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Abstract

Quantifying the agreement between computational models and experimental data under
uncertainty

by

Arun Shantaram Hegde

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Michael Frenklach, Chair

Bound-to-bound data collaboration (abbreviated B2BDC) is a deterministic optimization-
based approach for uncertainty quantification. The framework combines models and data
from multiple sources by formulating inequality constraints over a parameter space. This
dissertation explores the following question: how can agreement between computational
models and experimental data be quantified while necessarily accounting for uncertainty
in both model parameters and observations? In a typical B2BDC application, this is per-
formed by constructing a dataset – a collection of constraints over an uncertain parameter
space involving surrogate models, experimental data, and prior knowledge – and then as-
sessing its consistency. Our first contribution is a formalization of this procedure within
an iterative context. This new strategy effectively extends the applicability of the B2BDC
technique and can be viewed as a natural extension of previous work. Oftentimes, demon-
strating model-data disagreement is just as important as verifying agreement. In B2BDC,
this is manifested through dataset inconsistency. Our second contribution is a new tool
for analyzing inconsistency called the vector consistency measure. This measure provides a
more thorough diagnosis of an inconsistent dataset by computing minimal constraint correc-
tions that lead to consistency. The inclusion of weights facilitates domain expert knowledge
and opinions to be incorporated in the process of resolving an inconsistency. The primary
developments in this thesis are methodological. Their application is illustrated on various
examples, ranging from the small-scale instances drawn from the literature to larger-scale
realistic gas combustion datasets.



i

To my parents and my teachers.



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Predictive modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Comparisons of model and data: literature review . . . . . . . . . . . . . . . 1
1.3 Structure and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Review of Bound-To-Bound Data Collaboration 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Problem setup and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Datasets and consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Scalar consistency measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Prediction and inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Solution mapping and the surrogate dataset . . . . . . . . . . . . . . . . . . 7
2.7 Computational strategy for NQCQPs . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Implications on prediction and inference . . . . . . . . . . . . . . . . . . . . 14
2.9 A two parameter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Iterative Construction of a B2BDC Dataset 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Bayesian UQ and history matching . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 B2BDC and Bayesian history matching . . . . . . . . . . . . . . . . . . . . . 23
3.4 Previous iterative strategies in B2BDC . . . . . . . . . . . . . . . . . . . . . 24
3.5 Incorporating waves in B2BDC . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Example: Calibration of an Aerodynamic Body . . . . . . . . . . . . . . . . 25
3.7 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



iii

4 Iterative Construction of a B2BDC Dataset: Rational Quadratic Surro-
gate Models 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Fitting over H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Fitting over F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Sampling RQ datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Example continued: calibration of an aerodynamic body . . . . . . . . . . . 41
4.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Additional Feasibility Criteria 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Bounding ellipsoids to feasible samples . . . . . . . . . . . . . . . . . . . . . 47
5.3 Minimum volume enclosing ellipsoids . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Generating additional quadratic constraints using support vector machines . 50
5.5 Example: Chemical Spill Model . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Sensitivities and the Scalar Consistency Measure 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Running examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Sensitivity through perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 A strategy for resolving inconsistency . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Strengthening the relaxation via redundant constraints . . . . . . . . . . . . 63
6.6 Resolving inconsistency in GRI-Mech 3.0 . . . . . . . . . . . . . . . . . . . . 65
6.7 Resolving inconsistency in DLR-SynG . . . . . . . . . . . . . . . . . . . . . . 66
6.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 The Vector Consistency Measure 70
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 The Vector Consistency Measure . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Linear examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Weighted vector consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5 Using the VCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6 Examples: GRI-Mech 3.0 and DLR-SynG . . . . . . . . . . . . . . . . . . . . 81
7.7 Comparison with the SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.8 An extension to rational quadratic surrogates . . . . . . . . . . . . . . . . . 90
7.9 Consistency measures that count: a possible future direction . . . . . . . . . 92
7.10 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Conclusion 96

Bibliography 97



iv

List of Figures

2.1 QOIs and their associated uncertainty bounds, shown in red. . . . . . . . . . . . 15
2.2 Surrogate models with the associated training points shown in black. . . . . . . 16
2.3 The feasible set of the dataset with coordinate axes displaying the full prior range. 17
2.4 Prediction of the surrogate model over the feasible set (in red) and over the prior

H (in black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Measured input signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Measured output signals. The intervals show the N = 65 QOIs and the corre-

sponding uncertainty bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Left, EEFs after the first wave. Right, EEFs after the eighth wave. . . . . . . . 29
3.4 Model outputs for approximately 1000 (ignoring failed evaluations) randomly

selected feasible parameter vectors after the kth wave. Only the prior and samples
after waves k = 1, 3, 5 − 8 are shown, with lighter colors corresponding to later
waves. Note that wave 8, shown in off-white, is essentially identical to waves 6
and 7. The measured output signals along with the QOI bounds are shown in red. 30

3.5 Model outputs for 1000 randomly selected feasible parameter vectors after the
kth wave. The vertical axis has been extended to accommodate the entire output
variation across the feasible parameter samples. . . . . . . . . . . . . . . . . . . 31

3.6 The measured output signals are shown in red. 22 feasible samples are shown in
blue. The nonlinear least squares optimal point is shown in green. . . . . . . . . 32

3.7 Pairwise scatter plot associated with the final batch of feasible samples shown
in Figure 3.4. The parameter ordering listed on the vertical axis (top-down)
corresponds to the ordering listed on the horizontal axis (left-right). Inner (I)
and outer (O) posterior bounds are shown along the horizontal axis. Note, the
axes limits have been standardized to the posterior outer bounds. . . . . . . . . 34

4.1 Fitting error histograms for each of the surrogate types. . . . . . . . . . . . . . 41
4.2 EEF criteria for the three types of surrogate models: quadratic, RQ-H, and RQ-F. 42
4.3 Model outputs after the kth wave. The model evaluations shown in gray are

feasible with respect to the new dataset, which includes QOI #7 fit with an RQ
surrogate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



v

4.4 The measured output signals are shown in red. Evaluations of 22 feasible samples
are shown in blue. The nonlinear least squares optimal point evaluation is shown
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Nominal measurements of the QOIs of the ground truth system C(s, t;x?) are
displayed in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Left, EEFs for the first wave. Right, EEFs for the second wave. . . . . . . . . . 55
5.3 Left, EEFs for the third wave. Right, EEFs for the fourth wave. . . . . . . . . . 55
5.4 QOI traces of 1000 randomly selected feasible parameter vectors after the kth

wave (i.e., samples from from Fk+1). These traces were generated by directly
evaluating Equation (5.11). The experimental bounds are shown in red. . . . . . 56

5.5 Pairwise scatter plot of 5000 randomly selected feasible parameter vectors. Note
that the axes have been set to the corresponding posterior outer bounds. . . . . 58

6.1 The SCM sensitivity ranking for GRI-Mech 3.0. . . . . . . . . . . . . . . . . . . 66
6.2 The SCM sensitivity ranking for DLR-SynG. . . . . . . . . . . . . . . . . . . . . 67
6.3 The SCM sensitivity ranking for DLR-SynG after the first constraint removal. . 68

7.1 Illustration of the counter example. The dashed lines indicate the 1-norm ball
with radius c?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Histogram of ratios for 10,000 random trials with ne = 1. . . . . . . . . . . . . . 76
7.3 Histogram of ratios for 10,000 random trials with ne = 4. . . . . . . . . . . . . . 77
7.4 Counter example with weighted linear VCM. . . . . . . . . . . . . . . . . . . . . 78
7.5 VCM optimal relaxations for three standard weight configurations. . . . . . . . 82
7.6 VCM relaxations for QOIs #36 and #36 (blue dots) due to random selection of

weights. Other feasible relaxations lie in the shaded gray region. The red region
is certified infeasible by the SDP results. . . . . . . . . . . . . . . . . . . . . . . 83

7.7 VCM relaxations for the DLR-SynG dataset with unit weights on the QOI bounds
and null weights on the parameter bounds. . . . . . . . . . . . . . . . . . . . . . 84

7.8 VCM relaxations for the DLR-SynG dataset with bound weights on the QOIs
and null weights on the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.9 VCM relaxations for the DLR-SynG dataset with interval weights on the QOIs
and null weights on the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.10 VCM relaxations for the DLR-SynG dataset with null weights on both QOI #141
as well as the parameters. The remaining QOIs were assigned unit weights. . . 86

7.11 Count VCM relaxations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



vi

List of Tables

3.1 The uncertain parameters and the corresponding prior bounds. . . . . . . . . . . 26
3.2 Composition of the dataset after the kth wave. The volume fraction is calculated

using a collection of 5 × 106 Latin hypercube samples over the prior region H.
Note that in each case Fk+1 is nonempty. . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Composition of the dataset after each wave. The number of ellipsoids corresponds
to the number of GP surrogates that passed the error criteria during the kth wave.
The volume fraction is calculated using a baseline collection of 5×106 LH samples
from H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Prior bounds and posterior outer bounds on the uncertain parameters at the
conclusion of wave 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Example weights for a generic constraint: L− wLδL ≤ f(x) ≤ U + wUδU . . . . 80



vii

Acknowledgments

First and foremost, I’d like to acknowledge my advisors, Professor Andrew Packard and
Professor Michael Frenklach. The foundation of the material discussed in this dissertation
was built on their collaboration. I am very grateful to have been one of Andy’s students. I
entered the program in Fall 2014, around the time when Andy was diagnosed with cancer.
Despite all of the medical challenges, we continued to meet as a group practically every week
until his passing in September 2019. We miss him deeply, but I am immensely thankful
for all of the time, the memories, and the lessons (this, of course, also includes log rolling).
Andy always had a very honest approach to research. Whenever we discussed our work, be it
during our normal group meetings or when traveling, he would emphasize the importance of
clear thinking and simple examples. Andy’s tireless dedication and tenacity are among the
many things that I will carry with me. From Michael, I learned the excitement of science.
Michael’s advice on writing, presentation, and the importance of telling an overarching story
is something that has stuck with me. Similarly, I have found much value in the many kernels
of wisdom he has shared over the years – for example, his advice to relax and watch a funny
movie the night before a big day. To be succinct, I am really fortunate to have had both
Andy and Michael as guides. And as with most things, this has become evermore clear in
hindsight. I also very much appreciate the support, consideration, and comments from my
dissertation committee members, Professor Kameshwar Poolla and Professor Murat Arcak.

Over the years, I have had the good fortune of learning from many excellent professors
and teachers. I am deeply indebted to my undergraduate advisor, Professor Jiong Tang
at the University of Connecticut, for his guidance and encouraging me to pursue a PhD. I
would also like to thank Professor Philip Smith at the University of Utah for providing us
with numerous opportunities to present and share our work; Dr. Sean Smith for the many
discussions via webcam and during our visits; and Dr. Bart van Bloemen Waanders for his
mentorship and career advice during an internship at Sandia National Laboratories.

In my immediate research group, I would like to thank Jim Oreluk for the innumerable
discussions on UQ and practically every other topic; Wenyu Li for the varied chats ranging
from research to movies to sports; and Zhenyuan Liu for the similarly varied exchanges on
books, podcasts, and soccer. I’d also like to thank Alex Frank for all of the wisdom and
support. In the BCCI group and beyond, I’d like to thank Chris Meissen, Jared Porter,
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Chapter 1

Introduction

1.1 Predictive modeling

Mathematical modeling lies at the heart of scientific inquiry and engineering decision-
making. A general objective of science is to construct models of real-world systems that: (i)
agree with available experimental evidence; (ii) provide insight into the inner workings of
the system; and (iii) reliably predict unobserved phenomena or future experiments. In many
cases, these models are constructed from either first principle or phenomenological laws, and
often lead to forms parameterized by partially unknown but meaningful quantities.

Addressing the above points (i), (ii), and (iii) requires a plausible accounting of uncer-
tainty. It is a preeminent fact that uncertainty, or lack of knowledge, pervades all aspects
of the scientific process. For example, Saltelli and coauthors emphasize in [101] that: “un-
certainty is not an accident of the scientific method, but its substance.” In recent years, the
topics of validation and verification at the intersection of physical modeling and data analy-
sis have undergone much scrutiny [27, 84, 7]. Establishing the level of agreement between a
computational model and experimental data, while transparently managing the uncertainties
contributed by both aspects, becomes paramount – a necessary step before prediction can
even be justified. As such, these topics of validation, verification, and uncertainty quantifi-
cation have become a fundamental activity in modern science and engineering.

1.2 Comparisons of model and data: literature review

In settings where uncertainties in both the model and data abound, assessing the match
between a computational model and experimental data can become a significant challenge.
In practice, this comparison is usually accomplished by examining numerical differences
between quantities of interest (QOIs) selected from model outputs and measured data. How
uncertainty is framed mathematically, however, can lead to different approaches.

Several common strategies for model validation and prediction are probabilistic and em-
ploy a Bayesian inferential framework. These approaches are often built on the foundational
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work of Kennedy and O’Hagan [63]. Applications and extensions of this can be found, for
example, in studies by Higdon et al. [56, 55] and Bayarri et al. [9, 10]. A common feature
among many of these methods is the usage of flexible and easy-to-evaluate stochastic emu-
lators as surrogates for expensive computer models, e.g., as promoted by Sacks et al. [100].
Computational challenges with these approaches have inspired new methods. For example,
Bayesian history matching [28, 29, 116, 117] aims for tractability by dropping the require-
ment of a completely probabilistic specification and combines emulation with iterations.
Rather than characterizing an entire posterior distribution, the technique seeks regions of
the parameter space for which model outputs adequately agree with experimental data.

In certain scenarios, non-traditional or even less nuanced descriptions of uncertainty may
be preferable [78]. One such approach, where uncertainty is modeled by set membership
constraints, is present in a number of fields, including control theory [33, 108, 65, 14, 8],
system identification [57, 119, 25, 81, 77, 62], robust optimization [12], and computational
biology [87, 93, 89]. The methodology of bound-to-bound data collaboration (B2BDC) [42, 37,
36, 103] is designed to handle questions of model validation and uncertainty quantification in
such settings. In contrast with the aforementioned techniques, B2BDC operates by collecting
models, experimental bounds, and prior information into what is termed a dataset and then
formulating constrained optimization problems to quantify model-data agreement and make
predictions. Although the resulting expressions tend to be nonconvex with potentially many
local optima, the methodology leverages several standard techniques to relax the formulations
into efficiently solvable semidefinite programs [19, 47, 90]. This strategy has been effectively
applied in several scientific domains, including combustion science [43, 37, 98, 91, 105, 40,
60], atmospheric chemistry [106], and system biology [36, 35, 122].

1.3 Structure and contributions

The underlying challenge that we grapple with in each of the chapters below is how to
appropriately quantify model-data agreement under uncertainty. In this dissertation, we take
the view of B2BDC, which frames these questions within the context of a dataset and its
consistency. As described in the previous section, this framework examines model validation
and uncertainty quantification from a deterministic optimization-based perspective. The
basic methodology and computational underpinnings are reviewed in Chapter 2, which serves
as a springboard into the remainder of the work. The primary content of this thesis can be
divided into two halves:

• The first half consists of Chapters 3-5. These sections focus on the iterative construc-
tion of a dataset. In particular, Chapter 3 draws connections between previous B2BDC
works and Bayesian history matching, and proposes a formal procedure for iteratively
building a B2BDC dataset. Chapter 4 extends this procedure to including rational
quadratic surrogate models. Chapter 5 further discusses how additional criteria for
measuring model-data agreement can be incorporated through computing bounding
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ellipsoids. The key contributions of these sections are the links between B2BDC and
history matching, and the resulting iteration-based technique as applied in the B2BDC
framework.

