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ABSTRACT 

A previously introduced formalism employing the classical limit of 

the quantum-mech~ical S-matrix for Coulomb excitation is extended by 

applying direct numerical evaluation of the S-matrix in ~ integral 

representation, ~d by employing complex classical trajectories in a 

saddle-point approximation to the integral S-matrix. The equations of 

motion are parametrized in terms of dimensionless quantities, ~d the 

dynamics of the system in the classical limit are discussed. A detailed 

consideration of the classical equations of motion and comparisons 

*Work performed under the U.S. Energy Research ~d Development 
Administration 

tpresent address. 
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to exact quantum-mechanical calculations and to conventional semi­

classical calculations for backward scattering are carried out. The 

results suggest that the classical-limit S-matrix method is able to 

almost exactly reproduce both the amplitude and the phase of the 

quantum-mechanical S-matrix, even for projectiles as light as protons, 

and that this approach should be a better approximation for heavy-ion 

multiple Coulomb excitation than earlier semiclassical methods, due to a 

more accurate description of the classical orbits in the combined 

monopole-quadrupole field of the target nucleus. The indicated 

corrections due to the approximate orbital dynamics in the Alder-Winther­

de Boer calculations increase with spin, but are generally < 20% for 

states easily measured, which is in agreement with recent experimental 

results setting an upper limit on the magnitude of these corrections. 
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1. Introduction 

The recent availability of very heavy ions has made it possible 

to populate high spin states (I : 20 h) with multiple Coulomb excitation 

processes. Exact partial-wave, coupled-channel calculations are possible 

for Coulomb excitation with light projectiles,!) but such calculations are not 

feasible at present for heavy-ion systems. The most common approach to this 

problem has used the semiclassical methods developed by Alder and Winther2) 

(A-W) and embodied in the widely-used Winther-deBoer code3) to calculate multiple 

Coulomb excitation probabilities. In this approach the internal degrees 

of freedom are treated quantum-mechanically but the projectile dynamics 

are taken as that of a classical particle on an energy-symmetrized 

hyperbola. 

As Alder et al. have shown, 4- 6) this accounts quite nicely for 

first-order processes, but higher-order processes such as multiple 

E2 or E4 excitation may necessitate corrections to semiclassical 

calculations. Historically, these corrections have been termed "quanta!" 

or "quantum-mechanical" corrections by experimentalists and theorists 

alike, since they represented differences between exact (i.e. quanta!) 

calculations and the approximate semiclassical ones. Alder has pointed 

out, however, that a significant part of this "quanta!" correction is 

independent of n and therefore is not a true quantum-mechanical effect 

at all, but rather is due to the neglect of the electric quadrupole 

. . 1 1 . h . 1 . 1 . 6) potent1al 1n ca cu at1ng t e sem1c ass1ca traJectory. The weight of 

the evidence presented in this paper supports this point of view, and we shall 

refer to these effects as orbital dynamics effects. Any effects that are 

of a specifically quantum dynamical origin (in a sense to be specified 

later) are probably beyond the range of this method, but the results 
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presented here suggest that for heavy-ion systems those effects must 

be quite small. 

Initial attempts to account for the "quanta!" corrections arising from 

the use of approximate orbital dynamics have involved extrapolations 

from exact light-ion calculations 4
-?) and sophisticated energy and 

angular-momentum symmetrizations in the semiclassical limit. 8 ) In 

refs. 9 and 10) a third approach was introduced, using classical limit 

S-matrix (CLSM) methods originally developed in atomic and molecular 

scattering problems.ll) It was suggestedlO) that this approach might be 

capable of supplying corrections due to the semiclassical orbital dynamics. In 

this paper we apply recently introduced refinements to the CLSM method, 12 - 14 ) 

and provide evidence that this approach can be used with confidence to 

determine excitation probabilities for heavy-ion multiple Coulomb 

excitation. 

2. Coulomb Excitation of a Deformed Rotor 

The classical limit S-matrix for Coulomb excitation of a deformed rotor 

has been formulated previously for the case of purely real classical 

. . 9 • 10) Th h d d . h. . traJector1es. e approac a opte 1n t 1s paper 1s a more 

comprehensive one which can be reduced to that of ref. 10) by approximation .13
' 
14

) 

The spirit is the same as that of ref. 10) however, and the reader 

is directed there for much of the nomenclature and many of the basic 

ideas employed here. We also note that in ref. 12) a more general problem 

is considered which includes the effect of a complex nuclear potential as 

well as the electromagnetic interaction on rotational excitation. The ·reader 

is also referred to other recent applications in nuclear physics of 

methods similar to those described herelS-lB) and to a recent book 

devoted to related topics. 19) 
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a. Hamiltonian and Equations of Motion 

We consider a spherical projectile incident on an even-even deformed 

nucleus in its ground state, neglecting any projectile excitation. The 

Hamiltonian· of the projectile-target system in the center of mass 

d . b . 20) coor 1nate system may e wr1tten 

H(p ,j,M,r,q.,qM) 
r J 

p2 
r =- + 2m 

_ + V(r,x) (1) 

where r is the distance between centers of projectile and target, p the 
r 

relative radial momentum, j the rotational angular momentum of the target,_ 

J the total angular momentum of the system, M the helicity (i.e., the 

projection of the angular momentum of the target onto the relative 

velocity direction), m the reduced mass of the system,~ the moment of 

inertia of the target, V(r,x) the interaction potential between the 

two nuclei, and x is the angle between the rotor axis and the line 

connecting its center to the center of the projectile. The 

variables conjugate to j and Mare the angles qj and qM respectively, 

and x is given in terms of these canonical variables by20) 

cos X 

For the purposes of this paper it will not be necessary to consider 

the full Hamiltonian of eq. (1). Instead we study a simpler case which 

will be more amenable to physical interpretation and require less numerical effort. 

First, since we are considering only Coulomb excitation here, we 

drop the complex nuclear potential used in ref. 12). In addition, 
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for simplicity we drop any E4 contribution to the 

e.xc~tation (these restrictions can be easily removed
10

•
12

). 

Then the interaction potential takes the form 

V(r,x) = 
Z Z e2 
p t 

r 
+ 

where Zp and Zt are the atomic numbers of the projectile and target 

respectively, e is the electr.onic charge, Q~2 ) is the intrinsic electric 

quadrupole moment of the target nucleus, and P2 (cos x) is the second-

order Legendre polynomial. 

. . 10,12,13) 
As 1n prev1ous cases we will further confine ourselves 

to a simple model in which we calculate the S-matrix for the £ = 0 

incident partial wave only. From eq. (1), this implies that M must 

be identically zero, and the Hamiltonian reduces to the simple form 

2 
Pr 

= -- + 
2m ( 

1 + 1 1 p2 
~ 2mr2] X 

+ P2 (cos x) 

since now qj = x, and where we define pX = j. The variables appearing 

in the Hamiltonian are illustrated in Fig. 1. 

