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Microbial Community Analysis with Ribosomal Gene Fragments from
Shotgun Metagenomes

Jiarong Guo,a James R. Cole,a Qingpeng Zhang,b C. Titus Brown,b,c James M. Tiedjea

Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USAa; Department of Computer Science and Engineering, Michigan State University, East
Lansing, Michigan, USAb; Department of Population Health and Reproduction, University of California, Davis, Davis, California, USAc

Shotgun metagenomic sequencing does not depend on gene-targeted primers or PCR amplification; thus, it is not affected by
primer bias or chimeras. However, searching rRNA genes from large shotgun Illumina data sets is computationally expensive,
and no approach exists for unsupervised community analysis of small-subunit (SSU) rRNA gene fragments retrieved from shot-
gun data. We present a pipeline, SSUsearch, to achieve the faster identification of short-subunit rRNA gene fragments and en-
abled unsupervised community analysis with shotgun data. It also includes classification and copy number correction, and the
output can be used by traditional amplicon analysis platforms. Shotgun metagenome data using this pipeline yielded higher di-
versity estimates than amplicon data but retained the grouping of samples in ordination analyses. We applied this pipeline to
soil samples with paired shotgun and amplicon data and confirmed bias against Verrucomicrobia in a commonly used V6-V8
primer set, as well as discovering likely bias against Actinobacteria and for Verrucomicrobia in a commonly used V4 primer set.
This pipeline can utilize all variable regions in SSU rRNA and also can be applied to large-subunit (LSU) rRNA genes for confir-
mation of community structure. The pipeline can scale to handle large amounts of soil metagenomic data (5 Gb memory and 5
central processing unit hours to process 38 Gb [1 lane] of trimmed Illumina HiSeq2500 data) and is freely available at https:
//github.com/dib-lab/SSUsearch under a BSD license.

Microbial phylogeny, identification, and evolution studies
were revolutionized by the introduction of small-subunit

(SSU) rRNA analysis 25 years ago (1), and with the advent of PCR
and high-throughput sequencing, community structure studies
now are commonplace (2–5). The growing sizes of SSU rRNA
gene databases provide a rich ecological and phylogenetic context
for SSU rRNA gene-based community structure surveys (6, 7).
However, the accuracy of PCR-based amplicon approaches is re-
duced by primer bias and chimeras (8, 9).

Unlike gene-targeted amplicon sequencing, shotgun sequenc-
ing takes samples from the entire community by sequencing ran-
domly sheared fragments of DNA (10, 11). Hence, while amplicon
sequencing can provide far deeper coverage of SSU rRNA genes
with the same amount of sequencing, shotgun sequencing may
provide a more accurate characterization of microbial diversity,
including functional diversity (12). In particular, shotgun se-
quencing may provide an improved means to detect divergent
sequences not recovered by standard SSU rRNA gene primers,
such as those of Verrucomicrobia, as well as eukaryotic members of
the community (8, 12–14). Note that both approaches remain
prone to sequencing error and bias from environmental DNA
extraction (9).

The challenges for using shotgun DNA for rRNA analyses are
in efficiently searching for these fragments in large sequence data
sets and the subsequent analysis of the matching short reads. Sev-
eral methods have been developed for SSU rRNA retrieval in large
data sets (15–18), but speed improvements still are needed to
match the growth in data size; moreover, none of them provide
further community analysis using the identified rRNA gene se-
quences. In addition, traditional community analysis tools (6, 19,
20) are largely designed to handle sequences that are amplified by
PCR primers. There are two primary types of community analy-
ses: reference based (supervised) and operational taxonomic unit
(OTU) based (unsupervised). The reference-based method as-

signs SSU rRNA gene sequences to bins based on the taxonomy of
their closest reference sequences, while OTU-based methods as-
sign overlapping gene sequences to bins based on de novo cluster-
ing with a specified similarity cutoff (e.g., 97%). The reference-
based method can be applied easily to shotgun data once SSU
rRNA gene fragments are retrieved (21) and several tools are avail-
able for this (22–26), but the OTU-based approach still remains
challenging with shotgun data because reads are from randomly
sheared fragments.

The main goal of this study is to enable unsupervised OTU-
based analysis of large shotgun metagenomic data sets from soil.
We improved speed and memory efficiency with a hidden Markov
model (HMM)-based method, which already has been shown to
be fast and accurate for SSU rRNA searches (16–18), using a well-
curated and up-to-date training reference sequence collection
from SILVA (7). Our unsupervised clustering method first was
tested on a synthetic community with shotgun data of 100-bp
reads. We next applied the method to soil data sets, where we
assembled longer reads from the overlapping paired-end Illumina
HiSeq reads and mapped those to 150-bp small hypervariable re-
gions of SSU rRNA genes for de novo clustering and further diver-
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sity analysis. We retrieved and analyzed the large-subunit (LSU)
ribosomal gene for confirmatory analysis. Finally, we went beyond
traditional primer evaluation (in silico database search) by evalu-
ating primer biases using the paired shotgun and amplicon data
produced from the same DNA extract (27, 28).