• The second half consist of Chapters 6 and 7. These sections focus on consistency
measures, fundamental tools for quantifying model-data agreement and disagreement.
Chapter 6 elaborates on the usage of a previous tool for analyzing dataset consistency
developed by Feeley et al. in [35]. By example, we demonstrate the necessity for
alternate consistency measures to handle conflicts among models and data. Chapter 7
discusses a new tool, proposed in our recent work [54], that tackles these questions.
The key contributions of these sections are a formalization of the previous sensitivity-
based strategy as well as a new tool (and framework) for diagnosing and managing
dataset inconsistency.
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Chapter 2

Review of Bound-To-Bound Data
Collaboration

2.1 Introduction

This chapter provides an overview of bound-to-bound data collaboration (B2BDC) and
reviews the background information necessary for the remainder of the thesis. Much of the
content can be found in earlier works, with the primary reference being the dissertation of
Ryan Feeley [35]. As such, this section builds the foundation for new material in subsequent
chapters. Emphasis is placed on items relevant to these later sections and departures from
previous work are highlighted.

2.2 Problem setup and notation

The framework of B2BDC generally requires the following:

• a pairing between a real-world system R and a corresponding parameter-dependent
mathematical model M;

• the form and structure of M to be known, with uncertainty primarily stemming from
incomplete knowledge of the model parameters;

• availability of experimental data with expert-assessed uncertainties (e.g., as measured
from R); and

• numerical instantiations of M taking as input uncertain parameters and producing
outputs corresponding to the experimental observations.

As indicated in the name, B2BDC characterizes the above-described uncertainties through
bound constraints. Experimental measurements of N quantities of interest (QOIs) and their
uncertainties are encoded by intervals {[Li, Ui]}Ni=1 rather than individual numerical values.
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Prior information representing the current knowledge of the model parameters is denoted by a
set H ⊆ Rn, where n is the dimension of the parameter space. In keeping with notation from
earlier works, the variable x ∈ Rn is used to denote the parameter vector. The computable
mapping described in the final bullet is expressed by a multi-output function f : Rn → RN .
Note that f produces simulated versions of the QOIs. Hence f serves as a platform through
which the model parameters x can interact with the observed data (experimental bounds),
thus providing a basis for comparison between M and R.

To illustrate f , consider a dynamical system represented by a generic first-order ordinary
differential equation:

ż(t) = g(z(t), t, x), z(0) = z0. (2.1)

where z(t) ∈ Rd is the state vector and x ∈ Rn denotes the collection of model parameters.
The N QOIs described above may correspond to certain experimentally-measurable proper-
ties of the solution z(t), such as the jth peak response zpeak,j = maxt≥0 |zj(t)|, the jth steady
state value zss,j = limt→∞ zj(t), etc. Therefore, the parameter-to-QOI map f subsumes the
numerical solution of Equation (2.1) and links parameter choices x to simulated versions of
the experimental QOIs. A simple illustration of this is provided in Section 2.9.

We note that the experimental bounds, prior information, and models are usually in-
terpreted as “tentatively entertained” in the spirit of Box and Hunter [16]. Moreover, the
bounds (both experimental and prior) are generally expert-assessed rather than drawn purely
from raw data. Hence expert opinions on items such as measurement reliability, interpreta-
tion of experimental records, unmodeled physics, etc. can be factored into the analysis by
appropriately inflating or shifting the bounds.

2.3 Datasets and consistency

The central concept in B2BDC is the notion of a dataset and its corresponding feasible
set. The former is a collection of constraints tying together prior information, QOI models,
and experimental bounds. The latter is the set of parameters carved out by those constraints.
For an individual QOI i, the associated set of feasible parameters is defined by constructing
the model-data constraint,

Fi = {x ∈ Rn : x ∈ H, Li ≤ fi(x) ≤ Ui}. (2.2)

The reduction from H to Fi is exactly what is learned from the i-th measurement in the
context of the model. Accumulating and intersecting all N of such sets produces the complete
feasible set,

F = ∩Ni=1Fi, (2.3)

which represents the collective information gathered by the dataset. Since H characterizes
the a priori uncertainty in the model parameters, F is then a set description of the a posteriori
uncertainty. The reduction from H to F is then precisely due to the inclusion of all observed
data.
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Any feasible parameter vector x ∈ F complies with the prior knowledge and leads to
agreement between model predictions and experimental measurements for the designated
QOIs. Without additional criteria, feasible parameters are all tentatively valid and cannot
be distinguished. If the feasible set is nonempty, i.e., F 6= ∅, then the dataset is said to
be consistent. Conversely, an empty feasible set F = ∅ demonstrates that the dataset is
inconsistent – no satisfactory x can be found. Consistency, or lack thereof, is therefore a
property of a dataset and its collective content rather than any individual component.

We note that the nomenclature of “data collaboration” in B2BDC originates in the idea
that a dataset is often comprised of diverse, heterogeneous data contributed from sepa-
rate and independent reference materials, e.g., research laboratories, technical publications,
experimental records, etc. The “collaboration” aspect is essentially anonymous. Hence,
a dataset represents a community’s collective research portfolio and draws from sources
discipline-wide in order to corroborate the entire prior-model-data interaction [42, 40]. Con-
sistency analysis can therefore be interpreted as a form of model checking in that a diagnosis
of inconsistency confirms that the components are fundamentally in disagreement. Impor-
tantly, the nature of this conflict – e.g., whether it stems from a mutual incompatibility
among the QOI models, among the data, or both – remains to be ascertained. We may still
ask, for instance, does the data invalidate the model or does the model invalidate the data?
How to answer such questions very much rests in the hands of domain experts. Developing
tools to aid in this line of inquiry and to expose potential sources of inconsistency will be
visited in Chapter 6 and Chapter 7. Briefly, we note that a dataset being consistent is not
a confirmation of model validity, it only states that the model is capable of reproducing the
available data within the reported uncertainty. In general, an unconditional declaration that
a model is “valid” is impossible as finite data is only ever available.

2.4 Scalar consistency measure

The consistency of a dataset can be rigorously quantified by computing what is termed
a consistency measure. The scalar consistency measure (SCM), originally proposed in work
by Feeley et al. [37], is one such device:

CD := max
γ, x∈H

γ

s.t. Li +
(Ui − Li)

2
γ ≤ fi(x) ≤ Ui −

(Ui − Li)
2

γ

for i = 1, . . . , N.

(2.4)

In the above problem, the auxiliary scalar variable γ acts as either a hypothetical tightening
or relaxing of all experimental bounds and signals whether the dataset is consistent or not.
If γ ≥ 0, then all experimental bounds can be tightened, implying the existence of a feasible
x ∈ H. If γ < 0, then the experimental bounds must be relaxed (widened) in order to
accommodate an x ∈ H; the dataset is inconsistent. Hence the sign of CD computed by
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Equation (2.4) determines the status of the dataset. Details on the computational strategy
used to solve Equation (2.4) are discussed in Section 2.7 and in greater detail in Chapter 6.

2.5 Prediction and inference

A consistent dataset is tentatively valid and the existence of the feasible set F establishes
confidence that the model being studied is suitable for prediction. Let fP : Rn → R denote a
prediction function. For example, fP may refer to another feature ofM which is of interest
to the scientist or decision-maker. As discussed previously, feasible parameters x ∈ F cannot
be distinguished; they are all candidate solutions. Hence reporting an individual evaluation
of fP (x) for a particular x ∈ F is not a justifiable mechanism for prediction. Rather, B2BDC
accounts for the indistinguishability by computing the extent of fP across the entirety of F :[

min
x∈F

fP (x), max
x∈F

fP (x)

]
. (2.5)

In this way the uncertainty in prediction is characterized by the extreme values, thus ac-
counting for all parameters values judged plausible by the dataset. The overall framework for
prediction is referenced in the “bound-to-bound” nomenclature of B2BDC – bounds on the
parameters and bounds on the observations are transformed into bounds on the predicted
quantity by way of the feasible set.

Different choices of fP can lead to different inferences. For example, posterior bounds on
the parameters can be formulated by projecting F into the coordinate axes,[

min
x∈F

xj, max
x∈F

xj

]
for j = 1, ..., n. (2.6)

The resulting hyperrectangle may then be compared to H. Another useful computation is
that of “blind” prediction, [

min
x∈F−i

Mi(x), max
x∈F−i

Mi(x)

]
. (2.7)

where F−i refers to the feasible set with the ith model-data constraint removed. Comparing
the blind prediction for a particular QOI, say QOI i, to the corresponding experimental
uncertainty [Li, Ui] provides a measure of how influential the associated constraint is to the
dataset. If the blind prediction interval is completely contained within the experimental
bounds, then that experiment contributes nothing to our current state of knowledge (of x).
By this, we mean that the information in the model-data constraint Li ≤ Mi(x) ≤ Ui is
already implied by F−i, i.e., other experiments in the dataset.

2.6 Solution mapping and the surrogate dataset

In most realistic scenarios, f is a complex computer code that numerically evaluates a
governing set of nonlinear (differential) equations. In some settings, users may only interact
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with f in a “black-box” fashion by providing inputs as queries and receiving corresponding
outputs as answers. These difficulties make reliable computation of consistency and pre-
diction essentially intractable due to the inability to guarantee globally optimal solutions.
Moreover, these issues are exacerbated by the large dimension of the uncertain parameter
space, a feature that is quite common in modern science and a manifestation of Richard
Bellman’s famous coinage – “the curse of dimensionality” [11].

B2BDC handles these challenges by combining the precepts of solution mapping [44,
46, 18, 17] with techniques from polynomial optimization [90, 67]. The core idea of solution
mapping is to use simple algebraic response surfaces {Mi}Ni=1 – usually low-order polynomials
– as surrogates for the complicated mappings {fi}Ni=1 in the computation. To alleviate the
crisis posed by dimensionality, the surrogates are constructed independently on a per QOI
basis and over only a subset of the n parameters – the active variables, i.e., those parameters
deemed most impactful to the QOI response. Of course, the choice of active variables may
be different for different QOIs. To emphasize the necessity of such a strategy, consider the
following. In [42], Frenklach and collaborators investigate a combustion system consisting
of n = 102 uncertain parameters. A simple sampling strategy accounting for two coordinate
perturbations in each parameter dimension would require 2102 evaluations of f . Clearly, a
different strategy is needed to explore the behavior of QOIs over the parameter space.

Throughout this thesis we will denote the collection of active variable indices for the ith
QOI by the ordered subset Ai ⊂ {1, ..., n}. Notationally, we express the active parameters
xAi
∈ R|Ai| as a subvector of x with entries in Ai, where | · | denotes cardinality. The

determination of the active index set Ai is usually accomplished through a careful sensitivity
screening of the inputs to fi [17, 18, 101, 45]. This screening requires performing an initial
design of computer experiments over the full prior (in all n parameters), i.e., evaluating
fi(x) on a collection of points in H. Once the active variables are identified, the response
surfaces Mi can then be developed by performing a secondary design in the corresponding
active variable space, i.e., evaluating fi(x) at a selection of active inputs (with the inactive
components of x fixed at nominal values). Surrogate models can then be fit to the resulting
input-output simulation data. Typically the initial screening design exhausts relatively few
runs of the computational model. If the active variables make up only a small subset of
the full parameters, then developing the surrogate in the active space requires a secondary
design with fewer points than what would have been originally required in the full space.
The number of computer runs is therefore decreased.

With the computational models replaced by their surrogates, the dataset becomes a
collection of polynomial constraints. As a result, Equation (2.4) and Equation (2.5) become
polynomial optimization problems. In general, these problems are nonconvex and by no
means easy, but their global optima can be reliably bracketed through convex relaxation
techniques [47, 67, 90]. We emphasize that the choice of surrogate models in B2BDC is
dictated by the ability to make such guarantees. This is further discussed in Section 2.7
where the focus is on quadratic surrogate models, which form the bedrock for most B2BDC
applications.

The use of surrogate models is a necessary evil for pragmatic computation and introduces
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fitting errors into the analysis:

ei(x) = fi(x)−Mi(xAi
). (2.8)

The feasible set in Equation (2.3) can therefore be rewritten as,

F = {x ∈ Rn : x ∈ H, Li ≤Mi(xAi
) + ei(x) ≤ Ui for i = 1, ..., N}. (2.9)

The following approach is often taken to compensate for the error term. First, an estimate
êmax
i of maxx∈H |ei(x)| is computed. In practice, the maximum error is usually only evaluated

in the active variables space during the surrogate fitting step. Second, an approximation to
F is developed by widening the bounds to accommodate the error,

F e = {x ∈ Rn : x ∈ H, Li − êmax
i ≤Mi(xAi

) ≤ Ui + êmax
i for i = 1, ..., N}. (2.10)

If êmax
i ≥ maxx∈H |ei(x)|, then it can be guaranteed that F e absorbs F , i.e., F ⊆ F e. Ideally,

the fitting error for each QOI should be sufficiently small to ensure that the approximation
faithfully captures the computational model. As most practical applications of B2BDC
necessitate surrogate modeling, the use of F e rather than F is implied. To simplify the
notation, we will not distinguish between F and F e.

The utility of the solution mapping strategy hinges on the following question: under
what conditions can we expect such approximations to be successful? More specifically,
when can we expect the response of f to be relatively “benign”? In fields or applications
where considerable prior knowledge exists, e.g., H is relatively small and leads to manageable
variation in f , simple approximations such as quadratics may be reasonable. For example, if
direct measurement of an uncertain parameter is practical, then the corresponding dimension
of H is likely to be narrow. Similarly, recall that considerable effort goes into developing
laboratory experiments, which are often designed to isolate relationships among particular
uncertain parameters. In this situation of heterogeneous and semi-isolated QOIs, active
variables are likely present and can then be exploited. These points were originally put
forth in work by Frenklach et al. [42] to explain the success of the method for a particular
combustion chemistry application. Since this initial publication, tools aimed at expanding
the applicability of B2BDC techniques have been proposed [36, 45, 97, 34]. These approaches
will be discussed in Chapter 3, with an emphasis on a new iterative strategy.

2.7 Computational strategy for NQCQPs

Typical applications of B2BDC use surrogate models of the following forms: polynomial
[103], rational quadratic [35], and piecewise quadratic [35, 86]. These modeling choices are
specifically motivated by the consistency and prediction formulations of Equation (2.4) and
Equation (2.5), which are both optimization problems subject to the dataset constraints. For
affine surrogate models, the operations can be effectively addressed by linear programming.
Beyond this, however, the computation becomes more complicated. For example, moving
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from just affine to quadratic surrogates leads to nonconvex quadratically constrained quadratic
programs (NQCQPs) [5, 47], a generally NP-Hard class of problems. Determining global
solutions becomes intractable as the dimension of the parameter space increases.

Despite these challenges, the above classes of surrogate models lead to optimization prob-
lems that admit tractable approximations. Consider a minimization problem (P) with p?

denoting a global minimum. Then by “tractable approximation”, we mean developing two
easier-to-solve problems (P) and (P) with minimums p and p that bracket the true global
minimum, i.e., p ≤ p? ≤ p. In B2BDC, (P) is formulated through a convex relaxation

of (P) and (P) is computed by only asking for a local minimum. The latter task can
be accomplished by performing a variant of gradient descent or any nonlinear constrained
optimization technique [83, 58]. With the surrogate models described above, (P) can be
addressed through semidefinite programming. This class of optimization problems is an
extension of linear programming in which nonnegativity constraints on vector decision vari-
ables are replaced by semidefiniteness constraints on matrix decision variables. Moreover,
these problems are convex, meaning local solutions are also global, and efficient algorithms
and software are easily accessible [121, 19, 111]. In the general B2BDC setup, formulating
and solving semidefinite programs (SDPs) provides the computational engine for generating
global guarantees on prediction and inference.

