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ABSTRACT: Our proof-of-concept study develops a suspect
screening workflow to identify and prioritize potentially ubiquitous
chemical exposures in matched maternal/cord blood samples, a
critical period of development for future health risks. We applied
liquid chromatography−quadrupole time-of-flight tandem mass
spectrometry (LC-QTOF/MS) to perform suspect screening for
∼3500 industrial chemicals on pilot data from 30 paired maternal
and cord serum samples (n = 60). We matched 662 suspect
features in positive ionization mode and 788 in negative ionization
mode (557 unique formulas overall) to compounds in our
database, and selected 208 of these for fragmentation analysis
based on detection frequency, correlation in feature intensity
between maternal and cord samples, and peak area differences by
demographic characteristics. We tentatively identified 73 suspects through fragmentation spectra matching and confirmed 17
chemical features (15 unique compounds) using analytical standards. We tentatively identified 55 compounds not previously
reported in the literature, the majority which have limited to no information about their sources or uses. Examples include (i) 1-(1-
acetyl-2,2,6,6-tetramethylpiperidin-4-yl)-3-dodecylpyrrolidine-2,5-dione (known high production volume chemical) (ii) methyl
perfluoroundecanoate and 2-perfluorooctyl ethanoic acid (two PFAS compounds); and (iii) Sumilizer GA 80 (plasticizer). Thus, our
workflow demonstrates an approach to evaluating the chemical exposome to identify and prioritize chemical exposures during a
critical period of development.

KEYWORDS: suspect screening, exposome, high-throughput, maternal blood, cord blood, pregnancy, biomonitoring

■ INTRODUCTION

Prenatal exposure to environmental chemicals can lead to a
myriad health consequences throughout life.1−4 Prior research
using National Health and Nutrition Examination Survey
(NHANES) data found that pregnant women in the U.S. are
exposed to multiple different chemicals.5,6 Most of these
chemicals can cross the placenta into the fetal environment,7,8

with sometimes higher exposure to the fetus compared to
maternal blood measurements, such as mercury and poly-
chlorinated biphenyls.4 In a study of 65 pregnant women in
San Francisco, we detected a median of ∼25 chemicals in
maternal serum (out of 59 compounds tested), of which ∼80%
were also detected in matched umbilical cord serum samples,
with some compounds having higher concentrations than
maternal levels.9 Existing biomonitoring research mainly relies
on targeted analytical methods that cover only a few hundred
chemicals.6 This is likely a small fraction of all the potential
chemicals that humans are exposed to, as ∼8000 chemicals are
manufactured or imported in large volume (>25 000 lbs/year)

in the U.S.,10 and chemical production totals at least 9.5 trillion
pounds,10,11 let alone the approximately 40 000 chemicals
currently in commerce in the U.S.12 A recent study reviewed
over 700 chemicals from multiple chemical classes that have a
high likelihood of exposure among mothers and children, have
a potentially toxic structural moiety, but are not currently
measured via biomonitoring or health effects in National
Institutes of Health (NIH)’s Environmental influences on
Child Health Outcomes (ECHO) initiative or NHANES.13

The authors recommended 155 chemicals of high priority for
future biomonitoring, suggesting an unmet need for character-
izing exposures to these “known unknown” chemicals.
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Recent advancements in high-resolution mass spectrometry
(HRMS) paired with novel computational and statistical
approaches provide an opportunity for large-scale screening
of chemicals in biological and environmental samples.14−17 By
leveraging the non-targeted chemical feature acquisition, non-
targeted and suspect screening can efficiently identify
chemicals of interest using HRMS and software-matching
algorithms that map these features against user-defined
chemical databases or existing chemical inventories.18 This
technology has gained increasing popularity in recent years as a
new tool for environmental monitoring,19−22 metabolite
discovery,23,24 and biomonitoring of industrial chemicals25,26

to better characterize the chemisome,27 the industrial chemical
components of the human exposome.28

While there are numerous publications on HRMS in
environmental monitoring and metabolite discovery, the
application of this technique to biomonitoring of industrial
chemicals remains limited. In a previous study, we leveraged
this technology to identify novel chemicals never measured
before in the blood of pregnant women,26 and found that they
are exposed to more chemicals than previously documented.
As the first proof-of-concept study in applying suspect
screening to detect chemicals in pregnant women’s serum,
we limited our search to a subset of environmental chemicals
called environmental organic acids (EOAs), compounds with
at least one ionizable proton, by using the negative ionization
mode to optimize their detection.26

This paper builds upon our previous work26 to demonstrate
the application of a suspect screening method for character-
izing exposure to a broader array of industrial chemicals in
matched maternal and cord serum samples, a critical
developmental period of health risk. We have developed and
tested an analytical approach that uses HRMS to screen for
multiple chemicals and a workflow to prioritize and identify
ubiquitous exogenous chemicals that are differentially enriched
in maternal/cord samples and/or across various demographic
groups. Applying our approach to data from 30 paired
maternal and cord serum samples (N = 60 total samples),
we expand work in the field of suspect screening and non-
targeted analysis of human blood samples in four ways: (1)
using a chemical database of approximately 3500 high-
production volume chemicals as well as chemicals of emerging
concern including an expanded list of short-chain per- and
polyfluoroalkyl substances;29 (2) using both positive and
negative ionization modes to facilitate detection of more
chemical features; (3) evaluating cord serum matched to
maternal serum allowing evaluation of differential enrichment
of chemicals between the two; and (4) confirming chemical
structures via matching of experimental MS/MS spectra
against MS/MS spectra from existing reference libraries and
analytical standards. Furthermore, to the best of our knowl-
edge, this is the first study to characterize the chemical
exposome to industrial chemicals in matched maternal and
cord blood sample pairs using a suspect screening or a non-
targeted analysis approach.

