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ABSTRACT 
Cooling electronic chips to satisfy the ever-increasing heat transfer demands of the 

electronics industry is a perpetual challenge.  One approach to addressing this is through 

improving the heat rejection ability of air-cooled heat sinks, and nonlocal thermal-fluid-solid 

modeling based on Volume Averaging Thoery (VAT) has allowed for significant strides in this 

effort.  A number of optimization methods for heat sink designers who model heat sinks with 

VAT can be envisioned due to VAT’s singular ability to rapidly provide solutions, when 

compared to Direct Numerical Simulation (DNS) and Computational Fluid Dynamics (CFD) 

approaches.  The Particle Swarm Optimization (PSO) method appears to be an attractive multi-

parameter heat transfer device optimization tool, however it has received very little attention in 

this field compared to its older population-based optimizer cousin, the Genetic Algorithm (GA).  

The PSO method is employed here to optimize smooth and scale-roughened straight-fin heat 

sinks modeled with VAT by minimizing heat sink thermal resistance for a specified pumping 

power.  Optimal designs are obtained with the PSO method for both types of heat sinks, the 

performances of the heat sink types are compared, and the performance of the PSO method is 

discussed with reference to the GA method.  This study demonstrates the effectiveness of 

combining a VAT-based nonlocal thermal-fluid-solid model with population-based optimization 

methods, such as PSO, to design heat sinks for electronics cooling applications. 
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INTRODUCTION 
Past studies have considered different methods for the optimization of heat sink designs.  

Much emphasis, in particular, has been placed on optimization with Genetic Algorithms (GAs).  

While early work on GAs for general optimization problems was performed in the 1970s and 

1980s by Holland [1], Goldberg [2], and others, GAs for electronics cooling applications didn’t 

begin to receive attention until the work of Queipo, Devarakonda, and Humphrey [3] in the mid-

1990s.  Since then a number of heat sink optimization studies using GAs have been reported, 

with various modeling approaches.  Some investigators have used algebraic correlations of the 

heat sink performance, e.g. thermal resistance or entropy generation, as the model on which the 

GA operates [4-6].  Others have interfaced Direct Numerical Simulations (DNS) and 

Computational Fluid Dynamics (CFD) packages with GAs to perform optimization [3, 7, 8].  

Further, others have coupled porous media models with GAs to optimize heat sink designs [9-

11]. 

Less emphasis, however, has been placed on heat sink design with Particle Swarm 

Optimization (PSO).  PSO was developed in the 1990s by Kennedy, Eberhart, and their students 

[12-19], and began to receive attention for electronics cooling applications in the early 2000s.  In 

particular, CFD heat sink simulations have been interfaced with the PSO method to optimize heat 

sink designs in several recent studies [20-22]. 

The heat sink modeling methods thus far employed with the PSO and GA optimization tools 

suffer from some undesirable characteristics.  Although those modeling methods using algebraic 

performance correlations yield fast performance evaluations, allowing the PSO and GA to 
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thoroughly explore the design/solution space, these methods’ applicability are confined to the 

certain conditions from which they were derived and do not afford the flexibility that full 

simulations provide.  Full simulation modeling methods using DNS and CFD can provide 

detailed solutions of the flow and temperature fields for different flow regimes and arbitrary 

channel morphologies, and at first seem ideal as a model on which to perform optimization.  

However, DNS and CFD solutions used for optimization typically either don’t include the 

conjugate heat transfer effects, i.e. the solid side, or carry a large computational burden when 

attaining the many solutions necessary that cripples the PSO and GA’s search abilities.  Some 

porous media models show promise for certain applications, however, the models typically 

employed are empirically-based, often don’t include conjugate effects, and don’t incorporate 

clearly defined transport coefficients.  The VAT-based hierarchical modeling methodology 

presented here to overcome these undesirable characteristics performs full thermal-fluid-solid 

simulations that account for the flow regime and arbitrary channel morphologies, includes full 

conjugate heat transfer effects, is general and rigorously derived from fundamental equations, 

incorporates clearly defined transport coefficient expressions, and provides fast computational 

times that allow PSO and GA optimizations to be easily realized with even modest computing 

hardware.   

The VAT-based fluid mechanics and thermal energy equations modeling hierarchical 

momentum and heat transport within a heterogeneous porous medium, like a heat sink channel, 

are derived from the Navier-Stokes and solid and fluid thermal energy equations, and are the 

basis for studying fluid flow and thermal phenomena in porous media [23].  Work on VAT began 

with contributions by Anderson and Jackson [24], Slattery [25], Marle [26], Whitaker [27], and 

Zolotarev and Radushkevich [28], and continued with contributions by Slattery[29], Kaviany 
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[30], Gray et al. [31], Whitaker [32, 33], Kheifets and Neimark [34], Dullien, [35] and Adler [36] 

among others.  Travkin, Catton and coauthors [37-41] extended its application to nonlinear and 

turbulent transport in porous media and recently Nakayama and coauthors [42-45] have 

contributed to continuing VAT’s development.  Due to the averaging process, the VAT-based 

governing equations yield additional integral and differential terms when compared to the 

homogenized or classical continuum mechanics equations.  Travkin and Catton [46] devoted 

some effort to relate these terms to the local transport coefficients.  Once these additional terms 

are closed, the resulting equation set is relatively simple, the device morphology is directly 

incorporated, and its solution can be quickly obtained using basic numerical methods, thus 

opening the door to population-based optimization methods, such as PSO.  

