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Abstract.—Marginal likelihood estimates to compare models using Bayes factors frequently accompany Bayesian
phylogenetic inference. Approaches to estimate marginal likelihoods have garnered increased attention over the past decade.
In particular, the introduction of path sampling (PS) and stepping-stone sampling (SS) into Bayesian phylogenetics has
tremendously improved the accuracy of model selection. These sampling techniques are now used to evaluate complex
evolutionary and population genetic models on empirical data sets, but considerable computational demands hamper
their widespread adoption. Further, when very diffuse, but proper priors are specified for model parameters, numerical
issues complicate the exploration of the priors, a necessary step in marginal likelihood estimation using PS or SS. To avoid
such instabilities, generalized SS (GSS) has recently been proposed, introducing the concept of “working distributions”
to facilitate—or shorten—the integration process that underlies marginal likelihood estimation. However, the need to
fix the tree topology currently limits GSS in a coalescent-based framework. Here, we extend GSS by relaxing the fixed
underlying tree topology assumption. To this purpose, we introduce a “working” distribution on the space of genealogies,
which enables estimating marginal likelihoods while accommodating phylogenetic uncertainty. We propose two different
“working” distributions that help GSS to outperform PS and SS in terms of accuracy when comparing demographic and
evolutionary models applied to synthetic data and real-world examples. Further, we show that the use of very diffuse priors
can lead to a considerable overestimation in marginal likelihood when using PS and SS, while still retrieving the correct
marginal likelihood using both GSS approaches. The methods used in this article are available in BEAST, a powerful user-
friendly software package to perform Bayesian evolutionary analyses. [Bayes factor; Bayesian inference; coalescent model;
marginal likelihood; MCMC; phylogenetics; Working distribution.]

The past decades have witnessed an increasing
popularity of Bayesian inference in molecular
phylogenetics, with a key role for Markov chain Monte
Carlo (MCMC) in estimating posterior distributions
under complex phylogenetic models (Yang and Rannala
1997). The computational demands associated with
increasing model complexity and data quantity
considered in modern phylogenetics have restricted
the ability to assess model performance. In order to
compare alternative models, a well-developed statistical
theory such as model selection—which allows models
to be evaluated according to objective criteria (Suchard
et al. 2001; Huelsenbeck et al. 2001; Steel 2005)—should
complement phylogenetic inference. Such approaches
penalize the addition of extra parameters, unless there
is a sufficiently impressive improvement in fit between
model and data. The aim of model selection is hence
not to find the true model that generated the data, but
to select a model that best balances simplicity with
flexibility and captures the key features of the biological
process that generated the data (Steel 2005).

A standard approach to perform model selection in
a Bayesian phylogenetic framework operates through
the evaluation of Bayes factors (Sinsheimer et al. 1996;
Suchard et al. 2001). The Bayes factor is a ratio of two
marginal likelihoods (i.e., two normalizing constants of
the form p(Y |M), with Y the observed data and M an
evolutionary model under evaluation), obtained for the

two models, M0 and M1, under comparison (Jeffreys
1935):

B10 = p(Y |M1)
p(Y |M0)

. (1)

Although standard MCMC inference of posterior
distributions avoids estimating the normalization
constant or marginal likelihood p(Y |M), it is of primary
importance in evaluating model fit and calculating Bayes
factors because it measures the average fit of a model
to the data. Calculation of the marginal likelihood of
model M requires integration of its likelihood across
model parameter values �, weighted by the model’s
prior distribution

p(Y |M)=
∫
�∈�

p(Y |�,M)p(� |M)d�. (2)

Among several models, one chooses the one of greatest
marginal likelihood.

The introduction of path sampling (PS) into the fields
of phylogenetics and molecular evolution has sparked
renewed interest in estimating marginal likelihoods,
which had been frequently approximated using a
harmonic mean estimator (HME), but often with
questionable results. Lartillot and Philippe (2006)
compare PS to three variants of importance sampling
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(IS): integrating the likelihood against the model prior
(ILP), the HME and the stabilized HME. To this end,
they use a Gaussian model with different dimensions
and an evolutionary model on a fixed tree for which
exact calculation of the marginal likelihood is available.
In these comparisons, PS outperforms the IS variants
across all scenarios, remaining well-behaved in cases
with high dimensions where all three IS methods fail,
even when using large numbers of costly posterior
samples. Borrowing ideas from both IS and PS, Xie
et al. (2011) further improve upon PS in their stepping-
stone sampling (SS) approach and demonstrate that
for a Gaussian model SS yields a substantially less
biased estimator than PS. Importantly, SS also requires
significantly fewer path steps than PS to estimate the
marginal likelihood for realistic phylogenetic models
with an acceptably small discretization bias.

Upon introduction, very little was known about
the performance and computational issues of these
methods, in particular when complex evolutionary
and population genetic models needed to be fit to
sizeable empirical data sets. To clarify these issues,
Baele et al. (2012) specifically investigate the performance
of PS and SS for comparing models of demographic
change and relaxed molecular clocks based on both
synthetic data and empirical examples. The authors
show that PS and SS substantially outperform the
posterior-based estimators (HME and sHME), leading
PS and SS to correct erroneous conclusions drawn in
previous analyses for three real-world data sets. Baele
et al. (2012) also provide the implementation of these
computationally demanding techniques into BEAST
(Drummond et al. 2012), a cross-platform program for
Bayesian analysis of molecular sequences via MCMC
that offers a multitude of different models, such as
autocorrelated and uncorrelated relaxed clock models,
substitution models including heterogeneity across sites,
coalescent models of population size and growth and
phylogeographic models, with support for a flexible
choice of prior specifications on model parameters. The
availability of these techniques in a commonly used
phylogenetic package has considerably contributed to a
more widespread use in the field.

Despite these advances, the estimation of marginal
likelihoods remains a challenging task, mostly because of
computational restrictions. The BEAST implementation
requires an initial burn-in to the posterior (for which
the standard Bayesian analysis to estimate the models’
parameters can be employed) and then evaluates a series
of power posteriors along a path between posterior
and prior using MCMC. In addition to the general
computational burden of this routine, collecting samples
from vague priors (or from distributions that are close,
in the Kullback–Leibler (KL) sense, to the prior) through
MCMC is notoriously difficult and time-consuming.
Finally, numerical instabilities can arise when improper
priors are used (Baele et al. 2013b), which lead to
improper marginal likelihoods.