(1') 
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From (1') the classical equations of motion are 

:r = p /m 
r 

p2 
zl/te 

2 3Z e2Q( 2 ) . 
_L + E o p = + P2 (cos X) r mr 3 r2 2r4 

x = (J+~ p 
X 

. 3Z e2Q(2) 
p = E o sin X cos X 

X 2r 3 

The initial conditions for the integrations are 

r. = large 
1 

X. = x0 in the interval [O,n] 
1 

(2-a) 

(2 -b) 

(2 -c) 

(2-d) 

(3-a) 

(3-b) 

(3-c) 

(3-d) 

where Ecm is the translational energy in the center of mass system. The 

classical action ~ is defined as the time integral of the Lagrangian 

and may be determined from the equation 

(4) 



-8-

b. The Classical-Limit S-Matrix 

As shown in refs. 13,14), the classical limit (classical action>> n) 

of the quantum mechanical S-matrix for rotational scattering to a spin I 

in this model may be written in the form 

J=O 
SO-+I = 

I2TiT 
2 J

1T I -~ PI (cos X) sin x0 sin X dx 
0 0 

The phase ¢' is given in units of h by 

i<P' e dX 0 

We note here that the classical-limit S-matrix nomenclature arises from 

(5) 

(6) 

the fact that we are evaluating amplitudes (not probabilities), so quantum 

superposition is implicit in the integral (5), but all quantities in (5), 

and (6) are evaluated by classical methods. In the last equation cr 0 (n 0) 

and cri(n1) are the Coulomb phase shifts in the entrance and exit 

channels respectively, with n defined in eq. (16-a), p 
r 

is the radial momentum along an elastic trajectory governed 

by the Coulomb potential ZpZTe
2
/r such that the energy E 

along this trajectory equals the total energy of the system, i.e. 

._ 

... 
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where Px takes its asymptotic value, r is the position along the elastic 

trajectory at which Pr is evaluated in eq. (6), and rT is the turning 

point of the radial motion for the elastic collision, that is Pr(rT,pX,E) = 0. 

Finally the quantity X is defined by the transformation21
) 

X = X + fr apr dr = X - mp Jr r_!_ +, _l_l ~r 
rT apX X rT ,'::.f- mr2J Pr 

(7) 

The variable X can be seen, by differentiation of Eq. (7), to be constant 

in the final asymptotic region; in that region it can be wri t.ten 13 ) as 

X = X - wt, where w = pxhQ is the angular velocity of the target. 

Transformation (7) is necessary to remove an oscillatory time depend-

ence of the variable X in the asymptotic region. It is closely related 

to the unitary transformation from the Schrodinger representation into the 

interaction representation in quantum mechanics, which is also introduced 

to transform away an oscillatory time dependence. The transformation 

prescription described here was shown numerically to yield an S-matrix 

element which was independent of the initial and final values of the 

'radial coordinate in the asymptotic regions. 

The quantities appearing in eq. (5) may be ~etermined by 

numerical integration of the classical equations of motion (eq. 2,4) 

with the appropriate initial conditions (eq. 3). We will then evaluate the 

integral representation (5) in two different ways: 1) direct 

. 1 . . 13,14) d 2) numer1ca 1ntegrat1on, an saddle-point or stationary-phase 

. . 9-12) 
approx1mat1ons. 



-10-

As shown in refs. 13, 14), eq. (5) may be accurately integrated 

for nuclear systems using standard numerical methods. When this approach 

is used in this paper we will refer to it as the integral method. It 

is a classical-limit approach because eq. (5) is obtained as a general-

ized WKB solution to the Schrodinger equation for the system. 

The integral in eq. (5) may also be evaluated by stationary phase 

or saddle-point methods, 11 ) yielding results analogous to those of 

ref. 10). When this approach is used in this paper we will term it the 

saddle-point method. To show the connection between the integral and 

saddle-point methods we first approximate the Legendre polynomial appear-

ing in (5) by the asymptotic form 

' PI(cos x) :: 2 cos [(I+l/2)x- lT/4] I 1(2I+l) sin X 

= 
ei[I+l/2)x- lT/4] + e-i[(I+l/2)x- lT/4] 

/(21+1) sin x 

Now, using the fact that x0 and 1r-x0 result in opposite final angular 

momenta, and that the spin I must be even for a rotor with axial 

symmetry we find 13 ) 

J=O 
SO+ I 

i[~' - cr+l/2)xl d e x0 

In the classical limit the integrand of eq. (9) will 

be highly oscillatory and the integral will receive contributions only 

from those points where the phase is stationary (saddle points). 

(8) 

(9) 

For the present zero impact parameter case, only one or two 

saddle points will make significant contributions to the integral. 
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Expanding to second order at the saddles and using the methods 

of refs. 10,12) we obtain the so-called primitive classical S-matrix for 

classically allowed transitions (real saddle points)ll) 

5
Prim _ 
0-+ I 

·{ r.=-.1-1 iC~l ~ 1T/4) r.--~1_ I iC~z - 1T/4)} 1 v1p11 e + rlp2 1 e . (10) 

Where the two terms of eq. (10) arise from the stationary phase condition and 

k = 1,2 . 

with Xk the initial orientation angles leading to a given final spin, 

and ~k the classical action for an initial orientation xk. As discussed 

below, for classically forbidden transitions (complex saddle points), 

only one term of (10) will contribute to the excitation probability. 

Equation (10) is valid for well-separated points of stationary 

phase. For coalescing saddle points the 2nd-order expansion is no longer 

adequate. A uniform expression valid in all regions is obtained by mapping 

the phase onto a suitably chosen cubic polynomial, which results in a 

'f . . f the S t. 12,22,23) un1 orm approx1mat1on or -rna r1x. 

(11) 

where 

= (12) 
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The Ai(-~) and Ai' (-~) represent respectively the complex Airy function 

and its first derivative. Equation (11) is valid both for forbidden 

and allowed transitions. For classically forbidden transitions in the 

saddle-point approximation all of the variables in (10) and (11) may be 

complex. The saddle-point method with the Airy uniform approximation will 

be denoted the Uniform Semiclassical Appro~imation (USCA). 10 •12 •23 ) 

In ref. 10), real trajectories were used to construct the quantum 

number function (defined as the final spin I as a function of initial 

orientation x0) and the phase. The classically forbidden processes were 

then approximated by a quadratic expansion of these functions into the 

complex plane. This approximation is removed here (and in ref. 12), 

since we are evaluating the full complex trajectory for the forbidden 

transitions. The real quantum number function l(Xo) discussed in 

ref. 10) now generalizes to a complex function, and the asymptotic 

quantization conditions are 

Re[I(x 0)] = I + 1/2 (I = even integer) 

where 

(13) 

For this zero impact parameter approximation the excitation probability 

in the channel of interest is given by the square modulus of the 

appropriate S-matrix element 

(14) 
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For all numerical calculations of probabilities with the saddle-

point approximation we have used the uniform expression (11) 

inserted into eq. (14). However, it will be of conceptual 

utility to write explicitly the formula for the primitive semiclassical 

10-12) 
probability. From (10) and (14) we have 

Pprim 
::; P1 + P2 + 2/P1P2 sin (t.~) 

(classically allowed states) (15-a) 

- -21m~ 
(classically forbidden (15-b) Pprim - pe 
states). 

where li<P = <P - <P 2 1 

The interference structure for the classically allowed states in 

(15-a) arises from the coherent contribution of two real saddle points 

(initial orientation angles) ~o the probability for a given state. For 

classically forbidden states in Coulomb excitation the phases ~ 1 and ~2 
in eq. (10) are complex conjugates and purely imaginary. This implies 

that one of the contributions to the probability would be exponentially 

increasing, and by physical arguments should not contribute to the 

forbidden probability, leaving only a single exponentially damped term in 

(15-b). More rigorously one can show that the topology of saddles changes 

in going from allowed to forbidden transitions, and that the steepest 

descent integration path only traverses the physically-acceptable saddle 

point. 25 ) The different paths are shown in Fig. 2. 