The PSO method, as employed here, was discovered by Eberhart and Kennedy [12] while 

performing simulations of a simple social model, and since then it has proven itself to be both 

fast and robust in solving a wide range of nonlinear, non-differentiable, multi-modal optimization 

problems.  As Eberhart and Kennedy describe, it is a simple concept, can be implemented in just 

a few lines of computer code, requires only primitive mathematical operators, and is 

computationally inexpensive in terms of both memory requirements and speed.  PSO is part of a 

long line of biologically-inspired algorithms and can be thought to lie somewhere in between 

Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs).  While evolution by natural 

selection (i.e. GAs) may take eons and neural processing (i.e. ANNs) may take milliseconds, 

social optimization (i.e. PSOs) occurs in the time frame of ordinary experience.  In PSO, they 

explain, individuals improve through cooperation and competition among themselves in the 

same way individuals in a flock, school, herd, or swarm profit from the discoveries and 

experiences of other members of the group during their search for desirable resources that are 



Nonlocal Modeling and Swarm-Based Design of Heat Sinks 

 

5 
Geb, HT-xx-xxxx 

unpredictably distributed.  It is based on the premise that social sharing of information offers an 

evolutionary advantage.  Additionally, they observed that in a similar fashion to the way birds 

and fish move through three-dimensional space to seek food and mates, avoid predators, and 

optimize their environment, humans adjust their beliefs and attitudes to conform with their peers 

and societal norms in an abstract multi-dimensional space.  Therefore PSO also has roots in 

human learning patterns. 

In this study, the PSO method is implemented for optimizing heat sinks modeled with VAT.  

Such a modeling methodology was recently incorporated with a GA to optimize a two-fluid 

stream heat exchanger [47].  Here, both smooth surface and scale-roughened surface straight-fin 

heat sinks with tapered fins are considered, see Figure 1.  The results from the PSO method are 

compared to and verified against results from a GA.  The performance of these two types of heat 

sinks and the effectiveness of the nonlocal modeling coupled with a swarm-based design strategy 

are then discussed. 

TRANSPORT MODEL 
The VAT-based upper-scale transport model employed here was presented in [46] and the 

references therein, and is derived from the lower-scale Navier-Stokes and thermal energy 

equations in the fluid and solid phases.  The steady-state, incompressible, VAT-based governing 

equations accounting for turbulent transport in porous media follow.  The continuity equation is 

trivial.  The one-dimensional momentum equation is written as 
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The two-dimensional thermal energy equation in the fluid phase is written as 
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The two-dimensional thermal energy equation in the solid phase is written as 
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The mean eddy viscosity is given by 

 

 T C l z b  , (4) 

 

where ( )l z  is the turbulent scale function defined by the assumed porous medium structure.  The 

equation for the mean turbulent fluctuation energy  b z  is written as  

 

22 1/2 2
3 2T

T d w T D

b b T

u d db db g dT b
c S u C C

z dz dz dz T dz



   

  

      
                    

. (5) 

 

The averaging procedure used to obtain the upper-scale governing equations yields additional 

integral and differential terms, embodying the closure problem, which must be dealt with.  
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Travkin and Catton [46] devoted some effort to relate these additional terms to the local drag and 

heat transfer coefficients.  The local drag coefficient is in general expressed as  
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and the local heat transfer coefficient is in general expressed as 
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Zhou et al. [48] present correlations for dc  and h , developed from lower-scale CFD simulations, 

that close the VAT-based governing equations for the smooth and scale-roughened surface 

straight-fin heat sinks considered here.  Having found closure for the surfaces under 

consideration, the governing equations become simple and solutions may be readily obtained 

numerically, opening the door to population-based optimization efforts. 

COMPUTATIONAL METHODS AND SOLUTION PROCEDURE 
The VAT-based momentum, turbulent kinetic energy, and thermal energy equations are 

solved numerically with the finite difference method over the two-dimensional x - z  plane.  In 

particular, statements for one-dimensional fully developed turbulent flow and two-dimensional, 

two-temperature heat transfer in a porous layer and heat transfer in a base plate are used.  