■ MATERIALS AND METHODS
Study Population and Sample Collection. The study

population is part of the Chemicals in Our Bodies 2 Study
(CiOB2), which consists of women seeking prenatal and
delivery care at the Zuckerberg San Francisco General Hospital
and UCSF Mission Bay Medical Center.26 From April 2, 2014,
we enrolled women from an economically and ethnically

diverse population (47% Latina, 37% non-Hispanic whites, and
17% non-Hispanic Asians, Pacific Islanders, African Ameri-
cans) who were English or Spanish-speaking, aged 18 through
40 years old, and had singleton pregnancies between 13 and 27
weeks gestation (second trimester) at the time of recruitment.
Paired maternal and cord blood samples were collected at
delivery for chemical analysis from participants who agreed to
have their samples banked and included in supplemental
studies. Maternal blood was collected during labor and delivery
and umbilical cord blood after delivery and prior to umbilical
cord clamping whenever possible. Blood was collected in BD
Vacutainer Plus Serum Tubes and stored at −80 °C until
analysis. We collected demographic information via inter-
viewer-administered questionnaire and obtained information
from maternal and infant medical with permission from
participants. In this proof of concept study, we analyzed paired
maternal-cord serum samples from 30 women (n = 60 samples
in total). CiOB2 study protocols were approved by the
Institutional Review Boards of the University of California, San
Francisco (13-12160).

Chemical Analysis: Suspect Screening. Chemical
Suspect Database. For our maternal/cord paired serum
suspect screening study, we developed a ∼3500 chemical
suspect database that combined data from an in-house
Environmental Organic Acid (EOA) database we used in our
earlier study26 with additional high-production chemicals in
the U.S. as described below (Supporting Information (SI)
Figure S1).

1. In-House Industrial Chemical Database. Our in-house
chemical database (SI Figure S1) consists of 714 chemical
entries, including 369 chemicals from our previous published
Environmental Organic Acid (EOA) database,26 207 less-
studied per and polyfluoroalkyl substances (PFAS), 44 flame
retardants (FR) including organophosphate flame retardants
(OPFR), 30 quaternary ammonium compounds (QACs), and
64 other industrial chemicals widely used in everyday life (e.g.,
plasticizers and over-the-counter medications).

2. High-Production Chemicals Obtained from EPA’s
Chemical Data Reporting 2016. We obtained a list of 8707
high-production (average national production volume over
25 000 lbs) chemicals from the U.S. EPA Chemical Data
Reporting (CDR) 2016 database.12 We queried their CASRN
against the U.S. EPA CompTox Chemicals Dashboard30 and
kept 4963 chemicals that had molecular formulas. There were
3744 chemicals that were excluded because of unsuccessful
matching of CASRN (n = 1370) and no matched molecular
formula (potential mixtures, n = 2,374). We further restricted
the Chemical Data Reporting list to include chemicals with
formulas that were also included in the U.S. EPA suspect
screening DSSTox desalted formula list to remove entries that
were not LC amenable (e.g., metals). There were 3,380
Chemical Data Reporting chemicals remaining that corre-
sponded to 2421 unique chemical formulas.
The final suspect database included 2421 unique chemical

formulas and 3535 chemical entries after merging the in-house
EOA database and Chemical Data Reporting lists and
removing duplicated entries, chemicals with fewer than 100
units in mass or without formulas (e.g., chemical mixtures),
and chemicals that are only gas-chromatography amenable.
Gas-chromatography amenability was determined by examin-
ing the polarity of the chemicals. If a chemical did not have any
polar groups, such as ROH or ROR, it was removed because it
would not likely ionize in electrospray ionization. Structure

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c05984
Environ. Sci. Technol. 2021, 55, 5037−5049

5038

pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c05984?ref=pdf


information (SMILES and InChI keys) were obtained from
PubChem search (Supplementary Spreadsheet).
This database was imported into the Agilent Mass Hunter

Personal Compound Database and Library software (PCDL)
for downstream suspect screening analysis. The suspect feature
matching was done at the formula level, by matching an
observed MS1 spectrum to theoretical spectra for MS-Ready
formulas in PCDL. It is important to note that PCDL does not
have retention times or reference MS1 or MS2 spectra.
LC-QTOF/MS Analysis. After compiling the final chemical

suspect database, we performed HPLC/HRMS analysis using
Agilent 1290 UPLC interfaced with Agilent 6550 QTOF/MS
with electrospray ionization (ESI) in positive and negative
mode (Agilent Technologies, Santa Clara, CA), data
processing, data analysis, and compound confirmation with
detailed steps listed below (Figure 1).
1. Chemical Analysis. Serum samples (250 μL) were

extracted by protein precipitation with methanol. Ten μL of
the serum extracts were then injected into the UPLC-QTOF/
MS system. Both negative and positive ionization mode were
studied. Agilent Eclipse Plus C18 (2.1 × 100 mm, 1.8 μm)
column was used. Gradient A was made as 5 mM Ammonium
Acetate in water (0.1% methanol). Gradient B was made as 5
mM ammonium acetate in methanol with 10% water. The
gradient flow was set as 0.3 mL/min. The total ion
chromatography (TIC) scan mass range was 100−1000 m/z.
Quality control samples including blanks (LCMS grade water:
Water, Burdick & Jackson for LC-MS, for HPLC, Burdick &
Jackson, LC365-1; serum blank) and in-house laboratory

control samples (matrix spike or LCS) were also analyzed
together within one batch. Two technical replicates were
analyzed for each sample.32,33 The instrumental parameters are
presented in the Supplementary Spreadsheet.

