
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Learning during Intelligent Tutoring: When Do Integrated Visual-Verbal Representations 
Improve Student Outcomes?

Permalink
https://escholarship.org/uc/item/5hd6s0gf

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Butcher, Kirsten
Aleven, Vincent

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hd6s0gf
https://escholarship.org
http://www.cdlib.org/


Learning during Intelligent Tutoring: When Do Integrated Visual-Verbal 
Representations Improve Student Outcomes? 

 
Kirsten R. Butcher (kirsten.butcher@utah.edu) 

Department of Educational Psychology, University of Utah, 1705 E. Campus Center Drive, MBH 327 
Salt Lake City, UT, 84108 USA 

 
Vincent Aleven (aleven@cs.cmu.edu) 

Human Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Avenue 
Pittsburgh, PA 15213 USA 

 
 

Abstract 
Research has shown that integration of visual and verbal 
information sources during learning promotes successful 
student outcomes. However, it is unclear whether it is better 
to provide students with integrated visual-verbal 
representations, or to require them to build such integrated 
representations themselves. In a classroom study, three 
conditions were used to explore the impact of integrated 
visual-verbal representations that emphasized rule-diagram 
mappings in geometry. Students viewed highlighted rule-
diagram mappings during learning, generated these mappings 
themselves, or saw only numerical information embedded in 
diagrams (control). Students’ problem-solving knowledge 
was measured at posttest and delayed posttest. Overall, 
students who generated rule-diagram mappings during 
intelligent tutoring demonstrated better long-term 
understanding of geometry principles, but effects were only 
visible at delayed posttest. Results show that integrated 
visual-verbal representations best support deep learning when 
they help the learner make connections between features of a 
visual representation and relevant domain information, and 
student interactions can be an effective method to scaffold 
these connections. 

Keywords: Intelligent tutoring; Diagrams; Problem solving; 
Long-term retention; Visual representations 

Introduction 
Research in multimedia learning has demonstrated that 
adding visual representations to text materials frequently 
improves students’ learning outcomes (e.g., Carney & 
Levin, 2002). Studies of cognitive processing with 
multimedia materials have demonstrated that visual 
materials support learning by increasing students’ 
generation of effective self-explanations during study 
(Ainsworth & Loizou, 2003; Butcher, 2006).  

However, not all visual representations are equally 
effective in supporting learning. Diagrams have been shown 
to be more effective when verbal materials (such as textual 
labels for diagrams) are integrated directly into the visual 
representation (e.g., Hegarty & Just, 1993) before they are 
presented to students. Other research has shown that 
student-driven integration of visual and verbal materials 
supports learning with complex materials and may promote 
goal-oriented behaviors during subsequent, self-directed 
learning (Bodemer, Ploetzner, Bruchmüller, & Hacker, 
2005). Together, these research results suggest clear benefits 

of integrated visual-verbal representations for learners. 
However, they also raise the question of whether learners 
should be provided with integrated visual representations or 
if it is better to require learners to generate the integrated 
representations themselves. 

The question of whether or not to provide students with 
integrated visual-verbal representations highlights the 
assistance dilemma (Koedinger & Aleven, 2007). The 
assistance dilemma refers to the difficulty of deciding when 
interactive learning environments should provide vs. 
withhold information in order to support optimal student 
learning. The assistance dilemma reflects a technology-
based application of the long-standing instructional concept 
of desirable difficulty (e.g., Bjork, 1994). Desirable 
difficulty refers to the finding that increasing the difficulty 
of a learning activity can improve long-term knowledge 
outcomes, even though performance during training may 
suffer. Desirable difficulty argues against a common 
assumption that optimal learning is facilitated when 
instructional materials are designed to ease student 
comprehension and increase successful performance. Thus, 
a key question for intelligent tutoring systems using visual 
representations is: when should intelligent tutoring systems 
provide integrated visual-verbal support vs. withhold this 
support in order to optimize student learning outcomes?  

Connecting Diagrams to Domain Knowledge 
The assistance dilemma and the concept of desirable 
difficulty raise the important question of when to provide 
vs. withhold integrated visual-verbal representations for 
optimal learning. However, a central question is what type 
of integrated representation is most beneficial to learners.  

