
UC Davis
UC Davis Electronic Theses and Dissertations

Title
A Visual Analytics Exploratory and Predictive Framework for Anomaly Detection in Multi-
fidelity Machine Log Data

Permalink
https://escholarship.org/uc/item/5hc041xm

Author
Shilpika, FNU

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hc041xm
https://escholarship.org
http://www.cdlib.org/

A Visual Analytics Exploratory and Predictive Framework for Anomaly
Detection in Multi-fidelity Machine Log Data

By

FNU SHILPIKA
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Kwan-Liu Ma, Chair

François Gygi

Venkatram Vishwanath

Committee in Charge

2023

i

Copyright © 2023 by

FNU SHILPIKA

All rights reserved.

Contents

Abstract . vi

Acknowledgments . vii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Machine Log Error Analysis . 2

1.2.2 Visual Analytics of Machine Logs 4

1.2.3 Time-series Data Analysis for Functional Data 5

1.2.4 Multiscale Time-series Data Analysis 6

2 Error Log Anomaly Detection in Large Scale High Performance Computing

Systems: A Survey 7

2.1 Introduction . 7

2.2 Background and Definitions . 8

2.2.1 Logging Terminologies - Faults, Errors, Symptoms, and Failures . 9

2.3 Analysis of Log Data . 11

2.3.1 Anomaly Detection and Diagnosis 11

2.3.2 Visualization in Log Data . 18

2.4 Gaps and Future Work . 22

2.5 Conclusion . 23

3 Functional Data Analysis: Real-Time Monitoring of Time-Series Data 24

3.1 Introduction . 24

3.2 Related Work . 25

3.2.1 Streaming Data Visualization . 26

3.2.2 Functional Data Analysis . 27

3.3 Methodology . 29

3.3.1 Overall Organization . 29

ii

3.3.2 Incremental & Progressive Generation of the Magnitude-Shape

Plot . 30

3.3.3 Reviewing the MS Plot with Auxiliary Information and Func-

tional Principal Component Analysis 36

3.4 Case Studies . 39

3.4.1 Study 1: Analysis of Canadian Weather Data 40

3.4.2 Study 2: Analysis of Ozone Level Data 43

3.4.3 Study 3: Analysis of Supercomputer Hardware Logs 44

3.4.4 Study 4: Analysis of Biometrics Data of Daily Activities 48

3.5 Discussion . 51

3.6 Performance Evaluation . 54

3.7 Conclusion . 58

4 A Visual Analytics Solution for Analyzing Multifidelity HPC System Logs 59

4.1 Introduction and Background . 59

4.2 A Visual Analytics Tool - MELA . 62

4.2.1 Node Layout . 62

4.2.2 Ring Layout . 63

4.2.3 Selection Layout . 64

4.2.4 Detailed Layout . 65

4.2.5 Database backend . 66

4.3 Case Studies . 66

4.3.1 Case Study 1: . 67

4.3.2 Case Study 2: . 68

4.4 Conclusion and Future Work . 69

5 Machine Anomaly Detection and Prediction 71

5.1 Introduction . 71

5.2 Related Work . 74

5.3 System Overview . 76

iii

5.3.1 Visual Analytics System . 76

5.3.2 Back-end Processing Pipeline . 78

5.4 Case Studies . 83

5.4.1 Case Study 1: . 83

5.4.2 Case Study 2: . 84

5.4.3 Case Study 3: . 86

5.5 System Model Analysis . 90

5.6 Conclusion . 97

6 A Visual Analytics Approach for Multi-Scale Systemic Assessment of Multi-

fidelity High Performance Computing Systems 99

6.1 Introduction . 99

6.2 Related Work . 103

6.2.1 Error Log Analysis in Large Scale Systems 103

6.2.2 Multiresolution Dynamic Mode Decomposition 104

6.3 System Overview . 106

6.3.1 Overall Organization . 106

6.3.2 Backend Analysis . 107

6.3.3 Visualization Frontend . 113

6.4 Case Studies . 116

6.4.1 Case Study 1 . 116

6.4.2 Case Study 2 . 119

6.4.3 Case Study 3 . 122

6.5 Discussion . 123

6.6 Conclusion . 128

7 Conclusion 129

A Online Supplementary Materials 131

iv

B Appendix for Chapter 6 132

B.1 Using mrDMD for extraction of spatio-temporal patterns at isolated

frequencies ranges . 132

v

Abstract

A Visual Analytics Exploratory and Predictive Framework for Anomaly Detection

in Multi-fidelity Machine Log Data

Maintaining robust and reliable computing systems, especially those that enable

breakthrough work in computational science and engineering research, is a critical

and challenging task. This dissertation’s goal is to build both an exploratory mecha-

nism for pattern identification from historical data and a predictive tool for identifying

the large-scale systems’ state with a visual analytics framework. Toward this goal,

the work processes various system logs such as error logs, job logs, syslogs, console

logs, and environment logs. To process environment log data that captures time-

dependent phenomena, the work uses functional data analysis (FDA) to use some of

FDA’s benefits, such as the ability to study the sensitivity to change and maintain

the data ordering. The visual analytics approach developed in this dissertation helps

simultaneously monitor and review the changing time-series data by using new in-

cremental and progressive FDA algorithms to promptly generate results for streaming

time-series data, thus addressing the computational cost problems prevalent in FDA.

A scalable visual analytics tool, MELA, identifies patterns and gleans insights from

these diverse logs to effectively characterize system behavior and faults over time. A

visual analytics machine learning pipeline promptly predicts a user application’s exit

status and potential errors. The dissertation also introduces a visual analytics solution

for data exploration at varying temporal and spatial resolutions by extracting ranges

of frequencies from environment/hardware logs using multiresolution dynamic mode

decomposition (mrDMD). These frequencies are extracted at multiple resolutions in

time and analyzed at each resolution allowing for coarse-grained (over the years) to

fine-grained (over hours or minutes) analysis of the time-series data. This disserta-

tion thus introduces faster, scalable, and interactive visual analytics solutions utilizing

multiscale, exploratory, predictive, and multiresolution analyses of diverse large-scale

system logs, bridging the gap between visual analytics and machine log analysis.

vi

Acknowledgments

This dissertation is dedicated to many important individuals who helped my research

journey. First, I would like to thank my research advisor, Dr. Kwan-Liu Ma, for his

patience, motivation, enthusiasm, and firm guidance when I needed it. Second, I would

like to thank my research advisors from Argonne National Laboratory, Dr. Venkatram

Vishwanath, and Dr. Michael E. Papka, who always believed in my abilities and

supported me through this journey. Because of their excellent advice and motivation, I

could push through my failures and explore potential avenues in my research. I want

to thank all my dissertation proposal and committee members, Dr. François Gygi, Dr.

Venkatesh Akella, and Dr. Mohammad Sadoghi, for taking the time out of their busy

schedules and providing useful feedback.

Also, I would like to thank all of my collaborators. I was very fortunate to have had

the opportunity to collaborate with many researchers in various domains. As a result, I

gained fantastic experiences and built my research fundamentals. I would like to thank

Dr. Bethany Lusch, Dr. Murali Emani, and Dr. Filippo Simini, whose advice and help

have made me a better researcher.

I also want to thank all my labmates at VIDI at UC Davis, especially Dr. Takanori

Fujiwara, Dr. Senthil Chandrasegaran, and Dr. Tarik Crnovrsanin. The discussions

with them were informative and engaging. Finally, I thank my husband, Nischith

Chandrashekar, my parents, my family, and my furry friends, Daisy, Byte, and Sophie.

This research used resources of the Argonne Leadership Computing Facility, which

is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

With everyone’s support, I could continue pursuing my dream as a researcher.

vii

Chapter 1
Introduction

1.1 Motivation
To ensure normal operation and to extract adequate performance from the hardware

systems such as those in an assembly plant or a supercomputer center, various monitor-

ing mechanisms have been introduced to collect data about all aspects of the systems at

high frequency in real-time. Therefore, understanding and studying the intricacies of

the data procured from these monitoring mechanisms is critical for enabling advance-

ments in research projects that utilize these systems and expect high system availability.

High utilization of these systems is compromised if system failures cannot be handled

in a reactive and timely manner. Jobs could run for weeks, and failures add significant

overhead in already computationally and financially expensive research. Therefore,

we study these diverse subsystems’ past behaviors and use the data to predict future

behaviors.

Our initial effort focuses on a 10+ Petaflops Cray XC40 supercomputer system with

Intel Xeon Phi based compute nodes, specifically the Theta supercomputing system

deployed at ALCF [4, 65, 96]. The nodes are interconnected with an Aries interconnect

in a Dragonfly topology. We use log data from the Cray XC40 supercomputer that

can be broadly classified as (i) environment logs, also referred to as SEDC logs, where

SEDC (System Environment Data Collections) is a tool used to collect and report envi-

ronmental data on all Cray systems in real-time, (ii) hardware error logs, and (iii) job

logs. The data are essentially raw data from sensors located at a predefined spatial

locality and recorded at various temporal resolutions. Therefore, we deal with multi-

fidelity large-scale data from diverse sources within the HPC system. For example, the

SEDC log data is recorded and stored approximately every 10-30 seconds, so the SEDC

1

dataset size approaches the gigabyte to terabyte range every few weeks. The hardware

error log contains data recorded from various control systems linked with one another

within the subsystems. This results in duplicate events that need to be handled during

data pre-processing. The hardware error log data ranges in tens of gigabytes, and the

job log data size can be hundreds of megabytes for a year. Altogether, these three types

of logs are about 5 GB per day. It is a daunting task to process data of these volumes for

any analyses. We also analyze data procured from the K computer’s [118] rack envi-

ronment logs on November-17th 2017. The logs contain data from 864 compute racks,

with 1,163 different sensor measurements (e.g., CPU temperatures, circuit voltages, fan

speeds) collected every 5-minute interval (i.e., 288 timestamps in a day).

1.2 Background
1.2.1 Machine Log Error Analysis
The data procured from the supercomputing systems are primarily raw data captured

from sensors, and the size of these logs is typically in the terabytes range. Therefore, we

deal with large-scale logs from diverse sources with multiple fidelities. For example,

the environment log data is captured at a frequency of approximately 10-30-second

intervals. In this case, a few weeks of this log data is hundreds of gigabytes. The

hardware and job log data size ranges in tens of gigabytes. This work aims to build a

scalable visualization system that allows us to analyze data with temporal and spatial

locality enabled by a machine learning back-end prediction mechanism. When it comes

to hardware errors, we look at data from multiple control systems, which are linked to

one another. Hence, we deal with duplicate events that need to be pre-processed. Our

contributions using the supercomputer logs will apply to Cray XC40 systems deployed

at various facilities worldwide, including several US Department of Energy (DOE)

national laboratories.

Significant efforts have been made to improve system resilience through system log

analysis in the past. Failure detection and root cause diagnosis use diverse log sources

that could be used to address failures. Survey papers [78, 142] on failure prediction

2

give an in-depth idea of current fault prediction methodologies and their shortcomings.

Past efforts to standardize the pre-processing of error logs as a first step to tackling these

issues include a three-step pre-processing method (event categorization, event filtering,

and causality related filtering) to reduce the size of log data [192], an online clustering

algorithm to represent textual and temporal data in the log files succinctly [77], and an

online clustering algorithm that evolves with streaming event patterns [49, 51].

Machine learning algorithms have been used for in situ predictions of HPC system

faults. The decision tree machine learning algorithm has been used to predict hard

disk failures [52, 139] from statistically significant/filtered parameters. A context-free

grammar-based rapid event analysis has been used for online anomaly prediction with

lead times of 3 minutes to node failures [26]. The Random Forest machine learning

algorithm has been used to predict node [90,122] and job failures [156] with lead times

of up to one hour [122]. A two-stage prediction model has been used to predict disk

failures [52] or input parameters [17]; the stages serve to filter out relevant data. In

our work, we adopt the use of a 2-stage machine learning pipeline for job exit status

prediction where the first stage filters down to failed jobs, and the second stage predicts

the exit status of these jobs.

Some of the automatic log analysis tools [31, 49, 51, 64, 114, 192] use correlation

analysis, signal analysis, pattern mining, event pattern-based correlations, resilience

at application level, and spatial/temporal event analysis. HELO [51] is an event log

mining tool that extracts event formats via messaging templates using pattern mining

log files from large-scale supercomputers. ELSA (Event Log Signal Analyzer) [49] is

a toolkit for event prediction, modeling the normal flow at a stable event state and

following the abnormal flow in the event of system failure. It models events based

on its behavior through a combination of signal processing and data mining. One

of the steps involving log analysis is data filtering. An adaptive semantic filtering

(ASF) method [103] efficiently filters the duplicated messages in a log by computing

the semantic correlation between two events where the correlation threshold adapts

depending on the temporal gap between the events. LogMine [64] is an unsupervised,

3

scalable end-to-end one-pass framework for the analysis of massive heterogeneous

logs. LogDiver [114] provides support for lossless data compression, modeling appli-

cation failure paths, and cross-validation of models/results. However, LogDiver and

LogMiner do not provide visualization support. DeepLog [32] is a deep neural net-

work model that uses stacked Long Short-Term Memory (LSTM) networks for anomaly

detection, dynamically updating the models to accommodate changing log patterns.

However, it does not have a lead time analysis. RAVEN [130] maps RAS (reliability,

availability, and serviceability) logs on a map of the physical system for Titan, which

is a Cray supercomputer at Oak Ridge National Laboratory. IBM provides Blue Gene

Navigator [97] used by system administrators to monitor the system through basic log

statistical visualizations. These tools lack the support for scalable and interactive visual

analysis of HPC system logs.

1.2.2 Visual Analytics of Machine Logs
Although there are many automatic log analysis tools, little work has been done with

visualization to perform failure analysis and correlations of failures using multifidelity

machine log data gathered from various source at system and subsystem levels.

LogAider [31] and LogMaster [42] have generic, easy-to-use visualizations. La

VALSE [59] is a tool with support for a scalable user interface. They explore large

amounts of hardware data in supercomputers. Fujiwara et al. [46] utilized node-link di-

agrams and the matrix-based representations with hierarchical aggregation techniques

to visualize any type of network topology. Li et al. [102] developed flexible visual-

ization for analyzing the network performance on the Dragonfly network. Although,

analyzing one or two types of log data would help interpret a subset of the mechanics

of the large-scale computing system, it would not suffice to provide complete insight

into comprehending the complexity of such systems. Therefore, we analyze multiple

logs (hardware, jobs, environment, syslogs, console logs etc.) for our study.

DCDB Wintermute [123] is an online generic framework implemented on top of

the Data Center Data Base (DCDB) monitoring system that enables Operational Data

Analysis (ODA) [12]. In this work, multiple log data types, including job, hardware, and

4

environment logs, are analyzed. However, each type of data is analyzed separately, and

there is no correspondence in the analysis and visualization of results of these different

types of logs.

1.2.3 Time-series Data Analysis for Functional Data
The ability to instantaneously process and analyze high-frequency time-series data in

real-time becomes pertinent to examining various underlying system phenomena to

detect and promptly react to system failures or inefficiencies.

High-velocity time-series data is intrinsically functional as it can be represented in

the form of curves or surfaces with weak assumptions of smoothness being permit-

ted [174]. Functional data analysis (FDA) is a branch of statistics for analyzing such

data [136]. FDA incorporates statistical methodologies to capture the underlying prop-

erties and structure of the data. The statistical methods and models in FDA are typically

presented in the form of continuous functions [135]. A wide range of methods have

been developed to handle functional data, such as functional principal component

analysis (FPCA), functional regression models, and functional canonical correlation

analysis [135]. As these names indicate, many FDA methods resemble those devel-

oped for conventional discrete analysis. However, because FDA handles data with

continuous functions, FDA has advantages in studying the derivatives of the data and

maintaining the temporal order of data [174]. Recently, FDA has seen tremendous

growth with applications in various fields, such as biology, meteorology, medicine,

finance, and engineering [3, 117, 175]. While FDA methods provide new capabilities

for analyzing time-series data, they often suffer from their high computational costs,

which increase with the number of time points. This can be a critical problem with

real-world monitoring applications as they keep generating new time points, resulting

in infinitely long time series. Although FDA has gained more traction in recent years,

discrete analysis (PCA, UMAP, t-SNE etc.) is largely preferred over its functional coun-

terparts. Therefore, there is a need to reduce the computational overheads of using the

FDA on streaming time-series data.

5

1.2.4 Multiscale Time-series Data Analysis
Analysis of multiscale systems by linking microscale to macroscale events, both spa-

tially and temporally, at varying granularities has seen significant innovations in al-

gorithms and methodologies. These multiresolution (MRA) analyses have been pop-

ularized through wavelet-based and window-based techniques in both time and fre-

quency (Fourier Transforms) domains. MRA’s fundamental procedure is extracting

and subtracting spatial or temporal features recursively. Dynamic Mode Decomposi-

tion (DMD) [15, 61, 144–146, 167] assembles low-dimensional spatiotemporal modes

from a multi-scale dynamic system. DMD algorithm is a combination of spatial

dimensionality-reduction technique (Proper Orthogonal Decomposition (POD) [18])

and Fourier Transforms in time. Multiresolution Dynamic Mode Decomposition

(mrDMD) [95] merges the concepts of wavelet theory and MRA with DMD, thus natu-

rally integrating the recursive isolation of spatiotemporal modes at multiple scales and

creating approximations of larger dynamic models. In recent years, both DMD and

mrDMD have served as powerful means for studying the dynamics of nonlinear sys-

tems in fields including fluid mechanics [95, 144, 167], financial analysis [111], control

systems [134] neuroscience [15], streaming analysis [68,132] and denoising [30,146], as

well as foreground and background separation in video analysis [95, 112]. The bene-

fits of the intrinsic multiscale spatiotemporal approximation of this technique can be

leveraged for analysis of large-scale machine logs

6

Chapter 2
Error Log Anomaly Detection in Large
Scale High Performance Computing
Systems: A Survey

2.1 Introduction
Large scale high performance computing (HPC) systems perform the crucial task of

solving mission-critical problems in a wide range of fields like physics, climate, biology,

chemistry, national security, etc. These computing systems’ capacity, complexity, and

dynamicity have shown a significant upward trend in growth over the last few years.

Therefore, it becomes crucial to fortify the resilience of these systems by developing

fast and effective system failure preventative measures through analysis of system

log data. The recent directions in error log analysis focus on several areas. Some

measures focus on online or reactive measures that study the data as the information is

recorded. Others focus on studying historical log data to derive patterns that are used

to categorize future data recordings. Predicting these system failures has also garnered

more interest. Numerous machine learning and deep learning methodologies are

employed to quickly identify and react with proactive measures in the event of a system

anomaly. The error log analysis methods developed also focus on the type and nature

of the data. For example, studies focus specifically on hardware, software, application,

user-specific, or network failures. There have been extensive surveys developed in

the past years on system log analysis that compare the analysis methods, impact, and

generalizability of the existing works. In this chapter, we extend the efforts of the

previous surveys [6, 35, 67, 79, 142, 155, 160, 182] by incorporating relevant efforts from

the fields of visualization [14, 45, 46, 87, 99, 102, 125, 150, 189], cloud computing [89, 98,

7

148, 187], and infrastructure [8, 153] systems while preserving the same terminologies

considered standard in the previous survey in the HPC field. Furthermore, we aim to

identify opportunities for growth and bridging gaps by curating a list of log analysis

surveys and research methodologies from these wider areas (i.e., cloud, infrastructure,

visualization, etc.) to encourage cross-domain adaption in future works.

Our work aims to provide a survey in system log analysis beginning from stud-

ies between 2007 and 2022. Our survey targets log analysis not only in HPC systems

but also log analysis in cloud, infrastructure, visualization, and warehouse domains.

Here, the common denominator is maintaining stable system serviceability, reliability,

and availability [191] through analysis of large-scale, high-volume, and high-frequency

data in these environments. The processing methodologies adopted in one of these

environments [54] may provide valuable insights and knowledge that could be advan-

tageous when adapted to another environment dealing with the same data type. Our

contributions are as follows:

• A literature survey on log analysis and outcomes in HPC, cloud, visualization,

and infrastructure systems.

• A literature survey of papers ranging from 2007 to 2022 identifying both state-of-

the-art and contemporary developments.

• Discussion of the gaps in contemporary state-of-the-art practice and future re-

search opportunities.

2.2 Background and Definitions
Log data are generated by timely insertions of descriptive and critical reports reflecting a

system state into files. Creating these files is called logging and serves as a fundamental

step for further processing and log analysis techniques [67]. This section provides

general terminologies consistently used in log analysis surveys by Avizienis et al. [6],

Salfner et al. [142], and Juak et al. [79].

8

2.2.1 Logging Terminologies - Faults, Errors, Symptoms, and Failures
• A failure is defined as “an event that occurs when the delivered service devi-

ates from correct service.” [6]. Here, failure refers to an abnormal system state

observed by a user or a sensor component. A failure occurs only when this abnor-

mality spills over to the output resulting in erroneous results. E.g., node failures

in supercomputers leading to node unavailability, failure events in IBM Blue Gene

systems are tagged as FATAL.

• On failure of a system, "undetected or detected errors may cause out-of-norm

behavior of system parameters as a side effect. We call this out-of-norm behavior

a symptom." [6] In the context of fail slow errors, symptoms are faults convert-

ing from one form to another, resulting in a cascading chain of errors and root

causes [58].

• An error is a deviation from a current stable system state of the resulting in

deviation of a correct state, i.e., "things going wrong" [6]. Errors may not lead to

failures, however, “an error is the part of the total state of the system that may

lead to its subsequent service failure.” [6]

• “Faults are the adjudged or hypothesized causes of an error, root causes of er-

rors"; errors are “manifestations of faults” [6,79]. Usually, faults are not instantly

observable and have been classified in literature as transient, intermittent, and

permanent faults.

Although these terminologies may not be evident or utilized in cross-domain platforms,

the problem categories can be easily identified based on the definitions provided here.

To assess the quality of the prediction methods some common metrics used are,

precision (pr), recall (rec), and accuracy (acc):

pr = 𝑇𝑃

𝑇𝑃+𝐹𝑃 rec = 𝑇𝑃

𝑇𝑃+𝐹𝑁

acc = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝐹𝑁 +𝑇𝑁

9

where𝑇𝑃 is the number of true positives, i.e., the number of correctly predicted failures;

𝐹𝑃 is the number of false positives, i.e., the number of jobs wrongly predicted as failures;

𝐹𝑁 is the number of false negatives; and 𝑇𝑁 is the number of true negatives [152].

"Precision is the fraction of the jobs that were predicted as job failures that were correct.

Recall is the fraction of the job failures that were correctly predicted. Accuracy is the

ratio of correct predictions to the total number of predictions. Usually, an increase in

precision leads to a decrease in recall and vice versa" [152].

An overall workflow for log analysis

Log Data Processed LogLog Mining Data Visualization

User Interaction
& Feedback

Log
Analysis

Failure
Prediction

Online
Analysis

Offline
Analysis

Machine
Learning

Deep
Learning

Anomaly Detection
and

Diagnosis

Statistical
Methods

Rule-based
Methods

Model-based
Methods

Other Analytical
Methods

Figure 2.1: An overall workflow for log analysis

Fig. 2.1, shows a typical workflow involved in log data analysis. Traditionally the

logging files generated are procured and stored in a wide variety of databases that

are tuned to address the various types of data (e.g., numerical, text-based, or event-

based). These databases store either data in raw or preprocessed formats and mostly

utilize state-of-the-art compression techniques [154]. The log data is mined for filtering

useful information by eliminating missing data and correcting for noisy information.

Log mining and an in-depth log analysis result in processed log data carrying useful

patterns and knowledge that facilitate monitoring, designation, and troubleshooting

of these system states by domain experts. These final actions are usually achieved

with an effective visual analytics frontend with a user-in-the-loop mechanism. These

visual analytics systems allow for user or domain expert feedback which is used to

update the visualization and guide the further exploration of the results produced

10

by the log analysis. The log analysis methods can be broadly classified as online

or offline methods. Online methods have gained traction in recent years as these

allow for fast and reactive analysis of streaming data. Offline methods are reserved

for analyzing larger volumes of historical log data to extract and isolate patterns of

errors and system behaviors. Failure prediction is another popular technique used for

improving system resilience. Recent advances in machine learning and deep learning

help predict these apocalyptic failures reactively. Other log diagnostic techniques

include purely statistical-based, rule-based, and mathematical-based approaches. Log

mining and log parsing methodologies are not in the scope of this survey.

2.3 Analysis of Log Data
We categorize this section based on the previous surveys [67, 79, 108, 142]. Each sub-

section gives an overview of the analysis methodologies. We categorize these further

based on whether the analysis is online or offline, log data types utilized, visualization

support, and the application domain (e.g., cloud, infrastructure, HPC, etc.).

2.3.1 Anomaly Detection and Diagnosis
Statistical and Correlation Zaman et al. [186] address the challenges faced while lo-

calizing and isolating faults caused in multi-process applications through an online

bug diagnostic tool called SCMiner. SCMiner uses data mining and statistical anomaly

detection techniques, which include filtering, PCA analysis, optimization (an apriori

algorithm, a sequence abstraction method), and buggy function localization (offline

function signature mapping), on system call traces to detect faults with a precision of

65% for smaller traces and close to 90% for original and larger traces. FDiag [21] and

FDiagV3 [20] is a similar effort on cluster systems hardware and software events. It uses

a systematic methodology for rebuilding event order with statistical correlation anal-

ysis using components like a message template extractor, a statistical event correlator,

and an episode (strongly correlated system events) constructor. FDiagV3, which uses

PCA and ICA-based correlation methodologies, showed recurrent failures and faults

were prevalent in a small set of nodes and identified eight unknown causes of compute

11

Table 2.1: Summary of Anomaly Detection and Diagnosis in Log Data (Statistical and Correlation
Methods) (Y/N/- stands for Yes/No/Unknown)

Methods Analysis Category Data Type Online Scalable Visualization

Zaman et al. [186] Statistical and Data

Mining

Text-based

Sequence

Y Y N

Harutyunyan et al. [66] Statistical, graph-

based, and Data

Mining

Text-based

Sequence

Y Y N

Gainaru et al. [48] Statistics and signal

processing

Text-based

Sequence

Y Y N

ELSA [50] Statistics, correla-

tion and signal pro-

cessing

Text-based

Sequence

Y Y N

FDiag [21] Statistics and corre-

lation

Text-based

Sequence

N Y N

FDiagV3 [20] Statistics, correla-

tion, PCA, ICA

Text-based

Sequence

N Y N

Lu et al. [110] Statistics, correla-

tion

Text-based

Sequence

Numerical

N Y N

DISTALYZER [121] Statistical and Ma-

chine Learning

Text-based

Sequence

N Y N

node hangups. An offline log analysis method [110] for diagnosis of root cause related

to CPU, memory, network, and disk, in Spark [185] log files used features related to ex-

ecution time, data locality, memory, and garbage collection. They developed weighted

factors based on a statistical analysis approach to decide the probability of root causes.

Gainaru et al. [48] used correlation analysis and dynamic window strategy to ex-

tract frequent events irrespective of time lapse between events, thus modeling a holistic

system behavior capable of predicting future system failures at 85% precision and 60%

accuracy. For each event, they accumulate the probability for a future event that is

predicted with the details about all past events. Subsequent studies [49] used sig-

nal processing concepts like wavelet transformation and autocorrelation to categorize

12

system events as periodic, silent, and noisy signals. This approach allows for the auto-

mated filtering of signal categories eliminating the need for preprocessing. In addition,

their online anomaly detection and correlation methodologies predict future faults.

Finally, their toolkit for event log analysis, ELSA (Event Log Signal Analyzer) [50], was

improved with an adaptive and efficient prediction module using data mining and

signal processing. Signal processing techniques model the normal system behavior

and use data mining techniques to identify real-time deviations due to failures. Their

process yields a precision of 91.2% and a recall of 45.8%.

Harutyunyan et al. [66] uses streaming log data in a cloud-based application to

identify anomalous behavior in an incoming stream. The authors claim that the infea-

sibility of retrospective analysis owing to large storage and processing considerations

makes employing a meta-data model or graph a reasonable approach to identifying

the fundamental structure of the data. Furthermore, the graph structure, built using

pairwise correlations of event types, represents the statistical structure of the metadata

with useful content, thus eliminating the need for retrospective analysis. The work

then uses probabilistic mismatch criteria to compute the degree of abnormality, which

would constitute a symptom or error in HPC terminology. A usecase showed mismatch

scores (i.e., degree of mismatch between run-time and historical scenarios) of 40.9% and

100%. Using a semantic correlation between two events an adaptive semantic filtering

(ASF) method [103] is proposed to efficiently filter the duplicated messages in a log

where the correlation threshold adapts depending on the temporal gap between the

events. A summary of the relevant works is shown in Tab. 2.1

Model-based and Rule-based Methods "Rule-based methods seek to establish a

set of rules, i.e., if-then- statements that trigger a failure warning if certain conditions

are met. Such rules are (usually) automatically generated from training data" [79] or

explicitly determined by domain experts. Model-based methods isolate and capture

system behaviors, based on pre-determined rules, in specific prototypes and identify

anomalies based on deviations from these normal states.

CloudRaid [109] is a tool used to detect distributed concurrency bugs in cloud

13

Table 2.2: Summary of Anomaly Detection and Diagnosis in Log Data (Model-Based and Rule-Based
Methods) (Y/N/- stands for Yes/No/Unknown)

Methods Analysis Category Data Type Online Scalable Visualization

CloudRaid [109] Model-based Text-based

Sequence

N Y N

LogSed [81] Model-based Text-based

Sequence

Y Y N

Jia et al. [80] Model-based Text-based

Sequence

Y Y N

LOGAN [161] Model-based Text-based

Sequence

N Y Y

Das et al. [25] Rule-based Text-based

Sequence

N Y N

Aarohi [26] Rule-Based Ma-

chine Learning

(NLP)

Text-based

Sequence

Y Y N

Watanabe et al. [177] Rule-Based Text-based

Sequence

Y N N

FlipTracker [60] Rule-Based Text-based

Sequence

N Y N

systems (Apache Hadoop2/Yarn, HBase, HDFS, and Cassandra) by mining and re-

ordering (using a strict happen-before order) those message orders likely to expose

errors or symptoms. They observed that different message orderings shared the same

root cause, and the tool successfully identified 8 (3 critical) previously unidentified

bugs. LogSed [81] uses a time-weighted control flow graph (TCFG) to model healthy

execution flows and detect errors or symptoms (through interleaving multiple threads

in logs) by identifying any deviations from this model. Without prior system knowl-

edge, tests on cloud platform logs revealed anomalies with 80% precision and recall on

average. A subsequent work [80] developed a hybrid graph model to capture normal

executions of inter- and intra-web services and identify deviations in error occurrences.

The results of log mining showed 80% precision and 70% recall, and log anomaly de-

tection showed 90% precision and 80% recall on average. LOGAN [161] is an assistive

14

tool that generates behavioral reference models to promptly identify root causes in the

distributed cloud and cluster platforms. Using log correlation and comparison algo-

rithms any deviations from the modeled norm are flagged and stored for future analysis

(log alignment). Watanabe et al. [177] developed an online pattern-matching failure

prediction method to automatically match log messages that have strong similarity (a

similarity-based classification) with error message formats. After messages are classi-

fied, their pattern matching method uses Bayes theorem to calculate the probability of

a failure occurring in a pattern. This method is format independent, learns patterns in

real time, and is message-order independent. They evaluated the predicted failures in

a cloud datacenter platform with 80% precision and 90% recall. FlipTracker [60] is a

framework to extract resilient code sequences from user applications by tracking error

propagation and resilience properties. Using a dynamic data dependency graph and

a table tracking corrupted traces, they extract the resilience computation patterns in

code sequences and thus help improve application resilience at the user level. Das et

al. [25] use statistical machine learning (natural language processing or NLP) methods

to predict node failures in a Cray system. They employ a phrase extraction mechanism

(TBP or time-based phrases) to isolate node failures. Their evaluation for TBD gen-

erated 83% recall rates and 98% precision, and a time before failure (lead time) of up

to two minutes. Aarohi [26], a subsequent work, used machine learning NLP-based,

specifically a context-free grammar-based rapid event analysis, training and fast infer-

ence scheme to detect failures in real time. Their evaluation resulted in 3 minutes of

lead times to node failures, 86% Recall, 88% precision, and 80% accuracy on logs from

four different Cray systems. DISTALYZER [121] uses statistical and machine learning

techniques to compare features extracted from logs of normal and abnormal executions

to derive the strongest link between system components and performance and hence

determine the root causes of performance issues boosting the performance by 45% and

25%. A summary of the relevant works is shown in Tab. 2.2

Machine Learning and Deep Learning Methods MEPFL [193] is a technique that

uses system trace logs for latent error prediction and fault detection in dynamic, asyn-

15

Method Analysis Data Type Online Scalable

MEPFL [193]

Classification (Random Forests, K-Nearest Neighbors, and Multi-Layer
Perceptron):
Latent error: recall= 98%, precision= 99.8%
faulty microservices: accuracy=93%
fault types: recall=95.2%, precision=98.3%

Text-based
Sequence Y Y

MING [104]
2-Phase LSTM model, Random Forest Model, followed by a ranking model
Average: Precision=92.4%, recall=64.5%, and F1-score= 75.2%

Text-based
Sequence
Numerical

N Y

DESH [27]
3-Phase methodology LSTM-RNN based model
Average: Precision≥84%, recall=87.5%, and F1-score≥85.7%,
accuracy≥83.6%

Text-based
Sequence Y Y

PreFix [188]
Random Forest Classification
Average: recall=61.81% false positive ratio =1.84 * 10^-5

Text-based
Sequence
Numerical

Y Y

AirAlert [19]

XGBoost classifier
Average(%) component level:
Storage Location: Precision=71.11 recall=100.00 F1-score=83.17
Physical Networking: Precision=69.07 recall=100.00 F1-score=81.71
Average(%) service-level:
Website Application: Precision=82.75 recall=76.74 F1-score=79.6
Cloud Network: Precision=75.9 recall=67.07 F1-score=71.22

Text-based
Sequence
Numerical

Y Y

Soualhia et al.
[156]

Random Forest Classification
Average: accuracy=85.6% precision=94.2% recall=85.9%

Text-based
Sequence Y -

PRACTICE [126]
Neural Networks
non-SBE: precision=88% recall=62%
SBE: precision=82% recall=95%

Numerical N -

LogRobust [190]

Bi-LSTM
Microsoft Data: Precision=69%, recall=99%, and F1-score=81%
synthetic HDFS dataset 20% injection: Precision=92% recall=97% F1-
score=95%

Text-based
Sequence Y -

DISSERTATION

Figure 2.2: Summary of Anomaly Prediction in Log Data (Machine Learning (ML) and Deep Learning
(DL) Methods) ’Y/N/-’ represent ’yes/no/unknown’

chronous microservice runtime environments. They use system trace logs of a target

application and its faulty versions generated by fault injection to train prediction mod-

els that predict latent errors, faults, and fault types of microservice applications. The

prediction models are either binary classification, multi-label classification, or single-

class classification models (Random Forests, K-Nearest Neighbors, and Multi-Layer

Perceptron) deployed at trace-level and microservice-level. They evaluated infrastruc-

ture systems of container orchestrator and service mesh and open source microservice

applications. Latent error prediction produced 98% recall and 99.8% precision; faulty

microservices with a Top-1 had 93% accuracy, and fault types had a 95.2% recall and

98.3% precision. MING [104] is a 2 Phase prediction mechanism to predict the failure

proneness of a node in a cloud environment that integrates analysis of multiple data

types: an LSTM (long short-term memory) model for temporal data (local node fea-

tures), a Random Forest model for spatial data (global system features). This is followed

by a ranking model to rank the failure proneness of nodes based on the results of the

16

two-phase models and a cost-sensitive function to categorize nodes as faulty. Their

evaluation produced on average 92.3%, 64.2%, and 75.7% in Precision, Recall, and F1-

measure, respectively. Desh [27] extends the research [26] by utilizing a three-phase

deep learning methodology using LSTM networks to identify supercomputer failures

with sufficient lead times. The 3 phases include training to identify likely failure log

message chains, retraining the recognized chains with expected lead times, and pre-

dicting lead times during testing to predict when a specific node fails. They evaluated

their methodology on four HPC datasets and obtained more than 3 minutes of lead

time, > 84% precision, > 83.6% accuracy, and > 85.7% F1 score, 87.5% recall rates across

all four systems.

PreFix [188] uses datacenter networks’ (DCNs) log data and identify if a switch

failure occurs during runtime to prevent network device failures. They employ both

historical and current switch hardware failure data. They identified a derived feature

set consisting of message template sequence, frequency, seasonality, and surge and then

used ML (Random Forest) to efficiently filter noises, sample imbalance, and computa-

tion overhead. They included data noise in the optimization scheme and extracted the

modularity of system log information, thus solving the data imbalance problem. Fail-

ures in syslogs show common patterns before failures across devices. They evaluated

their method on three switch models from 20 datacenters and obtained an average of

61.81% recall and 1.84∗10−5 false positive ratio. AirAlert [19] is an outage management

system to predict outages in cloud services before their occurrence. It predicts outages

using a Bayesian network and gradient boosting tree-based classification (XGBoost) and

by collecting and correlating alert signals from the entire cloud network through causal

relationship inference. The evaluation results are presented in Fig. 2.2. Soualhia et

al. [156] developed a failure mechanism that predicts in advance if a job is likely to fail or

not, thus reducing the future execution time caused by the rescheduling of failed jobs.

They use a month’s execution and resource utilization trace data from applications at

Google. For predicting job scheduling outcomes using random forests, they obtained a

precision of 94.2%, a recall of up to 85.9%, and an accuracy of 85.6%. Using GloudSim,

17

Google’s toolkit used to simulate the similar workload on their computing infrastruc-

ture, they obtained a 40% improvement in job failure rates by rescheduling jobs that

were predicted to fail. Other studies have used similar approaches to predict job fail-

ure in supercomputers [34, 152]. Nie et al. used PRACTISE [126], neural networks to

predict GPU soft errors. They do so by studying the dependence between temperature,

power, GPU reliability, and GPU soft errors. They found that the relationship between

temperature, power consumption, and GPU errors affects the data centers’ operations

and reliability. Their work provides useful insights into the difference between CPU

and GPU utilization and functionality. Their evaluation on the Titan supercomputers’

(Oak Ridge National Laboratory) GPU resulted in a precision and recall of 88% 62%

for non-SBE (single bit error), respectively, and a precision and recall of 82% 95% for

SBE. Zhang et al. work, LogRobust [190], states that the current methodologies in log

analysis do not account for unseen log events or log sequences, noise, and evolving

log traces but assume that the data is stable with distinct log events. LogRobust first

extracts semantic vectors from log events; it then uses an attention-based Bi-LSTM

model to extract the weighted context from log sequences based on its importance.