2. Quality Assurance/Quality Control. QA/QC samples
were used to monitor the general performance of the
injections, including retention time shifts, mass accuracy and
peak intensity decay. Perfluoro-n-[1,2-13C2] octanoic acid
(M2PFOA) was used as internal standard in negative
ionization mode; triphenyl phosphate-D15 and DL-cotinine
(methyl D3) was used in the positive ionization mode. Blank
samples were used to correct artificial features that might be
introduced during sample preparation by removing features for
which, abundances were no more than two times higher in the
blanks compared to the samples. The blanks were made using
ultraclean water (LCMS grade water: Water, Burdick &
Jackson for HPLC, LC365-1) and the QCs were made using
commercially available human AB serum (Corning Human AB
Serum, 35060CI). QC serum was prepared using human AB
serum spiked with 7 PFAS compounds and 6 OPFR
compounds (SI Tables S2 and S3) (final concentration = 10
ng/mL in QC serum). The blank samples and the QC samples
were treated the same way as the maternal and cord serum
samples (SI Figure S2) following all the steps of the sample
treatment and analysis.
For each batch, 10 pairs of maternal and cord matched

serum samples, together with two water blanks, two blank
serum samples, and two QC serum samples were extracted
together and injected together in one batch. The samples were

Figure 1. Suspect screen analysis workflow. *For detailed steps regarding feature extraction and formula matching, please refer to supplementary
file (SI Figures S2 and S3). The annotation levels refer to the annotation scheme proposed by Schymanski et al.31 for communicating confidence.
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randomized, but each maternal and cord pair were run in the
same batch to minimize any batch effect between maternal and
cord samples since we are interested in differences in peak
areas between maternal and cord samples. Every sample was
injected twice (instrumental replicate) to account for
variability in peak areas originating from the instrument.
3. LC-QTOF/MS Data Processing. The obtained raw data

files were processed following an optimized workflow
described in detail elsewhere.32,33 The workflow includes
molecular feature extraction (MFE) to extract compound
features across the batch data files and feature alignment using
Agilent Masshunter Profinder software (version B.10.0) to
align all features (identify and combine the same features by
comparing their retention times and spectra) in each batch.
For feature alignment across batches and formula matching we
used Mass Profile Professional software (MPP version
12.06.01). The steps regarding feature extraction and formula
matching is sketched in SI Figure S3. Each batch was
composed of 10 pairs (N = 20 total) plus QC and blank
samples for a total of three batches. After feature alignment, we

kept only feature peaks with intensities at least two times
higher than those in the water blank samples.
The chromatogram peak area, as integrated by the Agilent

MassHunter Profinder software, is used a surrogate for
chemical concentration allowing for comparisons of same
chemical across samples and batches. This approach can only
be used when studying the same chemical across samples and
not when comparing two different chemicals due to potentially
important differences in ionization efficiency. We used R
(version 3.5.1) and Python (version 3.9.2) for our data
processing and data analysis. The processing and analytical
steps were (1) combining features obtained from all three
batches, (2) averaging the peak area of the two technical
replicates, (3) imputing values below the limit of detection, (4)
performing batch correction, and (5) performing downstream
analysis using batch-corrected peak areas.
Imputation of values below the limit of detection was

conducted using a computational approach which assigned
missing values based on the distribution of the data points. The
measured abundances were log transformed and for each

Figure 2. Steps for prioritizing chemicals of interest based on (1) a high detection frequency (suggesting ubiquitous exposure); (2)
disproportionate distribution of peak area (relative concentrations) in fetal versus maternal serum (suggesting potentially different exposure
concentration); (3) high correlation in peak area between fetal and maternal serum (suggesting that maternal concentration could be a proxy for
fetal exposure); and/or (4) disproportionate distribution of peak area relative concentrations across maternal race/ethnicity or socioeconomic
status (suggesting higher exposure to different demographic groups). The prioritized chemical features are then used to match against MS/MS
spectral libraries and for confirmation with analytic standards. Abbreviations: DF: detection frequency; C&M: cord and maternal; PA: peak area; C
vs M: cord compared to maternal peak area; C-M: cord-maternal; PAR: peak area ratio; Corr: correlation; DEMO: demographic differences;
NHANES: National Health and Nutrition Examination Survey.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c05984
Environ. Sci. Technol. 2021, 55, 5037−5049

5040

https://pubs.acs.org/doi/10.1021/acs.est.0c05984?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05984?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05984?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05984?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c05984?ref=pdf


chemical across samples we calculated the median, the
minimum and the standard deviation of the distribution.
After fitting a normal distribution to the data points, the
algorithm then generated random values between the
measured minimum abundance (∼5000) and the theoretical
minimum (0) following the shape of the distribution. The
algorithm is available on Github (https://github.com/
dimitriabrahamsson/wangetal_maternal_cord.git).
Batch correction was conducted using a software package

called ComBat,34 which is commonly used in batch effect
corrections in bioinformatics. One advantage of the ComBat
package is that it can be used to correct for batch effect while
preserving other differences across samples and that way
avoiding overcorrection.
In addition to MassHunter Profinder, we expanded our MS/