-14-

c. Relation Between Integral and Saddle-Point Methods 

Since we are using in this paper two distinct but related 

techniques (the integral method and the saddle-point method) it is 

useful at this point to briefly summarize the similarities and 

differences between these two approaches. Both methods are classical­

limit methods in that they introduce into the quantum-mechanical 

S-matrix a phase (the classical action) which is the time integral 

of the classical Lagrangian. The validity of this approximation is 

predicated on the classical action being much larger than n, the 

characteristic quantum-mechanical unit of action; and the classical 

limit may be formally defined as the limit h + 0. The differences 

in the two approaches lie in the methods used to evaluate the resulting 

integral representation of the classical-limit S-matrix: direct 

numerical integration, or analytical solutions utilizing asymptotic 

expansions and saddle point techniques. 

The saddle point method is elegant and conceptually enlightening. It is 

the mathematically correct way to speak of classical trajectories since in 

this formalism the saddle points define the stationary-action paths for the 

system, which are precisely the classical paths in Hamiltonian dynamics. 

In the present simple model the saddle points are not difficult to 

find, but 1n c~mplicated applications involving more degrees of freedom 

(for 1nstance the extension to tne non-zero impact-parameter case) the 

search for the points of stationary phase (saddle points) could become 

a formidable technical problem. In addition, the uniform prescription 

(USCA) of eq. (11) is neither unique, nor globally valid, although it 

should be quite good for heavy-ion Coulomb excitation of high-spin states 

._ 

.. 
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in the present model. For example, it isn't valid for more than two 

coelescing points of stationary phase, nor is it particularly good for 

situations where angular momentum transfer to even the lowest excited 

state is classically forbidden - a case in which a uniform Bessel 

approximation is known to be superior to the Airy approximation. 18 ) 

The integral method avoids these difficulties since it ev~luates 

eq. (5) directly by numerical means rather than by seeking approximate analytical 

solutions. The price that must be paid involves renouncing some of 

the conceptual enlightenment inherent in the saddle point method. In 

the integral approach the trajectories are more properly thought of 

as mathematical devices to calculate the phases and amplitudes in 

eq. (5)--it is only through the stationary phase evaluation of eq. (5) that one 

actually selects the classical paths, t:hose for which the classical action is an 

extremum. Furthermore, while all representations are equivalent for the saddle-

point method, it is imperative for the integral approach that a proper representation 

be chosen for the classical-limit waveftmction. 13 • 14 ) Otherwise spurious 

singularities may be introduced into the wavefunction. Eq. (7) is an example 

. h. . f . d . f 14) of a transformation wh1ch meets t 1s requ1rement or a w1 e var1ety o cases. 

It should also be noted that for a case such as the one being considered 

here where the potential is real and slowly varying, all trajectories 

used in calculating the amplitudes and phases in eq. (5) are real, 

though the trajectories in the saddle-point method may become complex. 

This may be understood from Fig. 2. For real potentials, a complex 

trajectory is associated with a classically forbidden process in which 

the point(s) of stationary phase move into the complex plane (Fig. 2-b). 

In the saddle-point or steepest-descent integration method one deforms 

the path of integration (the dotted line of Fig. 2-b) to pass over the 

saddle point(s). Since the point of stationary phase is complex, the 

trajectory is complex. In the integral method the integration path, 
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indicated by the solid line in Fig. 2-b, is along the real axis, irre­

spective of the position of the saddle points. By the Cauchy integral 

theorem we are free to take any integration path we wish, provided that 

the function is analytic, and that we don't pass around any poles. 

Therefore either path in Fig. 2-b may be used to evaluate the integral 

if there are no poles in the region bounded by the dotted and solid 

integration paths. As discussed in ref. 12), the trajectories in both 

the saddle-point and integral methods are complex if the potential is 

complex, and the clear distinction between allowed and forbidden processes 

is erased. 

In principle the integral and saddle-point methods should be of 

comparable (but not necessarily identical) accuracy since they are both 

correct to the same order of h, provided that a proper uniform expression 

is used in the saddle point approximation, and that the integral method 

uses an appropriate representation. For small angular momentum transfer 

the integral method is more accurate than the USCA for the cases studied 

here.13 • 14) It is not clear how much of this difference is due to the Airy 

uniform approximation in the USCA and how much is more fundamental. 

Presumably an improvement in the USCA accuracy could be obtained by using 

a Bessel rather than Airy function mapping in the uniform expression (11). 18 ) 

Because the integral expression works so well in these cases, however, we 

have not investigated this possibility. For heavier systems (e.g., 4 0Ar + 238u) 

the integral and USCA results are very similar in the present simple model. 

In Fig. 3 we indicate schematically the relationships among the various 

methods discussed in this paper. 

• 
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3. Semiclassical and Classical-Limit Dynamics 

a. Parametrized Equations of Motion 

It is convenient to define the following standard dimensionless 

quantities for Rutherford trajectories 

n = 

a = 

£;02 

q2 = 

Z Z e2 
t E 
hv. 

l. 

ztzpe 
2 

mv.2 
l. 

AE 
= n __ 2 

2E em 
Z e2q(2) 
E o 
4nv.a£ 

l. 

(Sommerfeld parameter-­
monopole-monopole interaction 
strength) 

(1/2 distance of closest approach 
for a head-on trajectory) 

(adiabaticity parameter) 

(mul tipole-monopole interaction 
strength) 

(16-a) 

(16-b) 

(16-c) 

(16-d) 

where vi is the initial relative velocity, t.E2 is the energy of the rotor 

z+ state, and q0(2) is the intrinsic quadrupole moment of the target nucleus. 

In addition, following Massmann we define two other dimensionless 

quantities by the relations23) 

(17-a) 

(17-b) 

The significance of the variables ~ and A will be discussed subsequently. 

In the equations of motion we introduce the following dimensionless 

variables 

T = v.t/a 
l. 

S = r/a 

(18-a) 

(18-b) 
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The dimensionless variable T measures the time in units of the time 

(18-c) 

(18-d) 

necessary to cover one-half the distance of closest approach at initial 

asymptotic velocity. The variableS measures the radial distance in Wlits of half the 

distance of closest approach for a Rutherford trajectory with zero impact parameter. 

Since 2q2 is the maximum classical angular momentum that may be imparted in 

. . . 10,24)-I h .. f h 1 the sudden-1mpact l1m1t, measures t e rat1o o t e angu ar 

momentum actually transferred to the maximum transferred in the sudden-

impact limit. The dimensionless radial momentum P5 is given in units 

of the radial momentum before interaction. 