Much of the research on integrated visual representations 
has made use of visuals that physically embed additional 
information into a visual representation. Multimedia 
presentations have been shown to support deeper 
understanding of instructional materials when they provide 
students with diagrams into which textual labels and 
definitions have been embedded (e.g., Hegarty & Just, 
1993). In geometry, research has shown that students learn 
more when they are provided with representations in which 
numerical measures have been integrated into diagrams 
(Tarmizi & Sweller, 1988) or when they are provided with  
color-coded highlighting that links text references (e.g., a 
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reference to angle ABC) with relevant diagram elements 
(Kalyuga, Chandler, & Sweller, 1999). Overall, research 
shows clear benefits for integrated visual-verbal 
representations during learning. However, integrated visual-
verbal representations may not, in and of themselves, 
prompt learners to make connections to key domain ideas.  

Evidence suggests that individuals with deep domain 
understanding tend to exhibit strong connections between 
domain concepts and visual representations. For example, 
experts in geometry use key diagram configurations to cue 
relevant geometry knowledge (i.e., theorems and principles) 
during problem solving (Koedinger & Anderson, 1990). 
During mathematical problem-solving, mathematicians 
repeatedly analyze connections between generated visual 
representations, changing goals, and the emerging problem 
situation (Stylianou, 2002). 

Unlike experts, novices do not demonstrate close 
connections between visual representations and domain 
knowledge during problem solving. In geometry, novices 
tend to process diagrams in isolated ways, focusing on 
visual features without considering their relationship to 
deeper, conceptual aspects of problems (Lovett & Anderson, 
1994). Ainsworth (2006) argues that a central cognitive task 
in learning with multiple representations is developing an 
understanding of the relationship between a visual 
representation and relevant domain information.  

One way to support novice learning in geometry, then, 
may be to scaffold student interactions with visual 
representations in a way that improves their understanding 
of the relationship between visual features of geometry 
problems (i.e., geometry diagrams) and the geometry 
principles/rules used in problem solving. In geometry, 
problem solving requires that learners connect meaningful 
diagram configurations to relevant geometry principles. For 
example, in Figures 2 and 3, angle ABC is an interior angle, 
same side to angle BCD. Learners should recognize that the 
diagram contains two parallel lines (AB, DC) intersected by 
a transversal (BC). Angles ABC and BCD are on the 
interior of the parallel lines, and on the same side of the 
transversal. Thus, they are interior angles, same side and 
can be solved using this rule. In this study, we used 
highlighted diagram features to demonstrate the mapping 
between diagrams and relevant geometry principles in the 
domain (see Figures 2 and 3); hereafter, these are referred to 
as diagram-domain representations. 

Integrated Diagrams in Intelligent Tutoring 
In previous research (Butcher & Aleven, 2007, 2008), we 
explored the use of interactive visual diagrams as a method 
to support the development of integrated visual-verbal 
knowledge during intelligent tutoring in geometry. The 
research vehicle for this work was the Geometry Cognitive 
Tutor, an intelligent tutoring system (ITS) grounded in 
cognitive theory that provides multiple forms of support for 
student learning by doing: tracking students’ knowledge 
development using a model of student competency, 
selecting problems for students to complete that match 

identified learning needs, structuring problem-solving steps 
for students, giving feedback on all student actions, and 
providing hints upon student request or when the student 
makes repeated errors. Details about Cognitive Tutor 
features are available elsewhere (e.g., Anderson, Corbett, 
Koedinger, & Pelletier, 1995).  

Butcher and Aleven (2007, 2008) varied the site of 
student interaction during geometry problem solving in an 
intelligent tutoring system: students used either an 
interactive diagram or a solutions table version of the 
intelligent tutoring system (see Figure 1). Students using the 
interactive diagram tutor clicked directly on diagram 
elements to enter answers and receive feedback, thus 
creating an integrated representation in which numerical 
answers were embedded in the visual representation. 
Students in the control condition used the solutions table to 
enter their answers and receive feedback. Although the 
solutions table kept a running record of students’ answers, 
numerical values were not integrated directly into the 
diagram. Results showed that students who interacted with 
the diagrams to develop an integrated representation learned 
geometry principles more deeply (as evidenced by transfer 
task performance: Butcher & Aleven, 2007) and retained 
their problem-solving skills for longer periods of time 
(Butcher & Aleven, 2008).  

 

 

Figure 1: Condition-based differences in interactions with 
an intelligent tutor (Butcher & Aleven, 2007, 2008).  