Thus, it handles unstable log events and sequences. Their evaluation on a Microsoft

industrial dataset yielded a precision of 69%, recall of 99%, and F1-score of 81%. Lin

et al. [105] proposed a unified cloud platform employing Hadoop and Spark for batch

processing of log data along with data warehouse and analysis tools like Hive and

Shark. Spark and Hadoop are used for the distributed batch-processing analysis (with

in-built machine learning capabilities) of large-scale data. Their results showed that

a unified cloud platform analysis model harnesses the benefits of each platform and

should provide high stability, availability, and efficiency. The summary and evaluation

results for the relevant works are provided in Fig. 2.2

2.3.2 Visualization in Log Data
2.3.2.1 Visualization in Log Data Types

Large-scale system logs often contain diverse and ambiguous trace messages. The log

data traces can comprise of numerical data, text-based, and event-based data. These

18

Research
Solution

Approach
Online

Analysis

Visual
Analytic

s
Support

Data Type Analyzed

Generalizability
Numerica

l Data
(e.g.,

sensor
data)

Event
Data /

Hardwar
e Data

Usage
Data /

Job
DataGoals ML Prediction/Data Analysis

Shilpika et al.
(Chapter 6)

Multi-scale and multifidelity end-to-end error log
analysis system that visualizes and analyzes
job, hardware and environment at varying
temporal and spatial resolutions

Uses multiresolution dynamic mode decomposition
(mrDMD) technique that depicts high-dimensional data as
correlated spatial-temporal modes, to extract modes
isolated at specified frequencies and compare modes with
customized baselines

N Y Y Y Y
Cray Systems

Shilpika et al.
[150]

An online visual analytics approach for monitoring
and reviewing time series data streamed from a
hardware system with a focus on identifying
outliers by using functional data analysis (FDA).

Developed new incremental and progressive algorithms to
generate the magnitude-shape plot.
Interactive visualization of analysis using the MS plot with
FPCA (functional principal component)

Y Y Y N N
Applicable to monitoring
time series data from any
supercomputer system

Shilpika et al.
[152]

Multifidelity end-to-end error log analysis
system that analyzes job logs, hardware error
logs and environment logs at varying temporal
and spatial resolutions augmented by a visual
analytics tool

2-stage ML (Random Forest Classifier):
Stage 1 (Job Pass/Fail) - 65% - (precision = 67%, recall =
95%)
Stage 2 (Job Exit Status)- 92.3%
Hardware Error Prediction: RNN (accuracy=84.6%)

N Y Y Y Y
Cray Systems

MELA [151]
A scalable visualization tool for exploratory
analysis of reliability, availability, and serviceability
(RAS) logs records. It is designed to trace causes
of failure events and investigate correlations

Scalable multilayer diagrams for visualizing millions of log
records. A scalable asynchronous query engine for
interactive querying support. Y Y Y Y Y

Cray Systems

DCDB
Wintermute

[123]

Generic framework to enable online Operational
Data Analytics (ODA)

Block system for instantiation of ODA models using a tree
representation of the sensor space Y Y Y Y Y

Data Center Data Base
(DCDB) monitoring system
set up required

Nakka et al.
[122]

Data mining classification schemes to predict
failures in failure and usage data logs with and
without the root cause

Decision tree to predict node failure up to one hour in
advance
Precision = 74%
recall = 81%

- - Y -

Tested on Los Alamos
National Lab.
supercomputing cluster
data

Klinkenberg et
al. [90]

Node failure prediction for selected time windows
using descriptive statistics & supervised ML to
create a prediction model from monitoring data

Node failures, both caused by hardware issues and soft
lockups
Random Forest classifier - Precision = 98 %, recall = 91%

- Y Y N
Nodes with Broadwell and
Westmere processors

LogAider [31]
A generic visualizer that mines spatial correlations
and temporal correlations over a certain period
within a log or across multiple logs

Temporal Event Correlated with precision = 99.9% recall =
99.9
K-means clustering → spatial correlation

Y - Y Y
IBM Blue Gene/Q systems

DeepLog [32]
Deep neural network model that models a system
log as a natural language sequence. The system
incrementally updates adapting to new log
patterns

Error Event Sequence → Deep neural network model with
Long Short-Term Memory (LSTM)
Precision = 95%, recall = 96% - - Y Y

Tested on HDFS and Open
Stack Log Dat sets

LogMaster [42]

LogMaster is for mining correlations of event and
the work proposes event correlation graphs
(ECGs) to represent event correlations, and
present an ECGs-based algorithm for predicting
events

Mining correlations of events with
precision = 81.19%
recall = 20.73% N - Y Y

Hadoop cluster logs and
Los Alamos National Lab.
supercomputing cluster logs

DISSERTATION

Figure 2.3: Comparative Analysis. ’Y/N/-’ represent ’yes/no/unknown’

trace messages often contain insufficient and missing context leading to ambiguous

error messages, [127]. Further, as a system evolves, different keywords are used in

different log files, making global mappings and interpretations hard. A comparative

analysis between our work and a few relevant related works using visualization support

is shown in Fig. 2.3. In the next sections we discuss research advancements in log data

analysis in the visualization field.

Numerical Data:Visualization system have previously been developed using nu-

merical data to study the large-scale system behavior. Fujiwara et al. [45] developed

a multi-coordinated visual analytics system that uses the Dragonfly network to inves-

tigate the temporal behavior and optimize the communication performance of a su-

percomputer. Their subsequent work [46] utilized node-link diagrams and the matrix-

based representations with hierarchical aggregation techniques to visualize any type

of network topology. Li et al. [102] developed flexible visualization for analyzing the

network performance on the Dragonfly network. Shilpika et al. [150] used functional

data analysis (FDA) to incrementally and progressively update the streaming time se-

19

ries data collected from hardware systems with a focus on identifying outliers by using

FDA. Li et al. [99] developed a visual analytics framework for analyzing HPC datasets

produced by parallel discrete-event simulations (PDES). This framework leverages au-

tomated time-series analysis methods and visualizations to analyze both multivariate

time-series and communication network data.

Text-based Data:Text-based system logs can be system generated or user generated

by an operator or technician. These logs may contain widely varying abbreviations and

operator-specific jargon. To help filter and analyse millions of records of such text data

consisting of these large inconsistencies several visual analytic approaches have been

proposed [14,189]. Brundage et al. [14] use metrics such as word occurrence frequency

and information-theoretic metrics to visually highlight common and uncommon issues

and fixes that occur in the maintenance logs. Past works on text-based analysis display

content and structure using features such as term frequencies, co-occurrences, and sen-

tence structures. ConceptScope, [189], provides a conceptual overviews incorporating

domain knowledge using Bubble Treemap visualization, multiple coordinated views

of document structure, and concept hierarchy with text overviews.

Event-based Data: Nguyen et al. [125] used an interactive visual analysis tool that

provides a high-level overview of CCTs (Calling Context Tree). CCTs help understand

the execution and performance of parallel programs using performance metrics with

call paths. The work uses semantic refinement operations to progressively explore

performance bottlenecks on applications running on a multiple parallel processors.

Kesavan et al. [87] developed EnsembleCallFlow to support the exploration of ensem-

bles of call graphs, a combination of performance metrics and application execution

contexts. They introduce ensemble-Sankey, combining resource-flow (a Sankey plot

to describe the graphical nature of the call graph) and box-plot (to convey the perfor-

mance variability within the ensemble) visualization techniques. Mueller et al. [119]

studied the performance and behavior of cloud computing systems by building a visual

analytics tool based on a layout method and similarity measures that visualized numer-

ous behavioral lines, successfully identifying and suggesting performance bottlenecks

20

within the system.

2.3.2.2 Visualization in Streaming Data Analysis

Visualization of streaming data requires frequently updated results. Computational

cost and cognitive load form major bottlenecks while visualizing results generated

from incoming data streams. As for the cognitive load, Krstajic et al. [93] discussed

the trade-offs between updating a view when a new data point is fed, which may lead

to loss of mental map, or not updating a view, which may lead to loss of information.

A comprehensive survey by Dasgupta et al. [28] further characterized challenges in

perception and cognition of streaming visualizations.

Incremental algorithms aim at visualizing and updating results while avoiding ris-

ing computation costs. For example, Tanahashi et al. [163] built a streaming storyline

visualization. Liu et al. [106] introduced a streaming tree cut algorithm to visualize

incoming topics from text streams. Crnovrsanin et al. [22] developed a GPU accel-

erated incremental force-directed layout. Other researchers developed incremental

dimensionality reduction [43] and change-point detection methods [88]. Katragadda

et al. [86] developed a visual analytics tool for high-velocity streaming data using

hardware and software sandbox environments.

While incremental algorithms allow for updating results within reasonable compu-

tation costs, these costs are sometimes unavoidable. To avoid larger computational costs

in such scenarios, another potential approach for streaming data analysis is progressive

visual analytics [101, 170]. Progressive algorithms provide a trade off between com-

putational latency and result quality. Here, progressively refined intermediate results

are visualized until the final results are computed. Thus, for streaming visualization,

we can utilize progressive algorithms, such as the progressive version of t-SNE [133],

UMAP [92], time series clustering [88], and MS plot [150]. The summary and evaluation

results for the relevant works are provided in Fig. 2.3

21

2.4 Gaps and Future Work
Machine learning methods have gained considerable favor in log anomaly diagnosis

and prediction in large-scale systems, and the trends show continuous growth. In this

survey, we have isolated a subset of these studies in the area of cloud computing, infras-

tructure, visualization, and HPC systems. The methods employed in cloud computing

usually account for online streaming analysis and hence focus on scalability. These

methods and approaches could be adopted in the HPC and visualization fields to ac-

count for the rapid growth in the systems and workloads handled. Real-time online

analysis methods that employ incremental and progressive updates [22, 100, 150, 158]

to the already computed results are slowly gaining importance in the visualization

field. However, more studies could adopt these methods. We feel these methods could

significantly improve the lead time in the current analyses. Also, traditional analysis

methods like signal processing, correlation, rule-based methods, etc., form a section of

the analysis pipeline. Therefore, these studies should handle accounting for the errors

propagated or useful data filtered through these sections in the pipeline.

Root-cause analysis is a tricky problem to solve as large-scale systems report errors

from varied sources. In addition, there is a need to account for the age of these systems

when handling data procured over multiple years. Current analysis pipelines do not

account for unseen log events or sequences and instability of the log data from new

error events that are caused due to system decline from fail-slow hardware [58]. There

is a need to account for these performance issues, especially when studies use data over

a larger number of years. This is not a trivial problem to solve since these incidents are

harder to distinguish from those caused by software faults; hence more research in this

field is required. The root-cause analysis could be made robust by procuring additional

datasets that report the system’s state, for example, sensor readings reporting temper-

ature, power measurements, software, hardware, network logs, syslogs, etc. Currently,

only a few studies consider a subset of these dataset types in their analysis [123,151,152].

Using these varied datasets could provide a more holistic understanding of the under-

lying system behavior and help in the identification of failure chains that are otherwise

22

missed.

2.5 Conclusion
As we approach exascale system capabilities, the issue of serviceability, availability,

and resilience remains crucial for system design and maintenance. When the size of

applications and the urgency in procuring results utilizing these ever-growing hetero-

geneous systems pose additional challenges, building technologies that can adapt to

these transitions becomes crucial. We survey over 40 papers from cloud computing,

infrastructure, visualization, and HPC systems and use their conclusions to provide a

review in the field of log analysis. We have identified several areas in the current state

of the practice from varied fields, which could help guide future research to effectively

identify and build a more holistic prototype of the system’s error propagation patterns.

23

Chapter 3
Functional Data Analysis: Real-Time
Monitoring of Time-Series Data

3.1 Introduction
To ensure normal operation and adequate performance of hardware systems such as

those in an assembly plant or a supercomputer center, various monitoring mechanisms

have been introduced to collect data about all aspects of the systems at high frequency

in real-time [128, 129]. The ability to instantaneously process and analyze the result-

ing time-series data thus becomes pertinent to examining various underlying system

phenomena to detect and promptly react to system failures or inefficiency.

High-velocity time-series data is intrinsically functional as it can be represented

in the form of curves or surfaces with weak assumptions of smoothness being per-

mitted [174]. Functional data analysis (FDA) is a branch of statistics for analyzing

such data [136]. FDA incorporates statistical methodologies to capture the underly-

ing properties and structure of the data. The statistical methods and models in FDA

are typically presented in the form of continuous functions [135]. A wide range of

methods have been developed to handle functional data, such as functional principal

component analysis (FPCA), functional regression models, and functional canonical

correlation analysis [135]. As these names indicate, many FDA methods resemble

those developed for conventional discrete analysis. However, because FDA handles

data with continuous functions, FDA has advantages in studying the derivatives of

the data and maintaining the temporal order of data [174]. Recently, FDA has seen

tremendous growth with applications in various fields, such as biology, meteorology,

medicine, finance, and engineering [3, 117, 175].

24

While FDA methods provide new capabilities for analyzing time-series data, they

often suffer from their high computational costs, which increase with the number of

time points. This can be a critical problem with real-world monitoring applications as

they keep generating new time points, resulting in infinitely long time series.

With this work [150], we aim to reduce the computational overheads of using FDA on

streaming time-series data while retaining the benefits of in-depth analysis capabilities

provided by FDA. To do so, we introduce a visual analytics approach for continuously

monitor and review time-series data that grows over time with a focus on identifying

outliers by using FDA. In particular, we design new incremental and progressive al-

gorithms that promptly generate the magnitude-shape (MS) plot [24], which reveals

outlier time-series by depicting the outlyingness of both the functional magnitude and

shape of multiple input time-series. These incremental and progressive updates to

the previously computed results address the computational overhead introduced by

handling growing time series data in bulk. In addition, with the support of FPCA, our

approach help analysts investigate the visually-identified outliers from the MS plot.

Our main contributions are as follows:

• New incremental and progressive algorithms to generate the MS plot, which

enables analyses of time-series data collected from online data streams.

• Augmentation of analysis using the MS plot with FPCA and interactive visual-

ization to aid reviewing clusters identified from the MS plot.

• Four case studies with multiple real-world datasets demonstrate the effectiveness

of our approach in two different settings: cases when (1) new time points and (2)

new independent time-series are added, respectively.

3.2 Related Work
In this section, we first discuss relevant works in streaming data visualization and

then provide a background to FDA, including functional principal component analysis

(FPCA) and magnitude-shape (MS) plots [24]—FDA methods utilized in our work.

25

3.2.1 Streaming Data Visualization
Visualization of streaming data is a challenging task since visualizations need to be con-

tinually updated with incoming data. The major bottlenecks in visualizing continuous

streams of data are computational cost and cognitive load. Within these bottlenecks,

the cognitive load is discussed by Krstajic and Keim [93]. For example, they sum-

marized the trade-offs between updating a view when a new data point is fed from

the stream, which leads to loss of mental map, or not updating a view, which leads

to loss of information. Dasgupta et al. [28], through their comprehensive survey, fur-

ther characterized challenges in perception and cognition of streaming visualizations

and methods developed to address the challenges. In this work, while we consider

the cognitive load of visualizations, we mainly address the computational cost when

producing visualizations.

Here we discuss some of the past works on incremental updates to visualize up-

to-date results while avoiding rising computation costs. For example, Tanahashi et

al. [163] built a storyline visualization for streaming data by utilizing the previous

steps’ storylines when deciding the new data points’ layout. Liu et al. [106] introduced

a streaming tree cut algorithm to instantly detect and visualize incoming topics from

text stream analysis. Crnovrsanin et al. [22] developed an incremental force-directed

layout algorithm with GPU acceleration. Several works also developed and enhanced

incremental methods for visual analysis of high-dimensional and time-series data,

including dimensionality reduction [43,124] and change-point detection methods [88].

Katragadda et al. [86] developed VAStream, a visual analytics system that can handle

high-velocity streaming data by using hardware and software sandbox environment

optimized to streaming data analysis workflow.

Another potential approach for streaming data analysis is the use of progressive

visual analytics [170]. Progressive visual analytics provides reasonable intermediate

results within a required latency when the computational cost for an entire calculation

is too high. This latency requirement is common with streaming data visualizations.

Therefore, several researchers developed progressive algorithms for streaming visual-

26

ization, such as the progressive version of t-SNE [133] and time-series clustering [88].

Compared with the existing works above, our work addresses the problem when

using an FDA method to generate visualizations from data streams. Our algorithm

demonstrates a new capability for visual analytics of functional data, including time-

series data, in a streaming, timely manner.

3.2.2 Functional Data Analysis
Functional data is data procured from continuous phenomena of space or time and

represented in the form of smooth functions. For example, sensor readings at com-

ponents in a supercomputer can be viewed as data produced from a function X of 𝐾

variables (e.g., variables corresponding to temperature and voltage). Then, X𝑛(𝑡) is

an observation (e.g., temperature) corresponding to a machine component 𝑛 (e.g., one

CPU temperature sensor) at time 𝑡. While readings are collected at finite resolutions

in practice, the temperature, for example, continuously exists over time. Thus, it is

natural to model and analyze X𝑛(𝑡) with a continuous function defined over time from

the observations.

Over the past decades, the field of functional data analysis has seen various advances

in functional data modeling, clustering, differential analysis, and outlier detection. The

functional non-parametric statistics with free-modeling ideas were popularized by Fer-

raty and Vieu [38]. Ramsay and Silverman [137] applied parametric statistics, such

as linear regression, principal components analysis, linear modeling, and canonical

correlation analysis, to the functional domain. Horvath and Kokoszka [72] developed

statistical methods and theory for inference (e.g., two-sample inference, change point

analysis, and tests for dependence) of independent and identically distributed func-

tional data as well as dependent functional data structures.

Besides various FDA methods, functional principal component analysis (FPCA) is

one of the most classic and popular methods. The fundamental concept of FPCA

includes capturing the principal directions of modes of variations along with dimen-

sionality reduction. Using the basis spanned by the principal component, FPCA is able

to summarize subject-specific features. Karhunen [85] and Loeve [107] made the first

27

advancements in FPCA through theories on optimal data expansion of a continuous

stochastic process. Building on this work, Rao [138] worked on statistical tests for the

comparison of temporal growth curves. Following works on FPCA investigated its

properties and improved on methodology and convergence rates [63] Through contin-

ued systematic research on FPCA, several extensions and modifications of FPCA have

been popularized, as listed in the survey by Shang [149]. Some of the practical applica-

tions of FPCA include functional magnetic resonance imaging (fMRI) [173], age-specific

mortality rates [74], and analysis of income density curves [91].

Since functional data inherently consists of smooth, continuous sequences being

collected from various sources, outlier detection is often performed as a preliminary

step in analysis to distinguish sequences that follow different functions from the others.

The depth of a point shows how deep a point is relative to a given data set by measuring

its centrality with respect to the other points forming the data cloud. Statistic depth is

a widely used non-parametric inference method (methods that make no assumptions

about the probability distributions of the variables being assessed) for exploratory

analysis of functional data. The concept of data depth was first proposed by Tukey [168]

for visualizing bivariate data. Some of the popular depth measures include half-space

depth [168], projection-depth [194], and spatial depth [172].

Several visualization tools have been developed for FDA, which serve as an effective

way to communicate underlying characteristics otherwise not apparent through sum-

mary statistics and models. Hyndman and Shang [75] introduced tools to visualize

large amounts of functional data, such as functional versions of bagplots (multidimen-

sional boxplots)and highest-density-region plots. Some other popular tools include

functional boxplots [168], and magnitude-shape (MS) plots [24]. The MS plot is de-

signed to be used for visual identification of outliers by depicting the magnitude and

shape outlyingness of each series of functional data. With simulated and real-world

examples, the authors have shown how the MS plot is superior in identifying potential

outliers. We enhance the MS plot for streaming data analysis by providing incremental

and progressive algorithms to enable timely visualization updates.

28

Figure 3.1: General architecture of our visualization tool (© 2022 IEEE).

3.3 Methodology
This section describes the architecture of our visual analytics tool and back-end analysis

methods.

3.3.1 Overall Organization
Fig. 3.1 shows the organization of our visual analytics tool. The tool can be divided into

two main components: (1) generation of the MS plot from streaming feed (top) and (2)

interactive analysis over the generated MS plot with the auxiliary visualizations from

other FDA methods, including FPCA and smoothing functions (bottom).

To make explanations concise and concrete, we describe our algorithms with stream-

ing (multivariate) time series data as an example of functional data. While such data

is our main analysis target, our approach can be applied to other types of functional

data as we use general FDA methods such as the MS plot and FPCA. Here we denote

the numbers of existing time points, variables (e.g., measured temperature and volt-

age), and time series in the current multivariate time series data with 𝑇, 𝐾, and 𝑁 ,

respectively.

Time series data is collected from various sensors housed at various levels of the

hierarchy within a system. If the sensor system topology is available and can be

visualized, we have an optional sensor space view (Fig. 3.1-1) where we display the

monitoring system components and highlight the individual components from which

29

the measurements/readings are being processed. In Fig. 3.1-2, we first initialize the

magnitude and shape outlyingness measures from the current set of functional data.

Then, as shown in Fig. 3.1-1, data updates from the stream can be the addition of either

time point (i.e., 𝑇→𝑇+1) or time series (𝑁→𝑁+1).

Based on the updates, we compute the directional outlyingness measures [24] incre-

mentally without any approximations for the addition of a time point and progressively

with approximations for the addition of a time series (Fig. 3.1-2). The progressive up-

date introduces errors when compared to the actual results. If the errors exceed a

predefined threshold, the results are recomputed for all the selected time series in the

back-end and made available in the UI upon completion. We make sure that incremen-

tal and progressive updates do not co-occur to avoid overwriting results. The MS plot

is updated accordingly. An example of the MS plot can be seen in Fig. 3.2-b. By default,

we update the MS plot every 10 addition of time points (e.g., 5 seconds when a stream

rate is every 0.5 second) to help analysts maintain their mental map while avoiding

large information loss.

In the MS plot, each circle represents one time series. The user can select multiple

time series to visualize them in the data view (Fig. 3.1-3). The selected time series

are also processed by the FPCA pipeline (Fig. 3.1-4), and the results are shown in the

functional principal components (FPCs) plot, the scree plot [16], and the plot showing

FPCs as the perturbation to the mean function. In addition, the UI includes a panel for

the user to select smoothing basis functions for applying FPCA. Sec. 3.3.3 describes the

detail of each of these plots.

3.3.2 Incremental & Progressive Generation of the Magnitude-Shape
Plot

We describe our algorithms1 and system implementations that are designed to generate

the MS plot from data streams.

30

25

20

15

10

5

0

-5

Va
lu

es

Time Points
0 100 200 300 400 500

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

VO

MO
0.0 0.2 0.4 0.6

Figure 3.2: Visual outlier detection with the MS plot: (a) the simulated functional data and (b) the
MS plot with magnitude outlyingness (MO) and variational outlyingness (VO) along 𝑥-, and 𝑦-axes,
respectively (© 2022 IEEE).

3.3.2.1 Magnitude-Shape (MS) Plot

We briefly introduce the MS plot [24], which we use as a primary visual analysis

tool, and extend it to use in a streaming setting. The MS plot is a scatterplot that

shows, for each time series, the corresponding outlyingness measures: mean directional

outlyingness and variation of directional outlyingness [23], for example, as 𝑥- and 𝑦-

coordinates, respectively. As shown in Fig. 3.2, the MS plot depicts how much a time

series has a different magnitude and shape with the other time series, and thus visually

reveals outliers.

A time series can be considered an outlier if it behaves in a manner inconsistent with

the other time series. One of the measures of the outlyingness of time series is the Stahel-

Donoho outlyingness [194]. This measure is suited when values in time series data

roughly follow elliptical distributions; however, it cannot capture the outlyingness well

when they have skewed distributions. To address this limitation, Dai and Genton [24]

introduced the directional outlyingness, which they also utilize in the MS plot.

The directional outlyingness is computed by splitting the data into halves around the

median and using the robust scale estimator to handle any skewness. The directional

1The related source code is available at https://github.com/sshilpika/streaming-ms-plot.

31

https://github.com/sshilpika/streaming-ms-plot

outlyingness O is defined by:

O
(
X(𝑡), 𝐹X(𝑡)

)
=

{
1

𝑑
(
X(𝑡), 𝐹X(𝑡)

) −1
}
·v(𝑡) (3.1)

where X is a 𝐾-dimensional function defined on a time domain T, 𝐹X(𝑡) is a distribution

of a random variable X(𝑡), 𝑑 (𝑑 > 0) is a depth function which decides ranks of functional

observations from most outlying to most typical, and v(𝑡) is the unit vector pointing

from the median of 𝐹X(𝑡) to X(𝑡). With Z(𝑡) as the unique median of 𝐹X(𝑡), v(𝑡) =
(X(𝑡) −Z(𝑡))/∥X(𝑡)−Z(𝑡)∥2 (∥·∥2 denotes the 𝐿2-norm). Dai and Genton [24] use the

projection depth as a default depth function 𝑑. Note that our algorithms also employ

the projection depth to follow their default. The projection depth (PD) is defined as:

PD
(
X(𝑡), 𝐹X(𝑡)

)
=

1
1+SDO

(
X(𝑡), 𝐹X(𝑡)

) (3.2)

SDO
(
X(𝑡), 𝐹X(𝑡)

)
= sup
∥u∥=1

∥u⊤X(𝑡)−median(u⊤X(𝑡))∥2
MAD (u⊤X(𝑡)) (3.3)

where SDO is the Stahel-Donoho outlyingness [194] and MAD is the median absolute

deviation. The three measures of directional outlyingness are defined as:

· Mean directional outlyingness (MO):

MO (X, 𝐹X) =
∫
T

O (X(𝑡), 𝐹X(𝑡))𝑤(𝑡)𝑑𝑡 (3.4)

· Variation of directional outlyingness (VO):

VO(X,𝐹X)=
∫
T

∥O(X(𝑡),𝐹X(𝑡))−MO(X,𝐹X)∥2
2𝑤(𝑡)𝑑𝑡 (3.5)

· Functional directional outlyingness (FO):

FO (X, 𝐹X) =
∫
T

∥O (X(𝑡), 𝐹X(𝑡))∥2
2𝑤(𝑡)𝑑𝑡

= ∥MO (X, 𝐹X)∥2
2 +VO (X, 𝐹X)

(3.6)

where𝑤(𝑡) is a weight function defined on T. Dai and Genton [24] use a constant weight

function, i.e., 𝑤(𝑡) = {�(T)}−1 where �(·) represents the Lebesgue measure. Note that

MO is simply the mean of the directional outlyingness for each of the 𝐾 dimensions;

32

thus, MO is a 𝐾-dimensional vector. On the other hand, VO and FO involve the

computation of the 𝐿2-norm, resulting in scalar values.

As shown in Fig. 3.2, we can visually identify the functional outliers with the

MS plot. In this example, each time series (e.g., measured temperature) is from one

univariate function; thus, MO is a scalar. MO and VO show the outlyingness in

magnitude and shape. Thus, the central time series (i.e., time series similar to the

other majority of time series) are mapped the region with small |MO| and small VO

(e.g., Cluster 1 in Fig. 3.2). On the other hand, outliers that take different magnitudes

from the others across time are located in the region with large |MO| and small VO

(e.g., Cluster 6). Similarly, outliers that have a different curve shape from the others

are placed in the region with small |MO| and large VO (e.g., Cluster 3). Time series

with large |MO| and large VO (e.g., Cluster 7) are the curves with greatly outlying

in both magnitude and shape. For the case where MO’s dimension is higher than 2

(i.e., 𝐾 > 2), we can visualize the information of MO and VO with high-dimensional

visualization methods, such as parallel coordinates, as Dai and Genton suggested [24].

In the following, we describe our algorithm for the case where 𝐾 = 1 as this can be

considered the main visual analysis target with the MS plot. Note that when 𝐾 = 1,

SDO(X(𝑡), 𝐹X(𝑡)) = |X(𝑡)−Z(𝑡)| /median(|X(𝑡)−Z(𝑡)|).

3.3.2.2 Incremental Updates of the MS Plot along Time

Even though the MS plot is generated with MO and VO defined with a function, in

practice, MO and VO need to be computed with a finite but large number of time

points. As the number of time points increases, more computations are required.

Consequently, when newly measured time points are continually fed from the data

stream, the MS plot generation gradually becomes infeasible in real-time. To solve

this issue, we derive equations that enable incremental updates of MO and VO. Our

incremental updates provide exact MO and VO without any approximation.

Using the projection depth as a depth function, the discretized versions of Eq. 3.1,

33

3.4, and 3.6 are:

O
(
X𝑇[𝑡]

)
=SDO

(
X𝑇[𝑡]

)
·v𝑇[𝑡]= X𝑇[𝑡]−Z𝑇[𝑡]

median(
��X𝑇[𝑡]−Z𝑇[𝑡]

��) (3.7)

MO𝑇
(
X𝑇

)
=

𝑇∑
𝑡=1

O
(
X𝑇[𝑡]

)
𝑤𝑇[𝑡], (3.8)

FO𝑇
(
X𝑇

)
=

𝑇∑
𝑡=1

O
(
X𝑇[𝑡]

)2
𝑤𝑇[𝑡] (3.9)

where 𝑇 is the number of time points available so far and superscript 𝑇 represents that

each measure is defined on a time range [1,𝑇]. Practically, Z𝑇[𝑡] is estimated from

measured values; thus, we can assume Z𝑇[𝑡] is simply the median of 𝑁 time series

{X𝑇1 , · · · ,X
𝑇
𝑁
} at time point 𝑡 and median(|X𝑇[𝑡] −Z𝑇[𝑡]|) is the median of {|X𝑇1 [𝑡] −

Z𝑇[𝑡]|, · · · , |X𝑇
𝑁
[𝑡]−Z𝑇[𝑡]|}. Also, here we assume 𝑇 time points have an approximately

constant time interval. To follow the default weight function by Dai and Genton [24],

we also use a constant weight function as 𝑤𝑇 . In the discretized case, 𝑤𝑇[𝑡] = 1/𝑇.

When adding a new time point at 𝑇 +1, Eq. 3.8 and Eq. 3.9 become:

MO𝑇+1(X𝑇+1)=𝑇+1∑
𝑡=1

O
(
X𝑇+1[𝑡]

)
𝑤𝑇+1[𝑡]

=
1

𝑇+1

(
𝑇MO𝑇

(
X𝑇

)
+O

(
X𝑇+1[𝑇+1]

))
,

(3.10)

FO𝑇+1(X𝑇+1)=𝑇+1∑
𝑡=1

O
(
X𝑇+1[𝑡]

)2
𝑤𝑇+1[𝑡]

=
1

𝑇+1

(
𝑇FO𝑇

(
X𝑇

)
+O

(
X𝑇+1[𝑇+1]

)2
)
.

(3.11)

Then, because of Eq. 3.6, VO𝑇+1 = FO𝑇+1 −(MO𝑇+1)2.

When computing MO𝑇+1 and FO𝑇+1, we have already calculated MO𝑇 and FO𝑇 .

Thus, to obtain MO𝑇+1 and FO𝑇+1 for all 𝑁 time series, we need to only calculate the

directional outlyingness O for the newly added time point. This process has time

complexity O(𝑁) when using the PD as a depth function. Also, the required memory

space to save the previous results, MO and FO, for all 𝑁 time series is O(𝑁). Therefore,

we can update the exact values of the three measures of directional outlyingness with

34

small time and space complexities that do not relate to the increasing number of time

points, 𝑇. Note that while the equations above are for the incremental addition, as

seen in Eq. 3.10 and Eq. 3.11, the incremental deletion is also supported, which can be

derived with minor adjustments of signs, etc.

3.3.2.3 Progressive Updates for New Time Series

When the number of measured time series, 𝑁 , in a system is large, the overhead of

computing the directional outlyingness measures can be large. The original MS plot

requires recomputation when new time series are added (e.g., adding temperatures

obtained from different compute racks). To provide useful intermediate results or

enable the incremental addition of time series, we design a progressive algorithm that

generates the MS plot with estimated directional outlyingness measures. We also

provide a refinement mechanism to maintain the MS plot quality.

Unlike incremental updates along time (Sec. 3.3.2.2), when adding new time series,

we cannot obtain exact solutions while keeping the time complexity constant in terms

of an increase in the number of time series. This is because all computations are related

to Z𝑇 (the median of 𝑁 values of X𝑇); thus, the update of Z𝑇 based on a new time series

requires recomputation of the measures for all time series at all time points. Therefore,

we (1) incrementally update the results by assuming Z𝑇,𝑁+1 ≈ Z𝑇,𝑁 (superscript 𝑁

shows the corresponding measure is defined on 𝑁 time series) as long as the errors

are within the predefined error threshold and (2) progressively update the results with

Z𝑇,𝑁+1 if the predefined error threshold is crossed. For a newly added time series,

with the assumption of Z𝑇,𝑁+1 ≈ Z𝑇,𝑁 , we can easily compute O, MO𝑇 , and FO𝑇 with

Eq. 3.7–3.9. Also, VO𝑇 = FO𝑇 −(MO𝑇)2. The condition Z𝑇,𝑁+1 ≈ Z𝑇,𝑁 is checked using

the Kullback–Leibler (KL) divergence of the mean absolute deviation between the new

and original time series. Since KL divergence values can range anywhere between

0–infinity, we have set the error threshold 10 by default, and this can be varied by the

user. We found that an error threshold of 10 provided reasonable results without much

information loss through data processing. However, the automatic identification of the

error threshold is not within the scope of this work.

35

When adding a new time series, there is a good possibility that the time series closely

follows the shape and magnitudes represented by the existing function. By avoiding

updating Z𝑇 for each addition of a time series, we significantly reduce the computational

overhead. However, as stated above, once the difference between Z𝑇,𝑁 and Z𝑇,𝑁+1

becomes larger than the threshold, our algorithm starts to recompute the measures

for each time series one by one. Similar to the incremental update in Sec. 3.3.2.2, the

deletion of time series is also supported with minor changes to the above equations.

3.3.2.4 Implementation with Visual and Computational Considerations on Update
Frequency

We implement our tool with the design recommendations for progressive visual ana-

lytics systems by Turkay et al. [169]. In case of receiving a new time point, we update

the outlyingness measures at each time point in the back-end. However, the MS plot

is not updated at every addition of a time point; instead, we update it at a predefined

number of arrived time points (10 by default). When receiving a new time series, we

update both the outlying measures and the MS plot. This procedure adds a new circle

to the MS plot. When Z𝑇,𝑁+1 0 Z𝑇,𝑁 , the outlyingness measures no longer give rea-

sonable results. Hence, the previously computed measures need to be updated with

Z𝑇,𝑁+1. This update can be computationally expensive to do on the fly if the dataset

size is large. Thus, we compute the results asynchronously in the back-end, and the

front-end visualization is updated on completion. All visual updates are performed

with animated transitions for easy interpretation of changes.

3.3.3 Reviewing the MS Plot with Auxiliary Information and Func-
tional Principal Component Analysis

Fig. 3.3 shows our tool’s UI, consisting of the (a) MS plot, (b) sensor space, (c) data,

and (d) FPCA views. The analysis starts from the selection in the sensor space view,

which shows the spatial information related to the data, if available. For example,

in Fig. 3.3, we analyze multiple temperatures measured at each compute rack in a

supercomputer—390 temperature readings per rack. In Fig. 3.3-b, we visualize the

locations of the racks together with color encoding the number of outlier readings.

36

MO

VO

Time

Te
m

pe
ra

tu
re

 (C
)

Data View

Sensor Space View

Time Points

Te
m

p
(C

)
FP

C
’s

Ex
pl

ai
ne

d
Va

ria
nc

e

FPCA View

central curves
outlying curves
user selections - 100

- 80

- 60

- 40

- 20

- 10

- 0

Outliers with small VO and
varying MO are selected

FPC - 1
FPC - 2
FPC - 3

Mean function

MS plot

Dimensions

\

Mean function
Negative perturbation
Positive perturbation

a

d2

b

c

d1

d3 d4

of

 o
ut

lie
rs

07AM 08AM 9PM 10PM 11PM 12PM

Time Points

FPC-2

Number of FPC’s

07AM 08AM 9PM 10PM 11PM 12PM

03AM 06AM 09AM 12PM 03PM 06PM 09PM

03AM 06AM 09AM 12PM 03PM 06PM 09PM

central curves
outlying curves
user selections

FPC - 1
FPC - 2
FPC - 3

2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

-0.2
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

a b c d e f g h i j k l m n o p q r s t u v w x

35

30

25

20

15

10

5

0

03 AM 06 AM 09 AM 12 PM 03 PM 06 PM 09 PM

0.999

21

40
central curves

outlying curves

user selections

FPC - 1
FPC - 2
FPC - 3

mean function

-ve perturbation

+ve perturbation

Smoothing Basis:

Basis Dimension:

Optimizer:

Estimation Method:Time PointsTime
 F

PC
’s

-0.6

09AM

09AM

Figure 3.3: The UI of our visual analytics tool. (a) The MS plot shows MO and VO as a scatterplot,
which is being updated incrementally and progressively. (b) The sensor space view provides the
related spatial information if available (here shows the compute rack information). (c) The data view
depicts the time series selected in the MS plot. (d) The FPCA view displays the FPCA results and
settings, which include: the (d1) FPC plot, (d2) scree plot, (d3) FPC as a perturbation of the mean
plot, and (d4) functional smoothing parameter selection panel (© 2022 IEEE).

With mouse actions (clicking or lasso selection), the analyst can select items of interest

(i.e., racks in Fig. 3.3-b), and then the UI shows the related points in the MS plot. An

example in Fig. 3.3-a shows the result of selecting the dark orange cell (i.e., the rack

contains many outliers) around the top center (o40) of Fig. 3.3-b. Here the outlier counts

are the results previously computed from the MS plot for each component.

The MS plot (Fig. 3.3-a) is generated with the algorithms described in Sec. 3.3.2.

We color circles by their membership in either central or outlying curves (teal: central,

pink: outlying). For clarity, we define the central curves as curves with MO within

25-75% of the value range and VO below 75% of the value range. This adjustable range

is selected while considering the normal operation region for sensor measurements,

such as voltage and temperature. Analysts can interactively select interesting areas

(bigger brown circles) to examine more details in other views (Fig. 3.3-c, d).

37

Fig. 3.3-c visualizes the selections as line charts. As a typical central curve, a blue

line shows their mean function—a smoothed line around their mean at each time

point. These visualized lines can be further analyzed with the FPCA view (Fig. 3.3-d).

To apply FPCA [174] on the lines shown in Fig. 3.3-c, we first need to smooth the lines.

Fig. 3.3-d4 allows analysts to select the smoothing basis functions, the number of basis,

the method for optimizing the smoothing parameter, and the smoothing parameter

estimation method [69]. We show the default settings in Fig. 3.3-d4.