Recently, a new approach to estimate marginal
likelihoods referred to as generalized stepping-stone

sampling (GSS) has been proposed by Fan et al. (2011).
This method generalizes the standard SS approach
(Xie et al. 2011) by making use of a “working”
distribution that is parameterized using samples from
the posterior distribution. The authors show that if
this working distribution exactly matches the posterior
distribution, the marginal likelihood can be estimated
exactly. GSS is considerably more efficient and does
not require sampling from distributions close to the
true prior, which can be problematic for vague prior
specification. Despite the advantages GSS has to offer,
it is currently of little use in a Bayesian coalescent-
based framework that considers the genealogy to be
unknown as it is currently restricted to fixed genealogies.
Note, however, that Holder et al. (2014) provide a
working distribution for tree topologies outside of
a coalescent framework. Integrating over plausible
genealogies complicates GSS because it requires defining
a working distribution jointly for topologies and branch
lengths that provides a good approximation to the
posterior.

In this article, we propose two approaches to relax
the restriction of fixing the underlying tree topology.
A first approach constructs a matching “working”
demographic distribution to the demographic model
that is specified as a tree prior in a Bayesian
genealogical analysis. The second approach aims at
a more general design and constructs a product of
exponential distributions based on the intercoalescent
times of the underlying genealogy in each iteration.
Using simulated Gaussian data, for which we can
analytically calculate the true marginal likelihood, we
show that GSS consistently estimates accurate marginal
likelihoods even when employing very diffuse priors
and outperforms the sHME, PS, and SS. For phylogenetic
test cases where we are able to accurately estimate the
true log marginal likelihood, we demonstrate similar
superior performance of GSS. A large coalescent-
based simulation study also reveals a higher accuracy
for GSS compared with PS/SS when accommodating
phylogenetic uncertainty, although not to the same
extent as in the case of fixed topologies (Fan et al. 2011).
Analyses of empirical data sets show that when assessing
the model fit for standard demographic models and
substitution models, PS/SS overestimate the marginal
likelihood compared with GSS when very diffuse priors
are used; that may influence the outcome of the model
selection process.

METHODS

Importance Sampling Estimators
Monte Carlo integration of the likelihood against

the model prior (ILP), also known as independence
sampling from the prior (ISP), produces an unbiased
estimate of the (log) marginal likelihood. This
importance sampling estimator uses the prior as
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importance sampling distribution:

p(Y |M)� 1
K

K∑
k=1

p(Y |�k,M), (3)

where {�1, ... ,�K} are independent draws from p(� |
M). This approach is rarely used when performing
model selection in phylogenetics because it requires
an enormous sampling effort to estimate marginal
likelihoods, even when the data sets are limited. This is
due to the observation that the high-likelihood region
can be very concentrated. So, except for very large
sampling efforts, the sample drawn from the prior is
unlikely to contain sufficient draws from the high-
likelihood region, resulting in a very poor estimate of
the marginal likelihood (Lartillot and Philippe 2006).

The harmonic mean estimators (HME and sHME)
constitute a class of (log) marginal likelihood estimators
that only require samples from the posterior obtained by
a standard Bayesian phylogenetic analyses using MCMC
under a particular model (Newton and Raftery 1994). If
one collects n samples {�1, ... ,�n} from the posterior, the
HME is estimated as follows

p(Y |M)= n∑n
k=1

1
p(Y|�k,M)

. (4)

To circumvent the HME’s infinite variance in many
practical situations, Newton and Raftery (1994)
proposed the stabilized harmonic mean estimator
(sHME), based on a mixture of the prior and the
posterior, although in practice only samples from the
posterior are used in computing the sHME.

PS Estimators
Most implementations of PS rely on drawing MCMC

samples from a series of distributions, each of which is
a power posterior differing only in its power, along the
path going from the prior to the unnormalized posterior
defined by the model M. Both Lartillot and Philippe
(2006) and Xie et al. (2011) define this path to be:

q�(�)=p(Y |�,M)�p(� |M), (5)

where p(Y |�,M) is the likelihood function and p(� |M)
the prior. Hence, the power posterior is equivalent to the
posterior distribution when �=1.0 and reduces to the
prior distribution when �=0.0.

Different approaches have been proposed to
determinine the values of �, that is the actual “powers”
of the power posteriors from which one samples
(Lartillot and Philippe 2006; Lepage et al. 2007; Friel
and Petitt 2008). Xie et al. (2011) find that the efficiency
of PS can be drastically improved by choosing � values
according to evenly spaced quantiles of a Beta(�,1.0)
distribution rather than spacing � values evenly from 0.0
to 1.0; this represents a generalization of the approach
by Friel and Petitt (2008). Xie et al. (2011) suggest using
a value of �=0.3, which results in half of the � values

evaluated being less than 0.1. The authors state that
the positive skewness of this distribution is useful
because (with sufficient and informative data) the
likelihood only begins losing control over the power
posterior for � values near 0, and at that point, the
target distribution changes rapidly from something
resembling the posterior to something resembling the
prior. Xie et al. (2011) have shown that SS has better
statistical properties and converges faster than PS,
elevating it to the current model selection approach of
choice in several software packages (Drummond et al.
2012; Ronquist et al. 2012).

Generalized stepping-stone sampling (GSS) involves
constructing a path between the unnormalized posterior
defined by the model M and a “working” distribution,
that is in practice a product of independent probability
densities parameterized using samples from the
posterior distribution. Fan et al. (2011) define this path
as:

q�(�)=[p(Y |�,M)p(� |M)
]�[p0(� |M)

]1−�
, (6)

where p0(� |M) is the working distribution. As with
PS and SS, setting � to 1 yields the posterior, but
setting � to 0 now yields the “working” distribution.
Using a working distribution removes the problem of
having to adequately sample from vague distributions
(power posteriors near �=0) in PS and SS. In addition,
a working distribution that closely approximates the
posterior yields a shorter path to integrate over and
therefore involves less computational effort to accurately
estimate the marginal likelihood (Fan et al. 2011).

Fan et al. (2011) propose an approach to match
moments, for example, the marginal posterior sample
mean and variance, to parameterize an independent
working distribution for a parameter or block of
parameters. For the nondemographic evolutionary
parameters (see next section), we propose to use kernel
density estimation (KDE) to compose the working
distribution. KDE is a nonparametric approach to
estimate the probability density function of a random
variable. Let X1,X2, ... ,Xn denote a sample of size n of
a random variable with unknown density f . The kernel
density estimate of f at the point x is

f̂h(x)= 1
nh

n∑
i=1

K
(

x−Xi
h

)
, (7)

where the kernel K satisfies
∫

K(x)dx=1 and the
smoothing parameter h is known as the bandwidth (see
e.g., Sheather (2004)). In practice, one generally chooses
K to be a unimodal probability density on the same
support as the original random variable after possible
transformation. A popular choice for K is the normal
kernel, namely:

K(y)= 1√
2�

exp

(
−y2

2

)
. (8)

We have implemented KDE in BEAST (Drummond et al.
2012) and consider normal kernels following appropriate
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transformation as necessary, with the bandwidth being
automatically set at its optimal value h:

h=
(

4�̂5

3n

) 1
5

, (9)

where �̂ is standard deviation of the transformed
samples (Silverman 1986).