Using the dimensionless quantities defined in eqs. (16-18), the 

equations of motion for the dynamical variables and the classical phase 

may be written as 

dS 
Ps (19-a) dT -

dPS 1 6!1. ) 4!1. 2 
J:2 (19-b) --- -+ 54 P2 (cos X+--

dT s2 s3 

dx - [2 2!1. ] - (19-c) dT - 31;; +V I 

dl 3/2 sin C2x) (19-d) dT - s3 

(19-e) 
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b. The Nature of Semiclassical and Classical-Limit Approximations 

It is important at this point to consider carefully the nature of 

the approximations implicit in the Alder-Winther (A-W) semiclassicalmethod2) 

and in the classical limit S-matrix method (CLSM). In the A-W approach 

the wavefunction is expanded on the unperturbed nuclear eigenstates, but 

the time dependence of the interaction potential in the resulting coupled 

Schrodinger equations is approximated as due to a projectile 

moving on a classical Rutherford trajectory. In this 

sense the method may be characterized as one which treats the 

target'internal excitation degrees of freedom quantum mechanically, 

but which treats the projectile degrees of freedom using approximate 

classical dynamics. The dynamics are approximate because 1) all 

coupling of the projectile motion to the non-central part of the 

potential (e.g., the quadrupole field) is ignored, and 2) because the 

energy difference in the entrance and exit channels for an inelastic 

process is only approximately accounted for by the introduction of 

energy-symmetrized hyperbolas. 

The validity of this approximation rests on whether the wave-packet repre­

senting a projectile in a given situation behaves as a localized particle subject 

to classical equations of motion and, if so, whether the deviations from a Rutherford 

trajectory arising from coupling to the quadrupole field and from finite 

energy transfer are sufficient to invalidate the approximate classical 

dynamics employed. The first question relates to whether there are 

explicit quantum dynamical effects operating which cast doubt on the 

concept of a classical traject0ry. It is a question about phenomena which 

vanish in the limit ~ ~ 0 and which can only be fully answered in the 
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context of a rigorous quantum mechanical analysis. The second question 

concerns effects which are due to approximations in the classical 

dynamics employed and which are independent of h. This question might 

reasonably be answered within a classical or classical-limit framework. 

It is well known that the classical and quantum mechanical results 

coincide for Rutherford (1/r) scattering, but not for 1/~ (n > 1) potentials. 

From this point of view the introduction of, e. g., a quadrupole potential has two 

general consequences for semiclassical theories: 1) the potential now has 

a short-ranged component for which classical and quanta! solutions are 

not identical, i.e. explicit quantum-dynamical (h-dependent) effects have 

~een introduced, and 2) the classical (h-independent) dynamics are affected 

because the scattering center is no longer a simple monopole. 

In the classical limit S-matrix method one for?akes the semiclassical 

prescription of a quantum mechanical treatment for the internal degrees 

of freedom and approximate classical treatment of the projectile 

motion. Instead, both the internal and projectile degrees 

of freedom are approximated by exact classical dynamics. Although the 

dynamics are those of classical mechanics, one retains eert a in 

quantum-mechanical features since the superposition principle 

and quantized boundary conditions·areimplicit in the CLSM method.ll) 

The v a 1 id it y of this approximation depends upon the validity 

of using classical mechanics to describe both the particle and the 

rotor dynamics. Two things should be carefully noted: 

1) If the concept of a classical trajectory is valid, the CLSM 

trajectories are dynamically exact, while the A-W trajectories 
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employ dynamical approximations. 2) The A-W treatment of 

the target internal degrees of freedom is a quantum-mechanical one, 

while the CLSM method employs an approximation which, at first glance, 

might seem severe. 

c. The Parameters n, q2 , and A 

. 2-7) f As Alder et al. have pomted out, the Sommer eld parameter n plays a 

critical role in assessing the validity of any semiclassical method. 

This is to be expected since we deduce from equations (16) that, in 

addition to descr~bing the monopole-monopole interaction strength, n is 

the ratio cf t}.e projectile de Broglie wavelength to half the distance of 

closest approach for a Rutherford trajectory. Therefore n measures the 

spatial confinement of the projectile wave packet 

relative to a. characteristic interaction distance, and indicates 

the degree to which the wave packet remains intact during the 

interaction with the scattering center. 

Therefore, in the classical equations of motion we expect qu(il1tities 

involving n to play a dominant role. We first note that the possibility 

of calculating probabilities in any classical trajectory 

model depends upon the plausibility of assigning definite 

scattering angles to given !-components of the partial-wave reaction 

amplitude. The mathematical steps for accomplishing this generally 

involve 1) replacement of the partial wave summation over discreet 

i with an integral over continuous i, 2) replacement of Legendre 

polynomials by asymptotic forms for larger i, and 3) evaluation of the 



0 0 n ~,J .q :i;i: 

at~ 
'"·t c.,, l) 2 '"" ~ ~) ... <II'.. 

-21-

resultant integrals by stationary-phase integration. The asymptotic 

forms of the Legendre polynomials are valid for large values of the 

total orbital angular momentum L ~ n1E2 -l, where E is the eccentricity of 

the hyperbolic orbit. Therefore, these forms are more accurate for large n. 

Similarly, since the error introduced in going from a summation to 

an integral in the partial wave series is proportional to the step 

width 1/L, we deduce that the error in the scattering amplitude due to 

this approximation is of order 1/n. 

In the classical equations of motion (19) the most critical parameter 

describing the validity of the Alder-Winther semiclassical method is' 

the n-independent parameter A, the ratio of the quadrupole coupling 

parameter q2 to the Sommerfeld parameter n. From (19-b) 

we deduce that the equation of motion for the radial momentum involves 

only the monopole potential for A -+ 0. Therefore A, which indicates 

the relative strength of the monopole-quadrupoie interaction relative to the 

monopole-monopole interaction, will be a measure of the deviation of 

the projectile orbit from that of a pure Rutherford hyperbola. If 

A << 1, the monopole-monopole interaction determines the projectile 

trajectory except for a small perturbation from the monopole-quadrupole 

coupling. If A ~ 1 both the monopole and quadrupole potentials play signi-

ficant roles in the trajectory dynamics. If A » 1, the projectile trajectory in 

the interaction region would be a function primarily of the quadrupole field. 

The rather accurate results of A-W semic-lassical calculations2) 

in most applications are a consequence of the dominant role played by the 

monopole field for Coulomb excitation in real nuclei. For all but the 

very lightest projectiles, A ~ 0.1 for sub-barrier interactions, and an 

energy-symmetrized hyperbola computed from the monopole-monopole 

interaction is a good approxi.111ation to the actual trajectory. 
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For the CLSM method the most critical p~rameters determining the 

validity of the approximation are t'l ~d q2 separately rather than the 

ratio A = q2/n. While A is independent of n, n and q2 are each inversely 

proportional to n. If n is large the approximation of a classical 

trajectory for the projectile dynamics becomes more accurate. Similarly, 

the validity of the classical rotor description of the internal 

eigenstates should increase as the rotational quantum numbers ge·t larger, 

andhencebe favored by large angular momentum transfer in heavy-ion 

reactions. Since 2q2 is the maximum classical angular momentum that 

can be transferred in the sudden limit, q2 is an approximate measure 

of the validity of the classical rotor approximation. 