FPCA is then performed on the smoothed lines, and FPCs are generated, as shown

in Fig. 3.3-d1. Analogous to PCA, FPCs preserve the variance of functions as much as

possible by defining a weight for each time point in a continuous curve. From the shape

of each FPC, we can identify the time range that has a strong influence on each FPC. For

example, in Fig. 3.3-d1, the first FPC (FPC-1) has the same weight around −0.6 across

time, while the second FPC (FPC-2) has a large weight at around 9 AM. Because most

of the lines are relatively flat in Fig. 3.3-c, FPC-1 seems to preserve the major variance

related to all the time points; FPC-2 seems to preserve the variance related to the distinct

drop around 9 AM in Fig. 3.3-c. This can be confirmed by our time series selection

method that relates to each FPC. When analysts select one FPC from Fig. 3.3-d1, we

compute the FPC score [174] for each time series, which represents how strongly the

time series is related to each FPC. Then, the tool selects and highlights the top-𝑘 (𝑘 = 10

by default) time series that highly relate to the selected FPC. The corresponding circles

are also highlighted in Fig. 3.3-a. Therefore, FPCA identifies the influential time and

categorizes time series using FPCs. While the top-3 FPCs are shown in the FPC view by

default, analysts can use the scree plot (Fig. 3.3-d2) to select the number of FPCs to be

shown. Similar to PCA, it shows the number of dimensions (FPCs) and the cumulative

explained variance ratio. From this, analysts can judge how many FPCs are required to

capture the data variance reasonably.

In the FPC as a perturbation of the mean plot (Fig. 3.3-d3), we plot the mean function

of the selected data (the same one in Fig. 3.3-c but with a different 𝑦-range) and the

functions obtained by adding and subtracting a suitable multiple,
√

2�𝑖 [137], of an

38

FPC chosen from the FPC plot, FPC-i (𝑖 = {1,2,3, . . .}), where �𝑖 is the eigenvalue

corresponding to FPC-i. The obtained functions are shown as positive and negative

perturbations. This explains the fluctuation of the measured data (i.e., 𝑦 values in

Fig. 3.3-d3) the FPC-i captures. For example, in Fig. 3.3-d3, where FPC-2 is selected,

the positive perturbation has a clear drop from the mean function around the 9 AM

followed by fluctuations around the mean function, which we cannot discern in the data

view. This indicates that time series highly related to FPC-2 are mainly characterized

by this variation around 9 AM, which can be confirmed with Fig. 3.3-c. By showing

only the selected time series and their FPCA results, we can reduce the visual clutter

and computational costs of FPCA.

To summarize, from Fig. 3.3-b, we find two racks (o40 and x21) that behave abnor-

mally and select o40 since it includes many outliers. Then, from the MS plot, we select

time series with low VO but varying MO. Indeed, from Fig. 3.3-c, we can see that while

most time series follow the mean behavior, some show a significant drop in the tem-

perature soon after 9 AM. Applying FPCA to the selected time series extracts FPCs and

the modes of variation, revealing that FPC-2 captures the variation related to the drop

(Fig. 3.3-d1). Indeed this variation was linked to a system board failure inside (o40).

Although this was a minor variation than the other variations in the dataset (large VO

in Fig. 3-b), using FPC helped reveal this relatively smaller anomaly. The perturbation

plot of FPC-2 (Fig. 3.3-d3) captures readings that flip across the mean close to 9 AM in

the duration of the failure. We provide further analysis of this data in Sec. 3.4.3.

3.4 Case Studies
We have shown an analysis example in Sec. 3.3.3. We further demonstrate the effec-

tiveness of our tool with four case studies, including analyses of the Canadian weather,

ozone level, supercomputer’s hardware log, and Biometrics datasets. Each dataset

is preprocessed to handle missing values and to extract relevant information for the

analysis.

39

Figure 3.4: The characterization of Canadian Weather with the MS plot. (a1, a2, a3) show the different
selections of the weather stations performed in the MS plot. (b1, b2, b3) show the corresponding
weather stations.

(a)

Norman Wells
Station A is
added with the
progressive
update

Norman Wells
Station A

Stations are in the
temperature
vicinity of Norman
Wells Station AStations in the Norman

Wells Station A’s vicinity in
the MS plot

central curves

user selections
outlying curves

Weather stations
User selections from (a)

MO

VO

(b)

Figure 3.5: The results after the progressive update in the MS plot, which adds a series of temperature
readings at a new station, Norman Wells Station A. From the MS plot (a), we select the new station
and the stations placed close to the new station in the MS plot. (b) shows the corresponding stations
in brown.

3.4.1 Study 1: Analysis of Canadian Weather Data
We analyze the historical climate data in Canada [56]. We filter the data by province

or territory, weather stations, and the time period. We choose 118 stations for the years

2019 and 2020. The dataset consists of daily measurements of temperature, precipita-

tion, wind speed, rain days, etc., along with minimum, maximum and average values.

Here we show how the MS plot characterizes the readings, specifically temperature

measurements. We then illustrate the results from the incremental and progressive

40

updates on the MS plot.

As shown in Fig. 3.4-a1, after updates in a period of time, the MS plot starts to

reveal several outliers. We select two distinct groups of outliers and central curves in

Fig. 3.4-a1, a2, a3. Fig. 3.4-b1, b2, b3 show the corresponding stations visualized in the

space view. In Fig. 3.4-a1, we select outliers that have large VO and small MO. Fig. 3.4-

b1 shows these stations (Arctic Bay, Resolute, Thomson River, and Alert) lie in the far

north region of Canada, each of which has bitterly cold temperatures during the winter

and high temperatures of up to 20◦𝐶 during the summer. On the other hand, from

Fig. 3.4-a2, b2, the stations that have the central curves are located in the central regions

of Canada. At these locations, the summer is usually warm with temperatures range

from 15◦𝐶 in May to the mid-30◦𝐶 in July and August while the winter normally begins

in November and temperatures generally remain below the freezing point. In Fig. 3.4-

a3, b3, we select measurements with high magnitude and low variational outlyingness.

The low variational outlyingness tells us that the weather in these stations do not show

large fluctuations when compared to the central curves. The corresponding stations

are in the southwest and southeast regions of Canada, which are characterized by

temperature typically varying from −7.2◦𝐶 to 28.3◦𝐶 and is rarely below −16.6◦𝐶 or

above 33.8◦𝐶. For the above observations, we can see that the MS plot characterize

the temperatures at the different stations well, and successfully identify the outliers,

especially the stations selected in Fig. 3.4-a1, where the temperature has excessively

low magnitudes and high variations.

We illustrate an analysis with the progressive update in Fig. 3.5. As described in

Sec. 3.3.2.3, the progressive update is performed with the assumption in the medians—

Z𝑇,𝑁+1 ≈ Z𝑇,𝑁—as long as the difference falls within the error threshold. With this

assumption, the MS plot produces a sufficient result while avoiding significantly high

computational cost. In Fig. 3.5-a, under the assumption above, the MS plot places the

newly added temperatures measured at Norman Wells Station A. The new point in the

MS plot is at the lower central region slightly away from the rest of the points. We

select the new point and additional points close to it to see if the placement of the

41

new station makes sense. From Fig. 3.5-b, all selected stations, shown in brown colors,

lie in the spatial and temperature vicinity of the newly added feature corresponding

to Norman Wells Station A. Therefore, we see that although the newly added station

introduces some errors, these errors are not significant. Also, if these errors cross the

error threshold, our back-end mechanism asynchronously updates the results with the

exact value of Z𝑇,𝑁+1 for the entire dataset.

Figure 3.6: The MS plot (a) before and (b) after the incremental updates. From (a) generated with
temperatures for 300 days, 20 additional days are added in (b). Both (a) and (b) have similar distribu-
tions of point positions. However, each point’s VO tends to be smaller in (b). This is more salient in
the high VO outliers indicated with the green circles.

We also demonstrate an analysis with the incremental update in Fig. 3.6. Fig. 3.6-a

shows the MS plot generated with the temperatures measured at the first 280 days at 100

stations. Then, we keep observing the MS plot until the temperatures in additional 20

days in October are added (Fig. 3.6-b). Note that the incremental updates of time points

does not cause additional errors unlike the progressive updates. From Fig. 3.6-a, b, we

see that the distribution of points in the MS plot is not changed much before and after

the updates. This is expected since the temperatures did not widely fluctuate within

these 20 days. However, at the same time, we can see that each point’s VO becomes

slightly smaller in Fig. 3.6-b. Especially, for the outliers with high VO—highlighted

with green circles, this tendency can be seen more clearly. We can consider that this

smaller change is caused by stable temperatures in October across Canada.

42

Figure 3.7: The in-depth analysis of central curves identified by the MS plot. The figure shows (1) MS
plot is displayed on the left, (2) the Ozone temperature curves in the middle, and (3) the FPC analysis
(consisting of FPC’s and FPC as perturbations of mean) plots in the right.

3.4.2 Study 2: Analysis of Ozone Level Data
Ozone levels in the air fluctuates due to some related parameters (e.g., temperatures)

which is often the case with a stochastic process. When the fluctuations cross a certain

threshold, it results in adverse effects on human health. Hence, it is crucial to accurately

monitor these parameters and issue a warning of a dangerous level. The ozone dataset

contains 75 features which include temperature, wind speeds, ozone background level,

and relative humidity each measured at multiple geo-potential heights at different

times of the day. Here, we analyze temperatures measures at various heights on the

ozone layer. The results generated with our tool is shown in Fig. 3.7.

In this case study, we demonstrate the usefulness of the analysis with FPCA to

supplement or improve the MS plot. While the MS plot in Fig. 3.7-a1 reveals clear

outliers, here we analyze the central curves in detail. We first select the central curves

from the MS plot, as shown with brown circles in Fig. 3.7-a1. With the help of FPCA,

we can categorize subgroups of these central curves and see how these individual

subgroups vary from the others. Fig. 3.7-a3 shows the FPCA result of the selected

central curves. While the FPCA result originally depicts the top-3 FPCs, we individually

43

select the first and second FPCs (FPC-1 and FPC-2). Then, the related information is

highlighted in all views.

We first select FPC-1 from the FPC plot, as shown in Fig. 3.7-a3; then related central

curves are highlighted with the red outlines in a1 and emphasized with the correspond-

ing FPC color in a2. In Fig. 3.7-a4, the mean function is visualized with its positive and

negative perturbations. From Fig. 3.7-a2, we see that all curves related to FPC-1 have

the same fluctuation patterns (i.e., most of them are heavily overlapped at every time

point). In Fig. 3.7-a4, by looking at the difference between the mean function and its

positive or negative perturbation, we can see that the effect from FPC-1 is merely to

add and subtract a constant throughout the entire duration.

When we select FPC-2 in Fig. 3.7-b3, Fig. 3.7-b4 accounts for overall variability in

the temperature amplitudes in the entire duration of measurement. The perturbations

(shown in dotted red/yellow lines) show that the related curves flip across the mean

at around time point 80, and there is another flip at around time point 200. The

captured variability is also seen in Fig. 3.7-b2. Therefore, FPC-2 accounts for larger

amplitude fluctuations in the readings over the time period of the measurements. The

corresponding curves are also highlighted in the MS plot with the red outlines Fig. 3.7-

b1. Hence, with this example, we find interesting patterns in variations within a group,

which would have otherwise gone unnoticed.

Once these patterns are identified, it could be modeled to detect similar patterns

in the MS plot. For example, by adjusting weight 𝑤𝑇𝑡 assigned to each time point for

computing MO and VO, we can make the MS plot more sensitive to value changes in

the corresponding time periods (e.g., 120−200 in the above case).

3.4.3 Study 3: Analysis of Supercomputer Hardware Logs
We analyze rack environment logs obtained from a supercomputer. Rack environment

logs provide information collected from various sensors housed in the compute rack

subsystem (system board, air/water cooling, power supply, etc.) of a supercomputer.

These logs contain readings of voltages, temperatures (water/air/CPU), fan speeds, etc.

that can be utilized to find abnormalities during failure events. Therefore, studying

44

Te
m

p
(C

)
FP

C
’s

FP
C

’s

Time Points

Te
m

pe
ra

tu
re

 (C
)

FPC - 1
FPC - 2
FPC - 3

Time

(b1)

FP
C

’s
Te

m
p

(C
)

Time Points

(c1)

Time Points

Te
m

p
(C

)

Time Points

Time Points

(d1)

(b2)

(b3)

(c2)
(c3)

(d2)
(d3)

An appropriate number
of bases helps identify

the anomalies

A higher number of bases
captures FPCs and their

mean perturbations
capture noises

A lower number of bases
makes FPCs and their
mean perturbations

difficult to comprehend

Mean

function
Negative

perturbation
Positive

perturbation

(a) Data view FPCA views

FPCA viewsFPCA views

Gray overlay zooms into
the selected time-range

FPC-2

FPC-2FPC-2

Time Points

Several time-
series have a W-
shape (repetitive
rapid decreases
and increases)

03AM 06AM 09AM 12PM 03PM 06PM 09PM

03AM 06AM 09AM 12PM 03PM 06PM 09PM

Time Points

03AM 06AM 09AM 12PM 03PM 06PM 09PM

03AM 06AM 09AM 12PM 03PM 06PM 09PM

03AM 06AM 09AM 12PM 03PM 06PM 09PM
Time Points

03AM 06AM 09AM 12PM 03PM 06PM 09PM

Figure 3.8: The effect of the number of basis functions on the FPCA results. (a) shows the data view.
(b1, b2, b3) the FPCA views produced with 10 basis functions. Similarly, for (c1, c2, c3) and (d1, d2,
d3), 2 and 15 are used as the numbers of basis functions, respectively.

these logs helps us understand the various underlying hardware failure patterns. These

studies aid in maintaining robustness and improving reliability in large-scale machines.

Thus, there have been past efforts to identify and analyze supercomputer log errors with

visual analytics tools [47, 59, 151].

We specifically analyze data procured from the K computer’s [118] rack environment

logs on November-17th, 2017. The logs contain data from 864 compute racks, with 1,163

different sensor measurements (e.g., CPU temperatures, circuit voltages, fan speeds)

collected every 5 minute interval (i.e., 288 timestamps in a day). For this case study,

we select to analyze temperatures collected at 180 sensors per rack. Therefore, in

total, we end up with 180× 288 = 51,840 sensor measurements per rack. We have

already analyzed the same data in Sec. 3.3.3 with the MS-plot, and we have identified

different temporal patterns with FPCA. Here, we demonstrate the effect of settings of

the smoothing function on FPCA in more detail.

The data collection used for FDA is usually observations gathered discretely over

45

time at fixed or random time intervals; however, many FDA methods, including FPCA,

expect input data to be gathered at fully defined trajectories, i.e., at time interval close to

zero. This leads to an analysis problem with an extremely large number of time points.

Therefore, to model the underlying stochastic process of the data while overcoming

the curse of dimensionality, data smoothing is often applied. While the smoothing

helps in regularization and elimination of unnecessary roughness or noise from the

analysis, the settings related to smoothing are highly important to obtain the desired

FPCA results.

Fig. 3.8 shows how the choices in the number of basis functions used to model our

dataset changes the FPCA results. In Fig. 3.8-b3, we choose 10 as the number of basis

functions (the same setting with Fig. 3.3). The corresponding views are updated (b1,

b2). In Fig. 3.8-b1, we select FPC-2, and we use the brushing tool, as shown with a

gray overlay, to select the time range that shows the rapid increase in the FPC. Then,

as shown in Fig. 3.8-a, the data view zooms into the related time range and shows

a set of time-series highly related to FPC-2 within that range. Therefore, with the

selection of an FPC and brushing, we can identify time-series and a time range that

associate with peculiar variations on the selected FPC. However, if we use too few basis

functions to model the functional phenomena, we may not effectively capture important

underlying information. For example, in Fig. 3.8-c3, we select 2 as the number of basis

functions. This choice is able to model the drop in some time-series by FPC2, as shown

in Fig. 3.8-c2; however, this setting fails to capture the sudden drop and return, which

is well modeled in Fig. 3.8-b1, b2. On the other hand, as shown in Fig. 3.8-d1, d2, d3,

where the number of basis functions is 15, using too many basis functions makes FPC-2

too closely following the dataset. This imply that the smoothing function performs

curve-fitting rather than smoothing and captures too much noise in our data.

In Fig. 3.9, we select FPC-2 and FPC-1, and the linked views are updated accordingly,

Fig. 3.9-a for (FPC-2) and Fig. 3.9-b for (FPC-1). Fig. 3.9-(a1,b1) shows user selections

and Fig. 3.9-(a2,b2) are the corresponding FPCs. To review more details of the user-

selected readings in Fig. 3.9-a1, related to FPC-2, we select FPC-2 from Fig. 3.9-a2; then,

46

Time Points
04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM

FP
C

s

04 PM 05 PM 06 PM 07 PM 08 PM 09 PM 10 PM 11PM

04 PM 05 PM 06 PM 07 PM 08 PM 09 PM 10 PM 11PM

Mean function
-ve perturbation
+ve perturbation

(a1)

(a2)

(a3) (a4) (a5)

(b1)

(b2)

(b3) (b4) (b5)
Time Points

Time PointsTime Points

Time Points

Sc
al

ed
 V

ol
ta

ge
 (V

)
Sc

al
ed

 V
ol

ta
ge

 (V
)

FPC - 1
FPC - 2
FPC - 3

Time Points

FP
C

s

Vo
lta

ge
 (V

)
Vo

lta
ge

 (V
)

04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM

 04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM

Time Points

(b2)

All readings
are selected
to compute
FPCA

These readings
are selected
to compute
FPCA

FPC - 1
FPC - 2

Readings highly
influencing FPC-2

Readings highly
influencing FPC-1

W shape

Clear
peak

-0.4 -0.2 0.0 0.2 0.6 0.8 1.0 1.20.4 1.4
MO

-0.4 -0.2 0.0 0.2 0.6 0.8 1.0 1.20.4 1.4

MO

-0.4 -0.2 0.0 0.2 0.6 0.8 1.0 1.20.4 1.4

MO

-0.4 -0.2 0.0 0.2 0.6 0.8 1.0 1.20.4 1.4

MO

VO

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65

VO

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65

VO

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65

VO

0

5

10

15

20

25

30

4PM 5PM 6PM 7PM8PM 9PM
10PM

11PM

4PM 5PM 6PM7PM 8PM 9PM
10PM

11PM

Time Points

Time Points

04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM

04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM 4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM

 4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

-1.5

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

-1.5
-1.0
-2.0
-2.5
-3.0

Figure 3.9: All readings are selected in the MS plot (a1) and then three FPCs are computed with
the selected readings (a2). From FPCs, FPC-2 is selected (a2). The corresponding readings are
highlighted in the MS plot (a3) and visualized in the data view (a4). The FPC as a perturbation of the
mean plot is updated accordingly (a5). The similar procedure is applied to (b1–b5), where two FPCs
are generated with the readings of low MO and low VO (b1, b2) and then FPC-1 is selected (b3–b5)
(© 2022 IEEE).

the readings that heavily influence FPC-2 are shown in Fig. 3.9-(a3,a4). In Fig. 3.9-a3,

the corresponding readings are highlighted with red outlines, and they have large MO

and VO. In Fig. 3.9-a4, the readings show a spike at around 4 PM, lasting for about

30 minutes. Fig. 3.9-a5 shows how these readings fluctuate with respect to the overall

mean of the selected readings (shown in navy blue). This plot helps us identify the

overall trend of the readings when compared to the mean behavior of the selected

readings. The readings show an overall flipping across the mean function at 4 PM. This

example demonstrates how the MS plot captures outliers and how the FPCA view can

also find similar outliers to validate the findings from the MS plot.

In Fig. 3.9-b1, we select the area with low MO and low VO. Fig. 3.9-b2 shows 2

FPCs that capture all the data variation. As this area is expected to follow the main

trend because of low VO, we choose FPC-1 and visualize the top-5 readings that heavily

influence FPC-1 (Fig. 3.9-b3, b4), which contain the “W” shape along with flat curves.

This variation of the curves shown in Fig. 3.9-b4 is smaller when compared to the peak

in Fig. 3.9-a4. The MS plot captures this irregular pattern by placing these readings in

the negative MO and slightly higher VO, as highlighted in Fig. 3.9-b3 with red outlines.

In Fig. 3.9-b5, the FPC perturbation to mean plot captures this small variation and the

overall trend with respect to the mean behavior. Using this example, we show that

47

(a) Before update
VO

0.007
0.006

0.005
0.004

0.003
0.002

0.001

0.000
-0.001

Eating
Walking
Dribbling

Brushing teeth

New measurement

Positions are changed
after the update

(b) After update

Small clusters of
Dribbling and
Walking

-0.0
5
-0.0

4
-0.0

3
-0.0

2
-0.0

1
0.00 0.02 0.03 0.04 0.05 0.06 0.07MO -0.0

5
-0.0

4
-0.0

3
-0.0

2
-0.0

1
0.00 0.02 0.03 0.04 0.05 0.06 0.07MO

Figure 3.10: The MS plot for accelerometer measurements (a) before and (b) after the update. (a)
is generated with 1,000 time points (50 seconds), and (b) with additional 100 time points and 1 mea-
surement (© 2022 IEEE).

Mean function
 Selected Readings

Eating
Walking

Brushing teeth
Selected measurements

Selected measurements
Mean function(a) (b)

-0.10
-0.08

-0.06
-0.04

-0.02
0.00 0.04 0.06 0.080.10 0.12 0.14 0.16MO 9 AM :15 :30 :45

09:01 :15 :30
:45

09:02 :15 :30 :45
09:03 :15Time Points

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

VO

A
cc

el
er

om
et

er
 X

-a
xi

s

-5

0

5

10

15

20

-10

Dribbling

Figure 3.11: The (a) MS plot and the (b) data view. The data view is shown for selected measurements
(brown) from (a) (© 2022 IEEE).

incremental MS plot and FPCA help identify intra-cluster trends by grouping similar

trends within the same spatial locality of a cluster.

3.4.4 Study 4: Analysis of Biometrics Data of Daily Activities
Fig. 3.10-a shows the MS plot generated from 1,000 time points (50 seconds) for subjects

performing activities, such as dribbling, walking, eating, and brushing teeth. Here the

circles in the MS plot are colored based on the subjects’ activities. We see that the MS

plot generally groups the different activities well. This result is reasonable because each

activity involves different frequencies and magnitude of changes in the subject’s hand

position. For example, when compared with brushing teeth and eating, dribbling and

walking involve much larger movements, resulting in high MO. Also, as dribbling is

the only sports activity, we can expect that it has a significantly different shape of time

48

series from the other activities; thus, dribbling has high VO.

However, we find that the individual walking and dribbling activities are separated

into two clusters. One cluster in each activity is placed at the far left of the MS plot

compared to the other, as shown in orange box. On examining MO values, we notice

that each cluster placed at the left side has negative MO values but similar magnitudes

of MO with the corresponding other cluster (e.g., for walking, one has MO values from

−0.04 to −0.03 while another has values from 0.03 to 0.07). Also, these two clusters for

each activity have similar VO values. From these observations, we can consider that the

subjects in those clusters with negative MO values might have worn the smartwatch

differently from most subjects; consequently, 𝑥 measurements recorded the opposite

signs from the others. This demonstrates the usefulness of the MS plot to find these

anomalies visually.

While performing incremental updates, we observe that circles corresponding to

either dribbling or brushing teeth show fluctuations in the MS plot. For example, in

Fig. 3.10-b, where the MS plot in Fig. 3.10-a is updated with 100 additional time points,

we see that the circles shown in green box have small but noticeable changes in their

positions (e.g., the annotated Dribbling cluster is moved down). This is likely because

dribbling and brushing activities involve frequent hand movements when compared

to the other activities. The collective use of the MS plot and the animated transitions

MS Plot Data View FPCA View

FPC - 2

FPC - 3

Readings which heavily
influence FPC-2

A
cc

el
er

om
et

er
 X

-a
xi

s

VO
VO

Time Points

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)
Readings which heavily

influence FPC-3

(a4)

(b4)
MO Time Points Time Points

A
cc

el
er

om
et

er
 X

-a
xi

s

Mean function
-ve perturbation
+ve perturbation

Time Points

MO Time Points Time Points

A
cc

el
er

om
et

er
 X

-a
xi

s

A
cc

el
er

om
et

er
 X

-a
xi

s

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

VO

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

VO

-0.
10

-0.
08

-0.
06

-0.
04

-0.
02

0.0
0

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6MO 0.1

8

-0.
10

-0.
08

-0.
06

-0.
04

-0.
02

0.0
0

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6MO 0.1

8

Readings heavily
influencing FPC-3

0
5
10

15

-10

-5

A
cc

el
er

om
et

er
 X

-a
xi

s

0
5
10

15

20

-10

-5

A
cc

el
er

om
et

er
 X

-a
xi

s

Readings heavily
influencing FPC-2

20

Figure 3.12: The MS plot, data view, FPCA view after the selections of FPC-2 (a1–a4) and FPC-3
(b1–b4) from Fig. 3.11 (© 2022 IEEE)

.

49

(described in Sec. 3.3.2.4) helps us capture these small changes that occurred across the

updates. Fig. 3.10-b also shows a new measurement (annotated by teal circle) added to

the MS plot using the progressive update for a subject performing the walking activity.

Although the new addition is made with the approximation, it is reasonably close to

the cluster for walking activities. Further evaluations of the effect of the approximation

are presented in Sec. 3.5.

Next, we review a cluster using the MS plot and FPCA together. As an example,

as shown in Fig. 3.11-a, we select a cluster (highlighted by brown) corresponding to

walking with large MO and relatively small VO. For the sake of clarity, we have chosen

to show the MS plot after obtaining the first 200 time points (10 seconds). Fig. 3.11-b

shows the data view for the selected time series/circles. Because of the visual clutter

caused by many curves, not much can be deduced from the current data view. Using

FPCA, we can still identify trends and patterns in such cluttered time series. We apply

FPCA with the default setting and observe that the first 3 FPCs correspond to 90% of

the variation in the selected time series. We select FPC-2 and FPC-3, and the linked

views are updated accordingly, as shown in Fig. 3.12-a (FPC-2) and Fig. 3.12-b (FPC-3).

Fig. 3.12-(a1,b1) and Fig. 3.12-(a2,b2) show the MS plot views and the data view for

the biometrics data, respectively. FPC-2 (Fig. 3.12-a3) has a distinct peak at earlier time

points followed by a drop at later time points, while FPC-3 (Fig. 3.12-b3) has a distinct

peak at around time point 80. Similar patterns can also be seen in Fig. 3.12-a4 and

b4, which inform the positive and negative perturbations of the measurements with

respect to the mean function of the selected subgroup. These peaks clearly capture

a phase shift in the subjects’ walking patterns. The corresponding MS plot and data

views (Fig. 3.12-a1, a2, b1, and b2) show the measurements that heavily influence the

selected FPCs. Now, the phase shift is visible in the data view. For example, in Fig. 3.12-

b2, we can see that multiple subjects tend to have larger values around time point 80

than at other time periods. Also, from the MS plot view in Fig. 3.12-b1, we can see that

the patterns in FPC-3 tend to be seen only in the circles with larger VO than the other

selected circles. Similarly, the circles that heavily influence FPC-2 can be seen only in

50

MO

Cluster contains both
high and lower VO

(1) Inc-MS (2) MS (3) IPCA (4) UMAP
V

O
B

io
m

et
ri

cs
 D

at
a

(5) MS plot

Original position
Approximated Position

V
OV
O

V
O

Brushing Teeth
Eating
Walking
Dribbling

V
O

Actual Feature Positions
(6) MS plot

New Feature Addition with Approx.

-0.02 0.00 0.02
MO

0.04 0.06

-0.1 0.0 0.1 0.2 0.3 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.02 0.00 0.02 0.04 0.06
MO

-300 -200 -100 0 100 200 300 400
PC-1

-1000 0 1000 2000 3000

-2.5 0.0 5.0 5.0 7.5 10.0 12.5
UMAP-1

-2.5 0.0 7.5 10.0 12.5 15.02.5 5.0

-0.02 0.00 0.02 0.04 0.06
MO

-0.02 0.00 0.02 0.04 0.06

-0.1 0.0 0.3 0.4 0.50.1 0.2-0.1 0.0 0.3 0.4 0.50.1 0.2
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0

0.5

V
O

Su
pe

rc
om

pu
te

r
En

vi
ro

nm
en

t D
at

a
1.2

1.0

0.8

0.6

0.4

0.2

0.0

U
M

A
P-

2

0

5

10

PC
-2

150

100

50

0

-50

-100

1200
1000
800
600
400

200

PC
-2

0
-200

U
M

A
P-

2

0

2

4

6

8

IPCA fails to isolate
dissimilar readings

Lower VO
High VOAbnormal Readings

(high VO) showing
highest fluctuations
are separated from

lower VO

Figure 3.13: The comparison of results among the (1) incremental MS plot (Inc-MS), (2) MS plot (MS),
(3) incremental PCA (IPCA), and (4) UMAP. (5) shows the exact position of features obtained by MS and
(6) shows the progressive addition of the same features with approximation (© 2022 IEEE).

the area with large MO.

To summarize, a combination of the incremental, progressive MS plot and FPCA

helps filter distinct patterns in time series data of activities. Certain activities form a

unique cluster of patterns or an anomaly cluster. Analyzing these clusters further show

us what these patterns look like and where they lie within the corresponding cluster.

While this scenario uses the measurements from daily activities, similar high-velocity

data is often collected, for example, for clinical care [39], and our approach would be

useful to monitor the measurements to make time-critical decisions.

The four case studies demonstrate how a combination of the MS plot and FPCA can

identify not only outliers but also peculiar behaviors of data within these outliers or

find missing outliers in the MS plot to improve the visual outlier detection with the

MS-plot.

3.5 Discussion
We have presented our approach’s effectiveness to analyze streaming time series data

and its applicability to various datasets and future use. We further discuss the strengths

of the MS plot by comparing it with DR methods often used to categorize time series

data visually [2]. We provide expert feedback to support the effectiveness of our tool.

Comparison with DR methods. Fig. 3.13 compares 2D plots generated by using ordi-

nary MS plot [24] (MS), our incremental MS plot (Inc-MS), incremental PCA (IPCA) [140],

and UMAP [115] for supercomputer hardware logs and biometrics data to show how these

51

methods capture the underlying data patterns. IPCA and UMAP are chosen as represen-

tative linear and nonlinear DR methods that are used for visual pattern identification

in multiple time series [2, 47].

First, as expected, for both datasets, MS and Inc-MS produce identical results since

Inc-MS does not apply any approximation. For the supercomputer logs, we compare

the four methods’ ability to discern the outlier readings with large VO (abnormal)

and lower VO (normal). To avoid visual clutter, we ignore the rest of the readings

shown in gray color. UMAP and IPCA produce discernible clusters. Although most of

the clusters group readings with similar trends, some of the clusters show both normal

(blue) and abnormal (red) readings (verified by using the data view in our tool). This

issue can occur as they are not specifically designed to capture outlyingness. For the

biometrics data, while MS and UMAP isolate different activities into clusters, IPCA fails to

do so. The UMAP result with the setting (specifically, n_neighbors=4, min_dist=0.1, and

metric=“euclidean”) that showed reasonable clarity between clusters still show larger

overlap in the measurements from different activities (e.g., dribbling and eating) when

compared to MS. Another strength of the MS plot is in its interpretability. Since the MS

plot directly shows the magnitude and shape outlyingness in the 𝑥- and 𝑦-coordinates,

we can easily interpret why some time series are grouped together (as demonstrated

in Sec. 3.4). On the other hand, DR methods such as incremental PCA and UMAP

require additional steps to understand each revealed cluster [44]. In Fig. 3.13-5 and 6,

we examine the effect of approximation in our progressive algorithm by comparing it

to the exact solution obtained with MS. The added time series are colored orange and

green in each result. When the errors are within the user-specified error threshold, the

approximations can be assumed to produce close to valid results. In fact, as shown in

Fig. 3.13-5 and 6, the newly added time series are in close vicinity of the actual values.

In Fig. 3.14, we use the supercomputer hardware logs to compare the completion

time of methods and their streaming counterparts used in Fig. 3.13. For this evaluation,

we use the same experimental platform as the one used in Sec. 3.6. We scale the data

starting with a data size of 𝑁×𝑇 = 100×100 to 30,000×30,000. We use scikit-learn’s

52

UMAP
PCA
IPCA
MS
Inc-MS
PUMAP

100 5000 10000 15000 20000 25000 30000

0

50

100

150

200

250

300

350
Co

m
pl

et
io

n
Ti

m
e

(s
)

Data Size
Figure 3.14: The comparison of completion time, showing how performance scales with datasize. We
use a regression plot to interpolate the results (© 2022 IEEE).

implementation for IPCA, McInnes et al.’s implementation for UMAP [115], and Ko et al.’s

implementation for PUMAP [92]. Inc-MS provides a method that incrementally updates

the results, which is called partial fit, and a method that processes input data all at

once called (initial) fit. We start by processing 5% of the time points with the initial

fit and use partial fit containing 5 time points for the rest. We use a regression plot

to interpolate the results. In Fig. 3.14, for each data size, the Inc-MS plot either gave

approximately the same performance as MS (for data size in the range of hundreds) or

outperformed MS by a factor of 2 times for a data size of 20,000× 20,000 and 3 times

for the data size of 30,000× 30,000. We have improved the original MS algorithm

by updating the results already computed rather than recomputing the overall result

every time a new time point is added; this significantly improves performance. Inc-MS

implementation outperforms MS, PCA, IPCA, and UMAP while having a runtime close to

PUMAP. PUMAP provides approximated results, but Inc-MS provides exact results. Note

that as 𝑁 increases, PCA outperforms IPCA [43].

Expert feedback. We evaluated our tool with two industry experts with over 5 years of

experience analyzing large-scale computing systems’ hardware logs daily. We installed

53

the tool locally on their system and provided the details of each component’s func-

tionalities. The experts were impressed by our overall design and provided a detailed

assessment of its components. They had no trouble interpreting the details presented in

each view. For the overall system, they commented: “The updates to the MS plots showed

a smooth transition and were easier to follow. Upon selecting a cluster of measurements in the

MS plot, we can view where the similar time series lie on the system in the space view and what

pattern they represent in the data view. The FPC plots provide a summarized representation

of the selected data, which was helpful.” They indicated that the UI provides a good intu-

ition of the overall system behavior in real-time. The overall feedback is encouraging,

although they also noticed some limitations of the tool. Upon selecting from the FPC

plot, the measurements that highly influence the selected FPC are highlighted in the

data view and the MS plot. However, the experts mentioned that it would be useful

to view components having little to no influence on this FPC as well. At the time of

writing this dissertation, we have added a range slider that controls the threshold of

selecting influential time series (circles, curves) on FPCs.

3.6 Performance Evaluation
We evaluate the performance of our algorithms for two example use scenarios. In each

scenario, we mimic a practical streaming analysis situation by feeding time points and

time series from a real-world dataset. For the experiments, we use the MacBook Pro

(13-inch, 2019) with a 2.8 GHz Quad-Core Intel Core i7 processor and 16 GB 2133 MHz

LPDDR3 memory. Completion times are averaged over 10 executions.

Evaluation with supercomputer hardware logs. Supercomputer hardware logs, which

contain readings of voltages, temperatures (water/air/CPU), fan speeds, are collected

from various sensors housed in the compute rack subsystem (e.g., system board and

air/water cooling). Studying these logs to identify failure patterns can aid in improving

the robustness and reliability of large-scale machines. There have been past efforts to

analyze supercomputer/cloud hardware logs with visual analytics tools [47, 59, 151,

180, 181]. Our logs (analyzed in Sec. 3.3) are collected from the K computer [118] and

54

contain data from 864 compute racks, with 1,163 different sensor readings per rack

collected every 5-minute interval (i.e., 288 timestamps in a day).

We examine our incremental and progressive algorithms’ efficiency for this log

data, which has extremely high volume but relatively low velocity (5-minute interval).

We assume that we have already had the data of size 4,032×336,960 (i.e., 2 weeks and

336,960 temperature readings across all racks). Then, we add a newly arrived time point

to this existing data. While the update of the MS plot without our incremental algorithm

(i.e., recalculation on 4,033 time points) is finished in 8.2 minutes, the incremental

addition of a time point is completed in 2.5 seconds. To evaluate our progressive

update with approximation, we first process the same data, but one time series is

excluded (i.e., the size of 4,032×336,959). Then, we add one time series and update

the MS plot using our algorithm with approximation, which is completed only in 16.6

seconds, while the overall update without approximation is done in 8.4 minutes. For

both cases, the updates without our algorithms exceeded the data collection interval

and caused wastage of computing resources.

This proof-of-concept experiment shows that our algorithms achieve prompt up-

dates for large datasets. In practice, the analysts may select a smaller dataset (e.g., 1 day

instead of 2 weeks), and the ordinary MS plot may update the result within the current

update interval (i.e., every 5 minutes). However, most recent supercomputers collect

sensor data at 0.03–10Hz [65, 143] (i.e., about every 0.1–30 seconds). Our approach

can process large volumes of data to promptly identify anomalies in these large-scale

systems.

Evaluation with Biometrics data. The generic design of our tool enables us to monitor

time series collected from different types of hardware systems. As another use scenario,

we analyze data collected from smartwatch accelerometer sensors of 51 subjects [178].

The subjects performed daily activities, including ambulation (e.g., walking, dribbling),

fast hand-based (e.g., brushing), and eating activities. Each subject contributed 54

minutes of data collected at 20Hz sensor polling rate for a total of 3 minutes per

activity. Each row in the dataset contains Subject-id, Activity Code, Timestamp, x, y, z.

55

For brevity, we use the sensor value for the x-axis, i.e., signed acceleration along the

x-direction. However, one can also individually apply our algorithms to each of the

other measurements of x, y, and z.

Here we assume that we have already collected the data of size 30,000×5,000 (i.e.,

25 minutes and 5,000 subject-activity pairs). Then, we incrementally add 1,200 time

points (i.e., every 1 minute). While the incremental additions of 1,200 time points

are completed in 0.8 seconds, the update without using our incremental algorithm is

finished in 18 seconds. For our progressive update with approximation, we further

add 10 time series into this data, and the update is done in 5.5 seconds. Without the

progressive update, the overall process time was 19 seconds. These results show that

updates with our algorithms are fast enough to handle a large number of time series

with extremely high velocity (i.e., 20Hz, or 0.05-second interval) in real-time.

Experimental evaluation with different data sizes. We further evaluate our algorithms

with different numbers of time points and time series while using the supercomputer

hardware logs (SC Log) and the biometrics data (Biometrics). Tables 3.1 and 3.2

show the completion times for the addition of new time points and new time series,

respectively.

In Tab. 3.1, we first process an initial set of data consisting of varying time points

(100–20,000) and a fixed number (1,000) of time series. We then add one new time point

and update the existing outlyingness measures incrementally. The completion time for

the initial data fit increases as time points are increased, while the incremental addition

has the completion time independent of the data size. The incremental addition always

takes about 1ms for SC Log and 180ms for Biometrics, which are fast enough to support

online streaming analysis. Note that Biometrics is characterized by widely varying

high-frequency fluctuations, and the data complexity contributes to the computation

time where the bottleneck relates to the depth measures.