Uniform gridding is employed in the base plate, when it is considered, and over most of the 
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channel, however a higher density grid in the flow ( x ) direction is implemented near the channel 

inlet and outlet regions.  A flow chart of the solution algorithm is illustrated in Figure 2. 

  After the problem is formulated and the variables are initialized, the velocity distribution for 

turbulent channel flow in porous media is simulated for incompressible, constant property flow, 

i.e. it is uncoupled from the thermal routine.  Subsequently, the two-dimensional, two-

temperature statements modeling the turbulent heat transfer in the fluid phase and the conjugated 

heat transfer in the solid phase are solved using the velocity field and turbulence parameters as 

input.  To resolve the temperature fields there are several iterative loops, as indicated in Figure 2.  

When the base plate is considered, an inner loop converges the fluid and solid channel 

temperatures using a form of ADI.  Another inner loop converges the base temperature separately 

from the channel temperatures, given an interface temperature between the channel and base and 

a bottom base temperature or heat flux.  An outer loop then matches the interface heat flux and 

temperature between the base and channel by varying the interface temperature.  If the base plate 

is not considered then a simpler situation arises, and a single loop simply converges the fluid and 

solid channel temperatures.  When the VAT-based solution routine exits, the fully-developed 

velocity field and two-dimensional temperature fields are obtained, along with other relevant 

calculated quantities, e.g. the thermal resistance. 

During the optimization runs in this study the base plate is neglected, to provide quicker 

solution times, and a constant temperature boundary condition is imposed on the bottom of the 

channel.  The results of the optimization are then verified by including the base plate and solving 

for a uniform heat flux boundary condition on the bottom of the base plate.  This method stems 

from the assumption that the performance of a heat sink with no base plate and a constant 
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temperature boundary condition is related to the performance of a heat sink with a thin base plate 

and a uniform heat flux boundary condition.   

In this study the fluid is air and the heat sink is aluminum for all cases and several geometric 

parameters of the heat sink are kept fixed, as indicated in Figure 1.  Additionally, appropriate 

flow and thermal boundary conditions are kept fixed throughout the study.  A fixed pumping 

power of 30W, and no-slip boundary conditions at the bottom and top of the channel fully 

specify the flow field through the given channel geometry.  To specify the thermal fields in both 

the solid and fluid phases, a uniform inlet air temperature of 30°C is implemented, along with an 

adiabatic condition at the top of the channel, and one of two lower thermal boundary conditions.  

The lower thermal boundary condition is a 90°C isothermal one at the bottom of the channel 

during the optimization, where the base plate is neglected.  After the optimization, the designs 

are evaluated with a uniformly distributed 1kW heat source at the bottom of the baseplate as the 

lower thermal boundary condition.   

PARTICLE SWARM OPTIMIZATION 
The ability to quickly obtain solutions provided by the VAT-based modeling and solution 

routine outlined above allows for population-based optimization to proceed.  In the present study 

the multi-parameter, constrained optimization problem is formulated as follows.  The heat sink 

thermal resistance,  thR X , is to be minimized over the bounded search domain 

 

 base top, , ,f yX H S  , (8) 

 

where the parameters are bounded between minimum and maximum values minX  and maxX  

respectively, as shown in Table 1.  Tapering of the fins is allowed during the search and the fin 
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thickness varies linearly with respect to the z -coordinate.  Optimization should yield X 
 and 

 th thR R X  , the optimal solution and its corresponding thermal resistance, respectively. 

Each individual, i.e. heat sink design, in the PSO is treated as a particle, defined by its 

position, that flies through 4D  -dimensional hyperspace.  In general, the i th particle is 

represented as  1 2, ,...,I i i iDX x x x , its best previous position as  1 2, ,...,I i i iDP p p p , and its 

velocity as  1 2, ,...,I i i iDV v v v .  The index of the best particle in the neighborhood is n .  Each 

particle adjusts it flight according to 

 

   1 2( ) - ( ) -id id id id nd idv w v c rand p x c Rand p x        , (9) 

 

id id idx x v  , (10) 

 

where 1c  and 2c  are two “learning factors”, ( )rand  and ( )Rand  are two independently 

generated random numbers in the range  0,1 , and w  is the “inertia weight” [14].  Equation (9) 

calculates the particle’s new velocity according to its weighted previous velocity and stochastic 

functions of the distance of its current position from its own best position and that of the group.  

The particles then “fly” toward a new position according to Equation (10).  

The first term on the right side of Equation (9) is the particle’s previous velocity multiplied 

by an inertia weight.  The inertia weight is employed to control the impact of the previous history 

of velocities on the current velocity, and influences the tradeoff between global and local 

exploration.  A larger inertia weight facilitates global exploration while a smaller inertia weight 

facilitates local fine-tuning.  The second term on the right side of Equation (9) is the “cognition” 

part, representing the private thinking of the individual particle, and contributes to a stochastic 
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change in velocity [49].  Conceptually, idp  resembles autobiographical memory, as each 

individual remembers its own experience, and the velocity adjustment associated with this term 

can be viewed as “nostalgia” in that the individual tends to return to the place that most satisfied 

it in the past.  The third term on the right side of Equation (9) is the “social” part, representing 

collaboration among the particles, and contributes to a stochastic change in velocity.  