 
Despite the success of these diagram interactions in an 

already-successful intelligent tutoring system, there was still 
ample room for student improvement at assessment. It is 
possible that diagram interaction helped students focus on 
relevant visual elements during problem solving, but the 
integrated representations that students developed did not 
make it clear how diagram elements mapped onto domain 
information.  

 
Student Generation of Integrated Representations 
Simply providing students with visual representations that 
connect diagrams features to domain information may not 
be optimal for learning. Research has shown that requiring 
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students to actively integrate visual and verbal information 
(i.e., using a drag-and-drop interface to produce a labeled 
diagram) improves learning outcomes and increases the 
quality of students’ self-directed learning behaviors 
(Bodemer et al., 2005). However, it is unclear whether 
interactions that emphasize diagram-domain mappings 
during problem-solving practice can improve learning more 
than interactions that build integrated visual-verbal 
representations (cf., Butcher & Aleven, 2007, 2008).  

The purpose of this study was to explore the potential 
benefits of providing students with integrated 
representations that emphasized the mapping between 
diagram elements and domain information during intelligent 
tutoring vs. requiring students to generate these integrated 
representations. Both conditions were compared to a control 
condition in which students interacted with diagrams to 
embed numerical information into the diagrams (i.e., student 
interactions created an integrated, visual-verbal 
representation that did not emphasize domain connections).  

Method 

Participants 
Eighty-three students from five 10th grade geometry 
classrooms at a vocational school in rural Pennsylvania 
participated in the study as part of their normal classroom 
curriculum, which included practice with the Geometry 
Cognitive Tutor once a week (one 75 min session per week).  

Grade-matched triplets of students were identified within 
each class, using students’ first semester geometry grades as 
a measure of prior knowledge. From every grade-matched 
triplet, one student was randomly assigned to each of the 
three experimental conditions described below. 

Materials 
Student-Highlighting Condition The purpose of the 
student highlighting condition was to require student 
interactions with the intelligent tutor that generated 
integrated diagram-domain representations during problem-
solving practice in the Cognitive Tutor. In this condition, if 
a student entered an incorrect answer or reason during 
practice, s/he was locked out of the numerical answer field 
until s/he identified the correct geometry principle needed to 
solve the problem-solving step. Once the correct principle 
was identified, students highlighted the diagram features 
relevant to that principle (see Figure 2). These highlights 
created an integrated diagram-domain representation of the 
problem situation. As seen in Figure 2, highlighting was 
scaffolded by a list of diagram features that appeared after 
students entered a correct geometry principle for a problem-
solving step. Students were required to highlight each 
diagrammatic feature in the list (e.g., for Interior Angles, 
Same Side, students were prompted to highlight the parallel 
lines, the transversal, and the two relevant angles).  

Students highlighted a diagrammatic feature by clicking 
directly on it; students could deselect a highlighted feature 
by clicking on it again. Students received immediate 

feedback on each highlighted feature in the diagram. 
Incorrect highlights turned red on the diagram and in the 
accompanying answer area. Correct highlights were kept on 
the screen until the problem-solving step was completed. 

 

Figure 2: In-progress student highlighting of diagram for 
interior angles, same side rule. Parallel lines and transversal 

have been highlighted so far. 
 

Tutor-Highlighting Condition This condition utilized the 
same representations as the student-highlighting condition, 
but in this case the tutor provided students with the 
highlighted diagram-domain representation. Following a 
problem-solving error and student identification of a 
relevant geometry principle, the tutor automatically 
highlighted the diagram. The screen shot in Figure 3 shows 
the result of the tutor highlighting; it is important to note 
that the final representations in the student- and tutor-
highlighting conditions were equivalent, differing only in 
whether the student or tutor generated the representation. 

 

Figure 3: Tutor-highlighted diagram following student error  
 

No Highlighting (Control) The control condition was the 
successful interactive-diagram version of the Geometry 
Cognitive Tutor from Butcher and Aleven (2007). This 
condition did not involve any highlighting of visual diagram 
features by either students or the intelligent tutoring system. 
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However, students entered answers directly into the 
geometry diagram; this created an integrated visual-verbal 
representation in which numerical values were embedded in 
the visual diagram. 
 
Assessments Problem-Solving Pre- and Posttest The 
problem-solving pre- and posttest consisted of 16 total 
items. For each to-be-solved item, students needed to 
provide a numerical answer (e.g., 65º) and the geometry 
principle that was used to derive the numerical answer (e.g., 
Vertical Angles). The problem-solving posttest was the 
same as the pretest, but problems appeared in a different 
order. One point was given for each correctly-solved angle 
and correctly-identified principle. Due to a technical error 
and student absences, data was collected from 68 
participants at pretest and from 70 students at posttest.  
 