For the time series addition, as shown in Tab. 3.2, we first process an initial set of data

consisting of varying time series (100–10,000) and a fixed number of time points (1,000).

We then add one new time series and update the existing outlyingness measures using

56

Table 3.1: Completion time (in seconds) of the initial data fit (Initial Fit) and the incremental addition
of one time point (Partial Fit) (© 2022 IEEE).

Dataset 𝑁 𝑇 Initial Fit Partial Fit

SC Log 1,000 100 0.0109 0.0009

SC Log 1,000 1,000 0.0640 0.0011

SC Log 1,000 10,000 0.5373 0.0013

SC Log 1,000 20,000 1.3357 0.0010

Biometrics 1,000 100 0.0457 0.182

Biometrics 1,000 1,000 0.388 0.173

Biometrics 1,000 10,000 2.537 0.196

Biometrics 1,000 20,000 4.990 0.176

Table 3.2: Completion time (in seconds) of the initial fit and progressive addition of one time series
with and without approximation (© 2022 IEEE).

Dataset 𝑁 𝑇 Initial Fit Approx. Non-approx.

SC Log 100 1,000 0.0038 0.0006 0.0088

SC Log 1,000 1,000 0.0495 0.0039 0.0654

SC Log 10,000 1,000 0.5910 0.0680 1.0079

SC Log 20,000 1,000 1.7038 0.1009 2.5148

Biometrics 1,000 1,000 0.0520 0.0027 0.1890

Biometrics 5,000 1,000 0.3350 0.0184 1.1533

Biometrics 10,000 1,000 0.7328 0.0217 1.690

the progressive algorithm with and without the approximation.

With the approximation, it takes less than about 100ms to compute. Without the

approximation (i.e., equivalent to an ordinary plot), the overall computation time would

be almost close to the initial fit of the data, leading to more significant wait times.

Although FDA has gained more traction in recent years, discrete analysis is largely

preferred over its functional counterparts. This is mainly because the analyses are com-

putationally less expensive and are easily accessible through multiple implementations

in popular programming languages. In this work, we have demonstrated how FDA in

an online streaming analysis environment can help identify and capture the underlying

data characteristics. With the use of FPCA, through FPC’s and functional mean per-

57

turbations, we identify modes of variations within clusters over the continuum, which

would have gone unnoticed using a traditional PCA.

This research was supported in part by the U.S. National Science Foundation through

grant IIS-1741536 and the Argonne National Laboratory through contract 8F-30225. We

thank Keĳi Yamamoto for providing useful information regarding the supercomputer

data.

3.7 Conclusion
The advent of exascale systems makes it pertinent to build applications that can process

data in a timely and reactive manner. We have built a visual analytics tool that processes

large streaming time series data, which are intrinsically functional, using functional

data analysis. This is achieved through incremental and progressive computations of

the magnitude-shape outlyingness measure through the addition of new time points

or new time series. To further understand the underlying errors, we use functional

principal component analysis to identify different modes of variation and the type

of fluctuation (amplitude, phase shift) for each mode. We plan to extend our tool’s

visualizations to support the analysis of multivariate functions and also incremental

and progressive algorithms to use different depth measures.

“In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of University of California, Davis’s products

or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go

to http://www.ieee.org/publications_standards/publications/rights/rights_

link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.”

58

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 4
A Visual Analytics Solution for
Analyzing Multifidelity HPC System
Logs

4.1 Introduction and Background
Maintaining robust and reliable computing systems, especially those that enable break-

through work in computational science and engineering research, is critical yet chal-

lenging. These systems are expected to run jobs that take weeks, and any failure in

the system could add significant overhead in the already computationally expensive

research and development. Therefore, understanding the underlying system proper-

ties from diverse subsystems is an initial step in an attempt to better understand the

current failures that occur in the system. We focus our efforts on the Cray XC40 system,

specifically the Theta supercomputing system deployed at ALCF [5]. Theta is an 11.69

Petaflops system that was designed in collaboration with Intel and Cray. The system

comprises of 4,392 nodes, each containing a 64-core processor, 192 GB of DDR4 RAM,

16 gigabytes (GB) of in-package high-bandwidth memory (MCDRAM), and a 128 GB

SSD. The 4,392 nodes are housed in 24 racks, interconnected using an Aries interconnect

with a Dragonfly configuration designed for good global bandwidth and low latency.

The data we procure from Theta is primarily raw data captured from sensors, and the

size of these logs are typically in the terabytes range. Therefore, we deal with large-scale

logs from diverse sources with multiple fidelities. For example, the environment log

data is captured at a frequency of approximately 30-second intervals. In this case, a few

weeks of this log data is hundreds of gigabytes. The hardware and job log data size

ranges in tens of gigabytes. The goal of this work is to build a scalable visualization

59

Figure 4.1: Error Log Analyser: 1) Linear Timeline View for review and selection of errors. 2) Node
Layout View for distribution of hardware log data at each node filtered by the type of log (e.g. informa-
tional, warnings, fatal, etc.). 3) Radial View for distribution of the hardware error data along the radial
time dial. 4) Selection View for filtering node ids and timeframe for analysis of environment log (SEDC)
data. 5) Dimensionality Reduction on the SEDC data clustered using Weighted Clustering Ensem-
ble with Different Representations 6) Detailed View of SEDC log data for the selected timeframe with
hardware and job log information (© 2019 IEEE).

system that allows us to analyze data with temporal and spatial locality. When it comes

to hardware errors we look at data from multiple control systems, which are linked to

one another. Hence, we deal with duplicate events that need to be preprocessed. Our

contributions using the Theta supercomputer logs will apply to other Cray XC40 sys-

tems deployed at various facilities worldwide, including several U.S. Dept. of Energy

national laboratories.

Significant efforts have been made to improve system resilience through system

log analysis in the past. Failure detection and root cause diagnosis use diverse log

sources that could be used to address failures. Although there are many automatic

60

log analysis tools, little work has been done with visualization to successfully perform

root cause analysis and correlations of failures. Some of the automatic log analysis

tools [31, 49, 51, 64, 114, 192] use correlation analysis, signal analysis, pattern mining,

event pattern-based correlations, resilience at application level and spatial/temporal

event analysis. HELO [51] is an event log mining tool that extracts event formats via

messaging templates using pattern mining log files from large-scale supercomputers.

ELSA (Event Log Signal Analyzer) [49] is a toolkit for event prediction, modeling the

normal flow at a stable event state and following the abnormal flow in an event of

system failure. One of the steps involving log analysis is data filtering. An adaptive

semantic filtering (ASF) method [103] efficiently filters the duplicated messages in a

log by computing the semantic correlation between two events. LogAider [31] and

LogMaster [42] are tools used for mining event correlations but use generic, easy-to-use

visualizations. LogAider reveals potential correlations that include across-field, spa-

tial, and temporal correlations. LogMine [64] is an unsupervised, scalable end-to-end

one-pass framework for the analysis of massive heterogeneous logs. LogDiver [114]

provides support for lossless data compression, modeling application failure paths and

cross-validation of models/results. However, LogDiver and LogMiner do not provide

visualization support. DeepLog [32] is a deep neural network model that uses stacked

Long Short-Term Memory (LSTM) networks for anomaly detection, dynamically up-

dating the models to accommodate changing log patterns. However, it does not have

lead time analysis. RAVEN [130] maps RAS (reliability, availability, and serviceability)

logs on a physical system map for Titan, a Cray supercomputer at Oak Ridge National

Laboratory. IBM provides Blue Gene Navigator [97] used by system administrators to

monitor the system through basic log statistical visualizations. These tools lack the

support for scalable and interactive visual analysis of HPC system logs. La VALSE [59]

is a tool with support for a scalable user interface. They explore large amounts of

hardware data in supercomputers. However, analyzing one or two types of log data

alone would not suffice to provide complete insight in comprehending the complexity

of such large-scale systems. Therefore, we analyze multiple logs (hardware, jobs, and

61

environment) for our study.

Our contributions in this work [151] are as follows:

• We built a scalable interactive visualization tool, which we call MELA (Multifi-

delity Event Log Analyzer), for studying event log data.

• The tool has a built-in user interaction mechanism which allows the analysis to

be rerun based on feedback.

• We have designed a ring layout for visualizing the spread of errors across the time

scale.

• With MELA, we analyzed diverse log datasets comprising of hardware, job, and

environment logs collected at multiple fidelities.

4.2 A Visual Analytics Tool - MELA
In this section, we describe the interactive visual analytics tool, MELA, for distributed

processing and analysis of the Theta logs. MELA uses the D3 [11] Javascript frontend

and a combination of InfluxDB [76] and Elasticsearch [55] databases at the backend.

The tool consists of multiple sub-components. This section describes each of these

sub-components and their functions.

4.2.1 Node Layout
The node layout for Theta is shown in Fig. 4.1(2). The system is composed of 24 compute

cabinets, each with 3 cages, where each cage contains 16 blades and each blade has 4

nodes. The visualization in this figure shows that 24 racks are grouped into two rows,

the racks form groups based on the network topology, and each group is displayed in

the same column. The colors of each node (Fig. 4.1(1)) display the count of hardware

errors for a selected time period. As an example here, we have shown the hardware

errors for June 2018. The darker colored nodes represent a higher count in errors.

This visualization also allows for the selection of nodes in groups or individual node

selection for further filtering and analysis of the various control system outputs. The

62

orange rectangle overlay-selection tool allows for multiple selection of nodes. As an

example, we have selected nodes in cabinet C8-0.

Figure 4.2: The ring layout represents the distribution of hardware errors in a concentric circle format
which represents a clock face. The innermost to outermost rings show the years, months, days, days
of week, hours, minutes, and seconds respectively. Here, June 2018 is selected (© 2019 IEEE).

4.2.2 Ring Layout
The ring layout (Fig. 4.2) allows for an aggregated view of the errors distributed over

time. The ring layout represents time in a form similar to a clock. The rings from

smallest to largest represent the years, months, days, days of week, hours, minutes, and

seconds respectively. The colors in the ring represent the counts of errors distributed

on the temporal scale. We see a larger number of errors occurring on Mondays and

Tuesdays and mostly on the 4𝑡ℎ and 26𝑡ℎ of June. The maintenance of Theta occurs

bi-weekly on Mondays. This could explain the source of the large number of errors

occurring on Tuesdays. This visualization provides a better understanding of the tem-

poral distribution of errors across multiple granularities when compared to traditional

linear temporal views. We can view data for up to 10 years and could expand to include

more years. The ring layout is an interactive view allowing users to select any of the

63

arcs within the ring to further filter the data displayed in the connected visualizations.

Figure 4.3: The figure shows the (1) Selection and Dimensionality Reduction layout on the left and the
(2) Detailed layout on the right. Filter selections are made to investigate an error event that occurred
at node 1590 at 2018-06-26 02:43:18. For more details refer to Fig. 4.4 (© 2019 IEEE).

4.2.3 Selection Layout
The third level of the visualization is a selection view, shown in Fig. 4.3(1). This view

serves as a filtering mechanism where temporal, node id, and environment log (SEDC)

measurements can be selected for further analysis. The SEDC log contains information

about the power, temperature, current, fan speed, etc. at various fidelities. A user can

view the distribution of errors on the radial view, linear timeline view, or the node

layout, and one can further select the nodes and SEDC log measurements of interest.

The timeframe is picked to be 180 minutes in either direction of the selected timestamp.

This data holds useful patterns which would help with the error analysis.

We analyze the filtered nodes, timeframe and SEDC measurements using the

weighted clustering ensemble method in different representation spaces [183]. The

algorithm clusters data in multiple representation spaces, effectively minimizing infor-

mation loss encountered by analysis in a single representation space. This approach

allows for the capture of intrinsic patterns in the temporal data. The method uses a

weighted pairwise similarity matrix derived from different cluster validation schemes

applied to the partitions in the representation spaces. The cluster validation schemes

64

include Modified Huber’s Γ index (MHΓ) [62], Dunn’s Validity Index (DVI) [62], and

Normalized Mutual Information (NMI) [159]. The three candidate partitions are then

combined to a final partition using an agreement function [40]. It is less sensitive to

small fluctuations in SEDC measurements and captures the overall trend in the pat-

terns. The clustered multidimensional SEDC log data are then displayed in a 2D view

using a chosen dimensionality reduction method, PCA [41], LDA [113] or t-SNE [171].

These methods are known to capture underlying data distributions with minimal loss

in information. However, as we will see later in Section 4.3, a simple PCA, LDA or t-SNE

will not suffice in capturing the underlying intrinsic structure of this diverse dataset.

Therefore, we color the points by how they were clustered before the dimensionality

reduction. The users can also select points using a lasso tool which then highlights the

selected points (shown in dark red) in the detailed plot (Fig. 4.3(2)) shown on the right.

4.2.4 Detailed Layout
The fourth level of our visual analytics tool is a tabbed view. Fig. 4.3(2) shows the SEDC

measurements plotted in gray, the values for which are shown on the y-axis to the left.

The y-axis on the right shows the different categories of the hardware log data. The

hardware log information is plotted as scatter plots shown in blue circles. As the user

hovers over these points a tool-tip shows detailed information about the data. A fatal

event such as a node shut down is shown as a red line. The detailed plot shows how

different SEDC measurements behave around such fatal events. The users can remove

any measurement from the analysis if it shows that a measurement skews the results

unfavorably. For example, a cabinet-level measurement may not be affected by a node-

level failure. Some interesting insights that we gather from this plot are: increase in

blower fan speed and drop in voltage and current values during a failure event. More

information is provided in the case study discussed in Section 4.3. The lines in cyan

are the jobs that have ended with an exit code that is not zero. In the example shown

in Fig. 4.3(2), we see that a job has failed following a fatal event. However, there have

been cases where the job executes to completion despite a node shutdown. These are

cases, such as with workflow managers with built-in resilience, when the jobs on the

65

compute nodes are offloaded to another idle compute node by the application using the

node. The detailed view gives a high-level view of how the log information is spread

across the timeline. Note that there is always a small intrinsic bias in these plots since

the sensor clocks may not be perfectly synchronized.

4.2.5 Database backend
System log data get progressively larger as we deal with logs from various sources

across multiple years. Our current environment log dataset is ∼125GB in size for June

2018, making the entire dataset close to ∼1.5TB for a year’s worth of compressed log

information to process. Therefore, there is a need to use a database that would allow

for faster aggregations and efficient distributed processing of information, especially

in the temporal scales. To cater to this need, we use a combination of InfluxDB [76]

and Elasticsearch [55]. InfluxDB is a time-series database used for high writes and

query loads. It is mainly used to store large amounts of timestamped data. Since

our environment logs are timestamped and collected every 10-30 seconds, using this

database is an appropriate choice for storing environment logs. For hardware logs and

job logs, we use Elasticsearch which is an open-source, distributed, RESTful search and

analytics engine capable of providing faster temporal aggregations. The timestamps

for jobs and hardware errors could have significant overlap, so using InfluxDB would

mean creating multiple redundant measurements. The aggregation of categorical data

(stored as tags) in InfluxDB is not currently possible. Therefore, Elasticsearch is better

suited for storing hardware and job log information. Each operation in the visualization

such as filtering and selection makes an asynchronous call to the databases which allows

for simultaneous and faster rendering of the data.

4.3 Case Studies
In this section, we describe two cases of node failure and how MELA helps identify

failure events from this immense and diverse log dataset. We also illustrate why a

dimensionality reduction technique alone would not suffice to capture the complex

intrinsic patterns of the SEDC measurements.

66

Figure 4.4: The figure shows the (1) Selection and Dimensionality Reduction layout on the left with
PCA and the Detailed layout on the right: (2) original zoomed-out view (3) and user zoomed-in view.
The filter selections are made to investigate an error event that occurred at node 1271 at 2018-06-06
18:01:39 (© 2019 IEEE).

Figure 4.5: The figure shows the (1) Dimensionality Reduction view on the left with PCA and (2)Di-
mensionality Reduction layout on the right with t-SNE. The filter selections are made to investigate an
error event that occurred at node 1271 at 2018-06-06 18:01:39 (© 2019 IEEE).

4.3.1 Case Study 1:
Fig. 4.4 shows the detailed layout view readings for node 1271. A failure event occurred

at 2018-06-06 18:01:39 which led to a node shut down. The user can identify the

fatal events of interest with the help of the node layout (Fig. 4.1(2)) and filter the

desired timeframe using either the ring layout (Fig. 4.1(3)) or the linear time layout (Fig.

4.1(1)). The weighted clustering ensemble of the time-series data clusters the SEDC

measurements for the specified timeframe. The selected clusters are shown in the

dimensionality reduction (DR) view (colored gray) in Fig. 4.4(1). The dimensionality

reduction method is only used as a means of plotting this higher dimensional data.

67

Using the lasso tool in the visualization, we select a single cluster from the DR view

(shown in gray). This highlights the cluster points in the detailed view (Fig. 4.4(2)).

We see that all of the time points after the fatal event have been clustered into one

group. Similarly, the time points from 06/06 16:00 - 06/06 18:00 are grouped into the

same cluster. Therefore, we can group similar trends over an extended timeframe using

this methodology which is not always the case while using dimensionality reduction

methodologies. The detailed layout has a zoomable (Fig. 4.4(3)) interaction which

allows the user to zoom into the error event of interest and investigate further.

In the zoomed view, Fig. 4.4(3), each blue circle is a hardware error log event. A

tool-tip showing more details about these events pops up as the user hovers over these

circles. For this case study, a closer investigation revealed that a Processor Reorder

Buffer (ROB) timeout was caused as a result of multiple Denali Core Non Fatal Errors

on BUS0 causing “NL3" Processor Requests to not make forward progress on BUS0.

The node failure caused a job running on the node using an overall 256 nodes to quit

unexpectedly with approximately 3 hours still pending on the overall job walltime of 6

hours.

4.3.2 Case Study 2:
Fig. 4.3 shows the selection layout (1) and the detailed layout (2) for a fatal event that

caused node 1590 to shut down at 2018-06-26 02:43:18. The failure event caused the job

to stop unexpectedly within an hour of its 12-hour runtime. On closer inspection of the

hardware log data, there are multiple instances of ROB timeouts and MCE (Machine

Check Exception) errors that give a good initial understanding of the underlying events

and how they are linked spatially and temporally. The node failure was due to uncor-

rectable errors on Banks 0 and 255–a system software error in this case. Therefore, the

node was rebooted.

From Fig. 4.3(1) and Fig. 4.4(1), we see that the well-known dimensionality reduction

techniques will not always capture the underlying trends accurately. In Fig. 4.3(1),

although the SEDC time points before the failure have been clustered in one group,

there is no clear separation between the other cluster points. Figs. 4.5(1) and 4.5(2)

68

show two different DR views for the same dataset. In Fig. 4.4(1), the gray points

correspond to the selection of the blue cluster by the user. These are shown in the

detailed layout in dark red on the right in Fig. 4.4(2). Although t-SNE is known to

capture the underlying structure of the dataset with a good degree of flexibility, it

is known to be hard to interpret. When using PCA, the best choice of the number

of principal components that covers the maximum variance is something that the

user needs to consider. Although there are improvements in the DR techniques to

better identify the underlying structure of the data, our experiments have shown that

the temporal weighted clustering ensemble method does a good job at capturing the

intrinsic nature of the dataset (Figs. 4.3(2) and 4.5(2)). This algorithm is tuned to pick

the ideal cluster count. Therefore, we use dimensionality reduction methods as a way

to display the already clustered data.

The two case studies mentioned here have similarities in error tokens (messages) in

the log data which can also be modeled using topic modeling. Some previous work [25]

has used methods like Topics Over Time (TOT) [176], an unsupervised topic model

loosely based on the LDA [10] model to identify rare compute node failures. MELA

also provides support for the identification of similar log tokens, which is beyond the

scope of the current work.

4.4 Conclusion and Future Work
We have developed a visual analytics tool for analyzing diverse log data of a Cray XC40

supercomputing system, specifically the Theta supercomputer at Argonne National

Laboratory. We tackle two main issues: scalability and interactivity. We are currently

able to interactively filter and analyze millions of records of log information with a built-

in feedback mechanism. The feedback mechanism helps filter or include information

that would help improve the deduction of error patterns in the data. Our visualization

tool, MELA, enables a user, including system administrators, to analyze information in

the terabyte range from various control systems at different fidelities from diverse logs.

We present a novel way to visualize temporal data with hardware information drawn

69

on a temporal clock face visualization (ring layout). It provides a clean aggregation of

how the errors are spread out along the temporal scale. We map the hardware logs onto

a physical map (the node layout) of the Theta supercomputer. Researchers and system

administrators could use this tool to identify and record how the events in diverse logs

correlate and investigate events of interest further.

Our next goal is to incorporate end-to-end interactive visual analytics support for

identifying patterns such as correlations, detecting anomalies and predicting faults.

In conjunction with the TOT analysis, this tool could be used for root-cause analysis

with built-in feedback in the visualization for incorporating corrections and other

refinements. We plan to extend our visual analytics tool to be usable for analyzing data

from different supercomputers.

“In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of University of California, Davis’s products

or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go

to http://www.ieee.org/publications_standards/publications/rights/rights_

link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.”

70

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 5
Machine Anomaly Detection and
Prediction

5.1 Introduction
Understanding and maintaining robust and reliable supercomputers is critical for en-

abling advancements in research. High utilization of these systems is compromised

if system failures cannot be handled in a reactive and timely manner. Jobs could run

for weeks, and failures add significant overhead in already computationally expensive

research. Therefore, we study these diverse subsystems’ past behaviors and use the

data to predict future behaviors. For this work, we focus our efforts on a 10+ Petaflops

Cray XC40 supercomputer system with Intel Xeon Phi based compute nodes. The

nodes are interconnected with an Aries interconnect in a Dragonfly topology. We use

log data from the Cray XC40 supercomputer that can be broadly classified as (i) envi-

ronment logs, also referred to as SEDC logs, where SEDC (System Environment Data

Collections) is a tool used to collect and report environmental data on all Cray systems

in real-time, (ii) hardware error logs, and (iii) job logs. The data are essentially raw

data from sensors, located at a predefined spatial locality, and recorded at various tem-

poral resolutions. Therefore, we deal with multi-fidelity large-scale data from diverse

sources within the HPC system. For example, the SEDC log data is recorded and stored

approximately every 10-30 seconds, so the SEDC dataset size approaches gigabyte to

terabyte range every few weeks. The hardware error log contains data recorded from

various control systems linked with each other within the subsystems. This results in

duplicate events that need to be handled during data pre-processing. The hardware

error log data ranges in tens of gigabytes, and the job log data size can be hundreds of

71

megabytes for a year. Altogether, these three types of logs are about 5 GB per day. It is

a daunting task to process data of these volumes for any analyses.

We analyze three log data types and glean insights from their correspondence with

each other at their various temporal and spatial resolutions. We use this information

to build models that predict if a job will fail and job failure exit status. Our system

comprises database storage with a machine learning back-end pipeline and a front-

end visualization. The machine learning back-end pipeline is split into a SEDC view

pipeline and a hardware/job analysis pipeline. The SEDC view pipeline aids in the

processing and analysis of environment log data to identify patterns, some of which

could indicate anomalous HPC system behavior. The hardware/job analysis pipeline

is split into four stages (Fig. 5.1): (1) hardware topic generation, (2) hardware error

prediction, (3) job failure prediction, and (4) job exit status prediction. We call Stages

3−4 the job prediction pipeline. In Stage 1, we group related hardware errors into topics

using the Topics over Time (ToT) algorithm [176]. Stage 2, hardware error prediction,

uses past hardware errors to predict the most likely future hardware errors at the

component level on which a job is run. Then in Stage 3, we predict if a job will fail.

If a job failure is predicted, in Stage 4, we predict the exit status, using the predicted

hardware errors from Stage 2 and the hardware errors from the past. This system

back-end comprises separate machine learning pipelines for analyzing and processing

each type of log data since they vary in characteristic from text data to sensor data. In

doing so we can identify how trends and patterns relate across types within the same

temporal/spatial vicinity. Root cause diagnosis is not the main focus of this work, since

what we analyze are raw datasets, and the root cause for the previous errors was not

provided. We cannot assume that various HPC subsystems are perfectly synchronized,

and any processing should account for the switching of events within a predefined time

frame. Our contributions will apply to other Cray XC40 systems deployed at various

HPC facilities worldwide. This will provide insights to system administrators to better

perform job failure analysis and to proactively undergo system maintenance to reduce

downtime.

72

In this work, we make the following contributions:

• Accomplishments:

1. Prediction accuracy of job Exit Status - 92.3%.

2. Prediction accuracy of job Exit Status in case of a component failure

– with cabinet/cage/slot information - 88%.

– without cabinet/cage/slot information - 55%.

3. Visual representation of prediction results of hardware faults/job failures.

Visualization also shows correlations between environment (SEDC) log data

and hardware error data with the timelines that are visually synchronized.

We demonstrate this capability in our case study.

4. Implicit feedback mechanism which allows for modifications to the predicted

event hardware sequences and the job exit status by domain experts, which

is incorporated in our system’s future analysis.

5. The hardware error prediction and two-stage job prediction pipeline in our

system identified 92.65% of the correctly-predicted jobs at least 30 minutes

before the failure event.

• Steps used to achieve the above accomplishments and useful insights:

1. In the SEDC/environment log measurements, fluctuations are seen on slot

level and also across slots on which jobs are run. (Each slot consists of four

nodes.)

2. Two-stage job prediction pipeline helps filter out jobs that may have fault tol-

erance built into them. (These will be processed separately). This improves

prediction accuracy.

3. Hardware error data are duplicated for job failure events that occur close

to each other. For example, data two minutes before a job starts and two

minutes after a job ends are used to process a job. This results in an overlap

73

of hardware errors across multiple jobs. Once we filtered out the duplicate

errors, the prediction accuracy increased from 81.2% to 84.6%.

4. We use recurrent neural network models to predict hardware event se-

quences and the Topics over Time algorithm to generate the input topic

patterns.

5.2 Related Work
To enable prompt evasive actions for failure detection in HPC systems, significant efforts

have been directed towards identifying and predicting failures. Survey papers [78,142]

on failure prediction give an in-depth idea of current fault prediction methodologies

and their shortcomings.

Past efforts to standardize the pre-processing of error logs as a first step to tack-

ling these issues include a three-step pre-processing method (event categorization,

event filtering, and causality related filtering) to reduce the size of log data [192],

an online clustering algorithm to represent textual and temporal data in the log files

succinctly [77], and an online algorithm with clusters that adapt to streaming event

patterns [49, 51]. We discuss some of the insights gained from data pre-processing in

Section 𝑉 .

Machine learning algorithms have been used for in-situ predictions of HPC system

faults. The decision tree machine learning algorithm has been used to predict hard

disk failures [52, 139] from statistically significant/filtered parameters. A context free

grammar-based rapid event analysis has been used for online anomaly prediction with

lead times of 3 minutes to node failures [26]. The Random Forest machine learning

algorithm has been used to predict node [90,122] and job failures [156] with lead times

of up to one hour [122]. A two-stage prediction model has been used to predict disk

failures [52] or input parameters [17]; the stages serve to filter out relevant data. In

our work, we adopt the use of a 2-stage machine learning pipeline for job exit status

prediction where the first stage filters down to failed jobs, and the second predicts the

exit status of these jobs.

74

DCDB Wintermute [123] is an online generic framework implemented on top of the

Data Center Data Base (DCDB) monitoring system that enables Operational Data Anal-

ysis (ODA) [12]. In this work, multiple types of log data, including job, hardware, and

environment logs, are analyzed. However, each type of data is analyzed separately, and

there is no correspondence in the analysis and visualization of results of these different

types of logs. There are a few automated log analysis tools [31, 49, 51, 64, 114, 130, 192]

(some of which were discussed in Chapter 3, Sec. 4.1) that use event pattern-based corre-

lations, signal analysis, pattern mining and spatial/temporal event analysis for system

failure analysis. There are tools for mining event correlations called LogAider [31] and

LogMaster [42] with generic, easy-to-use visualizations. DeepLog [32] is a deep neural

network model with stacked Long Short-Term Memory (LSTM) networks, dynamically

updating the models to accommodate changing log patterns. Unlike our work, this

work does not provide lead time analysis on the predictions. MELA [151] is a visual

analytics tool for analyzing diverse log data that tackles issues with scalability and in-

teractivity and is used to visualize and process data with multiple-year logs. A basic log

statistical visualization, Blue Gene Navigator [97], provided by IBM, is used by system

administrators to monitor their systems. La VALSE [59] has a scalable user interface

where large amounts of hardware data in supercomputers are explored. These visual-

ization tools lack the support for scalable and interactive visual analysis of diverse HPC

system logs with an online/dynamic prediction engine back-end, which we address in

our work.

Analyzing one or two types of log data would not suffice to provide complete insight

in comprehending the complexity of large-scale systems. Although several attempts

have been made in the past to process multiple types of error log data, most studies

avoid using environment logs in their analysis as it can be computationally expensive

to process hundreds of measurements per node. We aim to address these shortcomings

as described in the following sections.

75

5.3 System Overview
Fig. 5.1 depicts the architecture of our system with three main sections: databases, back-

end processing, and front-end visualization. Our system runs on a machine with two

6-core, 2.4-GHz Intel E5–2620 processors with the Intel Haswell architecture and 384

GB memory per node. The SEDC/environment, hardware error, and job log datasets

are 3-4 GB per day, 1-2 GB per month, and a few hundred MB per year, respectively.

After the initial data mining step on the hardware error logs, the data size is tens of

GBs. Our system is implemented with Python 3.7, a Flask server [57] back-end, and a

D3 [11] visualization front-end. For SEDC log storage, we use InfluxDB [76], a database

optimized for speedy, high-availability storage, and retrieval of time series data. Since

the job and hardware error logs have multiple overlapping measurements recorded at

unequal intervals by various components, we store them in an SQL database. A demo

video are available online [37].

The next sections present an overview of the various system components and their

interactions.

5.3.1 Visual Analytics System
The visualization section is split into three main views: 1) selection view, 2) main view

and 3) job view.

The selection view consists of 1) a SEDC view, to list measurements in the environment

log, 2) a nodes view, to list the nodes used by the selected job, and 3) a recurrent neural

network (RNN) prediction view, to list hardware error log predictions. Our system

predicts up to 20 hardware errors that are likely to occur within the next few minutes

with 81% accuracy.

The main view consists of 1) a SEDC cluster view, 2) a hardware topic clouds view,

and 3) a hardware topic abstract view. In the SEDC cluster view, SEDC measurements

for the selected nodes are clustered using Agglomerative clustering, and the mean

function of the time-series data for each cluster is displayed, as shown in Fig. 5.2. The

mean functions of each cluster are displayed using separate colors. The user can view

the individual measurements by clicking on each measurement in the selection SEDC

76

InfluxDB - SEDC SQL - Hardware Log SQL - Job Log

Nodes View

RNN Prediction View

Selection View Job View

Job Table

Job Selection

SEDC Cluster View

Jo
b

U
pd

at
e

SEDC View

 User Update
System Update

Jo
b

S
el

ec
tio

n

Vi
su

al
iz

at
io

n
Fr

on
te

nd
B

ac
ke

nd
 P

ro
ce

ss
D

at
ab

as
e

Hardware Topic Clouds
View (Detailed View)

(1) (2) (3)

Mean Function
Generation of the

Computed Clusters

Agglomerative
Clustering of

time-series SEDC

SEDC View Pipeline

SEDC forecasting of
unavailable data

points

Hardware
Topic

Generation
(ToT)

Stage 1

Hardware
Error

Prediction
(RNN model)

Stage 2

Hardware/Job Analysis Pipeline
2-Stage Job Prediction Pipeline

Stage 3

Stage 4 Job Exit Status
Prediction

Job Failure
Prediction
(pass/fail)

Main View

Hardware Topics -
Abstract View

Figure 5.1: Architecture overview of our system for analyzing multi-fidelity HPC system logs. Our sys-
tem is comprised of the back-end processing pipeline and the visualization front-end. The visualiza-
tion front-end is split into (1) the selection view, (2) the main view, and (3) the job view. The backend
process is split into the SEDC view pipeline and hardware/job analysis pipeline. The hardware/job
analysis pipeline consists of 4 stages (1) hardware topic generation, (2) hardware error prediction (3)
job failure prediction, and (4) job exit status prediction. Stages 3 and 4 are referred to as 2-stage job
prediction pipeline since they handle job failure predictions (© 2022 IEEE).

view, and these measurements are displayed in black.

The hardware topic clouds view is used to visualize the hardware errors grouped

into topics using the Topics over Time (ToT) algorithm [176]. This algorithm has

shown promising results for error log analysis in the past [25]. Here, the “words”

are tokens from hardware error messages. This algorithm identifies and filters topics

across time while integrating trends over longer time frames than traditional topic

modeling methods such as LDA [10]. Each group of words belonging to one topic at

a particular timestamp is displayed using a word-cloud display. The font size of the

words corresponds to their influence/score in the topic. The user can filter words by

score. The pan and zoom interactions allow for a more comprehensive view of the

topic/SEDC trends in the timeline. This view shows how various topics evolve during

the job’s lifetime. Since we cannot assume that the Cray XC40 subsystems are perfectly

77

synchronized, we group the hardware error log data in a granularity of 10 seconds.

The hardware topic abstract view displays at most 5 error messages per topic, a

maximum of 25 error messages in total, sorted by topic modeling scores. In cases where

there are not enough significant error messages assigned per topic, this count is lower.

This view consists of two components: (1) the topic view and (2) the dimensionality

reduction (DR) view. The user can choose the DR method: PCA [82], UMAP [116], or

t-SNE [171]. This DR view gives a 2D representation of the top 23 topics. This view

identifies the types of error messages–for example, network-level or node-level–and the

nodes on which these errors persist. Once the user learns the error types, the relevant

nodes, and the corresponding time range, they can switch to the hardware topic clouds

view to further investigate.

The job view consists of a table of jobs on the HPC system, either currently running

or from the past. The user needs to select a particular job to analyze.

Using the feedback mechanism, the user can update the hardware event sequences

predicted by the RNN. These updated sequences are passed through the two-stage job

prediction pipeline to predict if the job will pass or fail and the job’s most likely exit

status. The user is also able to update the job exit status prediction. The two-stage job

prediction models are retrained using the updated job exit status. In the next section,

we discuss how we process this group of diverse datasets individually and together to

feed into the visualization front-end.

5.3.2 Back-end Processing Pipeline
Jobs running on supercomputers routinely run for up to 24 hours on thousands of

nodes. Each node has multiple SEDC measurements, reporting data such as power

supplies, processors, memory, and fan readings from sensors. A node also reports

hardware errors. As the data size increases, so does the computational overhead.

Therefore, we designed our system to process one job at a time. When the user selects

a job, our system processes the job, SEDC, and hardware error logs for the time frame

within which the job is scheduled to run.

78

5.3.2.1 Data Pre-processing

Environment/SEDC log data contains information from various sensor readings of

the HPC system fetched at 10-30 second granularity. This dataset’s sheer size poses a

challenge during the initial data mining stage and contributes to significant processing

overhead. We could have SEDC readings from close to 150 sensors per node. The

dataset also has missing entries since the sensors are not immune to failures. To

address this problem, we use the ARIMA (Autoregressive Integrated Moving Average

Model) [70] time-series forecasting method to fill in the missing data, as described in

the next section. The hardware error log contains information about hardware failures,

categorized as INFO, WARN, or FATAL. INFO messages report the progress of the

application at a coarse-grained level. WARN messages highlight conditions that could

hamper normal operation. FATAL messages highlight severe errors that could lead the

application to fail or abort. In conjunction with job log data, which gives information

about system usage by applications, we use this dataset to identify recurring patterns

of errors that often lead to failure. We analyze the log data for the year 2018. We split

the log data: 48% as a training set, 32% as a validation set, and 20% as a test set.

5.3.2.2 SEDC View Pipeline

The SEDC view pipeline processes the environment log data. The Cray XC40 supercom-

puter has approximately 700 SEDC readings associated with slots in the supercomputer.

Each slot comprises four nodes, and we can filter the measurements per node.

First, we use the ARIMA methodology to fill in missing environment log readings.

ARIMA [70] is a type of statistical model for analyzing and forecasting time-series data.

This model aims to describe the autocorrelations in the data. Autoregression (AR)

extracts dependencies between current observations and a certain number of lagged

observations. Integration (I) is used for making the readings stationary by subtracting

observations from the previous observations. Moving Average (MA) extracts depen-

dencies on residual errors of lagged observations and the current observation. Any

time-series data that is non-seasonal, not random white noise, and exhibits patterns,

can be modeled with ARIMAmethodology. We use ARIMAmethodology to forecast miss-

79

ing time-series values due to a failure in procurement from unforeseen circumstances,

including software failures. However, in cases where a node failed or devices were

shut down, the readings are assigned a zero. The ARIMAmodel can be written as:

𝑦𝑡 = 𝑐+𝛼1𝑦𝑡−1 + ...+𝛼𝑝𝑦𝑡−𝑝 +𝛽1𝜖𝑡−1 + ...+𝛽𝑞𝜖𝑡−𝑞 + 𝜖𝑡

where 𝑦 is the differential of the time-series, 𝑝 is the order of the autoregressive part, and

𝑞 is the order of the moving average part. If there are over 10 minutes of data readings

missing, we assume that the sensor was shut down and assign zero to the missing

entries within this duration. Our ARIMA implementation uses the Python statsmodels

library.

To cluster the SEDC log data, we first filter down to readings from the nodes selected

by the user. These readings are collected from 10 minutes before the job started to 10

minutes after the job ended. An evaluation of the job log and hardware log showed that

the 10-minute buffer captures sufficient information without adding too much overhead

to our system front-end and back-end. Our goal is to cluster readings that follow a

similar trend during the job’s lifetime. We employ the Agglomerative Hierarchical

Clustering (AHC) [1], an algorithm that clusters time-series data incrementally while

constructing a hierarchical bottom-up tree-shaped structure of the clusters. AHC is

used to group objects into clusters based on their similarity. This helps us track overall

trends in SEDC measurements by grouping similar trends together. In the bottom-up

computation, each leaf node of the tree is treated as a singleton cluster. Then successive

merges of pairs of clusters lead to a final single cluster containing all readings. The

readings in each cluster are then represented in the visualization by their mean function.

We tune the clustering algorithm to pick up to five clusters, which sufficiently captures

the overall trends without causing too much visual clutter. Our interactive visualization

allows the user to view individual SEDC readings as well. The next three sections

describe the four stages in the hardware/job analysis pipeline.