Conceptually, ndp  resembles publicized knowledge, or a group norm or standard, which 

individuals seek to attain. 

To implement the PSO, the particle population is initially randomized, as in the GA, and 

subsequently searches for optima by updating iteratively through time.  In every iteration, each 

particle is updated by its attraction to its own best position idp , and that of its neighbors ndp , 

through Equations (9) and (10).  When a given criterion is satisfied, the iteration exits with what 

is taken to be the optimal solution.  A flow chart of the general PSO algorithm used here is 

shown in Figure 3, [50].  The algorithm employed here randomly finds SN  neighbors for each 

particle at each iteration, uses a well-tested random number generator, exits after a fixed number 

of iterations GN , and implements the settings tabulated in Table 2. 

RESULTS AND DISCUSSION 
Employing the VAT-based modeling and solution routine coupled with the PSO technique, 

smooth and scale-roughened straight-fin heat sinks are optimized by minimizing their thermal 

resistance while maintaining a constant pumping power.  Boundary conditions and certain 

parameters are fixed as detailed above and other parameters are variable with search ranges 

tabulated in Table 1.  Results from the optimization of smooth surface and then scale-roughened 

surface fins are first considered in this section, followed by a discussion on the evolution of the 
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nonlocal flow and temperature fields and an evaluation of the performance of the PSO method in 

relation to the GA method. 

Smooth Surface Fins 

The first case considered is for a simple smooth surface straight-fin heat sink, Figure 1a.  The 

PSO evolves the optimal design over iterations so that the heat sink thermal resistance favorably 

evolves.  Ten independent PSO trials are run and the evolution of the optimal thermal resistance 

for the ten individual trials (thin grey lines) along with the average of the ten trials (thick black 

line) are plotted in Figure 4a.  The inset of Figure 4a shows closely the first few iterations before 

which all ten trials converge to the optimum.  By the 16
th

 iteration, all ten independent trials 

agree on the same value for the optimal thR , i.e. 0.079 °C/W without the base plate.  

Alternatively, from the perspective of the design space, the ten independent PSO trials evolve 

scaled values of 
fH , 

yS , base , and 
top  as illustrated in Figure 5a.  Here the search ranges of the 

four design parameters are scaled between 0 and 1, where 0 is the minimum value and 1 is the 

maximum, see Table 1.  That is, 

 

min

max min

X X
X

X X





, (11) 

 

where X  is the scaled design space vector.  While the color-coded thin lines in Figure 5a 

indicate the evolution of the optimal parameters for the ten independent trials, the color-coded 

thick lines indicate the average over the ten trials.  Evident from Figure 5a is that, in addition to 

all ten trials converging to a single optimal value *

thR , all ten trials also converge to a single 

optimal solution in the design space, 
*X , for the ten individual PSO runs. 
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As a comparison to the PSO, a GA is run for the same problem.  A basic single-objective GA 

is employed that is inspired primarily by the work of Holland [51] and Goldberg [2].  The 

particular details of the GA being used here were presented in more detail in [47], where it was 

applied to a two-stream heat exchanger with ten design parameters.  The GA operation settings 

used in the present study are given in Table 3.    The GA similarly evolves the optimal design 

over generations so that the heat sink thermal resistance favorably evolves, Figure 4b, although 

the GA operates based on genetic rather than social mechanisms.  It is apparent from Figure 4b, 

and emphasized in its inset, that convergence is not realized as quickly as for the PSO method.  

Again, ten independent trials are run for the GA optimization.  The optimal thermal resistance for 

smooth surface straight-fin heat sinks found by the GA for all ten trials is also 0.079 °C/W, and 

by the 247
th

 generation, all ten individual GA trials have converged to this value.  Again, from 

the perspective of the design space, the GA evolves scaled values of 
fH , 

yS , base , and 
top  as 

shown in Figure 5b.  Again, it is evident from this figure that all ten trials have converged to an 

optimal solution in the design space, 
*X , for the ten individual GA runs. 

Table 4 tabulates the characteristics of the optimized smooth surface straight-fin heat sinks 

produced by both the PSO and the GA methods.  Included in this table is the thermal resistance 

found by the PSO and GA without the base plate and an isothermal lower boundary condition, 

and that evaluated with the base plate and a uniform heat flux lower boundary condition.  