MATERIALS AND METHODS
Soil samples, DNA extraction, and sequencing. Two sets of soil samples
were used. The first sample, which was used to develop the method, was a
bulk (non-root-influenced) soil sample (SB1) taken in 2009 from between
rows of switchgrass. The method then was applied to the second sample
set taken in 2012, which consisted of seven replicate rhizosphere samples
from both corn (C) and Miscanthus (M) plots. All samples were from the
Great Lakes Bioenergy Research Center (GLBRC) Cropping System Com-
parison Site at the Kellogg Biological Station in southwest Michigan (http:
//data.sustainability.glbrc.org/pages/1.html). The rhizosphere samples
were closely associated with the roots (�1 mm).

DNA extraction and SSU rRNA gene amplification methods were de-
scribed previously (29). The SSU rRNA gene amplicons from the first
sample were sequenced by the Joint Genome Institute (JGI) in their stan-
dard work flow, which used 454 GS FLX and Titanium platforms and a
primer set (926F, AAACTYAAAKGAATTGACGG; 1392R, ACGGGCGG
TGTGTRC) that targeted the V6-V8 variable region of bacteria, archaea,
and eukaryotes. The second set also was sequenced at the JGI but at a later
time, so the Illumina MiSeq platform and a primer set (515F, GTGCCA
GCMGCCGCGGTAA; 806R, GGACTACHVGGGTWTCTAAT) that
targeted the V4 variable region were used. Shotgun sequencing also was
done by JGI using Illumina GAII platforms for the first set and HiSeq 2500
with 250-bp insert libraries and two 150-bp reads for the second set. We
had about 8 Gb of data for the first set and about 300 Gb of data each for
corn and Miscanthus for the second set.

Data preprocessing. Data preprocessing is necessary for both shotgun
and amplicon data due to sequencing errors. However, it is not included
as part of the core pipeline, because users have their own preferences. We
trimmed trailing bases with quality score 2, called the read segment quality
control indicator (encoded by ASCII 66 “B” in Illumina GAII or ASCII 35
“#” in Illumina HiSeq shotgun data), and discarded reads shorter than 30
bp and with “N.” The reads then were quality trimmed with fastq-mcf
(version 1.04.662) (http://code.google.com/p/ea-utils) with “-l 50 -q 30
-w 4 -x 10 -max-ns 0 -X.” The paired-end reads overlapping by more than
10 bp were assembled into one long read by FLASH (version 1.2.7) (30)
with “-m 10 -M 120 -x 0.20 -r 140 -f 250 -s 25.” Roche 454 pyrotag
amplicon data were processed using the RDP Pipeline PIPELINE INITIAL
PROCESS and CHIMERA CHECK tools (6). Reads were sequenced from
the reverse primer end to the forward primer end. Since the targeted
region is about 467 bp (926F/1392R), most reads were not long enough to
reach the forward primer. Thus, only the reverse primer product was used
for quality trimming. The minimum length was set to 400 bp, and defaults
were used for other parameters.

Building SSU and LSU rRNA gene models. We quality trimmed
SILVA (7) SSU and LSU Ref NR database (version 115) sequences by
discarding all sequences with ambiguous DNA bases and converting U to
T. We then clustered them at a 97% similarity cutoff using pick_otus.py
(default with UCLUST) and pick_rep_set.py from QIIME (version 1.8.0)
(20). We chose the longest representative in each OTU to be further clus-
tered at an 80% similarity cutoff. We collected the longest sequence in
each OTU, resulting in 4,027 representative sequences for the SSU rRNA
gene and 1,295 for the LSU rRNA gene to obtain a phylogenetically diverse
set of reference genes. We further grouped these sequences into two
groups, one combining Bacteria and Archaea and the other containing
only Eukaryota (see Discussion). Each group was used to make two
HMMs (hidden Markov models), one with sequences from a previous
step and the other with reverse complement, using hmmbuild in HMMER
version 3.1 (31). Finally, the HMM files were concatenated into a single

file for each gene. This step is not part of the pipeline, and the resulting
HMMs were included in the database of this pipeline.

Identification of rRNA gene fragments from metagenomic data. The
analysis framework is shown in Fig. S1 in the supplemental material, as are
the reasons for our choices of pipeline components. We searched Illumina
shotgun metagenomic data with hmmsearch in HMMER version 3.1 (31)
using the LSU and SSU HMMs. For testing the sensitivity of newly built
models, we analyzed our tool with meta-rna (16) and metaxa (18). We
used an E value of 10 for hmmsearch with the newly built HMMs. Meta-
rna (rna_hmm3.py) (the package was not assigned a version number; the
most recent version update, 21 October 2011, was used) was run with flags
“-k euk,bac,arc -e 0.00001” (16), and metaxa (metaxa_x) version 2.0.2 was
run with flags “–allow_single_domain 1e-5,0 -N 1 -E 1e-5.” A bulk soil
(SB1), a rhizosphere soil (M1), and a synthetic community sample (12)
were used as test data. We aligned the HMMER hits from the E value
cutoff of 10 using the multiple-sequence aligner align.seqs in mothur
(version 1.33.3) (32). For SSU rRNA gene fragments, 18,491 full-length
SSU rRNA gene sequences (14,956 from Bacteria, 2,297 from Archaea, and
1,238 from Eukaryota) from the SILVA database (release 102) (7) were
downloaded from the mothur website (http://www.mothur.org/wiki
/Silva_reference_files) and used as the template with flags “threshold �
0.5” and “flip � t.” For LSU rRNA, multiple-sequence alignments (MSA)
of representative sequences of the SILVA LSU Ref NR database, clustered
at a 97% similarity cutoff, were used as the template with the same flags as
those for SSU. Based on alignment information provided in the align.seqs
output report file, those shotgun reads with more than 50% mapped to a
reference gene were designated SSU rRNA or LSU rRNA gene fragments.