MS searching by employing MS-Dial,35 which is an open
source software package for analyzing non-targeted analysis
data and has been developed by researchers at University of
California, Davis and the RIKEN Center for Sustainable
Resource Science (Japan).35 Using the same parameters as for
MassHunter (Supplementary Spreadsheet), we searched the
“All public MS/MS” databases for positive MS/MS (13,303
unique compounds) and for negative MS/MS (12 879 unique
compounds).
Descriptive and Statistical Analysis. We developed a

workflow which uses descriptive and statistical analysis
methods to prioritize chemical suspects in the large universe
of chemical features that are detected with HRMS for further
analysis. For our prioritization, chemicals of interest were those
with (1) a high detection frequency (suggesting ubiquitous
exposure); (2) disproportionate distribution of peak area
(relative concentrations) in fetal versus maternal serum
(suggesting potentially different exposure concentration); (3)
high correlation in peak area between fetal and maternal serum
(suggesting that maternal concentration could be a proxy for
fetal exposure); and/or (4) disproportionate distribution of
peak area relative concentrations across maternal race/
ethnicity or socioeconomic status (suggesting higher exposure
to different demographic groups). Accordingly, we derived
different measures to evaluate these criteria of interest as
described below.
First, we obtained the detection frequencies for the paired

maternal and cord samples (DFpaired) as an indicator of how
widespread chemical features may be among pregnant women
and their newborns, ranging from zero to 30. DFpaired of one
means that the feature was detected in both the maternal and
cord samples obtained from the same participant. We also
ranked the features according to their median peak area across
both maternal and cord samples from largest to smallest peak
area (rankPA, smaller ranks corresponds to larger peak areas) as
a proxy to identify features that may be of higher abundance.20

Second, we conducted two assessments of the relationship
between maternal and cord peak areas: (1) the ratios of cord vs
maternal peak areas (PARC vs M), and (2) the Spearman
correlation between cord and maternal peak areas (CorrC‑M). A
PARC vs M greater than 1 indicated that the peak area of this
feature was higher in cord serum than in maternal serum,
whereas a value less than 1 means the peak area was higher in
maternal than in cord serum. Features with an absolute
CorrC‑M value of at least 0.5 and a p-value of less than 0.05
were considered to have a statistically significant correlation
between cord and maternal peak area.

Third, among those chemical features with detection
frequencies of at least 80% in maternal or cord serum samples,
we assessed separately whether the peak areas in cord or
maternal serum samples differed by race/ethnicity, education,
household income, and nativity (U.S.-born status). Linear
regression with batch adjustment was used if the log-
transformed peak area passed the Shapiro normality test (p-
value being at least 0.05). Otherwise, logistic regression of the
highest tertile of the peak area was used, adjusting for batch.
When there is zero cell for the tabulation of peak area (highest
tertile vs other) and the demographic variable, nonparametric
Kruskal−Wallis test was used. A p-value less than 0.05 was
considered statistically significant. The statistical analyses on
the relationship between chemical features and demographic
variables were not adjusted for multiple comparisons, as the
main goal was to inform the prioritization of potential suspect
chemicals.

Chemical Prioritization Criteria and Steps. Based on the
criteria of interest and their corresponding measures, we used
an iterative four-step approach to prioritize and select
chemicals for confirmation using analytical standards (Figure
2). We assigned confidence levels to features based on the
scale developed by Schymanski et al.31 All features extracted by
MassHunter Profinder and/or with MS-Dial were at first
considered level-5 annotations. The features that were assigned
chemical formulas based on accurate mass, isotope patterns
and abundance were assigned level-4 identification confidence.
The ESI adducts that were used for matching formulas were
H+, Na+, and NH4

+ in positive mode and CH3COO
− in

negative mode.
The chemical candidates matched to suspect features by

formula, and could be annotated with a tentative structure,
were considered level-3 identification confidence. Due to the
large variability and uncertainty in the level-3 annotations, we
developed and applied a scoring algorithm for distinguishing
between likely accurate and likely inaccurate level 3
annotations. As a first step, we collected all isomers for a
given formula that could be found in EPA’s CompTox
Chemicals Dashboard.30 We then calculated the probability of
blindly picking the right isomer (called “blind probability”) by
dividing 1 by the number of available isomers. For example, if a
formula had only 1 available isomer the probability of blindly
picking the right isomer is 1, whereas if a formula had 100
available isomers the probability is 1/100 = 0.01. We then
collected the number of Dashboard data sources, PubChem
data sources, PubMed publications and CPDAT count for each
isomer and normalized the data in each column (i.e.,
Dashboard data sources, PubChem data sources, etc.) from 0
to 1 for every group of isomers that corresponded to one
formula. We then calculated the average source score (called
“source score”) for every isomer by taking the average of
Dashboard, PubChem, PubMed and CPDAT scores. Finally,
we calculated the overall score by taking the average of the
blind probability and the source score. We decided to calculate
the final score this way instead of taking the average of all
numbers in order to give more weight to blind probability
instead of the source score. The algorithm is available on
Github (https://github.com/dimitriabrahamsson/wangetal_
maternal_cord.git).
The features, for which there was some evidence to propose

an exact structure based on experimental MS/MS spectra, or in
silico MS/MS spectra, were considered level-2 annotations.
Otherwise, they remained as level-3 or level-4 annotations. For
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a select number of prioritized features, we collected targeted
MS/MS fragmentation spectra in both positive and negative
electrospray ionization modes with collision energies of 10 eV,
20 eV, and 40 eV with a scan rate of four spectra/s and a
retention time window of ±1 min. The spectra for all three
collision energies were collected simultaneously. The spectra
were collected following data dependent acquisition (DDA)
and a targeted MS/MS method for the prioritized chemical
features.
The acquired spectra were then used to search for potential

matches (at least one fragment peak with mass error <10 ppm)
in available experimental MS/MS spectral libraries (MS-Dial
databases,35 MassBank of Europe and North America,36