Evident is the 9% increase in thermal resistance resulting from considering the base plate.  From 

Table 4, and from careful inspection of Figure 5, one can observe that while the optimal thermal 

resistance value *

thR  and most of the optimal design parameter values 
*X  obtained by both the 

PSO and GA agree, the optimal value of 
fH  found by the GA is slightly smaller than that 

obtained by the PSO.  In other words, the GA’s solution sacrifices side-fin surface area and fin 
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conduction in a very small layer at the top of the channel for both a slight flow bypass and 

exposure of the top surface of the fins.  Although it results in a new design from that produced by 

the PSO its performance in terms of thR  is equivalent. 

Scale-Roughened Surface Fins 

The previous section considered smooth surface fins.  It has previously been shown that 

augmenting the fin surface with scales enhances the heat transfer without a significant increase in 

pressure drop [52]. Moreover, recent advances in three-dimensional metal printing techniques 

[53] make such surfaces readily attainable.  A small or moderate increase in the heat transfer 

coefficient can more than offset even a large friction factor increase because flow velocity can 

then be decreased and friction power varies with as much as the cube of velocity [54].  The 

second optimization study uses the surface scales investigated by Chang et al. [52] and more 

broadly correlated by Zhou et al. [48], and employs a fixed scale diameter D  of 1.00mm and a 

fixed scale height e  of 0.10mm.  The parameters that are varied and their ranges are the same as 

for the smooth surface case, see Table 1.  That is, everything is the same as before except now 

the fin surfaces are augmented with a high performance surface, Figure 1b. 

The optimized configurations of the scale-roughened straight-fin heat sink obtained with the 

PSO and GA both give a thermal resistance of 0.056 °C/W when the base plate is neglected, 

which translates to 0.058 °C/W when the base plate is incorporated, a 4% increase.  The 

geometric parameters are evolved again in ten independent trials by the PSO and GA and the 

corresponding heat sink thermal resistance evolves as shown in Figure 6.  The ten individual 

PSO trials all converge to an optimum value of thR  within 13 iterations while the ten individual 

GA trials all converge within 187 generations.  From the perspective of the design space, the 

PSO and GA evolve scaled values of 
fH , 

yS , base , and 
top  as shown in Figure 7.  Again, as for 
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the case of the smooth surface straight-fin heat sink, in addition to all ten trials converging to an 

optimal value for thR , all ten trials have also converged to a single optimal solution in the design 

space for both the PSO and GA methods.  The primary difference in the optimal designs between 

the two types of heat sinks is that for the scale-roughened surface straight-fin heat sink the fins 

have opened up slightly compared to the smooth surface heat sink. 

The characteristics of the optimized heat sink with surface scales found by both the PSO and 

the GA are compared in Table 5.  Again the GA favored a very slight by-pass flow as for the 

smooth surface case.  By comparing Table 4 and Table 5 it is evident that the optimal scale-

roughened straight-fin heat sink outperforms the optimal smooth surface heat sink in terms of 

thermal resistance by 33%. The higher performance of the scale-roughened surface compared to 

the smooth surface can be attributed to the frequent boundary layer interruption caused by the 

scales that precludes thickening of the boundary layer.   

Evolution of the Nonlocal Velocity and Temperature Fields 

What distinguishes the present study from those in the past, as was discussed in the 

Introduction, is that the population-based optimization methods employed here operate on full 

nonlocal simulations of turbulent flow and heat transfer within and between the fluid and solid 

phases of the heterogeneous and hierarchical medium.  The upper-scale governing field 

equations are rigorously derived from fundamental lower-scale equations, and full conjugate 

effects are included.  The local transport coefficients, such as the internal heat transfer coefficient 

that connects the fluid and solid phase thermal energy equations together, are derived from lower 

scale equations, as presented in Equations (6) and (7).  It is therefore relevant to observe the 

evolution of the nonlocal flow field and temperature fields in both the fluid and solid phases 

during a PSO trial.   
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The velocity and fluid and solid temperature fields evolve during a single trial of the PSO of 

a scale-roughened straight-fin heat sink as shown in Figure 8a-c. Figure 8a illustrates the best 

solution after the first iteration, Figure 8b shows the best solution after the 4
th

 iteration, and 

Figure 8c does so for the converged solution, i.e. after the 13
th

 iteration.  Figure 8d displays the 

converged solution of the PSO for the smooth surface straight-fin heat sink as a comparison.  The 

temperature fields in the figure are scaled between 30°C and 120°C and the x  and z  direction 

coordinates indicate the position in the temperature contours in mm.  The velocity magnitude is 

indicated in m/s by the x  coordinate (i.e. 30x  ) as a function of the z  direction coordinate 

which is again indicated in mm.  Note in the figure that the solid phase temperature contours 

include the base plate while the fluid phase temperature contours do not as the fluid phase is only 

defined in the channel.  The details of the heat sink designs considered in Figure 8 are tabulated 

in Table 6 for easy reference.   