Matching Coalescent Model Working Distribution
Our first approach to construct a working distribution

for the coalescent process focuses on providing
a “working” coalescent model that summarizes
the inferred parameters of the demographic prior
assumption. We propose to first match the “working”
coalescent model to the prior coalescent model, for
example, when the prior coalescent model assumes
a constant population size model, we also assume
a constant population size model as the working
distribution. Further, the parameters describing the
working demographic distribution are set to their
respective posterior empirical sample means, obtained
from the parameter estimates of the preceding MCMC
run, thereby informing the working distribution
on plausible coalescent trees and hence shortening
the path from posterior to working distribution in
comparison to a diffuse prior. We denote this approach
as generalized stepping-stone sampling using a
matching coalescent model (GSS MCM). This approach
readily applies to several parametric demographic
models (in BEAST), but it may be cumbersome to
match a flexible nonparametric coalescent prior—such
as the Bayesian skyride model (Minin et al. 2008)
or the Bayesian skygrid model (Gill et al. 2013)—
due to its large number of parameters. To provide a
working distribution for analyses incorporating more
complicated demographic models, we have developed
a second—more general—approach in the next section.

Product of Exponentials Working Distribution
Our second approach to construct a genealogical

working distribution borrows ideas from the
nonparametric Bayesian skyride model (Minin
et al. 2008). We start with a genealogy g relating n
sequences sampled at different time points s, in units
time. We describe the distribution for the genealogy
with “heterochronous” sequence data as the general
case, but it readily reduces to the simple case with
contemporaneous tips. Coalescent theory provides a
stochastic process that produces genealogies relating
these sampled sequences. The process starts at sampling
time t=0 and proceeds backward in time as t increases,
coalescing n individuals one pair at a time until the
time to the most recent common ancestor (TMRCA) of
the sample is reached. Define the intercoalescent times
u= (u2, ... ,un) induced by g, where uk = tk −tk−1, tk is

Number of Lineages:

41 w51w50 w52

u3 u4 u5

w30 w40

u2

w20

34343 12

w

t
1 t t t t2 3 4 5

FIGURE 1. Example of a genealogy with intercoalescent interval
notation. Times of coalescence and sampling events are depicted as
vertical dashed lines with numbers of lineages present at these times
shown above the lines. Below the genealogy, we mark the boundaries
of intercoalescent intervals together with their lengths (u2, ... ,u5). We
show how sampling events interrupt the intercoalescent intervals and
produce subintervals with lengths (w20, ... ,w52) at the bottom of the
figure.

the time of the (n−k)th coalescent event for k =2, ... ,n
and tn =0 is the time of the most recently sampled
sequence(s) (Fig. 1).

Branch lengths of g satisfy constraints imposed by
the sampling times s. The sampling times divide
each intercoalescent interval k into subintervals wk =
(wk0, ... ,wkjk ), where jk ∈0, ... ,n−1 is the number of
distinct sampling times occurring during interval k,
with:

jk∑
j=0

wkj =uk, (10)

where the interval that ends with the (n−k)th coalescent
event always being indexed by k0. To each subinterval
kj, we attach the number of lineages nkj present in the
genealogy at the beginning of this interval.

The number of intercoalescent times equals n−1 for
n sampled sequences for any genealogy g, regardless of
the actual underlying bifurcating tree. We first collect m
samples from the posterior for each intercoalescent time
uk = tk −tk−1 (with tk in practice typically expressed in
years). Let �̂k be the posterior mean of the intercoalescent
time k weighted by

(nk
2
)

(with nk the number of lineages
in the k-th intercoalescent interval), and �̂= (�̂2, ... ,�̂n):

�̂k = 1
m

m∑
k=1

(
nk
2

)
(tk −tk−1). (11)

In the event that one or more sampling events occur
during intercoalescent time k, the expression for �̂k
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becomes:

�̂k = 1
m

m∑
k=1

∑jk
j=0nkj(nkj −1)wkj

2
. (12)

In other words, in each iteration of the posterior
exploration we keep track of the maximum-likelihood
estimate (MLE) of each of the effective population sizes
�̂k of the Bayesian skyride model (see Equation (5) in
Minin et al. (2008)):

�̂k =
∑jk

j=0nkj(nkj −1)wkj

2
. (13)

The estimates of �̂k are then smoothed using a LOESS
(local polynomial regression fitting) estimator, to mimic
the smoothing prior used in the Bayesian skyride model.
The resulting values are subsequently applied as �̂k
in Equation 17 (see below) to construct the working
distribution.

Let 	̂k be the empirical variance of the intercoalescent
time k weighted by

(nk
2
)

(with nk the number of lineages
in the k-th intercoalescent interval), and 	̂= (	̂2, ... ,	̂n):

	̂k = 1
m

m∑
k=1

[(
nk
2

)
(tk −tk−1)−�̂k

]2
. (14)

As in Minin et al. (2008), we distinguish between
coalescent and sampling events. In our notation,
subintervals labeled as k0 end with a coalescent
event. Each such subinterval contributes an exponential
density to the coalescent likelihood, where the
exponential rate depends on the number of lineages
present and the empirical posterior sample mean
collected for that interval. Because in our notation only
subintervals with indices k0 end with a coalescence
event, this contribution equals:

nk0(nk0 −1)
2�̂k

exp
[
−nk0(nk0 −1)wk0

2�̂k

]
. (15)

Subintervals ending with a sampling event contribute
a probability of no coalescence to the likelihood,
or equivalently, the probability that an exponentially
distributed coalescence time is greater than the interval
length, that is for each such subinterval with index kj:

exp
[
−nkj(nkj −1)wkj

2�̂k

]
. (16)

Hence, the likelihood of observing subintervals wk
comprising intercoalescent interval k is

Pr(wk | �̂k)= 1
�̂k

exp

⎡
⎣−

∑jk
j=0nkj(nkj −1)wkj

2�̂k

⎤
⎦, (17)

where the first binomial was dropped because we
consider the tree topology as random (Rodrigo and

Felsenstein 1999), and with the values for �̂k obtained
from the LOESS estimator.

By taking the log:

log [Pr(wk | �̂k)]=−log(�̂k)−
jk∑

j=0

nkj(nkj −1)wkj

2�̂k
, (18)

and summing over k we arrive at the following log
density:

log [Pr(w | �̂)]=
n∑

k=2

log [Pr(wk | �̂k)]. (19)

This (coalescent) density will serve as the working
demographic distribution for the coalescent process.
We denote this approach as generalized stepping-stone
sampling using a product of exponentials with LOESS
smoothing (GSS POEL).