5.3.2.3 Hardware Topic Generation

Stage 1 in the hardware/job analysis pipeline includes using the Topics Over Time

algorithm [176] to capture the error messages and group them into topics. Hardware

80

error logs have duplicated events, which we combine or filter out during the pre-

processing stage. However, visualizing hardware error messages is challenging because

of the data size from numerous errors reported by job nodes. Therefore, we employ

the Topics over Time (ToT) algorithm [176], an LDA-style topic model, for modeling

localization and word co-occurrences in time. The model captures word associations

with topics that are localized in time. This model is shown to capture the structure or

weights of the words in topics and how these structures change over time. Each of the

words belonging to a topic identified by the ToT model is then displayed using a word

cloud in the hardware topics clouds view. Words with more influence on the topic are

displayed in larger font sizes. This helps the user view how error messages evolve as

the job approaches completion. The user can filter the messages by ToT topic scores

and nodes. Although ToT models could also be used to predict incoming hardware

event sequences, we choose RNNs for this task because the predictions are roughly two

times faster and provide about the same accuracy.

5.3.2.4 Hardware Error Prediction

In stage 2 of the hardware/job analysis pipeline, we perform hardware event sequence

forecasting with recurrent neural networks (RNNs). RNNs [184] were designed for

sequence prediction problems. Recent developments in text analysis, with the help of

deep learning, provide state-of-the-art performance and good accuracy in prediction

in text-based data. Simple language models try to predict a probability for the next

word given the current word. However, RNN language models can capture the entire

context of the input sequence to improve predictions. RNNs can be programmed to use

an internal state (memory) to process input sequences with a variable length. RNNs

have been used in the past for system log anomaly detection [13] to model the normal

distribution of system events in system logs and identify complex relationships. A Long

Short Term Memory (LSTM) layer, which is a type of RNN layer, helps prevent back-

propagated errors from vanishing or exploding (the “vanishing gradient problem”

[71]). Therefore, it is possible to remember information for long periods of time.

Regardless of the distance between context resets in event sequences, an LSTM handles

81

the problem of keeping or resetting context across temporal event sequences, which a

traditional RNN fails to do.

We use an RNN to predict the next sequence of error events for a job. The inputs are

the error messages and error categories from past error events. We use the Keras [36]

library and the Adam optimizer. Our RNN model contains an LSTM layer with 64

units, tanh activation, and dropout set to 0.1; a dense layer with 64 units and the ReLU

activation; a dropout regularization layer set to 0.5; and a dense output layer of width

100 with softmax activation. Our system uses the sequence of hardware error events

ten minutes before the current timestamp to predict up to 20 hardware events that are

likely to occur soon. We then feed these predicted events and the original sequence into

the two-stage job prediction pipeline. Using our RNN model to predict future events at

the component level, a user can identify components that are likely to fail and the type

of failure. The feedback mechanism allows the user to update the predicted results,

which our system then uses for future predictions.

5.3.2.5 Two-Stage Job Prediction Pipeline

Stages 3 and 4 in the hardware/job analysis pipeline form the two-stage job prediction

pipeline. They predict job failures and the exit status of the failed jobs.

Stage 3 uses a random forest classifier to predict if a job will successfully finish or

fail. The dataset used in stage 3 contains consolidated hardware and job log data from

the selected time frames. The jobs predicted to fail proceed to the next stage, job exit

status prediction.

In stage 4, we use a random forest classifier to predict each job’s exit status. With

the help of the predicted exit status the users can identify if the job will fail through

user termination, network error, user errors, memory errors, or signal termination. A

random forest classifier fits many decision tree classifiers on various data subsets to

avoid reducing the test prediction accuracy due to over-fitting. Our random forest

classifier is trained using 100 decision trees, a maximum tree depth of 8, the Gini

function to measure the quality of a split, and a minimum number of splits of 2. We

chose these hyperparameters using cross-validation.

82

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

03:40 03:45 03:50 03:55 04 AM 04:05 04:10 04:15 04:20 04:25 04:30 04:35 04:40
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

pdc_core_1
mcacod_message_channel

pdc_thread_2
uc_0

pdc_rev_0
scrubbingmscod_message_correctable

pdc_socket_0

mscod_8
over_0

scrub
mscod_message_correctable

bank_description_integrated
val_1pcc_0

bank_name_imc1

pdc_core_0
miscv_0

mcacod_194pdc_core_2

pdc_core_1
mcacod_message_channel

pdc_rev_0scrubbing

mscod_8
over_0

bank_description_integrated
val_1

pdc_core_0
miscv_0

pdc_core_1
mcacod_message_channel

pdc_rev_0
scrubbing

mscod_8
over_0

bank_description_integrated
val_1

pdc_core_0miscv_0

pdc_core_1mcacod_message_channel
pdc_thread_3

mce_error

pdc_rev_0
scrubbing

pdc_thread_1

imc1_mca_error

mscod_8
over_0

corr_err_count_1
uc_0

bank_description_integrated
val_1

pdc_core_7

pdc_thread_0

pdc_core_0
miscv_0addrv_1 patrol

pdc_core_1
mcacod_message_channel

pdc_thread_3
mce_error

pdc_thread_2

uc_0

pdc_rev_0
scrubbing

pdc_thread_1

imc1_mca_error
mscod_message_correctable pdc_socket_0

mscod_8
over_0

corr_err_count_1

uc_0
scrub

mscod_message_correctable

bank_description_integrated
val_1

pdc_core_7

pdc_thread_0

pcc_0

bank_name_imc1

pdc_core_0miscv_0
addrv_1

patrol

mcacod_194
pdc_core_2

pdc_core_1
mcacod_message_channel

pdc_thread_2

uc_0

pdc_rev_0scrubbing

mscod_message_correctable
pdc_socket_0

mscod_8
over_0

scrub

mscod_message_correctable

bank_description_integrated
val_1

pcc_0 bank_name_imc1

pdc_core_0
miscv_0

mcacod_194

pdc_core_2

mcacod_message_channel

pdc_rev_0

over_0

03:40 03:45 03:50 03:55 04 AM 04:05 04:10 04:15 04:20 04:25 04:30 04:35 04:40

Topic-0Topic-0

Topic-1Topic-1

Topic-2Topic-2

Topic-3Topic-3

Topic-4Topic-4

03:40 03:45 03:50 03:55 04 AM 04:05 04:10 04:15 04:20 04:25 04:30 04:35 04:40

0 0.2 0.4 0.6 0.8 1

Score Range 0.7-1

Job will likely fail with exit code = 137

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C11-0C1S0N0 -> ['MCE_ERROR_IM
C6-0C2S11N0 -> ['MCE_ERROR_IM
C8-0C0S14N1 -> ['MCE_ERROR_IM
C8-0C2S2N3 -> ['MCE_ERROR_IMC
C9-0C1S13N2 -> ['MCE_ERROR_IM

⇥⇥

SEDC:
BC_I_ARIES_1V8_CURRENT_c11-0
BC_I_BB_VERT_IVOC0_ECB_VDD_C
BC_I_BB_VERT_IVOC1_ECB_VDD_C
BC_I_NODE0_IVOC_ECB_VDD_CUR
BC_I_NODE0_VCCD012_IOUT_c11-0
BC_I_NODE0_VCCD345_IOUT_c11-0
BC_I_NODE0_VCCMP0123_IOUT_c1
BC_I_NODE0_VCCMP4567_IOUT_c
BC_I_NODE0_VCCPIO_IOUT_c11-0c
BC_I_NODE0_VCCSFR_IOUT_c11-0c
BC_I_NODE0_VCCU_IOUT_c11-0c1s
BC_I_NODE0_VPP012_IOUT_c11-0c
BC_I_NODE0_VPP345_IOUT_c11-0c
BC_I_NODE1_IVOC_ECB_VDD_CUR
BC I NODE1 VCCD012 IOUT 11 0

⇥⇥

NODE NAMES:
c11-0c1s0n0
c6-0c2s11n0
c8-0c0s14n1
c8-0c2s2n3
c9-0c1s13n2

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

03:50 03:51 03:52 03:53 03:54 03:55 03:56 03:57 03:58 03:59 04 AM 04:01 04:02 04:03 04:04 04:05 04:06
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

integrated

pdc_core_1
mcacod_message_channel

pdc_thread_3

mce_error
pdc_thread_2

uc_0

pdc_rev_0scrubbing
pdc_thread_1

imc1_mca_error

mscod_message_correctable

pdc_socket_0

mscod_8
over_0

corr_err_count_1
uc_0

scrub

mscod_message_correctable

bank_description_integrated
val_1

pdc_core_7

pdc_thread_0

pcc_0

bank_name_imc1

pdc_core_0
miscv_0

addrv_1

patrol

mcacod_194

pdc_core_2

pdc_core_1
mcacod_message_channel

pdc_thread_3

mce_error

pdc_thread_2

uc_0

pdc_rev_0
scrubbing

pdc_thread_1

imc1_mca_error

mscod_message_correctable
pdc_socket_0

mscod_8
over_0

corr_err_count_1

uc_0
scrub

mscod_message_correctable

bank_description_integrated
val_1
pdc_core_7

pdc_thread_0

pcc_0

bank_name_imc1

pdc_core_0miscv_0

addrv_1
patrolmcacod_194

pdc_core_2

pdc_core_1mcacod_message_channel
pdc_thread_3

mce_error

pdc_thread_2

uc_0

pdc_rev_0
scrubbing

pdc_thread_1

imc1_mca_error
mscod_message_correctable

pdc_socket_0

mscod_8
over_0

corr_err_count_1
uc_0

scrub
mscod_message_correctable

bank_description_integrated
val_1

pdc_core_7

pdc_thread_0

pcc_0
bank_name_imc1

pdc_core_0
miscv_0addrv_1 patrol

mcacod_194

pdc_core_2

03:50 03:51 03:52 03:53 03:54 03:55 03:56 03:57 03:58 03:59 04 AM 04:01 04:02 04:03 04:04 04:05 04:06

Topic-0Topic-0

Topic-1Topic-1

Topic-2Topic-2

Topic-3Topic-3

Topic-4Topic-4

03:40 03:45 03:50 03:55 04 AM 04:05 04:10 04:15 04:20 04:25 04:30 04:35 04:40

0 0.2 0.4 0.6 0.8 1

Score Range 0.7-1

Job will likely fail with exit code = 137

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C11-0C1S0N0 -> ['MCE_ERROR_IM
C6-0C2S11N0 -> ['MCE_ERROR_IM
C8-0C0S14N1 -> ['MCE_ERROR_IM
C8-0C2S2N3 -> ['MCE_ERROR_IMC
C9-0C1S13N2 -> ['MCE_ERROR_IM

⇥⇥

SEDC:
BC_I_ARIES_1V8_CURRENT_c11-0
BC_I_BB_VERT_IVOC0_ECB_VDD_C
BC_I_BB_VERT_IVOC1_ECB_VDD_C
BC_I_NODE0_IVOC_ECB_VDD_CUR
BC_I_NODE0_VCCD012_IOUT_c11-0
BC_I_NODE0_VCCD345_IOUT_c11-0
BC_I_NODE0_VCCMP0123_IOUT_c1
BC_I_NODE0_VCCMP4567_IOUT_c
BC_I_NODE0_VCCPIO_IOUT_c11-0c
BC_I_NODE0_VCCSFR_IOUT_c11-0c
BC_I_NODE0_VCCU_IOUT_c11-0c1s
BC_I_NODE0_VPP012_IOUT_c11-0c
BC_I_NODE0_VPP345_IOUT_c11-0c
BC_I_NODE1_IVOC_ECB_VDD_CUR
BC I NODE1 VCCD012 IOUT 11 0

⇥⇥

NODE NAMES:
c11-0c1s0n0
c6-0c2s11n0
c8-0c0s14n1
c8-0c2s2n3
c9-0c1s13n2

SEDC readings colored
using cluster colors from
the SEDC Cluster View

shown in the right

Mean functions of
SEDC Clusters

User selected job
for analysis

WordClouds

Nodes for which
hardware errors were

recorded

Hardware error
prediction made per

node using RNN.
This section accepts

user feedback

Predicted job exit status

Zoom control

WordCloud score
filter to select words
of varying scores in

each topic

Job End Timestamp

1

2

3

4

5

6

7

Figure 5.2: The figure shows the visualization front-end of the system. (1) ToT word clouds show the
evolution or lack of change in the hardware error topics that have occurred in the selected nodes on
which the job is running. (2) The plot shows the mean functions of the SEDC clusters. In total, 570
measurements have been grouped via Agglomerative Clustering in this example. (3) The hardware
error RNN predictions and (4) two-stage job exit status predictions are shown on the left. (5) Nodes
view showing nodes which reported hardware errors. (6) Word cloud score filter to select words of
varying scores in each topic. (7) Synchronized timeline control bar.

5.4 Case Studies
We describe two detailed cases of job failures and present how our system aids in the

identification of failure events from the large-scale and diverse logs. The case studies

illustrate how to interpret the different layouts in the visualization and compare the

processed results from each data type. In the second case study, we describe some of

the user interaction mechanisms available in our system.

5.4.1 Case Study 1:
Fig. 5.2 depicts the hardware topic clouds view, using word clouds (Fig. 5.2 1O), for the

case study 1 job. This job was expected to run for 6 hours on 256 nodes but ended at

approximately 50 minutes with exit status 137. Using the selection view, we can identify

the nodes where hardware errors have occurred (Fig. 5.2 5O). Out of the 256 nodes used

by the job, there are 5 with hardware errors. Upon selecting these 5 nodes, the word

83

cloud view updates, showing the summarized distribution of the hardware error topics.

The zoomed view of the word cloud (Fig. 5.2 7O) makes the error distribution over time

more intelligible. We can investigate hardware errors using the word cloud view by

zooming in further and adjusting the score range scale (Fig. 5.2 6O). We see that the

nodes have encountered multiple machine check exception (MCE) errors. The field

𝑣𝑎𝑙_1 (Fig. 5.2 1O) means that a valid error has occurred. The UC set to 0 (shown in

Topic-2) indicates that the processor fixed the error condition. The PCC bit set to zero

indicates that the error condition did not corrupt the processor’s state. However, this

error summary is for all 5 selected nodes. We can select individual nodes (Fig. 5.2 5O) to

view the summary of hardware errors at that precision. The environment log (SEDC)

measurements are read for the selected nodes. We use Agglomerative Clustering to

cluster time-series data for the selected job duration into groups of high similarity. In

this example, we read 570 SEDC measurements and compute the mean function for

each cluster. The resulting cluster means are shown in the SEDC cluster view (Fig. 5.2 2O).

We see larger variations in clusters 2, 3 and 4. The RNN model is then used to predict

the hardware errors likely to occur soon. In this example, the RNN predicts that the

next 10 hardware errors are likely to be Machine Check Exception (MCE), likely caused

by memory issues. Using up to 20 predicted hardware errors along with hardware

errors that have already occurred during the job, we predict the job’s exit status using

the two-stage job prediction pipeline. The predicted job status is then shown in the

visualization (Fig. 5.2 4O). The user can update this view if the prediction is wrong. In

this example, 22 minutes before the actual failure, our system predicts that the job is

likely to fail with exit status 137. This should provide sufficient lead time for proactive

actions to prevent a potentially catastrophic event.

5.4.2 Case Study 2:
Fig. 5.3 shows the SEDC cluster view for the nodes of a selected job. This job was

expected to run for 10 hours on 648 nodes but ended at approximately 9 hours with exit

status 143. In this example, the job prediction pipeline uses the input from the RNN

model, which predicts the hardware errors likely to occur in the near future. The job

84

Clusters 1,2, and 3 (C_1, C_2, and C_3)
show larger fluctuations

Identified Change points
Error Range

Sc
al

ed
 S

ED
C

 M
ea

su
re

m
en

ts

 Rack 4-0, 10-1, 2-1

 Rack 8-1

MCE Error
patrol scrub

IMC1 mca error
network read

error
Bank# PDC#

Time

(1)

(2)

(3)

(4)

All Clusters

Cluster 3

Cluster 2

Cluster 1

Main Errors within
Change Points of SEDC

Readings

Sc
al

ed
 S

ED
C

 M
ea

su
re

m
en

ts

Time

Figure 5.3: The figure shows the SEDC view for the nodes of a selected job. (1) shows the mean
functions of all the clustered SEDC readings, (2)-(4) show the mean functions of the SEDC readings
for clusters 3, 2, and 1 (C_3, C_2, C_1), respectively. The change points identified are shown in dotted
black lines in (2)-(4). The cluster C_3 include readings pertaining to nodes that have machine check
exception (MCE) errors with correctable memory errors in the error range identified by the change
points. The identified change points within the SEDC readings give the time-ranges of interest which
are shown in red rectangular overlay. In the figure the nodes and sets of nodes (racks) are shown in
the green outlined box. In (2), the nodes with hardware errors show similar trends for the duration of
the errors. Whereas, (3) & (4) show behavior of sets of nodes used by the job that did not report any
hardware error (© 2022 IEEE).

prediction pipeline predicts that the job will likely fail with exit status 143, 32 minutes

before the actual failure. This provides sufficient lead time for proactive actions and

further investigation on problematic nodes to prevent potentially catastrophic events

in the near future. In Fig. 5.3, the readings showing current (unit in amperes) are

normalized between values −3 and 3. The identified change points (shown in vertical

dashed black lines), help in filtering the time range (shown in red overlay) of the job

run when these nodes reported the hardware errors. In Fig. 5.3 1O, the mean function

of the readings belonging to the clusters C_1, C_2, and C_3 show larger fluctuations

for the duration of the job run. By analyzing trends of SEDC readings belonging to

individual clusters, a user can identify similar behaviors of individual nodes or sets of

85

nodes, i.e., racks. For example, in Fig. 5.3 2O, cluster 3 (C_3) shows peaks and troughs at

specific time points (shown in vertical dashed black lines). This cluster contained SEDC

readings from all the nodes reporting hardware errors for the selected job. Fig. 5.3 3O-

4O, capture the mean behavior of nodes from racks used by the job that reported no

hardware errors. Here, the error range in each figure (Fig. 5.3 3O, 5.3 4O) isolates the

region of hardware errors at nodes (in the same rack) that reported hardware errors,

i.e., Fig. 5.3 2O. For example, in Fig. 5.3 3O, job nodes with no errors in racks 4-0, 10-1,

and 2-1 show error regions for job nodes in the same racks (𝑐4-0𝑐1𝑠13𝑛1, 𝑐10-1𝑐1𝑠5𝑛0,

and 𝑐2-1𝑐0𝑠1𝑛0) with trends shown in Fig. 5.3 2O. Similarly, Fig. 5.3 4O show error region

for job node 𝑐8-1𝑐1𝑠1𝑛1 (Fig. 5.3 2O). Although not all time ranges identified by the

change point detection [165] algorithm are error regions, the method gives an intuition

of interesting time ranges for a long-running job and helps narrow down which nodes

may be problematic.

5.4.3 Case Study 3:
Fig. 5.4 shows the abstract view of the hardware error messages. This view has two

components: (1) the topic view and (2) the dimensionality reduction (DR) view. The

user can use this abstraction of the errors to identify the error types, for example, if the

error is at the node or network level. The topic view 1O shows the top 23 error messages

on the vertical axis and the topic categories on the horizontal axis for the selected job,

nodes, and time range. Users can select clusters in the DR view 2O, which highlights

the corresponding error messages. In Fig. 5.4 2O, the points belonging to Topic-2 are

selected, and the highlighted error messages in Fig. 5.4 1O are 𝑙𝑐𝑏 (Link Control Block)

errors. Points in topics 0 and 4 are closer to each other in the DR view, suggesting that

these errors are related. This is evident in the topic view (1O, 3O), since these topics share

node-level errors, scrubbing, patrol etc., which are related to memory errors. Selecting

points from Topic-4 in Fig. 5.4 4O highlights node-level errors. Upon identifying the

error types and the corresponding nodes and time range, the user can switch to the

detailed view to inspect the error messages in more detail. Fig. 5.5 shows the hardware

topic clouds view, using word clouds for a job that failed with exit status 1. The job ran

86

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

Show Categories

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM 0

20

40

60

80

100

120

140

160

Time (EVENT_TIMESTAMP)

GHAL_ARIES_CORRECTABLE_MEMORY_ERRORS
GHAL_ARIES_CRITICAL_ERRORS
GHAL_ARIES_INFORMATIONAL
GHAL_ARIES_TRANSACTION_ERRORS
GHAL_ARIES_TRANSIENT_ERRORS
GHAL_ARIES_UNKNOWN_TRANSACTION_ERRORS
MCE_ERROR↺

rt_node

rt_aries

rt_aries_nic

rt_aries_lcb

PCA

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM

Topic0Topic0 Topic1Topic1 Topic2Topic2 Topic3Topic3 Topic4Topic4
tx_phy_ln_en_7 䨮

bank_name_imc1 䨯
pdc_rev_0 䨰

patrol 䨱
lane 䨲

pdc_core_8 䨳
scrubbing 䨴

corr_err_count_12 䨵
imc1 䨶

ia32_mci_addr_71841308928 䨷
corr_err_count_1 ʩ

slb_lcb_sts_startup_0 ʪ
mscod_8 ʫ

scrub ʬ
ia32_mci_addr_146403124288 ʭ

slb_lcb_err_info_crc_cnt_1 ʮ
pdc_core_10 ʯ

miscv_0 ʰ
val_1 ʱ

pdc_type_5 ʲ
rx_phy_ln_en_7

rt_node
over_0

0 100 200 300 400 500 600 700 800 900

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
PC-1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
C
-2

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C0-0C2S5N3 -> ['MCE_ERROR_IMC
C1-0C2S12N1 -> ['MCE_ERROR_IM
C3-0C1S9N3 -> ['MCE_ERROR_IMC
C6-0C0S1N1 -> ['MCE_ERROR_IMC
C7-0C0S11N2 -> ['MCE_ERROR_IM
C9-0C0S13N2 -> ['MCE_ERROR_IM
C9-0C1S3N1 -> ['MCE_ERROR_IMC

⇥⇥

SEDC:
BC_I_ARIES_1V0_CURRENT_c9-0c
BC_I_ARIES_VCORE_CURRENT_c9
BC_I_NODE0_VCCLR_IOUT_c9-0c1s
BC_I_NODE0_VCCMLB_IOUT_c9-0c
BC_I_NODE1_VCCLR_IOUT_c9-0c1s
BC_I_NODE1_VCCMLB_IOUT_c9-0c
BC_I_NODE2_VCCLR_IOUT_c9-0c1s
BC_I_NODE2_VCCMLB_IOUT_c9-0c
BC_I_NODE3_VCCLR_IOUT_c9-0c1s
BC_I_NODE3_VCCMLB_IOUT_c9-0c
BC_I_ARIES_1V0_CURRENT_c0-0c
BC_I_ARIES_VCORE_CURRENT_c0
BC_I_NODE0_VCCLR_IOUT_c0-0c2s
BC_I_NODE0_VCCMLB_IOUT_c0-0c
BC I NODE1 VCCLR IOUT 0 0 2

⇥⇥

NODE NAMES:
c0-0c2s5n3
c0-0c2s6n1
c1-0c2s12n1
c3-0c1s9n3
c6-0c0s1n1
c7-0c0s11n2
c9-0c0s13n2
c9-0c1s3n1

Topic-4 selected

3

4

Selecting Topic-4
highlights node level

failures

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

Show Categories

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM 0

20

40

60

80

100

120

140

160

Time (EVENT_TIMESTAMP)

GHAL_ARIES_CORRECTABLE_MEMORY_ERRORS
GHAL_ARIES_CRITICAL_ERRORS
GHAL_ARIES_INFORMATIONAL
GHAL_ARIES_TRANSACTION_ERRORS
GHAL_ARIES_TRANSIENT_ERRORS
GHAL_ARIES_UNKNOWN_TRANSACTION_ERRORS
MCE_ERROR↺

rt_node

rt_aries

rt_aries_nic

rt_aries_lcb

PCA

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM

Topic0Topic0 Topic1Topic1 Topic2Topic2 Topic3Topic3 Topic4Topic4
tx_phy_ln_en_7 䨮

bank_name_imc1 䨯
pdc_rev_0 䨰

patrol 䨱
lane 䨲

pdc_core_8 䨳
scrubbing 䨴

corr_err_count_12 䨵
imc1 䨶

ia32_mci_addr_71841308928 䨷
corr_err_count_1 ʩ

slb_lcb_sts_startup_0 ʪ
mscod_8 ʫ

scrub ʬ
ia32_mci_addr_146403124288 ʭ

slb_lcb_err_info_crc_cnt_1 ʮ
pdc_core_10 ʯ

miscv_0 ʰ
val_1 ʱ

pdc_type_5 ʲ
rx_phy_ln_en_7

rt_node
over_0

0 100 200 300 400 500 600 700 800 900

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
PC-1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
C
-2

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C0-0C2S5N3 -> ['MCE_ERROR_IMC
C1-0C2S12N1 -> ['MCE_ERROR_IM
C3-0C1S9N3 -> ['MCE_ERROR_IMC
C6-0C0S1N1 -> ['MCE_ERROR_IMC
C7-0C0S11N2 -> ['MCE_ERROR_IM
C9-0C0S13N2 -> ['MCE_ERROR_IM
C9-0C1S3N1 -> ['MCE_ERROR_IMC

⇥⇥

SEDC:
BC_I_ARIES_1V0_CURRENT_c9-0c
BC_I_ARIES_VCORE_CURRENT_c9
BC_I_NODE0_VCCLR_IOUT_c9-0c1s
BC_I_NODE0_VCCMLB_IOUT_c9-0c
BC_I_NODE1_VCCLR_IOUT_c9-0c1s
BC_I_NODE1_VCCMLB_IOUT_c9-0c
BC_I_NODE2_VCCLR_IOUT_c9-0c1s
BC_I_NODE2_VCCMLB_IOUT_c9-0c
BC_I_NODE3_VCCLR_IOUT_c9-0c1s
BC_I_NODE3_VCCMLB_IOUT_c9-0c
BC_I_ARIES_1V0_CURRENT_c0-0c
BC_I_ARIES_VCORE_CURRENT_c0
BC_I_NODE0_VCCLR_IOUT_c0-0c2s
BC_I_NODE0_VCCMLB_IOUT_c0-0c
BC I NODE1 VCCLR IOUT 0 0 2

⇥⇥

NODE NAMES:
c0-0c2s5n3
c0-0c2s6n1
c1-0c2s12n1
c3-0c1s9n3
c6-0c0s1n1
c7-0c0s11n2
c9-0c0s13n2
c9-0c1s3n1

1

2
Topic-2 selected

Selecting Topic-2
highlights network link

failures

Figure 5.4: The figure shows the abstract view of the hardware error messages in a job. This view
consists of two components, (1)(3) the topic view and, (2)(4) the dimensionality reduction view, (PCA,
UMAP, t-SNE) (© 2022 IEEE).

on 256 nodes for a runtime of about 6 hours. The selection view shows that 8 of the

256 nodes have hardware errors. Upon selecting these 8 nodes, the word cloud view

updates to show the distribution of hardware error topics. As we zoom in further on

the word cloud view, we find that the nodes have encountered multiple machine check

exception (MCE) errors with 𝑣𝑎𝑙_1 showing that a valid error has occurred. The word

cloud visualization also shows that there has been patrol scrubbing, a variant of memory

scrubbing, throughout the job’s duration. Memory scrubbing corrects bit errors and

as it consists of read and write operations, it is known to increase power consumption.

This increase in power consumption is shown in the SEDC cluster view (Fig. 5.5 2O) from

7:00 am to 11:00 am.

Fig. 5.6 shows the SEDC cluster view. In this example the readings showing current

(I, unit in amperes) are normalized between values −3 and 3. In Fig. 5.6 1O, the mean

function of the clusters C_2, C_3, and C_4 show larger fluctuations for the duration of

the job run. In the word cloud view, a user is able to view all the errors for a user-selected

87

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

Show Categories

pdc_core_2

pdc_core_1

miscv_0

mscod_message_correctable

mcacod_message_channel

scrub

patrol

mscod_message_correctable

mcacod_message_channel

miscv_0

mscod_message_correctable
pdc_core_2

mscod_message_correctable

patrol

pdc_core_1pdc_core_1

miscv_0

mscod_message_correctable

scrubbing

patrol
miscv_0

mscod_message_correctable
pdc_core_2

mce_error
pdc_core_1

scrubscrubbing

mcacod_message_channel
mcacod_194

pdc_core_2

pdc_core_1

miscv_0

pdc_core_1pdc_core_1

mi

p

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM

Topic-0Topic-0

Topic-1Topic-1

Topic-2Topic-2

Topic-3Topic-3

Topic-4Topic-4

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM

0 0.2 0.4 0.6 0.8 1

Score Range 0.7-1

Job will likely fail with exit code = 1

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C0-0C2S5N3 -> ['MCE_ERROR_IMC
C1-0C2S12N1 -> ['MCE_ERROR_IM
C3-0C1S9N3 -> ['MCE_ERROR_IMC
C6-0C0S1N1 -> ['MCE_ERROR_IMC
C7-0C0S11N2 -> ['MCE_ERROR_IM
C9-0C0S13N2 -> ['MCE_ERROR_IM
C9-0C1S3N1 -> ['MCE_ERROR_IMC

⇥⇥

SEDC:
BC_I_ARIES_1V0_CURRENT_c9-0c
BC_I_ARIES_VCORE_CURRENT_c9
BC_I_NODE0_VCCLR_IOUT_c9-0c1s
BC_I_NODE0_VCCMLB_IOUT_c9-0c
BC_I_NODE1_VCCLR_IOUT_c9-0c1s
BC_I_NODE1_VCCMLB_IOUT_c9-0c
BC_I_NODE2_VCCLR_IOUT_c9-0c1s
BC_I_NODE2_VCCMLB_IOUT_c9-0c
BC_I_NODE3_VCCLR_IOUT_c9-0c1s
BC_I_NODE3_VCCMLB_IOUT_c9-0c
BC_I_ARIES_1V0_CURRENT_c0-0c
BC_I_ARIES_VCORE_CURRENT_c0
BC_I_NODE0_VCCLR_IOUT_c0-0c2s
BC_I_NODE0_VCCMLB_IOUT_c0-0c
BC I NODE1 VCCLR IOUT 0 0 2

⇥⇥

NODE NAMES:
c0-0c2s5n3
c0-0c2s6n1
c1-0c2s12n1
c3-0c1s9n3
c6-0c0s1n1
c7-0c0s11n2
c9-0c0s13n2
c9-0c1s3n1

⇥⇥

Detailed ViewDetailed View Abstract ViewAbstract View

PrevPrev 1 to 27 of 1734 entries NextNext

PREDICTED ERRORS:

12 PM 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 01 PM
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C_0
C_1
C_2
C_3
C_4

trol

pdc_thread_0

mscod_message_correctable
c_core_2

er_0
pdc_core_7

or

pdc_socket_0

_0

_message_channel
194

0

v_1

patrol

pdc_core_1

scrub

pdc_thread_1

corr_err_count_1

imc1_mca_error

mcacod_194

patrol
miscv_0

bank_name_imc1

pdc_thread_1

pcc_0

pdc_thread_0

mscod_message_correctable
pdc_core_2

corr_err_count_1
pdc_core_3

over_0

pdc_core_7

mce_error
pdc_core_1

pdc_rev_0
pdc_core_0

val_1
pdc_thread_2

scrub
scrubbing

pdc_core_6
imc1_mca_errorpdc_socket_0

pcc_0

mcacod_message_channel
mcacod_194

uc_0

mscod_8

pdc_thread_0

addrv_1

patrol
miscv_0

bank_name_imc1
pdc_thread_1

pcc_0
pdc_thread_0

mscod_message_correctable
pdc_core_2

corr_err_count_1
pdc_core_3

over_0

pdc_core_7

mce_error
pdc_core_1 pdc_rev_0

pdc_core_0

val_1pdc_thread_2

scrub
scrubbing

pdc_core_6
imc1_mca_error

pdc_socket_0
pcc_0

mcacod_message_channel
mcacod_194

uc_0
mscod_8

pdc_thread_0
addrv_1

patrol
miscv_0

pcc_0
pdc_thread_0

mscod_message_correctable
pdc_core_2

over_0 pdc_core_7

mce_error
pdc_core_1

val_1

pdc_thread_2

scrub
scrubbing

pdc_socket_0pcc_0

mcacod_message_channel
mcacod_194

pdc_thread_0

addrv_1

mscod_message_correctable

scrubbing

mcacod_message_chan

12 PM 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 01 PM

Topic-0Topic-0

Topic-1Topic-1

Topic-2Topic-2

Topic-3Topic-3

Topic-4Topic-4

07 AM 07:30 08 AM 08:30 09 AM 09:30 10 AM 10:30 11 AM 11:30 12 PM 12:30 01 PM

0 0.2 0.4 0.6 0.8 1

Score Range 0.62-1

Job will likely fail with exit code = 1

JOB NAME EXIT STATUS NODES USED WALLTIME[s] RUNTIME[s] QUEUE

256141.theta 143 128 10800 10936 backfill

256153.theta 137 256 21600 2119 backfill

256369.theta 0 1024 10800 7575 backfill

256370.theta 0 1024 10800 7095 backfill

257159.theta 143 2200 86400 3796 default

257282.theta 143 384 32400 32539 default

258179.theta 143 640 43200 16173 default

259029.theta 143 2048 21600 20769 default

260152.theta 137 512 7200 4850 training

260282.theta 1 256 21600 21196 default

260791.theta 143 256 21600 21773 default

261628.theta 143 380 21600 19697 default

258589.theta 0 2048 10800 9596 default

261458.theta 0 128 10800 5286 default

261673.theta 1 256 21600 14226 default

262031.theta 2 806 43200 708 default

247601.theta 143 4360 7200 7297 default

255991.theta 0 256 21600 22848 default

255992.theta 0 256 21600 22884 default

255993.theta 0 256 21600 21735 default

255994.theta 0 256 21600 22843 default

255995.theta 0 256 21600 21722 default

255996.theta 0 256 21600 21778 default

256142.theta 143 128 10800 10939 backfill

256143.theta 143 128 10800 10927 backfill

256151.theta 0 256 21600 13517 backfill

256167.theta 143 128 10800 10987 backfill

August 2018

C0-0C2S5N3 -> ['MCE_ERROR_IMC
C1-0C2S12N1 -> ['MCE_ERROR_IM
C3-0C1S9N3 -> ['MCE_ERROR_IMC
C6-0C0S1N1 -> ['MCE_ERROR_IMC
C7-0C0S11N2 -> ['MCE_ERROR_IM
C9-0C0S13N2 -> ['MCE_ERROR_IM
C9-0C1S3N1 -> ['MCE_ERROR_IMC

⇥⇥

SEDC:
BC_I_ARIES_1V0_CURRENT_c9-0c
BC_I_ARIES_VCORE_CURRENT_c9
BC_I_NODE0_VCCLR_IOUT_c9-0c1s
BC_I_NODE0_VCCMLB_IOUT_c9-0c
BC_I_NODE1_VCCLR_IOUT_c9-0c1s
BC_I_NODE1_VCCMLB_IOUT_c9-0c
BC_I_NODE2_VCCLR_IOUT_c9-0c1s
BC_I_NODE2_VCCMLB_IOUT_c9-0c
BC_I_NODE3_VCCLR_IOUT_c9-0c1s
BC_I_NODE3_VCCMLB_IOUT_c9-0c
BC_I_ARIES_1V0_CURRENT_c0-0c
BC_I_ARIES_VCORE_CURRENT_c0
BC_I_NODE0_VCCLR_IOUT_c0-0c2s
BC_I_NODE0_VCCMLB_IOUT_c0-0c
BC I NODE1 VCCLR IOUT 0 0 2

⇥⇥

NODE NAMES:
c0-0c2s5n3
c0-0c2s6n1
c1-0c2s12n1
c3-0c1s9n3
c6-0c0s1n1
c7-0c0s11n2
c9-0c0s13n2
c9-0c1s3n1

Mean functions of
SEDC Clusters

Memory scrubbing

Time range
selection from
12:00PM to

1:00PM

Job End Timestamp

Word-score range
0.7 - 1.0 selected

Job is predicted to exit with code
1, 50 minutes before the actual

failure

Machine Check Exceptions

Figure 5.5: The figure shows the visualization front-end of the system. (1) ToT word clouds show the
evolution or lack of change in the hardware error topics that have occurred in the selected nodes on
which the job is running. (2) The timeline plot shows the means of the SEDC measurement clusters.
In total, 683 measurements have been grouped via Agglomerative Clustering in this example. (3) The
hardware error RNN predictions and two-stage job exit status predictions are shown on the right. This
view shows the word clouds filtered by word score (6) to avoid clutter.

set of nodes and time duration. However, this view alone does not provide details about

time durations or specific time points at which the individual nodes report the errors. By

analyzing trends of SEDC readings belonging to individual clusters, a user can identify

behaviors of individual nodes or sets of nodes. For example, in Fig. 5.6 3O, the cluster 4

(C_4) shows peaks and troughs at specific time points (shown in vertical dashed black

lines). This cluster contained SEDC readings from node 𝑐0-0𝑐2𝑠5𝑛3. Using these time

points, identified by the change point detection [165] algorithm, a user can identify the

errors reported by this node. Filtering the word cloud data for this node (using the

nodes view in the selection view) showed that the node reported errors at time points

identified using the SEDC cluster view and in the duration from 10 : 22AM - 10 : 57AM

88

Clusters 2, 3 and 4 (C_2, C_3, C_4)
show larger fluctuations

mce_Error
patrol

IMC1_mca_error
scrubbing

PDC#

Main Errors within Clusters of SEDC Readings

mscod_correctable
miscv_0

ia32_mc1_addr_892
bank_description_integrated

Time

Time

S
ca

le
d

 S
E

D
C

 M
ea

su
re

m
en

ts
(1)

(2)

(3)
Time

c9-0c0s13n2

c0-0c2s5n3

Racks 7, 3 Identified Change Points
Error Range

Figure 5.6: The figure shows the SEDC Cluster view. (1) shows the mean functions of all the clustered
SEDC readings, (2) shows the mean function of the SEDC readings for cluster 3 (C_3), and (3) shows
the mean function of the SEDC readings for cluster 4 (C_4). The change points identified are shown
in dotted black lines in (2) and (3). These change points give the time-ranges of interest, which are
shown in red rectangular overlay. The nodes or groups of nodes (racks) are shown in the green
outlined box (© 2022 IEEE).

when the SEDC measurements show a drop in value. In Fig. 5.6 2O, nodes used by the

job on racks 7 and 3 show similar SEDC trends. The identified change points (shown

in vertical dashed black lines), again help in filtering the time range (shown in red

overlay) of the job run when these nodes reported the hardware errors. Therefore, the

SEDC cluster view helps filter specific temporal regions for which a node or groups of

nodes behave uniquely. Thus, it helps augment the user’s perception of errors laid out

within the system. Some clusters also show SEDC readings measured at the rack level

(each rack contains 192 nodes). When rack-level readings and node-level readings are

clustered together, it shows that the job is affecting readings at the rack level even if the

job doesn’t utilize the entire rack.

The RNN model is then used to predict the hardware errors likely to occur soon.

In this example, the RNN predicts that the next 10 hardware errors are likely to be

Machine Check Exception (MCE) errors. Using this information and the hardware

errors that have already occurred during the job run, we predict the exit status of the

89

job using the two-stage job prediction pipeline. In this example, our system predicts

job failure with exit code 1, 52 minutes before the actual failure.

