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Abstract

Tensor Decomposition for Concept Recognition

by

Ahmed Wahba

The yield optimization data analytic process is an iterative search process. Each

iteration comprises of two main steps: data preparation, and result evaluation. In this

thesis, we focus on the result evaluation step, where the analyst evaluates the result

from running a certain analytic task looking for some specific concept. For example this

concept can be in the form a pattern formed by the failing dies on a wafer.

A wafer pattern may hint a particular issue in the production by itself or guide the

analysis into a certain direction. In this thesis, we show how Generative Adversarial

Networks (GANs) can be used to build concept recognizers, we present the architecture

chosen for the convolutional neural networks, we show how the network is trained, and

we show how the discriminator network can be used for concept recognition.

However, the main focus of this work is on rules of Tensor decomposition in the

automated concept recognition flow. We introduce a novel concept recognition approach

based on Tucker decomposition. Tensor-based concept recognizers are combined with

GANs-based recognizers to prevent escapes, also known as adversarial examples.

In this work, we are concerned with two main aspects: (1) automation of the concept

recognition process, and (2) ensuring robustness. Two tensor methods are introduced to

address both aspects.

The first tensor method is based on clustering and is used to automatically extract

concepts that might be of interest to the analyst as well as choose the set of wafers to be

used in training for each concept.

ix



Our second tensor method is to ensure robustness of the GANs-based recognizers

by introducing the containment check to continuously check for GANs performance and

report to the expert if a problem occurs.

We also address other challenges, such as automating the training process for GANs.

We also introduce a collaboration view where the machine learning expert is assumed

to be a separate entity. Hence he is not allowed to have access to protected information

such as yield. we present a tensor-based transformation for training wafers such that the

protected information is hidden.

Our automated and robust software is applied to two high reliability automotive

products, with 8300 and 7052 wafers respectively.
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Chapter 1

Introduction

Machine Learning (ML) based data analytic methods have been widely explored for

design automation and test applications in recent years [1]. While many promises have

been shown, in practice it can still be a challenge for deploying a ML solution software

into a production line.

Figure 1.1: Examples of wafers with a special pattern

In this thesis, we use wafer image classification as an application example. In practice,

an engineer reviews wafer plots looking for a particular pattern of interest. For example,

Figure 1.1 shows six examples. Yellow dots denote the locations of failing dies and purple

dots denote the locations of passing dies. Except for the first plot, the other five each

has a special pattern which might indicate a certain issue in the manufacturing process,

e.g. an issue with a certain tool.

Fig. 1.2 illustrates the application context for this work. A set of wafer maps are

1



Introduction Chapter 1

Figure 1.2: Application context for this work

given as examples to represent a concept to be learned. The concept shown in the figure

can be called Edge concept. The goal is to learn a wafer concept recognizer (or simply a

recognizer). In application, this recognizer scans a large set of wafer maps and captures

those wafer maps showing the same concept.

In production, wafers come in batches. When a batch of wafer plots are given, a

desired classification system puts them into baskets where each contains wafers with a

particular pattern, or determines that a wafer image contains no special pattern. To

implement such a classifier, an approach was developed in [2]. The classification is

achieved through a set of recognizers, each to recognize a particular pattern type (called a

concept [2]). Each concept recognizer is trained individually as a neural network model.

The training is based on Generative Adversarial Networks (GANs) [3][4][5] where the

discriminator network is used as the recognizer [2].

Because it is impractical to anticipate all possible pattern types that can appear in a

production, training a recognizer has to be done online. This means that when a batch

of wafer images come in, the solution needs to do three tasks [6]:

1. decide if an image can be recognized with any of the recognizers already in place.

2. for those unrecognized images, decide if there is a new concept to be learned.

3. if there is a need to build a new recognizer, extract the training and validation

samples required to train the GANs-based recognizer.

Our first tensor method is employed to help in the second and the third tasks, and the
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underlying approach is based on clustering. The roles of the two tensor-based methods

are illustrated in Figure 1.3.

Figure 1.3: The two Tesnor-based methods and their roles

Figure 1.4: Training samples and false positives for the small-center concept

Although GANs is a popular approach, training GANs remains to be tricky [4][5].

As a result, it is difficult to ensure robustness for a recognizer. For example, Figure 1.4

shows that there can be false positives classified by a GANs-based recognizer. In this

example, the recognizer is trained to recognize a “small-center” pattern, but ends up also

recognizing those not containing the pattern. If the result is utilized by a person, those

mistakes could reduce the person’s trust on using the tool. If the result is utilized by

another analytic software script, mistakes may cause misleading analytic outcome.

To address the robustness concern, a ML solution developer can have two choices.

The first is to promise that the solution is robust at the time of its deployment. However,

this can be difficult to achieve without some sort of guarantee on the robustness of the

underlying ML models in use. The alternative is to deliver a solution where its robustness

can be checked during the application. This implies that after the deployment there

3
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will be a ramp-up process where the robustness of the solution is continuously checked.

Whenever an issue is detected, the developer will be called to fix the problem. This

alternative enables the developer to mitigate the robustness issue over time in the actual

application setting.

To realize the idea, what we need is a method that can check the recognition result

from a neural network model. This is where our second tensor method comes in. For each

pattern type to be recognized, the method builds a separate recognition model. Suppose

for the same pattern type the set of wafers SGANs are recognized by the neural network

model and the set of wafers STensor are recognized by the tensor-based model. The

robustness is checked by examining the containment property of the two sets, STensor ⊆

SGANs [6].

Figure 1.5 depicts a deployment setting proposed in this work. There are two sides:

the ML expert side (call it Jay) and the deployment side (call it Nik). The assumption

is that Jay does not have access to what happens on Nik’s side. Jay’s overall objective

for the software is to minimize the chance that Nik perceives the software as producing

“unreasonable” results, while having minimal exposure to sensitive information such as

yield.

Figure 1.5: Deploying a ML solution as a service

In the next Chapter, basic Tensor notations are introduced, as well as some Tensor

Decompositions and Tensor-Matrix operations that is used in this work. In Chapter 3,

we give an overview on GANs and how they can be used for concept recognition. Chapter
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4 discusses Tensor-based concept recognizers. Our first Tensor method is introduced in

Chapter 5. Chapter 5 also discusses the implementation of our automated wafer pattern

recognizer software. In Chapter 6 we introduce our second tensor method, and present

more details on how the proposed deployment setting can work. Finally, Chapter 7

concludes the work.
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Chapter 2

Tensor Notations, Decompositions,

and Applications in Machine

Learning

2.1 Introduction

In this chapter, we are going to introduce basic tensor notations, mathematical op-

erations, and some important tensor decompositions and their applications in machine

learning related applications.

Tensors are the high-dimensional generalization of vectors and matrices. While vec-

tors are one dimensional, matrices have two dimensions, tensors can have more than two

dimensions. Figure 2.1 shows an example of a three dimensional tensor and its Tucker

decomposition, to be explained later in this Chapter. In general, an N-way tensor, has

N dimensions or ”modes”.

In this thesis, we will follow the notations used in [7]. A tensor is represented by

a boldface Euler script letter, for example A. A matrix is represented by a boldface

6
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Figure 2.1: Tucker Decomposition for a Three-Dimensional Tensor

uppercase letter, for example A. And a vector is represented by a boldface lowercase

letter, for example a.

In this chapter, we are going to introduce some tensor operations, tensor decomposi-

tions and briefly mention their applications in the field of machine learning.

2.2 Basic Tensor Operations

In this section, two of the tensor operations that are used in this work are introduced.

2.2.1 Mode Unfolding

Mode unfolding along mode n, which is also referred to as tensor matricization, is the

operation of unfolding a tensor A into a matrix, where the size of one dimension of the

matrix is Ri, and the size of the other dimension is given by
M∏
i=1
i 6=n

Ri. Where Ri is the

size of mode-n of the tensor, M is the number of modes. For example, unfolding a three

dimensional tensor of size 7 × 5 × 3 along the second mode results in a matrix of size

5× 21

For example, unfolding the three dimensional tensor A2×2×3 with the frontal slices

of:

7
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A1 =

1 3

2 4

 ,A2 =

5 7

6 8

 ,A3 =

 9 11

10 12



along each of the three modes gives the following matrices:

A(1) =

1 3 5 7 9 11

2 4 6 8 10 12



A(2) =

1 2 5 6 9 10

3 4 7 8 11 12



A(3) =


1 2 3 4

5 6 7 8

9 10 11 12



2.2.2 Mode Multiplication

Mode-i Multiplication is the operation of multiplying a tensor and a matrix along a

mode-i, and is denoted by the operation ×i. The second dimension of the matrix has to

agree with the size of mode-i of the tensor. The result is another tensor with the size of

the ith mode replaced by the size of the matrix first dimension.

For example, A7×5×3 ×3 B6×3 = C7×5×6.

For example, multiplying the tensorA2×2×3 with the matrix B2×3, where the frontal

8
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slices of A and the matrix B are as following :

A1 =

1 3

2 4

 ,A2 =

5 7

6 8

 ,A3 =

 9 11

10 12

 , B =

1 2 3

4 5 6



will result in the tensor C with the following frontal slices:

C1 =

38 50

44 56

 , C2 =

83 113

98 128



2.3 Tensor Decompositions

Similar to Matrices, there are many ways to decompose a Tensor. CP and Tucker

decompositions are the most famous two, and they are explained below. There are many

other decompositions, notably the relatively recent Tensor Train Decomposition [8] which

is used in achieving a 200000:1 compression ratio in the dense layers of neural networks

[9].

2.3.1 CANDECOMP/PARAFAC (CP) decomposition

The idea of the polyadic form, i.e. decomposing a tensor into a finite sum of rank-1

tensors, is first proposed in [10][11]. It did not become popular until the introduction of

the canonical decomposition CANDECOMP [12] and PARAFAC, or parallel factors [13].

That is where it gets its name (CP). The works in [14] and [15] have also independently

discovered CP decomposition and called it the topographic components model.

Figure 2.2 shows the CP decomposition of a three dimensional tensor.

9
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Figure 2.2: CP Decomposition for a Three-Dimensional Tensor

CP decomposition decomposes the tensor into the sum of a finite number of rank-1

tensors. A mode-n rank-1 tensor can be represented as an outer product of n vectors as

shown in figure 2.2. For example, a mode-3 tensor X can be written as:

X =
R∑
r=1

ar ◦ br ◦ cr (2.1)

where R is a positive integer and ◦ denotes the vector outer product.

Tensor rank, also called CP rank, is defined as the smallest value of R that satisfies

equation 2.1. In other words the rank of a tensor X is the smallest number of rank-1

tensors that generate X as their sum [10][16] determining the rank of a tensor is NP-Hard

[17].

Note that the definition of a tensor rank is analogue to the definition of matrix rank,

but the properties of both are very different. One major difference is that the rank of

the matrix can not be larger than its smallest dimension. I.e, a matrix Mn×m can not

have a rank larger than min(n,m). However, no such upper limit exists for tensors.

For example, the work in [18] shows a particular 9 × 9 × 9 tensor has a rank between

18 and 23.

For a third order tensor XI×J×K only the following weak upper bound exists [18]:

Rank(X ) ≤ min(IJ, IK, JK)

There is no finite algorithm to calculate the exact CP decomposition, the reason is

determining the rank of a tensor is NP-Hard. Hence, the first problem with calculating

10
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the CP decomposition is choosing the number of rank-1 components. Most algorithms

fit different CP decompositions with different number of components until one is good

enough. Ideally, we can do that for R = 1,2,3,... until we get a 100% fit.

With a pre-determined number of components, there are many algorithms to compute

the CP decomposition. The most used today is the alternating least squares (ALS)

proposed in [12][13].

CP decomposition can be used to find low rank approximation of high dimensional

and large tensors, hence compression is one of its most used applications. For example in

[19] CP is applied for image compression, in [20] it is applied to build a texture database.

CP decomposition was first applied in data mining in [21][22], where the authors

apploed different tensor decomposition techniques, including CP, to the problem of dis-

cussion detanglement in online chat rooms. While in [23] CP is used for automatic

conversation detection in emails.

2.3.2 Tucker decomposition

Tucker decomposition was first introduced in [24] and was later refined in [25][26].

Tucker decomposition is a generalization of the matrix Singular Value Decomposition

(SVD) in higher dimensions, hence sometimes it can be called higher order SVD [27],

N-mode SVD [28], or N-mode PCA [29]. Tucker decomposition for a three dimensional

tensor is shown in figure 2.1. It decomposes a tensor into a core tensor multiplied (or

transformed) by a matrix along each mode. In other words, Tucker decomposition of a

d-dimensional tensor X is shown in equation 2.2 below. Where X is the core matrix,

Ui is the projection or transformation matrix along mode i, and ×i denoted modei
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multiplication. Mode multiplication is explained in Section 2.2.2.

X = G
d∏
i=1

×iUi (2.2)

Tucker decomposition provides a definition of another type of rank called the n-rank

or the vector rank [18][27][11]. The n-rank of an N-dimensional tensor X is a vector of

length N. rankn(X ) = (R1, R2, ..., RN) Where Ri = Rank(Xn), where Xn is the

mode unfolding of tensor X along mode-n.

The n-rank should not be confused by the tensor rank, i.e. minimum number of

rank-1 components that sum up to the tensor, which was introduced in Section 2.3.1.

Figure 2.3: Higher Order Singular Value Decomposition (HOSVD) Algorithm

Calculating Tucker decomposition can be done using the Higher Order Singular Value

Decomposition (HOSVD) approach shown in figure 2.3.

HOSVD, however, does not provide the bets fit if using truncated core tensor, Which

is usually the case if compression is required, in that case the result of HOSVD is fed

into the iterative Higher Order Orthogonal Iteration (HOOI) [30].

In this work, we always keep the full ranks, hence HOSVD provides the best fit, and
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no need to use HOOI.

Applications of Tucker decomposition in signal processing is presented in [31]. The

tensor faces algorithm in [28] presented the first use of Tucker decomposition in Ma-

chine Learning, which provides a big improvement in face recognition over the standard

Principle Component Analysis (PCA) [28]. There are many other Machine Learning

applications for Tucker decomposition, for example the work in [32][33] to model facial

expressions. Tucker decomposition was also applied to the problem of handwritten digit

recognition [34][35].

The novel work presented in this thesis is also primarily based on Tucker decomposi-

tion [36][37][38][6][39].

2.4 Tensor Applications

Tensor Analysis has become popular in recent years in many applications including

machine learning [40][9][41][42][43]. Tensor analysis and decomposition has been also

used in many applications which involve dealing with large amounts of data. In [7], the

authors discuss the main tensor decompositions and their applications. The work in [9]

uses tensors to represent a deep neural network and shows huge memory savings while

maintaining the same prediction accuracy. The work in [44] represents the convolution

layers of a deep neural network and show significant speedup in the training time while

maintaining less than 1% loss in accuracy. Tensor analysis is also used for dimensionality

reduction [45] and low rank approximation [13][26].

One of the applications that inspired this work is the tensor outlier analysis methods

presented in [46].
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2.4.1 Tensor Outlier Analysis

Outlier analysis using tensor-based methods is first introduced in [46], where tensor-

based methods are used to detect unusual network traffic activity. Traffic on the network

is sampled at each time step and encoded as a three-way tensor where the three axes

are (source, destination, and port). Three methods were introduced in [46], Offline

Tensor Analysis (OTA), Dynamic Tensor Analysis (DTA), and Streaming Tensor Analysis

(STA). DTA and STA focus on the case where you have a stream of input tensors, while

OTA is used when all the input tensors are available at once.

Offline Tensor Analysis (OTA) is used to build a model that recognizes normal net-

work traffic, hence detecting when an unusual activity occurs.

The goal of OTA is to learn three projection matrices (U1, U2, and U3), one for

each of the three tensor axes, that minimize the error shown in equation 2.3. Where d is

the number of modes, or axes, of the input tensor which is three in the case of unusual

network traffic detection, n is the total number of input tensors, and Xt is the input

tensor at time step t.

e =
n∑
t=1

∥∥∥∥∥∥Xt −Xt
d∏
i=1

×i(UiUT
i )

∥∥∥∥∥∥
2

(2.3)

OTA works well to detect unusual traffic data. If OTA can be used to detect ”unusual”

wafer patterns, then can use it to find ”unusual” wafers, or wafers that are different from

the majority of typical wafers. Those are the wafers with different patterns, i.e. concepts.

