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Centralized coordination protocols are simpler and more efficient than distributed 
ones. However, as a distributed system gets large, the bottleneck of the central 
coordinator renders protocols relying on centralized coordination inefficient. To 
solve this problem, hierarchical coordination can be used, where performance 
degrades logarithmically with the number of participating processes. 

In this paper we present a mechanism that automatically organizes processes in a 
hierarchy and maintains the hierarchy in the presence of node failures, and 
incremental addition and removal of processes in the system. The new topology 
resulting from a change is computed by each process locally, without having to 
broadcast the entire topology to all processes. The proposed scheme can 
concurrently support multiple logical structures, such as a ring, a hypercube, a 
mesh, or a tree. It supports total order of broadcasts and does not rely on any 
specific system features or special hardware. 

Distributed systems consisting of a network of workstations or personal computers are an attractive 
way to speed up large computations. There are several coordination protocols that must be used 
during the system execution. Among these protocols are those responsible for checkpointing [1], 
stability detection [3], and maintaining a global virtual time [4]. Usually, protocols that involve a 
central coordinator are more efficient, as they require fewer communication messages than 
distributed protocols, and are simpler to construct. At some point of the centralized protocol a 
coordinator broadcasts information to other processes and receives an acknowledgement message. 
As a system gets large, a bottleneck of the central coordinator significantly slows down the 
execution of the centralized protocols, sometimes even making them unusable. A hierarchical 
coordination can be used instead of a centralized one [3,5]. Hierarchical protocols have the 
efficiency and simplicity of the centralized protocols and scalability of the distributed protocols. In 
this paper we present a mechanism, called Process Order, for building and maintaining a hierarchy 
of processes in a dynamically changing distributed system. 

The rest of this paper is organized as follows. As a motivation for this work, section 2 presents 
performance evaluation of centralized and hierarchical broadcasts. Section 3 describes the Process 
Order mechanism. Section 4 shows how Process Order operates in a dynamically changing failure­
free system. Section 5 describes Process Order in the presence of failures. Section 6 presents 



possible extensions and optimizations to the to the basic scheme. And section 7 concludes this 
paper. 

This study measures the performance of a broadcasting protocol, which is used in many 
coordination protocols [2-5,7]. It consists of broadcasting the message, and receiving all the 
acknowledgement messages back. 

Experiments were conducted on a cluster of Sun workstations running Solaris 2.5.1 and Solaris 2.7. 
The workstations were located in two neighboring subnets. Within each domain the workstations 
were connected with a 10 Mbps shared Ethernet with collision domain less or equal to twelve. 
Domains were connected by 100 Mbps fiber with Cisco router 5500. The experiments were run at 
night, so the fluctuations in the workstations' load were minimal. 

Inter-process communication was implemented with TCP/IP, as it provides guaranteed message 
delivery, which is essential for many coordination protocols. The application program was 
implemented in Java. 

Each process in the system consists of two threads: an application thread, and a coordination 
thread. An computes a synthetic grid application. Processors form a 2-
dimentional logical grid, where every element of the grid is connected with its four nearest 
neighbors. 

Each grid element executes the same function, which takes in an array of doubles and performs a 
simple arithmetic modification to each array element. Then a message with a user-defined size is 
sent to the four neighbors, and a similar message is received from the four neighbors. This 
sequence is repeated for the duration of the experiment. Socket connections in this thread are 
established at the beginning of the execution, and closed only when the program terminates. 

The coordination running in parallel to the application thread is executing broadcasts. The 
centralized and the hierarchical broadcasts were implemented. In the all the 
processes in the system are divided into a coordinator process and coordinated processes. The 
coordinator process spawns two threads: one for sending and one for receiving. A sending thread 
broadcasts a message to all the coordinated processes, and a receiving thread receives all the 
responses. A new cycle of broadcasting can not be started until all the responses to the current 
broadcast are received. The coordinated processes have only one thread; it receives a message from 
the coordinator, and replies back. 

In the broadcast, every process spawns two threads: one for sending and one for 
receiving. The processes form a logical binary tree, and the broadcast travels down the tree and 
back. A node sends a reply to its parent only after it receives replies from all its children. A new 
cycle of broadcasting can not be started until the previous is completed. 