5.5 System Model Analysis
This section describes the prediction results, lead time, and some insights from our

analysis. We analyze 91,217 jobs from 2018-2019. The error categories in the dataset

can be broadly classified as informational, memory, transaction, and transient errors.

The type of components that incur errors are either node or network (link control buffer,

network interconnect etc.). The combined hardware job log data is split with 48% as a

training set, 32% as a validation set, and 20% as a test set. To assess the quality of the

prediction methods we use three metrics, precision (pr), recall (rec), and accuracy (acc):

pr = 𝑇𝑃

𝑇𝑃+𝐹𝑃 rec = 𝑇𝑃

𝑇𝑃+𝐹𝑁

acc = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝐹𝑁 +𝑇𝑁

where𝑇𝑃 is the number of true positives, i.e., the number of correctly predicted failures;

𝐹𝑃 is the number of false positives, i.e., the number of jobs wrongly predicted as failures;

𝐹𝑁 is the number of false negatives; and 𝑇𝑁 is the number of true negatives. Precision

is the fraction of the jobs that were predicted as job failures that were correct. Recall

is the fraction of the job failures that were correctly predicted. Accuracy is the ratio of

correct predictions to the total number of predictions. Usually, an increase in precision

leads to a decrease in recall and vice versa. Table 5.2 summarizes the accuracies of each

stage in the hardware/job analysis pipeline.

Insight 1 - Capturing jobs with built-in fault tolerance is challenging: Stage 3, the

part of the job prediction pipeline that predicts if a job will fail, filters out jobs that may

have built-in fault tolerance by predicting that they will succeed, which improves the

prediction accuracy of Stage 4 (job exit status prediction). Jobs with built-in resilience

may still exit with success (exit status = 0). This behavior is difficult to model and predict

since these jobs process to completion despite anomalous behavior in the HPC system.

Our proposed course of action is to collect more fine-grained data, including console

90

logs and syslogs. This would help build models with more detailed information about

these jobs and their mechanisms to offload tasks when encountering system anomalies.

Insight 2 - Jobs with custom exit codes and stalled jobs need to be handled sepa-

rately: The jobs that are predicted to fail in stage 3 are then passed to stage 4, which

predicts the job exit status. This stage has an accuracy of 92.3%. If all jobs, including

those predicted to succeed, are passed on to stage 4, the accuracy drops to 85.1%. One

reason is that stage 3 of the pipeline helps filter out jobs with built-in fault tolerance,

jobs with custom exit status assigned to them, and jobs that have stalled. These jobs

need to be separately handled. Part of our future work will include identifying such

jobs and building a workflow to model their behavior. In our dataset an estimated

30% of the jobs could have fault tolerance built into their workflow. However, further

investigation is needed here.

Insight 3 - Including data from multiple sources along with cabinet/cage/slot infor-

mation improves the prediction accuracy: Here, we discuss some data pre-processing

insights that improved the prediction accuracy. Hardware error log data is duplicated

for job failure events that occur close to each other; we consolidate or remove such

repeated events if they occur within a predefined time-frame. The pre-processing of

hardware error data for hardware event sequence prediction using the RNN model

includes filtering duplicate events. Certain error messages occur very frequently and

continually; we only use these events at predefined intervals. Job log data and hardware

error log data are combined to form an input dataset for the two-stage job prediction

pipeline. Hardware events occurring close to a job, i.e., 30 seconds - 2 minutes before

or after, are added to that job in the combined dataset. This technique boosted the

prediction accuracy from 81.2% to 84.6%. Nodes in HPC systems are often categorized

as service or compute nodes. We processed the log data through the machine learning

pipeline to identify how these categories affect the prediction accuracy. The job exit

status prediction without cabinet/cage/slot information was 55% accurate. When we

included cabinet/cage/slot information, the accuracy increased to 88%. This boost in

prediction accuracy shows that each node still needs to be treated as an individual

91

entity, even in a homogeneous set of nodes. This method significantly increases the

size of the dataset.

Insight 4 - Including environment logs in the analysis could help pinpoint anoma-

lous system behaviors: Steep fluctuations, such as large temperature fluctuations, can

degrade disk and network performance. This could result in transient errors and device

performance fluctuating between normal conditions and degradation. With the SEDC

cluster view, we can visualize these measurement fluctuations. Fluctuations in SEDC

readings are seen at the slot level and across slots on which jobs are running. This

means that the processing of other jobs in the temporal and spatial vicinity could be

affected. When we encountered peculiar fluctuations in temperature measurements,

we investigated further. We found cases where nodes in the surrounding slots showed

a continued increase in temperature even after the initial job had stopped. Such cases

need to be investigated further. Although not frequent, do cases like these affect jobs

running on nodes in the neighboring slot? Our visualization provides a high-level

glimpse of such cases that are otherwise overlooked.

Table 5.1: Prediction results for stage 3, the job failure prediction stage, using various machine learning
models. The random forest model output is passed onto stage 4, the job exit status prediction stage,
and this gives an accuracy of 92.3% (© 2022 IEEE).

Model Accuracy TP TN FP FN

Random

Forest

65.4% 107250 9766 52820 4930

Decision

Tree

58.2% 88620 7080 57320 11980

Neural

Network

50.6% 75140 7360 68476 14024

Table 5.1 gives the confusion matrix with accuracy values for stage 3, the job failure

prediction stage for the combined job-hardware log. We reach an accuracy of 65.4% for

the Random Forest machine learning model with a precision of ∼64% and a recall of

∼95%.

92

Table 5.2: Prediction results for stages in hardware/job analysis pipeline (© 2022 IEEE).

Stages Description Model Accuracy

Stage 2 Hardware error

prediction

RNN 81.3%

Stage 3 Job failure predic-

tion

Random

Forest

65.4%

Stage 4 Job exit status pre-

diction

Random

Forest

92.3%

R
un

 T
im

e
(h

ou
rs

)

Wall Time (hours)

Q
ue

ue
d

Ti
m

e
(h

ou
rs

)

Figure 5.7: The figure shows the job execution time (runtime) versus the total time requested for a job
(wall-time) in hours, colored by the time the job spent in the queue, queued wait time, for failed jobs.

Fig. 5.7 shows the job execution time (runtime) versus the total time requested for

a job (wall-time) in hours. These jobs failed to execute successfully. The black line

represents time when the runtime is equal to the wall-time, at which time the jobs

terminate. The colors represent the time the jobs spent waiting in the queue before the

resource allocation. Here we see that the shorter running jobs do not spend too much

time in the queue as per the job scheduling policy. However, we also see jobs that spend

well over five hours in the queue and fail to execute successfully, with some jobs having

the runtime equal to the wall-time. In some cases these runtimes are close to 24 hours.

Hence, early error detection to avoid such cases becomes necessary.

93

Fr
eq

ue
nc

y

Lead Time (seconds)

Figure 5.8: The figure shows the lead time of job log exit status prediction for 9,456 jobs of the test
set. The histogram shows the distribution of the number of correct predictions in the two-stage job
prediction pipeline in terms of minutes ahead of the job termination (© 2022 IEEE).

Table 5.3: Description of Job Exit Code/Status (© 2022 IEEE)

Signal Value Meaning

SIGHUP 1 Catchall for general errors

or death of controlling pro-

cess

SIGINT 2 Misuse of shell built-ins or

Interrupt from keyboard

SIGILL 132 Illegal Instruction

SIGABRT 134 Abort signal from abort(3)

SIGKILL 137 Kill signal

SIGTERM 143 Termination signal; killed

by software or OS

SIGHUP 127 “command not found"

Figure 5.8 shows the distribution of the lead time of correct exit status predictions

in terms of minutes ahead of the job termination. The results show that only 591

94

(7.34%) of the predictions occur within 30 minutes of the actual failures, and a total of

8761 (92.65%) of the predictions occur further in advance. This provides a reasonable

amount of time for corrective measures to handle errors that cause an anomalous job

exit. The trained RNN model provides an accuracy of 81.3%. The hardware error

prediction stage gives us information about the types of hardware event sequences

more likely to occur at the hardware component level. Fortunately, the addition of the

RNN model in the pipeline does not reduce the lead time and in 1.2%−2% of cases the

lead time increases. As an improvement we plan to use additional logs like console

logs, syslogs etc. to get fine-grained error details to improve the trained RNN model.

Exit StatusExit Status
1 2 132 134 137 143 1271 2 132 134 137 143 127

Exit Status

C
o

u
n

t

(a) (b)95.00%

66.67%
39.29%

66.94%

50.00%66.67%52.17%

Figure 5.9: The figure (a) shows the number of correct and incorrect predictions per job exit status–
annotated with percentage of correct predictions–for 3152 jobs for the selected job exit codes included
in our test dataset, and (b) shows the job exit status predictions made by the model for cases in which
the predictions were incorrect. Most of the predictions incorrectly assign the exit status of 1, 143 or
137 to jobs. Exit codes 137, 143, and 1 are usually associated with kill signals, and this could lead to
some confusion in prediction (© 2022 IEEE).

The distribution of jobs per exit status is shown in Figure 5.9(a), along with the

breakdown for each category between those correctly labeled and incorrectly labeled.

For convenience, Table 5.3 lists common job exit statuses and a brief description for

each exit code. The most common non-zero exit status in the log dataset is 143. Our

model can label 92% of jobs with the correct exit status.

Figure 5.9(b) shows the incorrect model predictions of job exit status. Here we

have selected the most commonly occurring exit codes, since the exit codes can range

95

from 0-255. We can see that most of the incorrect predictions assign the exit status

of 1, 143 or 137 to jobs. The predictions with exit code 143 and 137, which signify

a kill or termination signal, are usually confused by the model. We posit that these

errors could be due to users providing their own exit codes when their application exits

unexpectedly, the job timing out, or errors introduced by incorrect predictions by the

RNN model from Stage 2.

Ti
m

e
(s

ec
on

ds
)

Error Topic
Generation (ToT)

2-Stage
Pipeline

SEDC
Clustering

Visual
Rendering

Figure 5.10: The figure shows the box plot of the user wait time in seconds for back-end and front-end
computations to complete. The computation times in the analysis pipeline of our system can be split
into sections: 1) error topic generation (ToT), 2) two-stage job prediction pipeline, 3) SEDC clustering,
and 4) visualization rendering (© 2022 IEEE).

Figure 5.10 shows the box plots for the various computation costs in our system

pipeline. We have identified four groups of computation times that contribute to

the overall user wait time. These are error topic generation using ToT, the two-stage

job prediction pipeline, SEDC clustering, and the visualization rendering. The topic

generation (ToT) computations take up to 10 seconds of wait time. The wait time

depends on parameters such as number of iterations, topics, and nodes. The two-stage

job prediction pipeline and SEDC clustering result in at most 6 seconds of wait time each.

The visual rendering is done asynchronously, and different parts of the visualization

render independently on the screen. Therefore, there is not much overhead, i.e. up to

4 seconds, in the visualization when compared to the time spent in the other parts of

96

our system.

Since our machine learning models do not make perfect predictions, our system

provides an option for feedback from users, such as the system administrators. The

user in the loop is able to make changes and updates to the output which is then used as

a feedback mechanism to update the model to be used in the future. We allow the user

to update hardware event sequences predicted by RNN. The user-updated sequences

are then passed through the two-stage job prediction pipeline to predict if the job passes

or fails and the most likely job exit status. The user can also update the job exit status

predicted by our system. The two-stage job prediction models are retrained using the

updated information while they are also check-pointed separately.

5.6 Conclusion
In this work, we share insights gained from data processing and analysis which could

be extended to be used with similar datasets. Our visual analytics tool analyzes the

job logs and helps glean insights from their correspondence with the other logs (i.e.,

hardware error logs, environment logs, etc.) at various temporal and spatial resolution.

In the job prediction pipeline, we have an accuracy of 65.4% for predicting if a

job will fail and an accuracy of 92.3% for predicting the job exit status. Predicting

whether jobs with built-in fault tolerance would fail is a challenging task and the

information in our dataset is not sufficient to make more accurate predictions. The

RNN model in the hardware error prediction stage helps in identifying the next 10-

20 hardware error patterns in the sequence (the number can be customized), and the

model accuracy is 81.3%. Including the hardware error prediction stage improves the

lead time in 1.2%−2% of the test cases and does not affect the lead times for the rest.

The hardware error prediction and two-stage job prediction pipeline in our system

identified 92.65% of the correctly-predicted jobs at least 30 minutes before failure. We

analyze SEDC/environment logs, which are usually ignored during error log analysis

due to their size, which can cross the gigabyte - terabyte range in a few weeks. Using

these logs could help pinpoint faulty nodes which can be investigated using our tool. To

97

counter any erroneous predictions made by our system, we have a feedback mechanism

that helps filter and update information which would help improve the deduction of

error patterns in the data.

Our next goal is to incorporate root cause analysis in our visual analytics system

with the help of additional logs such as syslogs and console logs.

“In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of University of California, Davis’s products

or services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go

to http://www.ieee.org/publications_standards/publications/rights/rights_

link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.”

98

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 6
A Visual Analytics Approach for
Multi-Scale Systemic Assessment of
Multifidelity High Performance
Computing Systems

6.1 Introduction
Maintenance and monitoring of supercomputer systems are crucial steps for facilitating

their robustness and reliability, leading to advancements in numerous fields of scien-

tific research. As supercomputing systems are growing in complexity with changing

execution environments, increasing computation capabilities, and increasing frequency

of updates and upgrades, the monitoring data collected at multiple fidelity levels and

varying temporal resolutions is also increasing. Furthermore, high utilization of these

systems is expected to accommodate applications and jobs that sometimes execute

on these systems for weeks. Hence, any system errors and failures could compro-

mise the integrity of the results or cause job failures, all of which lead to significant

overhead in the already computationally and financially expensive research and devel-

opment. Therefore, we study these diverse systems and subsystems’ log data and use

the knowledge acquired to derive patterns of behaviors that could help understand the

underlying state of the system at any given time. In this work, we focus our efforts

on the Cray XC40 system, specifically the Theta supercomputing system deployed at

ALCF [5]. Theta is an 11.69 Petaflops system that was designed in collaboration with

Intel and Cray. The nodes are interconnected with an Aries interconnect in a Dragonfly

topology. We built a holistic analytical system that processes the massive log data,

99

Node History View

Timeline View

Glyph View

Capability Wall_sec Run_sec Nodes Used Nodes_req Cores_used Cores_req Queue_wal Req_core Used_cor Queue Mode Exit Status

Job View

b c

d

e

a

z-score range

Abstract View

User-selected nodes.
History shown in

Node History View.
Failed Jobs Passed Jobs

-3 -2 -1 0 1 2 3

Figure 6.1: The UI of our visual analytics tool. (a) The abstract view shows the aggregated values
of the log data. (b) The glyph view shows the log data information separated by granularities of jobs,
users, projects, nodes used, and job exit codes. (c) The node history view shows the history of the
nodes selected by lasso selection in the abstract and the glyph views. (d) The environment log data
(power, temperature, voltage, current, etc.) is displayed in the timeline view. (e) The job view uses
parallel coordinates to display the details of the job log information.

including the hardware logs (event sequence and text data), job logs (event sequence

data), environment logs (also referred to as SEDC (System Environment Data Collec-

tions) logs), syslogs, console logs etc. SEDC is a Cray systems tool used to collect and

report temporal data (readings collected from sensors housed in the compute nodes)

in real-time, collected from disparate subsystems and components of a supercomputer

system. This data collected from the predefined spatial localities and various temporal

resolutions are unprocessed and raw. Therefore, we deal with multifidelity large-scale

data from various sources within the HPC system. For example, the hardware error

log contains information accumulated from different control systems and interlinked

100

subsystems with data size ranging in tens of GB. The environment log data are more

frequently reported and collected at every 10-30 seconds interval, making the dataset

size approach gigabyte (GB) to terabyte (TB) range every few weeks. The job log data

contains information about the various applications utilizing the systems and their

characteristics (i.e., nodes used, start and end times, etc.) with data sizes ranging in

hundreds of megabytes (MB) a year. The kinds of logs range in size from 5 GB per day.

It is a challenging task to analyze these volumes of data daily.

This work uses multiresolution Dynamic Mode Decomposition (mrDMD) [95] to

succinctly represent the larger environment log data. We then display its correspon-

dence with the additional preprocessed log data like the hardware and job log data.

MrDMD is a technique that decomposes high-dimensional data into correlated spatial-

temporal modes and is an improved version of Dynamic Mode Decomposition (DMD)

[141, 144, 146]. DMD decomposes the data into spatial modes that correlate it over its

spatial features (similar to principal component analysis (PCA)) and temporal modes

that correlate the data across unique temporal Fourier modes. The DMD algorithm

has been used to isolate and extract distinct sleep spindle networks from sub-dural

electrode array recordings of human subjects using DMD spectrum analysis and base-

lines analysis [15]. Furthermore, mrDMD extracts the spatial and temporal features

over multiple timescales by integrating space and time. The multiresolution analy-

sis in mrDMD recursively subtracts low-frequency, or slower varying, dynamics from

the data at each selected timescale, making it ideal for separating different timescale

features or modes and analyzing them separately. MrDMD has been used for object

feature tracking in videos over evolving timescales [95].

Our work combines the mrDMD analysis [95] with the work on frequency isolation

using DMD spectrum analysis to generate the mrDMD spectrum [15]. We extract the

high power mrDMD modes at various frequency ranges. We then identify custom

baselines that are either system or user-specific to extract patterns that signify changes

between the typical system state (specified by the baselines) and the current state.

We make the following contributions:

101

• MrDMD Baseline identification for system logs is based on two factors

– system or sub-component specification

– user system-usage trends

• Our mrDMD algorithm has the following improvements and features

– Time range splits at mrDMD levels are determined by the start and end times

of system jobs. This ensures that the results of the system usage analysis do

not overlap between different jobs or applications utilizing the system.

– MrDMD mean mode magnitudes are extracted at frequency ranges where

the “power” of the corresponding mode is higher than a specified threshold,

thus eliminating noise.

– We process the time range splits asynchronously at each level. This improve-

ment increases the speed of the algorithm.

• Two use scenarios on real-world datasets demonstrating the effectiveness of our

approach.

Since the data is proprietary, compiling this diverse multifidelity dataset from other

supercomputing facilities is challenging. Nevertheless, our stated contributions will

apply to other large-scale systems reporting similar data types. In addition, it will

provide insights to users and system administrators to better understand the system’s

state at any given time, present or past, and to perform system maintenance to reduce

future system failures proactively.

102

6.2 Related Work
6.2.1 Error Log Analysis in Large Scale Systems
Substantial efforts have been directed towards pinpointing and forecasting failures to

facilitate evasive actions for failure identification in large-scale HPC systems, espe-

cially when current technology and infrastructure are delivering the capacity to record

systems’ states faster. Past survey papers [67, 78, 142] on forecasting and classifying

failures give an in-depth view of current methodologies and their drawbacks based

on log data analysis. Pre-processing of log data is the first step in log analysis, and

the steps are grouped into three main actions: data categorization, data filtering, and

causality filtering [192]. Some past efforts include real-time clustering algorithms

to concisely represent temporal and event-based data with evolving clusters of infor-

mation in the log files [49, 51, 77, 150, 152]. Prior works also explore the influence of

power, and temperature on device reliability, with the main focus on hard disk drives,

solid state drives, GPUs, and CPUs [7,33,73,126,147,157]. Other efforts employ visual

analytics solutions for studying large-scale system behavior. Some previous works

include developing a multi-coordinated visual analytics tool to investigate and opti-

mize the network communication of a supercomputer [45, 102, 151, 152], developing

node-link diagrams with matrix-based hierarchical aggregation [46], functional data

analysis (FDA) to incrementally and progressively update the streaming time series

data for identifying outliers by using FDA and FPCA [150], visualization framework

for parallel discrete-event simulations (PDES) [99]. Visual analytic approaches have

been proposed to help filter and analyze millions of records of such inconsistent text

data [14,87,125,189]. A few automated log analysis tools [31,49,51,64,114,192] use text

or event pattern-based correlations, signal processing, pattern recognition and mining,

and spatiotemporal event-based analysis. These tools analyze a specific type of data

or a combination of data types, e.g., numerical, text-based, or event-based data. Our

log data contains all three data types [151, 152]; thus, the task becomes challenging to

process these data types individually and in conjunction. The results of the analysis

are displayed on our visual analytics tool.

103

Past efforts also include scalable and interactive visual analytics tools [88, 123, 151,

152] for analyzing multifarious log data; however, these tools lack the capability to

analyze and visualize extensive temporal data in a concise representation. Legacy tools

like IBM Blue Gene Navigator [97] with plain log statistical visualization are popular

tools operational administrators use to monitor supercomputer health.

This work has a front-end visualization showing correlations between hardware

log, job log, and environment log data with synchronized time. In order to provide a

holistic insight into comprehending the complexity of large-scale systems, we need to

process and analyze a multitude of log data. Past attempts typically process only one

or two types of error log data, and most studies ignore the analysis of the larger and

more computationally expensive environment logs. In our work, we aim to address

these shortcomings.

6.2.2 Multiresolution Dynamic Mode Decomposition
As mentioned above, mrDMD is a variation of the DMD algorithm. The original

DMD algorithm was applied to fluid dynamics. It works with the assumption that

observations can be approximated by a linear dynamical system that closely mod-

els the characteristics of the observations [95]. Therefore, DMD and mrDMD extract

information from a nonlinear dynamical system [95, 141, 144]. Inspired by multireso-

lution analyses and, specifically, wavelet methods and windowed Fourier transforms,

mrDMD recursively analyzes timescales, selecting modes to remove from the data of

interest [95].

In recent years both DMD and mrDMD have served as powerful mechanisms for

studying the dynamics of the nonlinear systems in fields including fluid mechan-

ics [95,144,167], financial analysis [111], control systems [134] neuroscience [15], stream-

ing analysis [68, 132] and denoising [30, 146], and foreground and background separa-

tion in video analysis [95,112]. DMD with unsupervised clustering was used to uncover

distinct sleep spindle networks using cortical distribution patterns, frequency, and du-

ration [15]. DMD has also been extended to incorporate control and demonstrated on a

model with applicability to infectious disease data analysis with mass vaccination [134].

104

MrDMD of elastic waves with image registration and Kullback Leibler (KL) divergence

was used to diagnose and localize the surface microscale defects in the Lead Zirconate

Titanate [84]. MrDMD has been used to study and detect the onset of seizures in scalp

electroencephalography (EEG) signals [9]. In a streaming low-storage fluid dynamic

setting, DMD results were updated as new data became available. Their methods

included a "batch-processed" formulation and a compression step [68]. Another par-

allelized algorithm extracts DMD modes using the streaming method of snapshots

singular value decomposition on a graphics processing unit (GPU). They use the native

compressed format of many data streams to reduce data transfer costs from CPU to

GPU [132]. A denoising DMD implementation to reduce the algorithm’s bias to sensor

noise used three steps, including correcting the determined bias using known noise

properties, performing DMD forwards and backward in time, combining the results,

and developing an algorithm based on least-square analysis [30].

Since DMD and its variations have numerous applications in various fields, we at-

tempt to leverage its benefits by combining the mrDMD analysis [95] with the DMD

spectrum analysis for isolating mrDMD modes at automated or user-specified fre-

quency ranges [15]. We have improved the sampling rate selection and temporal split

identification in the recursion steps of the mrDMD algorithm. At each level of the

multiresolution analysis, we compute mrDMD modes asynchronously which further

increases the speed of our algorithm. These improvements increase the accuracy and

speed of computation. We also choose baselines that we define as system and user-

specific to extract meaningful patterns that indicate changes between the typical system

state (represented by baselines) and the current state (represented by data of interest).

To the best of our knowledge, currently, no tools visualize the mrDMD analysis results.

Our tool visualizes the z-scores or standard deviation of the mrDMD results of current

readings from the mrDMD results of chosen baseline readings.

105

6.3 System Overview
This section describes the overview of our visual analytics tool and the back-end analysis

pipeline.

6.3.1 Overall Organization

Abstract View

Timeline View

Parallel
Coordinates

View

Detailed
Glyph
View

Node Link
Layout
View

Visualization FrontendBackend Analysis

MrDMD

Extracted
spatio-

temporal
coherent
patterns

Baseline
selection

System

User

InfluxDB
Environment logs

Elasticsearch
Job and Hardware logsDatabase

Figure 6.2: General organization of our visual analytics tool

Fig. 6.2 depicts the general organization of our system with three main sections:

databases, back-end analysis, and front-end visualization. Our system operates on

two 6-core, 2.4-GHz Intel E5–2620v3 processors (Intel Haswell architecture) and 256GB

of DDR4 memory. We use InfluxDB [76], a time series database optimized for speedy

storage and retrieval of time series data to store environment logs. The job and hardware

logs are stored in an Elasticsearch database [55]. The data sizes are 3-4 GB per day, 1-2

GB per month, and a few hundred MB per year for the environment, hardware, and job

logs. Our system operates on Python 3.8, a Flask server [57], and D3 [11] visualization.

The source code will be made available on publication. The back-end analysis section

is split into three groups consisting of the mrDMD analysis with our improvements,

the baseline selection mechanism (where we choose between user-specific or system-

specific baselines), and the extraction of the coherent spatiotemporal patterns based

on the mrDMD power spectrum values. The visual analytics frontend consists of five

sections with a built-in interaction mechanism (explained in detail in Fig. 6.1).

106

6.3.2 Backend Analysis
Jobs routinely utilize supercomputers for hours to weeks on thousands of nodes. A su-

percomputer node reports hardware and software errors along with information about

jobs utilizing it. Each node also has multiple sensors that record power, temperature,

current, memory, fan speed, etc., and are stored as environment logs. Our backend

analysis pipeline mainly focuses on processing this large environment log dataset col-

lected from sensors. This log data contains monitoring information from different

sensors collected every 10-30 seconds. The resulting substantial data size poses a chal-

lenge and contributes to significant processing overhead. The supercomputer houses

approximately 150 sensor readings per node. Furthermore, this dataset is usually ig-

nored in log data analysis due to the size and lack of valuable insights extracted from

popular methods.

6.3.2.1 Multiresolution Dynamic Mode Decomposition(mrDMD)

We will now briefly introduce the DMD algorithm [15, 95, 167]. Collecting 𝐾 sensor

readings from 𝑀 snapshots in time, we may construct two raw data matrices X and X′,

in which X′ columns are shifted by one time point from X.

X =

| | | |

x1 x2 x3 ... x𝑀−1

| | | |

X′ =

| | | |

x2 x3 x4 ... x𝑀
| | | |

The algorithm estimates the eigendecomposition for the best-fit matrix A such that

X′ = AX. (6.1)

The DMD algorithm has the following steps:

1) Decompose the data matrix X with SVD [164]:

X = U𝚺V∗ (6.2)

107

Filter modes at

frequencies of interest

(higher mrDMD power)

Timeline

Fr
eq

ue
nc

y

Day

6 Hours

Timeline Split

Job Durations

1 Hour

30 Minutes

Slower Modes Faster Modes

x1

xm

x1

xm/4

x1

xm/p

Aggregated
mrDMD
Modes

mrDMD
Spectrum Compute relative changes

in modes (z-scores)
between baseline and

current readings

K
M

Slower modes subtraction per level

Nodes

(a)

(b)

Figure 6.3: Representation of the multiresolution dynamic mode decomposition [95]

where ∗ is the conjugate transpose, U ∈ C𝐾×𝑟 , 𝚺 ∈ C𝑟×𝑟 and V ∈ C𝑀−1×𝑟 . Here 𝑟 is the

rank of the reduced SVD approximation to X. The SVD rank reduction is computed

using the optimal Singular Value Hard Threshold (SVHT [53]).

2) Compute the 𝑟× 𝑟 projection of the full matrix A onto U’s low-rank modes, A′.

A′ = U∗AU = U∗X′V𝚺−1 (6.3)

3) Compute eigendecomposition of A′ :

A′W = W𝚲 (6.4)

where eigenvectors are found in the columns of W and the corresponding eigenvalues

�𝑖 are in diagonal matrix 𝚲.

108

4) Compute the DMD modes

𝚽 = X′V𝚺−1W (6.5)

Each column of𝚽 contains a DMD mode𝜙i corresponding to the 𝑖𝑡ℎ eigenvalue. Know-

ing the low-rank approximation of the data in the form of eigenvalues and eigenvectors,

the projected future result can be constructed for all time and is given by

�̃�(𝑡)=
r∑

i=1
bi(0)𝜙i(𝝃)exp(𝜔it) =𝚽𝑑𝑖𝑎𝑔(𝑒𝑥𝑝(𝜔𝑡))𝒃 (6.6)

where 𝑏𝑖(0) is the initial amplitude of each mode, 𝚽 is the matrix whose columns are

the eigenvectors𝜙𝑖 , 𝜔i = ln(�i)/∆t, whereΔ𝑡 is the time step, 𝑑𝑖𝑎𝑔(𝑒𝑥𝑝(𝜔𝑡)) is a diagonal

matrix whose entries are the eigenvalues 𝑒𝑥𝑝(𝜔𝑡), 𝝃 are the spatial coordinates, and 𝒃

is a vector of the coefficients 𝑏𝑖 .

The mrDMD is a recursive algorithm that removes low-frequency content from

snapshots of data collected over a period of time. Low-frequency content captures

the slow-varying dynamics of the system. M is chosen so that it is large enough to

represent the system’s dynamics, i.e., enough high- and low-frequency components

are present. At the initial recursion step, the slowest DMD modes (m1) are subtracted

from the DMD result (Fig. 6.3(a)). The slower modes correspond to values below a

threshold, computed by a user-defined maximum number of oscillations in the time

series divided by the time range (i.e., the number of time points) at each split. We have

chosen the maximum number of oscillations for our current dataset to be 4. We then

split the dataset into segments along the timeline (as shown in Fig. 6.3(a)). DMD is once

again separately performed on each split segment. The slowest modes are subtracted

again, and the recursive algorithm continues until termination. In mrDMD, due to the

subtraction of slower modes in the previous levels, at each level, the multiresolution

features are represented by different spatiotemporal DMD modes. Therefore no single

set of modes dominates the SVD and influences features at multiple levels or time

scales.

The future solution for all time using the mrDMD low-rank approximation of the

system as in Eq. 6.6 is given by [95]:

109

xmrDMD(t) =
M∑

i=1
bi(0)𝜙(1)

i (𝝃)exp(𝜔it) (6.7)

=

m1∑
i=1

bi(0)𝜙(1)
i (𝝃)exp(𝜔it)+

M∑
i=m1+1

bi(0)𝜙(1)
i (𝝃)exp(𝜔it) (6.8)

(slower modes) (fast modes)

here the 𝜙(1)
𝑖
(𝑥) represent the DMD modes computed from the full M snapshots.

The first term in Eq. 6.8 has the slower dynamics whereas the second term has the faster

dynamics. The second term gives the fast scale data matrix that is sent forward in the

recursion step.

At each level of the data split, our algorithm automatically determines the sampling

rate. Since the slower modes are subtracted at the initial levels, we use a lower sampling

rate of the time series data at these levels. As the levels get higher, we increase the

sampling rate, hence processing more time points (i.e., extracting higher frequency

modes). For the supercomputer log, we determine the sampling rate as four times the

Nyquist limit to capture cycles [162]. This value is customizable. At each level of the

mrDMD analysis, we asynchronously process each time range generated after the split,

as the time range results within a level are independent of the other time ranges. This

improvement reduces the computation time of the analysis (refer section 6.5 Fig. 6.17).

The jobs utilizing the supercomputer execute for multiple hours. The original

mrDMD algorithm split the timeline at each level into equal parts [95]. However, when

handling environment data collected from multiple nodes in a supercomputer, a single

timeline split may contain time series from multiple jobs. Since each job may utilize the

system differently, mrDMD modes computed at each split may contain results from the

time series of multiple jobs. This overlap of mrDMD modes will result in erroneous

results, especially if the user wants to filter results per job. Therefore, we improved

the algorithm by taking into account the start and end times of all jobs utilizing the

nodes from which the time series are processed. We determine a value at which we

split the timeline resulting in the minimum overlap between job start and end times.

110

When analyzing time series data from multiple nodes, we calculate a time point for

split where the distance between the start or the end times of jobs in the vicinity (±2

hours, this number depends on the level at which the job duration split (refer Fig. 6.3)

is performed could range from a few minutes to hours) of the chosen time point is

minimum. This improves the final results, as seen in section 6.4 (Fig. 6.9). We use job

duration split at level 3 in our analysis (refer Fig. 6.3(a))). However, it is customizable

to be included in other levels depending on the length of the jobs and the initial length

of the time series.

6.3.2.2 Frequency Isolation of spatiotemporal modes using mrDMD spectrum

The mrDMD decomposition at each level results in spatial modes 𝜙i, each with a

corresponding eigenvalue �i describing its temporal dynamics. The eigenvalue �i is

complex-valued. The dynamics can be easily interpreted after the above transformation

𝜔i = ln(�i)/∆t; the sign of the real component of 𝜔i determines if the corresponding

mode dynamics are growing (positive), or decaying (negative), and the imaginary

component determines the frequency of oscillations. We compute the frequency of

oscillation of mode 𝜙i in units of cycles per second as

fi =

����� imag(𝜔i)
2𝜋

����� (6.9)

Analogous to the traditional power spectrum computed with the fast Fourier trans-

form (FFT) algorithm [179], the mrDMD “power” spectrum is then computed at each

frequency of oscillation fi and is given by Pi =
��𝜙i

��2
2 [15]. Our mrDMD algorithm uses

mrDMD mode magnitudes where the DMD spectrum power (normalized to 1.0) is

greater than 0.5. Our experiments have shown that this value helps adequately capture

the low-rank representation of the dynamics of our current dataset. This improvement

removes the noisy low power mode magnitudes and their corresponding frequencies

and also helps reduce the computation time.

6.3.2.3 Baseline Selection

Once we extract the high-power mrDMD modes from frequency ranges using the

mrDMD spectrum, we compute the absolute values of the extracted mrDMD modes

111

Z-
sc

or
e

Slot Baseline Groups

(b) (c)

Not Baseline 1
BaselineTe

m
pe

ra
tu

re

Time (sec)

(a)

Not Baseline 2

Figure 6.4: Analyzing (a) the supercomputer environment logs containing selected baseline read-
ings(blue) and non-baseline readings(red, purple). (b) and (c) show the boxplots of the z-scores
(change of non-baseline readings from baseline) versus slots(each slot contains 4 supercomputer
nodes) or time series groups.

in the frequency ranges and average it to obtain the mean mode magnitudes. We

do this separately for readings that we classify as baseline readings and non-baseline

readings. Baseline readings constitute a subset of time series data that indicate an

expected system functionality [15]. We choose the baseline readings based on (1)

the system specifications that constitute normal functioning, e.g., readings within the

normal temperature range without causing the supercomputer to overheat, or (2) the

user’s usage trends as seen in the environment logs of the nodes used by the user’s jobs.

We use the system manuals to identify the baseline value ranges for the first baseline

type. For the second baseline type, we pick the environment log readings from nodes

allocated to a user’s job that has completed a successful execution.

We then compute the standard deviation of the non-baseline minus the baseline

mean mode magnitudes at each reading (time series) for a trial set through bootstrap-

ping. The trial set consists of time series following a typical scenario, e.g., passed job

status, no hardware errors, etc. We then compute the z-scores of the difference from the

112

baseline at each reading (time series) using the bootstrapped calculations of the stan-

dard deviation [15]. Thus we obtain the relative changes in mean mode magnitudes

for each new data using the previously computed results for data exhibiting normal

behavior. For the system specification baseline, the z-scores capture the difference

between what we identify as normal system (baseline) behavior and current system

(non-baseline) behavior. For the user’s usage trend baseline, the z-scores capture the

difference between the utilization of the system by a user over time.

Fig. 6.4 shows how baseline and non-baseline readings transform into z-score values.

Fig. 6.4(a) shows the temperature readings, grouped as baseline (blue) and non-baseline

(purple and red) readings, for multiple nodes in the supercomputer. Fig. 6.4(b-c) shows

the z-scores versus slots and the reading groups (groups 0, 1, and 2 constitute blue,

red, and purple readings, respectively). The reading groups are chosen based on the

differences in their magnitudes and variations over time. Here as expected, the z-score

values for baseline readings are close to 0 (y-axis). However, for those readings away

from the baseline, the readings with a smaller z-score change (< 1) are in red and those

with a larger change (> 1.5) are purple. We further explain the use of these types of

baselines in the case study section 6.4.

6.3.3 Visualization Frontend
2

1.5

1
0.5

0
-0.5
-1
-1.5
-2

-2
-1.5
-1

-0.5
0
0.5
1
1.5

2

Job Exit Status

Hardware Error Categories

Aggregated z-score
ranges

Individual z-scores
per node

Figure 6.5: Abstract and glyph view layouts

113

Fig. 6.1 shows the UI of our visual analytics tool. The abstract view (Fig. 6.1(a))

shows the aggregated values of the log data. The glyph view (Fig. 6.1(b)) shows the

log data information separated by granularities of jobs, users, projects, nodes used,

and job exit codes. The glyph view uses the force directed layout algorithm [120]. The

abstract and the glyph view sections (Fig. 6.5 and Fig. 6.1(a),(b)) contain a center circle

specifying if the job has passed (gray) or failed (red). The innermost pie chart shows

the hardware log error categories grouped by their counts for the job run duration.

The glyph view (Fig. 6.1(b) and Fig. 6.5) has another concentric pie chart that shows

the z-score values grouped by counts within one standard deviation range (which is

customizable) from values −2 to 2. Note that z-score values can range from −10 to 10 in

the supercomputer log dataset. The z-scores have a lighter white hue if they lie closer

to the baseline, i.e., 0. We display the counts of nodes on the mouseover interaction

over each arc of this pie chart. The outermost radial view shows the scatter plot of the

z-scores for each node utilized by the job. Since there are 4,300 nodes, the radial axis

takes 4,300 node numbers (IDs) in clockwise order. The node history view (Fig. 6.1(c))

shows the history of the nodes selected by lasso selection in the abstract and the glyph

views (Fig. 6.1(a,b)). In the timeline view (Fig. 6.1(d)), we display environment log

data (power, temperature, voltage, current, etc.). The timeline view has a built-in brush

interaction using which one can refine the results of the node history view (Fig. 6.1(c)).

The job view uses parallel coordinates to display the details of the job log information.

On clicking each job in this view, the glyph and node history view results get updated.

As a part of our future work, we plan to minimize the z-score overlap in the radial view

through aggregations. Our current implementation provides scrolling interaction to

zoom in to a section of the radial axis, thus eliminating the overlaps.