As quadratic surrogate models form the backbone of most B2BDC applications, we review
the relaxation techniques for the NQCQP below:

min
z∈Rn

q0(z)

s.t. Li ≤ qi(z) ≤ Ui for i = 1, . . . ,m
(2.11)

where

qk(z) :=

[
1
z

]ᵀ
Qk

[
1
z

]
for k = 0, . . . ,m (2.12)

and

Qk =

[
ck bᵀk
bk Ak

]
, Aᵀk = Ak. (2.13)

The problem in Equation (2.11) is quite general. For example, in the case of computing
the SCM in Equation (2.4), the vector z =

[
xᵀ γ

]ᵀ
and q0(z) = −γ (the optimal solution

should then be negated to convert the minimization to a maximization). The number of
constraints m could include both the N model-data constraints as well as a set of quadratic
constraints defining H. When active variables are present, the matrices Qi ∈ R(n+1)×(n+1)

may contain different sparsity patterns as dictated by the active indices Ai identified through
sensitivity analysis. There are a multitude of ways to generate or interpret convex relaxations
to Equation (2.11). Two methods and an alternate interpretation are described in the
subsections below. The following matrix fact is used repeatedly in these derivations.

Theorem 2.7.1. [102]

min
x

[
1
x

]ᵀ
Q

[
1
x

]
≥ 0 if and only if Q � 0. (2.14)
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Proof.

⇐: Since Q � 0,

[
1
x

]ᵀ
Q

[
1
x

]
≥ 0 for all x. Thus minx

[
1
x

]ᵀ
Q

[
1
x

]
≥ 0.

⇒: Take any v =

[
v1

v2

]
with v1 ∈ R. If v1 6= 0, then[

v1

v2

]ᵀ
Q

[
v1

v2

]
= v2

1

[
1

1
v1
v2

]ᵀ
Q

[
1

1
v1
v2

]
≥ 0

where the last step is justified by the fact that v2
1 ≥ 0. If v1 = 0, then[

0
v2

]ᵀ
Q

[
0
v2

]
= lim

ε→0

[
ε
v2

]ᵀ
Q

[
ε
v2

]
≥ 0.

The first equality is justified by continuity of the quadratic and the second follows since the
expression inside the limit is nonnegative for all choices of ε 6= 0.

Lagrangian duality

The problem in Equation (2.11) can be rewritten as

p? = min
z∈Rn

max
λl≥0
λu≥0

L(z, λl, λu), (2.15)

where λl, λu are Lagrange multipliers (or dual variables) and L(z, λl, λu) is the Lagrangian,

L(z, λl, λu) = q0(z) +
m∑
i=1

[
λli(Li − qi(z)) + λui (qi(z)− Ui)

]
. (2.16)

Interchanging the order of minimization and maximization in Equation (2.15) produces the
lower bound,

p? ≥ pL := max
λl≥0
λu≥0

min
z∈Rn
L(z, λl, λu). (2.17)

Note that this formulation is exactly equivalent to

pL = max
λl≥0
λu≥0
θ

θ

s.t. min
z∈Rn
L(z, λl, λu) ≥ θ,

(2.18)

where θ is an additional decision variable. Plugging in the expressions for Equation (2.12)
into the constraint in a Equation (2.18),

0 ≤ −θ + min
z∈Rn
L(z, λl, λu)

= min
z∈Rn

[
1
z

]ᵀ([
c0 − θ bᵀ0
b0 A0

]
+

m∑
i=1

λli

[
Li − ci −bᵀi
−bi −Ai

]
+

m∑
i=1

λui

[
ci − Ui bᵀi
bi Ai

])[
1
z

]
.

(2.19)
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Thus Equation (2.18) can be expressed as the SDP,

pL = max
λl≥0
λu≥0
θ

θ

s.t.

[
c0 − θ bᵀ0
b0 A0

]
+

m∑
i=1

λli

[
Li − ci −bᵀi
−bi −Ai

]
+

m∑
i=1

λui

[
ci − Ui bᵀi
bi Ai

]
� 0

(2.20)

where the minimization in the constraint has been replaced with an equivalent linear matrix
inequality (LMI), as justified by Theorem 2.7.1. In addition to providing a lower bound
on p?, the Lagrange multipliers λl and λu provide an additional piece of information. This
aspect is revisited in Chapter 6 in the context of the SCM.

Semidefinite relaxation

The semidefinite relaxation approach is motivated by the fact that the quadratics in
Equation (2.13) have an equivalent representation,[

1
z

]ᵀ
Qk

[
1
z

]
= trace(QkZ) where Z =

[
1
z

] [
1
z

]ᵀ
. (2.21)

As such, having z as a decision variable in Equation (2.11) is identical to searching for
Z ∈ S1+n, where S1+n ⊆ R(1+n)×(1+n) is the subset of symmetric matrices, satisfying the
additional criteria 

Z11 = 1

Z � 0

rank(Z) = 1.

(2.22)

Therefore Equation (2.11) can be rewritten with the new matrix variable Z as

p? = min
Z∈S1+n

trace(Q0Z)

s.t. Li ≤ trace(QiZ) ≤ Ui for i = 1, . . . ,m

Z11 = 1

Z � 0

rank(Z) = 1.

(2.23)

In this form, the source of the nonconvexity is isolated in the rank constraint. Eliminating
this constraint enlarges the search space for the decision variable Z, thus producing a lower
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bound on the minimization as described in Equation (2.24).

p? ≥ p
RR

:= min
Z∈S1+n

trace(Q0Z)

s.t. trace(QiZ) ≤ Ui for i = 1, . . . ,m

− trace(QiZ) ≤ −Li for i = 1, . . . ,m

Z11 = 1

Z � 0.

(2.24)

The above relaxation is a semidefinite program in primal form [19]. Moreover, it can be
shown that this rank relaxation approach and the Lagrangian approach form a primal-dual
pair with p

RR
≥ pL. Under the appropriate constraint qualifications – strict feasibility of

the primal problem in Equation (2.24) and a finite solution to the Lagrangian relaxation –
strong duality holds and p

RR
= pL [47, 115]. Note, if the minimizer Z# to Equation (2.24)

is rank 1, then

Z# =

[
1
z#

] [
1
z#

]ᵀ
(2.25)

for some z# ∈ Rn. By Equation (2.21) and the fact that p
RR
≤ p?, z# is feasible with respect

to the original nonconvex problem in Equation (2.11) and therefore a global minimizer.

Stochastic relaxation

The stochastic relaxation approach is a probabilistic reinterpretation of the SDP relax-
ation. Suppose the decision variable z in Equation (2.11) is a random variable with (finite)
first and second moments E[z] = µz and E[zzᵀ] = Γz. Then,

E
[[

1
z

]ᵀ
Qk

[
1
z

]]
= E

[
trace

(
Qk

[
1
z

] [
1
z

]ᵀ)]
= trace

(
Qk

[
1 µᵀz
µz Γz

]) (2.26)

where the last step is due to the linearity of the trace operation. Setting the decision variable
Z in the rank relaxation to

Z =

[
1 µᵀz
µz Γz

]
(2.27)

and noting that Z � 0 is the same as stating that µz and Γz form a valid moment sequence
[13] justifies a stochastic interpretation of Equation (2.24). Hence the rank relaxation in
Equation (2.24) may be reexamined as

min
z∈Rn

E [q0(z)]

s.t. Li ≤ E [qi(z)] ≤ Ui for i = 1, . . . ,m

z a random vector with first and second moments (µz,Γz).

(2.28)
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Therefore, the minimizer, denoted earlier by Z#, produces the first and second moment
associated with the random vector z of unknown distribution. This technique suggests a
general recipe for computing p once p

RR
has been computed [39, 102, 72]: first, construct

the covariance matrix Σz = Γz − µzµᵀz ; second, assume z ∼ N(µz,Σz); third, sample real-
izations of z; and finally, use those realizations to initialize a search for a local minimum of
Equation (2.11).

2.8 Implications on prediction and inference

The computational strategy in B2BDC enables formal guarantees on both consistency as
well as prediction. Consider the prediction problem described in Equation (2.5). For both
the extreme values, the computational strategy produces a bracketing given by

p
L
≤ pL := min

x∈F
MP (x) ≤ pL (2.29)

and
p
U
≤ pU := max

x∈F
MP (x) ≤ pU . (2.30)

The extent of the prediction [pL, pU ] is then bounded internally and externally by the fol-
lowing chain of containments,

[pL, pU ] ⊆ [pL, pU ] ⊆ [p
L
, pU ], (2.31)

where the first and third intervals are referred to as the inner and outer bounds. These
computations guarantee that the actual prediction uncertainty cannot be narrower (more
accurate) than the inner bounds and cannot exceed (be worse than) the outer bounds.

In general, provable statements about a dataset are made on the basis of both the inner
and outer bounds. For example, the strategy for the SCM in Equation (2.4) produces inner
and outer bounds CD ≤ CD ≤ CD. If CD < 0, then the solution of the SDP proves the
dataset is inconsistent. If CD ≥ 0, the the dataset is verifiably consistent and the local
solution also provides a feasible x.

The convention for calling the solution of the convex relaxation an “outer” bound, even
for non-prediction quantities such as the SCM, stems from the following fact. The SDP
relaxation can be interpreted as resulting from a convex outer approximation to the feasible
set. For generality, consider the set defined as follows,

G =

{
z ∈ Rn :

[
1
z

]ᵀ
Qk

[
1
z

]
≤ 0, k = 1, ...,m

}
(2.32)

and note that the SDP relaxation technique described in Section 2.7 produces the following

G ⊆
∼
G :=

z ∈ Rn : ∃Z ∈ S1+n such that


Z(2:1+n, 1) = z

Z(1, 1) = 1

Z � 0

trace(QkZ) ≤ 0 for k = 1, ...,m


 (2.33)
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where the submatrix indexing notation Z(2:1+n, 1) refers to the 2nd through (1+n)th entry

of the first column. To verify the inclusion, take any z ∈ G and construct Z =

[
1
z

] [
1
z

]ᵀ
.

2.9 A two parameter example

Consider the simple two parameter system from [41] described by the linear ordinary
differential equations below,

ȧ(t) = −k1a(t)

ḃ(t) = k1a(t)− k2b(t)

ċ(t) = k2b(t)

a(0) = 1, b(0) = 0, c(0) = 0,

(2.34)

where the dot notation �̇ refers to the time derivative. The state variables a,b, and c
correspond to concentrations of certain compounds and the uncertain parameter (k1, k2) are
rates. Let the prior for the uncertain parameters (k1, k2) be H = [1, 4]× [0.5, 2], and suppose
the experimental observations are measurements of the peak response of b(t), the peak time
of b(t), and the half time of a(t) as evaluated at some hidden (k?1, k

?
2) ∈ H. These N = 3

QOIs and the associated uncertainty bounds are shown below in Figure 2.1.
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Figure 2.1: QOIs and their associated uncertainty bounds, shown in red.
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The first step in the analysis is to generate surrogate models M1, M2, and M3 representing
the map between the uncertain parameters and QOIs. This is performed by sampling pa-
rameter values from H, evaluating Equation (2.34), and then computing the resulting QOIs.
The quadratic surrogate models generated by this procedure are shown below in Figure 2.2.

Figure 2.2: Surrogate models with the associated training points shown in black.

The prior, surrogate models, and experimental bounds can then be combined into a
dataset. In this two parameter example, the feasible set is easily visualized and, as shown
in Figure 2.3, leads to a significant reduction in parameter uncertainty as compared to the
prior range. Recall, this reduction is exactly due to the incorporation of observations through
the model-data constraints. We note that a key difference between this and more realistic
scenarios is the dimensionality. Often, finding feasible samples is not an easy task and
computing the scalar consistency measure is essentially required to establish consistency.
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Figure 2.3: The feasible set of the dataset with coordinate axes displaying the full prior
range.

Prediction also accounts for this reduction in uncertainty. Let P denote an unmeasured
prediction QOI given by the ratio of c(tmax,b) to a(tmax,b), where tmax,b is the peak time of
b(t). The surrogate model corresponding to this new QOI is constructed in the same fashion
as the dataset QOIs. As illustrated in Figure 2.4, the inclusion of the experimental data
leads to a more certain prediction as compared to using just the prior knowledge.

Figure 2.4: Prediction of the surrogate model over the feasible set (in red) and over the prior
H (in black).
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2.10 Chapter summary

This chapter reviewed the core B2BDC material, highlighting the fundamental notions of
dataset, consistency, and solution mapping. The basic building blocks of the computational
strategy for nonconvex quadratically constrained quadratic programs were also discussed.
Particular emphasis was placed on the interpretation of the resulting inner and outer bounds,
which provide global guarantees on consistency and prediction. While the standard B2BDC
material was presented, several of these aspects are expanded upon in subsequent chapters.
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Chapter 3

Iterative Construction of a B2BDC
Dataset

3.1 Introduction

Reliable uncertainty assessments require accurate surrogate models with well-characterized
fitting errors. This aspect was highlighted in the previous chapter. In practice, though, there
is always a balance as to what can be achieved. The computational techniques described in
Section 2.7 provide a transparent procedure for converting prior and experimental bounds
to bounds on prediction. Importantly, the use of convex relaxation and semidefinite pro-
gramming allows guaranteed statements on both consistency and prediction. The price for
these guarantees, however, is a restriction to certain classes of surrogate models: low-order
polynomial [42, 103], rational quadratic [35], and piecewise versions of these [35, 86]. In
order to use B2BDC in its standard form, all QOIs (of the underlying computational model)
must be accurately characterized by the above surrogates over the entirety of H. We include
assessment of the fitting error as an aspect of “characterization”. This is a limitation of the
framework as it may be that certain QOIs are better fit than others.

In this chapter, we draw inspiration from the literature as well as previous extensions
of B2BDC to address this challenge. The chapter begins with a brief review of a Bayesian
probabilistic approach to uncertainty quantification (UQ) and focuses on the technique of
Bayesian history matching [28, 29, 116, 117]. We note that B2BDC and Bayesian approaches
were compared in previous work by Frenklach and coworkers [41]. The principal conclusions
reached by the authors of this study were twofold: first, the “use of both methods protects
against possible violations of assumptions in the [Bayesian calibration] approach and con-
servative specifications and predictions using [B2BDC]”; and second that “[s]hortcomings
in the reliability and knowledge of the experimental data can be a more significant factor
in interpretation of results than differences between the methods of analysis.” The connec-
tion between B2BDC and Bayesian history matching is new and was first remarked upon
in our recent work [54]. We expand on these links below, demonstrating how the formalism
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of history matching relates to previous iteration-based B2BDC extensions and inspires an
alternate framework dataset construction.

3.2 Bayesian UQ and history matching

Bayesian calibration

Much of the UQ literature is based on the foundational work of Kennedy and O’Hagan
[63], with applications and extensions in, for example, studies by Higdon et al. [56, 55] and
Bayarri et al. [9, 10]. A simplified viewpoint of this perspective is presented below.