Testing the effect of target region size and variable region on clus-
tering. We used shotgun data of a synthetic community comprised of 64
species, which were sequenced by the paired-end 100-bp method on an
Illumina HiSeq 2000 (12). For testing the effect of target region size on
clustering, we picked V4 with starting position 577 in Escherichia coli.
Sizes from 50 to 180 bp with a 10-bp increment were chosen. The mini-
mum read length was set to the target region size minus 5 bp if the region
size was less than 100 bp, and it was set to 95 bp when the region size was
greater than 100 bp. We used the pre.cluster command in mothur (19)
with 1 edit distance to collapse reads with errors and their original reads.
De novo clustering then was achieved by RDP McClust with an algorithm
for unweighted pair group method using average linkages (UPGMA) and
a minimum read overlapping length of 25 bp (33). We chose McClust as
the clustering tool due to its speed and memory efficiency (33, 34). We
chose V2, V3, V4, V5, V6, and V8, starting at positions 127, 427, 577, 787,
987, and 1227 in E. coli, respectively (35), to test the hypervariable region
effect on clustering results. Target region sizes of 80 bp and 120 bp and a
distance cutoff of 5% were chosen. Further, the analyses described above
also were applied to 16S rRNA genes from the 64 species comprising the
community to obtain the true OTU numbers.

Community structure comparison based on OTUs from de novo
clustering. For the clustering analysis of shotgun and amplicon data, 150
bases corresponding to the V8 region (E. coli positions 1227 to 1377) were
aligned. Reads shorter than 100 bp were removed from the alignment and
the remainder clustered using McClust with a minimum overlap of 25 bp
and the UPGMA method (6). The clustering result was converted to the
mothur format, and community structure comparisons were done using
make.shared with a label of 0.05, dist.shared(calc � thetayc), and the pcoa
command. E. coli positions 127 to 277, 577 to 727, and 997 to 1147 were
chosen for V2, V4, and V6, respectively, for comparisons of different
regions (35). Procrustes analysis as implemented in QIIME (20) was used
to transform V2, V6, and V8 PCoA (principal-coordinate analysis) results
and to minimize the distances between corresponding points in V4. The
bulk soil sample (SB1) was sequenced in six lanes from one Illumina plate
using DNA from the same extraction. We used these as technical replicates
for testing the reproducibility of de novo OTU-based analysis on shotgun
data. Since sequencing depth is critical for reproducibility testing, we
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pooled these into two samples of three lanes each, with the first three lanes
as SB1_123 and the remaining three lanes as SB1_456.

Comparison of OTU-based microbial community structures in-
ferred from shotgun and amplicon SSU rRNA gene sequences. The
abundance of each OTU in shotgun data and amplicon data (V6-V8 for
SB1 and V4 for M1) from the same DNA extraction were compared to
check the consistency between the two sequencing approaches. Pearson’s
correlation coefficient and linear regressions were used to evaluate the
correlation between the two types of data and between technical repli-
cates. All of the abundances of each OTU were increased by a pseudocount
of one to allow display on a log scale (avoiding zeros).

Comparison of taxonomy-based microbial community structures
inferred from shotgun and amplicon SSU rRNA gene sequences. The
SSU rRNA fragments from shotgun data and amplicon data were classi-
fied using RDP Classifier (21). The reference SSU rRNA genes from RDP
and SILVA are provided on the mothur website and were used as training
sets, with a bootstrap confidence cutoff for classification of 50%. Repre-
sentative sequences of SILVA LSU Ref NR clustered at a 97% similarity
cutoff were used as a training set with taxonomy information built from
the sequence file for the LSU rRNA gene. The bacterial taxonomy profiles
from shotgun data and amplicon data were compared at the phylum level.

Copy number correction. We used the SSU rRNA gene copy number
database in CopyRighter (36), which provides the copy number for each
taxon in the Greengenes database (37). In the taxonomic summary, the
abundance of each taxon is weighted by the inverse of its SSU rRNA gene
copy number. Similarly, in OTU-based analysis, the abundance of each
OTU is weighted by the inverse of SSU rRNA gene copy number of its
consensus taxon. Unclassified sequences are weighted by the inverse of the
average copy number of all taxa in the data set.