Delayed Posttest The delayed posttest was given on the 
computer, four weeks following the posttest. The delayed 
posttest followed the same format as the pre- and posttest, 
but with less complex problems. Students received one 
point per correctly-solved angle and correctly-identified 
geometry principle, for a maximum of 8 points on each 
dependent measure. Due to high numbers of student 
absences in the week that the delayed posttest was given 
(near the end of the school year), 41 students completed the 
delayed posttest. 

Procedure 
Participants were given up to 30 minutes to complete the 
pretest during their geometry class. Pretests were delivered 
via computer; students were instructed to try their best to 
complete the problems, and to take a guess if they were not 
sure of an answer. After completing the pretest, students 
worked with their assigned tutor version for four weeks 
during a 75-minute, weekly computer lab. This computer 
lab was a normal part of the students’ geometry classes, and 
all students had used non-experimental versions of the 
Geometry Cognitive Tutor during previous sessions in the 
computer lab. The Geometry Cognitive Tutor used in each 
condition did not differ in problem content, the number of 
required problems, or the knowledge models used by the 
Cognitive Tutor.  

One week after completing the study, students were given 
up to 45 minutes to complete the posttest during their 
geometry computer lab. A delayed posttest was 
administered one month following the posttest. Participants 
had up to 30 minutes to complete the delayed posttest.  

Results and Discussion 

Training Performance  
In the Geometry Cognitive Tutor, learners provide a 
numerical answer and a geometry principle (aka “rule) that 
justifies the numerical answer for each problem-solving 
step. Log data from student practice with the Geometry 
Cognitive Tutor were analyzed to assess performance on the 

first answer and geometry rule attempted by a learner for 
each problem step during practice. Data were calculated 
only for problem steps that were not given in the problem 
statement. That is, data were analyzed only for problem 
steps in which students needed to apply a geometry 
principle in order to calculate a correct answer. Student 
progress in the Geometry Cognitive Tutor was self-paced 
and, in general, was slower than anticipated by either the 
experimenters or the students’ classroom teachers. Because 
the intelligent tutoring system requires mastery learning 
before students can continue to the next instructional unit, 
not all students completed the three instructional units in the 
experimental version of Geometry Cognitive Tutor. In total, 
72 students produced tutor log data in unit 1 (control: n = 
23, tutor-highlighting: n = 25, student-highlighting: n = 24). 
Forty-five students reached unit 2 (control: n = 14, tutor-
highlighting: n = 16, student-highlighting: n = 15), but only 
27 students reached unit 3 (control: n = 10, tutor-
highlighting: n = 8, student-highlighting: n = 9). 

Due to the drop in student numbers at each instructional 
unit, three multivariate analyses of covariance 
(MANCOVAs) were used to assess student performance in 
each unit of the tutor. Dependent variables were the percent 
correct of students’ initial attempts at numerical answers 
and geometry rules for each not-given problem-solving step. 
Students’ pretest scores on numerical answers and geometry 
rules were used as covariates to control for prior knowledge. 
As seen in Figure 4, unit 1 data demonstrated no significant 
differences in practice performance on numerical answers or 
geometry rules (Fs < 1). 

 

50
55
60
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70
75
80
85
90
95

100

Answers Rules

Unit 1

Control Tutor Highlight Student Highlight
 

Figure 4: M (and SE) percent correct for answers and 
geometry rules in unit 1 during intelligent tutor practice 
 
Unit 2 also failed to show any significant condition 

differences in problem-solving performance on answers or 
geometry rules (Fs < 1). For the few students who reached 
unit 3, students who interacted with the tutor to generate 
integrated diagram-domain representations had a slight, 
though non-significant, advantage on numerical answers 
(F(2, 22) = 2.7, p < .09). However, as seen in Figure 5, there 
were no differences in students’ accuracy in using geometry 
rules to justify their problem-solving steps during practice. 
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Figure 5: M (and SE) percent correct for answers and 
geometry rules in unit 3 during intelligent tutor practice 

Problem-Solving Performance  
Overall, 33 students completed all three assessments 
(control: n = 13, tutor-highlighting: n = 11, student-
highlighting: n = 10). Data were analyzed using a repeated-
measures MANOVA, where test time (pretest, posttest, 
delayed posttest) was the repeated factor. 