The general starting point is a probabilistic description of how the model and reality
interact. Specifically, the observed data yD ∈ RN is formulated as the sum of some real
world process yR ∈ RN and a random measurement error ε ∈ RN . This random error is
generally assumed to have zero mean and to be independent of yR. The real world process
is itself formulated as a sum of the mathematical model f evaluated at some unknown best
fit parameter x? and a bias or model discrepancy δ ∈ RN .

yD = yR + ε

= f(x?) + δ + ε
(3.1)

In a typical Bayesian setting, the uncertain parameter vector x and the discrepancy δ are
unknown quantities and represented as random vectors, e.g., with joint density π(x, δ) chosen
to reflect available prior information. By assigning a particular distribution for the measure-
ment error ε, say Gaussian with independent entries and known variance εi ∼ N (0, σ2

i ), the
likelihood associated with Equation (3.1) becomes,

π(yD|δ, x) =
N∏
i=1

N(yD,i − fi(x)− δi, σ2
i ). (3.2)

Given observed data yD ∈ RN , inference is centered around computing the posterior density,

π(x, δ|yD) =
π(yD|x, δ)π(x, δ)∫
π(yD|x, δ)π(x, δ)dxdδ

, (3.3)

which is often addressed using tools such as Markov Chain Monte Carlo algorithms [49].
Deterministic treatments of uncertainty, as in B2BDC, and probabilistic approaches,

such as the Bayesian perspective described above, have distinct interpretations. As argued
in detail by Stark [110], replacing constraints with distributions can add unintended infor-
mation. With this in mind, it would be inappropriate to claim that one approach entirely
subsumes the other. Rather than characterizing B2BDC as Bayesian with a specific choice
of distribution, we can interpret this deterministic setup by looking at just the supports of
distributions. For simplicity, consider the case where there is no discrepancy, i.e., δ = 0. If
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we choose the prior and likelihood such that π(x) > 0 only for x ∈ H, π(yD,i|x) > 0 only
for x ∈ Fi where i = 1, ..., N , and assume conditionally independent measurements, then
π(yD|x) =

∏N
i=1 π(yD,i|x). The posterior in Equation (3.3) is nonzero only on the feasible set

F , and hence supported exactly on F . If the dataset is inconsistent, then the integral in the
denominator of Equation (3.3) evaluates to zero. Similar comparisons have been made in
the system identification literature, e.g., as presented in a paper by Ninness and Goodwin
[81]. We note that the inclusion of model discrepancy δ in the B2BDC framework is inves-
tigated in recent work by Li et al. [71]. An interesting connection with consistency and the
developments in Chapter 7 can be found in [71, Section 4].

Bayesian history matching

Bayesian history matching [28, 29, 116, 117] is an iterative methodology rooted in the
probabilistic setting described above. The objective, however, is not the identification of
the full posterior nor the identification of the hypothesized x?. Rather, the strategy aims
only to identify regions of the model’s input space that lead to acceptable agreement with
observed data. History matching has found successful application in a number of areas,
including flow modeling for oil reservoirs [28, 29], galaxy formation [116, 117], rainfall runoff
simulation [50], climate modeling [120], epidemiology [2, 3, 1, 76], and systems biology [118].
A prominent feature of the method is the use of stochastic emulators as surrogates for the
expensive computational model f , e.g., as described by Sacks et al. [100].

Bayesian history matching works by eliminating regions of the parameter space through
a sequence of waves, or iterations, whereby an initial region is progressively narrowed. Each
wave sees the generation of new parameter samples in the current region and corresponding
evaluations of f on those samples. These evaluations are used to train stochastic emula-
tors for a selected collection of QOIs – specifically, those QOIs which can be accurately
represented. An expressive and commonly used emulator for fi(x) is shown below [116, 118]

fi(x) ≈Mi(x) =
∑
j

βijgij(xAi
) + ui(xAi

) + wi(x) (3.4)

where xAi
once again denotes the collection of active variables relevant to the ith QOI, βij

are unknown coefficients, gij(·) are selected deterministic functions, ui(·) is a typically zero
mean Gaussian process, and wi is a white noise process that is uncorrelated with the other
components of the emulator. Note that wi is intended to capture the effect of the inactive
variables. A detailed discussion on stochastic emulation and fitting can be found in the
tutorial by O’Hagan [85]. Of key importance here is the fact that the emulator has both a
mean E[Mi(x)] and a variance Var(Mi(x)) at each input x.

The samples associated with the particular iteration are then pruned by computing im-
plausibility measures, which compare the emulator output to the observed data while ac-
counting for various sources of stochastic uncertainty, including the emulator itself Mi(·),
measurement error εi, and model discrepancy δi. The simplest class of implausibility mea-
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sures is the univariate family:

Ii(x) =
|E[Mi(x)]− yD|√

Var(Mi(x)) + Var(δi) + Var(εi)
, (3.5)

where i can range over all N QOIs, but is usually restricted to the QOIs selected for the cur-
rent iteration. Importantly, parameters x whose expected model output deviate substantially
from the data may still have small implausibility if there is large uncertainty (as measured
through the variance) in the corresponding emulator prediction, discrepancy, and/or obser-
vation. Typically, the emulator has large variance in regions far from the training data.
Hence, this feature prevents locations of the parameter space where little is known from
being deemed implausible. Details on the interpretation and usage of model discrepancy
can be found in work by Goldstein and Rougier [51]. For example, Vernon and coauthors
[117] suggest choosing the variance of the component δi to reflect a subjective assessment
as to how capable an expert believes the model is of matching the data for QOI i. Practi-
cally speaking, this acts as a tolerance. Larger values of Var(δi) decrease the implausibility,
implying a willingness to tolerate larger deviations from data.

Thresholding the implausibility, e.g., Ii(x) < c for some c > 0, imposes a deterministic
constraint on the parameter space and defines a region of non-implausible parameter values.
Craig and coauthors [29] advocate the choice of c = 3, i.e., Ii(x) < 3 based on Pukelsheim’s
three sigma rule [95]. More detailed implausibility measures, such as less aggressive variants
or those that account for known correlations, can be found in [116].

After the new non-implausible region is determined, the iteration is updated. In this
way, the analysis is continually refined – the non-implausible region cannot grow with each
wave, and in the ideal case, becomes a more accurate representation of where the model and
data agree. The strategy can be summarized by the following collection of steps. To start,
let X k denote the current non-implausible region at the beginning of the kth wave. Note,
this region X k was established in the preceding (k− 1)st wave. Additionally, let Qk contain
the indices of QOIs that can be accurately emulated over X k, i.e., Qk ⊆ {1, ..., N}. For the
kth wave [116, 118]:

1. Construct a design of training samples and model evaluations {(x(p), f(x(p)))}mp=1 char-
acterizing the region X k. For simple cases, this can be accomplished through rejection
with a design of (computer) experiments, e.g. Latin hypercube sampling [75] or a Sobol
sequence [109]. In many practical scenarios, more efficient strategies are required. For
example, slice sampling is discussed in work by Andrianakis et al. [1].

2. Improve / refit each of the emulators that were deemed accurate in the previous wave
(i.e., Qk−1) using the training samples from Step 1.

3. Verify if any additional QOIs can be accurately emulated. If so, append the new QOIs
to Qk−1, creating Qk.
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4. Update the expressions for implausibility measures Ii(x) with the new emulators for
each i ∈ Qk.

5. Define the updated non-implausible region as X k+1 = {x ∈ X k : Ii(x) < c, i ∈ Qk}.
This can be accessed through sampling and emulator evaluations.

6. If (a) Qk = {1, ..., N} and all of the emulators have sufficiently small variance or (b)
X k+1 is empty, terminate the algorithm.

7. Iterate k ← k + 1 and go to step 1.

The above strategy ensures that X k+1 ⊆ X k. As such, the behavior of the computational
model f is likely to be smoother over the updated region and QOIs become easier to emulate.
Thus the above strategy ensures that the emulators are accurate on relevant or useful regions
in the parameter space.

3.3 B2BDC and Bayesian history matching

There are several notable points of comparison between B2BDC and Bayesian history
matching. First, both methods evaluate the agreement between a computational model and
empirical data by locating a set – the non-implausible region in history matching and the
feasible set in B2BDC – defined by hard constraints involving surrogate models, experi-
mental data, and prior knowledge. Both approaches see the existence of this set as a key
indicator of “model fits data”. Whereas B2BDC directly formulates prediction within the
same framework, history matching is viewed as a useful “precalibration” step [117]. A full
Bayesian calibration and prediction exercise can be carried out over the reduced parameter
space, i.e., the non-implausible region.

As one might expect, differences in both how uncertainty is characterized and the choice
of surrogates lead to differences in interpretation. Additionally, a typical application of
B2BDC requires the QOIs of the computational model to be well approximated by algebraic
surrogates over the prior region H. In this setting, consistency is a global property of the
dataset and establishes the existence of a feasible region. A diagnosis of inconsistency proves
that the model and data disagree over the entirety of H. In contrast, history matching allows
a more flexible class of surrogate models with a more nuanced characterization of uncertainty.
A consequence of this, however, is that the non-implausible region at any iteration is assessed
locally and on the basis of a finite number of samples. Since assessments of the implausible
region are purely sample based, checking if the non-implausible region X k is empty at each
iteration presents a challenge. This is exacerbated by the fact that in both approaches,
the feasible set and the non-implausible set tend to be extraordinarily small relative to the
starting region and with potentially complex geometry [116, 1, 99].
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3.4 Previous iterative strategies in B2BDC

As discussed earlier, the standard application of B2BDC described in Chapter 2 is a
single-shot endeavor and can fail if the surrogate models are poor representations over the
prior region H. In previous works, however, iterative strategies aimed at addressing this
challenge have been explored. In [36], Feeley et al. proposed a trust-region algorithm based
on identifying, translating, and resizing a small rectangular subregion Htr ⊆ H, over which
all N QOIs can be accurately characterized by quadratic surrogate models. This approach
stems from the same strategy in model optimization using solution mapping [46] and later
employed in B2BDC [45, 34]. Moreover, Feeley [35] further explored the construction of
piecewise quadratic surrogate models by iteratively splitting H into smaller hyperrectangles
and refitting quadratic surrogate models over each subregion. This was extended by Oreluk
in [86, Chapter 4], which incorporated consistency checks to enable early termination of
the subdivision for provably inconsistent subdomains (subject to maximum fitting error
estimates). In addition to piecewise approaches, Edwards and coauthors [34] proposed an
iterative domain restriction strategy based on multiple rounds of response surface fitting
over a shrinking domain. Similarly, Garcia [48] implemented an algorithm to compute a
bounding hyperrectangle during each iteration by refitting surrogate models and computing
Equation (2.6).

In the majority of these approaches, the aim was to hone the surrogate modeling in on
regions relevant to the feasible set F . This was generally accomplished by fitting all N QOIs
at each iteration and computing F = ∩Ni=1Fi all at once. In such cases, the effectiveness of
the implementation essentially relies on accurately characterizing the maximum fitting error
for all dataset QOIs. Underestimating this error could lead to truncation, or even removal,
of the feasible region and thus incorrect conclusions.

3.5 Incorporating waves in B2BDC

The formalism of Bayesian history matching provides an alternate framework for itera-
tively constructing a dataset that prioritizes accurate representation of QOIs. In particular,
the dataset construction strategies and tools of B2BDC can be embedded within a wave-
based scheme in which only the QOIs accurately fit by the typical B2BDC surrogate models
are employed at each iteration. Hence, rather than attempting to characterize the full feasi-
ble set in one shot, we construct F through a sequence of waves, initialized with F1 = H. As
in Section 3.2, the superscript denotes the wave number. Thus during wave k, the dataset is
appended with model-data constraints involving surrogates deemed accurate over the current
feasible set Fk. At the conclusion of the wave, the updated dataset defines an also-updated
feasible region Fk+1 with the property that Fk+1 ⊆ Fk. Consistency measures can then be
recomputed, thus providing a clear signal to either continue or terminate the analysis. If the
dataset is inconsistent, tools for investigating the inconsistency, e.g., those discussed later in
Chapter 6 and Chapter 7, can be applied. The workflow below describes this approach for
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datasets with quadratic surrogate models.

1. Construct a design of training samples and model evaluations {(x(p), f(x(p)))}mp=1 for
the region Fk.

2. Improve / refit each of the quadratic surrogates Mi(x) that were deemed accurate in
the previous wave (i.e., i ∈ Qk−1) using the training samples from Step 1.

3. Verify if any additional QOIs can be accurately emulated. If so, append the new QOIs
to Qk−1, creating Qk.

4. Append the QOIs in Qk to the dataset, thus forming the updated feasible set Fk+1 =
{x ∈ Fk : Li ≤Mi(x) ≤ Ui, i ∈ Qk}.

5. Compute the scalar consistency measure for the dataset.

6. If (a) Qk = {1, ..., N} or (b) the dataset is provably inconsistent, terminate the algo-
rithm. If no new QOIs can be incorporated, also terminate.

7. Iterate k ← k + 1 and go to step 1.

Note that during the procedure, constraints are only appended to the dataset and never
removed. By retaining old constraints, it is guaranteed that Fk+1 ⊆ Fk. This restriction is
important as during wave k the new surrogate models are developed on, and therefore only
valid over, Fk.

3.6 Example: Calibration of an Aerodynamic Body

In this section, we perform a calibration exercise using an example from MATLAB’s
System Identification ToolboxTM [74, 73] detailing the modeling of an aerodynamic body. For
brevity, we suppress the state and output equations; these, along with detailed information
about the problem setup, can be found in [74]. The system has 10 inputs, 5 outputs,
and contains 16 uncertain parameters. The 10 inputs correspond to time-dependent signals
applied at various actuation points along the body and the 5 outputs are the resulting time-
dependent responses. A table documenting the uncertain parameters alongside their prior
bounds is provided below in Table 3.1.
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Table 3.1: The uncertain parameters and the corresponding prior bounds.

Parameter Physical meaning Lower Bound Upper bound

F ∈ R4 Aerodynamic force coefficient


18.328
−8.1125
34.896
7.2572




21.672
−3.8875
35.104
18.743



M ∈ R11 Aerodynamic momentum coefficient



−1.0619
14.109
2.992
−18.335
−2760.8
−54.627
7.9077
−213.31
−2834
−38.623
−51.205





−0.93812
15.891
3.008
−13.665
−839.18
−45.373
38.092
−186.69
−1166
4.6225
−48.795


C ∈ R Aerodynamic compensation factor −10.667 0.66713

The prior H bounds were selected based on constructing a hyperrectangle around an initial
guess, which was provided in [74]. In our implementation, the prior was centered and rescaled
to the hypercube H = [−1, 1]16.

Experimental data came in the form of 10 specified input signals and the corresponding
5 output signal measurements. Note that the data was generated from a more sophisticated
computational code. Hence, it is unknown as to whether the model being analyzed can
reliably reproduce these measurements. Additionally, note that these signals were collected
at a sampling rate of 50 Hz.

The input signals and initial conditions for the dynamic equations were assumed com-
pletely known. In order to simulate uncertain measurements, the output signals were aug-
mented with error bounds of fixed magnitude (for each signal). QOIs were selected to be
the responses at 13 time instances from each of the 5 outputs, leading to a total of N = 65
QOIs. These signals and the corresponding QOI bounds are shown below in Figure 3.1 and
Figure 3.2.
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Figure 3.1: Measured input signals.
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Figure 3.2: Measured output signals. The intervals show the N = 65 QOIs and the corre-
sponding uncertainty bounds.
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We conducted the iterative B2BDC procedure for a duration of 8 waves, which resulted
in the feasible set F9. During each wave, say wave k, quadratic surrogate models were
constructed over Fk. The generation of training samples to fit these surrogates is a non-trivial
task. Simple strategies, such as sampling from a bounding box for Fk using posterior bounds
(Equation (2.6)), may often fail. For example, of 5×106 Latin hypercube samples generated
in the outer bounding box of F9, none are feasible. This result – i.e., outer bounding and
rejection sampling strategies failing to produce feasible samples – is not uncommon [99].
Hence, during each of the k = 1, ..., 8 waves 2 × 104 points were generated in the feasible
set Fk using a Gibbs sampling algorithm. Since the sets investigated here are described by
quadratic inequalities, the line search step in the sampling setup can be accomplished by root
finding. Details on this approach as applied in B2BDC can be found in the forthcoming work
by Li et al. [70]. Other sampling strategies for feasible sets in B2BDC or general nonconvex
quadratically constrained sets have been investigated in previous work by Russi [97, Chapter
9]. Of the 2× 104 samples, 7000 were randomly selected to construct the surrogate models.