HMDB37 and mzCloud38), and in in silico spectral computa-
tional tools (CFM-ID39 and MetFrag40). For both the
experimental databases and the in silico tools, we searched
compounds for which we could observe a chromatographic
peak for the molecular ion and for peaks which the isotopic
pattern had a score of 70 out of 100 or higher. We then
annotated the observed features with the top candidate ion
suggested by the software’s algorithm.
Suspect features that were confirmed using an analytical

standard with MS, MS/MS and retention time matching were
assigned level-1 confidence in identification.
Step 1. Based on results from descriptive and statistical

analysis, we selected chemical features that meet the following
criteria (Figure 2):

a. DFpaired = 100%

b. RankPA among the top 50th percentile

c. Having maternal and cord peak area relationship of
interest: median PARC vs M ≥ 2 or median PARC vs M ≤
0.5; absolute CorrC‑M ≥ 0.5 (p-value <0.05). Median
PARC vs M ≥ 2 means that half of the cord samples had
peak areas at least two times the median peak area
among maternal samples, while median PARC vs M ≤ 0.5
means that half of the maternal samples had peak area of
at least two times of the median peak area among cord
samples.

d. The peak area of cord or maternal samples were different
across at least one demographic variable (race/ethnicity,
education, household income, or nativity).

Step 2. For chemical features meeting the criteria in step 1,
we merged back the candidate chemical names from our
suspect chemical database based on formula, and then queried
the U.S. EPA’s CompTox Chemicals Dashboard30 by CASRN
to obtain additional information on the candidate chemicals,
including whether they: are biomonitored by NHANES, are
present in various drug lists (e.g., the DrugBank database from
the University of Alberta), have associated ToxCast assay
information, and are on the high production volume list or the
chemical and products database. For the purposes of this
paper, which focuses on exogenous chemicals, we further
prioritized chemicals that were not biomonitored by
NHANES, not pharmaceutical drugs, and not likely to be
endogenous fatty acids (based on chemical structure).
However, there are certain endogenous compounds, such as
cortisol and bile acids, that have shown some associations with
preterm birth in previous studies and might be of interest for
future investigation. For that reason, we included four
endogenous compounds in the prioritized list for MS/MS
spectra matching: cortisol, progesterone, deoxycholic acid, and

chenodeoxycholic acid (three unique formulas; deoxycholic
acid and chenodeoxycholic acid share the same formula).

Step 3. To increase the likelihood of confirmation with
analytical standards given the limited volume of serum
samples, we performed fragmentation analysis by checking
the fragmentation peaks against various sources, including
online experimental databases, such as the MS-Dial data-
bases,35 MassBank,36 and mzCloud,38 and spectral data
generated by the online in silico fragmentation tools such as
CFM-ID.39 Chemical features with at least one matched
fragment peak were assigned a level-2 confidence in
identification as probable structures. All the remaining features
were assigned a level-4 confidence in identification.31

Step 4. We further conducted confirmation analysis for
chemicals with analytical standards that were commercially
available.

Chemical Confirmation Using Reference Standards.
Among the level-2 identified chemical features with available
analytical standards, we confirmed the presence of chemical
features by rerunning the LC-QTOF/MS analysis with their
corresponding analytical standard. A suspect feature was
considered confirmed (present in maternal or cord serum)
with level-1 confidence in annotation31 if it had the same
retention time (RT), accurate mass, and MS/MS spectral
pattern as the LC- QTOF/MS results for the analytical
standard.

Database Searching for Previously Reported Structures
and Chemical Uses. After collecting all the structural
information on the detected features, we searched several
databases to collect information on a chemical compound’s
reported chemical use and its presence in previous exposure
studies. For this search we used all the chemicals in the top 3
levels of annotation (1−3) as proposed by Schymanski et al.31

As a first step, we searched the Human Metabolome
Database37 to find which compounds were known endogenous
compounds. We then searched EPA’s CompTox Chemicals
Dashboard30 to find which chemicals have known uses as
pharmaceuticals, pesticides, flame retardants, poly/perfluori-
nated alkyl substances (PFAS), plasticizers, cosmetics,
consumer products, and which chemicals are registered as
high production volume chemicals. Finally, we searched the
Blood Exposome database41,42 to find which chemicals had
been previously reported in human blood samples in previous
studies.

■ RESULTS
Participant Characteristics. The mean age of participants

was 32 years (SD: 4.7, Table 1). Nearly half of the participants
were Latinas, 37% were non-Hispanic whites, and 17% were
non-Hispanic other race. Around one-third of the pregnant
women were of higher socioeconomic status, with 40% having
some postgraduate education and 30% having an annual
household income ≥ $125,000. Half of the study participants
were born outside of the U.S., and, on average, had lived in the
U.S. for 22 years.