Implementation, reproducibility, and sequence data. The SSUsearch
pipeline can be found at https://github.com/dib-lab/SSUsearch as a tuto-
rial with ipython notebooks (38). Scripts for reproducing the figures in
this paper can be found at https://github.com/dib-lab/2014-ssu-search
/blob/master/analysis-in-paper.Makefile. The synthetic community data
for testing can be downloaded from the NCBI Sequence Read Archive
(SRA) under accession number SRR606249.

Accession numbers. The amplicon data for C1 to C7 and M1 to M7
have been deposited in the JGI genome portal under project identifier
(ID) 1025756 with library ID M2094 and M2113, respectively, and SB1
was deposited in the NCBI SRA under accession number SRX902929. The
shotgun data for the same three data sets were deposited in the JGI portal
(C1 to C7 are under project ID 1023764, 1023767, 1023770, 1023773,
1023776, 1023779, and 1023782, and M1 to M7 are under project ID
1023785, 1023788, 1023791, 1023794, 1023797, 1023800, and 1018623;
SB1 is under project ID 402775).

RESULTS

We developed an optimized pipeline that readily analyzes large
data sets (see Fig. S1 in the supplemental material). The pipeline
has two major steps: SSU rRNA gene fragment search and unsu-
pervised OTU analysis. HMMER-based methods search with
HMMs and scale with increasing sizes of SSU rRNA gene data-
bases (6), so we chose them for the first search step. We used
meta-rna (16) but could not run it on large data sets due to its poor
memory management. Therefore, we simplified and optimized
the approach used by meta-rna. Since the search step is still the
computational bottleneck (see Fig. S1), our interest here was to
make an improvement on search speed and memory efficiency
while retaining accuracy. Our implementation is about 4 times
faster and 100 times more memory efficient than meta-rna and is
10 times faster and 15 times more memory efficient than metaxa
(18) (Table 1). The speed improvement is realized from two mod-
ifications. (i) We reduce the number of HMMs to search with by
merging Bacteria and Archaea models. SSU rRNA genes are highly

conserved; thus, the merged model still has high sensitivity. Even
more so, we can increase the sensitivity by using a more relaxed E
value cutoff, since false positives are tolerable in this initial search
step. (ii) We use reverse-complement HMMs rather than reverse
complementing the reads, because the latter scales poorly with
large data sets. The newly built HMMs for Bacteria and Archaea
together and HMMs for Eukaryota cover most hits found by sep-
arate HMMs of the three domains (Bacteria, Archaea, and Eu-
karyota) in meta-rna in all three test data sets, the two soil data sets
in this study, and one synthetic community (Table 1). Our
method identified 15,566 (0.03%) of 44,787,632 quality-trimmed
and paired-end merged sequences as SSU rRNA gene fragments in
the bulk soil sample (SB1) and 112,402 (0.04%) of 274,060,925
reads in the first Miscanthus replicate (M1).

Unsupervised OTU analysis with shotgun data is not available
in any current pipeline, so we developed a method for OTU clus-
tering around a small region where all reads overlap. To show the
validity of our unsupervised method, we did tests on effects of
target region sizes and different variable regions with shotgun data
from a synthetic community. We found all region sizes from 50 bp
to 160 bp in V4 had an OTU number that approached the species
number at a distance cutoff of 4% or 5% (see Fig. S2 in the sup-
plemental material) when testing target region size effect on OTU
number. We also did a similar test with only full-length SSU rRNA
genes from 64 species to make sure the OTU number is close to the
species number and confirmed that the OTU number was close to
the species number (at a range of 50 to 60) when a cutoff of 0 to
0.06 was chosen (see Fig. S3). When the target region size was
larger than 170 bp, the clustering tool (McClust) (33) did not
cluster because the percentage of nonoverlapping reads exceeded
its threshold. On the basis of the results described above, we chose
80 bp or 120 bp as the target region size and a 5% distance cutoff
for testing different hypervariable regions. The number of OTUs
created in all variable regions is close to the real number of species
in the synthetic community except when using V3.

Reproducibility between technical replicates is important and
is a basic feature of a sequencing method (39, 40). We evaluated it
by comparing the correlation of OTU abundance between techni-
cal replicates from the bulk soil sample and found high correlation

TABLE 1 Comparison of search results from SSUsearch, metaxa, and
meta-rnaa

Search toolb Mock SB1 M1

SSUsearch (no. of hits) 6,432 2,789 2,612
Meta-rna (no. of hits) 6,455 2,781 2,600
Metaxa (no. of hits) 5,322 2,649 2,444
SSUsearch�meta-rna (no. of hits) 6,300 2,759 2,576
SSUsearch�metaxa (no. of hits) 5,286 2,642 2,442
metarna�metaxa (no. of hits) 5,304 2,649 2,436
SSUsearch�meta-rna�metaxa (no. of hits) 5,268 2,642 2,435
SSUsearch CPU time (min) 1.6 4 4.8
Meta-rna CPU time (min) 8.6 16.5 16.9
Metaxa CPU time (min) 17.5 47.2 34.8
SSUsearch memory (Mb) 35 33 30
Meta-rna memory (Mb) 3,406 4,005 4,234
Metaxa memory (Mb) 452 456 572
a Subsets of 5 million reads from mock (metagenome of a synthetic community of 48
Bacteria and 16 Archaea samples), SB1 (bulk soil metagenome), and M1 (Miscanthus
rhizosphere metagenome) were used as testing data.
b The symbol � indicates overlap.
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between them (Pearson’s correlation coefficient of 0.997). The
consistency was better for the more abundant OTUs (see Fig. S4A
in the supplemental material). Log transformation could reduce
the effect of high-abundance OTUs on the overall correlation.
Even with log-transformed abundance, the two replicates have a
Pearson’s correlation coefficient of 0.91 and linear regression (R2)
of 0.88 when OTUs with less than 25 total counts were discarded
(see Fig. S4B). The choice of a cutoff of 25 was chosen to compare
data to those from another study on amplicon reproducibility (41)
and as mentioned in Discussion.