EXAMPLES

Simulated Gaussian Example
We first compare different marginal likelihood

estimators on a simple Gaussian example for which
closed-form expressions of the marginal likelihoods
are available. This allows for an objective comparison
between the various methods. We perform a simulation
experiment to compare the performance of the ILP,
sHME, PS, SS, and the proposed GSS method. Suppose
n observations are sampled from a normal distribution
with mean � and precision 
. Let Y = (y1, ... ,yn) be the
data. The likelihood can be written in the following form:

p(Y |�,
)= 1
(2�)n/2 
n/2exp

(
− 


2

[
n(�− x̄)2+

n∑
i=1

(xi−x̄)2
])

.

(20)
The conjugate prior is the Normal-Gamma:

NG(�,
 |�0,�0,�0,�0)def= N(� |�0,(�0
)−1)G(
 |�0,�0).
(21)

As shown in Murphy (2007), the posterior equals

p(�,
 |Y) = NG(�,
 |�n,�n,�n,�n), with

�n = �0�0 +nx̄
�0 +n

�n = �0 +n

�n = �0 +n/2

�n = �0 + 1
2

n∑
i=1

(xi − x̄)2 + �0n(x̄−�0)2

2(�0 +n)
, (22)

and the closed-form expression for the marginal
likelihood becomes:

p(Y)= �(�n)
�(�0)

�
�0
0

�
�n
n

(
�0
�n

) 1
2

(2�)−n/2. (23)
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FIGURE 2. Log marginal likelihood estimates for Gaussian examples simulated under a normal distribution with four different gamma priors
on the precision. For these data sets, the true (log) marginal likelihood can be calculated analytically (Murphy 2007). This value is indicated
by a dashed gray line for each of the gamma priors tested. Five different estimators were used, with a number of different settings for each
estimator: integrating the likelihood against the prior (ILP), the smoothed harmonic mean estimator (sHME), path sampling (PS), stepping-stone
sampling (SS), and generalized stepping-stone sampling (GSS). This example shows that GSS is by far the most accurate approach to estimate
(log) marginal likelihood for all the gamma priors tested. The sHME systematically overestimates the true (log) marginal likelihood, whereas
PS and SS do so as the gamma prior becomes increasingly uninformative, but not to the same extent as for the sHME.

We simulate a single data set of size n=20 from a
normal distribution having mean �=0.0 and precision

=1.0. The prior for � is normally distributed with mean
�0 =2.0 and precision 
, which in turn is equipped with a
gamma-distributed prior with shape parameter �0 and
rate parameter �0. Here, we are particularly interested
in the influence of the precision prior on the ability of
the various marginal likelihood estimators to retrieve
the true value. In Bayesian phylogenetic inference, vague
or uninformative but proper priors are often used on
most parameters due to the lack of available prior
information (Baele et al. 2013b). To test which priors
complicate the estimation of the marginal likelihood,
we start with a relatively diffuse gamma prior and
further decrease its informativeness in a gradual way.
In particular, we test the following priors for 
: G(�0 =
�0 =1.0), G(�0 =�0 =0.1), G(�0 =�0 =0.01) and G(�0 =
�0 =0.001).

We performed the analyses on the simulated Gaussian
data using the ILP, sHME, PS, SS, and GSS marginal
likelihood estimators (Fig. 2). We rely on MCMC
approximation for all the estimators, except for the
ILP, which draws new parameter values directly from
the prior. We run the ILP and sHME for 25 million
iterations, whereas the PS, SS, and GSS runs explore 25
power posteriors, each with an MCMC run of 1 million
iterations. We define the path of power posteriors p�
from posterior to (working) prior for this latter set of
estimators according to evenly spaced quantiles of a
Beta(�,1.0) distribution, with �=0.3, as suggested by Xie
et al. (2011).

In agreement with previous studies (Lartillot and
Philippe 2006; Xie et al. 2011; Baele et al. 2012, 2013b; Baele
and Lemey 2013), we find that the sHME systematically
overestimates the marginal likelihood, independent of
the prior choice on 
. For the least diffuse gamma
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prior G(1.0,1.0), all other estimators are able to retrieve
the true value of the marginal likelihood, albeit with
varying accuracy. GSS stands out as the estimator
that consistently (and most accurately) yields accurate
marginal likelihood estimates for all prior choices. As
the gamma prior becomes more diffuse, the PS and
SS estimators overestimate the true marginal likelihood
by a larger margin. For the most diffuse gamma
prior G(0.001,0.001), a popular choice as vague prior
in the Bayesian phylogenetics community, the GSS
estimator still succeeds in retrieving the true value, with
remarkable accuracy. The ILP performs well in all but one
scenario, that is when the gamma prior G(0.001,0.001) is
assumed, which is notoriously difficult to sample from.
We note that the ILP is able to draw samples directly
from the prior rather than approximating the prior using
MCMC. PS and SS on the other hand resort to MCMC to
approximate the power posteriors all the way down to
the prior, and poor MCMC sampling from diffuse priors
may result in less accurate marginal likelihood estimates
for these procedures.

Phylogenetic Examples
Whereas a Gaussian test case allows us to analytically

calculate the true value of the (log) marginal likelihood,
it offers little predictive power as to how these estimators
will perform in a Bayesian phylogenetic framework.
We therefore first explore small phylogenetic test cases,
consisting of four data sets with respectively 3, 4,
5, and 6 taxa, drawn at random from the intergenic
Staphylococcus aureus data set of Gray et al. (2011).
We first performed a standard Bayesian inference
through MCMC using BEAST (Drummond et al. 2012)
to estimate the parameters of a constant population
size model, an HKY substitution model (Hasegawa
et al. 1985) and a strict clock model, while estimating
the tree topology and branch lengths. Because our
main interest lies in accommodating phylogenetic
uncertainty in the GSS estimation procedure, we fix
most of these parameters to their mean posterior
value, except the HKY’s transition/transversion ratio
parameter, the tree topology, and branch lengths,
which are allowed to vary in the different marginal
likelihood estimations. We provide a simpler test
case in Supplementary Material available on Dryad
(http://dx.doi.org/10.5061/dryad.8tm76).

In order to determine which of the approaches yields
adequate performance in a phylogenetic setting, we
require the true value of the (log) marginal likelihood
for each of the four data sets. To this end, we use
the ILP estimator and repeatedly sample from the
coalescent prior, that is a constant population size
model with a fixed population size, and from the
prior on the transition/transversion ratio (a relatively
diffuse Gamma(0.01, 0.01) prior). This approach yields
a marginal likelihood value that converges onto a
specific value for the proposed phylogenetic data
sets (Supplementary Figure S1 available on Dryad
(http://dx.doi.org/10.5061/dryad.8tm76), showing that

the true value of the marginal likelihood can be
approximated relatively well, albeit at a very high
computational cost that increases with the size of the
data set and the complexity of the model.