Suspects by Ionization Modes and Across Maternal
Vs Cord Samples. After data processing, we detected in total
1,450 suspect features (herein referred to as “suspects”) that
were matched to 557 unique chemical formulas. Of the 1450
suspect features, we detected 662 suspects in the positive ion
mode and 788 suspects in the negative ion mode, with 282
detected in both ion modes. We observed some limited batch
effect related to how the samples were analyzed in the
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instrument (SI Figure S5). Correcting for that effect with
ComBat resulted in small changes in the abundances of the
samples (SI Figure S5). We also observed statistically
significant differences in the abundance of some of the tracers
across different batches (SI Figure S6 and S7). Even though
these differences are relatively small and only three tracers
showed significant differences (SI Figures S6 and S7), we
chose to proceed with batch correction to remove any effect
related to instrumental variability. This is particularly
important for our statistical analyses since we use instrument

abundances instead of concentrations, which would control for
that effect. Median RT of all detected suspects was 8.9 min
(range: 0.9−17.0) and the majority of suspects detected were
compounds with mass values of 500 or less (98%).
When looking at the mass accuracy and retention time

consistency across batches, the mass errors for the tracer
compounds used in positive mode were all below 6 ppm and in
negative mode below 5 ppm. The retention times for the tracer
compounds in both modes showed only minor shifts
approximating 0.2 min in positive mode and 0.3 min in
negative mode in the worst cases (SI Tables S2 and S3).
When looking at the differences between maternal and cord

samples, 1225 suspects (85%) were detected in at least one
paired maternal-cord sample whereas 225 features (15%) were
detected in either maternal or cord samples, but not in both
pairs. (Figure 3). Three hundred and twenty-eight suspects
(23%) were detected in all paired maternal-cord samples.
Around half of the suspects (51%) had detection frequencies of
14 or greater among maternal-cord pairs. More suspects with a
higher DF in cord relative to maternal samples were found in
the negative mode and slightly more suspects with a higher DF
in maternal relative to cord samples were found in the positive
mode (SI Table S1 and Figure S4 for an overview of the
suspects detected in the positive and the negative modes). It is
important to note that Figure 3 shows only the features that
were present in the suspect list. When looking at all the
detected features regardless of their presence in the suspect list,
there are approximately 1.5 times more positive ionization
features than negative ionization features.
Among these 1225 suspects, the median PARC vs M(across all

samples for a specific feature) for the 643 suspects detected in
the negative mode was 1.1 (IQR: 0.7−1.7) and the median
PARC vs M among 582 suspects detected in the positive mode
was 0.9 (IQR: 0.5−1.5) (Figure 4A). Peak areas in maternal
samples were numerically higher relative to the peak areas in
cord samples among suspects detected in the positive mode
but were numerically lower relative to the peak area in cord
samples among suspects detected in the negative mode (Figure
4B). More suspects detected in the negative mode, compared
to those in the positive mode, had a median cord peak area at
least twice that of the median maternal peak area (median
PARC vs M ≥ 2:15% vs 10%). On the contrary, more suspects

Table 1. Demographics of the Current Analytical Sample (N
= 30 Matched Maternal/Cord Samples)a

characteristics mean (SD) N (%)

age 32.4 (4.7)
race/ethnicity
Latinas 14 (47)
non-Hispanic whites 11 (37)
non-Hispanic Asians/Pacific Islanders/African
Americans

5 (17)

Educational Attainment
high school/GED or less 11 (37)
some college/AA/College completed 7 (23)
master’s or doctoral degree 12 (40)

Household Income
<$40,000 12 (40)
$40,000 − $124,999 9 (30)
≥$125,000 9 (30)

Nativity (Born in the U.S.)
yes 14 (47)
no 15 (50)
DK/NA 1 (3)
years lived in the U.S. 22.0 (12.3)

Infant Sex
male 15 (50)
female 15 (50)
aAbbreviations: SD: standard deviation; GED: General Education
Diploma; AA: Associate in Arts; DK: do not know; NA: not available.

Figure 3. Number of suspects by detection frequency among the maternal-cord serum pairs (n = 30).
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detected in the positive mode, compared to those in the
negative mode, had a median maternal peak area that was at

least twice that of the median cord peak area (median
PARC vs M ≤ 0.5:21% vs 10%).

Figure 4. Relationship between cord and maternal peak area. A. Distribution of median peak area ratio (cord vs maternal) among 1225 suspects
detected in at least 1 paired maternal-cord sample; B. Distribution of median peak area by sample type and ion modes; C. Correlation between cord
and maternal peak area among 328 features detected in all maternal-cord pairs.

Figure 5. Clustering of suspects (row) in cord and maternal serum whose peak area significantly differed by at least one demographic variable
(column).
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For the 328 suspects detected in all paired samples, we
further explored the correlation between cord and maternal
peak area (Figure 4C). There were 104 features with a
Spearman correlation of at least 0.5 and a p-value < 0.05.
Despite that the majority of suspects were detected in at least
one maternal and one cord sample, 133 suspects (9.2%) were
detected exclusively in maternal or cord serum samples. There
were 666 suspects in maternal samples and 648 suspects in
cord samples with detection frequencies of over 80% (n = 24).
Among these, the peak areas of 114 and 102 suspects in
maternal and cord samples, respectively differed across at least
one of four demographic variables. There were 99 suspects that
were detected in all 30 paired samples with peak areas in cord
or maternal samples that differed across at least one
demographic variables. Most of the suspects differed by a
specific demographic variable either when examining maternal
peak area or cord peak area but not both (Figure 5), suggesting
that demographic differences in peak area of suspects may vary
by sample type (maternal versus cord). Among features that
significantly differed by each corresponding demographic
variable, more features had a higher median peak area in
maternal samples among women who were non-Latinas
(relative to Latinas), had some college education or above
(relative to those with a high school education or less), had a
household income of $40,000 or more (relative to those with a
household income of less than $40,000), and were born in the
U.S. (relative to those who were not). Features’ median peak
area in cord samples showed a similar pattern except that more
features had a higher median peak area among women who
were not born in the U.S. (Supplementary Spreadsheet S2).
Features Selected for Fragmentation Analysis. Based