An example of typical wafers as well as examples from wafers with ”unusual” patterns

are shown in Figure 1.1.

In order to test this hypothesis, OTA is applied to 8300 wafer patterns from an

automotive product line. In the case of wafer patterns, each input is a matrix, or a

two dimensional tensor. The resulting error values are sorted and shown in Figure 2.4.
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Figure 2.4: Sorted Error Values for all 8300 Wafers Using OTA

The vertical red lines indicate wafers with non-random patterns, i.e. ”unusual” patterns,

according to human evaluation. Note that there is a large number of interesting wafers

with high errors, but there are many wafers with interesting patterns that had a small

error as well. Also, there are many wafers with random failures that had relatively higher

error. Figure 2.5 shows the 5 wafers with interesting patterns that had the lowest errors.

From these results we can conclude that using OTA directly is not suitable for outlier

detection in wafer patterns.

This experiment, however, inspired us to instead of using Tensor analysis for outlier

detection, we can use it for inlier detection or Concept Recognition as explained in the

next chapters of this thesis.

Figure 2.5: The Top Five False Negatives Using OTA
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Chapter 3

Concept Recognition using

Generative Adversarial Networks

(GANs)

3.1 Introduction

Machine learning has been widely applied in design automation and test in recent

years. As motivated in Chapter 1, the goal of this thesis is to provide a robust auto-

mated software for concept recognition. The work in [2] provides the basis for the work

presented in this thesis. In [2] the authors introduce a novel approach to using Generative

Adversarial Networks (GANs) as concept recognizers.

In this chapter, we are going to introduce GANs and how we use them for concept

recognition. We are also going to present how they can be trained and what are the

challenges one might face during training as well as shortcomings in using GANs as

concept recognizers.

Taking the wafer image classification as an example, a concept recognizer learns the
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pattern, also referred to as concept, represented by the training wafers. Developing such

a concept recognizer can be treated as an unsupervised learning problem. The training

data comprise only one particular class of plots. GANs [3] provide a good underlying

technology to implement such a recognizer.

Generative Adversarial Networks (GANs) [3] are methods to learn a generative model.

Given a dataset, a generative model is a model that can synthesize new samples similar

to the training samples. A GANs architecture consists of two neural networks. The

generator network G is trained to produce the samples. The discriminator network

D is trained to differentiate the training samples from the samples produced by the

generator. Figure 3.1 illustrates the design of GANs. While the main goal of GANs is

to learn the generator, after the training, the discriminator can be used as a recognizer

for future samples similar to the training samples. Hence, our interest is on training a

discriminator to be a recognizer for a class of plots.

Figure 3.1: Illustration of GANs and their training
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3.2 GANs-based recognizers Training

To train a recognizer, a number of similar wafer plots are used. Suppose there are

m plots and denoted as D1, . . . , Dm. These are our training data. For training, the

generator produces some l images, denoted as G1, . . . , Gl. Each generated image is

produced according to a random vector ~v. Each variable of ~v can be thought of as

a latent input. These variables define a latent space where each vector in this space

represents an image produced by the generator.

The training process is iterative. Each iteration has two stages and each stage of

training can use the common stochastic gradient descent (SGD) approach. In each iter-

ation, two classes of samples D1, . . . , Dm and G1, . . . , Gl are used. From iteration to

iteration, the samples D1, . . . , Dm remain the same, but G1, . . . , Gl are re-produced

by the generator for each iteration based on the weights learned in the previous iteration.

In the first stage of training, the goal is to learn the weights in the D network in

order to separate D1, . . . , Dm from G1, . . . , Gl as much as possible. During back

propagation, the gradients are computed backward from the output of D to its inputs.

In the second stage, weights in D are fixed. SGD is applied to learning the weights in

G. The gradients calculated on inputs of D are further back propagated to the inputs of

G. The optimization objective is to have G adjust the generated samples such that their

output labels by D are as close as possible to the output labels of the training samples

D1, . . . , Dm.

The idea of training D and G can be thought of as playing a game [3] where the

D network learns to beat the G network by discriminating the samples generated by G

from the training samples D1, . . . , Dm. On the other hand, the G network learns to

generate samples to fool the discriminator D as much as possible. Over iterations, the

generated samples become more like the training samples and it becomes harder for D
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to separate them.

3.2.1 The CNN architectures

For computer vision applications, convolutional neural networks (CNNs) have shown

remarkable performance in the context of supervised learning in recent years. Using

CNNs for unsupervised learning had received less attention until the GANs approach

was proposed. In this work, our implementation of GANs is based on two deep CNNs,

following the ideas proposed in [5] which suggests a set of constraints on the architectural

topology of convolutional GANs to make them stable to train.

Figure 3.2 shows our CNN architecture for the discriminator. The leftmost block

shows our input assumption. Each input is an image with 48-by-48 pixels. Each pixel

has three values: -1, 0, and +1. These three values indicate failing dies, no die, and

passing dies, respectively. Before a plot can be used as an input sample to this CNN,

preprocessing is required to convert the plot into this representation.

Figure 3.2: CNN architecture for the discriminator

The CNN has three convolutional layers (Conv1 to Conv3) where after Conv2 and

Conv3, there is a Max pooling layer denoted as MaxPool1 and MaxPool2, respectively.

After the MaxPool2 layer, there are three fully-connected layers (FC1 to FC3). The size

and number of channels after each layer are denoted in the figure. For example, after

Conv1 the image is transformed from 1 channel of 48×48 to 64 channels of 48×48, using
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64 2×2 filters (In our CNNs, the filter size is always 2×2). After Conv2/MaxPool1, the

image size is reduced to 24×24 with 128 channels.

The fully-connected layer FC1 has 256 perceptrons (artificial neurons) each receiv-

ing inputs from all the 12×12×256 perceptrons in the previous layer. The FC2 has

512 perceptrons. The last layer FC3 has one perceptron which outputs a classification

probability. As suggested in [5], Leaky ReLU is used as the activation function for all

perceptrons in the CNN. Each perceptron also includes a bias parameter. The total

number of parameters (weights) in the CNN is 9,734,592.

Figure 3.3: CNN architecture for the generator

Figure 3.3 shows the CNN architecture for the generator. There are two fully-

connected layers, FC1 and FC2, and four transposed convolutional layers, T.Conv1 to

T.Conv4. Like the discriminator CNN, Leaky RuLU and bias parameter are used for all

perceptrons. The generator CNN can be thought as the reverse of the discriminator CNN.

For the generator CNN, the number of parameters (weights) is 24,333,009. Together, the

total number of parameters to be trained in the GANs is 34,067,601.

3.3 An example recognizer - edge failing

To train our GANs, we need a dataset divided into a training dataset and a validation

dataset. Because it is an unsupervised learning, the validation dataset alone cannot fully

determine the stopping point. The validation dataset is used to ensure the discriminator
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does not over-fit the samples in the training dataset, by ensuring that all samples in

the validation set are also classified correctly. In our experiments, the stopping point in

the training is assisted by inspecting the samples generated by the generator. If these

samples show features similar to the training samples, then we stop. If not, the training

is resumed for more iterations.

Because our focus is on the discriminator (used as a recognizer), we concern more

about the quality of the discriminator than the quality of the generator. If the latter is

our concern, we might need to train with more iterations until the generator is capable

of producing plots close to the training samples. This in turn might require additional

techniques in the implementation to ensure convergence.

What we found is that the GANs usually do not require a large number of samples to

train if those samples share some common features. To illustrate this, Figure 3.4 shows

five training samples used for training a recognizer for this concept, i.e.“edging failing.”

The yellow dots represents the failing dies. To enhance the training dataset, each sample

is incrementally rotated to produce 12 samples in total. Then, overall we have 60 samples

for the training.

Figure 3.4: Five training samples

Figure 3.5 shows the five samples used for validation. Similarly, each is rotated to

produce 12 samples with a total of 60 validation samples. Note that these samples look

alike because these are wafers from the same lot.

The training took about 2 hours with a total of 3650 iterations. After the training, the

discriminator (treated as the recognizer) is used to recognize the concept on 8300 other
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Figure 3.5: Validation samples

wafer maps. The recognizer recognizes 25 wafer maps and some are shown in Figure 3.6.

On these samples, we see that they all have an edge failing pattern.

Figure 3.6: Five wafers among the 25 recognized wafers

Because the samples generated by the generator are inspected to determine the stop-

ping point, it would be interesting to show the wafer plots produced by the generator.

Figure 3.7 shows five such wafer plots (by giving the generator five random inputs). It

can be seen that the generated plots do not look the same as the original plots shown

in Figure 3.4. However, the concept of edge failing is clearly present in these generated

plots.

Figure 3.7: Wafer plots produced by the generator
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3.3.1 Generality of the concept recognizer

The wafers used in the above experiment each has about 2100 dies. Recall from

Figure 3.2 that input images are in size of 48×48 pixels. One interesting question to ask

would be: how the recognizer performs on those wafer plots from another product line,

where each plot is based on more or less number of dies?

Figure 3.8 shows the result of applying the concept recognizer on a 2nd product line.

The recognizer was applied to scan 2011 wafer plots and found only 1 recognized plot

as shown in the figure. Each wafer for this product line has about 4500 dies, more than

twice as many as that in the first product line used for the experiment above. It is

interesting to note that after manual inspection, it was confirmed that indeed there was

only one wafer plot containing the edge failing concept, out of the total 2011 plots.

Figure 3.8: Recognized plots from the 2nd and 3rd product lines

Then, the recognizer was applied to a 3rd product line to scan 7052 wafer plots and

found 24 recognized wafer plots (also manually confirmed). Some examples are also

shown in Figure 3.8. For this product line, each wafer has about 440 dies, much less

than that in the first product line. Each recognized plots also show a clear edge failing

pattern.

From the results shown above across three product lines, it is interesting to see that
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the recognizer, trained with a small set of rather similar edge failing patterns as shown

in Figure 3.4, is able to generalize the learning and recognize other edge failing patterns

even with some noise in the pattern (Figure 3.8). These results show that one might not

need to re-train a recognizer for every product line even though their numbers of dies

per wafer are different. These results also indicate that one can train a recognizer with

a higher-level concept. For example, in the above, the concept is to capture an ”edge

failing pattern.”

3.4 Challenges and shortcomings of GANs-based rec-

ognizers

As we shown in this chapter, GANs provide a very powerful tool for concept recogni-

tion. The discriminator is able to learn the concept represented by the training wafers as

well as generalize to consider rotation and shift in the pattern. However, there are some

concerns regarding the robustness and automation of the GANs-based recognizers.

1. It’s hard to achieve training stability, i.e. the generator and discriminator reaching

a balanced state where both can improve without overpowering the other CNN.

It happens that the generator can learn faster and get too powerful in tricking

the discriminator which in turn over fits to the training data. Using simpler CNN

architecture and skewing the training to be in favor of the discriminator can help

overcoming this problem.

2. Choosing good training images is shown in 5 to be a key element in achieving

convergence and the quality of the resulting discriminator model.

3. The discriminator is a neural network, which vulnerable to adversarial attacks.
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4. The training process requires a lot of human interaction, investigating the generated

images and deciding when to stop and extract the discriminator model.

In the rest of this work, we are going to address all the above issues. Tensor-based

methods are used to help capturing adversarial examples, choose the best training wafers

images, and create w quantifiable stopping criteria for training. Tensor-based methods

are also used to actively check the performance of the extracted GANs-based model and

reporting to the expert whenever a catastrophic failure happens.

3.5 Conclusion

In this chapter, we introduced the Generative Adversarial Networks (GANs), and how

are they used for concept recognition. The method is applied to learn an ”edge failing

pattern” from an automotive product line and the extracted discriminator is successfully

applied to recognize wafers with edge patterns from three different product lines. Short-

comings and challenges of building a robust automated GANs-based concept recognition

software are also discussed.
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Chapter 4

Using Tucker Decomposition for

Concept Recognition

4.1 Introduction

Tensors are the generalized form of matrices. While matrices have two dimensions,

tensors can have more than two dimensions. The two tensor-based methods used in our

software are derived from the Tucker Decomposition approach.

Tucker decomposition [26][7] is the high dimensional generalization of matrix Singular

Value Decomposition (SVD) [47]. In SVD, a given matrix Xm×n is decomposed into

Um×rΣr×r(V
T )r×n where Σr×r is a diagonal matrix. Similarly in Tucker decomposition

a 3-dimensional tensorA of sizeR1×R2×R3 can be decomposed into 3+1 components:

a core tensor G of size r1×r2×r3, and 3 orthogonal projection matrices U1, U2, U3 each

of sizeRi×ri for i = 1, 2, 3, respectively. The goal is to achieveA≈ G
3∏
i=1

×iUi, where

×i represents mode-i multiplication. The choice of the ranks r1, r2, r3 determines how

accurate the decomposition is for representing the tensor A. if r1, r2, r3 = R1, R2, R3
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then the decomposition becomes exact, i.e. A = G
3∏
i=1

×i Ui. In this work, we chose to

set r1, r2, r3 = R1, R2, R3 unless mentioned otherwise.

In this chapter, we are going to show how tucker decomposition is used to build

our first Tensor method. Recall that our first tensor method is building a Tensor-based

concept recognizers. We start by an overview to the matrix Singular Value Decomposition

(SVD), pointing out what each component of the SVD represents in the view of image

representation. Then we show how SVD can be generalized to higher order tensors

using Tucker decomposition. Finally, we show how we build our tensor-based concept

recognizers.

4.2 Matrix Singular Value Decomposition (SVD)

Matrix Singular Value Decomposition is one of the important matrix decompositions

in the field of image processing. SVD decomposes the matrix X into three components:

U, Σ, and V T as shown in Figure 4.1, where X = UΣV T

Figure 4.1: Matrix Singular Value Decomposition

1. The left singular vectors U is an orthonormal matrix, where each column is a

left singular vector of the matrix X. Left Singular Vectors of X are also Eigen-

Vectors of (XXT ).
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2. The Singular Values matrix Σ is a diagonal matrix, where diagonal elements

are called the singular values of X. Singular values are sorted with the largest

singular value on the top left and the smallest on the bottom right diagonal element.

Number of non-zero singular values is called the rank of the matrix X.

3. The right singular vectors V T is an orthonormal matrix, where each column

is a right singular vector of the matrix X. Right Singular Vectors of X are also

Eigen-Vectors of (XTX).

A popular application for SVD is for image compression. For example, suppose

an image matrix X240×200 is given. In SVD, the maximum choice for r is 200 =

min(240, 200). For compression, a smaller r can be chosen to store the image as three

matrices U240×rΣr×r(V
T )r×200. For example, consider the image shown in Figure 4.2.

We start by forcing the rank of the matrix representing the image to r, which can be

achieved by only keeping the largest r singular values and forcing the rest of the n− r

singular values to zero, where n is the rank of the matrix representing the original picture

(200 in this example). This means that we kept the information represented by the top

r singular vectors and discarded the information in the least important n − r singular

vectors.

Figure 4.2 shows how the resulting image looks for each value of r. We notice that the

top few singular vectors contain the vast majority of the information needed to represent

the image, and the more singular vectors we include the more details the resulting image

has. At rank r = 25 the resulting image becomes indistinguishable from the original

image.

Figure 4.3 then shows similar effect on compressing a wafer image. The image is

48×48 and hence the maximum rank is 48. As seen, with r = 10, the edge pattern can

be mostly restored and with r = 25, the image can be mostly restored.
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Figure 4.2: Image compression by lowering the rank

Figure 4.3: Wafer image compression by lowering the rank

In a decomposition, a projection matrix along a dimension can be thought of as the

set of basis vectors along that dimension. For example, in SVD where X = UΣV T , U

comprises the eigenvectors of XXT and V comprises the eigenvectors of XTX. In other

words, U comprises the basis vectors along the vertical dimension and V comprises the

basis vectors along the horizontal dimension. Recall that Σ is a diagonal matrix.

To see the intuition, consider the example shown in Figure 4.4. Suppose SVD is

applied to the two wafer images Wa,Wb. We obtain Wa = UaΣaV
T
a and Wb =

UbΣbV
T
b , i.e. the calculations UaΣaV

T
a and UbΣbV

T
b restore the original images.