In Fig. 6.1(a), the user has selected nodes from the z-score radial view. The size

of the nodes is proportional to the size of the fatal errors in the system for the time

duration specified in the timeline view (Fig. 6.1(d)). This example shows an 11-hour

duration data. Using the lasso selection, the user can select these nodes to view them

in finer detail. On node selections, the glyph view (Fig. 6.1(b)) gets updated, and here

114

it shows the jobs that have been executed in this duration of our analysis. In this view,

we can choose other granularities such as jobs, users, projects, nodes used, and job

exit codes. The job details are plotted in the parallel coordinates view (Fig. 6.1(e)),

giving more information about its specifications. The node history view (Fig. 6.1(c))

then shows the current errors and history of the errors in the selected nodes and the

jobs that encountered these errors. Here Nodes 0 and 3 in slots 𝑐0− 0𝑐1𝑠12 are the

problematic nodes reporting transaction and MCE (machine check exception) errors.

14:00 16:00 18:00 20:00 22:00 00:00 02:00Time(secs)

35

40

45

50

55

60

Te
m

pe
ra

tu
re

 (
Ce

lc
iu

s)

Job Node Temp
Neighbor Node Temp

Figure 6.6: Temperature readings of the Cray HPC system where time series in light pink show tem-
perature at nodes utilized by a job and time series in light green show temperatures in the neighboring
nodes.

In this work, we analyze and process environment log readings and study their

behavior and effects on the system and users. Fig. 6.6 shows an example of temperature

readings from nodes in the theta supercomputer utilized by a job (light pink). We then

plot the temperature readings of nodes in the spatial vicinity of these job nodes. We

see that a spike in the job node readings from 18:00 to 22:00 is mirrored by the nodes in

its vicinity. It is clearly evident that neighboring jobs affect each other’s behaviors and

could affect the node’s overall performance.

We clustered environment log temperature readings recorded during user job ex-

ecutions using Agglomerative clustering algorithms, and we plotted the results in a

2D plain using PCA, as shown in Fig. 6.7 (bottom). Fourteen readings belonging to

each cluster group are plotted in Fig. 6.7 (top). The clusters-(0,1,2) isolate mostly lower

frequency readings, and cluster 3 comprises high-frequency readings. Although en-

115

PC
-2

PC-10 10 20 30 40 50 60 70 80-20

0

20

40

60

Cluster 0
Cluster 1
Cluster 2
Cluster 3

Figure 6.7: Analysis of environment log readings using Agglomerative clustering plotted on a 2-D plain
using PCA (bottom). The time series of each cluster group is shown at the top.

vironment log data are traditionally ignored in log analysis, this analysis shows us

that environment logs can be used to group and extract users’ usage patterns and the

corresponding system behaviors. The auxiliary views (Fig. 6.1) in our visual analytics

tool can isolate and extract this information for further analysis.

6.4 Case Studies
6.4.1 Case Study 1
We describe two detailed cases of supercomputer utilization by user jobs and present

how our system aids in identifying usage patterns from large-scale and diverse logs.

We have shown an analysis example in Sec. 2.3. The case studies further demonstrate

the mrDMD results using our visual analytics tool and compare the processed data

from each log type mentioned previously. Our environment logs are collected from

the Cray XC40 supercomputer and contain data from 24 compute racks with a total of

4,300 nodes. Sensors on each node collect data in 10-30 second intervals. We mainly

116

Job 2 - Passed Job 3 - Failed Job 4 - Failed

Timeline t1 t2 t3 t4

(2) Fewer Critical & Hardware
errors on nodes 2530-2533

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

Job 1 - Passed

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

(3) Nodes including 2530-2533 show higher
Critical and MCE Errors leading to Job Failure

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

(1) Temperature z-scores of
nodes 2530-2533

with errors

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

Failed Jobs Passed Jobs

-3 -2 -1 0 1 2 3

Figure 6.8: Glyph view of four jobs utilizing the supercomputer. The job glyphs are sorted in the
ascending order of their start times. The first two jobs (1 and 2) have exited with a pass status and
the last two (3 and 4) have failed. Nodes 2530−2533 consistently report hardware (MCE and critical)
errors. The z-score values, computed using the system specification baseline, increased for the nodes
2530−2533 from job 1 to job 4 resulting in node 2533 shutdown along with job 4 failure.

(a)

(b) (d)

Job 1 env data
Job 2 env data

Glyph View - Job 1
Without mrDMD Job Duration

Split at Level 3
With mrDMD Job Duration

Split at Level 3Glyph View- Job 2

Actual z-scores
for Job 2

Job 1 mrDMD
modes influence

Job 2 modes giving
incorrect z-score

values

Timeline View

(c)

Figure 6.9: Analysis of two jobs utilizing the system in the same spatial and temporal locality. (a)
shows a subset of the environment log readings for job 1 (red) and job 2 (blue), (b) shows job 1 glyph
view, and (c)(d) shows glyph views for job 2 without and with the mrDMD timeline split for job duration
at level 3, respectively.

analyze the temperature and current readings from the environment logs. There are 4

temperature and 4 current readings per node. We perform the mrDMD analysis and

compute the z-scores separately for each type of reading.

117

The Fig. 6.8 shows the glyph view for four different jobs utilizing the system starting

from time 𝑡1 to 𝑡4. Here we ordered the job glyphs in the ascending order of their start

time, i.e., 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4. Each glyph contains a center circle that specifies if the

job has passed or failed. The first two jobs have passed (gray), and the last two have

exited with a failed (red) status. The innermost pie chart shows the hardware log error

categories grouped by their counts for the job run duration. Fig. 6.8 shows that the four

jobs have both MCE (machine check exceptions) and critical errors throughout the job

runs. The next concentric pie chart shows the z-score values grouped by counts within

one count range from values −2 to 2. Note that z-score values can range from -10 to

10 in the supercomputer log dataset, but they vary from −2 to 2 z-score range for the

current temperature examples. The z-scores have a lighter white hue if they lie closer

to the baseline, i.e., 0. Here we see that most of the z-scores follow typical behavior

and hence have a lighter hue. We display the counts of nodes within each z-score

range on the mouseover interaction on each arc of the pie chart. The outermost radial

view shows the scatter plot of the z-scores for each node utilized by the job. Since

there are 4,300 nodes, the radial axis takes 4,300 node numbers (IDs) in clockwise

order. The larger nodes are reporting hardware errors. We have the hover interaction,

which gives the node IDs on the mouseover interaction. The user can also pan or zoom

in to a region of the radial axis, which helps a user scan the visualization in more

detail. The four jobs chosen ran during a 24-hour duration and utilized a set of nodes

with IDs 2430-2533 that consistently reported hardware errors. We have used system

specification baselines for all four jobs. We see from job 1 that the z-score move from

being closer to the baseline (white, light blue hues) to being much higher than the

baseline (orange hues) for job 4. Orange hues signify higher temperature on the nodes,

and this temperature increase will affect the neighboring nodes as well (see Fig. 6.15).

Also, the number of nodes reporting hardware errors increased significantly at job 4,

resulting in a node failure of node 2533 and eventually the job 4 failure. Finally, the

node history view (not shown in Fig. 6.8) summarized additional details of the errors

as Router input queue saw SLB error, Aries LCB operating badly and will be shut down, and

118

Node ID 2533 unavailable. Our tool helps visualize these consistent patterns of failures

for the first three job runs, indicating that these anomalous nodes need to be checked

by system administrators and any hardware failures be immediately rectified before a

node shuts down, as in this case. Another usefulness of utilizing z-scores from mrDMD

analysis of environment logs is that nodes in the immediate vicinity also report similar

hardware errors, although this may not always lead to node shutdown.

Fig. 6.9 shows the analysis of two jobs utilizing the system in the same spatial locality.

Job 1 had executed before job 2 (Note that we have overlayed 3000 time points of both

jobs along the x-axis for clarity). Fig. 6.9(a) shows a subset of the temperature readings

reported by the nodes utilized by the jobs, job 1 (red) and job 2 (blue). Temperature

readings for job 2 mostly follow close to the selected baseline with a range between 40◦-

60◦ Celsius. However, the readings greatly fluctuate for job 1, between 30◦- 80◦ Celsius.

Fig. 6.9(b) shows the glyph view for job 1, as expected, the z-scores are largely varying

as it follows the time series pattern shown in Fig. 6.9(a). Fig. 6.9(c)(d) show the glyph

views for job 2 without and with the mrDMD timeline split for job duration at level 3,

respectively. Without the job duration split in the mrDMD analysis (Fig. 6.9(c)), the z-

score patterns for job 1 and job 2 look similar even though that behavior is not reflected

Fig. 6.9(a). The mrDMD analysis could give erroneous results due to overlapping

time ranges between the end of job 1 and the beginning of job 2. This results in higher

frequency modes between jobs to overlap and, in some cases, leads to erroneous results,

as seen in Fig. 6.9.

6.4.2 Case Study 2
We utilize environment logs from the Cray XC40 supercomputer that contain data from

24 compute racks with a total of 4,300 nodes. In this case study, we filter jobs by a

single user. The figure shows the glyph view for three different jobs from a single user

utilizing the system starting from time 𝑡1 to 𝑡3. Here we ordered the job glyphs in

the ascending order of their start time, i.e., 𝑡1 < 𝑡2 < 𝑡3. Each glyph contains a center

circle that specifies if the job has passed or failed. The first two jobs have passed (gray),

and the last one has exited with a failed (red) status. The innermost pie chart shows

119

User Job Run 1 - Passed User Job Run 2- Passed

t1 t2 t3Timeline

User job shows no
errors for run 1 z-score

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

User job shows larger
MCE Errors for run 2

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

User Job Run 3 - Failed
User job run 3 shows

larger MCE Errors with
higher z-scores on nodes

and failed execution

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

Job nodes with no
activity and possibly

stalled

Failed Jobs Passed Jobs

-3 -2 -1 0 1 2 3

Figure 6.10: Glyph view of 3 jobs utilizing the supercomputer. The job glyphs are sorted in the as-
cending order of their start times. The first two jobs (1 and 2) have exited with a pass status and the
last one (3) has failed. Few nodes consistently report hardware (MCE) errors. The z-score values,
computed using user specific baseline, increased for the error nodes in jobs 2 to job 3. Job 3 showed
a subset of nodes that were underutilized and were possibly stalled.

Job View Node History View

Failed Jobs Passed Jobs

-3 -2 -1 0 1 2 3

10949 (s)
Runtime

192 Nodes

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

-2
-1.5
-1

-0.5
0
0.5
1
1.5
2

User Job Run 3 - Failed

10800 (s)
Walltime

Figure 6.11: Analysis of job 3 from Fig. 6.10 showed that the job exceeded the allocated time and
consistently reported errors in the duration of its runtime with possibly underutilized nodes.

the hardware log error categories grouped by their counts for the job run duration.

Fig. 6.10 shows that two out of three jobs have predominantly reported MCE (machine

check exceptions) errors throughout the job runs. Note that we have filtered out the

informational type hardware log data. The next concentric pie chart shows the z-score

values grouped by counts within one count range from values −2 to 2. The larger

nodes are reporting hardware errors. The user can also pan or zoom in to a region of

the radial axis, which helps a user scan the visualization in more detail and controls

visual clutter. The three user jobs chosen ran during a 24-hour duration and utilized

192 nodes. User jobs 2 and 3 consistently reported a larger number of hardware MCE

errors on three nodes.

120

In this case study, for the mrDMD analysis, we chose the user-specific baseline

readings. We picked the baseline readings from user job 1. The user job 1 (Fig. 6.10)

utilized 192 nodes with two readings per node, giving a total of 384 readings. Since we

select baselines from user job 1 (one reading per node), the z-scores are mostly within

the range (−1 to 1), i.e., they lie closer to the baseline value 0, with roughly one standard

deviation variation on either side. However, for user jobs 2 and 3, the z-scores lie from

−2 to 2. A reason could be that the user made improvements or changes to their code to

utilize the system at varying capacities. In this case, user job 2 showed significant MCE

errors in 4 nodes and increased z-score values on one node ID 4505. The next run, user

job 3, showed MCE errors with much higher z-score values, particularly on one node

ID 4507. However, we also see a small subset of nodes having a z-score much lesser

than the baseline. This indicates that the nodes are not being utilized, as lower z-score

values indicate a lesser current on these nodes compared to the previous runs. Also,

low values of z-scores indicate a possible stalling where nodes are waiting without

performing any computation for the duration of the job run.

In Fig. 6.11, we analyze job 3 further using the auxiliary views, i.e., the job view and

the node history view. On selecting the job 3 in the glyph view, the job is highlighted in

the job view, and we see in Fig. 6.11 that the runtime, i.e., the execution time of the job

had exceeded the wall time (values visible through hover interaction), i.e., the maximum

time allocated to the job. This scenario occurs when the application has stopped, but

the job is still perceived to be running by the system. In such cases, the system resources

could be in a stalled state and hence are unused, bringing down the usability of the

overall supercomputer. Using this insight, the system admins could request a system

recovery and repair in case of a consistent system errors across jobs. Furthermore,

the system admins could inform the user to either fully utilize the allocated nodes or

request fewer nodes on subsequent job runs. In this case study, the node history layout

(Fig. 6.11) indicates consistent MCE and Aries LCB errors on the network link. However,

the node history also revealed memory-related, critical, transient, and transaction errors

when utilized by other jobs in the past 24 hours.

121

6.4.3 Case Study 3

(a) (b) (c)

Glyph View Grouped by Project Names for a 12-hour period

Project 1 Project 2 Project 3

All jobs in project 1 failed in the selected 12
hour duration with no hardware errors.
Jobs also show wider fluctuations in the

environment readings

Project 2 contains both passed and failed
jobs with MCE errors and no wide range

fluctuations (unlike projects 1 & 3) in the
environment readings

All jobs passed in project 3 despite having
memory and MCE errors.

Could indicate jobs fault tolerance built in
their software.

Failed Jobs Passed Jobs

-3 -2 -1 0 1 2 3

Figure 6.12: Glyph view of 3 scenarios of projects utilizing the supercomputer whose jobs are grouped
over 12 hours. Project 1 (a) shows jobs that have all failed but report no hardware errors; however,
they indicate larger fluctuations from the baseline. Project 2 (b) shows jobs that have both passed and
failed jobs and report MCE errors; however, no wider fluctuations are seen from the baseline. Project
3 (c) shows jobs that have all passed but show memory and MCE errors and contain environment
readings with wider fluctuations from the baseline.

In Fig. 6.12, we show glyph views of three peculiar scenarios for projects utilizing

the supercomputer. Each project contains multiple users who execute multiple jobs on

the supercomputer. Project 1, Fig. 6.12(a), shows jobs that have all failed but report

no hardware errors; however, they indicate larger fluctuations from the baseline. On

closer inspection, the jobs in the project are mostly capability jobs and are known to

show high-temperature readings utilizing a larger number of supercomputer nodes. It

is interesting to note that in the given time window of 12 hours, all jobs belonging to job-

queues backfill and default had failed without hardware errors or useful informational

messages; since we do not track software errors in this work, this could be due to

software/code issues in the user applications. Project 2, Fig. 6.12(b), shows jobs that

have both passed and failed jobs and report MCE errors; however, no wider fluctuations

are seen from the baseline. These types of z-score fluctuations are seen when the errors

122

cause an immediate job failure and release of nodes to users on the waitlist and do not

cause the overall node temperature to increase. Project 3, Fig. 6.12(c), shows jobs that

have all passed but show memory and MCE errors and contain environment readings

with wider fluctuations from the baselines. These are a particular set of jobs utilizing

the supercomputer with fault tolerance built into their programming. The admins

could use this information to help guide and inform users of other projects to take such

preventative measures to avoid job failures. Using the above categories of projects, the

system admins could explore the types of project jobs and their utilization trends to

understand how the underlying system can be better utilized, increasing the system’s

usability and availability.

6.5 Discussion

4

2

0

-2

-4

-6

-8

6
4

2

0

-2

-4

-6

Job Group 1 Job Group 2 Job Group 3User Group 1 User Group 2 User Group 3

System Specific Baselines User Specific Baselines

(a) (b)

Figure 6.13: Analyzing the supercomputer log data using the (a) system-specific baseline and (b)
user-specific baseline.

We have presented our approach’s effectiveness in analyzing large-scale time series

data and its relevance to processing supercomputer environment logs to draw mean-

ingful insights regarding the system’s functionality. We further discuss the strengths

of our approach in this section in categorizing jobs and users of the supercomputers

using temperature readings.

First, we applied our mrDMD analysis to environment logs. We store the z-score

results in an Elasticsearch database. We then isolated 11,654 jobs spanning the years

123

2019-2020. Fig. 6.13(a) shows the boxplot of z-scores versus user groups for the super-

computer. Using the system-specific baseline, we were able to isolate particular groups

of user utilization patterns on the supercomputer using temperature readings. The

x-axis of Fig. 6.13(a) shows users’ job usage patterns that are similar, i.e., there is no

overlap of users along the x-axis groups. User group 1 mainly consists of small runtime

jobs (< 2 hours) with z-scores slightly over the baseline. User group 2 consists of larger

jobs, usually utilizing more than 256 nodes in the system. Most of the user group 2 jobs

are high-capability jobs that fully use the memory and show higher temperature read-

ings at most nodes throughout the job runtime, which was greater than 4 hours. User

group 3 also consists of longer running jobs (> 2 hours). However, unlike user group

2, these jobs are not high-capability. Knowing this information about supercomputer

usage patterns, the system admins can encourage the users to request fewer nodes

when they do not fully utilize their allocated nodes for their jobs. For shorter-running

jobs, the system admins can reduce the user’s wait times for node allocation and hence

improve their job scheduling strategies [131].

Fig. 6.13(b) shows the boxplot of z-scores versus job groups for the supercomputer.

Using the user-specific baseline, we were able to isolate particular groups of job uti-

lization patterns on the supercomputer using temperature readings. The x-axis of

Fig. 6.13(b) shows job patterns that are similar, i.e., there could be an overlap of users

along the x-axis groups. Here, for each user, we chose one job that had no hardware

errors and executed with a pass status. We then used the standard deviation computed

from the mrDMD mode magnitudes of the baselines for the users’ subsequent job runs.

We repeated this process for over 300 users utilizing the supercomputer. Fig. 6.13(b)

shows the general categorization of user jobs when using user-specific baselines per

user. The job group 1 consists of jobs with a lower number of hardware errors, and the

environment logs follow the same z-score trend as the baseline jobs. The job group 2

and 3 both show a larger number of hardware errors. However, job group 3 consists

mainly of high-capability jobs when compared to job group 2. From Fig. 6.13(a) and (b),

using the mrDMD analysis, we can categorize users and jobs using z-score values, and

124

the system admins can track the system usage patterns compared to past utilization

trends.

Er
ro

r C
ou

nt
s

 (i
n

th
ou

sa
nd

s)

100

80

60

40

20

0

120

1000

800

600

400

200

0

1200

-1 to 1 -2 to -1 & 1 to 2
Z-score ranges

<-2 & >2 -1 to 1 -2 to -1 & 1 to 2 <-2 & >2
Z-score ranges

Info
Warn
Fatal

(a) (b) System Specific BaselinesUser Specific Baselines

Figure 6.14: Analyzing the supercomputer log data using z-score ranges and plotting the counts of
hardware errors at each range for (a) user-specific baselines and (b) system-specific baselines. (a)
and (b) show the z-scores values before and after the system reported hardware errors, respectively.

Fig. 6.14 shows the plots for the hardware error counts versus z-score ranges. Here

the hardware errors in the dataset are categorized into informational, warning, and

fatal (errors linked with system failures) type error messages. Our goal was to check if

the environment log information, displayed through z-scores, captured any hardware

error trends. Fig. 6.14(a) shows the plot for a group of 150 jobs for 23 users in the

system. We compute the z-scores using a user-specific baseline for passed job runs.

Here we see that the fatal hardware error counts increase as the z-score values move

away from the baseline. However, the informational and warning messages are higher

in lower z-score ranges. Fig. 6.14(b) uses system-specific baselines to compute z-scores

for 500 user jobs. However, when we attempted to find patterns of z-scores linking

hardware error categories to specific groups of users or jobs, we could not derive a

link. Fig. 6.14(b) shows that the hardware error categories are roughly equal across all

z-score values when using system-specific baselines for all user jobs. This demonstrates

the usefulness of using user-specific baselines as they help identify and link hardware

errors with user jobs.

Fig. 6.15 shows the plots of z-score values versus slots (4 nodes) in the supercomputer

125

Z-
sc

or
es

Slots

4

2

0

-2

-4

4

2

0

-2

-4

Z-
sc

or
es

Neighboring Slots
Current Job Slots

(a)

(b)

Figure 6.15: Analyzing the supercomputer log data showing z-score values versus slots (4 nodes) for
one job run. The top (a) and bottom (b) figures show the z-scores for job slot readings and neighboring
slot readings before and after the job run reported hardware errors, respectively.

for one job run. The orange-colored slots are allocated to this job, and the blue belong

to the neighboring slots not utilized by the job. Fig. 6.15(a) and Fig. 6.15(b) show the

z-scores values before and after the system reported hardware errors, respectively. We

can clearly see that z-scores show larger variations (−4 to 4) in values after the job slots

reported hardware errors. These hardware errors were memory and critical errors, and

the resulting temperature spike affected not only the job slots but also the neighboring

slots that reported no errors. Similar trends are visible across multiple jobs and further

analysis is needed to identify countermeasures to avoid system heating or overheating.

Z-
sc

or
es

Node IDs

4
2

0

-2

-4

4

2

0

-2

-4

Z-
sc

or
es

Neighboring Slots
Current Job Slots

(a)

(b)

Figure 6.16: Analyzing the supercomputer log data showing z-score values versus nodes for one job
run. The top (a) and bottom (b) figures show the z-scores for a subset of job node readings and
neighboring node readings before and after the job run reported hardware errors, respectively. The
nodes along the x-axis are sorted by their node IDs

Fig. 6.16 shows the plots of z-score values versus nodes in the supercomputer for

126

the job run shown in Fig. 6.15. The orange-colored nodes are allocated to this job,

and the blue belong to the neighboring nodes not utilized by the job. Fig. 6.16(a) and

Fig. 6.16(b) show the z-scores values for a subset of job and neighboring nodes before

and after the system reported hardware errors, respectively. We sorted the nodes along

the x-axis by their node IDs. Similar to Fig. 6.15, z-scores show larger values variations

(−4 to 4) after the job nodes reported hardware errors. When we view the z-score values

at the finer node granularity, the temperature fluctuations of neighboring nodes show

similar variations. Hence, any unprecedented temperature rise in a node may affect its

neighbors and damage a large portion of the system.

2,000 5,000 10,000 20,000Data Size

Ti
m

e
(s

ec
on

ds
)

Figure 6.17: A comparison of completion times, showing how performance scales with the data size
for 4,300 readings.

The sampling rate at each level of our mrDMD depends on the level. Lower levels

use lower sampling rates, and higher frequency levels sample data at a higher frequency.

Since we do not extract high-frequency modes at lower levels, we can use this improve-

ment without changing the final result. At each level of the mrDMD analysis, the

algorithm subtracts the slower modes and splits the timeline. We process each of these

splits asynchronously during the recursive process, adding a performance improve-

ment, as shown in Fig. 6.17. For this analysis, we have picked some popular time series

analysis and clustering methods, including PCA [82], UMAP [115](n_neighbors= 4,

127

min_dist = 0.1, and metric=“euclidean”), change point analysis [166](model=“rbf”,

jump=3, min_size=2, breakpoints=20). We then compare the computation times us-

ing 4,300 time series of varying length data size, including 4,300×2000, 4,300×5000,

4,300× 10000, and 4,300× 20,000. We performed the experiments on the Cray XC40

supercomputer with two 6-core, 2.4-GHz Intel E5–2620 v3 processors (Intel Haswell

architecture) and 256GB of DDR4 memory. The results show that although our method

does not outperform PCA and UMAP, it does outperform the change point detection

algorithm and the mrDMD algorithm without our performance improvements.

6.6 Conclusion
With significant achievements in computer engineering and the advent of exascale

systems, there is a significant increase in monitoring data collected at multiple fidelity

levels and varying temporal resolutions. Our work aims to build a holistic visual analyt-

ical tool that processes this massive monitoring data, including the hardware logs, job

logs, environment logs, syslogs, console log, etc., collected from disparate subsystems

and components of a supercomputer system. The tool provides an abstract overview of

the systems underlying state and behaviors. The main goal of our work is to consolidate

and provide analysis results from multiple types of log data. Environment log data is

usually ignored in log analysis mainly because of its massive size and lack of a mecha-

nism to draw interesting patterns promptly. Our work aims to bridge this gap through

our modified mrDMD analysis and visual analytics tool. With our improvements to

the multiresolution dynamic mode decomposition (mrDMD) algorithm, we are able

to promptly extract supercomputer usage and error patterns at varying temporal and

spatial resolutions. We identified two types of baselines, representing a normal sys-

tem behavior, and used them to extract groups of users and jobs that follow similar

supercomputer usage patterns. Our data-driven analysis can be easily applied to other

large-scale system log data. We plan to extend our work to support the analysis of

streaming multivariate time series to deliver results in real time.

128

Chapter 7
Conclusion

This dissertation has identified critical challenges in error log analysis when applied

to visual analytics and has exemplified solutions for several tangible topics. This dis-

sertation also introduces mechanisms that employ multiple error logs to provide a

holistic representation of large-scale systems. Faster implementation of functional data

analysis algorithms in conjunction with other functional data preprocessing mecha-

nisms enhances log data analysis results’ interpretability, usability, and flexibility. The

multi-stage analysis of the multifidelity log data using machine learning algorithms

helps predict when an application would end with a failure status and the likely error

message. In the meantime, auxiliary visualizations provide details about the system

environment measurements like power, temperature, etc., indicating the overall impact

of the error on the system. The improvements and customization of multiresolution dy-

namic mode decomposition (mrDMD) analysis with mrDMD spectrum analysis guide

the multi-scale analysis by extracting information at multiple resolutions in time. Fur-

thermore, the methodologies are data-driven and applied across systems and domains,

providing useful insights and interpretations.

As the large-scale computing systems approach exascale capabilities coupled with

increasing demands for faster, more efficient, robust, and reliable platforms to execute

mission-critical applications, research is focused on studying large-scale system logs to

understand and capture the implicit mechanics of error propagation. Recent works in

log analysis have made significant progress in identifying and revealing the traces of

error propagation. However, a gap remains to be bridged regarding providing a holistic

system view. In our attempt, we harness the capabilities of visual analytics reinforced

by robust backend mechanisms through functional data analysis, machine learning,

129

deep learning, and multi-scale analysis to provide a holistic picture of these large-scale

systems and convey the results to the user visually. In addition, our visualization tools

incorporate multiple auxiliary views representing various system elements and user

feedback in their pipeline. While most error log analyses utilize one or two types of

system logs, our analyses utilize multiple system logs, up to five types, collected at

varying levels of resolutions both within the system and across time. These considera-

tions have enabled us to better understand the system’s functionalities spatially across

the system hardware and temporally across days or months. The work in this disser-

tation helps motivate and pave the way for future research and development toward

designing multifidelity machine log analysis through visual analytics.

130

Appendix A
Online Supplementary Materials

The links below include the repositories of implementations, demo videos, and exam-

ples used for each corresponding chapter.

• Chapter 3: https://github.com/sshilpika/streaming-ms-plot

• Chapter 4: https://github.com/argonne-lcf/MELA

• Chapter 5 and 6: https://github.com/sshilpika/error-log-analysis

131

https://github.com/sshilpika/streaming-ms-plot
https://github.com/argonne-lcf/MELA
https://github.com/sshilpika/error-log-analysis

Appendix B
Appendix for Chapter 6

B.1 Using mrDMD for extraction of spatio-temporal pat-
terns at isolated frequencies ranges

DMD method provides a spatio-temporal decomposition of data into a group of dy-

namic modes extracted from measurements of a given system in time. DMD can be

thought of as a combination of spatial dimensionality reduction techniques such as

principal component analysis [82] or proper orthogonal decomposition (POD) [18],

and Fourier transforms in time.

N
or

m
al

iz
ed

 c
ur

re
n

t
re

ad
in

gs

Time (seconds) Real (λ)

Im
ag

in
ar

y
(λ

)

DMD modes (ϕ)

(a) (b) (c)

Figure B.1: The figure shows sample of the environment log data (a), specifically the current readings
which are z-score normalized, (b) the eigenvalues � of the decomposition are shown as complex
values, and (c) show the DMD modes for the readings in (a)

Consider measurements taken from 𝑝 observable locations at times Δ𝑡, where

each of 𝑚 snapshots of measurements form a column vector 𝑥 with 𝑝 elements each.

The Fig. B.1(a), shows z-score normalized environment readings for current (original

unit in amperes) along the y-axis. These measurements are obtained at sample rate of

10 seconds totaling 𝑚 = 250 snapshots of 𝑝 = 160 measurements each.

132

We can construct two 𝑝×(𝑚−1) raw data matrix from 𝑚 snapshots in time:

X =

| | | |

x1 x2 x3 ... x𝑚−1

| | | |

 (B.1)

X′ =

| | | |

x2 x3 x4 ... x𝑚
| | | |

 (B.2)

Here, 𝑋 and 𝑋’ have largely overlapping data, with columns of 𝑋’ being shifted one

Δ𝑡 from those in 𝑋. Assuming there exists an unknown linear operator 𝐴 giving:

𝑋′ = 𝐴𝑋.

The eigendecomposition of 𝐴 gives the dynamic mode decomposition of the data

matrix pair 𝑋 and 𝑋’.

In our examples of environment measurements for a data matrix 𝑋 has 𝑛 << 𝑚. We

have fewer measurements than the snapshots in time. Therefore, SVD of 𝑋 produces

𝑘 non-zero singular values, where 𝑘 is the smaller of 𝑛 and 𝑚 − 1. Thus restricting

the maximum number of DMD modes and eigenvalues to a much smaller number

given by 𝑛 in our case. Therefore, making it unable to capture the dynamics over

the larger value of 𝑚 snapshots in time [15, 61]. We augment the resulting matrix

by appending the time-shifted versions of the measurements’ snapshots to solve this

issue. This technique is inspired by the Hankel matrix as constructed in the Eigenvalue

Realization Algorithm [61, 83]. If we use 𝑘 − 1 time-shifted snapshots, the augmented

𝑋 matrix looks as follows:

133

X𝑎𝑢𝑔 =

| | |
x1 x2 ... x𝑚−𝑘

| | |
| | |

x2 x3 ... x𝑚−𝑘+1

| | |
.

.

| | |
xℎ xℎ+1 ... x𝑚−1

| | |

(B.3)

and we obtain 𝑋𝑎𝑢𝑔’ matrix similarly. DMD is applied on 𝑋𝑎𝑢𝑔 and 𝑋𝑎𝑢𝑔’ instead

of 𝑋 and 𝑋′. The spatial DMD modes Φ is now a 𝑘𝑛 ×𝑚 matrix. Since the new data

matrices are time-shifted stacks, the results also reflect this property giving stacks of ℎ

repeated DMD modes. Fig. B.1(b) and (c), give the eigenvalues and DMD mode results.

Fig. B.1(b), shows the real and imaginary values plotted along the x-axis and y-axis,

respectively. The values along the unit circle represent stable modes, and the ones

within and outside represent the rate of decay and growth, respectively.

The multiresolution dynamic mode decomposition (mrDMD) [95] is an extension to

DMD using which multi-scale spatio-temporal features are extracted and approximate

dynamical models are formulated. In other words, using the mrDMD approach, we can

implement principled decomposition of the data at multiple temporal scales. Here, the

temporal scales are split at predefined intervals. In our examples, we split it at intervals

starting from years, months, weeks, days, job duration, hours, and ending at minutes.

After each temporal split, we perform DMD extraction and remove the slower DMD

modes from the extracted DMD modes. The slower modes or background modes are

DMD eigenvalues that fall below a predefined user-chosen threshold radius. Once the

slower DMD modes are removed, the filtered DMD results are used for the next DMD

extraction at a smaller or shorter temporal scale.

134

Step 1: We use the mrDMD power spectrum to identify frequency ranges where

the magnitude of the mrDMD power represent high energy. The power of each DMD

mode Φi is given by:

Pi = |Φi |22 (B.4)

Each spatial mrDMD mode Φi is associated with a corresponding eigenvalue �i, where

the magnitude and phase component of�i represents the growth/decay, and frequency

of oscillation respectively.

fi =

����imag(𝜔i)
2𝜋

���� (B.5)

where 𝜔i = log (�𝑖)/Δ𝑡, where t is the time. The usefulness of extracting data

frequencies based on the DMD spectrum has been demonstrated in the works by

Brunton et al. [15] on electrodes recordings of brain activity over minutes to hours.

However, the work employs traditional DMD, and we use mrDMD to systematically

and recursively removes slower temporal or spatial DMD modes from the data [29,94].

At each temporal scale of the mrDMD computation, the DMD spectrum is computed

using Eq. B.4. In work by Brunton et al., the frequency ranges of interest and the

abnormal DMD power magnitudes are known before analysis. We extract the mrDMD

modes in the frequency ranges where the DMD power shows high energy compared

to that of the chosen baseline measurements representing normal operation. Fig. B.2,

show the mrDMD spectrum for a selected set of baseline readings (shown in blue) and

readings that deviate from the baseline. The example chosen here has 3000 time points

and 48 environment readings, 22 of which represent baseline readings. The time ranges

chosen for multiresolution splits are 24 hours, every 6 hours, and every hour. We can

see that the mrDMD power extracted at each time resolution shows larger mrDMD

power for readings that deviate from the baseline.

Step 2: Once the mrDMD is computed, we can analyze a specific frequency range.

The mrDMD modes lying within a frequency range are averaged to extract the mean

mode magnitude. The mean mode is subtracted from the baseline readings. Then the

z-scores of relative changes in mean mode magnitude is computed. Fig. B.3, shows the

z-scores of relative changes in the mean mode magnitudes computed for frequency

135

DM
D

Po
we

r

Frequency (mHz)

Baseline
Not Baseline

Figure B.2: The figure shows the mrDMD spectrum power versus the frequency (mHz). The red dots
represent environment log readings other than the baseline and the blue dots represent the baseline
readings.

range 20−60 mHz (shown in pink), and > 80 mHz (shown in cyan). The figure shows

that the environment readings representing normal jobs, Fig. B.3(a),(b), have z-scores

that are closer to the baseline. The environment readings corresponding to the job that

failed to execute, Fig. B.3(c), shows z-scores with larger deviations from the baseline.

Step 3: Our visual analytics front-end allows user to customize the frequency range,

mrDMD threshold range, and sampling rate selections. The mrDMD spectrum results

can be plotted on the abstract view or the glyph layout as in Chapter 6. By doing

so, we identify peculiar temporal and spatial ranges that cross the baseline setting of

normal system operation. A challenge in the implementation of this method would be

the computation cost. To solve this problem, we reduce the sampling rate of the time-

series data for macro-scale resolution (years) and increase it as we approach micro-scale

resolution (minutes) as suggested in [95].

136

Z-score

Environment Readings Environment Readings

Environment Readings

 Z-score-1
 Z-score-2

 Baseline range

Z-
sc

or
es

Z-
sc

or
es

Z-
sc

or
es

Normal Job with Hardware Errors Normal Job with No Hardware Errors

Abnormal Job

(a) (b)

(c)

Figure B.3: The figure shows the z-scores of relative changes in the mean mode magnitudes computed
for frequency range 20− 60 mHz (shown in pink) and > 80mHz (shown in cyan). The green line
represents the value-range of the baseline readings. (a) and (b), show z-scores for environment
readings corresponding to nodes that executed jobs successfully, and (c), shows z-scores for the
environment readings corresponding to a node where the job failed. From the environment readings
representing normal jobs ((a) and (b)) we see z-scores are closer to the baseline. The job that failed
to execute (c), shows environment readings with z-scores having larger deviations from the baseline.

137

References

[1] J. Ah-Pine. An efficient and effective generic agglomerative hierarchical clustering
approach. J. Mach. Learn. Res., 19(1):1615–1658, Jan. 2018.

[2] M. Ali, A. Alqahtani, M. W. Jones, and X. Xie. Clustering and classification for
time series data in visual analytics: A survey. IEEE Access, 7, 2019.

[3] G. Aneiros, R. Cao, R. Fraiman, C. Genest, and P. Vieu. Recent advances in
functional data analysis and high-dimensional statistics. J. multivariate analysis,
170:3–9, 2019.

[4] Argonne Leadership Computing Facility, Argonne National Laboratory. Status
of theta supercomputer. https://status.alcf.anl.gov/theta/activity, 2021.
Accessed: 2021-4-19.

[5] Argonne National Laboratory. Argonne Leadership Computing Facility (ALCF)
Theta Supercomputer. https://www.alcf.anl.gov/theta. Accessed: January
23, 2021.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur.
Comput., 1(1):11–33, jan 2004. doi: 10.1109/TDSC.2004.2

[7] L. N. Bairavasundaram. Characteristics, Impact, and Tolerance of Partial Disk Failures.
PhD thesis, University of Wisconsin at Madison, USA, 2008. AAI3348701.

[8] D. A. Bhanage, A. V. Pawar, and K. Kotecha. It infrastructure anomaly detection
and failure handling: A systematic literature review focusing on datasets, log
preprocessing, machine & deep learning approaches and automated tool. IEEE
Access, 9:156392–156421, 2021. doi: 10.1109/ACCESS.2021.3128283

[9] M. Bilal, M. Rizwan, S. Saleem, M. M. Khan, M. S. Alkatheir, and M. Alqarni. Au-
tomatic seizure detection using multi-resolution dynamic mode decomposition.
IEEE Access, 7:61180–61194, 2019. doi: 10.1109/ACCESS.2019.2915609

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3(null):993–1022, Mar. 2003.

[11] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2301–2309, 2011. doi: 10.
1109/TVCG.2011.185

[12] N. Bourassa, W. Johnson, J. Broughton, D. M. Carter, S. Joy, R. Vitti, and P. Seto.
Operational data analytics: Optimizing the national energy research scientific
computing center cooling systems. In Proceedings of the 48th International Con-
ference on Parallel Processing: Workshops, ICPP 2019. Association for Computing
Machinery, New York, NY, USA, 2019. doi: 10.1145/3339186.3339210

138

https://status.alcf.anl.gov/theta/activity
https://www.alcf.anl.gov/theta

[13] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols. Recurrent neural network
attention mechanisms for interpretable system log anomaly detection. In Pro-
ceedings of the First Workshop on Machine Learning for Computing Systems, MLCS’18.
Association for Computing Machinery, New York, NY, USA, 2018. doi: 10.1145/
3217871.3217872

[14] M. Brundage, S. Chandrasegaran, X. Zhang, and K.-L. Ma. Using text visualiza-
tion to aid analysis of machine maintenance logs, 2020-04-30 2020.

[15] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz. Extracting spa-
tial–temporal coherent patterns in large-scale neural recordings using dynamic
mode decomposition. Journal of Neuroscience Methods, 258:1–15, 2016. doi: 10.
1016/j.jneumeth.2015.10.010

[16] R. B. Cattell. The scree test for the number of factors. Multivariate Behav. Res.,
1(2):245–276, 1966.