There is a limit on the number of socket connections that could be open at the same time. Solaris 
5.1 allows only 64 file descriptors open at any time. Considering this, a new connection is set up 
for every send and receive for the broadcasting thread of the coordinator in the centralized 
broadcast. This is not necessary in the case of the hierarchical broadcast. However, hierarchical 
broadcasting was measured both with and without reconnections. These results are used later in this 
paper. 
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A time of one broadcast for each protocol and for each system configuration was measured. The 
measured time includes overhead for starting the Java process and initializing global variables. In 
the presented results the time of the first iteration is subtracted from the total execution time. The 
measurements for each experiment were averaged over the set of several runs. 

Figure 1 presents running 100 broadcasts for each protocol on the sets of 15, 16, and 63 processing 
elements (PEs). As the number of PEs increases, the advantage of hierarchical broadcast becomes 
obvious. With 63 PEs the hierarchical broadcast with reconnection (Hl) takes 19 times less time 
than centralized broadcast (C), and hierarchical broadcast without reconnection (H2) is 5 times 
faster than H 1. r ... _ ........ - . .,.·53·-PET·1··5-·p-r~r1 .. 5·-P·E' 
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load on the central coordinator induced by 63 and 16 PEs. 100 broadcasts (sec) 

There was no noticeable difference in time taken by the centralized 
broadcast when the number of PEs decreased from 16 to 15. For 

Figure 1 

hierarchical broadcast the difference in performance between columns one and two is similar to that 
of columns two and three. The reason for this is that in both cases, i.e., when moving from 63 PEs 
to 16 PEs and when moving from 16 PEs to 15 PEs, the depth of the tree is decreased only by one 
level. As all the nodes at the same depth of the tree broadcast to their children in parallel, the 
broadcasting time grows with the depth of the tree, and not with the number of PEs. 

Modifications to the application thread including changing the ratio of computation to 
communication, and changing the size of the exchange message had no effect on performance of 
the broadcasting protocols. 

In summary, our experiments confirm the intuition that centralized broadcasting is slow for large 
systems and that hierarchical broadcasting scales well as the system size increases. 

Each process in the computation has a unique system id. It may consist of two integers: the process 
id and the IP address. The process id provides uniqueness in the machine, and the IP address 
provides uniqueness in the network. (If there is only one process per physical node, the address 
is sufficient to provide a unique system id.) 

The processes in the system exchange their system ids during the 
initialization phase. Then each process sorts all processes by their system ids, 
which can be represented by integers. After the processes are sorted, each 
process is given a Process Order Id (POID) according to its place in the 
sorted list, starting from 0. This information is stored in a Process Order 
Table. An example of a Process Order Table for a system with 4 PEs is 
shown in figure 2. 

The processes can be arranged in a hierarchy implicitly with the Process 
Order using the formula 

POIDcoord = POIDselfDIV K 

where K is the maximum number of processes coordinated by any single process. 

r-........ ,, ... ,. .. r .......................... l .............. , 
iPOID !Name IP! !"'"'··-·" .... -................. ~ .. - ..... _T_ ....... { 
i 0 PO ·20t 
,................... . ................ --1 

I 1 P2 24
1 

f"'"'""~~"?Jp1""''--" ·31·1 
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Process Order Table 
Figure 2 
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Using this scheme each process can identify its coordinator without exchanging any messages with 
other processes. Figure 3a shows a centralized system with a single coordinator. This can be 
modeled as a 2-level hierarchy with K equals to the total number of processes. In this and all 
following examples processes are identified by a letter, and then assigned POID in alphabetical 
order. Figure 3b illustrates how this scheme works when the number of coordinated processes is set 
to three. The number in each process name is the process POID, and the letter is a symbolic name 
of the process. This hierarchy can dynamically adapt to the changes in the system topology. Figure 
3c shows the situation where process "b" exits the computation. The system automatically 
rearranges itself in a new hierarchy. 

The use of this hierarchy can easily be extended to a more general broadcasting mechanism, where 
all the processes in the system can broadcast messages. To do this, the initiator of the broadcast 
sends its message to the root coordinator, which then propagates the message down the hierarchy. 
As TCP/IP provides reliable FIFO channels, this broadcasting mechanism supports a total order of 
broadcasts. 