We proceed by testing various (log) marginal
likelihood estimators on each of these data sets. For
the HME and sHME, we run a total of 25 million
MCMC iterations, using the default transition kernels
on the tree topology and branch lengths. For the PS,
SS, GSS MCM, and GSS POEL estimators, we assume
a path from posterior to (working) prior that consists
of 25 power posteriors, distributed according to evenly
spaced quantiles of a Beta(0.3,1.0) distribution, and for
each power posterior we run an MCMC analysis of
1 million iterations. For the GSS estimators, a working
distribution on the transition/transversion parameter
is constructed using the KDE approach with normal
kernels (after appropriate transformations), from the
samples collected during its posterior exploration. We
summarize the performance of the different marginal
likelihood estimators, reporting their mean, standard
deviation (SD), and root mean square error (RMSE) for
25 independent runs (Table 1). The RMSE is defined as

RMSE=
√

E(log r̂−log rtrue)2.

Both the HME and sHME systematically overestimate
the estimated log marginal likelihood to a large
extent, leading to high RMSE values (Table 1). This
overestimation is more pronounced as the number of
taxa increases. The path sampling class of estimators (i.e.,
PS and SS) result in much smaller RMSE values than the
HME and sHME, but still fail to retrieve the true log
marginal likelihood for all four data sets; PS and SS offer
highly comparable performance, but both overestimate
the (log) marginal likelihood to some extent. The
GSS estimators clearly outperform PS/SS, being better
able to retrieve the true value than the latter. Both
GSS estimators yield similar performance, as indicated
by the reported RMSE values. The overestimation
by PS/SS can be reduced by drastically increasing
the computational settings (i.e., the number of power
posteriors and the chain length per power posterior),
as is shown in Supplementary Material available
on Dryad (http://dx.doi.org/10.5061/dryad.8tm76).
However, even increasing these settings 100-fold still
does not yield similar performance as the class of GSS
estimators.

In the next section, we provide a more thorough
investigation of the performance of the various (log)
marginal likelihood estimators using larger simulated
data sets while integrating out a typical set of
evolutionary parameters, as well as accommodating
phylogenetic uncertainty.

Simulated Phylogenetic Data
Following our previous work (Baele et al. 2012), we

also simulate phylogenetic data in order to assess the

http://dx.doi.org/10.5061/dryad.8tm76
http://dx.doi.org/10.5061/dryad.8tm76
http://dx.doi.org/10.5061/dryad.8tm76
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TABLE 1. Small phylogenetic test examples, containing 3, 4, 5, and 6 sequences from a previously published data set

3 Taxa; True value: −1895.095 4 Taxa; True value: −1938.851
K = 25; C == 1M K = 25; C = 1M

Method Mean SD RMSE Method Mean SD RMSE

HME −1887.286 0.663 7.836 HME −1929.881 0.880 9.011
sHME −1886.203 0.020 8.892 sHME −1928.409 0.025 10.441
PS −1894.543 0.559 0.778 PS −1938.344 0.536 0.730
SS −1894.625 0.670 0.807 SS −1938.371 0.638 0.788
GSS MCM −1895.097 0.029 0.029 GSS MCM −1938.852 0.031 0.030
GSS POEL −1895.099 0.020 0.020 GSS POEL −1938.855 0.022 0.021

5 Taxa; True value: −2129.607 6 Taxa; True value: −2293.076
K = 25; C = 1M K = 25; C = 1M

Method Mean SD RMSE Method Mean SD RMSE

HME −2120.108 0.969 9.546 HME −2279.906 0.419 13.176
sHME −2118.262 0.031 11.346 sHME −2278.225 0.029 14.851
PS −2129.286 0.611 0.679 PS −2293.030 0.734 0.721
SS −2129.195 0.646 0.755 SS −2292.923 0.827 0.825
GSS MCM −2129.612 0.035 0.035 GSS MCM −2293.079 0.031 0.032
GSS POEL −2129.597 0.031 0.033 GSS POEL −2293.072 0.040 0.042

Except for the transition/transversion rate ratio � of the HKY model, for which we specify a Gamma(0.01, 0.01)
prior, all other parameters (constant population size and strict clock rate) are set to their mean value obtained from
an initial MCMC run. The coalescent tree and � are being sampled/updated during the runs in this table. Mean,
SD, and RMSE from 25 independent runs in BEAST are shown throughout the table. K indicates the number of
power posteriors for PS/SS/GSS, with C the chain length per power posterior. The HME and sHME systematically
overestimate the true log marginal likelihood to a large extent. PS and SS now also systematically overestimate the
true marginal likelihood, which can be attributed to the diffuse prior on �. Only the GSS estimators are able to
accurately retrieve the true value of the log marginal likelihood.

operating characteristics of the different (log) marginal
likelihood estimators. Based on the coalescent analysis
of Worobey et al. (2008), we consider the sampling
dates of 60 sequences that represent the diversity in the
original HIV-1 group M data set and simulate dated-
tip genealogies under a simple constant population size
model. We simulate 100 genealogies under this scenario
using CoalGen, which is part of the BEAST software
package (Drummond et al. 2012). Along each genealogy,
we simulate sequences encompassing 1000 sites using
GTR parameter values (Tavaré 1986), varying rates across
sites—modelled using a discretised gamma distribution
(Yang 1996)—and a substitution rate that reflects the
estimates for the real data (Bielejec et al. 2014).

For each simulated data set under each demographic
model, we employ seven different approaches to
estimate the log marginal likelihood: the HME, sHME,
PS, SS, GSS Fixed (with a fixed tree topology and
therefore not requiring a working distribution for this
parameter), GSS MCM (with a random tree topology
and a constant population size model as its working
demographic distribution), and GSS POEL (a product
of exponentials with LOESS smoothing as working
distribution). For all marginal likelihood estimators, we
ran the same amount of 5×107 MCMC iterations in

BEAST to ensure a fair comparison (not including initial
burn-in to the posterior nor collection of the samples
required to construct the working distributions). For
the HME and sHME, this means running a standard
Bayesian inference by using MCMC for 50 million
iterations, whereas for all other estimators, 50 power
posteriors were run for 1 million iterations each, along
a path defined by a Beta(0.3,1.0) distribution. We run
each estimation procedure twice, with different starting
values for the models’ parameters, in order to test the
repeatability of the various methods (Figs. 3 and 4).