[17] T. Chalermarrewong, T. Achalakul, and S. C. W. See. Failure prediction of data
centers using time series and fault tree analysis. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, pp. 794–799, 2012. doi: 10.1109/
ICPADS.2012.129

[18] A. Chatterjee. An introduction to the proper orthogonal decomposition. Current
Science, 78(7):808–817, 2000.

[19] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang, H. Dong,
Y. Xu, H. Li, and Y. Kang. Outage prediction and diagnosis for cloud service
systems. In The World Wide Web Conference, WWW ’19, p. 2659–2665. Association
for Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/3308558.
3313501

[20] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and S. Narasimhamurthy. Insights
into the diagnosis of system failures from cluster message logs. In 2015 11th
European Dependable Computing Conference (EDCC), pp. 225–232, 2015. doi: 10.
1109/EDCC.2015.19

[21] E. Chuah, S.-h. Kuo, P. Hiew, W.-C. Tjhi, G. Lee, J. Hammond, M. T. Michalewicz,
T. Hung, and J. C. Browne. Diagnosing the root-causes of failures from cluster
log files. In 2010 International Conference on High Performance Computing, pp. 1–10,
2010. doi: 10.1109/HIPC.2010.5713159

[22] T. Crnovrsanin, J. Chu, and K.-L. Ma. An incremental layout method for visu-
alizing online dynamic graphs. J. Graph Algorithms and Applications, 21(1):55–80,
2017.

[23] W. Dai and M. Genton. Directional outlyingness for multivariate functional data.
Computational Statistics & Data Analysis, 03 2019.

139

[24] W. Dai and M. G. Genton. Multivariate functional data visualization and outlier
detection. J. Computational and Graphical Statistics, 27(4):923–934, 2018.

[25] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden. Doomsday: Predicting
which node will fail when on supercomputers. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 108–121,
2018. doi: 10.1109/SC.2018.00012

[26] A. Das, F. Mueller, and B. Rountree. Aarohi: Making real-time node failure
prediction feasible. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1092–1101, 2020. doi: 10.1109/IPDPS47924.2020.00115

[27] A. Das, F. Mueller, C. Siegel, and A. Vishnu. Desh: Deep learning for system
health prediction of lead times to failure in hpc. In Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing, HPDC
’18, p. 40–51. Association for Computing Machinery, New York, NY, USA, 2018.
doi: 10.1145/3208040.3208051

[28] A. Dasgupta, D. L. Arendt, L. R. Franklin, P. C. Wong, and K. A. Cook. Human
factors in streaming data analysis: Challenges and opportunities for information
visualization. Computer Graphics Forum, 37(1):254–272, 2018.

[29] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math-
ematics, 1992. doi: 10.1137/1.9781611970104

[30] S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Characterizing
and correcting for the effect of sensor noise in the dynamic mode decomposition.
Experiments in Fluids, 57:1–19, 2014.

[31] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello. Logaider: A tool for mining
potential correlations of hpc log events. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid ’17, p.
442–451. IEEE Press, 2017. doi: 10.1109/CCGRID.2017.18

[32] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and
diagnosis from system logs through deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, p.
1285–1298. Association for Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3133956.3134015

[33] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder.
Temperature management in data centers: Why some (might) like it hot. SIGMET-
RICS Perform. Eval. Rev., 40(1):163–174, jun 2012. doi: 10.1145/2318857.2254778

[34] N. El-Sayed, H. Zhu, and B. Schroeder. Learning from failure across multiple clus-
ters: A trace-driven approach to understanding, predicting, and mitigating job
terminations. In 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp. 1333–1344, 2017. doi: 10.1109/ICDCS.2017.317

140

[35] O. ElTayeby and W. Dou. A survey on interaction log analysis for evaluating
exploratory visualizations. In Proceedings of the Sixth Workshop on Beyond Time and
Errors on Novel Evaluation Methods for Visualization, BELIV ’16, p. 62–69. Associa-
tion for Computing Machinery, New York, NY, USA, 2016. doi: 10.1145/2993901
.2993912

[36] F. Chollet. Keras. https://keras.io. Accessed: January 23, 2021.

[37] F. Shilpika. Toward an In-Depth Analysis of Multifidelity System Logs. https:
//youtu.be/exo6aim4uRI. Accessed: January 23, 2021.

[38] F. Ferraty and P. Vieu. Nonparametric functional data analysis: Theory and practice.
Springer Science & Business Media, 2006.

[39] D. D. Fong, A. Knoesen, M. Motamedi, T. O’Neill, and S. Ghiasi. Recovering the
fetal signal in transabdominal fetal pulse oximetry. Smart Health, 9:23–36, 2018.

[40] A. L. N. Fred and A. K. Jain. Combining multiple clusterings using evidence accu-
mulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):835–
850, 2005. doi: 10.1109/TPAMI.2005.113

[41] K. P. F.R.S. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901. doi: 10.1080/14786440109462720

[42] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu. Logmaster: Mining event
correlations in logs of large-scale cluster systems. In 2012 IEEE 31st Symposium
on Reliable Distributed Systems, pp. 71–80, 2012. doi: 10.1109/SRDS.2012.40

[43] T. Fujiwara, J. Chou, S. Shilpika, P. Xu, L. Ren, and K. Ma. An incremental
dimensionality reduction method for visualizing streaming multidimensional
data. IEEE Trans. on Visualization and Computer Graphics, 26(1):418–428, 2020.

[44] T. Fujiwara, O.-H. Kwon, and K.-L. Ma. Supporting analysis of dimensional-
ity reduction results with contrastive learning. IEEE Trans. Vis. Comput. Graph,
26(1):45–55, 2020.

[45] T. Fujiwara, J. K. Li, M. Mubarak, C. Ross, C. D. Carothers, R. B. Ross, and K.-L. Ma.
A visual analytics system for optimizing the performance of large-scale networks
in supercomputing systems. Visual Informatics, 2(1):98–110, 2018. Proceedings of
PacificVAST 2018. doi: 10.1016/j.visinf.2018.04.010

[46] T. Fujiwara, P. Malakar, K. Reda, V. Vishwanath, M. E. Papka, and K.-L. Ma.
A visual analytics system for optimizing communications in massively parallel
applications. In 2017 IEEE Conference on Visual Analytics Science and Technology
(VAST), pp. 59–70, 2017. doi: 10.1109/VAST.2017.8585646

141

https://keras.io
https://youtu.be/exo6aim4uRI
https://youtu.be/exo6aim4uRI

[47] T. Fujiwara, Shilpika, N. Sakamoto, J. Nonaka, K. Yamamoto, and K. Ma. A visual
analytics framework for reviewing multivariate time-series data with dimension-
ality reduction. IEEE Trans. Vis. Comput. Graph, 27(2):1601–1611, 2021.

[48] A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, and W. Kramer. Adaptive
event prediction strategy with dynamic time window for large-scale hpc systems.
In Managing Large-Scale Systems via the Analysis of System Logs and the Application of
Machine Learning Techniques, SLAML ’11. Association for Computing Machinery,
New York, NY, USA, 2011. doi: 10.1145/2038633.2038637

[49] A. Gainaru, F. Cappello, and W. Kramer. Taming of the shrew: Modeling the
normal and faulty behaviour of large-scale hpc systems. In Proceedings of the 2012
IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS ’12, p.
1168–1179. IEEE Computer Society, USA, 2012. doi: 10.1109/IPDPS.2012.107

[50] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction under the mi-
croscope: A closer look into hpc systems. In SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, pp.
1–11, 2012. doi: 10.1109/SC.2012.57

[51] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer. Event log mining tool
for large scale hpc systems. In Proceedings of the 17th International Conference on
Parallel Processing - Volume Part I, Euro-Par’11, p. 52–64. Springer-Verlag, Berlin,
Heidelberg, 2011.

[52] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel. A
practical approach to hard disk failure prediction in cloud platforms: Big data
model for failure management in datacenters. In 2016 IEEE Second International
Conference on Big Data Computing Service and Applications (BigDataService), pp.
105–116, 2016. doi: 10.1109/BigDataService.2016.10

[53] M. Gavish and D. L. Donoho. The optimal hard threshold for singular values
is 4/

√
3. IEEE Transactions on Information Theory, 60(8):5040–5053, 2014. doi: 10.

1109/TIT.2014.2323359

[54] A. Geist and D. A. Reed. A survey of high-performance computing scaling
challenges. Int. J. High Perform. Comput. Appl., 31(1):104–113, jan 2017. doi: 10.
1177/1094342015597083

[55] C. Gormley and Z. Tong. Elasticsearch: The Definitive Guide. O’Reilly Media, Inc.,
1st ed., 2015.

[56] Government of Canada. Canadian Weather Historical Data. https://climate.
weather.gc.ca/historical_data/search_historic_data_e.html. Accessed:
August 22, 202.

142

https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html

[57] M. Grinberg. Flask web development: developing web applications with python. "
O’Reilly Media, Inc.", 2018.

[58] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin,
T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, D. Srinivasan, B. Panda, A. Bap-
tist, G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,
P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale: Evidence of
hardware performance faults in large production systems. ACM Trans. Storage,
14(3), oct 2018. doi: 10.1145/3242086

[59] H. Guo, S. Di, R. Gupta, T. Peterka, and F. Cappello. La VALSE: Scalable Log
Visualization for Fault Characterization in Supercomputers. In H. Childs and
F. Cucchietti, eds., Eurographics Symposium on Parallel Graphics and Visualization.
The Eurographics Association, 2018. doi: 10.2312/pgv.20181099

[60] L. Guo, D. Li, I. Laguna, and M. Schulz. Fliptracker: Understanding natural
error resilience in hpc applications. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 94–107, 2018. doi: 10
.1109/SC.2018.00011

[61] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. Nathan Kutz. On
dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, 1(2):391–421, 2014. doi: 10.3934/jcd.2014.1.391

[62] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation
techniques. J. Intell. Inf. Syst., 17(2–3):107–145, Dec. 2001. doi: 10.1023/A:
1012801612483

[63] P. Hall and M. Hosseini-Nasab. Theory for high-order bounds in functional prin-
cipal components analysis. In Mathematical Proc. Cambridge Philosophical Society,
vol. 146, p. 225, 2009.

[64] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen. Logmine: Fast
pattern recognition for log analytics. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, CIKM ’16, p. 1573–1582.
Association for Computing Machinery, New York, NY, USA, 2016. doi: 10.1145/
2983323.2983358

[65] K. Harms, T. Leggett, B. Allen, S. Coghlan, M. Fahey, C. Holohan, G. McPheeters,
and P. Rich. Theta: Rapid installation and acceptance of an XC40 KNL system.
Concurrency and Computation: Practice and Experience, 30(1), 2018. e4336 cpe.4336.

[66] A. N. Harutyunyan, A. V. Poghosyan, N. M. Grigoryan, and M. A. Marvasti.
Abnormality analysis of streamed log data. In 2014 IEEE Network Operations
and Management Symposium (NOMS), pp. 1–7, 2014. doi: 10.1109/NOMS.2014.
6838292

143

[67] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu. A survey on automated log
analysis for reliability engineering. ACM Comput. Surv., 54(6), jul 2021. doi: 10.
1145/3460345

[68] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition
for large and streaming datasets. Physics of Fluids, 26:111701, 2014.

[69] R. Higdon. Generalized additive models. In W. Dubitzky, O. Wolkenhauer, K.-H.
Cho, and H. Yokota, eds., Encyclopedia of Systems Biology, pp. 814–815. Springer,
2013.

[70] S. L. Ho and M. Xie. The use of arima models for reliability forecasting and
analysis. Comput. Ind. Eng., 35(1–2):213–216, Oct. 1998. doi: 10.1016/S0360-8352
(98)00066-7

[71] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735

[72] L. Horváth and P. Kokoszka. Inference for Functional Data with Applications.
Springer, 2012.

[73] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice:
Understanding the nature of dram errors and the implications for system design.
SIGARCH Comput. Archit. News, 40(1):111–122, mar 2012. doi: 10.1145/2189750.
2150989

[74] R. J. Hyndman and M. Shahid Ullah. Robust forecasting of mortality and fertil-
ity rates: A functional data approach. Computational Statistics & Data Analysis,
51(10):4942–4956, 2007.

[75] R. J. Hyndman and H. L. Shang. Rainbow plots, bagplots, and boxplots for
functional data. J. Computational and Graphical Statistics, 19(1):29–45, 2010.

[76] InfluxData. InfluxDB Documentation. https://docs.influxdata.com/
influxdb. Accessed: January 23, 2021.

[77] S. Jain, I. Singh, A. Chandra, Z.-L. Zhang, and G. Bronevetsky. Extracting the
textual and temporal structure of supercomputing logs. In 2009 International
Conference on High Performance Computing (HiPC), pp. 254–263, 2009. doi: 10.
1109/HIPC.2009.5433202

[78] D. Jauk, D. Yang, and M. Schulz. Predicting faults in high performance computing
systems: An in-depth survey of the state-of-the-practice. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’19. Association for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3295500.3356185

144

https://docs.influxdata.com/influxdb
https://docs.influxdata.com/influxdb

[79] D. Jauk, D. Yang, and M. Schulz. Predicting faults in high performance computing
systems: An in-depth survey of the state-of-the-practice. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’19. Association for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3295500.3356185

[80] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu. An approach for anomaly
diagnosis based on hybrid graph model with logs for distributed services. In
2017 IEEE International Conference on Web Services (ICWS), pp. 25–32, 2017. doi: 10
.1109/ICWS.2017.12

[81] T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu. Logsed: Anomaly diagnosis
through mining time-weighted control flow graph in logs. In 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), pp. 447–455, 2017. doi: 10.
1109/CLOUD.2017.64

[82] I. Jolliffe. Principal Component Analysis, pp. 1094–1096. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-04898-2_455

[83] J.-N. Juang and R. S. Pappa. An eigensystem realization algorithm for modal
parameter identification and model reduction. Journal of Guidance, Control, and
Dynamics, 8(5):620–627, 1985. doi: 10.2514/3.20031

[84] N. M. M. Kalimullah, A. Shelke, and A. Habib. Multiresolution dynamic mode
decomposition (mrdmd) of elastic waves for damage localisation in piezoelectric
ceramic. IEEE Access, 9:120512–120524, 2021. doi: 10.1109/ACCESS.2021.3108440

[85] K. Karhunen. Zur Spektraltheorie stochastischer Prozesse. Annales Academiae sci-
entiarum Fennicae. A.1, Mathematica-physica. 1946.

[86] S. Katragadda, R. Gottumukkala, S. Venna, N. Lipari, S. Gaikwad, M. Pusala,
J. Chen, C. W. Borst, V. Raghavan, and M. Bayoumi. Vastream: A visual analytics
system for fast data streams. In Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning), PEARC ’19. Association for
Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/3332186.3332256

[87] S. Kesavan, H. Bhatia, A. Bhatele, S. Brink, O. Pearce, T. Gamblin, P.-T. Bremer,
and K.-L. Ma. Scalable comparative visualization of ensembles of call graphs.
IEEE Transactions on Visualization and Computer Graphics, pp. 1–1, 2021. doi: 10.
1109/TVCG.2021.3129414

[88] S. P. Kesavan, T. Fujiwara, J. K. Li, C. Ross, M. Mubarak, et al. A visual analytics
framework for reviewing streaming performance data. In Proc. PacificVis, pp.
206–215, 2020.

[89] S. Khan, A. Gani, A. W. A. Wahab, M. A. Bagiwa, M. Shiraz, S. U. Khan, R. Buyya,
and A. Y. Zomaya. Cloud log forensics: Foundations, state of the art, and future
directions. ACM Comput. Surv., 49(1), may 2016. doi: 10.1145/2906149

145

[90] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller. Data mining-based
analysis of hpc center operations. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 766–773, 2017. doi: 10.1109/CLUSTER.2017.23

[91] A. Kneip and K. J. Utikal. Inference for density families using functional principal
component analysis. J. the American Statistical Association, 96(454):519–542, 2001.

[92] H.-K. Ko, J. Jo, and J. Seo. Progressive Uniform Manifold Approximation and
Projection. In Proc. EuroVis, pp. 133–137, 2020.

[93] M. Krstajic and D. A. Keim. Visualization of streaming data: Observing change
and context in information visualization techniques. In Proc. BigData, pp. 41–47,
2013.

[94] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decompo-
sition: data-driven modeling of complex systems. SIAM, 2016.

[95] J. N. Kutz, X. Fu, and S. L. Brunton. Multiresolution dynamic mode decompo-
sition. SIAM Journal on Applied Dynamical Systems, 15(2):713–735, 2016. doi: 10.
1137/15M1023543

[96] A. N. Laboratory. Argonne leadership computing facility (alcf) theta supercom-
puter, 2021.

[97] G. Lakner and B. Knudson. IBM System Blue Gene Solution: Blue Gene/Q System
Administration. IBM Redbooks, 2007.

[98] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber. System log clustering
approaches for cyber security applications: A survey. Computers & Security,
92:101739, 2020. doi: 10.1016/j.cose.2020.101739

[99] J. K. Li, T. Fujiwara, S. P. Kesavan, C. Ross, M. Mubarak, C. D. Carothers, R. B.
Ross, and K.-L. Ma. A visual analytics framework for analyzing parallel and
distributed computing applications. In 2019 IEEE Visualization in Data Science
(VDS), pp. 1–9, 2019. doi: 10.1109/VDS48975.2019.8973380

[100] J. K. Li and K. Ma. P5: portable progressive parallel processing pipelines for inter-
active data analysis and visualization. IEEE Trans. Vis. Comput. Graph., 26(1):1151–
1160, 2020. doi: 10.1109/TVCG.2019.2934537

[101] J. K. Li and K.-L. Ma. P5: Portable progressive parallel processing pipelines for
interactive data analysis and visualization. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1151–1160, 2020. doi: 10.1109/TVCG.2019.2934537

[102] J. K. Li, M. Mubarak, R. B. Ross, C. D. Carothers, and K.-L. Ma. Visual analytics
techniques for exploring the design space of large-scale high-radix networks. In
2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 193–203,
2017. doi: 10.1109/CLUSTER.2017.26

146

[103] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. An adaptive semantic filter for
blue gene/l failure log analysis. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pp. 1–8, 2007. doi: 10.1109/IPDPS.2007.370635

[104] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li, Y. Wu, R. Yao,
M. Chintalapati, and D. Zhang. Predicting node failure in cloud service systems.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, p. 480–490. Association for Computing Machinery, New York, NY, USA,
2018. doi: 10.1145/3236024.3236060

[105] X. Lin, P. Wang, and B. Wu. Log analysis in cloud computing environment with
hadoop and spark. In 2013 5th IEEE International Conference on Broadband Network
& Multimedia Technology, pp. 273–276, 2013. doi: 10.1109/ICBNMT.2013.6823956

[106] S. Liu, J. Yin, X. Wang, W. Cui, K. Cao, and J. Pei. Online visual analytics of text
streams. IEEE Trans. on Visualization and Computer Graphics, 22(11):2451–2466,
2016.

[107] M. Loève. Fonctions aléatoires à décomposition orthogonale exponentielle. La
Revue Scientifique, 84:159–162, 1946.

[108] LOGPAI. A platform for log analytics powered by AI. https://www.logpai.com.
Accessed: April 3, 2023.

[109] J. Lu, F. Li, L. Li, and X. Feng. Cloudraid: Hunting concurrency bugs in the cloud
via log-mining. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2018, p. 3–14. Association for Computing Machinery, New
York, NY, USA, 2018. doi: 10.1145/3236024.3236071

[110] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang. Log-based abnormal task
detection and root cause analysis for spark. In 2017 IEEE International Conference
on Web Services (ICWS), pp. 389–396, 2017. doi: 10.1109/ICWS.2017.135

[111] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading
strategies. Quantitative Finance, 16:1643 – 1655, 2015.

[112] K. Manohar, E. Kaiser, S. L. Brunton, and J. N. Kutz. Optimized sampling for
multiscale dynamics. Multiscale Modeling & Simulation, 17(1):117–136, 2019. doi:
10.1137/17M1162366

[113] A. M. Martinez and A. C. Kak. Pca versus lda. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(2):228–233, 2001. doi: 10.1109/34.908974

[114] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer. Logdiver: A tool
for measuring resilience of extreme-scale systems and applications. In Proceedings

147

https://www.logpai.com

of the 5th Workshop on Fault Tolerance for HPC at EXtreme Scale, FTXS ’15, p. 11–18.
Association for Computing Machinery, New York, NY, USA, 2015. doi: 10.1145/
2751504.2751511

[115] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approximation
and projection for dimension reduction. arXiv:1802.03426, 2018.

[116] L. McInnes, J. Healy, N. Saul, and L. Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018.
doi: 10.21105/joss.00861

[117] L. Millán-Roures, I. Epifanio, and V. Martínez. Detection of anomalies in wa-
ter networks by functional data analysis. Mathematical Problems in Engineering,
2018:5129735, 2018.

[118] H. Miyazaki, Y. Kusano, N. Shinjou, F. Shoji, M. Yokokawa, and T. Watan-
abe. Overview of the K computer system. Fujitsu Scientific & Technical Journal,
48(3):302–309, 2012.

[119] C. Muelder, B. Zhu, W. Chen, H. Zhang, and K. Ma. Visual analysis of cloud
computing performance using behavioral lines. IEEE Trans. Vis. Comput. Graph.,
22(6):1694–1704, 2016. doi: 10.1109/TVCG.2016.2534558

[120] C. Mueller, D. Gregor, and A. Lumsdaine. Distributed force-directed graph
layout and visualization. In Proceedings of the 6th Eurographics Conference on Parallel
Graphics and Visualization, EGPGV ’06, p. 83–90. Eurographics Association, Goslar,
DEU, 2006.

[121] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis of systems
logs to diagnose performance problems. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’12, p. 26. USENIX
Association, USA, 2012.

[122] N. Nakka, A. Agrawal, and A. Choudhary. Predicting node failure in high perfor-
mance computing systems from failure and usage logs. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp.
1557–1566, 2011. doi: 10.1109/IPDPS.2011.310

[123] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz. Dcdb
wintermute: Enabling online and holistic operational data analytics on hpc sys-
tems. In Proceedings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’20, p. 101–112. Association for Computing Ma-
chinery, New York, NY, USA, 2020. doi: 10.1145/3369583.3392674

[124] T. T. Neves, R. M. Martins, D. B. Coimbra, K. Kucher, A. Kerren, et al. Xtreaming:
An incremental multidimensional projection technique and its application to
streaming data. arXiv:2003.09017, 2020.

148

[125] H. T. Nguyen, A. Bhatele, N. Jain, S. P. Kesavan, H. Bhatia, T. Gamblin, K.-L.
Ma, and P.-T. Bremer. Visualizing hierarchical performance profiles of parallel
codes using callflow. IEEE Transactions on Visualization and Computer Graphics,
27(4):2455–2468, 2021. doi: 10.1109/TVCG.2019.2953746

[126] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari. Character-
izing temperature, power, and soft-error behaviors in data center systems: In-
sights, challenges, and opportunities. In 2017 IEEE 25th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 22–31, 2017. doi: 10.1109/MASCOTS.2017.12

[127] A. Oliner and J. Stearley. What supercomputers say: A study of five system
logs. In 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pp. 575–584, 2007. doi: 10.1109/DSN.2007.103

[128] B. H. Park, Y. Hui, S. Boehm, R. A. Ashraf, C. Layton, and C. Engelmann. A big
data analytics framework for HPC log data: Three case studies using the titan
supercomputer log. In Proc. CLUSTER, pp. 571–579, 2018.

[129] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann. Big data meets HPC
log analytics: Scalable approach to understanding systems at extreme scale. In
Proc. CLUSTER, pp. 758–765, 2017.

[130] B.-H. Park, G. Kora, and A. Geist. RAVEN: RAS data analysis through visually
enhanced navigation. Proceedings of Cray User Group Conference, 2010.

[131] T. Patel, Z. Liu, R. Kettimuthu, P. Rich, W. Allcock, and D. Tiwari. Job characteris-
tics on large-scale systems: Long-term analysis, quantification, and implications.
In SC20: International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–17, 2020. doi: 10.1109/SC41405.2020.00088

[132] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton. Streaming gpu singular value
and dynamic mode decompositions. ArXiv, abs/1612.07875, 2016.

[133] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann, and A. Vi-
lanova. Approximated and user steerable tSNE for progressive visual analytics.
IEEE Trans. on Visualization and Computer Graphics, 23(7):1739–1752, 2017.

[134] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with
control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016. doi: 10.
1137/15M1013857

[135] J. O. Ramsay. Functional data analysis. In Encyclopedia of Statistical Sciences.
American Cancer Society, 2006.

[136] J. O. Ramsay and C. J. Dalzell. Some tools for functional data analysis. J. Royal
Stat. Society: Series B (Methodological), 53(3):539–561, 1991.

149

[137] J. O. Ramsay and B. W. Silverman. Functional Data Analysis, p. 428. Springer-Verlag
New York, 2005.

[138] C. R. Rao. Some statistical methods for comparison of growth curves. Biometrics,
14(1):1–17, 1958.

[139] C. A. C. Rincón, J.-F. Pâris, R. Vilalta, A. M. K. Cheng, and D. D. E. Long.
Disk failure prediction in heterogeneous environments. In 2017 International
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), pp. 1–7, 2017. doi: 10.23919/SPECTS.2017.8046776

[140] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust
visual tracking. Int. J. Computer Vision, 77(1-3):125–141, 2008.

[141] C. W. ROWLEY, I. MEZIĆ, S. BAGHERI, P. SCHLATTER, and D. S. HENNING-
SON. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127,
2009. doi: 10.1017/S0022112009992059

[142] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods.
ACM Comput. Surv., 42(3), mar 2010. doi: 10.1145/1670679.1670680

[143] M. Sato. The supercomputer “Fugaku” and Arm-SVE enabled A64FX processor
for energy-efficiency and sustained application performance. In Proc. ISPDC, pp.
1–5, 2020.

[144] P. J. SCHMID. Dynamic mode decomposition of numerical and experimental
data. Journal of Fluid Mechanics, 656:5–28, 2010. doi: 10.1017/S0022112010001217

[145] P. J. Schmid. Dynamic mode decomposition of numerical and experimen-
tal data. Journal of Fluid Mechanics, 656(August):5–28, 2010. doi: 10.1017/
s0022112010001217

[146] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust. Applications of the dynamic mode
decomposition. Theoretical and Computational Fluid Dynamics, 25(1):249–259, Jun
2011. doi: 10.1007/s00162-010-0203-9

[147] B. Schroeder and G. A. Gibson. Disk failures in the real world: What does an
mttf of 1, 000, 000 hours mean to you? In USENIX Conference on File and Storage
Technologies, 2007.

[148] B. Seraphim, S. Palit, K. Srivastava, and E. Poovammal. A survey on machine
learning techniques in network intrusion detection system. In 2018 4th Interna-
tional Conference on Computing Communication and Automation (ICCCA), pp. 1–5,
2018. doi: 10.1109/CCAA.2018.8777596

[149] H. Shang. A survey of functional principal component analysis. Advances in
Statistical Analysis, 98:121–142, 2014.

150

[150] Shilpika, T. Fujiwara, N. Sakamoto, J. Nonaka, and K.-L. Ma. A visual analytics
approach for hardware system monitoring with streaming functional data anal-
ysis. IEEE Transactions on Visualization and Computer Graphics, pp. 1–1, 2022. doi:
10.1109/TVCG.2022.3165348. © 2022 IEEE.

[151] F. Shilpika, B. Lusch, M. Emani, V. Vishwanath, M. E. Papka, and K.-L. Ma.
Mela: A visual analytics tool for studying multifidelity hpc system logs. In 2019
IEEE/ACM Industry/University Joint International Workshop on Data-center Automa-
tion, Analytics, and Control (DAAC), pp. 13–18, 2019. doi: 10.1109/DAAC49578.
2019.00008. © 2019 IEEE.

[152] S. Shilpika, B. Lusch, M. Emani, F. Simini, V. Vishwanath, M. E. Papka, and K.-L.
Ma. Toward an in-depth analysis of multifidelity high performance computing
systems. In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp. 716–725, 2022. doi: 10.1109/CCGrid54584.2022.00081.
© 2022 IEEE.

[153] S. Silalahi, R. M. Ijtihadie, T. Ahmad, and H. Studiawan. A survey on logging
in distributed system. In 2022 1st International Conference on Information System
& Information Technology (ICISIT), pp. 7–12, 2022. doi: 10.1109/ICISIT54091.2022
.9873095

[154] P. Skibinski and J. Swacha. Fast and efficient log file compression. In ADBIS
Research Communications, 2007.

[155] F. Skopik, M. Landauer, and M. Wurzenberger. Online log data analysis with
efficient machine learning: A review. IEEE Security & Privacy, 20(3):80–90, 2022.
doi: 10.1109/MSEC.2021.3113275

[156] M. Soualhia, F. Khomh, and S. Tahar. Predicting scheduling failures in the cloud:
A case study with google clusters and hadoop on amazon emr. In 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, pp. 58–65, 2015.
doi: 10.1109/HPCC-CSS-ICESS.2015.170

[157] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi.
Feng shui of supercomputer memory: Positional effects in dram and sram faults.
In 2013 SC - International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’13. Association for Computing Machinery, New York,
NY, USA, 2013. doi: 10.1145/2503210.2503257

[158] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-driven vi-
sual exploration of in-progress analytics. IEEE Trans. on Visualization and Computer
Graphics, 20(12):1653–1662, 2014.

151

[159] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. J. Mach. Learn. Res., 3(null):583–617, Mar. 2003.
doi: 10.1162/153244303321897735

[160] J. Svacina, J. Raffety, C. Woodahl, B. Stone, T. Cerny, M. Bures, D. Shin, K. Fraj-
tak, and P. Tisnovsky. On vulnerability and security log analysis: A systematic
literature review on recent trends. In Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, RACS ’20, p. 175–180. Association for
Computing Machinery, New York, NY, USA, 2020. doi: 10.1145/3400286.3418261

[161] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan. Logan: Problem diagnosis in the
cloud using log-based reference models. In 2016 IEEE International Conference on
Cloud Engineering (IC2E), pp. 62–67, 2016. doi: 10.1109/IC2E.2016.12

[162] L. Tan and J. Jiang. Chapter 2 - signal sampling and quantization. In L. Tan and
J. Jiang, eds., Digital Signal Processing (Third Edition), pp. 13–58. Academic Press,
third edition ed., 2019. doi: 10.1016/B978-0-12-815071-9.00002-6

[163] Y. Tanahashi, C.-H. Hsueh, and K.-L. Ma. An efficient framework for generating
storyline visualizations from streaming data. IEEE Trans. on Visualization and
Computer Graphics, 21(6):730–742, 2015.

[164] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[165] C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point
detection methods. Signal Processing, 167:107299, Feb 2020. doi: 10.1016/j.sigpro
.2019.107299

[166] C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point
detection methods. Signal Processing, 167:107299, 2020. doi: 10.1016/j.sigpro.
2019.107299

[167] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On
dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, 1(2):391–421, 2014. doi: 10.3934/jcd.2014.1.391

[168] J. W. Tukey. Mathematics and the picturing of data. In Proc. ICM, vol. 2, pp.
523–531, 1975.

[169] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. Designing progressive and in-
teractive analytics processes for high-dimensional data analysis. IEEE Trans. on
Visualization and Computer Graphics, 23(1):131–140, 2017.

[170] C. Turkay, N. Pezzotti, C. Binnig, H. Strobelt, B. Hammer, D. A. Keim, J.-D.
Fekete, T. Palpanas, Y. Wang, and F. Rusu. Progressive data science: Potential
and challenges. arXiv:1812.08032, 2018.

152

[171] L. Van Der Maaten. Accelerating t-sne using tree-based algorithms. J. Mach.
Learn. Res., 15(1):3221–3245, Jan. 2014.

[172] Y. Vardi and C.-H. Zhang. The multivariate L1-median and associated data depth.
PNAS, 97(4):1423–1426, 2000.

[173] R. Viviani, G. Grön, and M. Spitzer. Functional principal component analysis of
fmri data. Human Brain Mapping, 24(2):109–129, 2005.

[174] J.-L. Wang, J.-M. Chiou, and H.-G. Müller. Functional data analysis. Annual
Review of Statistics and Its Application, 3(1):257–295, 2016.

[175] Q. Wang, S. Zheng, A. Farahat, S. Serita, and C. Gupta. Remaining useful life
estimation using functional data analysis. In Proc. ICPHM, pp. 1–8, 2019.

[176] X. Wang and A. McCallum. Topics over time: A non-markov continuous-time
model of topical trends. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06, p. 424–433. Associa-
tion for Computing Machinery, New York, NY, USA, 2006. doi: 10.1145/1150402
.1150450

[177] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto. Online failure
prediction in cloud datacenters by real-time message pattern learning. In 4th IEEE
International Conference on Cloud Computing Technology and Science Proceedings, pp.
504–511, 2012. doi: 10.1109/CloudCom.2012.6427566

[178] G. M. Weiss, K. Yoneda, and T. Hayajneh. Smartphone and smartwatch-based
biometrics using activities of daily living. IEEE Access, 7:133190–133202, 2019.

[179] P. Welch. The use of fast fourier transform for the estimation of power spectra:
a method based on time averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2):70–73, 1967.

[180] K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin, Y. Xu, H. Zhang, and H. Qu.
CloudDet: Interactive visual analysis of anomalous performances in cloud com-
puting systems. IEEE Trans. Vis. Comput. Graph, 26(01):1107–1117, 2020.

[181] K. Xu, M. Xia, X. Mu, Y. Wang, and N. Cao. EnsembleLens: Ensemble-based
visual exploration of anomaly detection algorithms with multidimensional data.
IEEE Trans. Vis. Comput. Graph, 25(1):109–119, 2019.

[182] R. B. Yadav, P. S. Kumar, and S. V. Dhavale. A survey on log anomaly detection
using deep learning. 2020 8th International Conference on Reliability, Infocom Tech-
nologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1215–1220,
2020.

[183] Y. Yang and K. Chen. Temporal data clustering via weighted clustering ensemble
with different representations. IEEE Transactions on Knowledge and Data Engineer-
ing, 23(2):307–320, 2011. doi: 10.1109/TKDE.2010.112

153

[184] Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: Lstm
cells and network architectures. Neural Comput., 31(7):1235–1270, July 2019. doi:
10.1162/neco_a_01199

[185] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and
I. Stoica. Apache spark: A unified engine for big data processing. Commun. ACM,
59(11):56–65, oct 2016. doi: 10.1145/2934664

[186] T. S. Zaman, X. Han, and T. Yu. Scminer: Localizing system-level concurrency
faults from large system call traces. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 515–526, 2019. doi: 10.1109/ASE.
2019.00055

[187] L. Zeng, Y. Xiao, H. Chen, B. Sun, and W. Han. Computer operating system
logging and security issues: A survey. Sec. and Commun. Netw., 9(17):4804–4821,
nov 2016. doi: 10.1002/sec.1677

[188] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei, J. Xu, Y. Zhang,
Y. Chen, H. Dong, X. Qu, and L. Song. Prefix: Switch failure prediction in
datacenter networks. Proc. ACM Meas. Anal. Comput. Syst., 2(1), apr 2018. doi: 10
.1145/3179405

[189] X. Zhang, S. Chandrasegaran, and K.-L. Ma. Conceptscope: Organizing and vi-
sualizing knowledge in documents based on domain ontology. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21. Associa-
tion for Computing Machinery, New York, NY, USA, 2021. doi: 10.1145/3411764
.3445396

[190] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng,
Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati, F. Shen, and D. Zhang.
Robust log-based anomaly detection on unstable log data. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, p. 807–817. Association
for Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/3338906.
3338931

[191] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman. A practical failure
prediction with location and lead time for blue gene/p. In 2010 International
Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 15–22,
2010. doi: 10.1109/DSNW.2010.5542627

[192] Z. Zheng, Z. Lan, B.-H. Park, and A. Geist. System log pre-processing to improve
failure prediction. 2009 IEEE/IFIP International Conference on Dependable Systems
& Networks, pp. 572–577, 2009.

154

[193] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He. Latent error
prediction and fault localization for microservice applications by learning from
system trace logs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2019, p. 683–694. Association for Computing Machinery, New
York, NY, USA, 2019. doi: 10.1145/3338906.3338961

[194] Y. Zuo, H. Cui, X. He, et al. On the Stahel-Donoho estimator and depth-weighted
means of multivariate data. The Annals of Statistics, 32(1):167–188, 2004.

155

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Background
	Machine Log Error Analysis
	Visual Analytics of Machine Logs
	Time-series Data Analysis for Functional Data
	Multiscale Time-series Data Analysis

	Error Log Anomaly Detection in Large Scale High Performance Computing Systems: A Survey
	Introduction
	Background and Definitions
	Logging Terminologies - Faults, Errors, Symptoms, and Failures

	Analysis of Log Data
	Anomaly Detection and Diagnosis
	Visualization in Log Data

	Gaps and Future Work
	Conclusion

	Functional Data Analysis: Real-Time Monitoring of Time-Series Data
	Introduction
	Related Work
	Streaming Data Visualization
	Functional Data Analysis

	Methodology
	Overall Organization
	Incremental & Progressive Generation of the Magnitude-Shape Plot
	Reviewing the MS Plot with Auxiliary Information and Functional Principal Component Analysis

	Case Studies
	Study 1: Analysis of Canadian Weather Data
	Study 2: Analysis of Ozone Level Data
	Study 3: Analysis of Supercomputer Hardware Logs
	Study 4: Analysis of Biometrics Data of Daily Activities

	Discussion
	Performance Evaluation
	Conclusion

	A Visual Analytics Solution for Analyzing Multifidelity HPC System Logs
	Introduction and Background
	A Visual Analytics Tool - MELA
	Node Layout
	Ring Layout
	Selection Layout
	Detailed Layout
	Database backend

	Case Studies
	Case Study 1:
	Case Study 2:

	Conclusion and Future Work

	Machine Anomaly Detection and Prediction
	Introduction
	Related Work
	System Overview
	Visual Analytics System
	Back-end Processing Pipeline

	Case Studies
	Case Study 1:
	Case Study 2:
	Case Study 3:

	System Model Analysis
	Conclusion

	A Visual Analytics Approach for Multi-Scale Systemic Assessment of Multifidelity High Performance Computing Systems
	Introduction
	Related Work
	Error Log Analysis in Large Scale Systems
	Multiresolution Dynamic Mode Decomposition

	System Overview
	Overall Organization
	Backend Analysis
	Visualization Frontend

	Case Studies
	Case Study 1
	Case Study 2
	Case Study 3

	Discussion
	Conclusion

	Conclusion
	Online Supplementary Materials
	Appendix for Chapter 6
	Using mrDMD for extraction of spatio-temporal patterns at isolated frequencies ranges