During the fitting procedure, 50% of the samples were randomly chosen to train the
quadratic response surfaces using the supremum norm strategy in [35, Section 7.2.3.1]. The
errors were assessed on the entire collection of points. Note that during each wave, a small
fraction of the parameter samples were ignored due to the computational model failing to
evaluate. In order to gauge the quality of the fit, we computed the following metric:

EEFi =
(Ui + êmax

i )− (Li − êmax
i )

Ui − Li
= 1 +

2êmax
i

Ui − Li

(3.6)

where êmax
i is an estimate of the maximum absolute fitting error of QOI i. Equation (3.6) will

be referred to as the error expansion factor (EEF), i.e., the factor by which the experimental
bounds must be expanded to accommodate the estimated fitting error. Note, the threshold
EEFi ≤ α (for some α > 1) is equivalent to a bound on the maximum absolute error
emax
i ≤ (α − 1)Ui−Li

2
. In this way, the fitting error acceptability is commensurate with the

measurement uncertainty – we tolerate larger fitting errors for QOIs with wider experimental
uncertainty.

The EEF criteria at the conclusion of both the first and final waves are shown below in
Figure 3.3. In this example, we chose to tolerate quadratic models that satisfy an EEF of
up to α = 1.3.
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Figure 3.3: Left, EEFs after the first wave. Right, EEFs after the eighth wave.

After eight waves, 64/65 QOIs satisfied the error criteria. The single QOI that did not
satisfy the cutoff was not included in the dataset. Hence, QOI #7, which corresponds to the
output #1 measurement taken just after t = 5 seconds, was not represented through a model-
data constraint. The resulting dataset was consistent and the evolution of its content as the
waves progressed is tabulated below in Table 3.2. After the sixth wave, the procedure stalls
and there is no improvement in the QOIs incorporated. Although the dataset is consistent,
the volume of the feasible set becomes negligibly small as compared to the prior.

Table 3.2: Composition of the dataset after the kth wave. The volume fraction is calculated
using a collection of 5× 106 Latin hypercube samples over the prior region H. Note that in
each case Fk+1 is nonempty.

Wave k = 1 k = 3 k = 5 k = 6 k = 7 k = 8

# QOIs represented 8 43 56 64 64 64
# total dataset constraints 8 72 179 243 307 371
vol(Fk+1)/vol(H) 0.26 1.8× 10−4 2× 10−7 ≈ 0 ≈ 0 ≈ 0

The output responses of the underlying computational model for approximately 1000
randomly selected parameter configurations from the prior and the feasible sets at the con-
clusion of waves k = 1, 3, 5 − 8 are shown below in Figure 3.4. An extended vertical axis
version of the plot displaying the full variation of the outputs is also shown in Figure 3.5.
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Figure 3.4: Model outputs for approximately 1000 (ignoring failed evaluations) randomly
selected feasible parameter vectors after the kth wave. Only the prior and samples after
waves k = 1, 3, 5− 8 are shown, with lighter colors corresponding to later waves. Note that
wave 8, shown in off-white, is essentially identical to waves 6 and 7. The measured output
signals along with the QOI bounds are shown in red.
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Figure 3.5: Model outputs for 1000 randomly selected feasible parameter vectors after the
kth wave. The vertical axis has been extended to accommodate the entire output variation
across the feasible parameter samples.

As a general trend, the model outputs after wave k = 8, shown as off-white in Figure 3.4,
agree well with the experimental bounds. Note, however, the agreement is worst in output 1
and particularly at QOI #7, which was not represented in the dataset due to misfit. We will
return to this particular QOI in Chapter 4. For outputs 2 through 5, the feasible samples
after wave k = 8 adequately capture the behavior of the measured signal at all time instances,
i.e., not just the selected QOIs. The first output, however, is quite different. During the
time interval t ∈ [0, 1), significant disagreement exists between the simulated outputs and
the measured signal. To investigate this further, we considered a single QOI at t = 0.18
seconds fit over the entire prior region, with experimental bounds assessed similar to the
other output #1 QOIs. The resulting quadratic surrogate was accurate but inconsistent with
the corresponding experimental bounds. Hence, this form of self-inconsistency suggests that
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the computational model (subject to the choice ofH) cannot completely match the measured
data over the entire time domain.

In Figure 3.6, we compare a small batch of feasible parameter samples from F9 (shown in
blue) with the best fitting parameter identified using the System Identification ToolboxTM

function nlgreyest [74], which solves a weighted nonlinear least squares problem involving
the computational model and the entire measurement signal. To perform the estimation, we
specified the measurement noise variance such that the experimental bounds corresponded
to two standard deviations. For lack of a better term, we will refer to the parameter vector
identified by the software as “optimal”.
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Figure 3.6: The measured output signals are shown in red. 22 feasible samples are shown in
blue. The nonlinear least squares optimal point is shown in green.

Notably, the optimal point is not feasible with respect to the dataset. This is evident
in the first QOI, where the optimal output signal overshoots the experimental bound. In
a sense, the comparison is unfair as the assumptions, settings, and data usage for both



CHAPTER 3. ITERATIVE CONSTRUCTION OF A B2BDC DATASET 33

methods are different and the strategies ask different questions. But the core goal remains,
to find parameter configurations that lead to acceptable matches between model outputs and
measurements. The optimal point tends to outperform the feasible trajectories with respect
to the nominal measured signal. When accounting for the uncertainty in the experimental
bounds, however, this distinction between optimal and feasible becomes less clear. The
majority of the feasible trajectories agree with the experimental bounds and as such should
not be discounted from consideration. This is the premise under which B2BDC operates. We
note that one of the sampled feasible trajectories significantly undershoots QOI 7 (output
#1). This, of course, could be remedied by fitting said QOI with a more sophisticated
surrogate model, e.g., a rational quadratic or a piecewise quadratic [35]. The former aspect
is further explored in Chapter 4.

Interestingly, the 23 parameter configurations (both feasible and optimal) discussed in
the preceding paragraph appear fairly spread out in H = [−1, 1]16. The maximum distance
between any two of the displayed feasible parameters is 6.8. For reference, 8 is the maximum
distance between any two points in H. The mean and variance of these pairwise distances
among the 22 feasible points are 3.13 and 4.83 respectively. The smallest distance between
the optimal point and the collection of feasible points is 3.49.

The samples described above provide useful geometric information. Posterior bound
calculations, however, confirm the extent of the feasible set. In Figure 3.7, pairwise scatter
plots are shown for the feasible samples after the completion of wave k = 8 (from Figure 3.4).
The corresponding posterior bounds for variables are presented along the horizontal axis.
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Figure 3.7: Pairwise scatter plot associated with the final batch of feasible samples shown
in Figure 3.4. The parameter ordering listed on the vertical axis (top-down) corresponds
to the ordering listed on the horizontal axis (left-right). Inner (I) and outer (O) posterior
bounds are shown along the horizontal axis. Note, the axes limits have been standardized
to the posterior outer bounds.

Recall, that the inner bounds are computed using local optimization techniques, meaning
that the computed bounds are associated with specific extremal feasible parameter vectors.
Hence, Figure 3.7 shows that the feasible set verifiably spans the prior range for many of
the parameters. For a few, e.g., M(7), the sampled region is only able to cover a fraction of
the inner interval, meaning that the samples do not capture the full extent of the feasible
region. Interestingly, this general feature of feasible sets that are both long (relative to the
prior) and having seemingly minute volume (i.e., compressed in certain dimensions) appears
common in many physical examples, e.g., [99].

3.7 Discussion and future work

The above example demonstrate that an iterative, or wave-based, implementation of
B2BDC certainly extends the applicability of the technique. If only a few QOIs are ac-
curately fit with quadratic surrogates, there is still the prospect that other QOIs can be
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eventually incorporated as the waves progress. In circumstances where this isn’t possible,
i.e., after several iterations the surrogates cannot be improved, other strategies such as ra-
tional quadratic surrogates [35] can be applied. The use of rational quadratics is detailed in
the following chapter.

An issue that hasn’t been addressed above, however, is the selection of error criteria –
both in terms of the metric as well as the cutoff. The choice of the cutoff is rather important,
as larger values allow more QOIs and therefore more constraints into the dataset during each
wave, thus leading to faster reduction in the prior region. This comes at the cost of being too
aggressive and could prematurely eliminate portions of the feasible region due to intersecting
many moderately accurate constraints. A viable analogy is that the error criteria acts akin
to a “step size”. Although we may be able to conclude consistency or inconsistency if the
procedure finds a region with good fits, predictions made on that region (in the B2BDC
sense, see Section 2.5) must be treated with caution as the full extent of the feasible set may
yet to be explored. In such cases, variations of the resize-and-translate strategies reviewed
in Section 3.4 can be useful. Another promising direction would be the synthesis of a wave-
based strategy with the piecewise approach discussed in work by Oreluk [86].
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Chapter 4

Iterative Construction of a B2BDC
Dataset: Rational Quadratic
Surrogate Models

4.1 Introduction

The tools and methods in B2BDC were initially developed for problems involving just
quadratic surrogate models [42]. As emphasized, the reasoning for this was primarily com-
putational – to allow efficient and pragmatic calculation of guaranteed bounds on prediction
uncertainty. In the thesis by Feeley [35], it was shown that the same computational strat-
egy involving convex relaxation and semidefinite programming could be applied to surrogate
models formulated as ratios of quadratics. This chapter extends the previous iterative dataset
construction to incorporating rational quadratic (RQ) surrogate models.

4.2 Fitting over H
RQ surrogate models take the general form of Equation (4.1).

M(x) =

[
1
x

]ᵀ
N

[
1
x

]
[

1
x

]ᵀ
D

[
1
x

] (4.1)

where N ∈ S(1+n) and D ∈ S(1+n). To simplify the notation, we use the following shorthand,

N(x) =

[
1
x

]ᵀ
N

[
1
x

]
and D(x) =

[
1
x

]ᵀ
D

[
1
x

]
. (4.2)

There are a variety of ways to fit a RQ surrogate to training data. In B2BDC, the strategy
proposed by Feeley in [35, Section 7.2.3.3] ensures that denominator is positive and well
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conditioned over the entirety of H by enforcing the following condition:

1 ≤ D(x) ≤ κ ∀x ∈ H, (4.3)

where κ > 1 is a user-specified fitting parameter that bounds the behavior of the denom-
inator D(x). Note that the key challenge in implementing Equation (4.3) is the ∀x ∈ H
condition. Such conditions are not relevant to constructing quadratic surrogate models, for
which standard least squares or supremum norm fitting strategies can be applied. When us-
ing only quadratic or polynomial surrogates, the extension to a wave-based implementation
of B2BDC is simple and only requires finite samples from Fk during the kth wave.

In [35, Section 7.2.3.3], a supremum norm fitting strategy ensuring the condition in
Equation (4.3) was developed for rectangular H, i.e.,

H = [l1, u1]× . . .× [ln, un]. (4.4)

First, recall that the linear inequalities implied by x ∈ H can be equivalently expressed in
the form of quadratics,

lj ≤ xj ≤ uj ⇐⇒ −x2
j + (uj + lj)xj − ujlj =

[
1
x

]ᵀ
Fj

[
1
x

]
≥ 0 for j = 1, ..., n. (4.5)

In the above, the Fj ∈ S(1+n) are chosen appropriately to make the equivalence. Consider
the following pair of inequalities,

∃λ ≥ 0 such that

[
1
x

]ᵀ(
D−

[
1 0
0 0

]
−

n∑
j=1

λjFj

)[
1
x

]
≥ 0 ∀x ∈ Rn

∃τ ≥ 0 such that

[
1
x

]ᵀ([
κ 0
0 0

]
−D−

n∑
j=1

τjFj

)[
1
x

]
≥ 0 ∀x ∈ Rn.

(4.6)

If these inequalities hold, then for any x ∈ H the condition in Equation (4.3) also holds.
Hence, the inequalities Equation (4.6) are sufficient to ensure the denominator is bounded.
The advantage of using this sufficient condition, however, is that it can be implemented
with the following positive semidefiniteness constraint and thus lends itself to numerical
computation,

∃λ ≥ 0 such that D−
[
1 0
0 0

]
−

n∑
j=1

λjFj � 0

∃τ ≥ 0 such that

[
κ 0
0 0

]
−D−

n∑
j=1

τjFj � 0.

(4.7)

Given m samples of the underlying function f , namely {(x(p), f(x(p)))}mp=1, the supremum
norm fitting criteria seeks to pick N and D in accordance with the following optimality
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criterion,
min
t

N∈S(1+n)

D∈S(1+n)

t

s.t.

∣∣∣∣N(x(p))

D(x(p))
− f(x(p))

∣∣∣∣ ≤ t for p = 1, ...,m

D−
[
1 0
0 0

]
−

n∑
j=1

λjFj � 0

[
κ 0
0 0

]
−D−

n∑
j=1

τjFj � 0

λ ≥ 0, τ ≥ 0,

(4.8)

where the fitting parameter κ is user-specified. Since the denominator of the RQ model is
ensured to be positive, we may rewrite Equation (4.8) as,

min
t

N∈S(1+n)

D∈S(1+n)

t

s.t. − tD(x(p)) ≤ N(x(p))− f(x(p))D(x(p)) ≤ tD(x(p)) for p = 1, ...,m

D−
[
1 0
0 0

]
−

n∑
j=1

λjFj � 0

[
κ 0
0 0

]
−D−

n∑
j=1

τjFj � 0

λ ≥ 0, τ ≥ 0.

(4.9)

If t were fixed, the above problem would be an SDP and therefore could be addressed using
typical SDP solvers. The interaction between the optimization variables t and D, however,
is an obstacle. The standard approach to handling this, as discussed in [35], is to perform
bisection on the scalar variable t. Hence at each iteration of the bisection, we fix a value for
t and verify the feasibility of Equation (4.9) by solving an SDP.

4.3 Fitting over F
Consider a dataset composed of RQ surrogate models. Naturally, this includes quadratics

as well. There are two immediate ways of extending the previous strategy of fitting over H to
accommodate fitting over F . The first will be referred to as RQ-H and directly implements
the previous technique to training data from F , i.e., {(x(p), f(x(p)))}mp=1 where x(p) ∈ F for all
p = 1, ...,m. This approach can be overly restrictive as it requires controlling the behavior
of the denominator over all of H rather than just F . The basic reasoning here is that for
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F ⊆ H, the requirement ∀x ∈ H is more restrictive than ∀x ∈ F and therefore needlessly
limits the search for admissible coefficient matrices N and D. The second strategy is to only
control the denominator on F . This approach will be referred to as RQ-F and is described
below. Note that both RQ-H and RQ-F can be easily embedded within the iteration-based
scheme of Chapter 3 by fitting over Fk during the kth iteration.

For a dataset comprised of RQ surrogate models, the feasible set F is defined as,

F =

{
x ∈ H : Li ≤

Ni(x)

Di(x)
≤ Ui, for i = 1, ..., N

}
. (4.10)

In this scenario, the rational quadratic models in Equation (4.10) are known and the objective
is to construct N(x) and D(x) over F . Additionally, note that this setup also includes
quadratic surrogates – just set Di(x) = 1 for the appropriate QOI i. To ensure that the
denominator D(x) is well behaved on F , we replace the condition in Equation (4.3) with the
following,

1 ≤ D(x) ≤ κ ∀x ∈ F . (4.11)

By definition, F also includes the constraints defining H. Note that x ∈ F if and only if the
following inequalities hold for all i = 1, ..., N ,[

1
x

]ᵀ
(Ni − LiDi)

[
1
x

]
≥ 0[

1
x

]ᵀ
(UiDi −Ni)

[
1
x

]
≥ 0.