We may view this in another way by noting that the general condition 

for the validity of a classical description for a degree of freedom is that 19) 

4>/h » 1 

where 4> is the classical action associated with the degree of freedom. 

From 19-e it is easily shown that the classical action in units of h 

associated with the rotational degree of freedom is approximately 

proportional to 2q2 and will be large for large values of q2• 

Therefore, both the CLSM and the A-W semiclassical methods are favored 

by large values of n, but differ in their dependence on qz. The CLSM should be 

fav~red by large values of q2 (large angular momentum transfer) which 

make the classical rotor approximation more reasonable. Conversely, 

the A-W semiclassical method should be favored by smaller values of q2 for a 

given n (small A), since the transfer of large amounts of angular momentum 

causes the actual classical trajectory to deviate from the assumed 

Rutherford trajectory. 
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d. The Parameter ~ 

Another parameter of major significance in heavy-ion Coulomb 

excitation is one that is characteristic of the suddenness of the 

interaction. The effect of a non-sudden collision upon the transfer of 

spin quanta is illustrated in Fig. 4. The quantum 

(f . . . . . 1 )10,12,23) . number function inal spin vs. 1n1t1al or1entat1on ang e 1s 

plotted there for the case 136xe + 178Hf (ELab = 600 MeV) both for the 

sudden-impact (infinite moment-of-inertia) and actual non-sudden case. 

The general effect is to shift the quantum number function toward smaller 

angles and to lower the maximum value of If. Thus in the sudden-impact 

case the function is centered at x0 = n/4 because of the angular 

dependence of the quadrupole potential and has a maximum I "' 2q ::: 20. max 2 

In the real non-sudden case the maximum is shifted to ~ 25° and I 
max 

is reduced to ~ 14. 

The effect of the non-sudden collision on the position 

of the'maximum is virtually independent of bombarding 

energy, as Fig. 5 illustrates. The physical reason _for this is easily 

seen. For higher projectile energies the collision time is shorter, 

but higher spins will be excited and the target will rotate faster than 

for lower energies. Thus the ratio between collision time and the 

period of rotation for the target is roughly independent of energy. 23 ) 

Therefore, the angular momentum is imparted to the target in a similar 

way for trajectories having different bombarding energies, but the same 

initial orientation x0 . 

Traditionally the adiabaticity parameter ~ 02 defined by eq. (16-c) 

has been used to measure the suddenness of the reaction, but • 

it is an energy-dependent parameter. As Massmann has suggested, 23) 
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a better indication of the suddenness of the reaction should be the 

From eq. (17-a), r; is independent of energy 

and is characteristic only of the projectile-target system. It has a 

simple physical interpretation for multiple Coulomb excitation: since for 

collisions not too far from the. sudden impact limit q2 :: I /2 :: maximum max 

number of E2 spin quanta transferred in the interaction, we deduce from 

(17-a) that r; is the adiabaticity parameter for the lowest rotational E2 

excitation multiplied by approximately the maximum number of E2 spin 

quanta that can be transferred in the classical interaction. 

From eq. (19-c) we note that if ~ ~ 0 the target does not 

rotate during the collision, while if ~ is large the period of 

target rotation and nuclea~ collision may.become comparable. Finally, 

if ~ is sufficiently large the collision becomes adiabatic and the 

target rotation follows the motion of the projectile, with virtually 

no net angular momentum transferred to the target. 

4. Comparison to Quantum Mechanical Calculations 

As pointed out in the previous sections, the approximations employed 

in the CLSM method are expected to be more valid for heavy projectiles 

and the excitation of large numbers of rotational states. Since this 

is exactly the situation for which quantum-mechanical calculations are 

not yet practical, this represents one of the attractive features of the 

method. On the other hand, this means that comparisons to quantum-

mechanical calculations are easily done only for lighter systems in 

which the parameters n and q2 are relatively small and the CLSM method 

might not be expected to work very well. In fact, we have found that 

the CLSM gives a highly accurate description of the Coulomb excitation 

process even for the lightest ions. This is illustrated in Figs. 6-9 and table I for 
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several representative target-projectile systems. In the upper part 

of each figure we have plotted the amplitude and phase of the complex 

S-matrix for the i = 0 incident partial wave as a function of angular 

momentum, both for a quantum mechanical calculation and for the CLSM 

calculation (note that the radial scale is logarithmic). The coupled-

channels quantum mechanical ·calculation was made with 

the c aJe AROSA, l) while all CLSM results were obtained using the 

integral representation of the classical-limit S-matrix (eq. (5)). In 

the lower part of each figure we show the relative deviation of the 

amplitude and the deviation of the phase of the S-matrix.from the 

quantum mechanical calculation, both for the CLSM method 

and for the A-W method, with the A-W values calculated using a 

version of the standard Winther-deBoer code3) and with the semiclassical 

amplitudes identified with the elements of the reaction matrix. 2 •8) The 

agreement between the CLSM method and the quantum-mechanical calculation 

for the amplitude and the phase of the i = 0 S-matrix, even for protons, 

is remarkable. Furthermore, even for many of the cases where q2 and n 

are rather small there is clear evidence for superior accuracy of both 

the amplitude and the phase of the CLSM i = 0 S -rna t r ix re 1 at i v e 
) 

t o the A- W one. As discussed in section 3, the CLSM method should 

improve as one goes to heavier projectiles transferring larger amounts of 

angular momentum. 

In ref. 13) we presented comparisons of quantum mechanical probabilities 

to CLSM probabilities for similar systems using the simple model implied by 

eq. (14). The agreement was remarkably good, but there were small differences 

for the most forbidden transitions. From the comparison here of the amplitude 

and the phase of the S-matrix elements it is apparent that even these 

differences were not d~e primarily to the CLSM S-matrix elements themselves, 

but rather to the approximation used for the partial wave summation in the 
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present simple. model; i.e., the reduction of the infinite sum to a single 

incident t-wave term. While this is probably a good approximation for 

heavier ions (e.g. 40Ar), it becomes less so for lighter projectiles. 

5. The Limit n ~ ~ 

The Alder-Winther semiclassical method may be considered an approximation 

which is exact for a system in which n ~~for finite q2 (i.e., A~ 0), since 

in that case the projectile wave-packet reduces to a point describing a classical 

Rutherford trajectory (seeeq. 19-a,b). As we have noted, the A-W rotational 

dynamics are treated quantum-mechanically, while the CLSM method uses 

classical dynamics for the rotational degrees of freedom. Therefore, a 

comparison of the two methods in the limit n ~~is instructive, since in 

that limit the orbital dynamics for the two methods become comparable and a 

direct test of the approximate CLSM model for the rotor is possible. 

a. The Limit n ~ oo and ~ 02 ~ 0 

In this limit (corresponding to an infinite moment of inertia for 

n ~ ~) the A-W and quantum-mechanical models may be solved analytically 

for backward scattering, and the results are equivalent. 2) For the CLSM 

method in this limit x = x
0

, and the phase of eq. (6) reduces to 

cp I - -

and from (5) and (20) 

5I+O 
= rzr:;.} r sin Xo PI(cos x)e- !i q2P2(cos Xo)dxo 

2 0 

(20) 

(21) 
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where ~ = cos x0. But eq. (21) is the same analytical expression that one 

finds for this limit in the A-W approach (see eq. 5.11 of ref. 24). This 

is a very interesting result since, as has already been pointed out, the 

CLSM and A-W methods take qualitatively different approaches to the general 

scattering problem. The reason for this convergence of the two methods is 

not yet fully understood, but presumably is related to rhe disappearance, 

in the ~02 ~ 0 (sudden-impact) limit, of the commutation relations implied 

t by the time-ordering operators in a Dyson series for the S-operator. 