For numerical answers, results showed no test time by 
condition interactions (Linear: F < 1; Quadratic: F(2, 31) = 
1.48, p > .24). However, as seen in Table 1, students’ 
performance on geometry principles showed a significant 
test time by condition interaction (Linear: F(2, 31) = 4.97, p = 
.01, ηp

2 = .24; Quadratic: F(2, 31) = 3.28, p = .05, ηp
2 = .18).  

Students in the student-highlighting condition were best 
able to justify their problem-solving steps with geometry 
rules at delayed posttest; however, no differences were seen 
at the short-term posttest. Figures 6 and 7 show the pattern 
of means on the posttest and delayed posttest, respectively, 
adjusted for pretest performance.  
 

Table 1: M (and SD) percent correct on geometry rules  
 

 Pretest Posttest Delayed 
Posttest 

Control  18.2 (16. 7) 25.5 (14.3) 19.4 (18.0) 

Tutor-
Highlighting 11.1 (10.6) 23.2 (21.2) 17.7 (11.4) 

Student-
Highlighting 12.4 (7.2) 16.3 (13.6) 31.7 (14.2) 

 
As seen in Figure 6, there were no significant condition 

differences at posttest. If anything, the pattern of results at 
posttest was consistent with a disadvantage for students who 
highlighted diagrams during practice. Although this may 
seem inconsistent with the overall pattern of performance in 
unit 3 during intelligent tutoring practice (see Figure 5), one 
should remember that not all students taking the posttest 
reached unit 3 in the intelligent tutor.   

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Answers Rules

Posttest

Control Tutor Highlight Student Highlight
 

Figure 6: M (and SE), adjusted for pretest performance, on 
posttest numerical answers and geometry rules. 

 
One month later, at delayed posttest, the data paint a 

different picture Although there were no differences in 
students’ accuracy in providing numerical answers at 
delayed posttest, students who generated integrated 
diagram-domain representations during practice were better 
able to justify their problem-solving steps with relevant 
geometry rules. It is important to note that this advantage 
was found even though control students made use of 
integrated diagrams with embedded numerical answers. 
Moreover, the advantage cannot be attributed to additional 
information in the diagram-domain representations, as 
students who were provided with these representations by 
the tutor did not outperform the control group in correctly 
using geometry rules (see Figure 7). 
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Figure 7: M (and SE), adjusted for pretest performance, on 
delayed posttest numerical answers and geometry rules. 

 
To confirm results obtained from the small group of 

students with full assessment data, two additional analyses 
were conducted. First, a MANCOVA was used to assess 
performance changes for all 68 students with pre- and 
posttest data (control: n = 23, tutor-highlighting: n = 24, 
student-highlighting: n = 21). Dependent variables were 
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performance on numerical answers and geometry rules at 
posttest; covariates were students’ performance on answers 
and rules at pretest. Results were consistent with the small 
sample, showing no condition differences for either 
numerical answers or geometry rules (Fs < 1). A second, 
similar MANCOVA was conducted for all 41 students with 
pre- and delayed posttest data (control: n = 14, tutor-
highlighting: n = 13, student-highlighting: n = 14). Results 
again were consistent with the small sample, showing a 
significant advantage of the student-highlighting condition 
for geometry rules (F(2, 36) = 4.04, p = .03, ηp

2 = .18), but not 
numerical answers (F(2, 36) = 1.38, p > .26). 

General Discussion 
Overall, results show that providing integrated visual-verbal 
materials to students during intelligent tutoring does not 
improve students’ learning outcomes. However, findings 
show that using interactions to build integrated diagram-
domain representations can support long-term 
understanding. Students who generated integrated 
representations that emphasized diagram-domain mappings 
during problem-solving practice showed no performance 
advantages in using geometry principles at practice or 
posttest, but were best able to apply these principles one 
month following instruction.  

Results are consistent with the idea that student 
interactions can support deep learning with visual 
information. However, results also argue that integrated 
visual-verbal representations best support deep learning 
when they help the learner make connections between 
features of the visual representation and relevant domain 
information. The current study shows that student 
interactions can be an effective method to scaffold these 
connections. Findings also demonstrate the importance of 
measuring long-term knowledge gains, as student 
performance during practice and short-term assessments 
may not provide an accurate picture of deep understanding. 
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