POID coorr POID DN K 
K =12 

PO/Dcoord = POID selfDN K 
K =3 

POIDcoord= PO/DselfDN K 
K =3 

a) centralized system b) hierarchical organization c) process "b" exited the system 

Figure 3 

a 

This section describes how the consistency of the Process Order mechanism is preserved when 
processes can join or leave the system at run time. We assume that all deletions and insertions of 
processes are initiated by special modification messages sent to the current coordinator process. 

The system modification is successful, iff 
1. All broadcasts initiated before a modification message is delivered to the old PE set. 
2. All live processes receive the modification message. This includes any process being 

deleted or inserted 
3. All broadcasts initiated after the modification message are delivered to new set. 

All broadcasts are delivered total order. 
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When a process is joining the system it sends a Systemloin message ~o the root coordinator 
containing its ip address. This is illustrated in figure 4a, as node B joins the system. The root 
updates its Process Order Table (POTable), and sends a POModi-fy message to its newly calculated 
children, as shown in figure 4b, where POModi-fy messages shown by thick arrows. POModi-fy 
message includes the information about the new process. After receiving POModi-fy message a 
process modifies its POTable. If the children list changed, the process establishes connections with 
its new children and forwards the POModi-fy to them (fig 4c). 

Similarly, when a process is exiting the 
system, it sends a SystemLeave message to 
the coordinator, as does node in figure Sa. 
The coordinator modifies its POTable and 
broadcasts POModi-fy message to its new 
children (fig Sb). This is repeated down the 
tree, as shown in figure Sc. The old parent of 
the leaving process sends POModi-fy message 
to its new children, as well as to the leaving 
process. In figure Sc B signals to leave. 

Each process keeps a modification log 
(ModLog), which is a collection of the received 
POModi-fy messages. Each process also keeps 
the log of the broadcasts (BLog). The 
modification algorithms will be clarified, as 
their correctness is shown. 

Proof of Correctness 

All broadcasts initiated before a 
modification message are delivered to the 
old PE set. 

As the topology of the system changes, 
messages that would normally arrive in the 
FIFO order, can be interchanged, as shown in 
Figure 6. In this example (fig.6a) broadcast 
is started before adding node which is 
initiated by a message m (fig 6b). This is 
followed by broadcast (fig 6c). Node 
receives from A, and m and from 
Theoretically could reach after m and 
even after In this case would broadcast 

only to Y, and bl would never be delivered 
to node (fig 6d). 

This problem is fixed by appending the 
ModLo g of the root coordinator to the 
broadcasted message. This allows processes to 
reconstruct the hierarchy as it was at the time of 
the broadcast. As ModLog of did not contain 

a) b) c) 

Figure 4. Adding node B 
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Figure 5. Removing node X 

a) b) 

c) d) 

Figure 6. Broadcasts while adding node B. 
bl, b2 - broadcasts, m - modification message 
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the addition of node will also send to X. 

2. All live processes receive the modification message. 
Each process processes the POModi-fy message, modifies its POTable, and then broadcasts 
POModi-fy message to its new children. As this is done consistently by every process, every process 
in the new hierarchy receives the modification message. If a process is being deleted then it 
receives the POModi-fy message from its original parent. 

3. All broadcasts initiated after the modification message are delivered. 
When a new broadcast is initiated, it traverses a new hierarchy built by POModi-fy messages. As 
TCP/IP provides FIFO channels, a broadcasting message cannot reach its destination before the 
POModifY message, and therefore the broadcast is delivered to the whole new hierarchy. 

All broadcasts are delivered in total order. 
In a modification-free execution all broadcasts are delivered in total order. Therefore, all broadcasts 
that happened before a modification, and all broadcasts sent after a modification are delivered in 
the correct order. However, broadcasts sent before the modification (point 1 above) could mix with 
broadcasts initiated after the modification, as was shown on figure 6. 

To solve this problem, the root coordinator assigns all the broadcasts a unique, monotonically 
increasing broadcast index (BD. Each process knows the BI of the last message it received, and 
therefore can postpone processing out-of-order messages. Reliable communication channels 
guarantee the delivery of all messages, or failure will be detected otherwise. Therefore, deadlock is 
not possible. 