We also compared OTU-based microbial community struc-
tures inferred from shotgun and amplicon SSU rRNA gene se-
quences. OTU abundances in shotgun and amplicon data, how-
ever, do not correlate as well (Pearson’s correlation coefficient of
0.87 for bulk soil sample SB1 [see Fig. S4C in the supplemental
material] and 0.58 for Miscanthus rhizosphere sample M1 [see Fig.
S4D]), showing that the amplicon and shotgun methods do not
provide the same information. The classification of OTUs with
total abundance higher than 10 and with a ratio between two data
types higher than 5-fold shows bias against Verrucomicrobia in the
bulk soil sample (SB1_PT) amplified by the V6-V8 primer, while it
shows a favorable bias for Verrucomicrobia in the rhizosphere
sample (M1_PT) amplified by the V4 primer. The classification
showed a bias against Actinobacteria in M1_PT amplified by the
V4 primer (see Fig. S5). These results were consistent with the
taxonomy-based comparison of the two data types (see below)
that suggested primer bias in amplicon data.

We applied ordination analysis to OTU tables from an unsu-
pervised analysis of corn and Miscanthus rhizosphere samples.
OTUs from shotgun and amplicon data both showed separation
of rhizosphere communities of corn and Miscanthus (Fig. 1, hor-
izontal dimension) as well as a significant difference between the
two data types (Fig. 1, vertical dimension), confirming the differ-
ence between shotgun and amplicon data. Significant separation

(P � 0.001 by analysis of molecular variance [AMOVA] test in
mothur) of corn and Miscanthus samples also was observed when
V2, V4, V6, and V8 shotgun data were used for clustering (Fig. 2),
but the sample groupings were the same for all variable regions.
Figures 1 and 2 showed that the dispersion among the seven corn
replicates was much higher than that for the Miscanthus replicates.
Miscanthus samples had higher alpha diversity than corn samples,
as shown for each of the V2, V4, V6, and V8 regions, although
there were variations among these regions (Fig. 3).

We compared the taxonomy-based microbial community
structures inferred from shotgun data with those from amplicon
SSU rRNA gene sequences (12,163 amplicons for SB1 and 60,148
amplicons for M1), and we confirmed known primer biases and
revealed a new bias. Before comparing two data types, we looked
at the taxonomy profile of shotgun data using different variable
regions. Shotgun data mapped to different variable regions show
similar taxonomies at the bacterial phylum level (Pearson’s corre-
lation coefficient of �0.96), except that V6 has more unclassified
sequences (see Fig. S6 in the supplemental material). Since differ-
ent variable regions may provide different levels of taxonomic
precision for certain groups (42), taxonomy information from all
regions may better represent the taxonomy profile. Thus, we used
all SSU rRNA gene fragments for taxonomy comparison with am-
plicon data. Both shotgun and amplicon data show Actinobacteria,
Proteobacteria, and Acidobacteria as the three most abundant
phyla, as is expected for soil (43). Since shotgun data are more
accurate at estimating community structure than other methods,
we accepted the shotgun data as the reference (9, 12). The 926F/
1392R (V6-V8) primer set is biased against Verrucomicrobia (0.3%
in amplicon data versus 5.8% in shotgun data by RDP database) in
bulk soil sample SB1 (Fig. 4), and the 515F/806R (V4) primer set is
biased against Actinobacteria (11.6% in amplicon data versus
26.6% in shotgun data) and in favor of Verrucomicrobia (5.9% in

FIG 1 Principal-coordinate analysis (PCoA) of amplicon- and shotgun-derived data from seven field replicates. There are significant differences between
amplicon (filled)- and shotgun (unfilled)-derived data (along the y axis) and between corn (circle) and Miscanthus (square) rhizosphere samples (along the x axis)
(P � 0.001 by AMOVA [analysis of molecular variance]). PCoA was applied to the OTU table that resulted from clustering with shotgun data and amplicon data
using 150 bp of the V4 region. Labels with suffix “_PT” indicate amplicon data, and others indicate shotgun data.
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amplicon data versus 3.2% in shotgun data) in rhizosphere sample
M1 (Fig. 4).