The image of UbΣaV
T
a uses the left projection matrix Ub from image Wb and applies

the projection to image Wa. If we view Wb by scanning vertically the rows of pixels from

the top to bottom, we see yellow color mostly appearing in the middle rows. This feature

is effectively maintained in the image of UbΣaV
T
a . Similarly, on the image of UaΣaV

T
b ,
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Figure 4.4: Example to illustrate the effects from projection matrices on wafer images

we see horizontally yellow color appears mostly in the middle. Then, UbΣaV
T
b makes

the image look similar to Wb.

Similarly, on the image of UaΣbV
T
b , the edge feature on the top is maintained.

On the image of UbΣbV
T
a , the yellow spreads out because if we view Wa by scanning

horizontally the columns of pixels, we see a spread of the yellow too. Finally, UaΣbV
T
a

makes the image look similar to Wa.

Figure 4.5: Example to illustrate the effects from projection matrices on faces

Another example is shown in Figure 4.5. Decomposing both pictures using SVD gives

us (UA, ΣA, and V
T
A ), (UB, ΣB, and V

T
B ) for image A, and B respectively.

Figure 4.5 also shows images C and D. In image C, the right singular vectors of

image B are used along side with the singular values and left singular vectors of image A.

The resulting image (image C) maintained the vertical features of image A (the woman’s
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mouth can be clearly seen). But those vertical features are scrambled because of the right

singular vectors of image B. The same property can be observed about image D, where

the vertical features of image B (especially the man’s mouth and hair) are maintained

but scrambled according to the right singular vectors of image A.

Figure 4.6: Stacking multiple wafers to use Tucker decomposition

Tucker decomposition, instead of SVD, is used when there are more than two dimen-

sions. To apply Tucker decomposition in our context, multiple wafer images (i.e. training

samples) are stacked to create the third dimension as illustrated in Figure 4.6. For wafer

images of size 48 × 48, the size of the third dimension is the number of wafers. The

resulting model from Tucker decomposition has four components: the three projection

matrices U1, U2, U3 and the core matrix G. Following the discussion earlier, U1, U2

capture the features along the first two dimensions. The matrix U3 captures the features

along the third, which can be thought of as capturing the features from wafer-to-wafer

variations.
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Figure 4.7: Similar wafer images and the projected core matrices

4.3 Modeling wafers with similar patterns

Suppose the training wafer images used in applying Tucker decomposition are all

similar, i.e. there is no significant wafer-to-wafer variation in terms of their wafer patterns,

then U3 is less interesting to us. For example, Figure 4.7 shows an example using four

similar wafer images W1,W2,W3,W4.

On the left, the result from SVD is shown for wafer image W1. The upper-left

10× 10 portion of the diagonal matrix Σ is shown below the image W1 where an entry

with a darker color means the (absolute) value in that entry is larger. Note that all the

non-diagonal entries in Σ have zero value.

On the right, the four images used to build a 3D tensor for running Tucker decom-

position are shown. After the decomposition, U3 is ignored, and U1, U2 are used to

calculate a projected core matrix Gi for image Wi, respectively. Each Gi is obtain such

that Wi = U1Gi(U2)T . It is interesting to observe that each Gi looks similar to Σ

where the diagonal entries have a darker color and the entry (1,1) is the darkest. Each

Gi, however, is no longer diagonal, i.e. non-diagonal entries can have a non-zero value.

Figure 4.3 earlier shows how a wafer image is reconstructed by using a lower rank

under SVD. The same idea can be applied by using the matrices G1, G2, G3, G4 in

Figure 4.7. For example, in Figure 4.8 the reconstruction is based on the upper-left
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Figure 4.8: Reconstruction using the upper-left 5× 5 entries of Gi

5 × 5 entries of each Gi, respectively. For comparison, the construction result using

SVD with rank 5 (as in Figure 4.3) is also shown. Observe that for all four wafers, the

edge pattern can be restored and the differences between using SVD and using Gi with

U1, U2 are not significant.

Figure 4.9: Reconstruction using the first 5 diagonal entries of Gi

Because each Gi is not a diagonal matrix, it would be interesting to see how the

reconstruction works if we use only the diagonal entries from each Gi. Figure 4.9 shows

the results. Interestingly, the edge pattern becomes even more apparent in each case and

all “random noises” seem to be removed.

4.3.1 Effect of using wafers with dissimilar patterns

In Figure 4.7, four similar wafer images are used. In Figure 4.10, the wafer images

W1,W3 from Figure 4.7 are reused with two new images W5,W6 that have a different
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Figure 4.10: Dissimilar wafer images and the projected core matrices

pattern. The left of Figure 4.10 shows the SVD’s diagonal matrix for W6. Because

Tucker decomposition results in different projection matrices for W1,W3 (from those

used in Figure 4.7), the new projected core matrices G′1, G
′
3 are shown. Additionally,

G5, G6 are obtained for W5,W6.

It is interesting to observe that the diagonal trend seen on the G’s matrices in Fig-

ure 4.7 is much less apparent on the G’s matrices in Figure 4.10. This is especially true

for G5, G6 where the non-diagonal entries have large values.

Figure 4.11: Reconstruction using the upper-left 5× 5 entries of Gi

Then, Figure 4.11 and Figure 4.12 show similar results as those shown in Figure 4.8

and Figure 4.9 before. As seen in Figure 4.11, in each case the wafer pattern can be

mostly restored. However, this is not the case if we use only the diagonal entries as
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shown in Figure 4.12.

Figure 4.12: Fail to reconstruct by using only the first 5 diagonal entries of Gi

Comparing Figure 4.12 to Figure 4.9, we see that if the projection matrices are based

on dissimilar wafers, then the non-diagonal entries in the resulting G’s matrices become

important for restoring the pattern, i.e. the non-diagonal entries have large values that

cannot be ignored. This observation suggests that the diagonality might be an important

property to indicate the extent of similarity among wafer images.

4.4 The first tensor-based method

As explained in Chapter 1, our first tensor-based method is for building a classification

model to recognize wafer images with a particular pattern, i.e. given a wafer image

deciding either that image is in-class or out-of-class.

Example in Figure 4.4 provides an initial hint as how a classification model may be

built. As seen there, using Ua, Va from Wa, the result of UaΣaV
T
a is to restore the

image Wa while the result of UaΣbV
T
a transforms Wb into into an image with an edge

pattern which is quite different from Wb. The same effect can also be seen on the result

of UbΣaV
T
b .

In other words, given a wafer image Wj to be classified it seems that we can use the

reconstruction result to decide how similar Wj is to the training image, e.g. to Wa by

using Ua, Va. Suppose the reconstructed image is W ′
j . If Wj is similar to the training
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image, we expect the difference between Wj and W ′
j to be small. Otherwise, we expect

the difference to be large.

We can extend this idea to use multiple images. Given a set of training wafer images

W1, . . . ,Wn, we first apply Tucker decomposition to obtain the two projection matrices

U1, U2. Given an image Wj to be classified, we first apply SVD on Wj to obtain Σj .

Then, we can use U1ΣjU
T
2 to obtain W ′

j . The difference between Wj and W ′
j can then

be used to judge how similar Wj is to the training images.

Figure 4.13: An edge model transforms a center image into an edge image

Figure 4.13 provides an example to support this initial idea. The five training images

are all similar, each containing an edge pattern. The input image contains a small-center

pattern, different from the training images. The reconstruction produces an image that

exhibits an edge pattern.

Figure 4.14: A center model fails to reconstruct a training image

However, Figure 4.14 shows that the idea might not work. In this case, the five
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training images are similar to the input image to be classified. The reconstructed image

looks quite differently from the input image. The reason is that in order to restore the

image using the two projection matrices U1, U2, several diagonal entries in the projected

core matrix would have negative values. On the other hand, the SVD’s entries are all

non-negative. As a result, the image is not restored. Hence, to implement the idea we

cannot simply use the diagonal matrix from SVD in the reconstruction.

4.4.1 Using the projected core matrix

For a given imageWj , the alternative is to use the projected core matrixGj calculated

based on U1, U2. However, we cannot use the entirety of Gj and otherwise, we always

get back to the original image Wj , since U1, U2 are orthonormal matrices.

There can be two methods here to overcome the issue: (1) We can use only an upper-

left portion of Gj , similar to what we did in those examples presented in Figure 4.8

and Figure 4.11 before. (2) We can use only the diagonal entries of Gj and ignore all

non-diagonal values.

In the first method, we calculate Gj where Wj = U1Gj(U2)T . Then, we use only

the upper-left r × r entries to obtain Gr
j . We calculate W ′

j = U1G
r
j(U2)T and then

use the difference between Wj and W ′
j to decide if Wj is similar to the training samples.

Note that this alternative is essentially the idea that would have been suggested by the

work in [48] if the approach was applied to our context.

4.4.2 Using Gr
j might not work

Suppose a model M is built based on a set of training wafer images. TheM basically

comprises the two projection matrices U1, U2. Given an image Wj , we obtain Gr
j for

a chosen r and consequently obtain the reconstructed image W ′
j . Suppose we define a
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difference measure DIFF (Wj,W
′
j). For example, the difference measure can be based

on summing up the squares of the values in Wj −W ′
j . Then, we can let the recognition

error measure of the model M (for a chosen r) be ErrM,r(Wj) = DIFF (Wj,W
′
j).

Figure 4.15: The five training samples

Figure 4.16: The 20 wafer images to be recognized

To illustrate how the error measure might be used, Figure 4.15 shows five images

(labeled W1 to W5) for building a model M . Figure 4.16 then shows four groups of

images, each with five images for a total of 20 images (labeled W6 to W25).

If we use M and the error measure to recognize the 20 images W6 to W25, we expect

W6 to W10 to be recognized as in-class and W11 to W25 as out-of-class. This is because

W6 to W10 all exhibit an edge pattern as that in images W1 to W5 used to build the

model.

For each Wj we calculate ErrM,r(Wj) for j = 1, . . . , 25. Figure 4.17 plots the

ErrM,r values. For every wafer, three values are plotted by using r = 2, 5, 25. Among

the three values, the smallest value (in black color) is based on r = 25 and the largest

(in blue color) is based on r = 2. The middle (in red color) is based on r = 5.
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Figure 4.17: Difficulty to set a threshold to achieve correct classification

For W6 to W10, they should be recognized as in-class and hence we need to set a

threshold such that all error values of W6 to W10 are below or on the threshold. Note

that we expect the error value from a wafer image similar to the training samples to be

small (including W1 to W5 themselves).

In Figure 4.17, observe that it is impossible to set a threshold to include W6 as in-

class while leave W11 to W25 to be out-of-class. For example, consider using the error

values with r = 5 (all shown in red color). The horizontal red dash line shows the

minimum threshold to classify W6 as in-class. But with this threshold, all the “small-

center” images W11 to W15, W16, and all the “random” images W21 to W25 would also

be classified as in-class, i.e. below the red dash line.

Similarly, the black and blue dash lines are the minimum thresholds to classify W6

as in-class for r = 2 and r = 25, respectively. As seen, with those thresholds many of

the images from W11 to W25 are also classified as in-class.

Suppose we are willing to accept misclassification of W6 as out-of-class in order to

lower the threshold. This lower threshold for r = 5 is shown as the solid red horizontal

line. Even with this threshold, we see that W11,W12 and all the random images W21

to W25 are still below the line.

In Figure 4.18, W6,W11,W22 are selected (in Figure 4.17 they are marked with a

red dash circle) to show the original image and the reconstructed image (for r = 5).
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Figure 4.18: The difference between Wj and W ′j for j = 6, 11, 22

Observe that through the reconstruction both the edge pattern on W6 and the small-

center pattern on W11 are somewhat kept. On the other hand, most of the random

yellow dots have disappeared. Sometimes, a yellow dot is replaced with a green dot

(which represents a no die).

If the effect of the reconstruction is basically to somewhat keep the pattern (regardless

it is an edge pattern or not) and replace most of the yellow dots with green or purple

dots, then there is no clear reason why the ErrM,r has the ability to differentiate in-class

images (with an edge pattern) from out-of-class images (without an edge pattern). The

example in Figure 4.17 shows that it would be difficult to make it work by using Gr
j in

the reconstruction.

4.4.3 Using only the diagonal entries in Gj

Earlier in Section 4.4.1, two methods are mentioned: one is using Gr
j and the other

is using only the diagonal entries in Gj . Next, we let ErrM(Wj) = DIFF (Wj,W
′
j)

where W ′
j is reconstructed by using only the diagonal entries in Gj .

Figure 4.19: Errors calculated based on only the diagonal entries
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Figure 4.19 shows the error values based on ErrM(Wj) for all 25 wafer images. In

this plot, the error values are sorted. All the “edge” wafer images are shown with a “×”

marker. The y-axis is in log scale (in natural log).

Observe in Figure 4.19 that a threshold can be set to classify all the “edge” and all

the “random” wafer images as in-class. This can be seen as an improvement from the

earlier result in Figure 4.17, because now we can treat “random” wafer image as a special

case and try to find a way to exclude them.

Figure 4.20: The difference between Wj and W ′j for j = 6, 11, 22

Similar to Figure 4.18, for W6,W11,W22 Figure 4.20 shows the original image, and

the reconstructed images using only the diagonal entries. It is interesting to see that an

edge pattern appears in all the reconstructed images. This effect is similar to what is

shown in Figure 4.4 earlier. For example, in Figure 4.20 the original W11 has a center

pattern and the reconstructed W ′
11 has an edge pattern. Hence, the difference function

DIFF would be measuring the difference between the two patterns, which is more

intuitive in terms of what we desire the difference measure should have done.

4.4.4 Using a diagonality measure on Gj

Using only the diagonal entries in Gj hints that the values in the diagonal entries are

more important than the values in the non-diagonal entries. This is somewhat indicated

by the example in Figure 4.7 before, where if the model is built on a set of “edge” wafer

images, for a given “edge” wafer image the projected core matrix Gj would have large

values in the diagonal entries and small values in the non-diagonal entries.
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Figure 4.21: The upper-left 10× 10 entries of various Gj

Figure 4.21 plots the projected core matrices for W3, W6, W11, W12, W16, and

W22 in a similar fashion as that used to plot Figure 4.7. Observe that W3,W6 are

“edge” wafer images and their projected core matrices exhibit the diagonality property.

In contrast, W11,W12,W16,W22 do not have an edge pattern. Their projected core

matrices do not exhibit the diagonality property.

If the diagonality property is the underlying effect to achieve the result shown in

Figure 4.19, instead of reconstructing an image and checking its difference to the original

image, a better alternative can be to measure the diagonality directly, and use such a

measure as the distance measure between a given wafer image and the set of the training

images used to build the model M .

Given a model M , a wafer image W , and its projected core matrix G, the measure

of diagonality can be defined as:

∆M→W =

∑
∀i 6=j G[i, j]2∑
∀iG[i, i]2

(4.1)

In Figure 4.21, this ∆ value is also shown for each of the six wafer images. It

is interesting to note that W6 and W11 are two of the images causing difficulty in

Figure 4.17 before. Now the W11 has a ∆ value 0.849 which is much bigger than the ∆

value of W6 which is 0.474.

Then, the top plot in Figure 4.22 shows the ∆ values for all W1 to W25, which

are sorted (again, y-axis in natural log scale). The result is similar to that shown in
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Figure 4.22: Errors calculated based on the diagonality measure

Figure 4.19, and is slightly better in the sense that the in-class region is smaller than the

out-of-class region.

However, all the “random” images are still classified as in-class. In order to filter

them out, we use a 2nd model and call it a baseline model, Mbase. In this experiment,

Mbase is simply based on a wafer with no fail, i.e. no yellow dot at all. The bottom plot

in Figure 4.22 then shows the ∆ values for W1 to W25 based on Mbase. It is interesting

to observe that in this plot, a threshold can be set to classify all “random” wafer images

as in-class and leave all others as out-of-class.

4.4.5 Using the diagonality measure on Gj without entry (1,1)

Observe in Figure 4.21 that the (1,1) entry in most of the projected core matrices

have the largest values. In equation (4.1), this large entry effectively makes the ∆ value

smaller. However, if our goal is to differentiate, say W3,W6 from W11,W12,W22, it

seems that using the large values in the (1,1) entry of G11, G12, G22 is not desirable.

This motivates us to try a 2nd distance measure by removing the entry (1,1) from the
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Gj matrix in the ∆ calculation:

∆′M→W =

∑
∀i 6=j G[i, j]2∑
∀i,i6=1G[i, i]2

(4.2)

Figure 4.23: Errors calculated based by removing entry (1,1)

Figure 4.23 then shows the ∆′ values for W1 to W25, sorted. It is interesting to

observe that now a threshold can be set to classify all the “edge” wafer images below and

all the other images above. This is the most desirable outcome among all the classification

results discussed so far.