5.1 Failure ri.n.•""""'11-"""""' 

TCP/IP generates an interrupt on the sender side if the receiver socket is not responding. This 
feature is used to detect process failures. The participating processes are arranged in a logical ring 
using Process Order. Each process sends a heartbeat message to the next process in the ring. 
Processes are arranged into a ring with Process Order using the formula 

POIDreceiver = (POIDsender + l)mod n, where n is a number of nodes (n > 1) 

Failure recovery 

Consistency of the Process Order mechanism in the presence of failures depends on the recovery 
algorithm used in the system. If the rollback-recovery algorithm presented in [ 6] is used, the 
consistency of the Process Order is preserved automatically. In this scheme, once failure is 
detected, the whole system rolls back and recovers from the previously saved consistent system 
state. When the recovery algorithm is finished, all the processes aware of all other live processes in 
the system, and therefore Process Order tables, are consistent. This recovery scheme might be good 
for applications requiring barrier synchronization, individual-based simulations relying on the 
virtual time, and grid applications. 

For other applications this recovery scheme might produce large overhead, especially in large 
systems. In such cases recovery protocols that restart only the failed process are used. One way to 
provide such a recovery is by using a causal logging protocol [8, 12]. The rest of this section 
describes how Process Order consistency is preserved in case of such a recovery. 
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The node failures could be divided into three types: 1. Failures occurring before processing a 
broadcast message, which was received, but not propagated down the hierarchy. 2. Failures 
occurring in the middle of the broadcast, when the process sends a message to some of its children, 
and then fails. 3. Failures occurring after the broadcast, when node is not participating in the 
broadcast. The POModifY messages are treated in the same way as other broadcast messages. 

The idea is to merge the first two types of failures with the simpler third type. This is done by 
comparing the BI index of node's parent to the Bis of the node's children. If the failed node's child 
misses some messages received by the failed node's parent, these messages are sent to that node. 
After this is done, the failure could be considered belonging to type 3. Multiple failures are handled 
in a similar way. In figure 6d if node B fails, the Bis of and are compared to Bis of A. If 
also fails, the Bis of and are compared to 

Type 3 failures are handled in the following way. After failure is detected, the coordinator is 
notified, and it acts in the same way as if the failed process willingly leaves the system: the 
coordinator broadcasts POModifY message to its children. 

If a process during a broadcast discovers that its child in the hierarchy is down, it sends a 
notification message to the root coordinator, and propagates the broadcast to the children of the 
failed process. For example, if node D in figure 6d failed and B tried to send it a broadcast, B 
would notify A of D's failure and propagate the broadcast to Y and to M. As a result all the 
processes, except the failed one, receive the broadcasted message. The same rule works in the 
presence of multiple failures. 

Coordinator failures 
The failures of the coordinator could be divided into the same three types as the failure of any other 
node. Type 3 failure is the same in both cases but the recovery from type 1 and 2 failures is 
different, since the coordinator has no parent. 

Type 1 failure occurs when some node sends a message to the coordinator in order to initiate its 
broadcast. If the coordinator fails before broadcasting the message, then the message will be lost. 
To prevent this, the initiator of the message is responsible for making sure the message is 
broadcasted. The initiator appends a unique monotonically increasing broadcast number to the 
message. When the initiator is notified of the coordinator failure, it checks if it received all the 
messages that it initiated. If not, then it sends a message to the new coordinator asking to repeat the 
broadcast. 

Type 2 failures occur when the coordinator fails during the broadcast. To circumvent this, a new 
coordinator compares its Bls with the Bls of all the children of the failed coordinator. If some of 
the children miss a certain message, it is rebroadcasted to that particular part of the old tree. Each of 
the rebroadcasted messages contains the history of changes to the topology that happened by the 
time the original broadcast was made. This way each node in the system can figure out its 
descendants in the tree before the failure, and the whole old hierarchy is reconstructed. 

The type 3 failures of the coordinator are handled in the same way as the type 3 failures of other 
nodes, except that the failure notification message is sent to the new coordinator. The new 
coordinator is always the one with the lowest POID. c 

Node recovery 
To preserve the total order of broadcasts, a restarted process must also receive all the broadcast 
messages it missed while being down. Comparing the Bls of the restarted process with Bls of the 
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coordinator determines the messages missed by the failed process. When the failed process restarts, 
these missed broadcast messages are supplied to the failed process along with other logged 
messages needed for the recovery. When the failed process is ready to rejoin the system, the total 
order of broadcasts in the system is preserved. 