To take advantage of the fact that shotgun data are untargeted,
we retrieved and classified the LSU rRNA genes, which are cotran-
scribed with SSU rRNA genes. Their taxonomy profile was similar
to that of SSU rRNA genes (Pearson’s correlation coefficient of
0.87 for SB1 and 0.91 for M1), except that more reads (19.6%)

remain unclassified (Fig. 4). This is expected because of the much
lower number of reference LSU rRNA genes in the SILVA
database. The two genes show consistent community profiles at
the bacterial phylum level, and they also confirm the known
primer bias against Verrucomicrobia in the 926F/1392R (V6-V8)
primer set and that against Actinobacteria in the 515F/806R
(V4) primer set (Fig. 4). Further, both the LSU and SSU HMMs

FIG 2 Comparison of ordination analysis with different variable regions. PCoA of OTUs from different SSU rRNA variable regions (V2, V4, V6, and V8) was
applied on corn (“_C”) and Miscanthus (“_M”) rhizosphere samples. Different colors indicate the seven replicates. OTU tables from the clustering of shotgun
data using 150 bp of V2, V4, V6, and V8 regions were used for PCoA, and Procrustes analysis in QIIME was used to transform the PCoA results from different
regions and plot them in the same figure.

FIG 3 Alpha diversity comparisons between corn and Miscanthus samples using V2, V4, V6, and V8 regions. All variable regions showed Miscanthus samples are
more diverse than corn samples, even though there was variation of diversity among rRNA gene regions. Alpha diversity was calculated with inverse Simpson
(Invsimpson) using OTUs resulting from clustering with different variable regions.
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show the ability to identify members of the Eukaryota and give
about the same taxonomy profile at the domain level (see Fig. S7 in
the supplemental material). It is worth noting that both LSU and
SSU shotgun data show Archaea to be twice as numerous (2%
versus 1%) in the bulk soil as in the rhizosphere and that Eu-
karyota were much more numerous (6% versus 1%) in the Mis-
canthus rhizosphere soil than in the bulk soil (see Fig. S7). A higher
fungal percentage (2.54% versus 0.39%), fungus/bacterium ratio
(0.027 versus 0.004), and arbuscular mycorrhizal fungus (AMF)
percentage in fungi (0.18% versus 0) were found in the rhizo-
sphere sample (M1) than in the bulk soil sample (SB1) (see Table
S1 in the supplemental material). Copy correction was applied to
two soil samples (SB1 and M1). Both samples showed that Firmi-
cutes and Bacteroidetes had the highest fold change after copy
number correction (see Fig. S8). Despite copy number correction,
the clustering of our soil samples did not change (see Fig. S9)
compared to that without copy number correction (Fig. 1), prob-
ably because of the low proportion of taxa with large rrn number
corrections.

DISCUSSION

We present, characterize, and validate an efficient method for re-
trieving and analyzing SSU rRNA gene fragments from shotgun
metagenomic sequences. The pipeline enables unsupervised di-
versity analysis with copy number correction on multiple variable
regions, has the scalability to handle large soil metagenomes, is
expandable to other phylogenetic marker genes, and is publicly
available on GitHub.

We apply a two-step approach for retrieving SSU rRNA gene
fragments, a loose HMM filtering step followed by a more strin-

gent step that screens by identity to the best-match reference. The
first step leverages HMMER (31); thus, it should have better scal-
ability than existing shotgun analysis pipelines that use BLAST-
like tools such as MG-RAST (44). MG-RAST annotates shotgun
reads by BLAT search against rRNA databases, and the taxonomy
of reads is inferred from the best hit or least common ancestor of
several top hits (24, 45, 46). BLAT or BLAST-like tools are not
scalable for large data sets and must be run in parallel on large
computer clusters, because BLAST-like tools typically do pairwise
comparisons of reads against large and growing rRNA databases,
such as RDP, SILVA, and Greengenes (6, 7, 37), while HMM-
based methods compare reads to only a fixed number of models
(commonly one for each domain) and are more scalable (44).
Moreover, these pipelines lack unsupervised community analysis.
An HMM-based search has been used before, as it is fast and
sensitive for rrn retrieval (16–18, 22), and current existing imple-
mentations, such as meta-rna, RNASelector, and metaxa, all are
wrappers around HMMER (31). We chose meta-rna and metaxa
for comparison, because RNASelector can run only in a graphic
interface that is not suitable for large data sets.

The second step evaluates hmmsearch results based on identity
to their best-match reference and also prepares the alignment of
SSU RNA gene fragments for clustering. Since there is no clear
sequence identity threshold for SSU rRNA genes, the choice of
identity cutoff is arbitrary (the default is 50%). This is also a com-
mon practice for amplicon analysis platforms, where reads with
low identity to reference sequences are discarded prior to cluster-
ing (19, 20). For consistency in comparison, sequences in our
amplicon data sets with less than 50% identity to reference se-
quences also are discarded. An alignment of the SSU rRNA gene

FIG 4 Taxonomy profiles of bacterial phyla of shotgun fragments from SSU and LSU rRNA genes and of amplicon reads. Classifications were done using both
RDP and SILVA reference databases. The suffix “_PT” indicates amplicon data. The lower graph depicts bulk soil sample (SB1); the amplicon data used the V6-V8
primer set (515F/806R) and showed fewer Verrucomicrobia detected using both databases. The upper graph depicts the rhizosphere sample (M1), and its
amplicon data used the V4 primer set (515F/806R) and showed fewer Actinobacteria and more Verrucomicrobia using both databases.
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fragments is essential for the later unsupervised analyses. Com-
pared to methods that use only the 16S rRNA gene in E. coli as an
alignment template (47), our method takes advantage of the rich
phylogenetic diversity of SSU rRNA genes provided by the SILVA
database. Increasing the number of reference sequences can im-
prove the quality of alignment but also linearly increases the mem-
ory required (32, 48).