(4.12)

In order to enforce Equation (4.11), the following linear matrix inequality can be imposed,
paralleling the development of Equation (4.7),

∃λ ≥ 0, σL, σU ≥ 0 such that

D−
[
1 0
0 0

]
−

n∑
j=1

λjFj −
N∑
i=1

(
σLi (Ni − LiDi) + σUi (UiDi −Ni)

)
� 0

∃τ ≥ 0, νL, νU ≥ 0 such that[
κ 0
0 0

]
−D−

n∑
j=1

τjFj −
N∑
i=1

(
νLi (Ni − LiDi) + νUi (UiDi −Ni)

)
� 0.

(4.13)

Hence, the fitting can be accomplished for training data {(x(p), f(x(p)))}mp=1 by the following
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optimization,

min
t

N∈S(1+n)

D∈S(1+n)

t

s.t. − tD(x(p)) ≤ N(x(p))− f(x(p))D(x(p)) ≤ tD(x(p)) for p = 1, ...,m

D−
[
1 0
0 0

]
−

n∑
j=1

λjFj −
N∑
i=1

(
σLi (Ni − LiDi) + σUi (UiDi −Ni)

)
� 0

[
κ 0
0 0

]
−D−

n∑
j=1

τjFj −
N∑
i=1

(
νLi (Ni − LiDi) + νUi (UiDi −Ni)

)
� 0

λ ≥ 0, σL, σU ≥ 0

τ ≥ 0, νL, νU ≥ 0.

(4.14)

As before, this can be solved by performing bisection on t and solving an SDP feasibility
problem at each step.

The above strategy RQ-F was motivated by the fact that RQ-H could be needlessly
restrictive for the objective of fitting over F . To make this precise, suppose fixed κ > 1 and
training data {(x(p), f(x(p)))}mk=1 with each x(p) ∈ F . Let (t?,N?,D?, λ?, τ ?) be optimal for
RQ-H. Set σL = σU = νL = νU = 0. Then, the collection (t?,N?,D?, λ?, σL, σU , τ ?, νL, νU)
is feasible for RQ-F. Therefore, the optimal values of the fitting procedures follow RQ-F ≤
RQ-H, implying that fitting over F cannot produce a worse RQ surrogate than fitting over
H. Note that these relationships only apply to the maximum absolute error on the training
data. In most applications, we are interested in the error calculation on the test data.

4.4 Sampling RQ datasets

In forthcoming work by Li et al. [70] and work by Russi [97, Chapter 9], general strategies
were developed for sampling nonconvex quadratically constrained sets. These tools were
used during each iteration in Section 3.6 to generate feasible parameter samples for fitting
surrogate models. Due to Equation (4.10) and Equation (4.12), sampling a set defined by N
RQ model-data constraints can be reformulated as sampling a set of 2N one-sided quadratic
inequalities. Hence, an entire waves procedure can be completed for RQ surrogate models
with the existing strategies. In the following example, however, we focus on completing the
previous example from Section 3.6.
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4.5 Example continued: calibration of an

aerodynamic body

The calibration of an aerodynamic body example in Section 3.6 demonstrated that an
iterative application of B2BDC can be useful. Due to the difficulty in generating an accurate
quadratic fit for QOI #7, however, the exercise was essentially left incomplete. The surrogate
for this QOI did not satisfy the accuracy criteria and therefore the associated model-data
constraint was not accounted for in the dataset. The outcome of this can be seen in Figure 3.4,
in which feasible samples failed to match the corresponding experimental bound. Here, we
revisit the final wave and compare quadratic, RQ-H, and RQ-F fits for the missing QOI.

For each of the surrogate types, the same set of training and test data was used. In
contrast to the result in Section 3.6, 700 points were set aside for training and the remaining
6300 were used to calculate the errors and EEF criteria. For both RQ-H and RQ-F, the
following values of κ were investigated: κ ∈ {2, 2.5, 3, ..., 29.5, 30}. For each of these values,
an RQ surrogate was fit. The surrogate with the smallest maximum absolute test error
was selected as the optimal representation. Histograms of the fitting errors as evaluated on
both training and test points are displayed below in Figure 4.1. The error distributions for
both RQ-H and RQ-F are nearly identical and both are significant improvements over the
quadratic surrogate.

Figure 4.1: Fitting error histograms for each of the surrogate types.

The EEF criteria, which is assessed based on the maximum absolute test error, for all
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three surrogate types is plotted below in Figure 4.2.

Q RQ-H RQ-F
0

0.5

1

1.5

2

cutoff

Figure 4.2: EEF criteria for the three types of surrogate models: quadratic, RQ-H, and
RQ-F.

The RQ-F surrogate has the lowest EEF as compared to the other three criteria. Both
RQ strategies satisfy the cutoff of 1.3. As a result, the model-data constraint with the RQ-F
surrogate was appended to the dataset. The inclusion of the constraint improves the quality
of the feasible set. In Figure 4.3, we re-plot the result in Figure 3.4 with the impact of
the new dataset superimposed over the previous model evaluations. Recall that the traces
shown in the figure result from the computational model being evaluated on samples judged
feasible using the surrogate models.



CHAPTER 4. ITERATIVE CONSTRUCTION OF A B2BDC DATASET: RATIONAL
QUADRATIC SURROGATE MODELS 43

Figure 4.3: Model outputs after the kth wave. The model evaluations shown in gray are
feasible with respect to the new dataset, which includes QOI #7 fit with an RQ surrogate.

The agreement between the model traces and the experimental bounds are improved. As
in Section 3.6, we evaluate a small batch of feasible parameter samples alongside the optimal
parameter vector found using the System Identification ToolboxTM function nlgreyest [74].
The resulting plot is shown below in Figure 4.4.
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Figure 4.4: The measured output signals are shown in red. Evaluations of 22 feasible samples
are shown in blue. The nonlinear least squares optimal point evaluation is shown in green.

Importantly, the inclusion of QOI #7 into the dataset leads to closer agreement with
the experimental bounds in output #1. As before, the distinction between the optimal and
feasible traces is generally unclear at the designated QOIs. Although the optimal parameter
vector better agrees with the nominal measurement, a proper accounting of uncertainty
would require the consideration of all feasible parameter vectors.

4.6 Chapter summary

This chapter extended the use of rational quadratic surrogate models to the iterative,
wave-based construction of a dataset. In this, we discussed two fitting strategies for devel-
oping rational quadratics over a feasible set. The first, RQ-H, is essentially identical to the
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method proposed by Feeley in [35, Section 7.2.3.3]. The second, RQ-F, is a direct extension
which exploits the dataset constraints to a greater extent. These strategies were applied to
successfully complete the calibration exercise initiated in Chapter 3.
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Chapter 5

Additional Feasibility Criteria

5.1 Introduction

The conceptual similarities between B2BDC and Bayesian history matching discussed in
Chapter 3 prompt an interesting question: can other aspects from history matching, such
as the use of implausibility measures, be adopted into B2BDC in a useful way? Clearly,
implausibility is one notion for quantifying model-data agreement. Consistency in B2BDC
is another. Although the contexts and implementations for these measures depend on how
uncertainty is framed, they both address a similar concept – the existence, location, and
isolation of useful regions in the parameter space. These facts motivate an extension of the
previous question: can alternate notions of feasibility, in general, be incorporated into a
B2BDC dataset?

In this chapter, we discuss techniques that allow sample-based feasibility criteria, such
as the implausibility measure, to be incorporated into a B2BDC analysis in an approximate
manner. What is important is that the criteria identify and label a finite collection of
samples as “feasible”. For example, these samples could satisfy a model-data constraint of
the general form in Equation (2.2) with a more sophisticated surrogate model outside of
those typically used in B2BDC. If this constraint was then included in the dataset, then
the standard computational strategy for computing outer bounds and global guarantees
would not apply. The primary strategy we investigate here is the use of minimum volume
bounding ellipsoids to characterize collections of feasible samples. A similar objective can
be reached by employing quadratic kernel support vector machines as well. In essence,
these approaches develop geometric approximations of the feasible samples that are encoded
through quadratic constraints, and hence cohere with B2BDC’s standard computational
protocol. These constraints can then be incorporated into a dataset as additional assertions
and thus accounted for in the analysis.
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5.2 Bounding ellipsoids to feasible samples

The first strategy we discuss is to approximate collections of feasible parameter samples,
say with respect to a QOI i, with a bounding ellipsoid of minimal volume. These ellipsoids
can then be included in the dataset as additional quadratic constraints, thus indirectly
enforcing the feasibility criteria imposed by the samples. We note that ellipsoids have been
used in the past as conservative representations of “feasible” regions in system identification
[38, 94, 82] and more generally as approximations to data points in n-dimensional space [21,
96].

Our focus on ellipsoidal bounding regions is primarily due to simplicity and computa-
tional tractability. Since an ellipsoid can be represented by a single quadratic inequality,
the optimization techniques typically used in B2BDC to analyze dataset consistency and
prediction can be applied without modification. In general, additional linear constraints or
quadratic inequalities can also be included without affecting the existing computational in-
frastructure. We note that techniques to compute bounding ellipsoids for sets described by
general polynomial inequalities have been investigated by others [80, 64]. Similar approaches
have also been investigated in B2BDC [99] as outer approximations to existing feasible sets
for the purpose of, for example, sampling and volume computation. The approach pursued
here, however, differs in both motivation and methodology. The aim is to develop coarse rep-
resentations of potentially complicated feasible regions to include in the analysis. Although
these coarse representations are approximate, further refinements can be made through the
iterative approach discussed in Chapter 3. This will be demonstrated by example in Sec-
tion 5.5. It should be also noted that more sophisticated descriptions of the bounding region
can be formulated via polynomial inequality constraints [30, 66, 31, 69]. The scalability
of both these techniques and subsequent analyses, however, remains an open question. In
contrast, fast and efficient algorithms exist for computing enclosing ellipsoids [112, 114].

5.3 Minimum volume enclosing ellipsoids

Let {x(p)}mp=1 ⊆ Rn be a finite collection of points. These points can be considered
samples from the feasible set Fi of a particular QOI i. In contrast to previous chapters, we
make no judgement on how Fi is defined. Recall, an ellipsoid in Rn can be described by the
quadratic inequality

E(Q, x̄) = {x ∈ Rn : (x− x̄)ᵀQ(x− x̄) ≤ 1}, (5.1)

where x̄ ∈ Rn is the center and Q ∈ Rn×n, with Q � 0, dictates the shape. In order for
the “minimum volume” criteria to be sensible, we require that the vectors {x(p)}mp=1 not
be contained in any hyperplane, i.e., the points must have an affine hull of full dimension
n. It is well known that the volume of an ellipse E(Q, x̄) is inversely proportional to the
determinant of the shape matrix Q. The minimum volume ellipsoid containing the {x(p)}mp=1
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can be computed by the following nonconvex formulation,

min
Q,x̄

det(Q)−
1
2

s.t. (x(p) − x̄)ᵀQ(x(p) − x̄) ≤ 1, p = 1, ...,m

Q � 0.

(5.2)

For simplicity, assume the centered case where x̄ is fixed to x̄ = 0. This is a superficial
restriction as the uncentered problem can be exactly recovered by solving for a centered
minimum volume enclosing ellipse in a lifted space [114, Section 2.3]. Hence we may generally
consider problems of the centered form,

min
Q
− logdet(Q)

s.t. (x(p))ᵀQx(p) ≤ 1, p = 1, ...,m

Q � 0.

(5.3)

Several specialized algorithms exist for efficiently solving Equation (5.3). For example, Sun
and Freund [112] propose an interior-point and active-set method that accurately solves
moderate to large problems in a manner of seconds. In the monograph by Todd [114,
Chapter 3], two first order methods – the Fedorov-Wynn-Frank-Wolfe algorithm and the
Wolfe-Atwood algorithm – are detailed and analyzed along with modifications that scale to
even larger dimension. In the numerical example in Section 5.5, we use the implementation
of these algorithms provided in [114, Appendix B].

Datasets and ellipsoids

The inclusion of ellipsoid constraints for QOIs that require alternate feasibility criteria
is straightforward. As an illustration, consider a QOI that is better fit or characterized by
the tools of Bayesian history matching, i.e., stochastic emulation, implausibility, etc. Note
that directly including the implausibility constraint Ii(x) < 3 into the dataset would lead
to a challenging consistency analysis where provable guarantees may not be achievable. To
circumvent this, the information in such constraints can be incorporated in an approximate
fashion by generating samples in the non-implausible region as is typically done in history
matching (Section 3.2) and then computing the minimum volume ellipsoid containing those
retained samples. As this step only involves evaluating an emulator, a large number of
samples may be used to characterize the non-implausible region. The ellipsoid can then
be included in the dataset in lieu of the corresponding QOI’s model-data constraint. In the
same way, ellipsoids can be generated for other sample-based feasibility criteria, for instance,
the regular B2BDC criteria with more sophisticated surrogate models, and incorporated into
the dataset.

Let J ⊆ {1, ..., N} contain the indices of the QOIs which can be accurately represented
through quadratic surrogate models and experimental bounds, i.e., a typical B2BDC setup.
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The complement J c = {1, ..., N}\J denotes those QOIs which are characterized through
ellipsoids. The tools in Chapter 2 require little modification to accommodate the new con-
straints. As an example, the consistency measure in Equation (2.4) can be extended to,

CD := max
γ, x∈H

γ

s.t. Li +
(Ui − Li)

2
γ ≤Mi(xAi

) ≤ Ui −
(Ui − Li)

2
γ, for all i ∈ J

(xAk
− x̄Ak

)ᵀQk(xAk
− x̄Ak

) ≤ 1− γ, for all k ∈ J c,

(5.4)

and the solution techniques described in Section 2.7 are unchanged. Note that the ellipsoids
are only constructed in the active variables of the corresponding QOI. Hence, when viewed in
the full dimensional space, these constraints carve out elliptic cylinders (the inactive dimen-
sions are constrained by only the prior H). As before, if the consistency measure is negative,
then we have a proof of inconsistency – there is no common location in the parameter space
that satisfies the prior, the model-data constraints, and the ellipsoid constraints. The op-
timizations required for prediction and other inferences can be reformulated in a similar
manner.

Interpretation of consistency with ellipsoidal approximations

John’s Theorem [61, Theorem III] states that for a given collection of points {x(p)}mp=1,
the minimum volume enclosing ellipsoid E satisfies the following chain of containments [114,
Theorem 2.13]:

x̄+
1

n
(E − x̄) ⊆ conv({x1, ..., xm}) ⊆ E (5.5)

where conv(·) refers to the convex hull of the argument and

x̄+
1

n
(E − x̄) = {x : (x− x̄)ᵀQ(x− x̄) ≤ 1

n2
} (5.6)

is a scaling relative to the center point.
The second containment in Equation (5.5) is trivial, but when combined with the first,

highlights the approximate nature of the minimum volume enclosing ellipsoid. In the context
of B2BDC, let us temporarily fix a QOI i. Let {x(p)

Ai
}mi
p=1 refer to the feasible samples used

to generate the minimum volume ellipsoid Ei. Additionally, define ni = |Ai| where | · | refers
to cardinality. In the subspace defined by the active variables, Equation (5.5) holds with
the appropriate adjustments, e.g., ni replaces n, etc. In the full dimensional space, i.e.,
Rn, a similar containment inequality holds, albeit with cylinders – whose cross-sections are
given by x̄Ai

+ 1
ni

(Ei − x̄Ai
), conv({x(1)

Ai
, ..., x

(mi)
Ai
}), and Ei – replacing their counterparts in

the inequality. Hence taking the intersection of either the minimum volume ellipsoids (as
in Equation (5.4)) or their scaled versions provides information regarding the intersection
of the convex hulls of the feasible samples. Indeed, a diagnosis of inconsistency with the
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minimum volume ellipsoids proves the hulls do not intersect. A diagnosis of consistency
with the scaled ellipsoids demonstrates that the hulls overlap.