The discussion so far points to two distance measures: the ∆ calculation in equation

(4.1) and the ∆′ calculation in equation (4.2). Comparing the result in Figure 4.23 to

Figure 4.22, it seems that the ∆′ calculation is better. While this is true for the particular

example with the 25 wafer images, this might not be true in general. The caveat can be

observed in Figure 4.21.

Observe that in G16, the entry (1,1) does not have a large value. If we exclude entry

(1,1), the distance values for say, G3, G6 increase (which can be quite significant) but

the distance value for G16 does not change much because it does not have a large value in

(1,1) to begin with. As a result, removing the entry (1,1) effectively makes the distance

value of G16 closer to the distance values of G3 and G6 and hence, makes W16 less

differentiable from the in-class wafer images. While this effect does not cause a problem

in this particular example, it can be a concern in general. Hence our choice of distance
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(or error) measures is the ∆ calculation in equation (4.1).

In the experiments above, a classification attempt is based on setting a threshold to

separate the in-class images from the out-of-class images. In practice, using a threshold

is not desirable. A threshold can be a source for non-robustness because a threshold is

set using some benchmarks and it can be difficult to ensure that all future unseen data

are represented by the benchmarks. Hence, in the actual classification software we need

to find a way to avoid using a threshold.

The idea adopted in the software implementation reported in [6] and [36] is to use

the distance measure in a relative way. Given two models M1,M2 and a wafer image

W , we compare ∆M1→W and ∆M2→W to see which distance is smaller (i.e. closer). If

W is closer to M1, it is considered recognized by M1 and vice versa. The same applies

if any of the other distance measures is used.

To implement the idea, the trick is to use a set of baseline modelsMbase1, . . . ,Mbasem

as the basis for comparison. Hence, a wafer would be recognized by a model M only if

it is closer to M than to any of the baseline models, i.e. having the smallest distance

value among all.

To generalize this, if we have a set of recognition models M1, . . . ,Mn and a set of

baseline models, a wafer would be considered recognized by the model Mi if the wafer

has the smallest distance to Mi.

The discussion above points to using the diagonality measure ∆ as our distance mea-

sure. The following experiment strengthens these results. In the following experiments,

we are going to compare the following error measurements (all introduced above) while

also using a baseline model on a larger set of wafers. 1243 wafers from the first 50 lots of

an automotive product line are used.

1. using the ∆ value.
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2. using the ∆′ value

3. Using only the diagonal elements from Gj .

4. Using the Truncated Gr
j .

Metric ∆ ∆′ Gj G
r
j

Correct Recognition 29 29 29 25
False Negatives 0 0 0 4
False Positives 19 24 19 361

Table 4.1: Recognition Summary When Using Each of The Three Error Metrics

The results shown in Table 4.1 shows that using ∆ and using Gj are achieving a

similar goal through two different methods, hence only using ∆ is considered. However,

they suffer from an undesirably large number of false positives. But, 18 of these 19 false

positives are shown in Figure 4.24. These 18 wafers are all part of a different concept

called the Upper concept and it is understandable that it gets confused with an “Edge”

concept since they have similar characteristics. The large number of false positives can be

easily reduced by adding an Upper concept to recognize them. The other false positive is

shown in Figure 4.25, this wafer has only random failures, the reason it was not captured

by the baseline model as we would expect is that it has a much higher density of failures

than the wafers used to build the baseline model. Using more than one baseline model

with different densities should be able to remove this false positive.

An Upper concept recognizer as well as two other baseline models are built using the

wafers shown in Figure 4.26. After adding these two new concepts, zero false positives

were found while using ∆, ∆′, and Gj .

However, using Gr
j is far worse. It resulted in a large number of false positives, which

shows that Gr
j is just not as accurate as we need and hence excluded.
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Figure 4.24: False Positive Wafers - Upper Concept

Figure 4.25: False Positive Wafers - High Density Random

These results strengthen our conclusion from the first experiment. And since ∆ and

the diagonal elements of Gj gives very close performance, our choice is using ∆, since it

requires less computation.

The idea of using a baseline can be extended to more than just one model. Multiple

models can be built using multiple sets of training wafers representing different concepts,

for example Medge, Mcenter, Mring, etc, as well as a set of baseline recognizers Mbase.

The calculated ∆ value from all concepts are then compared, and the model reporting

the smallest ∆ value recognizes the wafer. Unless one of the baseline models reports

the smallest ∆ value, in that case the wafer is said to be “unrecognized”. The final

recognition algorithm is shown in Figure 4.27.
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Figure 4.26: Training Wafers for New Concepts

Figure 4.27: Concept Recognition Algorithm

4.5 Multi-Concept Recognizer

In the previous section, we presented how to build a single tensor-based concept

recognizer, we introduced the baseline model as a non-subjective replacement to setting

a threshold and showed why we chose the diagonality measure ∆ as a distance metric

for best recognition results. In this section, we introduce the Multi-Concept Recognizer,

present results to show its performance for recognizing concepts in wafer patterns from

an automotive product.
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The multi-concept recognizer is an extension to the single concept recognizer idea

presented earlier. Instead of having one concept and one baseline concept, we can have

multiple concept recognizers and more than one baseline concept. For each unknown

wafer, we calculate the distance from all concepts as well as from all baseline concepts.

The wafer is said to be recognized by the concept reporting the smallest error, if that

concept was a baseline concept this wafer is not recognized by any of the concept recog-

nizers.

8300 wafers from an automotive product line is used to test our multi-concept recog-

nizer. For simplicity, the 8300 wafers are divided into three groups, low failure density,

medium failure density, and high failure density. We manually defined the concepts in

each of the three wafer groups and chose the training wafers for each concept.

1. Low failure density wafers: there are 6000 wafers with less than 5% failure

density. These 6000 wafers do not have any interesting patterns, hence are skipped.

2. Medium failure density wafers are the wafers with larger than 5% failure den-

sity and less than 22% failure density. There are 2000 wafers in this group. We

found three concepts in this group: Edge, Grid, and Center. A sample of each of

these three concepts is shown in Figure 4.28

Figure 4.28: Medium Density Concepts
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Table 4.2 shows the results from the medium density wafers. We notice a very few

false positives. However, there is a large number of false negatives (i.e. wafers with

a certain concept that are non recognized). The reason for this is the less-optimal

training wafers. One approach to tackle this problem is by automatic extraction

of concepts and training wafers for each concept. A brief idea on training wafer

extraction is discussed later in this Chapter, while our second Tensor method, which

will be explained in the Chapter 5 aims to automate concept extraction.

Concept Edge Failures Grid Failures Center Failures
Correct Recognition 28 57 47

False Negatives 12 100+ 47
False Positives 3 0 0

Table 4.2: Summary of The Multi-Concept Recognizer for Medium Density Wafers

3. High failure density wafers are the wafers with larger than 22% failure density.

There are 300 wafers in this group, among which six concepts were found: Edge,

Center, Middle Ring, Massive, Upper, and Outer Ring. An example from each of

the six concepts is shown in Figure 4.29. Recognition results summary is shown in

Table 4.3.

Concept Edge Center Middle Ring Massive Upper Outer Ring
Correct Recognition 15 26 5 13 63 8

False Negatives 0 0 0 0 6 3
False Positives 0 2 6 0 0 3

Table 4.3: Summary of The Multi-Concept Recognizer for High Density Wafers

Three baseline concepts were also used Empty Wafers, Low Density Random

Failures, and High Density Random Failures. Training wafers for these concepts

are shown in Figure 4.30.
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Figure 4.29: High Density Concepts

4.6 Learnability Measure

One of the challenges in practice for building a concept recognizer is choosing the

training samples. This is because concept recognition is based on unsupervised learning.

When a set of training samples are given, it is unknown if the training samples should

be treated as a single concept class or multiple concept classes. It would be desirable to

have a way to assess that question.

The diaginality measure ∆ provides a convenient way to develop a method for that

purpose. The quantity LB = 1
∆

can be thought of as how good the projection matrices

from the Tucker decomposition can be used to represent a wafer map, i.e. similar to the

notion of model fitting in machine learning. For example if the Tucker model is built

from a set of identical wafer maps, we would have ∆ = 0 i.e. LB =∞ for every wafer.

Intuitively, we can use LB to indicate how well a tucker model fits a wafer map.
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Figure 4.30: Baseline Concepts

Figure 4.31: A Training Set With Samples From Two Concepts

To illustrate the point, Figure 4.31 shows five wafer maps from the Edge and Center

concepts in the medium failure density group. Their LB values are [1.31, 1.23, 2.4, 2.63,

3.03] following the same order as shown in the figure. Observe that the LB values for

the two center failures wafer maps are noticeably lower than the other three.

Recall that for the concepts in the medium-loss group, five samples are used in train-

ing. Table 4.4 shows their LB values after the training. Observe that the average LB

value in the Center Failures case is much lower than others while the last two samples

have noticeably lower LB values. This indicates that for this concept, there might be

room for improvement in terms of choosing a better training set.

Training Wafers Learnability Vector Average
Edge Failures [4.17, 4.35, 5.26, 4.35, 3.85] 4.39

Systematic Failures [4.35, 4.35, 3.85, 4.0, 4.17] 4.14
Center Failures [2.56 , 2.38 , 2.56 , 1.89 , 1.54] 2.19

Table 4.4: LB values from the medium-loss group

An application to average learnability of training wafers LB is to choose the best
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training wafer set. Suppose we are given a set S of n samples. The goal is to choose a

subset of samples as our training set. Suppose we have also a test set T of m samples.

Samples in S and T are manually selected and visually determined to be in the same

concept. The goal is to choose the best set of samples from S to build a Tucker model.

Note that from this perspective, it might be more intuitive to think the method is for

filtering out “noisy” samples rather than for “choosing” samples.

The idea is simple. Suppose samples in S are ordered by their LB values as

s1, . . . , sn. Let Si = {s1, . . . , si}. The average LBi is calculated by applying the

Tucker model from the set Si to T . For example, let n = 10 and m = 15. Figure 4.32

shows the average LB results for the three concepts from the medium-loss group.

Figure 4.32: Deciding the Best Training Set Using Average LB

As shown in the figure (x-axis is the number of wafer maps and y-axis is the average

LB), for Edge Failures, it reaches the best result when all 10 training wafers are used. For

others, the best result happens with fewer samples. The models were re-built using the

new training sets. Table 4.5 shows the recognition summary with the improved training
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wafers. The number of correctly recognized wafers certainly improved. However, the

number of escapes (false negatives) is still high for both Center failures and Grid failures.

The reason for the large number of escapes, as will be shown in Chapter 5 is that we

are missing a few concepts. For example, when automatically extracting concepts, four

different grid patterns were found. For humans all four looks similar, however, for a

Tensor-based model they are very different. Moreover, many of the center failures false

negatives have much less failure concentration than the training wafers we chose. In fact,

automated concept extraction found two center failure concepts, where the one with the

less failure concept ration captured most of the false negatives.

Concept Edge Failures Grid Failures Center Failures
Correct Recognition 39 61 56

False Negatives 1 100+ 38
False Positives 0 0 0

Table 4.5: Summary of The Multi-Concept Recognizer for Medium Density Wafers
With Improved Training Wafers

4.7 Primitive Concept Identification

As discussed in Chapter 3, one of the issues in the GANs-based approach for concept

recognition is in the challenge for achieving a converging point in training where the

discriminator at that point is used as a recognizer for the concept. It is well known that

training GANs require several dedicated techniques to ensure training stability [4], where

both the generator and the discriminator continue to improve their accuracy while the

discriminator is not forced to over-fit the training samples. Maintaining learning stability

in order to achieve a converging point can be difficult when the underlying concept to be

learned is complex.

To overcome this issue, it is desirable to develop a method that can take a given set
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of wafer maps and decide if the entire set is suitable for training a recognizer. In this

method, wafer maps in a given set are partitioned into groups where each group represents

a more primitive concept. Then, one can decide if GANs training should be applied

to each primitive concept individually or some of them combined, depending on how

difficult to converge the training. This method is called primitive concept identification

to differentiate it from concept recognition.

The primitive concept identification is implemented with two algorithms as presented

in Figure 4.33 and in Figure 4.34, respectively. Given a set of wafer maps W1, . . . ,Wn,

Algorithm 1 first reorders these wafer maps such that similar wafer maps stay closer to

each other. The reordered wafer maps are then processed by Algorithm 2 to identify a

primitive concept and its associated wafer maps.

Figure 4.33: Algorithm 1: Wafer Reordering

The key idea in Algorithm 1 is based on using the distance measure ∆ as a similarity

measure between two wafer maps. Given a wafer map Wi, A Tucker-based model is

build using this wafer as explained in 4. This is essentially performing a Singular Value

Decomposition (SVD), since only one training wafer map is used. The model is then

applied to the each wafer Wj of remaining wafer maps and the ∆ value is calculated for

each wafer map. The wafer with the smallest ∆i→j is put next to Wi and then, in the

next step this wafer map Wj is used to build the Tensor-based model.
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Figure 4.34: Algorithm 2: Wafer Concept Identification

Given the wafer maps ordered based on their similarity, in Algorithm 2 a Tensor-

based model is built based on a sequence of k consecutive wafer maps. This k can be a

small number such as 2 or 3. Consequently, for n given wafer maps, there are n− k+ 1

Tensor-based recognizer models built. Each model is based on k wafer maps. Then the

average LB across these k wafer maps can be calculated. This average LB is treated as

the learnability for the subset. The model Mmax with the highest learnability is selected.

This model is applied to every wafer map in the set to calculate its ∆ value.

To decide if a wafer map is recognized by the model Mmax or not, a baseline model is

used. This baseline model is based on a selected set of wafer maps representing “Random

Failures” with no specific pattern. The model Mbase is built and the ∆ value for each

wafer map based on this model is also calculated. Then, a wafer map is classified as

recognized by Mmax if its ∆ from Mmax is smaller than its ∆ from Mbase. In other

words, the classification is done in a relative way, not absolutely based on a given error

threshold as discussed in Chapter 4.

An application of Algorithm 2 onto a list of ordered wafer maps can give a primitive
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concept and all wafers recognized by the primitive concept recognizer Mmax. Algorithm

2 can then be repeatedly applied to the remaining wafers to extract a second primitive

concept, and so on.

Figure 4.35: An Illustrative Example With 25 Wafer Maps
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4.7.1 An illustrative example

To illustrate the operations of Algorithm 1 and Algorithm 2, Figure 4.35 shows 25

wafer maps as the input to Algorithm 1. After running Algorithm 1 on this list, the

ordered wafer maps is given as “U, S, M, N, K, D, V, W, I, L, H, T, O, C, R, J, G, Y,

B, X, E, F, Q, P, A”. Note that the wafer map A is processed first and hence, in the list

it appears last, i.e. the list is in reverse ordering as they are selected.

Observe that wafer maps S to H are similar. Wafer maps O to B are similar and wafer

maps E to A are similar. Wafer maps U, T, and X are not similar to any other. Ideally,

in the next step the primitive concept recognition should identify the three groups of

wafer maps as three primitive concepts.

4.7.2 Primitive concepts

In Algorithm 2, let k = 3 and hence there are 23 Tucker models built, each based on

consecutive 3 wafer maps in the ordered list. Figure 4.36 shows the learnability values

(i.e. average LB across all 3 wafer maps) for the 23 models. The subset [E,F,Q] has the

highest learnability value 7.69. Hence, its model MEFQ is selected.

Figure 4.36: Learnability Values Across All Models With k = 3

After applying MEFQ and Mbase to the remaining 22 wafer maps, A, P have ∆

values from MEFQ than from Mbase: MEFQ(A) = 0.216 < Mbase(A) = 0.311,

MEFQ(P) = 0.196 < Mbase(P) = 0.319.
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Hence, A,P are recognized as part of the same primitive concept as E,F,Q. For the

rest, their ∆ values from Mbase are smaller than from MEFQ.

For example, MEFQ(X) = 0.84 > Mbase(X) = 0.75, and MEFQ(T) = 1.463 >

Mbase(T) = 1.242, and so on.

After [E,F,Q,P,A] are recognized as one primitive concept, there are 20 wafer maps

remaining. Algorithm 2 is applied again. The maximum learnability value is 6.67 for

the model MVWI based on V,W,I. Then, this model recognizes [S,M,N,K,D,L,H] as the

same primitive concept.