Our unsupervised analysis with shotgun data is a novel and
important part of the pipeline. Our tests show that regions as small
as 50 bp can be applied to clustering. Thus, short reads around 50
bp can be applied to this method as long as there are sufficient
numbers of reads aligned to the target region (sequencing depth is
a limiting factor; see below). This is consistent with pilot studies
from 454 amplicon sequencing (5, 49). When sequencing depth is
limited, there is flexibility to control the number of reads to in-
clude for clustering by adjusting the target region size and read
length cutoff within certain limits (see Fig. S2B in the supplemen-
tal material). The caveat of using very short or very large target
regions is that the overlapping portion of reads will decrease; thus,
there will be a decrease in the accuracy of clustering and the impact
of sequencing error will increase. For example, an error in a 50-bp
read can cause 2% distance; accordingly, we need to set a larger
distance cutoff for clustering. In addition, we can obtain longer
sequences from overlapping paired ends, as shown in our soil data
(see Fig. S10). Thus, reads from Illumina shotgun data (ranging
from 75 to 250 bp) can be used for unsupervised analysis. Note
that the flexibility on the choice of variable region for analysis is
another advantage of shotgun data (see Fig. S2C).

We also found good reproducibility of OTU abundance be-
tween technical replicates, which is critical for the validity of our
method (see Fig. S4A in the supplemental material). Generally,
OTU-based analysis provides higher resolution than taxonomy-
based diversity analysis for community comparison, largely due to
the databases lacking reference sequences from uncultured mi-
crobes (50). The high correlation of OTU abundance in two tech-
nical replicates shows the reproducibility of the analysis of shot-
gun data, which is comparable to the reproducibility of amplicon
data shown in another study in terms of Pearson’s correlation
coefficient and linear regression (R2) (41). Further, comparison of
OTU abundances in shotgun data and amplicon data sequenced
from the same DNA extraction also show that many OTUs have
inconsistent abundances between the two types of data (see Fig.
S4C and D), which agrees with the differences seen in the taxon-
omy-based comparison (Fig. 4).

Community comparison by ordination methods such as PCoA
and NMDS (nonmetric multidimentional scaling) is one of the
most common analyses in microbial ecology. To the best of our
knowledge, the methods used in two previous studies (47, 51) are
the only existing tools that are designed to deal with the clustering
of SSU rRNA gene fragments from Illumina shotgun data. The
method used in the first study could result in poor alignment by
using only the 16S rRNA gene in E. coli as the alignment template.
The method used in the second study (PhylOTU) was applied to
larger shotgun sequences from Sanger sequencing. It determines
the OTU clustering of SSU rRNA gene fragments aligned over the
whole gene length, which can be problematic, because fragments
aligned to different regions do not overlap and the clustering re-
sults are not reliable, even though the reference sequences in-
cluded in the clustering process can improve the results. Since our
tests show that a hypervariable region as small as 50 bp can be used

for unsupervised analyses (see Fig. S2A and C in the supplemental
material), we made sure all of the sequences overlapped by picking
one small region (150 bp), and all sequences included in clustering
have lengths longer than 100 bp in our clustering method. In
addition, longer reads obtained by assembling overlapping
paired-end reads (see Fig. S10) can make use of more overlap
among reads and are more suitable for clustering. As read lengths
increase with the improvement of sequencing technology, larger
regions can be chosen and the clustering results will be even more
reliable. Also, shotgun data provide the flexibility to choose any
variable region (Fig. 2 and 3; also see Fig. S2C and S6), and the
consistency of results from different variable regions provides
more confidence in the biological conclusions as well as the
method itself.

Primer bias is a major limitation of amplicon methods, and it
was apparent in our comparisons of community profiles from
amplicon versus shotgun data (Fig. 4). Commonly, it is difficult to
tell if a bias is caused by primer or DNA extraction. The paired
amplicon and shotgun data from the same DNA extract provide us
a new opportunity to evaluate this issue, since the difference is
only from the sequencing step. We used two main SSU rRNA gene
databases, RDP and SILVA, to make sure the taxonomy distribu-
tion was not biased by the choice of reference databases, and we
further confirmed by taxonomy the distribution of the LSU rRNA
gene. The bias against Verrucomicrobia with V6-V8 primers is
consistent with other studies showing that the abundance of Ver-
rucomicrobia in soil samples is underestimated due to primer bias
(8). Meanwhile, the bias toward Verrucomicrobia with V4 primers
agrees with studies showing that the V4 primer set has better cov-
erage of Verrucomicrobia (8). Furthermore, the V4 primer set
shows bias against Actinobacteria. The V4 primer set has been
reported to cover 92.4% of Actinobacteria in reference databases,
the lowest level of coverage among nine common bacterial phyla
(8). Bias against Actinobacteria also has been reported in a study
on a synthetic community where no primer mismatch was found
with members from Actinobacteria (12), and another study on
environmental samples using Sanger sequencing (24F/1492R)
(52) suggested that the in silico evaluation of primers is not suffi-
cient and that factors other than primer mismatch are causing the
bias, for example, competition between primers and melting tem-
perature (53). Thus, primer bias detection by comparing paired
amplicon and shotgun data is superior to methods that only
search primers in the reference databases.