on the chemical prioritization criteria and steps described
above in the Materials and Methods Section (Figure 2), we
selected 106 suspects detected in positive mode and 102
suspects (total n = 208) detected in negative mode for
fragmentation analysis (Figure 2). After inspecting the MS/MS
matches to the MS/MS libraries, we tentatively identified 73

chemical features (level 2 confidence) (Supplementary
Spreadsheet: “Level 1−2 annotations”).

Confirmed Features. After purchasing analytical standards
for a select number of compounds (n = 24) and comparing the
mass spectrum of the detected features and that of the
corresponding standards, we confirmed the presence of 17
chemical features (Supplementary Spreadsheet: “Level 1−2
annotations”), which came down to 15 unique chemical
compounds after removing duplicates between positive and
negative ionization mode (cortisone) and after removing
stereoisomers (chenodeoxycholic acid) (Supplementary
Spreadsheet: “Level 1−2 annotations” and “Annotations
summary”).

Database Search. When looking at the top scored
annotations 1, 2, and 3 (score ≥0.5), the largest group, with
42 annotated compounds, were chemical compounds for
which there was limited to no available information on their
chemical uses, their presence in consumer products and
whether they were high production volume chemicals (Figure
6 and Supplemental Spreadsheet: “Annotations summary”).
The majority of these chemicals (33/42) were annotated with
MS/MS spectral libraries (level 2 annotations). The second
largest group was plasticizers with 29 compounds. After
removing the compounds that had been previously reported in
human exposure studies, we found 55 chemical compounds
that had not been previously reported. Also, in this case, the
largest group consisted of chemicals with limited to no
information (Unknowns; n = 37) and the second largest group
consisted of plasticizers (n = 10). We also found four PFAS
that, according to our method, appeared to not have been
previously reported in human blood/serum: 4m perfluor-
ooctanesulfonic acid, 6:2 fluorotelomer phosphate monoester,
methyl perfluoroundecanoate, and 2-perfluorooctyl ethanoic
acid. However, upon closer examination with literature review,
we found that only methyl perfluoroundecanoate, and 2-
perfluorooctyl ethanoic acid had not been previously reported,
while 4m perfluorooctanesulfonic acid, 6:2 fluorotelomer

Figure 6. Chemical uses information for (A) all annotated compounds and (B) for compounds that were found to not have been previously
reported in human exposure studies involving human blood or serum samples. The annotations are shown by confidence level as proposed by
Schymanski et al.31 The chemical use information was collected from databases on EPA’s CompTox Chemicals Dashboard.30 The Human
Metabolome Database37 was used to remove chemical features with endogenous sources. The Blood Exposome database41,42 was used to
determine if a compound had been previously reported in human exposure studies.
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phosphate monoester showed to have been reported in a very
limited number of studies.

■ DISCUSSION
Suspect screening and non-targeted analysis approaches have
been increasingly used for both environmental monitor-
ing19−21,43−45 and studying human exposure to known and
unknown chemicals.25,26,46 However, most studies evaluating
human samples have focused on endogenous compounds and
our study is the first−to our knowledge−that screens for a
comprehensive database of industrial chemicals. Further, we
have additionally expanded analytic capacity through MS/MS
fragmentation analysis in both maternal and cord serum
samples to assist in the identification of chemicals. With our
study of focused screening of matched maternal and cord
serum samples for high production volume industrial
chemicals, our study provides valuable insights on fetal
exposure to previously unreported chemicals.
While our study could be described as both “suspect

screening” and “non-targeted analysis”, we chose the
terminology “suspect screening” because if fits better our
focused search of industrial chemicals that are “suspected” to
be present in human blood. In addition, while non-targeted
analysis or untargeted metabolomics studies prioritize features
for MS/MS fragmentation based on detection frequency and
abundance,22,47,48 we chose to prioritize features that showed
some significance in terms of partitioning between maternal
and cord blood and in terms of demographic variables, shifting
our focus from the most abundant features to exogenous
chemical features that are “suspected” to have some biological
and/or demographic significance. This workflow can be used
for methods prioritizing chemicals for further evaluation and
adds to other approaches for prioritizing the chemical space for
targeted biomonitoring.13

Following our suspect screening workflow, we found 42
chemical compounds that had limited to no information on
their sources and use and could not be grouped under the
categories of endogenous, pharmaceuticals, pesticides, flame
retardants, PFAS, plasticizers, ingredients in cosmetics and
consumer products or high production volume chemicals, as
classified in EPA’s Chemicals Dashboard.30 After removing the
chemical compounds that had been previously reported in
human exposure studies, we found 37 chemical compounds
that had limited to no information and could not be grouped in
any of our categories (Figure 6 and Supplemental Spreadsheet:
“Annotations summary” and “Not previously reported”). Some
examples of these chemicals are pyrenophorol, thermopsine,
and thymol-beta-D-glucoside. The identification of chemicals
with unknown sources and uses is likely reflective of gaps in
requirements for disclosing use of chemicals in consumer and
industrial products.49 Previous work on suspect screening of
chemicals in consumer products has shown that only 30.5% of
the chemicals used in consumer products are reported in
chemical lists with known chemicals used in these
applications.49