Previously it has been shown that in this limit the A-W and USCA methods 

give almost exactly the same results for q2 ~ 2, but there are some deviations 

f - 10. 2 3) s. h . (2 ) d for smaller values o q2 . 1nce t e express1on 1 may be evaluate 

by stationary phase methods to yield the formulas used in refs. 10) and 23), 

it is clear that the deviations at very small values of q2 in refs. 10) and23) 

are due to approximations employed to evaluate the integral in (21), and are 

not due to the fundamentals of the CLSM theory. For the larger values 

of q2 expected in heavy-ion interact~ons the USCA is practically indistinguishable 

fr0111 the CLSM, A~W, and quantum-mechanical results in this sudden-impact limit. 

b. The limit n ~ "" for finite ~02 

For the real (non-sudden) case analytical solutions are no longer 

possible and the A-W and CLSM probabilities must be determined numerically. 

In Fig. 10 we show some CLSM probabilities as a function of 1/n for a 

representative heavy-ion system. The curves were obtained by keeping q2 

and ~02 fixed at their relistic values while varying n 

in eqs. (19), where A = q2 /n and r; = ~ 02 q2 • The 

tsee ref. 2), pp. 21 f.f .. We are indebted to Dr. R. A. Malfliet for 
this suggestion. 



-28-

behavior is seen to be rather linear in 1/n for this region, though there 

is some curvature in several cases. 

Normally in the A-W method the effect of finite energy transfer in an 

inelastic event is approximated by employing a trajectory symmetrized over 

translational energies in the entrance and exit channels. A symmetrization 

of this nature is superfluous in the CLSM method since the projectile motion 

is governed by exact classical dynamics during the entire scattering process. 

It is clear that in the limit n ~ oo the CLSM results should be compared to the 

A-W results using unsymmetrized orbits. The unsymmetrized A-W probabilities, cal­

culated using a Winther-deBoer code modified such that the projectile energy remains 

equal to the incident energy for all transitions, are shown in Table II and 

displayed on the left axis of Fig. 10 as dark circles. The CLSM results 

extrapolated for n ~ oo are shown in Table II for all transitions and in 

Fig. 10 for those transitions in which the n-dependence is strongest. The 

agreement between the CLSM results and the A-W results (which are exact in 

this limit) is excellent. In particular we note that for the 14+ and 16+ 

states the CLSM probabilities change by 50-100% in going from the realistic 

value of n = 127 ton= oo, forwhichtheyyieldalmostexactlytheA-Wresult. 

Since in this limit the treatment of the orbital dynamics in the A-W and CLSM · 

methods are equivalent, this result leads to an important conclusion: the 

treatment of the internal rotation~! degrees of freedom by classical dynamics plus 

the superposition principle and quantized boundary conditions is able to quantita­

tively reproduce the exact quanta! treatment of those degrees of freedom for 

heavy-ion scattering from deformed targets. This suggests that in the A-W 

and the CLSM methods any significant discrepancy with quantum mechanics 

for heavy-ion scattering is a function of the orbital dynamics. Since the 

CLSM method employs exact classical orbital dynamics and the A-W method uses 

approximate classical orbital dynamics, this suggests that for heavy ions 

and deformed targets the CLSM method should be more accurate than the 

semiclassical A-W method. 
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This conclusion is strengthened by considering the symmetrized A-W 

results for the same problem. These are shown in Table II and plotted on the 

left axis of Fig. 10 as open squares. In some cases the energy symmetrization 

lowers the A-W results relat]ve to the unsymmetrized calculation and in some 

cases it raises it. In every cas'e the introduction of energy-symmetrized 

orbits changes the A-W probabilities in the direction of the CLSM results at 

the realistic value of n = 127 (the dashed vertical line in Fig. 10). This 

is exactly the behavior one expects if the differences between the CLSM and A-W 

results at the realistic n are due to approximate orbital dynamics in the 

latter method, since this symmetrization is introduced in the A-W method 

precisely for the reason of improving the approximate classical orbit.t 

By this argument the discrepancy remaining between CLSM and A-W 

probabilities following the A-W energy symmetrization is due primarily to neglecting 

the coupling of projectile orbital angular momentum to internal rotational 

modes of the target in the scattering process. This suggests that a 

symmetrization with respect to angular momentum transfer in addition to 

energy transfer could lead to an improvement in the A-W method. These 

symmetrizations are being investigated. B) 

6. Comparison of CLSM and A-W Probabilities for Heavy Systems 

In Fig. 11 we show calculated excitation probabilities for 

head-on collisions in several representative heavy-ion systems using CLSM 

and A-W methods. Overall, the calculations are in rather good agreement 

with each other, but there are some systematic differences for the highest 

tThis symmetrization is given theoretical foundation by considering WKB 
approximations to first and second-order quantum-mechanical perturbation 
theory.2) 
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spins. The preceding arguments suggest that these differences are 

primarily due to the approximate classical orbital dynamics of the A-W 

method. If those arguments are correct, the djfferences between the CLSM 

and A-W curves in Fig. 11 represent the orbital dynamics component of 

the "quantal" correction to semiclassical (A-W) Coulomb excitation theory. 

This component of the correction (which is independent of h) is expected 

to be dominant for Coulomb excitation with heavy ions, since explicitly 

n-dependent effects should become vanishingly small for semiclassical 

calculations on systems with very large values of n. 

In Fig. 11 there is a division of the excitation probabilities into 

two distinct regions of behavior: the classically accessible region, 

characterized by oscillatory structure; and the classically forbidden 

region, marked by a sharp fall-off of the excitation probabilities with 

spin. For the CLSM method in the saddle-point limit there is a clear 

conceptual distinction between these two regions. In the classically 

accessible region two (real) initial orientations contribute saddle points 

to the S-matrix (eq. 10 and Fig. 2-a) and the excitation probability 

receives contributions from two terms and their interference term (see · 

eq. 15-a), hence the oscillatory structure. For the classically forbidden 

region the topology of the integrand in eq. (9) is such that only one saddle 

point (complex orientation angle) contributes to the probability amplitude 

(Fig. 2-b), and it is exponentially damped due to penetration of the 

projectile into regions inaccessible to classical dynamics with real 

trajectories (eq. 15-b). Hence the forbidden transition probabilities 

exhibit no oscillations but instead decrease rapidly with increasing spin. 

In the classically accessible regions of Fig. 11, the deviations 

of the A-W calculations from the CLSM ones are generally small and exhibit 
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positive and negative fluctuations. For the classically forbidden regions 

the differences are larger and the CLSM probabilities are smaller than the 

corresponding A-W ones. 