Evident from Figure 8a is that the solution after the first iteration, i.e. the best among PN  

randomly selected designs, is far from favorable.  Table 6 indicates that the fins reach about 70% 

of the channel height, and that they are relatively thick from the base to the top.  It may be 

observed from the velocity profile that a significant bypass flow results from this design.  

Moreover, it may be observed that the fluid temperature fT  becomes very hot around the fins 

while the flow above the fins stays very cold and is not serving to remove heat.  Looking at the 

solid temperature field 
sT  one can see that very high temperatures persist.  Assuming that 

temperatures in the heat sink greater than 90°C are unacceptable for the electronics being cooled, 

and indicating the 90°C contour with a dashed white line, it is evident that this design is far from 

acceptable, with the maximum temperature incurred being 
,max 111.09 CsT    (and occurring in 
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the bottom of the base plate at the outlet).  As a side note, one may observe that 
sT  is defined 

throughout the channel in Figure 8a even where the fins do not reach.  By referring back to 

Equation (3) this is reconciled by observing the influence of the local morphology functions, i.e. 

m  and wS , which above the fins are unity and null respectively. 

It is evident from Figure 8b that the solution resulting from the 4
th

 iteration is noticeably 

improved from that previously considered.  In this design the fins rise to the full channel height, 

however the base of the fins is unnecessarily thick.  The velocity profile, now without a 

significant bypass flow, indicates that slightly higher flow velocities occur higher in the channel 

due to the thinning of the fins and opening of the cross flow area.  The fluid temperature does not 

incur very high local temperatures as was the case for the previous design.  Moreover, the solid 

temperature field is noticeably cooler than for the previous design, with the location of the 90°C 

contour line indicating that the design is approaching an acceptable one.  The maximum 

temperature incurred for this design is 
,max 98.37 CsT   . 

Figure 8c presents the solution for the optimized design.  In this design the fin height was 

maximized, the fin thickness from the base to the top was minimized, and the fin pitch was 

balanced.  The velocity profile is symmetric about the channel centerline and the fluid 

temperature stays cool throughout the domain, allowing the solid phase to remain cool while still 

providing sufficient heat flow.  From the absence of the 90°C contour line in Figure 8c, it is 

evident that the optimal design stays sufficiently cool.  The maximum temperature incurred for 

the optimal design, in fact, is 
,max 87.73 CsT   . 

As a comparison to the optimized scale-roughened straight-fin heat sink solution depicted in 

Figure 8c, Figure 8d provides the solution to the optimized smooth straight-fin heat sink.  The 

only differences between the two designs are the fin surface augmentation and the resulting fin 
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pitch.  Evident from the figure is that a similar symmetric velocity profile results, with slightly 

lower magnitudes as a result of the smaller fin pitch, i.e. higher number of fins on the heat sink.  

The fluid temperature field appears somewhat similar to that found for Figure 8b in terms of 

magnitude and distribution.  However, without the surface-scale augmentation, the temperature 

difference between the solid and fluid must be higher to provide the same heat removal ability, 

and in this case the entire solid temperature domain is greater than 90°C, with the maximum 

temperature incurred being 
,max 116.19 CsT   .  Together Figure 8c and Figure 8d illustrate the 

benefits of augmenting the fin surface with scales. 

Performance of the Particle Swarm Optimization Method 

Each optimization method, i.e. PSO and GA, delivers the same heat sink performance 
thR  for 

both heat sink types, i.e. smooth and scale-roughened fin surfaces.  The time each takes to do so 

differs, however.  In this study the PSO finds the optimum significantly quicker than the GA 

does, ~10
-1

 seconds quicker in fact.  The performance, in particular the convergence speed, of 

both population-based optimization methods depends on the methods’ settings for a particular 

problem.  Since no effort was made to customize these settings in this study (rather, typically 

used or suggested values were employed for the settings, see Table 2 and Table 3) conclusions 

about which method is faster for this particular problem cannot be determined.  A future study 

could explore this by first optimizing each method’s settings for the problem and then comparing 

the two methods’ convergence speed.  Fortunately, the VAT-based nonlocal modeling method 

provides solutions very quickly, compared to DNS and CFD, affording designers the luxury of 

proceeding without fine-tuning the optimization methods’ operation parameters. 

As was noted above, the GA located optimal designs for both heat sink types with a very 

slight flow bypass arrangement that exposed the top surface of the fins.  Although the optimal 
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heat sink thermal resistances found by the GA were equivalent to those found by the PSO, the 

solutions – or designs – were distinct.  The PSO’s superior convergence speed for the problem 

and settings considered here is at least partly due to its inclination to explore the solution 

domain’s boundaries relatively early in its search.  Since several of the optimal designs’ 

parameters lay on the boundary, the PSO settled on these without much exploration of the rest of 

the domain.  The GA on the other hand operated more methodically and slowly, more thoroughly 

traversing the search domain in its search for the optimal design.  Although the GA ultimately 

selected base and 
top  values at the edge of the domain, it settled on a value of 

fH  just short of 

the domain’s edge, and found no motivation to move this value to the edge of the domain, where 

the PSO had settled. 