We tentatively identified a number of chemicals that
appeared to not have been previously reported in other
biomonitoring studies. Some examples of chemicals with
known sources and uses but that had not been previously
reported were (i) 1-(1-acetyl-2,2,6,6-tetramethylpiperidin-4-
yl)-3-dodecylpyrrolidine-2,5-dione, which is a known high
production volume chemical used in consumer products, such
as fragrances; (ii) methyl perfluoroundecanoate, and 2-

perfluorooctyl ethanoic acid, which are two PFAS; and (iii)
Sumilizer GA 80, which is a plasticizer (Supplemental
Spreadsheet: “Not previously reported”). It is important to
note that although our database search for finding not
previously reported chemicals is extensive, it may in some
limited cases produce false positives. As illustrated by two
PFAS (4m perfluorooctanesulfonic acid, 6:2 fluorotelomer
phosphate monoester), there may be cases where less well-
studied chemicals may appear as not-previously reported but
they may be reported in human blood/serum by a very limited
number of studies. Nevertheless, these chemicals require
further investigation due to their very limited information in
the literature.
The large presence of poorly characterized chemicals in

maternal and cord blood samples warrants further investigation
to understand where these chemicals might be coming from
and how they may affect human health. We found that, in
general, the levels of detected features were similar between
cord and maternal samples (Figures 4A,B), indicating that the
majority of the chemicals observed do not show differential
partitioning between maternal and cord blood and that they
can cross the placenta without being inhibited by filtering
processes. It is important to acknowledge, however, that this
finding could be an artifact of the analytical instrumentation
(LC-QTOF/MS) used in this study, which is primarily focused
on polar and involatile chemicals. Polar chemicals are generally
hydrophilic and dissolve well in blood making it easy for them
to cross the placenta as part of the blood flow from the mother
to the fetus. An additional analysis of the samples with
instruments that focus on nonpolar and volatile/semivolatile
chemicals, such as gas chromatography (GC)−QTOF/MS,
might present a different picture. Nonpolar chemicals may
bind to lipids in the placenta which may slow down their
transfer to the fetus. This is a hypothesis that could be explored
further in future studies.
While the majority of chemicals that were detected in

maternal samples were also detected in cord samples, 133
suspects (9.2%) were detected exclusively in maternal or cord
serum samples. This finding indicates that there may be certain
suspects that appear exclusively on the maternal or on the fetal
side. However, it is important to note that the detection
frequency is calculated based on the number of chemicals that
were able to pass the detection threshold of the current
method and that a “non-detect” does not necessarily mean
“non-present.” Thus, a more likely scenario is that these 133
features were present, but at low amounts that could not be
detected with the current analytical method.
For several suspect features, we observed significant

differences across socioeconomic and racial/ethnic groups
indicating differential exposures to certain chemical com-
pounds. We observed, for example, that among features that
significantly differed by each corresponding demographic
variable, more features had a higher median peak area in
maternal samples among women with a household income of
$40,000 or more. This finding could indicate important
socioeconomic differences in the purchase and use of
consumer products. This observation aligns with Montazeri
et al.,50 in their systematic review of multiple biomonitoring
studies, in which they observed that environmental exposures
are not exclusively associated with lower socioeconomic status,
and that for many environmental contaminants, higher levels
can occur in groups with higher socioeconomic status.
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We found 23% of the detected features were matched with a
chemical formula from our database (Figure 1). Given that we
focused on high volume chemicals, we anticipated that we
might find more matches. However, many suspects may be of
relatively low concentration in the samples, as are most
industrial chemicals, and in many cases, they may be below the
detection limit of the analytical method. Targeted analysis with
analytical methods of lower mass resolution but higher
sensitivity, such as LC-triple quadrupole MS (LC-TQ/MS),
could reveal the presence of additional compounds. This
observation indicates that non-targeted analysis techniques
could benefit from broad screening semitargeted methods,
where hundreds or thousands of analytical standards are used
to screen for specific chemical compounds. Also, there may be
byproducts of metabolism that are generated through the
activation, detoxification and elimination of exogenous
synthetic chemical compounds. These industrial chemical
metabolites can make up a large portion of the human
chemisome of which more than 95% remain unknown or
largely uncharacterized51−53 and thus are not included in the
current suspect database. Finally, some exposures may not be
present due to biotransformation and metabolism inside
human body. Future studies can consider including predicted
metabolites from environmental chemicals of interest that are
generated by recently developed computational tools such as
the BioTransformer51 in order to capture exposure to all
possible forms of these chemicals.
Our study adds important information to a very scarce body

of literature on suspect screening and non-targeted analysis of
industrial chemical exposures in maternal and fetal pairs. Our
results show that there are potential new chemical exposures
that have not been adequately characterized and have not been
previously of concern for environmental health scientists and
regulators. Our study is an important methodological approach
for future studies that will aim at characterizing the presence
and toxicity of newly detected chemical compounds in the
human body and assess the fate of these compounds in various
human tissues, particularly between the mother and the fetus.
Understanding these exposures and how they may contribute
to adverse health outcomes is crucial in characterizing the
human exposome and eventually preventing the development
of disease.
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