We first test the repeatability of the HME, sHME, and
GSS Fixed (Fig. 3). To perform an objective comparison,
we propose a simple summary statistic: the average over
all 100 simulated data sets of the absolute difference in
log marginal likelihood for two independent estimates:

D=E
(|MLE1 −MLE2 |). (24)

The HME has in theory an infinite variance, explaining
why it suffers from poor repeatability, with differences
in log marginal likelihood between two independent
runs as high as nearly 10 log units. The stabilized or
smoothed HME remedies this problem and allows for
higher repeatability among independent runs. This also
holds true for the GSS Fixed estimator, which operates
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FIGURE 3. Repeatability plots for the harmonic mean estimator (HME), stabilized HME (sHME) and generalized stepping-stone sampling
assuming a fixed tree topology (GSS Fixed), based on 100 simulated data sets and two independent runs employing different starting values. The
repeatability of the HME is considerably lower than that of the sHME and GSS Fixed. One should be cautious concerning the high repeatability
of the sHME—as it systematically overestimates the log marginal likelihood—and GSS Fixed—as it does not accommodate phylogenetic
uncertainty and as a consequence provides a different estimate of the log marginal likelihood, knowing the tree under which the data were
simulated.

under the restrictive assumption of a fixed tree topology,
rendering comparisons unfair. Given that the HME
and sHME systematically overestimate the log marginal
likelihood and the GSS Fixed estimator provides a
different estimate of the log marginal likelihood because
it does not incorporate phylogenetic uncertainty and is
hence performed on the tree that was used to simulate
the data, we focus on the performance of the PS, SS, GSS
MCM, and GSS POEL estimators that do accommodate
phylogenetic uncertainty.

Both PS and SS are clearly outperformed by the GSS
estimators in terms of repeatability/variance between
runs (Fig. 4). Counterintuitively, PS seems to have
better repeatability than SS. However, PS is clearly
biased compared with SS, due to its discretization
bias (Xie et al. 2011). Both GSS MCM and GSS POEL
outperform PS and SS in terms of repeatability, using
identical computational settings, while accommodating
phylogenetic uncertainty. The repeatability statistic
indicates a slight advantage for the GSS POEL estimator.
Compared with the GSS POEL approach, the HME
and sHME approaches appear to overestimate the log
marginal likelihood when accommodating phylogenetic
uncertainty (see Supplementary Materials available
on Dryad http://dx.doi.org/10.5061/dryad.8tm76). Not
accommodating phylogenetic uncertainty when using
the GSS Fixed approach also yields higher log marginal
likelihoods, but this does not necessarily represent an
overestimation.

Empirical Examples
The epidemic history of HIV-1.—To assess the performance
of the new marginal likelihood estimators on
empirical examples, we revisit a Bayesian evolutionary
reconstruction of the HIV-1 group M epidemic history
originally performed by Worobey et al. (2008). This

study examines sequence data from a 1960 specimen
from Leopoldville in the Belgian Congo (now Kinshasa,
Democratic Republic of the Congo) that shows
considerable divergence from the 1959 (ZR59) sequence
(Zhu et al. 1998), the oldest and only known sequence
sampled before 1976 at that time. The authors show that
the inclusion of the 1959 and 1960 sequences appears
to improve estimation of the TMRCA of the M group,
limiting the influence of the coalescent tree prior on
the posterior TMRCA distributions. However, scientific
interest also lies in characterizing the HIV-1 group
M population dynamics through time as captured by
different coalescent models.

Worobey et al. (2008) consider different coalescent
models, both parametric and nonparametric, as prior
distributions for time-measured trees. Our previous
work has shown that, for this data set, the constant
population size model fits the data significantly worse
than the other coalescent models considered, but
a consistent difference in performance between the
other coalescent models could not be established, even
with considerable computational investment (Baele and
Lemey 2014). We revisit this HIV-1 data set using four
coalescent models: the constant population size model,
the exponential growth model, the expansion growth
model, and a recently developed two-phase exponential-
logistic growth model (Faria et al. 2014). The latter model
estimates growth rate parameters for each growth period
independently and provides an estimate of the time of
transition between the exponential and logistic periods.
We estimate log marginal likelihoods for these models
using PS, SS, GSS MCM, and GSS POEL (Fig. 5). In these
analyses, we fix the number of path steps to 64 and
gradually increase the chain length per path step until
convergence has been reached.

PS consistently appears to overestimate marginal
likelihoods as compared with SS when using identical

http://dx.doi.org/10.5061/dryad.8tm76
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FIGURE 4. Repeatability plots for PS, SS, generalized stepping-stone sampling using a constant population size model as working distribution
(GSS MCM) and generalized stepping-stone sampling using a product of exponentials with LOESS smoothing as working distribution (GSS
POEL). The difference between two independent runs, employing different starting values, across 100 simulated data sets are shown. This
suggests that the previously published low variance for GSS is mainly due to fixing the tree topology. When relaxing this assumption, however,
GSS still has lower variance between runs than PS and SS, indicating its increased accuracy over those methods. Both GSS implementations have
similar repeatability.

computational settings (Fig. 5), in line with previous
conclusions by Xie et al. (2011). The overestimation is
relatively constant, between 3 and 5 log units for each
demographic model, hence not affecting the outcome of
the model selection, when compared with SS. In turn, SS
(and by extension PS) seem to consistently overestimate
the log marginal likelihood when contrasted against the
GSS MCM and GSS POEL estimates. This overestimation
is, however, not constant and can affect the outcome
of comparison of demographic models. SS, GSS MCM,
and GSS POEL consider the two single-phase growth
models, that is exponential and expansion, to be quite
similar in terms of model fit, as their log marginal
likelihoods only vary between 0.5 and 3.8 log units
(with the constant population size model performing
far worse, yielding a difference of around 160 log units).
Both GSS MCM and GSS POEL consider the exponential-
logistic growth model to perform significantly better
in terms of model fit (BF >10) than the exponential

and expansion growth models. This is in line with the
epidemic history of HIV-1 group M, as reconstructed
using a nonparametric demographic model, which has
periods of exponential and logistic growth (Worobey
et al. 2008). Even when assuming proper priors on all
the parameters of the exponential-logistic growth model
(Faria et al. 2014), PS and SS fail to complete their
exploration of the power posteriors close to the prior—
due to numerical integration problems associated with
the demographic function—and hence fail to provide
a log marginal likelihood for this model. This points
to another advantage of our proposed GSS MCM and
GSS POEL approaches: they avoid the exploration of
such vague distributions altogether. Comparing these
four demographic models using GSS reveals that the
exponential-logistic growth model outperforms the two
other growth models by about 10 log units, with the
constant population size model yielding a much lower
fit than the other models.
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FIGURE 5. Convergence assessment of PS, SS, GSS MCM, and GSS POEL estimators on the HIV-1 data example of Worobey et al. (2008). A
fixed number of 65 power posteriors, required to construct 64 path steps, were run along the path between posterior and (working) prior for
all (log) marginal likelihood estimators, assuming different chain lengths per power posterior. Ten replicates were run for each computational
setting and for each demographic model. The mean of these replicates is plotted along with the standard deviation. PS and SS consistently
overestimate the log marginal likelihood when contrasted against GSS MCM and GSS POEL. In general, both GSS methods converge faster, with
less iterations per power posterior, to a stable log marginal likelihood. Estimating the log marginal likelihood of the exponential-logistic growth
model fails using PS/SS for more demanding computational settings, even with proper priors on all its parameters. For the most demanding
computational settings (but also for most of the other settings), the GSS approach that employs a product of exponentials with LOESS smoothing
(GSS POEL) has lower variance than the GSS approach that matches the demographic model as its working distribution (GSS MCM).