It is readily apparent that the quality of a minimum volume bounding ellipsoid Ei depends
on two aspects: how well the feasible samples {x(p)

Ai
}mi
p=1 characterize Fi and how well Ei

characterizes conv(Fi). Note, since {x(p)
Ai
}mi
p=1 ⊆ Fi, we have that conv({x(1)

Ai
, ..., x

(mi)
Ai
}) ⊆

conv(Fi). There is always the risk that despite Ei overapproximating the convex hull of the
feasible samples as in Equation (5.5), it may still truncate an unsampled region of Fi. The
utility of this strategy relies heavily on quality of the feasible samples.

5.4 Generating additional quadratic constraints using

support vector machines

A common challenge when using a bounding geometry is that it is often an overapprox-
imation to the region being studied, as described in Section 5.3. In the context of B2BDC,
this implies the actual feasibility constraint may be only weakly implemented using the el-
lipsoidal approximation. This difficulty is exacerbated as the problem dimension increases.
For example, Zamora-Sillero et al. [124] note that the volume ratio of a nonconvex set to
the associated bounding ellipsoid is usually very small in high dimensional settings. In pre-
vious B2BDC work by Russi et al. [99], this was demonstrated in the context of prediction.
The authors computed various bounding geometries to the entire feasible set and observed
significant degradation in the quality of predictions when those bounding regions were used
instead of the feasible region. Despite this, incorporating a single or multiple ellipsoids repre-
senting individual or grouped QOIs as additional constraints (on top of H) can still promote
a significant reduction in the uncertain parameter space.

There are multiple strategies for alleviating this overapproximation problem. One solu-
tion discussed earlier is to implement B2BDC in an iterative fashion. This relies on the typi-
cal B2BDC surrogate models accurately fitting QOIs that were initially represented through
ellipsoids over the reduced parameter region. Another solution is to include additional con-
straints into the dataset to eradicate as much excess as possible in the overapproximation.
Naturally, these two approaches can be combined. In order to maintain the existing com-
putational infrastructure, the aim is to formulate these additional constraints as convex or
nonconvex quadratic inequalities. This section serves as a brief aside to discuss how support
vector machines (SVMs) [26, 20, 88] can be used to generate additional quadratic constraints.

Let {(x(p), y(p))}mp=1 be a collection of labeled training data with class labels y(p) ∈
{−1,+1}. As a convention, label feasible points with +1 and infeasible points with −1.
The dual form of kernel SVM classification can be expressed by the following quadratic
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program [20, 88]:

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

s.t. 0 ≤ αi ≤ C∑
i

αiyi = 0

i, j = 1, . . . ,m

(5.7)

where K(·, ·) is an appropriate kernel function. In what follows the kernel will correspond
to a polynomial kernel of degree 2, i.e., K(x, z) = (1 + xᵀz)d with d = 2. The optimal
decision function that classifies inputs can be constructed after solving Equation (5.7) by
class(x) = sign(y(x)) where

y(x) =
∑
{i:αi>0}

αiyiK(xi, x) + b. (5.8)

The sum in the above expression is taken over all support vectors ({xi : αi > 0}) and the
offset b is given by picking any i? such that 0 < αi? < C and solving y(xi?) = 1. For
quadratic kernels, the decision boundary can be converted to a more conventional quadratic
form. Without loss of generality, assume that the data indices i = 1, . . . , Ns corresponds to
the support vectors. Then,

∑
{i:αi>0}

αiyiK(xi, x) + b =
Ns∑
i=1

αiyi(1 + xᵀi x)2 + b

=

 1 + xᵀ1x
...

1 + xᵀNs
x


ᵀ α1y1

. . .

αNsyNs


 1 + xᵀ1x

...
1 + xᵀNs

x

+ b

=

[
1
x

]ᵀ [
1 . . . 1
x1 . . . xNs

]α1y1

. . .

αNsyNs

[ 1 . . . 1
x1 . . . xNs

]ᵀ [
1
x

]
+ b

=

[
1
x

]ᵀ
W

[
1
x

]
(5.9)

where W in the last equality is defined by the corresponding middle matrix in the previous
step with the offset accounted for in the constant term. Hence, the inequality

y(x) =

[
1
x

]ᵀ
W

[
1
x

]
≥ 0 (5.10)

characterizes the region with feasible labels and may be directly incorporated into the dataset
as an additional quadratic constraint.
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5.5 Example: Chemical Spill Model

The chemical spill example described in [15, 113] illustrates a scenario in which a chemical
pollutant is released at two locations in an infinitely long one-dimensional channel. The
concentration C of the chemical in the channel is governed by:

C(s, t;M,D,L, τ) =
M√
4πDt

exp

[
−s2

4Dt

]
+

M√
4πD(t− τ)

exp

[
−(s− L)2

4D(t− τ)

]
1{τ<t}(t), (5.11)

where (s, t) refers to the spatial and temporal dimensions of the problem. The essential setup
is that a spill of mass M occurs in the channel at (s, t) = (0, 0). This spill is captured by the
first term in Equation (5.11). At some later time τ another spill of the same mass occurs
at a new location L. This second spill is modeled by the second term, which only becomes
active after time τ . The parameter D specifies the diffusion rate associated with the channel.
The parameter vector xᵀ =

[
M D L τ

]ᵀ
contains all of the uncertain parameters, with

prior bounds given by a hyperrectangle H: M ∈ [7, 13], D ∈ [0.2, 0.12], L ∈ [0.01, 3], and
τ ∈ [30.01, 30.295]. In this section, we illustrate how minimum volume ellipsoids can be used
to initiate a waves procedure.

Experimental measurements were simulated by evaluating Equation (5.11) at a series of
N = 75 coordinates, denoted by {(si, ti)}Ni=1, with the parameters fixed at a hidden ground
truth xᵀ? =

[
10 0.7 1.5 30.16

]ᵀ
. The nominal measurements for C(s, t;x?) are shown

below in Figure 5.1. To set the example up, we assume each measurement was assessed with
±5% uncertainty, producing experimental bounds of the form Li = 0.95 × C(si, ti;x?) and
Ui = 1.05× C(si, ti;x?) for i = 1, ..., N .
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Figure 5.1: Nominal measurements of the QOIs of the ground truth system C(s, t;x?) are
displayed in red.

The first step in the analysis involved fitting surrogate models Mi(x) to the simulation
C(si, ti;x) over the initial prior parameter domain H for each QOI i = 1, ..., N . This was
accomplished by evaluating Equation (5.11) on a Latin hypercube (LH) design of 500 points
over H, partitioning the runs into both training (40%) and test (60%) cases, fitting the
surrogate models on the training case, and then evaluating the errors on the combined set
of runs. In order to gauge the quality of the fit, we computed the EEF as defined previously
in Equation (3.6) with the cutoff set as α = 1.1.

The outcome of this initial procedure for two types of surrogate models – quadratic
and Gaussian process (GP) – is shown in Figure 5.2. The GP emulators were fit using
the MATLAB [73] routine fitrgp. After this initial stage, none of the 75 QOIs were well
approximated by quadratic fits. In contrast, several of GP emulators passed the EEF criteria.
Note that in this setting, the typical waves procedure discussed in Chapter 3 would not be
implementable.

To proceed with the analysis, we imposed the α-cutoff on the EEFs, which retained 35 GP
surrogates. Following the approach described in Section 5.3, we then constructed a dataset
comprised of the corresponding 35 minimum volume enclosing ellipsoids, one for each of the
GP surrogates. The points used to fit the ith QOI’s ellipsoid were generated by performing
rejection using an initial design of 5× 106 LH samples with the feasibility criteria

Li − 2
√

Var(Mi(x)) ≤ E[Mi(x)] ≤ Ui + 2
√

Var(Mi(x)). (5.12)
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Note that in the above criteria, points that may be infeasible with respect to the mean
evaluation are still labeled as feasible as long as the deviation can be explained by the
emulator uncertainty. In the context of this example, the motivation for such criteria was to
avoid eliminating points that may become useful in future iterations as the surrogate models
improve. The resulting dataset (now made up of 35 ellipsoidal constraints) was consistent,
as verified by computing the scalar consistency measure. Moreover, of the 5×106 LH points,
roughly 10.1% were feasible with respect to the dataset, indicating a 89.9% reduction in
volume from the initial prior region. Following the notation established in the preceding
section, this updated feasible set produce in wave 1 is denoted as F2.

The procedure described above was repeated for additional waves k = 2, 3, 4, where the
feasible region established at the completion of wave k, i.e., Fk+1, served as the prior during
the following wave k+1. For example, during the second wave (k = 2), surrogate models and
error estimates were constructed using a set of 500 points from F2. In many cases, such as
the example in Section 3.6, sophisticated sampling strategies are required to generate points
in the feasible set. As the dimensionality of this example is comparatively small, samples
were generated during each wave using the following procedure:

1. first, compute a bounding hyperrectangle to Fk , e.g., as defined in Equation (2.6) and
Section 2.8;

2. second, construct a LH design of 5× 106 points in this region; and

3. third, retain only the samples that are feasible with respect to Fk.

Of the retained samples, 500 were randomly selected and used for fitting surrogate models
and computing error estimates. Those QOIs that passed the EEF cutoff were appended to the
dataset, either as model-data constraints involving quadratic surrogate models or minimum
volume ellipsoids.

Throughout the entire procedure, constraints in the dataset were continually accumu-
lated. Maintaining this history ensures that at the conclusion of wave k the updated feasible
set Fk+1 is always confined to the prior region Fk, i.e., Fk+1 ⊆ Fk. Recall, Fk is ex-
actly where the surrogates were both constructed and estimated as accurate. The surrogate
model EEF criteria for waves 1 and 2 are shown below in Figure 5.2, and for waves 3 and 4
in Figure 5.3.
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Figure 5.2: Left, EEFs for the first wave. Right, EEFs for the second wave.
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Figure 5.3: Left, EEFs for the third wave. Right, EEFs for the fourth wave.

As a general trend, the EEFs decreases for both classes of surrogate models as the waves
progress. By the end of the fourth wave, all of the N QOIs are estimated as having accurate
quadratic approximations. The composition of the dataset after each wave is compiled below
in Table 5.1.
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Table 5.1: Composition of the dataset after each wave. The number of ellipsoids corresponds
to the number of GP surrogates that passed the error criteria during the kth wave. The
volume fraction is calculated using a baseline collection of 5× 106 LH samples from H.

Wave k = 1 k = 2 k = 3 k = 4

# quadratic surrogates added 0 37 50 75
# bounding ellipsoids added 35 23 24 0
# total QOIs represented 35 60 74 75
# total dataset constraints 35 95 169 244
vol(Fk+1)/vol(H) 0.101 2.29× 10−3 1.50× 10−4 3.54× 10−5

Needless to say, the dataset was found to be consistent during each iteration, as verified
by both computing a consistency measure and the presence of feasible samples. Moreover,
the “true” parameter configure x? is feasible with respect to the final dataset, i.e., x? ∈
F5. Importantly, the predictions with the final dataset demonstrate close agreement when
examined using the underlying computational model, i.e., Equation (5.11). Model predictions
for all QOIs with a random selection of 1000 feasible parameter vectors are shown below in
Figure 5.4.

Figure 5.4: QOI traces of 1000 randomly selected feasible parameter vectors after the kth
wave (i.e., samples from from Fk+1). These traces were generated by directly evaluating
Equation (5.11). The experimental bounds are shown in red.
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The model-based traces that result from the 4th wave generally respect the experimental
bounds. Of the 1000 samples displayed in Figure 5.4, 942 are feasible with respect to the
underlying simulation. The remaining 58 samples, however, violate certain experimental
bounds. For example, the feasible set contains 10 samples that under-predict the QOI 61’s
experimental bounds and 35 that under-predict QOI 71. This is an unavoidable consequence
of using surrogate models.

The extent of the feasible set after the wave k dataset has been constructed can be
investigated using different tools. For example, the posterior bounds on the parameters can
be calculated by computing Equation (2.6) for each uncertain parameter j = 1, ..., 4. The
posterior outer bounds for the final dataset are tabulated below in Table 5.2.

Table 5.2: Prior bounds and posterior outer bounds on the uncertain parameters at the
conclusion of wave 4.

Parameters
Prior Posterior

Lower Upper Lower Upper

M 7 13 9.5 10.5
D 0.02 0.12 0.0685 0.0715
L 0.01 3 1.45 1.57
τ 30.01 30.295 30.01 30.295

The posterior bounds for the parameters M , D and L are reduced compared to the
prior. The bounds for τ , however, show no improvement. Interestingly, of 5 × 106 LH
samples generated in the posterior hyperrectangle, approximately 18.5% were feasible. This
highlights the fact that the feasible set has structure unaccounted for by just the posterior
intervals. Pairwise correlations among the variables are shown below in Figure 5.5.
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Figure 5.5: Pairwise scatter plot of 5000 randomly selected feasible parameter vectors. Note
that the axes have been set to the corresponding posterior outer bounds.

5.6 Chapter summary

Including alternate feasibility information through extra quadratic constraints is a natural
addition to the B2BDC framework. In this chapter, we investigated the inclusion of minimum
volume bounding ellipsoids as an encapsulation of point-wise feasibility criteria. By example,
it was demonstrated that such an approach can be combined with the iteration-based strat-
egy of Chapter 3. This merging of techniques not only retains the existing computational
infrastructure, but also extends the applicability of iteration-based B2BDC strategies.
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Chapter 6

Sensitivities and the Scalar
Consistency Measure

6.1 Introduction

The previous chapters develop iteration-based strategies for constructing a B2BDC dataset.
As demonstrated, these techniques extend the domain of the methodology and open doors
to new applications. Within this iterative context, the notion of consistency was of vi-
tal importance. Inconsistency served as a terminal condition for the analysis – a provable
demonstration that no feasible set exists and that further refinement is impossible. More-
over, inconsistency signals that the dataset is unsuitable for prediction. In such cases, the
focus of any scientific endeavor must then shift inwards to analyzing the collective content
of the dataset. The remainder of this thesis develops tools to aid in this essential task. A
diagnosis of inconsistency establishes that the models, prior information, and experimental
data are at odds. The questions of how to identify the sources of such conflict and how to
resolve them presents a challenge to the scientific community. Previous work by Feeley et
al. [37] demonstrated that the multipliers in the Lagrangian dual formulation of the SCM
can be used to identify possibly flawed experimental data responsible for an inconsistency.
Essentially, these multipliers are interpreted as sensitivity estimates to perturbations of the
constraint bounds. In a study by Russi et al. [98], the use of sensitivities was extended
to assessing the impact of prior and experimental bounds on prediction bounds. The basic
ethos is this: if the conclusion of a consistency or prediction analysis is highly sensitive to
the tentatively-entertained uncertainty in particular dataset constraints, then further inves-
tigation of the identified items is warranted. Without the intervention of a domain expert,
however, it cannot be discerned whether the flagged bounds are: (a) truly problematic, e.g.,
incorrect experimental/prior data, or (b) highly influential, e.g., the result of a high quality
and informative experiment. The outcomes of such an analysis may include a recommenda-
tion of future experiments to repeat or conduct.

This chapter serves two purposes. The first is a continued examination of inconsistency
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with respect to the SCM. This material motivates the developments in Chapter 7. The
second purpose is to expand on the computational machinery discussed earlier in Section 2.7
for NQCQPs. Much of the content in this chapter is an extension of prior work by Feeley et
al. [37] and is partially documented in our recent publication [54].

6.2 Running examples

Throughout this chapter, we illustrate sensitivity-based strategies for resolving inconsis-
tency using two example datasets from the field of combustion chemistry – GRI-Mech 3.0
[107] and the more recent DLR-SynG [105]. As will be shown, the GRI-Mech 3.0 dataset
illustrates a successful application of these multiplier-based sensitivities. In contrast, the
second dataset – DLR-SynG – demonstrates a pitfall with this approach. The successes
and failures of the SCM-based method for resolving inconsistency, as displayed by these
examples, motivates the development of an additional tool, which is introduced and exam-
ined in Chapter 7. The two running examples are summarized below and will be revisited
throughout this and the following chapter.