Algorithm 2 is applied to the remaining 10 wafer maps. The maximum learnability

value is 4.35 for the model MOCR based on O,C,R, which recognizes [J,G,Y,B]. For the

remaining 3 wafer maps, U,T,X, the learnability is 1.73 and hence, there is no acceptable

model.

4.7.3 Wafer maps with edge failures

As discussed in Chapter 4, a Tucker model can be location sensitive and is not rotation

invariant. For example, given a wafer map with an edge failure pattern in one direction if

the map is rotated by 90 degrees, it would be considered as a different primitive concept.

In contrast, the GANs-based approach in [2] does not have this restriction.

Figure 4.37 shows a list of 18 wafer maps all appearing to have some sort of edge

failures. After running Algorithm 1 and Algorithm 2 as before, Mnop based on n,o,p

has the learnability 5.88 and recognizes [d,e,k,l,m,q,r]. Then, Mhij based on h,i,j has the

learnability 2.7 and recognizes [a,b,c,g]. At the end, wafer map f stands alone.

This indicates that two Tensor-based models should be built one based on wafers

[n,o,p,d,e,k,l,m,q,r], and another model based on wafers [h,i,j,a,b,c,g]. For GANs-based

recognizers, the analyst can decide that GANs can learn the complex concept based on all
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Figure 4.37: Edge Training Wafers

wafers 17 wafers and hence train only one recognizer. However, the following experiment

shows that it is easier to train a model based on each primitive concept.

4.8 Helping The GANs-Based Approach

Suppose the set of 13 wafer maps in Figure 4.38 are given for training a GANs-

based recognizer. First, Algorithm 1 and Algorithm 2 are applied to identify primitive

concepts in this set. Two primitive concepts are found: Concept-1 based on [2,9,10,11,13]

and Concept-2 based on [3,4,5,7,8]. Wafer maps 1,6,12 stand alone.

Figure 4.38: Training Set Given To GANs Training
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Figure 4.8 shows how the GANs training behaves when only wafer maps from

Concept-1 are used, when wafer maps from Concept-1 and Concept-2 are combined,

and when all maps are used. The x-axis shows a range of 10K training iterations. The

y-axis shows the separability between in-class samples and out-of-class samples in the

validation dataset - a larger value shows that the recognizer is doing better [2].

Figure 4.39: Converging Issue in GANs Training

In the first case, observe the recognizer model continues to improve and peak around

3500 iterations. The training can stop there and extract the model. In the second case,

the improvement is slow and peaks around 6500 iterations. But the separability value

is much lower. In the third case, there is no clear converging point to pick a model.

Figure 4.39 shows that the proposed primitive concept identification approach can be

used to help pick the best subset of wafer maps to train a GANs-based recognizer. In

this example, two recognizers might be trained for Concept-1 and Concept-2 separably.

Figure 4.40: Grid Concept Training Wafers

Another example is shown Figure 4.40. The figure shows 20 wafers that have some

sort of a grid pattern. To the human eye, it looks like all the 20 wafers belong to the same

concept. However, the wafers can be further split into four different primitive concepts.

When primitive concept identification is applied to the 20 wafers, four primitive concepts
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were found, these four primitive concepts are shown in figure 4.41.

Figure 4.41: Four Primitive Grid Patterns

Although it does not seem intuitive to the human eye, training four recognizers one

for each grid pattern makes training the GANs a lot quicker.

Figure 4.42: Training with All Grid Wafers vs Splitting Into Primitive Concepts

Figure 4.42 shows average separability during GANs training. The figure shows the

imporvement in separability when training with a single primitive concept versus when

combining primitive concepts, even if the wafers look somewhat similar to the human

eye.
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4.9 Adversarial Examples in GANs-based Recogniz-

ers

Another issue with the GANs-based concept recognizers is that the discriminator is a

convolutional neural network which can have adversarial examples [49]. In our context,

an adversarial example is a slightly perturbed wafer map that can cause the concept

recognizer to miss it. It is observed in [2] that if the wafer maps in a given training set

include more diverse patterns, then it is more likely for adversarial wafer maps to occur.

Wafer maps [2,9,10,11,13] in Figure 4.37 are given to the GANs approach [2] to train

a recognizer. Based on map 2, three pixels are randomly perturbed each time to produce

3000 maps. Among them, 1 adversarial example is found, which is not recognized by the

GANs-based recognizer. This adversarial example is shown in Figure 4.9.

Figure 4.43: An Adversarial Example

In contrast, if we build the Tucker model using [2,9,10,11,13] and apply this model to

the 3000 sampled maps, together with 2000 additional wafer maps from the automotive

product line, their error values are sorted and shown in Figure 4.43. As seen, all 3000

sample maps have very low error values. The error of the adversarial example is very

low. This result shows that a Tucker model can be used in a post-recognition step after

applying a GANs model to avoid missing an adversarial example.
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4.10 Final Remarks

One of the problems that happens because of our choice of the distance metric ∆, is

that the model can confuse two ”inverted” wafers. For example, a center failure concept

can recognize a ring wafer, and a low density random failure concept can recognize a

massive failure wafer.

This happens because we represent the wafer map as a +1/-1 value for passing/failing

dies, hence two ”inverted” wafers would be similar if we flip the sign of each element

in the matrix representing the wafer map. Hence, the resulting diagonal elements in

the core matrix will be exactly the same, but their signs will be flipped. Also, the

diagonality measure ∆ squares all the elements in the core matrix G, hence ignores this

sign difference. Our solution to this problem is to add a sanity check on the sign of the

top diagonal element, if it is not the same sign as one of the training wafers top diagonal

element, it will not get recognized by this concept.

4.11 Conclusion

In this chapter, we introduced the details of implementing our first Tensor method.

We introduced how to use Tucker decomposition to build the concept recognizer model.

The key idea is to define a distance measure between a set of training wafer images and

a given wafer image to be classified. Four distance measures are extensively studied, and

experiments showed using the measure ∆ in Equation 4.1 is our best choice, however,

∆′ can also be used. Finally a learnability measure is introduced as a way to quantify

the quality of the training wafers in representing a concept. An algorithm for selecting

the best training wafers to represent each concept is also introduced.
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Chapter 5

Our Automated Concept

Recognition Flow

5.1 Introduction

A classification flow takes a collection of wafer plots as input. The output is a clas-

sification of these wafers such that (1) plots showing similar patterns of interest are put

into the same group and assigned with a unique label of interest; (2) plots that cannot be

classified with a label of interest are classified as “unrecognized”. At the high level, this

can be seen as an unsupervised learning problem where wafers enter the flow without a

label and leave the flow with one.

The purpose of this chapter is to develop an automated flow for the wafer plot classi-

fication. Because the underlying problem is unsupervised, it is intuitive to think that the

problem can be solved with a learning algorithm like clustering. For example, we can de-

velop a way to measure the similarity between two given wafers Wi,Wj as k(Wi,Wj).

The function k() essentially serves as a kernel function in traditional kernel-based learn-

ing. Then, one can apply a clustering algorithm using k() as its “distance” measure.
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There are two major challenges with a clustering approach. First, we need to define

a k() function such that the result of classification would be acceptable to human per-

ception. In other words, we would like the classification to follow human perception such

that if two wafers are clustered together, they would be likely accepted by the engineer

that the two plots show similar patterns of interest.

The second challenge is more fundamental, that clustering is known to be very non-

robust. For example, Fig. 5.1 illustrates one aspect in its non-robustness. Suppose we

apply clustering to some earlier samples. On the left, it would be easy to see there are

three natural clusters. The main issue is where to draw the boundary for each cluster.

Figure 5.1: Illustration of an issue with clustering

On one hand, we do not want the boundary to be too tight, or we may classify a

similar wafer plot as an outlier. On the other hand, we do not want the boundary to

be too loose, or we may classify an outlier as one of the interesting patterns. This is an

inherent issue by using a clustering approach that it lacks the information to tell what

the best way is to draw a clustering boundary.

In Fig. 5.1, suppose later more samples become available. As seen in the illustration,

those boundaries drawn earlier now become less optimal. For example, it would make

more sense to include those green samples into those corresponding clusters. The red

sample, on the other hand, should be kept as an outlier.

66



Our Automated Concept Recognition Flow Chapter 5

Instead of naively solving it as a clustering problem, in this chapter we present a more

sophisticated classification flow. The focus is on making the flow as robust as possible,

with two objectives in mind: (1) we would like our classification results to be acceptable

based on human perception; (2) we would like our classification results to be consistent

across production time line where wafers are provided over time on a batch-by-batch

basis.

Figure 5.2: Steps in our classification flow

Fig. 5.2 shows the steps involved in our classification flow:

1. A clustering scheme is applied to group similar wafer plots. The main concerns here

are (1) to define a distance function k(), and (2) to choose the clustering algorithm

that works best with the distance function.

2. The goal of this step is to pick the five wafer plots that are the best to capture a

primitive concept (i.e. a class of patterns of interest) shown in each cluster of wafer

plots. The reason why it is five will be explained later in the section explaining this

step.

3. For each primitive concept, the five wafer plots are used to build a Tensor-based

recognizer for the concept as explained in Chapter 4

4. For each primitive concept, the same five wafer plots are used to build a recog-

nizer for the concept based on GANs (Generative Adversarial Neural Networks) as
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explained in Chapter 3.

5. For each primitive concept, we now have two recognizers. Both recognizers are

used to classify a wafer plot. In this step, a classification rule is implemented in

order to improve the robustness of the overall classification result. This rule will

be discussed in detail in the corresponding section.

This Chpater puts together what we have learned in the previous Chapters and devel-

ops a classification flow that can be deployed into a production line. Complete automation

of the flow is the focus. To achieve this, there are two major challenges as the following:

• In practice, wafer plots do not come at once. Collections of wafer plots become

available over time. Our classification flow can be equipped with some built-in

concept recognizers as a start. However, as more wafer plots are examined, it

might become necessary to learn a new concept recognizer on the fly.

Therefore, automation means that (1) we need to automatically detect there is a

need to learn a new concept recognizer; (2) the GANs-based learning needs to be

automated; and (3) the Tensor-based learning needs to be automated. One may

wonder why the last two are of concern. This is because in learning a model, usually

some user-specified parameters are required. For example, in GANs-based training

one needs to decide a stopping criterion [2].

• As batches of wafer plots come in over time, it is important to maintain consistency

in the classification. On one hand, we desire that the capability of our classification

flow can be improved as more wafer plots are seen over time. On the other hand,

we do not want the label of a previously-classified wafer plot to be changed at a

later time.
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5.2 Step 1: Clustering

A wafer plot is encoded as a matrix where a +1 corresponds to passing, −1 cor-

responds to failing, and 0 means no die on the location. Each matrix is re-sized into

a 48 × 48 matrix internally used by the flow. This re-sizing is done with the image

re-sizing tool available from the Python machine learning library Scikit-learn [50].

To implement a clustering scheme, we need a distance function k() to measure sim-

ilarity between any pair of two matrices. Given a wafer matrix Wa, we can build a

Tensor-based model Ta based on only Wa to recognize wafer plots similar to Wa. This

model building is based on the approach proposed in [36] and explained in detail in

Chapter 4. When Ta is applied to a wafer Wb, the result is a transformed core matrix

Gb. What the particular Tensor technique achieves is that a resulting G matrix has this

special property as illustrated in Fig. 5.3.

Figure 5.3: Effect of Tensor-based modeling - Examples

If Wb is similar to Wa, Gb should have relatively large absolute values in diagonal

entries and close-to-zero values in non-diagonal entries. In contrast, if Wb is not similar

to Wa, Gb would have large values in non-diagonal entries.

The Tensor model can be built based on one or more wafer plots together. In Fig. 5.3,

three wafer plots A, B, and C are used. As seen, after the model is built and applying

the model to the three plots A, B, and C, their transformed matrices have large absolute
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values in the diagonal entries (darker) and close-to-zero values in non-diagonal entries

(lighter). For those remaining entries left uncolored for simplicity reason, note that their

values are all very close to zero.

When we apply the model to plots D, E, and F, the transformed matrix from plot

D shows the same property, but the matrices from plots E and F do not. In particular,

the transformed core matrices from plots E and F have large values in the non-diagonal

entries (e.g. dark entry at 1st row 2nd column).

Let σij denote the value of entry (i, j) in a transformed matrix. We utilize this

“diagonal-ness” property the distance measure ∆ as the following equation:

∆ =

∑
∀i 6=j σ

2
ij∑

∀i σ
2
ii

(5.1)

A smaller ∆ means the wafer plot is closer to those used to build the model. A larger

∆ means the reverse.

Now given two wafer plots Wa and Wb, let Ta and Tb be the respective two Tensor

models built using Wa and Wb individually. Let ∆a→b denote the ∆ by applying Ta to

Wb. Let ∆b→a be the reverse. In general, ∆a→b 6= ∆b→a.

A naive thought could consider the average ∆a→b+∆b→a

2
as a measure of the distance

between the two wafer plots. However, this measure has an issue to be used in clustering

as illustrated in Fig. 5.4.

Figure 5.4: Wb tends to have a smaller ∆ value

Suppose we have two models Ta and Tc. SupposeWb is similar toWa and not similar

to Wc, and Wd is similar to Wc and not similar to Wa. Ideally, we want a small ∆a→b,
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a large ∆a→d, a small ∆c→d, and a large ∆c→b.

However, in our experiment we observe that there can be some wafer Wb such that it

tends to result in a smaller ∆ value across different models even though these models are

built from plots that look quite differently. For example, a wafer plot with low density

random fails but still exposing a “Grid” trend (examples shown later) could have this

property. Then, instead of having ∆c→b to be large, we would end up in a situation

where ∆c→b is even smaller than ∆c→d. This problem is illustrated in Fig. 5.4.

To show that using ∆a→b+∆b→a

2
as a measure of the distance between two wafers

does not work, we can run the HDBSCAN clustering on a small set of wafers that we

know how they should be clustered, i.e. a benchmark for clustering. Figure 5.5 shows

the benchmark set of 25 wafers. As can be seen in the Figure, the 25 wafers can be

clustered into 5 clusters corresponding to Grid, Small Center, Edge, Upper, and Random

concepts. The result of running the clustering algorithm on the benchmark wafers is that

the clustering thinks that none of the 25 wafers belongs to any cluster.

Our solution to the problem is to use a baseline wafer plot such as a wafer without

a failing die. This baseline plot serves as a reference point for all wafer plots. Let its

model be Tbase. Then, we define a new directional distance measure between two wafer

plots as:

δa→b =
∆a→b

∆a→b + ∆base→b
(5.2)

Note that this distance measure has the advantage of being normalized between 0 and

1, which makes the clustering more stable. This is why using δ′a→b = ∆a→b

∆base→b
does not

work as good. In fact running the clustring algorithm on the benchmark wafers shown

in Figure 5.5, the clustering algorithm found only three clusters, putting the Grid, Small

Center, and Random concepts into the same cluster as shown in Figure 5.6.
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Figure 5.5: Benchmark Wafers

Notice that each ∆base→∗ is used to re-scale the value ∆a→∗. For most of the

wafer plots exposing an interesting pattern, we found that ∆base→∗ is rather large and

consequently, δa→b ≈ ∆a→b

∆base→b
.

However, for a wafer plot Wb as shown in Fig. 5.4, ∆base→b is also very small. This

effectively scale up the δc→b value. In contrast, ∆base→d remains large, effectively scaling

down the δc→d value. Together, they achieve the desired outcome as shown in the figure.

Finally, when we ran the clustering algorithm on the benchmark wafers shown in

Figure 5.5, the clustering algorithm was able to separate them into the desired five

clusters as shown in Figure 5.7.
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Figure 5.6: Clustring Result Using δ′

5.2.1 Clustering Algorithm

With equation (5.2), we can then define our distance function as k(Wa,Wb) =

δa→b+δb→a

2
. For every pair ofWa,Wb we calculate their distance. The result is a distance

matrix which is passed to a clustering algorithm.

After extensive experiments, our choice of the clustering algorithm is the Hierarchical

DBSCAN [51] (HDBSCAN). To run HDBSCAN, the minimum cluster size needs to be

specified. The choice for this number is 5. The reason is because our earlier study in

Chapters 3, and 4 have shown that 5 wafer plots are sufficient to construct a good GANs

and Tensor model.