The ModLog and BLog are periodically cleared along with traditional causal logging protocol logs 
during the capture of a consistent system snapshot, or by a specialized message. 

If the total order of broadcasts is not a necessity, the initial message does not need to go through the 
coordinator. Instead, the sender process becomes a root of another broadcast tree. The POID of the 
coordinator is sufficient for all other processes to construct the desired tree on the fly. Figure 7 
shows how this tree is constructed with node as a coordinator. The indices 0-5 are simply rotated 
so that is assigned the POID zero. This 
results in the tree where is the root. Both 
trees, with coordinators A and D, 
respectively can coexist. All topology 
modifications are still going through the 
tree with the coordinator A. Modifications 
to the topology do not cause inconsistencies Figure 7. Constructing tree with Das a coordinator 

in D's tree as the sender's ModLog is 
attached to the message, so that every node can calculate its children, as was shown in section 4. 
This scheme reduces message traffic and, most importantly, it removes the bottleneck resulting 
from a central coordinator. 

Possible optimizations 

Modifying the system topology also requires restructuring of the tree, which might involve 
breaking old and establishing new TCP/IP connections. The penalty of restructuring the tree is 
discussed in section 2. As was shown in section 4, appending the list of changes to the broadcast 

a) initial configuration b) node b joins c) node c exits 

d) node h exits e) node c joins f) recomputed tree 

Figure 8. Lazy update 
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allows delivery of the message to intended recipients. This fact can be used to optimize 
restructuring. Instead of updating the tree with every change, the tree is updated only occasionally 
(lazy update). Figure 8 illustrates this approach. When a node joins the system, it is added at the 
leaf level of the tree (fig 8b and fig 8e ). When a node exits the system, the parent of the exited node 
takes responsibility for broadcasting the message to the exited node's children (fig 8c and fig 8d). 
These modifications are recorded in a special log. When this log is cleared, together with ModLog, 
the tree is recomputed, taking into account all the changes in the logs (fig 8f). 

For the scheme presented in section 6.1, where the broadcasting 
tree changes for each broadcasting process, the cost of 
reconnecting the processes could be high. A possible solution is to 
swap the broadcasting node with the original root node, as shown 
on figure 9. 

~~i ;~, ~
:p} 

'll;t . t*:. i~ .• 

Figure 9. Constructing tree with D 
Another optimization could be implemented when processes are as a coordinator 
distributed through the WAN. The hierarchy could be built in two 
steps to minimize the communications between different parts of the network. First a hierarchy is 
built between hosts in different subnets, and then within the subnets. This is possible, as the 
location of the machine is specified in its IP address. 

The Process Order mechanism is a flexible and a simple tool for creation and maintenance of 
logical structures in distributed system. Its main advantage over other approaches is that nodes only 
need to have a list of currently active processes. Each node can then determine the complete 
topology of the system locally, using a formula. Thus the topology of the system never needs to be 
broadcasted to other nodes. The approach can be implemented using the TCP/IP protocol, which 
allows its use on practically any machine. This is an important factor for the systems using non­
dedicated workstations. 

Aside from the hierarchy, it is often desirable to arrange processes in other logical structures, such 
as a ring for fault detection, a hypercube [9], to implement stability detection algorithms, a mesh 
[10], for grid computations, or a group [11], for load balancing. Process Order can be used to 
construct and maintain these structures in a similar way as the tree. The usability of the Process 
Order mechanism depends on how well the desired logical structure can be expressed with a 
formula. 

The cost of maintaining the Process Order is a total of n messages when adding or removing a new 
process to the system, where n is the number of processes. The cost of maintaining the Process 
Order Table consists of inserting and deleting elements in a sorted list. Even with the most 
straightforward algorithm this operation is of the order of O(n). Maintaining the PO Table also 
requires minimal extra space: to maintain the unique ids of the participating processes. The cost of 
maintaining Process Order is independent of how many structures are being concurrently supported 
by the mechanism. 
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