Over the course of ten trials, on a 2.20 GHz Intel Core i7-2720QM CPU with 16.0 GB of 

RAM and for the settings listed in Table 2, the compiled Fortran PSO code runs for an average of 

6 minutes and 15.2 seconds with GN  changed from 150 to 16 for the smooth surface heat sink 

and 5 minutes and 37.5 seconds with GN  changed to 13 for the scale-roughened heat sink.  As a 

comparison, over the course of ten trials for the settings tabulated in Table 3 the compiled 

Fortran GA code runs for an average of 1 hour, 7 minutes and 27.5 seconds, with GN  changed 

from 300 to 247 for the smooth surface heat sink and 1 hour, 2 minutes and 23.3 seconds with 

GN  changed to 187 for the scale-roughened heat sink.  It is evident that either the PSO or the GA 

methods with standard settings provide optimal designs in a reasonable amount of time even on 

modest equipment due to their reliance upon the nonlocal physical modeling provided by VAT.  

As a comparison, running even a single heat sink simulation, never mind any kind of 

optimization endeavor, with CFD on the same equipment would cost hours. 
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CONCLUSIONS 
In this paper a VAT-based nonlocal model of transport phenomena in a porous channel used 

to simulate flow and heat transfer in a heat sink for cooling electronic devices was the basis for a 

population-based optimization study.  The VAT-based simulation routine was coupled with a 

single objective PSO design tool in order to perform heat sink optimizations.  Results from the 

PSO method were compared to and verified against those from the GA method.  Two different 

types of straight-fin heat sinks were considered, i.e. one type with smooth surface fins and 

another with scale-roughened surface fins.  The performance of the two types of heat sinks was 

discussed as was the performance of the two methods of optimization. 

It was observed that both optimization methods deliver equivalent optimized heat sink 

designs in terms of heat sink thermal resistance, however judgment on which method performs 

better for this particular problem was reserved.  It was found that the nonlocal modeling based on 

VAT allows the PSO and GA methods to obtain optimal designs within several minutes and 

around an hour respectively on a modest lap top without customizing the optimization methods’ 

settings, providing more freedom in selecting computational design tools for heat sink designers.  

Moreover, it was observed that augmenting the fins with scales improves the heat sink 

performance in terms of thermal resistance by 33%.  The paper demonstrates that the nonlocal 

thermo-fluid-solid modeling provided by VAT opens the door to easily-implemented and 

thorough population-based optimization studies of heat sinks. 
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NOMENCLATURE 

b
 mean turbulent fluctuation energy [m

2
 s

-2
] 

1c , 2c  parameters in PSO [-] 

dc  drag resistance coefficient [-] 

pc  specific heat capacity [J kg
-1

 K
-1

] 

D
 scale diameter [m] 

hd  porous media hydraulic diameter [m] 

wS  internal surface area in the REV [m
2
] 

e  scale height [m] 

f  
friction factor [-] 

pF  fin pitch [m] 

h  heat transfer coefficient [W m
-2

 K
-1

] 

H  channel height [m] 

bH  base plate thickness [m] 

fH  fin height [m] 

k  thermal conductivity [W m
-1

 K
-1

] 
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Tk  turbulent eddy thermal conductivity [W m
-1

 K
-1

] 

l  turbulence mixing length [m] 

xL ,
yL , zL  heat sink overall length, width, height [m] 

m  
local averaged porosity [-] 

GN  total number of iterations or generations [-] 

PN  total number of individuals in the population; population size [-] 

SN  number of individuals in a neighborhood in PSO [-] 

p  pressure [Pa] 

P  scale pitch [m] 

CP  crossover probability in GA [-] 

MP  mutation probability in GA [-] 

PP
 pumping power [W] 

thR  heat sink thermal resistance, max
th

T
R

Q


 , [ C W ] 

Re  Re hud


  [-] 

yS  dimensionless fin pitch, 
basepF   [-] 

wS  local specific surface area wS   [m
-1

] 

T  temperature [ C ] 
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u  velocity [m s
-1

] 

w  inertia weight in PSO [-] 

X  search space vector 

 

Greek 

  fin thickness [m] 

maxT   max ,base ,,s x b f inT T x L z H T       or   ,, 0s x f inT x L z T     [ C ] 

  representative elementary volume (REV) [m
3
] 

  
dynamic viscosity [kg m

-1
 s

-1
] 

  
density [kg m

-3
] 

  kinematic viscosity [m
2
 s

-1
] 

T  turbulent eddy viscosity [m
2
 s

-1
] 

 

Subscripts and Superscripts 

base/top fin base/top 

f  fluid phase 

L  laminar 

max maximum 

s  solid phase 
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T  turbulent 

x , y , z  x , y , z  coordinate directions 

~ value in phase averaged over the REV 

– mean turbulent quantity; scaled quantity 

′ turbulent fluctuation quantity 

* optimum 
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roughened straight-fin heat sink found by the PSO after its a) first, b) fourth, and c) final 

iteration, along with those for the d) optimal smooth straight-fin heat sink.  The fully-developed 

velocity field profiles and the 90°C contour lines are indicated superimposed on the fluid and 

solid temperature fields respectively. 