DBSCAN is a density-based clustering algorithm widely used today [52]. The in-

tuition behind DBSCAN is the notion of density in a neighborhood, marking points in

lower-density regions as out-of-cluster. HDBSCAN [53], is the hierarchical clustering ex-

tension to DBSCAN. By performing DBSCAN in a hierarchical fashion, the algorithm is
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Figure 5.7: Clustring Result Using Equation 5.2

applied over varying cluster size values, where the integrated clustering result is selected

based on cluster stability [54]. Some benefits over DBSCAN include the ability to find

clusters of varying densities and being more robust. In our flow, the HDBSCAN tool

from [51] is integrated.

5.2.2 Clustering result - experiment

For the experiment, 1243 wafer plots were taken from a first set of 50 lots. These lots

were obtained from a high-reliability product line. We used this first set to build concept

recognizers which are then applied to wafer plots from the subsequent lots.

It is important to note that clustering is used in our flow to obtain an initial grouping

of wafer plots. Therefore, it does not have to be perfect. Subsequent steps utilize the

clusters as a starting point to build the actual concept recognizers.
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Before applying the clustering step, a pre-filtering step is applied first to filter out

wafer plots with random fails, i.e. those would not be considered for showing a special

pattern. In the work presented in [2], three GANs-based recognizers are built to recognize

random-failing wafer plots based on their failing density. They are used in this pre-

filtering step.

Figure 5.8: Examples of random-failing wafer plots

Fig. 5.8 shows one example for each failing density level. After this pre-filtering step,

290 wafer plots are left. Then, the clustering method described above is applied to these

290 wafers, resulting in 9 clusters (see table below) and 199 wafer plots not included in

any cluster.

Cluster 1 2 3 4 5 6 7 8 9
Number of wafer plots 9 8 11 16 5 21 6 5 10
Max in-cluster distance .48 .48 .46 .48 .48 .41 .37 .37 .36
Min out-cluster distance .50 .49 .49 .49 .49 .47 .42 .40 .40

The table above provides a summary of the clustering result. As seen, most of the

clusters have a small number of wafer plots. The “Max in-cluster distance” is the max-

imum distance between any two plots in the respective cluster. The “Min out-cluster

distance” is the minimum distance between a plot in the respective cluster and a plot

outside. The difference between the Max and the Min can be thought of as a stability

measure for the cluster. We see that clusters 6-9 are more stable than clusters 1-5.
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Fig. 5.9 shows two example plots from each cluster. Notice that clusters 1-4 look more

similar to each other than to clusters 7-9. Cluster 5 also looks more similar to clusters

1-4. These mutual similarities can be a cause for their smaller Max/Min differences seen

in the table above.

Figure 5.9: Two example plots from each cluster

Fig. 5.10 then shows five examples of wafer plots not included in any cluster. From the

left, notice that the 3rd plot looks similar to those in cluster 5 and the 4th looks similar to

those in cluster 1. These similarities can also mean smaller in-cluster/out-cluster distance

differences for those clusters.

Figure 5.10: Examples of wafer plots not in any cluster
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5.3 Step2: Primitive Concept Extraction

As shown in Section 4.7, it is easier to train GANs as well as Tensor-based models

using primitive concepts rather than supposedly complex ones. The primitive concept

identification methodology presented in Section 4.7 is used to divide each cluster into its

primitive concepts.

When primitive concept identification is applied to each of the 9 clusters found by our

clustering algorithm, only one promitive concept was found in each cluster. This can be

thought of as a validation for the clustering result. Nevertheless, the primitive concept

identification algorithms is implemented and included in the flow, for robustness reason.

5.3.1 Training Wafer Selection

Given a cluster, one can simply take all wafer plots from the cluster as training

samples and learn a concept recognizer. This intuitive thought essentially considers the

clustering scheme as somewhat ideal. However, as mentioned before, clustering might

not be robust. Hence, a methodology to choose the best training wafers is introduced.

The basic idea in this step is based on a so-called learnability measure defined in

Chapter 4. Given a set of k wafer plots W1, . . . ,Wk, suppose we build a Tensor model

T1−k and apply this model back to the k wafer plots. The result by following the

equation (5.1) is a set of k ∆’s values, ∆1, . . . ,∆k. We calculate the learnability of the

set Sk = {W1, . . . ,Wk} as:

LBSk
=

1
1
k

∑
∆i

(5.3)

With the LB calculation, our goal is to search in each cluster for the five wafer plots

that give the highest learnability. When the cluster size is small, this search can be
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exhaustive. Otherwise, the wafers are sorted by their ∆ value from the model T1−k, and

the top 5 wafers are chosen. At the end of this search, we end up with a Tensor model

Tbest based on a set of five wafer plots. For example, Fig. 5.11 shows these five plots for

cluster 1 and for cluster 9.

Figure 5.11: The five training wafer plots for concept 1 and for concept 9

5.4 Step 3: Tensor-Based Modeling

Now for each of the clusters shown in Fig. 5.9, after Step 2, we end up with 9 Tensor

models. Given a wafer plot, to classify the plot we can simply apply these 9 models and

see which model gives the smallest ∆’s value. This approach, however, does not allow a

wafer plot to be unrecognized.

To solve this issue, we use a set of baseline Tensor models. There are four of them.

Three are similar to the three types of random fails shown in Fig. 5.8 before. The fourth

is based on the plot where there is no failing die. Then, we say that in order for a wafer

plot to be classified as in one of the nine concepts, its ∆’s value has to be smaller than

all the four ∆’s values from the four baseline models.

Recall that there are 290 wafer plots after the pre-filtering step. The following table

summarizes the result of applying the 9 Tensor models to these 290 plots.
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Concept 1 2 3 4 5 6 7 8 9 Total
# Recognized 13 18 18 9 6 18 6 7 16 114

Cluster size 9 8 11 16 5 21 6 5 10 91

Overall, the total number of classifiable plots is larger than the total number of plots

put into a cluster by our clustering scheme. However, for an individual concept the

number of classifiable plots can be smaller than its corresponding cluster size. These

results show the effects by including Step 2 and Step 3 after the clustering.

5.5 Step 4: GANs-Based Modeling

Step 4 also takes the clustering result as a starting point. In addition, Step 4 utilizes

the primitive concepts extracted in Step 3 and their corresponding five samples as the

training samples. The GANs-based method for building a recognizer is already studied

in [2] and explained in Chapter 3. However, there are two fundamental issues for fully

automating the training process.

The first is in the in-class sample selection. Training a GANs recognizer requires a set

of in-class training samples. In [2], the in-class samples are manually selected. Because

GANs training process and its resulting model can be sensitive to this selection, in [2]

most of the effort was spent on experimenting with different sets of in-class samples.

Step 2 discussed above provides an automatic way for the in-class sample selection.

Each in-class sample set for a concept comprises the 60 samples by taking the five wafer

plots from Step 2 and rotating each plot 12 times clockwise.

The second issue is in the availability of out-of-class validation samples. These samples

are important for deciding a stopping point in the training as well as for deciding a

threshold on the output of the Discriminator neural network. In the past, the stopping

point was based on the images generated by the Generator of the GANs, which are
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usually not very effective causing more manual engineering effort to decide a stopping

point and tweaking the threshold.

The clustering result from Step 1 provides a straightforward solution to collect those

out-of-class validation samples, i.e. the out-of-class validation samples are those plots in

all other clusters. Effectively, we are asking the GANs training to build a model that can

separate the five training samples from plots in all other clusters.

For a given sample, the Discriminator outputs a decision value between 0 and 1 as an

indicator between out-of-class and in-class. GANs’ training is iterative. In each iteration,

we calculate the average of Discriminator’s outputs for all in-class samples and the average

for all out-of-class samples. The difference is treated as a separability measure. Then, we

say the best model is the one with the highest separability.

The search for the best model is simple. We allow GANs’ training to run for a

maximum number of iterations and then pick the model with the highest separability. In

our implementation this maximum iteration number is set at 5K. This setting is mostly

due to the hardware constraint based on the machine we were using. With this number,

the training time usually runs for around 2 hours based on our machine equipped with

2 nVidia 980Ti GPUs each with 6Gb VRAM. The implementation of the GANs [2] is

based on TensorFlow. The GANs’ model size is about 330Mb.

5.5.1 Picking the best model

Fig. 5.12 shows how the separability value changes in each training iteration across all

5K iterations, for all 9 primitive concepts. The iteration where the best model is selected

is also highlighted with a green bar.

After applying the 9 GANs models to the 290 wafer plots, 104 plots are uniquely

recognized by one GANs model. However, 27 plots are recognized by two GANs models.
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Figure 5.12: Model separability across 5K training iterations - y-axis (the separability
measure) is from 0 to 1 and x-axis is from 1 to 5K

In contrast, recall that the sets of wafer plots recognized by the Tensor models are

mutually disjoint. The disjoint property is enforced because recognition by a Tensor

model is done relatively to other models, not by a fixed threshold.

5.6 Step 5: Wafer Plot Classification

Each concept has two recognizers, a Tensor-based model and a GANs-based model.

In the actual wafer plot classification, both are used by following the three steps:

1. If a wafer plot is uniquely recognized by a GANs model, then it is recognized in

that concept.

2. If a wafer plot is recognized by more than one GANs models, use their respective

Tensor models as the tie-breaker. Recall that recognitions by Tensor models are

disjoint. However, it is also possible that no Tensor model recognizes the plot. If

that happens, the plot is reported as recognized in multiple concepts.

3. For those unrecognized plots after (1) and (2), if it is recognized by a Tensor model,

it is considered recognized.

We call this the “Hybrid” rule for concept recognition.

The Hybrid rule is based on the following observations from the past studies [2][36][37]:
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1. GANs models are usually more general than the Tensor models and hence, for

maximal coverage GANs models are applied first.

2. Because GANs models are more general, a plot can be recognized by multiple

models. In this case we need the Tensor models for tie-breaking.

3. GANs models can have adversarial examples [37]. Hence, we need the Tensor

models as a backup for recognizing adversarial examples.

For comparison, Fig. 5.13 shows examples recognized in concept 9. As seen, the

GANs model can recognize wafer plots more general than those shown for concept 9 in

Fig. 5.11. On the other hand, the GANs model can miss wafer plots that look similar to

those shown in Fig. 5.11 (i.e. these can be thought of as adversarial examples).

Figure 5.13: Examples uniquely recognized in concept 9

The table below summarizes the result of wafer plot classification for the 290 wafer

plots from the first 50 lots. The “Total” is the total number of plots recognized by any

recognizer. Notice that for concepts 2, 3, and 8, the Hybrid’s numbers are smaller than

the Tensor’s numbers. This is because a plot can be recognized by a Tensor model for

concept i and a GANs model for concept j. In this case, it is classified as concept j.

Also note that even with the Hybrid rule, 6 plots still end up being recognized in two

concepts.

Then, the recognizers for the 9 concepts are applied to 7057 wafer plots from the next

287 lots. First, 5903 of them are filtered out by the pre-filtering step. This leaves 1154

82



Our Automated Concept Recognition Flow Chapter 5

Concept 1 2 3 4 5 6 7 8 9 Total
By GANs only 12 16 6 8 61 12 6 5 32 131*
By Tensor only 13 18 18 9 6 18 6 7 16 114

By Hybrid 14 16 12 10 47 18 7 5 33 156**
*keep in mind 27 plots are recognized by 2 GANs models
**6 plots still end up being recognized in 2 concepts

wafer plots to be classified. The table below summarizes the result. Note that for the

GANs result, 281 plots are uniquely recognized. 49 plots are recognized by two models

and 4 plots are recognized by three models.

Concept 1 2 3 4 5 6 7 8 9 Total
By GANs only 32 47 0 0 179 12 12 3 106 334*
By Tensor only 41 58 3 0 52 17 28 3 18 220

By Hybrid 41 55 1 0 172 19 19 4 93 393**
*keep in mind 53 plots are recognized by > 1 GANs models
**11 plots still end up being recognized in 2 concepts

For the 761 unrecognized plots, Steps 1-4 are applied again to see if there is any new

concept that can be extracted and learned. Two additional concepts are found. Fig. 5.14

shows two training examples for each concept.

Figure 5.14: Examples from the two newly-extracted concepts

Out of the 761 unrecognized plots, 21 plots are recognized in concept 10, and 48 plots

are recognized in concept 11. This results in 692 unrecognized plots.
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5.6.1 Reporting unrecognized wafer plots

From the first 50 lots, there are 290 − 156 = 134 unrecognized plots. With the

additional 692 unrecognized plots from the second batch, the total number of unrecog-

nized plots is 826. For reporting, we consider those plots only with a yield loss above a

minimum level. This ends up with 712 unrecognized plots to be reported.

For all 826 plots we manually inspect them to see if any can be considered interesting.

We found 10 of them which are shown in Fig. 5.15. For reporting, our goal is to report

unrecognized plots in a ranking such that those 10 interesting ones can show up, say

within the first 100.

Figure 5.15: Interesting wafer plots and their reported ranking

The simple solution to the report ranking problem is by using a baseline Tensor model,

e.g. the low-density random-fail model used before. The ∆’s values given by this model

are used for the ranking, i.e. larger ∆ value is ranked higher. With this simple method,

the ranking for each of the 10 interesting plots are also shown in Fig. 5.15.

In Fig. 5.15, notice that wafer plots ranked 6, 15, 35, and 73 look similar. A concept

is not learned for them because there are only four such wafer plots in the data, i.e. it is

below our minimum number 5 for learning a model.
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5.7 Conclusion

In this chapter, we present a software flow that integrates Tensor-based modeling

and GANs-based modeling for wafer plot classification. The development focuses on

complete automation of the flow and improving the robustness of the classification. The

flow is applied to a commercial product line to analyze 1243 + 7057 = 8300 wafers.

There are 11 concepts automatically learned which together successfully classify 618 wafer

plots. The classification results were manually inspected and we found no unacceptable

classification. The remaining wafer plots were also manually inspected for their non-

interest, except for 10 plots which could be considered as being interesting but were

missed by our classification flow. These 10 plots were then reported by the flow as

among the top 100 unrecognized plots. This short list facilitates its user to inspect the

unrecognized plots.
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Chapter 6

Deploying the robust automated

solution as a surrogate

6.1 Introduction

In the previous chapters, we introduced an automated software for concept recognition

using the wafer image classification as an application example. Our automated software

uses Tensor decomposition for automating concept extraction, and for choosing training

wafers as well as helping with the recognition part. However, the main recognition brain

in our software is based on Generative Adversarial Networks (GANs). GANs are based

on Convolutional Neural Networks, A machine learning algorithm.

The main challenge is that it is very difficult, if not impossible, to guarantee the

robustness of a machine learning solution software. For example, the developer might

expect that a model built by the solution has an accuracy above 90%, but in a deployment,

the software results in a model with only 70% accuracy. This can happen because a

solution is developed by using some data as a guide, which might not reveal all the

learning software requirements on future unseen data. Hence, a deployment can demand
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an extensive ramp-up process where the developer is asked to incrementally enhance the

capability of the learning software.

The focus of the chapter is on the capability of the GANs-based learning compo-

nent. Although GANs has become a popular approach for unsupervised learning, train-

ing GANs remains to be tricky [4][5]. Much engineering effort can be spent on developing

an initial GANs-based learning component but it is difficult for a developer to anticipate

all issues possibly encountered from future unseen data.

Note that the concern here is on the capability of the learning component. In a de-

ployment, execution of the learning software automatically builds models online. During

the ramp-up, a traditional working model could be that: (1) someone on the deploy-

ment site observes that result from a model is “unreasonable” and (2) someone from the

deployment site sends some relevant data to the developer for improving the learning

software.

Figure 6.1 depicts an alternative deployment setting considered in this chapter. There

are two sides: the ML expert side (call it Jay) and the deployment side (call it Nik). The

assumption is that Jay does not have access to what happens on Nik’s side. Jay’s overall

objective for the software is to minimize the chance that Nik perceives the software as

producing “unreasonable” results.

Of course, this “unreasonable” can be quite subjective. Nevertheless, through the

ramp-up process Jay desires to improve the robustness of the software as much as he

knows how to.

Figure 6.1: Deploying a ML solution as a service
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In Figure 6.1, Jay will provide a service when a deficiency with the software is de-

tected. A main goal of this work is to enable the software with some self-checking ca-

pability to detect a deficiency. From Jay’s perspective, he desires to hide any deficiency

from Nik.