From eq. (19-b) and the prec~ding discussions we note that the essential 

difference between trajectories in the A-W and CLSM approaches is the 

neglect ofthemonopole-quadrupole coupling effect on the projectile motion 

in the formermethod. For the region of orientation space in which the 

maximum of the quantum-number function occurs for a quadrupole potential 

(x
0 
~ n/4) the monopole-quadrupole interaction is repulsive (see Figs. 4-5 

and eq. 19-b). Therefore, for those trajectories leading to the highest 

spins, the projectile penetrates closer to the target nucleus on the 

approximate A-W hyperbolic trajectory than it does on the exact trajectory 

of the CLSM, if we confine ourselves to real turning points and to reactions 

which are not too adiabatic. In the CLSM the projectile may, of course, penetrate 

inside the classical turning point--that is the significance of the 

uncertainty principle which in this context allows complex trajectories 

leading to forbidden states--but in so doing, the momentum, and hence all 

variables in the coupled equations of motion, become cornp~ex. This damps 

the probability by giving rise to an imaginary component in the phase 

(cf. eq. 15-b). As a consequence there is generally less monopole-quadrupole 

interaction on the exact trajectory than on the hyperbolic one, and on 

the average, fewer spin quanta will be exchanged on the exact trajectory 

than on the hyperbolic one. Therefore excitation of higher-spin states 

will be over-emphasized and, since the unitary S-matrix conserves probability, 

excitation of lower-spin states will be under-emphasized in the A-W 

calculation with hyperbolic trajectories. 
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Both effects are seen in Fig. 11. For the high-spin 

(classicaily forbidden) transitions the CLSM probabilities 

lie uniformly lower than those from the A-W calculation. The pict~re is 

more complicated for the low-spin (classically allowed) states because, in 

' classical trajectory terminology, two initial orientations contribute to 

the probability amplitude in that case, and cognizance must be taken of 
/ 

the interference term between these contributions in the expression for the 

probability (cf. eq. 15-a). Thus, although the summed probabilities for 

all the classically allowed states are slightly higher for the CLSM 

calculations than for the A-W ones, the probability for a particular state 

may be either increased or decreased by the inclusion of exact orbital dynamics. 

Which direction will be dictated by two considerations: 1) the effect of 

the altered trajectories on the average number of spin quanta transferred 

(which affects the Pk of eq. (11)), and 2) the effect of the altered trajec-

tories on the real phase difference in the interference term of eq. 15-a. 

Finally, we note that the relatively good agreement between the CLSM 

and A-W calculations except at the highest spins is consistent with recent 

experimental evidence setting upper limits on any corrections to A-W 

Sem1.class1·cal calculat1"ons. 25 •26) F 1 t · · or examp e, an ex ens1ve compar1son 

of transition probabilities for states in 232Th determined by various 

Doppler-shift lifetime methods and by multiple Coulomb excitation places 

an upper limit of 15-20% on the correction to the A-W probabilities for 

ITI ~ 16+ with 623-MeV l36xe projectiles. 25 ) This upper limit is consistent 

with the indicated differences in Fig. 11. 



0 0 f'l r'f 4 F "'-

J """' u L~ 2 B 

-33-

7. Conclusions 

The classical limit of the quantum mechanical S-matrix for multiple 

Coulomb excitation has been investigated by direct numerical evaluation of 

the S-matrix in an integral representation, and by employing complex 

classical trajectories in a saddle point approximation to the integral 

S-matrix. We have demonstrated that this method is capable of reproducing 

both the amplitude and the phase of the quantum-mechanical S-matrix elements, 

even for projectiles as light as protons. Because the dynamics are 

completely classical the equations of motion, parametrized in terms of 

aset of dimensionless variables, yield valuable insight 

into the nature of the orbital dynamics in semiclassical 

approaches. 

From the above considerations and from examination of the limit n ~ oo, 

we find evidence that the "quantal" correction to the Alder-Winther theory 

for heavy ions is dominated by a component which is independent of h. This 

component is shown to arise from the approximate classical orbital dynamics 

in the Alder-Winther theory, rather than from true quantum-dynamical effects. 

Therefore, it is suggested that the present dynamically exact classical-

limit S-matrix approach, or an improved symmetrization of the orbitals 

in the Alder-Winther method, should yield highly accurate results for 

heavy-ion multiple Coulomb excitation. Calculations performed for several 

representative heavy-ion systems indicate that this correction due to 

orbital dynamics for the Alder-Winther probabilities is usually small 

(S 20%) for states accessible with current experimental techniques. This 

is consistent with recent experimental results setting an upper limit on 

the magnitude of this effect. 
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For historical reasons, much of the discussion here has been in terms 

of quanta! corrections to earlier semiclassical calculations. Therefore, it 

is important to reiterate that the classical limit S-matrix method represents 

not a mere correction but an independent, self-contained approach to heavy-ion 

scattering problems. The essential practical limitations of the present 

simple model are its restriction to zero impact parameter and the omission of 

vibrational and rotational-vibration channels in the excitation process. These 

restrictions are removable in principle, and work is currently in progress 

to do so. 14•18) The extension to all impact parameters for the classically 

allowed transitions in the general. case, 18) and to all transitions for 

the sudden-impact limit has been accomplished,14 ) but a number of 

obstacles have thus far precluded a completely general solution. The 

accuracy exhibited by the method in the simple model used here suggests 

that the general solution will be of great use when it is obtained. 

The fact that this method requires a classical model for the nuclear excited 

states and excitation matrix elements has good and bad aspects. On the one hand, 

other semiclassical methods should be more versatile in the treatment of general 

problems since they employ model-independent matrix elements rather than 

specific classical models. However, many nuclear systems (e.g. highly 

deformed nuclei) can be approximated quite nicely by simple rotation-vibration 

models. In such cases the CL-SM approach has a clear conceptual advantage because it 

leads to s:mple and suggestive pictures for the excitation process. In 

addition, the CLSM method may exhibit superior accuracy relative to other 

semiclassical methods if dynamical approximations in other methods are more 

important than the model approximations in the CLSM. 

As discussed elsewhere;2) the methods used here may be extended to 

describe the exact classical dynamics of a projectile moving in a deformed 
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complex nuclear potential. Thus, a unified theory of interaction at barrier 

and sub-barrier energies is possible which includes on an equal footing 

the effects of all contributing components in the electric multipole field, 

and the real and imaginary parts of a complex nuclear potential. 

For heavy-ion interactions on highly deformed nuclei at near-barrier 
' ' 

energies dynamical approximations may become critical because 1) relative 

to Coulomb excitation the real interaction may be expected to be sharply 

varying both radially and in the target-nucleus orientation angle, 2) large 

angular momentum and energy transfers may be involved, and 3) the imaginary 

potential may distort the orbit itself in addition to absorbing particle 

flux. Under these conditions the exact classical dynamics of the CLSM 

method should become increasingly important. 

From these considerations it seems apparent that CLSM and other 

semiclassical methods will be useful as complementary techniques in the 

study of heavy-ion scattering. The discussion here and in ref. 8-b) should 

serve to clarify which situations are most appropriate for a classical-

limit type approach, and which for one of the other semiclassical methods. 