Both GSS MCM and GSS POEL offer increased
precision compared with SS (and also PS, which we do
not discuss because SS converges faster), with GSS POEL
consistently outperforming the GSS MCM approach.
This increase in precision is about 3% for the expansion
growth model, seemingly in line with the repeatability
findings of our phylogenetic simulation study, but
reaches higher levels for the other demographic models:
13% for the exponential-logistic growth model, 29%
for the constant population size model, and 35% for
the exponential growth model. We therefore conclude
that for an empirical example, GSS POEL also emerges
as the preferred (log) marginal likelihood estimator.
Comparing the precision of this approach to SS, we
observe an increase of 14% for the expansion growth
model, 78% for the exponential growth model, and
214% for the constant population size model (with

again no basis of comparison for the exponential-logistic
growth model). These statistics show the increase in
accuracy of our proposed GSS approaches compared
with existing state-of-the-art (log) marginal likelihood
estimators, such as PS/SS.

Finally, we present timing assessments for the
different marginal likelihood estimators that were used
to analyze the HIV-1 group M data set (Fig. 5).
Such a comparison of run times illustrates that GSS
approaches require less computation time compared
with PS/SS (Fig. 6). This may seem counterintuitive
because the GSS estimation process requires the
evaluation of a potentially large amount of working
distributions. However, the computational advantage
of both GSS approaches can be attributed to the
absence of the numerical instabilities found in PS/SS.
Whereas PS/SS often encounter loss of precision when
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FIGURE 6. Run times for different (log) marginal likelihood
estimators under various demographic priors. Log marginal
likelihood estimation using PS/SS is markedly slower than both
GSS implementations, across the demographic priors tested. The
exponential-logistic model was omitted due to the PS/SS calculations
failing for this model, leaving us without a basis for comparison in
terms of the execution time. All estimators collected samples from
64 power posteriors that were run for 1 million iterations. The GSS
approach using a matching coalescent model (MCM) yields the fastest
run time for each demographic prior.

sampling close to the (diffuse) prior and resort to
a change in likelihood scaling in BEAST/BEAGLE,
GSS avoids this by collecting samples along a path
from posterior to working distribution. Furthermore,
providing a matching coalescent model (MCM) as a
working distribution for the coalescent process reduces
the computational burden compared with calculating a
product of exponential distributions at every iteration,
the complexity of which increases linearly with the
number of taxa. As a consequence, the GSS MCM
approach may represent the more convenient choice for
comparing simple parametric demographic priors.

HIV-1 subtype C evolutionary patterns.—We analyze 81
HIV-1 subtype C sequences (Vrancken et al. 2014),
consisting of seven genes (gag, pol, env, vpr, vpu,
vif, and nef ), using codon partitioned nucleotide
substitution models. The data set consists of a diverse
and representative (in terms of diversity) subset of all
available HIV-1 subtype C full genomes with known
sampling year from the Los Alamos HIV sequence
database (http://www.hiv.lanl.gov/) and spans the
period of 1986–2010. As in the original analysis,
(Vrancken et al. 2014), we partition the full genome
by gene, to allow for among-gene rate variation, and
per gene by codon position as a trade-off between
computational efficiency and biological realism (Shapiro
et al. 2006; Baele and Lemey 2013).

These partitioning schemes offer some of the most
popular approaches when analyzing coding data sets,

and most often a choice is made between grouping
the first and second codon positions together (the
“112” notation, where one evolutionary model is
used for the first and second codon positions and
a second evolutionary model is used for the third
codon position) or analyzing them separately (the
“123” notation, where a separate evolutionary model
is used for each of the three codon positions). We
combine these two partitioning schemes with one
of the most popular evolutionary models, that is
the GTR model of nucleotide substitution (Tavaré
1986), and test the two different partitioning schemes
using three (log) marginal likelihood estimators: PS,
SS, and GSS. For both schemes, we assume a
constant population size model with a Gamma(0.001,
0.001) prior on the population size parameter, a
Normal(log(0.003), 2.0) prior and an exponential(1/3)
prior on the mean and standard deviation respectively
of the lognormal distribution of the uncorrelated
relaxed clock, and a lognormal(0.0, 1.0) prior on
the relative rate parameters for the codon position
partitions.

To specifically assess the influence of different
prior choices on the performances of the various
(log) marginal likelihood estimators, we have tested
both moderately and highly diffuse priors on the
parameters of the GTR models. For the GTR model,
this means that the rAC, rAT , rCG, and rGT parameters
are equipped with a relatively diffuse Gamma(0.05,
0.10) prior, whereas the rAG parameter receives a
Gamma(0.05, 0.05) prior and the rCT parameter is set
to 1.0; their very diffuse counterparts come in the
form of Gamma(0.005, 0.01) and Gamma(0.005, 0.005)
priors. For the GTR112 model, this leads to 70 priors on
the different rate parameters, whereas for the GTR123
model, 105 priors are being provided. To assess how
“vague” or “diffuse” our prior choices are for our
analyses of this data set, we have also estimated KL
distances for all the parameters in our evolutionary
models (see Supplementary Material available on Dryad
(http://dx.doi.org/10.5061/dryad.8tm76).

We estimated log marginal likelihoods under PS,
SS, and GSS using a 10 million posterior exploration
for all estimators followed by sampling from 65
power posteriors, spread according to a Beta(0.3, 1.0)
distribution. To evaluate convergence, each power
posterior was explored using 500 thousand, 1 million,
and 2 million iterations. For the GTR112 model and
GTR123 models, equipped with moderately diffuse
priors, exploring 1 million iterations per power posterior
proved sufficient for all estimators. For the GTR112
model, PS and SS overestimated the log marginal
likelihood by about 50 log units (PS: −137334.80; SS:
−137339.40; GSS: −137390.90), whereas for the GTR123
model this overestimation amounted to about 80 log
units (PS: −137168.03; SS: −137173.84; GSS: −137252.58)
when compared with GSS. Differences of this magnitude
can easily lead to differences in the outcome of the model
selection process, particularly when analyzing highly
partitioned data sets.

http://dx.doi.org/10.5061/dryad.8tm76
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Each (log) marginal likelihood estimator is associated
with some variance, but the observed differences
between estimators are much larger than the variability
for each estimator, indicating that the vague priors may
contribute to this overestimation in PS/SS. As shown in
the ILP results described earlier in this article, small test
cases allow computation of the (log) marginal likelihood
by drawing a large number of samples directly from the
prior. PS and SS rely on constructing a Markov chain for
each power posterior, and use MCMC to collect samples
from these power posteriors. Although this approach
remains relatively efficient in the presence of data, that
is close to the posterior, it becomes more challenging to
characterize densities close to the prior. In other words,
integrating near very diffuse priors using MCMC with
its dependent samples may be relatively inefficient given
the vast volume of parameter space with nearly equal
prior density.