Furthermore, it might be difficult for an NDA agreement to be achieved between the

two sides. As a result, when Jay is called for a service, it might be the case that he can

only receive very limited information to help improve the software. In this work, we also

take this into account and study what minimal information is needed without revealing

the confidential information, such as yield.

Overall, Figure 6.1 depicts a collaboration view where the ML software acts as a

surrogate for Jay. The view enables Jay to stay outside Nik’s entity and still be able to

provide his service to the entity. Also, if this view can be realized, Jay’s service is not

limited to just one entity.

There are two novel aspects in this chapter: (1) For each GANs-based recognizer, we

introduce a corresponding check. Failing this check will result in calling Jay for a service.

(2) When Jay is called for a service, we introduce a transformation method to hide the

original wafer images from Jay. Further, only very few transformed samples are provided

so that Jay has no way to infer the yield.

In this work, we utilize the production data from a high-reliability product line for

the experiments to articulate the key ideas in our software design. The data comprises

8300 wafers. We first use the earliest 50 lots to run the software. Then, we run it on

the remaining 287 lots where a service call is triggered. Then, we will discuss how Jay

improves the software. After the software is improved and updated, we run it again on

the 287 lots, and continue to run it on a 2nd high-reliability product line. Results from

all these runs are used in the presentation of our key ideas for deploying the ML software

solution as a service.
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6.2 The Wafer Classification Software

Figure 6.2 illustrates the workflow employed by the ML software Jay desires to deploy.

The first step is going through a Filtering Random box where the task is to filter out

wafer images showing sparse random fails. The purpose is to facilitate execution of the

subsequent steps. Implementation detail of this box is discussed in [6].

Figure 6.2: Workflow employed by the ML solution software

After the filtering, each remaining wafer goes through a recognition box. Initially,

if there is no recognizer available, this step is skipped and all wafers are unclassified.

If a wafer image is recognized by a recognizer, then the wafer image is reported in the

corresponding class.

The recognition is checked with a Checking box, which is a focus of this chapter.

Failing this Checking box results in a notification sent to Jay.

After the recognition box, unclassified wafers are evaluated to see if a new recognizer

can be learned. The learning goes through three boxes: (1) Grouping by Similarity,

where multiple primitive concepts are identified; (2) Training Sample Extraction, where

five training samples are extracted for each concept; and (3) GANs-Based Modeling,

where a recognizer is learned for each identified concept. For the purpose of making

this chapter self-contained, the following provides more explanation for these three boxes

first. Then, Section 6.2.4 discusses the application results. More details on the three

steps can be found in previous chapters.
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6.2.1 Grouping by Similarity

This step implements a clustering scheme. Our choice of the clustering algorithm is

the Hierarchical DBSCAN [51] (HDBSCAN) with a minimum cluster size specified at

5. This means that if the number of similar wafer images is less than 5, it is deemed

insufficient to learn a new class.

The most subtle part in the cluster scheme is the definition of the distance function

Dist() that measures a distance between two images. An image is encoded as a matrix

where a +1 corresponds to passing, −1 corresponds to failing, and 0 means no die on

the location.

Given a wafer matrix WA, we first build a Tensor model TA using the method pro-

posed in Chapter 4: When TA is applied to another wafer matrix WB, the result is a

progected core matrix MA→B. If WB is similar to WA, MA→B would have relatively

large absolute values in the diagonal entries and close-to-zero values in non-diagonal en-

tries. Otherwise, MA→B would have large values in non-diagonal entries. Hence, the

method in Chapter 4 utilize this diagonality property to define a directional distance

measure ∆ from WA to WB as:

∆A→B =

∑
∀i 6=jMA→B[i, j]2∑
∀iMA→B[i, i]2

(6.1)

The value ∆A→B is based on WA and is not directly comparable to another value

∆C→B based on another WC . Our solution to the problem is to use a baseline wafer

Wbase such as a wafer without a failing die. This baseline image serves as a reference

point for all wafer plots. Then, ∆A→B is “normalized” as a new directional distance:

δA→B =
∆A→B

∆A→B + ∆base→B
(6.2)
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The distance between WA and WB is then calculated as the average of δA→B and

δB→A. Figure 6.3 uses a wafer A and its distances to three wafers B,C,D as an example

to illustrate the distance calculation.

Figure 6.3: Illustration of distance calculation used in the clustering scheme (Each M
matrix is actually bigger and only the top left portion is shown)

Notice that wafer A and wafer B are similar. The matrix MA→B has large values

on the diagonal entries and almost zero on the non-diagonal entries, thus ∆A→B is 0.23.

The matrixMB→A on the bottom shows a similar property with ∆B→A = 0.19. On the

other hand, MA→C and MA→D do not have the property because they are not similar

to wafer A. Their ∆ values are larger, i.e. 1.75 and 1.62, respectively. The resulting

distances are in red. We see that the distance between A and B is 0.317, smaller than

the other two distances 0.6385 and 0.6015.

6.2.2 GANs-based Modeling

Output from the Group by Similarity box is a set of clusters where each cluster

contains at least 5 wafers. Next, in the Training Sample Extraction, for each cluster

the best 5 samples are identified for learning a model. This evaluation is based on the

learnability measure proposed in Chapter 4 where the best 5 samples have the highest

learnability value.
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For each cluster, the 5 training wafers are then given to the GANs-based Modeling

box. In GANs [3], there are two neural networks: the generator G and the discriminator

D. The GANs modeling follows the same approach and training strategy presented in [2]

and explained in Chapter 3.

Figure 6.4: Discriminator neural network used in GANs modeling

The generator’s input is a randomly generated 100-dimension latent vector ~v. The

training is iterative. In each iteration, the generator tries to improve its neural network

model for generating samples closer to the training samples. The discriminator tries to

improve its model for separating the generated samples from the training samples.

In this version of the software, the discriminator is dramatically simplified as shown

in Figure 6.4 (as compared to the complex architecture employed in Chapter 3). There

are several considerations behind this simplification.

As mentioned before, training GANs can be tricky [4] [5]. For instance, balancing the

convergence between G and D can be quite a challenge, and often D can win easily. In

general, D handles a learning task that is easier than G. Therefore, if we design both D

and G with the same capacity, it is likely that D would win in the early iterations of the

training, making G harder to converge. In the past, we already observed that ensuring

convergence of both networks could be challenging [2].

The simplification makes the capacity of D smaller than the capacity of G. This idea

is inspired by the regularization ideas proposed in [55][56]. In our context, we desire to

reduce the capacity of D to make the training more robust while still ensuring sufficient
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capacity to handle the complexity involved in the recognition task.

The reader might wonder, if GANs training is so tricky, why didn’t we choose to

solve the problem as a supervised learning problem (i.e. multi-class classification) using

a single convolution neural network (CNN). The simple answer is, that would require

many more samples in each class to train a good classifier. In practice, we simply do not

have enough samples to do that for every class. The main benefit of using GANs is that

it needs very few samples (in our case only 5 samples) to obtain a high-quality recognizer

[2].

6.2.3 Separability measure in GANs training

GANs, however, are mostly for obtaining a good generator to be used in an applica-

tion. Our usage is different - we are interested in using the discriminator as a recognizer.

This objective makes our GANs training even trickier, for instance, training with more

iterations does not imply that a better discriminator model can be found.

To evaluate the discriminator for our purpose, we need a model evaluation scheme

independent of the GANs training. In our case, the discriminator model in each training

iteration is evaluated based on a separability measure proposed in [38] and explained in

Chapter 5. The training samples are used as the in-class sample set Sin. To calculate

separability, we need an out-of-class sample set Sout. In our implementation, the out-of-

class samples are wafers in other clusters based on the clustering result from the Grouping

by Similarity box.

Separability is a value between 0 and 1 [38], telling how well a D model separates the

samples between the two sets. A larger value means more separation.

There can be two types of separability, average separability as used in Chapter 5 and

strict separability that is used in our implementation. Strict separability follows the same
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calculation method as average separability, except that it uses the worst-case separability

value instead of the average (between in- and out-of-class samples).

Figure 6.5: Illustration of a GANs training process over 2K iterations

To illustrate the training process, Figure 6.5 shows the results from 2K iterations of

training a concept recognizer (took about 5 minutes to run on a machine with 2 nVidia

980Ti GPUs each with 6Gb VRAM). The training samples started with 5 wafer images

showing clusters of fails on the center (one training sample is shown on the top left).

Then, each is rotated 12 times to obtain in total 60 samples.

Both average and strict separability values are plotted. It can be seen that average

separability is always much higher. Most of the strict separability values are zero because

as long as the D model cannot separate any pair of the in-class and out-of-class samples,

this value is zero.

On the bottom, the samples generated from the generator G are shown. It is interest-

ing to see that with more iterations, the generated samples become closer to the training

samples. In contrast, we see that while the average separability is generally higher in

the 400-1200 range and lower after that, the value can fluctuate significantly. The strict

separability has three “bumps” and otherwise is zero everywhere. Keep in mind that

samples in Sout are used only in calculating the separability, and not used in training D.

Hence, D is not optimized for separability at all. The generated samples, on the other
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hand, have nothing to do with the out-of-class samples in use. This is why more iteration

does not mean a better D in our context, and we need the separability measure to select

the D model as our recognizer.

Notice in the figure that the highest separability happens well before the generator

reaches the point of generating quality images close to the training samples. This is

because once the generator starts to learn well, the discriminator (in order to separate

the generated samples from the training samples) might start over-fitting the training

samples. Once this over-fitting takes place, the discriminator model essentially loses its

ability to separate the training samples from those unseen samples in the out-of-class set

Sout.

6.2.4 Result from the first 50 lots

At first, the software is run on the first 50 lots. Figure 6.6 illustrates the result for each

box. In this run, 9 recognizers are learned. Table 6.1 then summarizes the recognition

results by these recognizers.

Figure 6.6: Workflow illustration for the first 50 lots

Notice in Table 6.1 the number of wafers recognized in each concept is generally

larger than the corresponding cluster size shown in Figure 6.6, except for Concept 5. As

explained in Chapter 5, clustering is not very robust and hence, can only be used as

a starting point. Clustering result can be sensitive to the distance calculation and the
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hyper-parameter setting in the clustering algorithm.

Table 6.1: Result From The first 50 lots
Concept 1 2 3 4 5 6 7 8 9 Total

Recognized Wafers** 16 21 21 14 34 10 12 39 31 178*
False Positives† 0 0 0 0 1 0 0 14 11 26

Checking
√ √ √ √ √ √ √ √ √

-√
: model passing the Checking box

*Collectively 178 wafers are recognized in total
because a few wafers are recognized in two or more concepts
**After the recognition, there remains 180 unclassified wafers
† known only after manual inspection

Figure 6.7: Typical example wafer image from each concept

Figure 6.7 provides a typical example from each concept to illustrate what they look

like. Notice that Concepts 1-4 all look similar, i.e. containing some “Grid” patterns.

They are separated as four by the “Grouping by Similarity” box. Recall that this box

implements clustering using distances based on the Tensor method. As discussed in

Chapter 5, a Tensor model is more specific and hence, ends up separating Concepts 1-4

as different concepts. Note that Concepts 1-9 are the same ones introduced in Chapter

5, but with their ordering changed.

For each concept we manually inspect each recognized wafer image and identify those

possibly false positives. The information is also included in the table. In practice, Jay
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would not know this information. Nik might not know either if he does not do the

specific inspection. Note that the impact of these false positives would depend on how

the classification results are utilized in an analytic workflow.

We see that Concept 8 and Concept 9 have significantly more false positives than

others. Some false positives from Concepts 5, 8, and 9 are shown in Figure 6.8. For a

learning model, achieving 100% accuracy is difficult, if not impossible. Hence, under-

standably a recognizer can have false positives. However, too many false positives can

trigger Nik to perceive the results unreasonable when he or his software script tries to

utilize them.

Figure 6.8: False positive examples

In that regard, the numbers of false positives for Concepts 8 and 9 seem high. Fig-

ure 6.9 shows 11 false positives from Concept 8, and 5 false positives from Concept 9.

These false positives are all recognized by two or more recognizers (recognizer for Concept

i is denoted as Ci).

Figure 6.9: Other false positives for Concepts 8 and 9
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Observe that 4 wafers are recognized by both C8 and C9. There is one wafer recog-

nized by C1, C2 (and C8) and one wafer by C2, C3 (and C8). Note that these two wafers

are not counted as false positives (in C1-C3) because we could not say for certain which

one grid class they should belong to and not another.

These results show that not only C8 and C9 have unusually large numbers of false

positives, a big part of it (12 in total) can be attributed to wafers recognized in other

concepts as well. This shows that there is some potential deficiency in the C8 and C9

recognizers.

For each concept, the recognition goes through the Checking box (discussed in detail

later) as shown in Figure 6.6. Table 6.1 shows no recognition failing this Checking and

hence, the potential deficiencies in recognizers C8 and C9 are not known to Jay. Nik

might not know either if the result is consumed by his software script and not by him.

6.2.5 Result from the remaining 287 lots

The software continues its run on the remaining 287 lots. Figure 6.10 illustrates the

results through the workflow. The difference between Figure 6.6 and Figure 6.10 is that

in Figure 6.10 now we have 9 recognizers already in the Recognition box to begin with.

Figure 6.10: Workflow illustration for the remaining 287 lots

Table 6.2 summarizes the results from the Recognition box. This time, recognition

for Concept 8 and Concept 9 fails the Checking box. As a result, Jay is called for a
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service to improve the wafer classification software.

Table 6.2: Result From The remaining 287 lots
Concept 1 2 3 4 5 6 7 8 9 10 11

Recognized Wafers* 14 46 29 25 76 70 13 139 118 19 113
False Positives** 0 1 0 2 2 0 2 29 39 0 1

Checking
√ √ √ √ √ √ √

× ×
√ √

×: model failing the Checking box
*Collectively, in total 477 wafers are recognized by C1-C9, which means
after C1-C9 recognition, there remains 701 unclassified wafers
**53 of them due to multiple recognition, and among them
35 multiple-recognized wafers are due to C8 and C9

In Table 6.2, Concepts 2, 4, 7, and 11 have false positives, whereas no false positives

for these Concepts were found in Table 6.1. Figure 6.11 shows what these new types of

false positives look like.

Figure 6.11: Additional false positive examples

Notice that after the recognition, two more concepts are identified with two new

recognizers learned. Figure 6.12 shows what they look like.

6.3 Implementation Of The Checking Box

Following the Tensor modeling method proposed in [36] and explained in Chapter 4,

for each concept class, the five samples used to train a GANs model are also used to build

a corresponding Tensor model. As a result, for each Concept i, the software maintains a

GANs recognizer Ci and a corresponding Tensor model TCi.
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Figure 6.12: Two new Concepts learned

Let SCi
be the set of wafers recognized by Ci, and let STCi

be the set of wafers

classified by TCi as in-class to Concept i. The general idea for the Checking box is that

it implements a containment check to see if STCi
⊆ SCi

. This containment check is

considered failing if more than one wafer that is in STCi
but not recognized as in SCi

.

Note that with this check, one escape is acceptable because we cannot guarantee that

the containment property is strictly true even for a very good GANs recognizer.

The reasoning behind the containment check is based on the observation that gener-

ally a Tensor model is more specific than its corresponding GANs model [38]. However,

this property has not been mathematically proven yet. Such a proof would reveal how

exactly a neural network model recognizes a pattern, which is still considered more or

less a mystery in the machine learning literature.

6.3.1 Binning based on Tensor models

Classification by the Tensor models is done based on the ∆ value calculation men-

tioned in Section 6.2.1. Suppose 9 Tensor models TC1, . . . , TC9 are given for the 9

concepts, each built with the same 5 training wafers used to train the GANs model. The
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Tensor-based classification is achieved through a binning process as described below.

First, a set of base Tensor models are constructed. In the implementation, there are

four baseline models representing wafers with no fail, with low-density random fails, with

medium-density random fails, and with high-density random fails. Let them be denoted

as Tbase1 . . . Tbase4.

Given a wafer image, thirteen ∆ values are calculated, nine values from the TCi

models and four values from the base models. A wafer W is put into the concept bin #i

only if its ∆ value from TCi (denoted as ∆Ci→W ) is the smallest. This binning would

classify W into either one of the 9 concept bins, or none (if ∆ value from one of the

baseline concepts is the smallest).