Obviously, a tractable quantum mechanical calculation for heavy-ion scattering 

from deformed nuclei is desirable. Even if such calculations become 

possible, however, classical-limit and semiclassical methods may still 

be expected to retain their conceptual importance for heavy-ion scattering. 
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TABLE I. Amplitude and phase of the £ = 0 S-matrix element. 

ELAB CLSMa) Quantum-Mechanical b) 
System Spin 

(MeV) Amplitude Phase Amplitude Phase 
(radian) (radian) 

lH + 168Er 0 0.991 0.006 0.994 0.005 

7 2 0.134 4.670 0.113 4.680 

0. . 9824 0.010 .9859 0.009 

2H + 168Er 2 .1868 4.654 .1671 4.664 

7 4 . 0081 3.216 .0082 3.145 

0 .9344 0.028 .9397 0.027 

4He + 168Er 2 .3532 4.606 .3390 4.615 

14 4 .0469 3.094 .0441 3.080 

' 
0 . 3424 1. 027 . 3472 0.988 

2 .6911 4.517 .7009 4.513 

4 . 5828 2.736 .5704 2. 752 
lOBe + 168Er 

45 6 .2488 1.153 .2421 1.169 

8 .0594 5.960 .0635 5.943 

10 .0093 4.373 .0110 4.480 

., 

Alder-Wintherc) 

Amplitude Phase 
(radian) 

0.996 0-001 

0.135 4.670 

. 9824 0.003 

.1863 4.653 

.0143 3.140 

. 9339 0.014 

.3532 4.599 

.0544 3.067 

.3296 0.951 

.6613 4.378 

. 5954 2.604 

.2976 1. 024 

.1013 5.809 

.0256 4.368 

I 
VI 
00 
I 
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Table I Footnotes 

a) Calculations performed using integral method. See caption of 
·of Figs. 6-9 for details. 

b) Obtained from coupled-channels code AROSA. 1) 

~c) Obtained from semiclassical Winther-deBoer code. 3) 
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TABLE II. Excitation probabilities as a function of 1/n for a 
characteristic heavy-ion system. a) 

CLSM (n + oo) Symmetrized Unsymmetrized 
Spin (parabolic extrapolation) Winther-deBoer Winther-deBoer 

0 0.0739 0.0739 0.0738 

2 0.1684 0. 1713 0.1707 

4 0.0608 0.0579 0.0580 

6 0.1749 0.1803 0.1784 

8 0.2944 0. 2937 0; 2926 

10 0.1688 0.1660 0.1676 

12 0.0489 0. 0477 0.0492 

14 0. 0088 0.0082 0.0087 

16 0.0010 0.0009 0.0010 

a) For this calculation Qo( 2 ) = 11.12 eb, Qo( 4 ) = 0, and E2+ = 0.0449 
MeV, ·corresponding to 40Ar + 238u at ELab = 170 MeV. The realistic 
n for this case is 126.5. 

·-
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Figure Captions 

1. The coordinate system for the projectile and rotor in the 

simple zero impact parameter case. 

2. The position of the saddle po~nts for Coulomb excitation 

in the zero-impact parameter case. Part (a) is for classically 

allowed transitions, with two real saddle points. Part (b) 

represents forbidden transitions, to which only one of the 

complex conjugate imaginary saddle points contributes. The 

solid line represents the integration path for the integral 

method (real axis), and the dashed path indicates the steepest-

decent integration path employed in the saddle-point method. 

The integrals are equivalent if the region between the paths 

contains no poles. In the case of a complex potential the 

clear distinction between forbidden and allowed states is 

erased and all saddle points are complex. 12 ) 

3. A schematic diagram of the relationships among various methods used 

in this paper. A more detailed diagram may be found in ref. 8-b). 

4. The quantum-number function (final spin vs. initial 

orientation Xo for l36xe + 178Hf. The quantum-number ftmction 

in the sudden impact limit is represented by a dashed line. Because 

the parameter ~ = ~ 02 q2 is relatively large for this system the function is 

shifted considerably downward and toward lower angles in the realistic 

non-sudden case, typical of a highly adiabatic interaction. 

5. The quantum-number ftmction for two different heavy-ion systems at 

various incident energies. The position of the maximum is seen to be 

independent of energy for each system. The l36xe + 178Hf curves are 
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shifted farther to the left because it is more adiabatic 

(larger ~) than the 4 0Ar + 238u system. 

6.-9. (a) The complex~= 0 S-matrix in a polar plot for Coulomb 

excitation of the grmmd band in 168Er by several particles. The 

radial scale is logarithmic. The classical limit S-matrix calculation 

(CLSM) is in excellent agreement with an exact quantum-mechanical 

calculation. All CLSM calculations used the integral method. We have 

used the chemist's terminology (e.g., ref. 10) in calling this the 

S-matrix. This same quantity is often termed the R-matrix in Coulomb 

excitation. 2) The differences here are semantic only since the R- and 

S-matrix elements are related by a Coulomb phase. All 

projectiles were assumed spherical with no internal structure. lOse 

was chosen for the theory-theory comparison because the resultant value 

of n is near the upper limit for the quantum-mechanical code which we 

employed. 

(b) The difference in phase between the exact quantum mechanical ~ = 0 

S-matrix and the classical-limit S-matrix (CLSM) and Alder-Winther (A-W) 

semiclassical calculations. 

(c) The fractional difference in amplitude between the ~ = 0 quantum­

mechanical S-matrix and the classical-limit S-matrix (CLSM) and 

Alder-Winther (A-W) ones. 

10. Excitation probabilities as a function of 1/n for a representative 

heavy-ion system. These calculations were performed with the integral 

method but the saddle-point method gives similar results. The results of a sym­

metrized (squares) and unsymmetrized (solid circles) Winther-deBoer calculation, 

and the extrapolated CLSM results (open circles) are shown on the left axis. As 

discussed in the text, the fact that the CLSM probabilities extrapolate to the 



0 0 ") ·4 4 i.: u ,<;j J 1'<-.·-:J 

J \s 

-43-

Wlsymmetrized Winther-deBoer results at n = (X) strongly suggests 

that any significant differences between the A-W and CLS~1 methods 

for heavy ions is due to the approximate orbital dynamics of 
~ 

the former. As further discussed in the text, the fact that the 

symmetrized Winther-deBoer results always lie closer than the 

Wlsymmetrized results to the CLSM probability at the realistic 

value of n = 127 (dashed vertical line) also supports this conclusion. 

11. Excitation probabilities for £ = 0 in several representative 

heavy-ion systems. The A-W probabilities were calculated using a 

standard Winther-deBoer code. For the lightest 3 projectiles the 

CLSM probabilities were calculated using the integral method. 

For the heaviest projectile the USCA with complex trajectories 

was used because of numerical problems in the integral method as 

presently formulated for highly adiabatic systems (large values of 

r;;) •14) The division between classically allowed and forbidden transitions 

is clearly seen, as is the effect of the adiabaticity on the final 

angular momentum for the very heavy projectiles. As discussed in 

the text, we suggest that the differences between the A-W and CLSM 

results is a consequence of the approximate orbital dynamics in 

the former. 
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