When very diffuse priors are specified on the
parameters of the GTR112 model and GTR123 models,
convergence issues arise for all estimators albeit to
a different extent. Exploring each of the 65 power
posteriors for up to 2 million iterations, PS and
SS yield continually increasing estimates of the log
marginal likelihood, unable to stabilize to even report
a range in which the log marginal likelihood can be
captured. Moreover, the estimates appear to differ by
several hundreds of log units compared with GSS. In
other words, exploring such a large amount of very
diffuse priors for a model that is likely to be severely
overparameterized, does not lead to convergence for PS
and SS in this case. The GSS estimate of the log marginal
likelihood varies within a range of 100 log units, but
the computational settings used here were insufficient
to reach adequate convergence. This result may appear
counterintuitive, given that working distributions are
provided for all the parameters and GSS avoids the need
to actually explore the priors. However, convergence
issues arise even at the posterior, before any attempt to
estimate marginal likelihoods, which may be attributed
to the overparameterization and use of very diffuse
priors. These priors were used to explore the estimator
stability and are not recommendable, and we note that
they differ from the moderately diffuse priors typically
used with these models.

DISCUSSION

Bayesian phylogenetics requires a sensible balance
between parameter richness and biological realism.
A good model captures the key features of the hypothesis
under investigation without introducing unnecessary
error, bias and over-fitting. Accurate model comparisons
are therefore a crucial part of phylogenetic hypothesis
testing, even though all evolutionary models necessarily
oversimplify reality. Recent developments in marginal
likelihood estimation, such as PS (Lartillot and Philippe
2006) and SS (Xie et al. 2011), demonstrate the potential
for more accurate Bayesian model selection while

accommodating uncertainty about the underlying time-
measured genealogy. These approaches are finding
applications in an increasing amount of phylogenetic
studies because they have proven to outperform
previously used marginal likelihood estimators. One
point of criticism concerning PS and SS, however, is that
they are computationally much more demanding than
posterior-based marginal likelihood estimators, which
only require samples from the posterior distribution to
perform model selection and can hence be calculated
from a standard MCMC run.

Because of faster convergence and lower estimation
variance, GSS requires less computational effort to
achieve the same accuracy as PS and SS. As with
PS/SS, the accuracy of GSS improves with increasing
computational investment, that is a larger number of
power posteriors and a longer chain length per power
posterior. These settings are dependent on the size of
the data set being analyzed and on the complexity
of the model, making it difficult to suggest general
computational settings that guarantee convergence of
the (log) marginal likelihood estimate. Based on our
empirical results, we suggest using a(n initial) chain
length per power posterior of 1 million iterations
to ensure convergence for each power posterior. The
number of power posteriors can initially be set to
between 50 and 100. Varying both settings between
different independent estimations is a good strategy to
assess convergence.

Lartillot and Philippe (2006) note that the difference
between the estimated logarithm of the marginal
likelihoods of two phylogenetic models can be small
compared with the actual log marginal likelihoods,
which can lead to a poor estimate of the BF unless the
precision on each marginal likelihood estimate is very
high. To counter this effect, a single path connecting the
two competing models in the space of unnormalized
densities can be constructed and the BF can be calculated
directly along this single path (Gelman and Meng 1998).
By construction, this approach often results in lower
estimation error for the BF in phylogenetics (Rodrigue
et al. 2006; Baele et al. 2013a). The approach that we
adopt here to ease the path integration is to shorten
the path from posterior to prior while still calculating
the marginal likelihood for each model separately. We
follow the approach recently proposed by Fan et al.
(2011) that involves introducing an arbitrary “working”
distribution that, in practice, one specifies as a product of
independent probability densities parameterized using
MCMC samples from the posterior distribution. The
method was however restricted to evaluations on a
fixed phylogenetic tree topology, as integrating over
plausible tree topologies complicates generalized SS
because of the need to define a working distribution for
topologies that provides a good approximation to the
posterior. In this article, we provide two approaches to
accommodate phylogenetic uncertainty into GSS. A first
approach involves specifying a “working” distribution
based on the coalescent tree prior, for example by
parameterizing this model using its mean population



2016 BAELE ET AL.—WORKING DISTRIBUTIONS FOR ACCURATE MODEL SELECTION 263

size(s) and mean growth rate. A second approach
borrows ideas from the Bayesian skyride model (Minin
et al. 2008) and specifies a product of exponential
densities as a genealogical working distribution. Both
approaches are shown to outperform PS and SS in a
large coalescent-based phylogenetic simulation study,
with GSS POEL offering increased accuracy over GSS
MCM in our analyses of an HIV-1 empirical data set.
We have put online a tutorial on how to use GSS in
BEAST: https://rega.kuleuven.be/cev/ecv/tutorials/.
Note that we have only explored the GSS in particular
genealogical scenarios, and that applications to more
specific approaches (e.g., multispecies coalescent) still
need to be investigated.

Arima and Tardella (2012) have proposed an
alternative approach to estimate (log) marginal
likelihoods in phylogenetics that offers promising
results. Their generalized harmonic mean estimator
(GHME) method requires an auxiliary probability
density that approximates the posterior, which in
principle yields a very efficient estimator when this
density is set as close as possible to the posterior. Arima
and Tardella (2012) propose using a set of working
distributions, denoted �0(� |M) in their article, as the
required auxiliary density, similar to what is used in the
GSS approach. In order to accommodate phylogenetic
uncertainty in their approach, the genealogical working
distributions we propose may be interesting to further
explore in that context. However, it still remains
to be evaluated how well such a GHME would
perform compared with other (log) marginal likelihood
estimators.

Although state-of-the-art procedures such as PS and
SS have been shown to achieve good accuracy in
Bayesian phylogenetic model testing, the computational
demand for complex models on relatively large data
sets represents a significant challenge in marginal
likelihood estimation. The GSS approaches we propose
here yield higher accuracy for the same computational
investment, or in other words, they can attain the same
degree of accuracy with less computational demands.
In addition, we have shown that using GSS protects
against numerical difficulties and hence overestimating
the marginal likelihood when specifying vague priors, as
often employed phylogenetics. Future work will need to
address how GSS stacks up in terms of accuracy against a
direct Bayes Factor estimation approach, as proposed by
Lartillot and Philippe (2006), which eliminates potential
problems with sampling from the prior for common
parameters in the models being compared.
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