Figure 6.13: Illustration of binning process by Tensor models (Each matrix is actually
bigger and only the top left portion is shown)

Figure 6.13 illustrates the ∆ value calculation for two wafers W and U based on TC9

for Concept 9 and Tbase1 for the no-failing model. As seen, theW wafer, which does show

an edge failing pattern, has ∆C9→W = 0.26 which is smaller than ∆base1→W = 0.37.

On the other hand, the U wafer, which does not show an edge failing pattern, has

∆C9→U = 1.5 which is not only much larger, but also larger than ∆base1→W = 0.73.

As a result, the U wafer would not be in the concept bin #9. The W wafer would be

in concept bin #9 because ∆C9→W = 0.26 is the smallest among all the thirteen ∆

values (not shown in the figure).
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Figure 6.14: Illustration of the restoration effect of a matrix M

6.3.2 The restoration effect of a core matrix M

Effectively, a Tensor model TCi comprises two orthogonal projection matrices U1

and U2. Given a wafer image matrix W , the projected core matrix M (mentioned in

Section 6.2.1) for W is obtained by the calculation U1 × W × U2. This process is

illustrated in Figure 6.14. Also notice that the calculation UT
1 ×W × UT

2 restores the

wafer matrix W .

What if we take a core matrix M and make all non-diagonal entries zero before

we perform the restoration? Call this the 1st restoration. Figure 6.15 shows the result

by taking the Tensor model TC9 with this restoration. For the leftmost wafer (with

edge failing), observe that the effect is like removing other random fails not on the edge

pattern. The shape of the edge pattern is kept. Recall that TC9 is for capturing the

concept with an edge-failing pattern.

Figure 6.15: Illustration of the 1st and 2nd modeling effects
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For the middle wafer, the restored wafer looks differently. There is an edge without

the curve shape. The yellow failing dots on the center are all gone. For the rightmost

wafer, the failing pattern is basically gone.

From Figure 6.13 above (and Figure 6.3 earlier), observe that for all core matrices,

the first entry [1,1] always has the largest value. Recall the ∆ calculation for model TCi

on wafer W is ∆Ci→W =
∑

∀i6=j MCi→W [i,j]2∑
∀iMCi→W [i,i]2

.

The large value in entry [1,1] effectively makes the ∆ value small. Recall the prop-

erty we are looking for is that all non-diagonal entries should have close-to-zero values.

Hence, we can try a modified ∆ calculation by ignoring the entry [1,1]. Call this the ∆′

calculation:

∆′Ci→W =
∑

∀i6=j MCi→W [i,j]2∑
∀i,i6=1MCi→W [i,i]2

.

What is the effect of ignoring the entry [1,1] in the restoration process? Call this

the 2nd restoration and Figure 6.15 shows the effect. For the leftmost wafer, the shape

of yellow edge is maintained. However, for all wafers the wafer background as well as

the random failing yellow dots are gone. These examples show that the 2nd restoration

process results in three samples that are still differentiable.

6.3.3 Taking intersection as the containment set

The ∆′ calculation provides an alternative to implement the binning process described

in Section 6.3.1. Let S and S′ be the set of wafers in a concept bin based on ∆ and ∆′,

respectively. The set S ∩ S′ is used by the containment check.

Table 6.3 shows the sizes of each concept bin after the two independent binning

processes for wafers from the first 50 lots. Similarly, Table 6.4 shows those sizes for

wafers from the remaining 287 lots.
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Table 6.3: Containment Set Generation - First 50 lots
Concept 1 2 3 4 5 6 7 8 9

1st Binning, S 21 19 8 12 33 5 9 13 25
2nd Binning, S′ 17 19 8 12 11 5 10 9 19

Intersection Set S ∩ S′ 17 17 8 12 9 5 9 9 15

Table 6.4: Containment Set Generation - Remaining 287 lots
Concept 1 2 3 4 5 6 7 8 9 10 11

1st Binning, S 22 69 4 0 34 22 5 97 25 23 43
2nd Binning, S′ 18 58 4 1 15 41 3 48 22 22 37

Intersection Set S ∩ S′ 17 27 3 0 14 21 2 47 10 12 20

Taking the intersection improves the robustness of the containment check. In other

words, we desire to minimize the chance for including a wafer in a concept bin when it

should not be. For example, Figure 6.16 shows examples binned into a Concept i by the

1st binning but not by the 2nd binning, i.e. for those cases where there is a difference

between the 1st binning number and the intersection number. Comparing to Figure 6.7

before, we see that those wafers are really marginal. The effect of taking the intersection

removes those marginal wafers and hence, makes the containment check more robust.

Figure 6.16: Examples in 1st binning set S but not in 2nd binning set S′

6.3.4 Containment check result

Table 6.2 earlier shows that the containment check fails for Concept 8 and Concept

9. Table 6.5 provides more detail after seeing the result from Table 6.4. The GANs

recognizers C8 and C9 fail because they have more than one escapes from the containment
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check set.

Table 6.5: Containment Check In The remaining 287 lots
Concept 1 2 3 4 5 6 7 8 9 10 11

Checking Set Size 17 27 3 0 14 21 2 47 10 12 20
# of Escapes 1 0 0 - 0 1 0 7 6 0 0

Checking Result
√ √ √ √ √ √ √

× ×
√ √

×: model failing the containment check

Figure 6.17 shows the 7 escapes from C8 during the containment check. Observe

that none cannot be said that it should not belong to Concept 8. Hence, there is some

deficiency when the software builds the recognizer C8.

Figure 6.17: The 7 escapes by the GANs recognizer C8 for Concept 8

6.4 Service By The ML Expert

Jay is now called for a service. However, Jay knows nothing about the application

results described above. From the company side, Nik does not want to reveal too much

information about the production, especially the yield. Nevertheless, when the software

calls Jay for a service, it still needs to send some data to help Jay improve the GANs-

based learning component.

Our approach to resolve this conflict is by sending Jay a few samples that creates

a learning problem harder than the current learning problem for the particular concept

where its recognizer fails the containment check.
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6.4.1 Samples sent to Jay

Recall the 1st restoration discussed in Section 6.3.2 where Figure 6.15 illustrates the

method with some examples. We use this transformation to create the in-class samples

for Jay by transforming each of the five training wafer images. For example, Figure 6.18

shows the five training wafers for Concept 8 and the resulting in-class images. In this

transformation, we use the projection matrices of the Tensor model TC8 built based on

the five training wafers.

Figure 6.18: The 10 images sent to Jay for Concept 8

To create out-of-class samples for Jay, we use a different Tensor model UC8. First,

the last two training wafer images shown in Figure 6.18 are stacked to create a new wafer

image, i.e. combining all the yellow dots. Let UC8 be the Tensor model for this stacked

wafer image. Using UC8’s projection matrices, we again perform the 1st restoration on

each of the five training wafer images and then obtain the five out-of-class samples as

shown on the 3rd row in Figure 6.18. Similarly, the lower two rows in Figure 6.19 show

the 10 images sent to Jay for Concept 9.
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Figure 6.19: The 10 images sent to Jay for Concept 9

Note that on all images sent to Jay, almost all sparse random fails are removed by the

transformation (as discussed in Section 6.3.2). Also, only five wafers are used to create

the 10 transformed images. Also, notice that the out-of-class images differ only slightly

from the in-class images. This effectively creates a harder learning problem for Jay. In

contrast, on the deployment side the out-of-class images are those from other classes

deemed by the clustering (discussed in Section 6.2.2) to be dissimilar to the in-class

images.

For each image Jay receives, it is then rotated 12 times to obtain 60 in-class training

images and 60 out-of-class validation images (same as that discussed in Section 6.2.3).

Jay then relies on these transformed images to improve the GANs training component.

6.4.2 Improvements to the GANs modeling box

First, Jay checked the performance of the GANs modeling box on the given images

for Concept 8. Figure 6.20 shows the strict separability value at each iteration of the

GANs training based on the given images. These are examples from multiple training
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runs. Because the training process is statistical, each run would be different. As seen,

generally the maximum separability value is rather low, revealing that the discriminator

is unable to find a model that can separate the in-class samples well from the out-of-class

samples.

Figure 6.20: Extremely low separability in Concept 8 training

To confirm the issue, Jay also checked the performance of the GANs modeling for

Concept 9. Figure 6.21 shows the same issue observed in Figure 6.20.

Figure 6.21: Extremely low separability in Concept 9 training

After some experiments, Jay decided to re-design the CNN architecture used by the

discriminator to increase its capacity. Figure 6.22 shows the new architecture. With

this new architecture, Jay also needed to double check the setting of the various hyper-

parameters [2] used in the training and to tune some of the values if needed.
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Figure 6.22: The enhanced CNN architecture

Figure 6.23 and Figure 6.24 then show examples of the separability trend inspected

by Jay. This time, it can be seen that the maximum strict separability values are much

higher than before. These values indicated that with the new CNN architecture, the

discriminator would be able to find a model that can separate the given in-class samples

well from the out-of-class samples. Note that this observation made by Jay is empirical,

which could be viewed as part of the ML expertise the ML expert accumulated through

experience.

Figure 6.23: Improved separability seen in Concept 8 training

Although the strict separability was much improved, due to the statistical nature of

the training process, Jay is also concerned about the stability of the training. The next

item to check is how frequently a good separability can be achieved in a large number of

training runs.
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Figure 6.24: Improved separability seen in Concept 9 training

6.4.3 Hint for ensemble learning

Figure 6.25 shows a histogram plot of the maximum strict separability over 100 runs

of training. Observe that for Concept 8, most of the separability values are greater than

0.5 but it is not the case for Concept 9. This means that the problem for recognizing

Concept 9 is harder than the problem for recognizing Concept 8.

Figure 6.25: Max Separability histogram from 100 training runs

The instability in the training results for Concept 9 shows that one run of training

might not be reliable, i.e. we might end up with a model with very low separability value

even though that value is the maximum seen in the training iterations. This concern

motivated Jay to adopt ensemble learning to mitigate the issue.

In the ensemble learning, 100 discriminator models are collected with 100 runs of

training. Then, the 50 models with the highest separability are used. The recognition is

110



Deploying the robust automated solution as a surrogate Chapter 6

then decided by the 50 recognizers collectively. The decision rule is that if 50% or more

recognizers agree that a wafer is in-class, then the wafer is considered recognized.

Note that this 50% rule is empirical and is based on the thinking that if a containment

check fails with this rule, then the issue is related more to the CNN architecture itself

than to the use of the ensemble learning. In other words, the 50% is more like a lower

bound. If the containment check fails in the future, Jay will be called for a service and

the improvement will focus on the CNN architecture again.

6.5 Re-Deployment Results

After the software is modified by Jay, it is re-deployed. In this section, we focus on

discussing the re-deployment results for Concept 8 and Concept 9 on the 287 lots, which

shows failing the containment check before.

For illustration, Figure 6.26 shows the effect of ensemble learning in view of the

containment check which passes at 68% point, well before the 50% rule setting (recall

that one escape is acceptable). With the passing of the check, the next important question

is: how many false positives are with the 50% decision rule.

Figure 6.26: The effect of ensemble learning on Concept 9

Table 6.6 summarizes the new results on Concept 8 and Concept 9. With the improved
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software, the large numbers of false positives shown in Table 6.2 for both concepts are

no longer there and also, both pass the containment check.

Table 6.6: Re-deployment results on the 287 Lots
Concept 8 9

Recognized Wafers 145 77
False Positive 0 1

Checking Wafers 47 10
Missing Wafer 0 1

Containment Check
√ √

√
: model passing the containment check

For Concept 9, there is still one false positive and one escape from the containment

check. They are different wafers and Figure 6.27 shows what they look like. For the

false positive, observe that it does have concentrating failures on the top edge, causing

confusion to the recognizer looking for an edge failing pattern. For the escape, the edge

failing pattern is marginal and hence, is missed by the committee of the fifty Concept 9

recognizers.

Figure 6.27: The false positive and escape for Concept 9 in Table 6.6
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6.6 Result From The 2nd Product Lines

The software is also run on a 2nd product line with 7052 wafers coming from 295

lots. Note that due to die size differences, recognizers learned from one product line are

not reused in another product line. For example, the die size of the 2nd product is much

larger than the die size of the 1st product. Hence, the run begins with a fresh start.

For simplicity, we only report results by giving all wafers at once to the software.

After the Filtering Random box, there are 1905 wafers remaining. The clustering step

finds 3 clusters with sizes, 27, 64, and 5, respectively. Call them Concepts X, Y, and Z

and Figure 6.28 shows two examples of their five training wafers to illustrate what they

look like.

Figure 6.28: Example wafers from Concepts X, Y, and Z

Table 7 summarizes the results from the recognition and containment check. Notice

that even though many wafers are not filtered out by the Filtering Random box, much

fewer wafers are considered to be non-random after going through the entire workflow.

For those unclassified wafers, we did manually inspect them to confirm that they indeed

contain no obvious pattern, justifying the report by the software that wafers from this

product line are mostly with random fails.

Finally, Figure 6.29 shows what the false positives look like, to confirm there is no

systematic surprise in the result.
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Figure 6.29: Summary table, the false positive and the escape

6.7 Conclusion

In this chapter, we presented the idea of deploying a ML solution as a service using

wafer image classification as an application example. A key reason for the idea is that a

ML solution cannot guarantee its robustness to begin with. Each new deployment might

demand a substantial and long ramp-up period and our software design facilitates the

ramp-up.

To realize the idea, the two major requirements are: (1) The software needs to have a

way to check its ML modeling capability. If the data in the production cannot be handled

with that capability, the software needs to call the ML expert for a service. (2) When

a service is called, the samples sent to the ML expert should not give out confidential

information, such as yield. This requires taking the original training wafer images and

going through some transformations to obtain the in-class as well as the out-of-class

samples for the ML expert.

In this chapter, the software is run on two actual product lines. The deployment and

re-deployment results are used to explain the design of the software and the techniques

involved to meet the two requirements.

On the surface, our software design might seem rather complicated for solving a

seemingly common classification problem. First, due to the constraint that some classes
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might have very few samples available for training a classifier, supervised learning (e.g.

multi-class classification) generally would not work. Hence, the classification is treated

as a multi-class recognition problem where recognition of each class is treated as an un-

supervised learning problem. For solving the multi-class recognition problem, clustering

is applicable. However, clustering is known to be not robust and hence, it is used only as

the initial step. Other more sophisticated approaches are required to improve the robust-

ness. Finally, the need to enable a service by ML expert further adds to the complication

of our software design.
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Chapter 7

Conclusion and Future Work

In this thesis, we presented a software solution for finding interesting patterns in

wafer image classification. Our focus was on two aspects (1) Complete automation,

where human input is minimized as much as possible, and (2) Ensuring robustness, that

means the results of running our software needs to be as trusted as possible.

Automation is achieved through the following:

1. An automated clustering-based concept extraction algorithm with a novel clustering

distance calculation method.

2. An automated algorithm for choosing best training wafers through a novel learn-

ability calculation.

3. Automating the GANs training and model extraction, which is achieved by fixing

the Discriminator architecture, and introducing a novel strict separability measure.

While the robustness aspect was addressed through introducing the novel Tensor-

based Containment Check to continuously check results of the GANs, and reporting any

problems to the expert.
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Moreover, we studied what informationn can be passed to the expert in case of a

service request. We perform a Tensor-based transformation on the wafers sent to the

expert. This transformation hides secret information such as the yield.

Besides the points mentioned above, the fundemental contribution of this work is

introducing the Tensor-based concept recognition which is built on top of the ∆ distance

measure presented in Equation 4.1. The automation and robustness of the software is

demonstrated by applying it to two automotive product lines with 8300, and 7052 wafers

respectively.

7.1 Future Work

7.1.1 Tensor-Based Oytlier Analysis

The work in [57] provides a robust Tensor low-rank approximation, where a Tensor

X is decomposed according to equation 7.1 to a low-rank component L which contains

the underlying high dimensional pattern, and the sparse, or error, component E .

X = L+ E (7.1)

This decomposition idea can be applied to outlier analysis in wafer probe testing data.

It provides a new outlier score [58][59][60], which contain high-dimensional information.

7.1.2 Tensor-Based Classification

The concept recognition idea, can be extended to include multi-class classification.

For example the handwritten digit recognition problem [61]. For each class (or digit),

primitive concept extraction can be applied to it training data, and a Tucker-based

concept recognizer can be build for each of the primitive concepts. Recognized digits for
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each of primitive concepts extracted from each digit’s training data can then combined

as one class.
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