 

LIST OF TABLES 
 

Table 1: Design parameter ranges for the straight-fin heat sinks 

Table 2: PSO operation settings 

Table 3: GA operation settings 

Table 4: Characteristics of optimized smooth surface straight-fin heat sink for PSO and GA 

methods 

Table 5: Characteristics of optimized scale-roughened surface straight-fin heat sinks for PSO and 

GA methods 

Table 6: Characteristics of the heat sinks considered in Figure 8 

 

 

 

 

  



Nonlocal Modeling and Swarm-Based Design of Heat Sinks 

 

29 
Geb, HT-xx-xxxx 

Tables 

 

 

 

 

 

 

 

 

 

Parameter Minimum Maximum 

Fin thickness at base, base  (mm) 1.50  5.00 

Fin thickness at top, 
top   (mm) 1.50  5.00 

Fin height, 
fH  (mm) 10.00  23.90 

Pitch/fin thickness at base, 
yS   (-) 1.40  3.00 

Table 1: Design parameter ranges for the straight-fin heat sinks 
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PN  GN  SN  1c  2c  w  

20 150 5 2.00 2.00 1.00 

Table 2: PSO operation settings 
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PN  GN  CP  MP  

20 300 0.90 0.05 

Table 3: GA operation settings  
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Parameter 
Selected Value 

PSO GA 

Fin thickness at base, base  (mm) 1.50 1.50 

Fin thickness at top, 
top  (mm) 1.50 1.50 

Fin height, 
fH  (mm) 23.90 23.66 

Pitch/fin thickness at base, 
yS  (-) 1.75 1.75 

Thermal Resistance, thR , without base plate (°C/W) 0.079 0.079 

Thermal Resistance, thR , with base plate (°C/W) 0.086 0.086 

Table 4: Characteristics of optimized smooth surface straight-fin heat sink for PSO and 

GA methods 
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Parameter 
Selected Value 

PSO GA 

Fin thickness at base, base  (mm) 1.50 1.50 

Fin thickness at top, 
top  (mm) 1.50 1.50 

Fin height, 
fH  (mm) 23.90 23.78 

Pitch/fin thickness at base, 
yS  (-) 2.58 2.58 

Thermal Resistance, thR , without base plate (°C/W) 0.056 0.056 

Thermal Resistance, thR , with base plate (°C/W) 0.058 0.058 

Table 5: Characteristics of optimized scale-roughened surface straight-fin heat sinks for 

PSO and GA methods 
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base  top  

fH  
yS  

thR  with base 

a) 2.43 2.00 16.46 1.67 0.081 

b) 2.16 1.50 23.90 1.73 0.068 

c) 1.50 1.50 23.90 2.58 0.058 

d) 1.50 1.50 23.90 1.75 0.086 

Table 6: Characteristics of the heat sinks considered in Figure 8 
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Figures 

 

 

 

Figure 1: Illustration of a straight-fin heat sink with tapered, a) smooth and b) scale-

roughed surface fins 
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Figure 2: Flow chart of the VAT-based heat sink simulation routine 
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Figure 3: Flow chart of PSO algorithm 
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Figure 4: Evolution of thermal resistance during the a) PSO and b) GA optimizations of a 

smooth surface straight-fin heat sink.  Thin, light colored lines indicate the individual trials 

while thick, dark colored lines indicate the average of the ten trials. 
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Figure 5: Evolution of the scaled design parameters during the a) PSO and b) GA 

optimizations of a smooth surface straight-fin heat sink.  Thin, light colored lines indicate 

the individual trials while thick, dark colored lines indicate the average of the ten trials. 
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Figure 6: Evolution of thermal resistance during the a) PSO and b) GA optimizations of a 

scale-roughened straight-fin heat sink 
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Figure 7: Evolution of the scaled design parameters during the a) PSO and b) GA 

optimizations of a scale-roughened straight-fin heat sink 
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Figure 8: Nonlocal fluid (left) and solid (right) temperature fields for the optimal scale-roughened straight-fin heat sink found 

by the PSO after its a) first, b) fourth, and c) final iteration, along with those for the d) optimal smooth straight-fin heat sink.  

The fully-developed velocity field profiles and the 90°C contour lines are indicated superimposed on the fluid and solid 

temperature fields respectively.




