
fortunate to have access to a rich data set on rainbow trout
hormones, egg production, weights, as well as a well-
developed physiologically-based model (Gillies et al. 2016).
Endocrine disruption is perhaps the most studied and best
understood system in ecotoxicology, and extensive qAOPs
Integr Environ Assess Manag 2018:615–624 wileyonlinelibrary.c
have been developed to link MIE to adverse outcomes such
as egg production in a few fish species (Conolly et al. 2017;
Gillies et al. 2016). Therefore, we focused on endocrine
disruption for these case studies, but ideally, the linkage
between qAOPs that converge on maintenance and growth
adverse outcomes, once developed, should also be explored
as they connect to pMoA in DEB because then the full
implication of energetic trade-offs could be realized. For this
study, we found 2 ways to link existing qAOPs related to
endocrine disruption to DEB and discuss them briefly here.
One method is to change the assumptions on the rules for

energy allocation between growth and reproduction in the
DEB framework to create demand-driven feedback mecha-
nisms that can be exerted by the gonads on the allocation of
resources to production of reproductive matter. With
this approach, species- and sex-specific characteristics of
endocrine regulation can be modified, while keeping the
remainder of the DEB core intact. Ongoing work indicates
that this modeling approach successfully describes the time-
resolved measurement of body weight, ovaries, and liver, as
well as the egg diameter of spawned eggs and plasma levels
of estradiol and vitellogenin in rainbow trout. The approach is
flexible and can be adjusted for different reproductive
strategies such as iteroparity, semelparity, and batch-mode
reproduction, depending on species and available data.
The next step in this approach will be to add toxicokinetics
and simulate endocrine disruption.
Another approach is to add an eggmodule to the standard

DEB model, allowing for hormone dynamics to control
conversion of material in the DEB “reproduction buffer”
into eggs (Figure 3). In this approach, well-developed
physiologically-based models (e.g., Conolly et al. 2017;
Gillies et al. 2016; Li et al. 2011; Murphy et al. 2009;
�C 2018 SETACom/journal/ieam
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Figure 3. One approach to link qAOPs to DEB is to create a simplified submodel of the physiological processes (in this case, the hormones involved in the fish

hypothalamic–pituitary–gonadal axis [HPG axis]); this submodel can regulatemodel fluxes within the standard DEB by interfacingwith synthesizing units (SU; blue

dot). The model of the HPG axis is reduced into forcing function, regulator, activator, and active regulator.
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Watanabe et al. 2009) are collapsed into simple forcing
functions, regulators, activators, and active-regulator dynam-
ics and incorporated into the standard DEB through simple
characterizations of networks as “generalized enzymes” or
“synthesizing units”; Kooijman 2010). Although this example
is restricted to reproduction, forcing functions may be useful
for other stressors and physiological modes of action in DEB,
possibly by utilizing the functions from Muller et al. (2018).

DISCUSSION
In this paper we described a conceptual model for linking

AOP toDEB.Ourworkinggrouphas developed2 case studies
based on Daphnia and rainbow trout that merge information
collected for AOPs with DEB. Our ongoing work on rainbow
trout that focuses on endocrine disruption for which there are
existing quantitative AOPs that integratemolecular-, cellular-,
and organ-level responses to predict effects on reproduction.
We are investigating approaches in which connecting with a
DEB representation is achieved either by modifying the
“standard” DEBmodel to include feedbacks that characterize
the integrated effects of hormonal control mechanisms or by
adding amodule to standardDEB.WithDaphnia, there is little
organ-level data, so we are seeking correlative connections
with transcriptomicdata (work inprogress). Inboth studies, our
goal is to identify a set of KEs or a key event network leading to
measures of “damage” that affect specified DEB parameters
and rates. Eventually we envision a system where AOPs link to
DEB rates, and the DEB is then used within the construct of
a whole organism where energetic trade-offs between
physiological processes are considered. Such a system would
improve thepredictive power of suborganismal key events, by
placing such KEs into a framework that would allow for
Integr Environ Assess Manag 2018:615–624 DOI: 10.1002
extrapolation to population (via IBMs) and up to population,
community, and ecosystem effects (Figure 4).

Ashauer and Jager (2018) hypothesized that “chemicals of
the same class,” i.e., triggering the same MIE and hence
having the same adverse outcome, should it exhibit the same
pMoAwhen toxicity data are analyzed with DEBtoxmethods.
They found very limited evidence to support this hypothesis;
indeed, “baseline toxicants” apparently exhibit different
dominant pMoAs for Daphnia magna. They cautioned
that unambiguous identification of pMoA is remarkably
challenging and discussed data requirements to resolve this.
A more fundamental issue is that all DEBtox analyses known
to us assume that there are is a single dominant pMoA, or
occasionally 2 pMoAs, but the energy fluxes in a DEB model
represent flows of abstractly defined generalized com-
pounds. As recognized earlier in this paper, 1 AOP might
correspond to a combination of several DEB fluxes and
apparent differences in dominant pMoA may simply reflect
different relative weights for each DEB flux. We hope that
our approach may help resolve the apparent dichotomy
identified by Ashauer and Jager (2017).

In recent years, with the advent of ‘omics technologies and
their ever-decreasing cost, it has become feasible to more
comprehensively integrate subcellular effects with higher
levels of biological organization. While the computational
approaches for true integration of multilevel data are still
scarce, a simpler integration across these levels has been
approached in a number of publications (Rohart et al. 2017;
Van Aggelen et al. 2010; Williams et al. 2011; Joyce and
Palsson 2006). Looking forward, AOPs in particular would
benefit greatly frommultilevel analysis approaches as an AOP
inherently represents the combination of many biological
�C 2018 SETAC/ieam.4063



Figure 4. Schematic relating parallel descriptions of suborganismal processes

(AOP and DEB) and how they can interact to improve predictions of how whole

organisms respond to stressors.
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levels.Metaboanalyst 3.0 (http://www.metaboanalyst.ca/faces/
home.xhtml) is an excellent example of the current state of
multilevel integration, allowing for metabolite and gene
expression level integration to understand the possible
affected pathways within a given organism. With the
increase of available metabolic models for more and
more species, a more integrated methodology could be
developed for understanding effects across multiple levels.
The approach described in this paper represents a first cut
at such integration.
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