Another advantage of our method over amplicon approaches
is that we can identify the SSU rRNA gene from Bacteria, Archaea,
and Eukaryota. Fungi are of special interest in microbial ecology
due their critical roles in ecosystems (54, 55). The fungus/bacte-
rium ratio is an important indicator of C/N ratio and soil health
(56, 57). Our shotgun metagenome (DNA based) shows a fungus/
bacterium ratio of 0.004 in bulk soil (SB1) and 0.027 in rhizo-
sphere soil (M1) (see Table S1 in the supplemental material),
while studies using phospholipid fatty acid analysis (PLFA) at the
same sampling site (KBS) typically show ratios of 1 to 1.3 (58). The
difference can be explained by the higher biomass of fungi relative
to that of DNA, since some fungal hyphae may not be filled with
nuclei. In addition, we also found higher percentages of AMF of
rhizosphere soil (M1) than of bulk soil (SB1), which is consistent
with their symbiotic relationship with grass roots.

We also show that copy number correction can be achieved in
our pipeline. Gene copy number is another source of bias that
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limits one’s ability to accurately profile microbial communities.
There are up to 15 SSU rRNA gene copies in some bacteria and up
to 5 in archaea (59). This pipeline utilizes the SSU rRNA copy
database in CopyRighter (36). As expected, Firmicutes in soil sam-
ples have the highest fold change (see Fig. S8 in the supplemental
material). However, due to their low proportion in these soils, the
impact of copy number correction on the overall community pro-
file was minor (see Fig. S9). Copy number correction, however, is
still an unresolved issue, because SSU rRNA gene copy number
data for most species and/or OTUs are lacking and copy number
can be incorrect even for species with complete genome sequences
because of the misassembly of these repeated regions.

Sequencing depth is another important factor in considering
this method for diversity analysis. The percentage of SSU rRNA
gene fragments in shotgun data varies depending on the SSU
rRNA gene copy number and genome size of each member. In our
bulk soil sample (SB1) and the Miscanthus rhizosphere soil sample
(M1), we classified about 0.03% and 0.04%, respectively, of the
total shotgun data as SSU rRNA. In an ideal situation we want to
obtain enough SSU rRNA gene fragments to see saturation of the
rarefaction curve in OTU-based analysis, which is difficult for soil
samples because of their high diversity and the presence of se-
quencing error. However, studies have shown that near-satura-
tion sequencing of SSU rRNA amplicons is not necessary for beta-
diversity analysis (4, 60). Thus, the empirical fold coverage of
3,000, based on the whole length (about 1,500 bp) of the SSU
rRNA gene, is suggested for surface soil samples, which require
11.2 Gb [i.e., 1,500 bp � 3,000 bp � 0.04%] of shotgun data,
assuming the SSU rRNA gene comprises about 0.04% of total
data.

In this study, the LSU rRNA gene was used mainly as confir-
mation for SSU rRNA gene-based diversity analysis (Fig. 4; also
see Fig. S7 in the supplemental material). However, the LSU rRNA
gene offers additional stretches of variable and characteristic se-
quence regions due to its longer sequence length and yields better
phylogenetic resolution (61). For this reason and because there are
more available references for fungi, the LSU rRNA gene is used
more commonly for fungal community studies (62–65). Cur-
rently, the use of the LSU rRNA gene is limited by reference se-
quences and available universal primer sets (61), but its increased
resolution should not be overlooked, since a too-limited resolu-
tion of the SSU rRNA gene is a barrier in many ecological studies
(54). In the future, other single-copy genes with phylogenetic ref-
erences and finer resolution, such as rplB, gyrB, and recA, also
could be recovered from metagenomic sequences and used for
community structure analysis by a similar pipeline (66).

Conclusions. We developed a fast and efficient pipeline that
enables unsupervised diversity analysis with Illumina shotgun
data. The pipeline has the scalability to analyze large data sets (5
central processing unit hours for 38 Gb data, with 4.8 Gb peak
memory) and can be run on most desktops with more than 5 GB
of memory. Since SSU rRNA-based community analysis is an im-
portant method in microbial ecology, this method can save proj-
ects with existing shotgun sequence data from the additional cost
of SSU rRNA amplicon sequencing. Moreover, shotgun sequenc-
ing is not as affected by primer bias and chimeras as amplicon
sequencing; thus, it can improve the measurement of microbial
community structure. As read length and sequencing depth in-
crease, longer and more SSU rRNA gene fragments can be recov-

ered. Thus, clustering and diversity analysis by this pipeline will
become even more reliable.
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