GRI-Mech 3.0

The GRI-Mech 3.0 dataset was constructed to calibrate an underlying kinetic reaction
model for pollutant formation in natural gas combustion [107]. The kinetic model is a
system of ordinary differential equations (ODE) representing 325 reversible reactions among
53 different chemical species. The dataset consists of N = 77 QOIs and n = 102 model
parameters. Each of the 77 quadratic surrogate models is developed in approximately 10
to 15 active variables. The application of B2BDC to this dataset has been extensively
investigated in previous works [42, 37, 123, 41].

DLR-SynG

The second example, the DLR-SynG dataset, was constructed to analyze a predictive ki-
netic model for syngas combustion [105]. Similar to GRI-Mech 3.0, DLR-SynG is formulated
as an ODE system representing 73 reactions in 17 different chemical species. The dataset
is comprised of 159 model-data constraints in 55 uncertain parameters. The QOI surrogate
models are also quadratic and developed in a subset of active variables. The experimental
bounds were assessed by the authors and based on data reported in the literature [105].

6.3 Sensitivity through perturbation

As described in Section 2.7, the SDP and Lagrangian approaches form dual perspectives
on developing convex relaxations to NQCQPs. In the context of the SCM, the multipliers
of the Lagrangian relaxation can be interpreted as estimating the impact of perturbations
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to particular constraint bounds. This is detailed below for the case in which the prior is
postulated as a hyperrectangle H = [l1, u1] × . . . × [ln, un]. For convenience, the following
notation is used throughout this section:

huj (x) = xj − uj, hlj(x) = −xj + lj for j = 1, . . . , n (6.1)

hUi (x, γ) = Mi(xAi
)− Ui +

Ui − Li
2

γ for i = 1, . . . , N (6.2)

hLi (x, γ) = −Mi(xAi
) + Li +

Ui − Li
2

γ (6.3)

Let ρ =
[
(ρu)ᵀ (ρl)ᵀ (ρU)ᵀ (ρL)ᵀ

]ᵀ ∈ R2n+2N denote a vector of perturbations. Consider
the perturbed version of the SCM shown below.

CD(ρ) := max
γ,x

γ

s.t. huj (x) ≤ ρuj , hlj(x) ≤ ρlj, for j = 1, . . . , n.

hUi (x, γ) ≤ ρUi , hLi (x, γ) ≤ ρLi , for i = 1, . . . , N.

(6.4)

Setting ρ > 0 relaxes the associated prior/experimental bounds, e.g., li − ρlj ≤ xi ≤ ui +
ρuj , whereas ρ < 0 provides a tightening. Naturally CD(0) recovers the original SCM in
Equation (2.4). Following similar steps as in the Lagrangian dual relaxation (Section 2.7)
while accounting for the maximization leads to the following upper bound:

CD(ρ) ≤ CD(ρ) := min
λ≥0

max
γ,x

γ +
n∑
j=1

(λuj (ρ
u
j − huj (x)) + λlj(ρ

l
j − hlj(x)))

+
N∑
i=1

(λUi (ρUi − hUi (x, γ)) + λLi (ρLi − hLi (x, γ))).

(6.5)

As discussed in earlier sections, the computation of CD(ρ) can be cast as an SDP if quadratic
surrogate models are employed. Let λ# be the minimizer of the Lagrangian relaxation to the
SCM, i.e., the minimizer found by computing CD(0). Then, λ# is suboptimal with respect
to Equation (6.5). Hence for all ρ, the following holds,

CD(ρ) ≤ CD(ρ)

≤ max
γ,x

γ +
n∑
j=1

((λuj )
#(ρuj − huj (x)) + (λlj)

#(ρlj − hlj(x)))

+
N∑
i=1

((λUi )#(ρUi − hUi (x, γ)) + (λLi )#(ρLi − hLi (x, γ)))

= CD(0) +
n∑
j=1

(
(λuj )

#ρuj + (λlj)
#ρlj
)

+
N∑
i=1

(
(λUi )#ρUi + (λLi )#ρLi

)
.

(6.6)
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Equation (6.6) demonstrates that the perturbed SCM is bounded above by an expression
affine in the perturbations with intercept CD(0) and slopes given by λ#.

The interpretation of Equation (6.6) is most efficiently understood when considering a
provably inconsistent dataset with CD < 0 (CD < 0 is a sufficient condition). Suppose
λ#
k = 0 for some index k, which may refer to either a prior bound or an experimental bound.

Then the dataset remains inconsistent (CD(ρ) < 0) for arbitrarily large perturbations to
bound k, meaning the consistency is insensitive to the kth constraint’s uncertainty. In
general, large multipliers λ#

k indicate that the SCM is highly responsive to corresponding

constraint tightenings (ρk < 0) and small λ#
k indicate that the SCM is rather unresponsive

to corresponding constraint relaxations (ρk > 0).
A challenge with the above setup is that the Lagrange multipliers are not directly compa-

rable among different QOIs and parameters due to differences in units. To address this, the
sensitivities are often represented by the scaled multipliers sk = λ#

k (uk− lk), where (uk− lk)
is the corresponding uncertainty width. Equation (6.6) may be rewritten in terms of these
new sensitivities,

CD(ρ) ≤ CD(0) +
n∑
j=1

(
suj

ρuj
uj − lj

+ slj
ρlj

uj − lj

)
+

N∑
i=1

(
sUi

ρUi
Ui − Li

+ sLi
ρLi

Ui − Li

)
. (6.7)

The sensitivities sk are thus coefficients to relative perturbations (as opposed to absolute)
in the corresponding constraint’s uncertainty interval.

Computing the dual CD and its associated Lagrange multipliers can often be accom-
plished using the tools of convex optimization [19]. For the surrogate models described
in Section 2.7, the dual computation can be addressed using SDP techniques. Additional
aspects related to computations and prediction are detailed in prior work [37, 35, 98].

6.4 A strategy for resolving inconsistency

Reliable scientific conclusions should be robust relative to small perturbations of the
prior and experimental data. Thus, roughly speaking, we should not expect the SCM CD(ρ)
to change significantly for small ρ. In the case of an inconsistent dataset, the sensitivities
described above can be used to flag possibly problematic model-data constraints as suggested
by Feeley et al. [37].

The use of SCM-sensitivities to flag constraints can be cast into a general strategy for
resolving inconsistent datasets in B2BDC. This approach is iterative and summarized in Al-
gorithm 1. Note that since the SCM is formulated as a maximization, the terminal condition
for the iteration is based on a local maxima for the SCM – i.e., a verification of consistency.
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Algorithm 1 Resolving inconsistency through sensitivity

1: Input: Inconsistent dataset D with CD ∈ [CD, CD] and CD < 0.
2: while CD < 0 do
3: Extract sensitivities from CD computation.
4: Define a new dataset D̃ by removing “high sensitivity” model-data constraints.
5: Update D ← D̃.
6: Recompute [CD, CD].
7: end while
8: Output: Consistent dataset D and the removed constraints.

We note that some of the steps in Algorithm 1 are ambiguous. For example, how to
differentiate between “high” and “low” sensitivity is unspecified. A simple approach is
to remove the constraint with the highest sensitivity at each iteration of the algorithm.
Alternatively, one could remove the top two, top three, etc.

6.5 Strengthening the relaxation via redundant

constraints

The determination of consistency is based on computing two quantities which bracket
the actual solution CD ≤ CD ≤ CD. Therefore, the consistency of a dataset can be verified
by demonstrating CD ≥ 0. In contrast, inconsistency is proven by showing CD < 0. In
cases where CD < 0 ≤ CD, no conclusion about consistency can be reached. Recall that this
indeterminacy is not a characteristic of the dataset, but rather due to the solution techniques
used to approximate the SCM.

The strategy for computing CD described in Section 6.3 (and Section 2.7) may not be
enough to draw a conclusion regarding consistency. We illustrate this with the GRI-Mech
3.0 dataset. Here, the computation of CD is performed using CVX [52, 53], a package for
formulating and solving convex programs, with the solver Sedumi [111]. The local solution
CD is found by initializing the optimization routine fmincon in MATLAB [73] at 50 random
points, in accordance with Section 2.7. This strategy brackets the SCM with CD ∈ [−0.37, 1].
This result is indeterminate.

To address this challenge, Feeley et al. [37, 35] strengthen the formulation for CD by
incorporating additional quadratic constraints derived from the box constraints defining
H. This recycling of problem data produces seemingly redundant constraints which, after
relaxation, lead to a tightened CD. The general idea of deriving valid inequalities from
existing constraints is commonly applied in strengthening convex relaxations to nonconvex
problems [104, 92, 4, 6], and more generally characterized by Positivstellensatz refutations
[90, 68]. The impact of such redundant constraints is illustrated in the following paragraph.

Consider prior bounds on the uncertain parameters defined by the box constraints lj ≤
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xj ≤ uj for j = 1, ..., n. In Section 6.3, these constraints were rewritten as a pair of linear
inequalities,

xj − uj ≤ 0

lj − xj ≤ 0

for j = 1, ..., n,

(6.8)

and directly incorporated into the Lagrangian relaxation. These 2n constraints may also be
equivalently represented by n quadratic inequalities,

0 ≥ −(xj − uj)(lj − xj)
= x2

j − (uj + lj)xj + ujlj

for j = 1, ..., n.

(6.9)

These new quadratic constraints are redundant with respect to the original problem as they
are derived from existing inequalities. Despite this, their inclusion can lead to a signifi-
cant tightening of the convex relaxation CD. In the context of the GRI-Mech 3.0 dataset,
the solution becomes CD = −0.26. The inconsistency of the dataset is now certified, with
CD ∈ [−0.37,−0.26]. The inclusion of these redundant constraints, however, occurs cost of
more detailed sensitivity information regarding the parameter bounds. This aspect is ex-
plained by Feeley [35, Section 4.3], in which it is shown that the ability to isolate sensitivities
pertaining to individual parameter bounds, i.e., λlj and λuj , is lost when the additional con-
straints are incorporated into the dataset. This does not significantly influence Algorithm 1,
where the emphasis is on identifying possibly problematic experimental bounds rather than
parameter bounds. Note, flagged parameter bounds require additional consideration as un-
certain parameters cannot be so easily untangled from the dataset constraints. Additionally,
expanding parameter bounds implies that all affected QOIs must have their surrogate models
refit.

Note that additional valid inequalities can be derived from the cross terms as well,

xk − uk ≤ 0

lj − xj ≤ 0

for j, k = 1, ..., n with j 6= k.

(6.10)

Similarly, these linear inequalities can be converted into seemingly redundant quadratics,

0 ≥ −(xk − uk)(lj − xj)
= xkxj − ljxk − ukxj + uklj

for j, k = 1, ..., n, k 6= j.

(6.11)

In cases where n is large, including all of the extra constraints can become computation-
ally unmanageable. This challenge has been recognized in recent literature. For example,
Ashraphijou et al. [6] propose an iterative strategy in which inequalities that are binding at
optimality are incorporated and the optimization is resolved. The “binding at optimality”
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is most easily verified in the context of the SDP relaxation of the SCM, as formulated in
Section 2.7. This is described in a more general setting below.

Consider the case in which the prior is defined by a set of linear inequalities, i.e.,

H = {x ∈ Rn : Aᵀ
[
1
z

]
≤ 0; zᵀ =

[
xᵀ γ

]
} (6.12)

where A ∈ R(1+n)×m. Note that the box constraints described earlier correspond to a
particular choice of A. Then the collection of all redundant constraints can be expressed as,

Aᵀ
[
1
z

]
≤ 0 ⇒ Aᵀ

[
1
z

] [
1
z

]ᵀ
A ≥ 0 (6.13)

where the inequalities on both sides are applied element-wise. In the context of the SDP re-
laxation, the seemingly redundant inequalities become extra linear constraints on the matrix
variable Z,

AᵀZA ≥ 0

Z11 = 1

Z � 0.

(6.14)

Returning to the “binding at optimality” question, let Z? denote the optimal solution to
the SDP relaxation of the SCM (without the extra inequalities). The valid inequalities that
would actually strengthen the solution are those that are violated by Z?, i.e, those for which
(AᵀZ?A)jk < 0.

6.6 Resolving inconsistency in GRI-Mech 3.0

The sensitivity-based strategy described in Section 6.4 was first applied to the GRI-Mech
3.0 dataset [37]. In that work, the two identified experimental bounds – corresponding to two
different QOIs – were confirmed incorrectly reported after consulting the experimenters. As
an outcome, these specific bounds were revised with updated uncertainties. A more recent
sensitivity analysis of the dataset by You et al. [123] found a single QOI, labeled f5, to be
a possible source for the inconsistency. In this section, we repeat this analysis in order to
contrast with that of the DLR-SynG dataset, which is discussed in the following section. In
the analysis described below, the valid inequalities in Equation (6.9) have been incorporated
into the dataset.

An initial application of the SCM to the GRI-Mech 3.0 dataset certifies that the dataset
is inconsistent, with CD ∈ [−0.37,−0.26]. The QOI bounds with the ten largest sensitivities,
as defined in Section 6.3, are shown in Figure 6.1. Recall that these sensitivities estimate
the influence of bound perturbations on the value of the SCM.
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Figure 6.1: The SCM sensitivity ranking for GRI-Mech 3.0.

The top two QOIs – f4 and f5 – dominate the sensitivity ranking. Removing these flagged
QOIs produces a provably consistent dataset. Moreover, a brief trial-and-error analysis
reveals that removing just f5 results in consistency as well.

6.7 Resolving inconsistency in DLR-SynG

The situation for the DLR-SynG dataset is starkly different. An initial application of
the SCM proves inconsistency, with CD ∈ [−1.90,−1.55]. The corresponding sensitivities
are shown in Figure 6.2.
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Figure 6.2: The SCM sensitivity ranking for DLR-SynG.

Initially the sensitivity ranking appears similar to that in the GRI-Mech 3.0 example.
Further investigation reveals that removing any number of the flagged QOIs results in a
dataset that is still provably inconsistent. For instance, deleting the QOI with the highest
sensitivity and recomputing the SCM produces a new ranking, shown in Figure 6.3.
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Figure 6.3: The SCM sensitivity ranking for DLR-SynG after the first constraint removal.

Note, many of the identified QOIs were also flagged during the first iteration. The
ordering, however, has shifted with several new QOIs also appearing. For example, three new
QOIs emerge with non-negligible sensitivities associated with the lower bound constraints.
This process of calculating sensitivities and removing the QOI ranked highest was repeated
until the terminal condition was met, i.e., the pruned subset of dataset QOIs was verified
consistent. This procedure led to 56 model-data constraints being removed. It only takes a
few iterations to notice that the scale of the inconsistency in DLR-SynG dwarfs that of GRI-
Mech 3.0. After completing this entire procedure, one begins to recognize the ambiguity in
Algorithm 1 – a natural question to ask is “what difference would it have made had I removed
the second most sensitive constraint (as opposed to the top most sensitive constraint)?”
Following this line of inquiry and deleting the second most sensitive constraint at each
iteration led to a total of 54 constraints removed. At each stage, removing a different
constraint may have resulted in different and potentially fewer future constraints removed.
An alternative and extreme strategy would be to remove all constraints which appear in
the top ten ranking. Doing so led to an iterative scheme which repeated seven times and
resulted in the deletion of 70 model-data constraints, which certainly does not improve upon
the previous results. With each analysis, the concern still remains: “could consistency be
reached with fewer constraints removed?”
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6.8 Chapter summary

The scalar consistency measure (SCM) is one of the pillars of the B2BDC framework.
Historically, this tool has been used for both certifying consistency as well as diagnosing
inconsistency. This latter task is addressed through computing the Lagrangian relaxation
to the SCM, which produces multipliers that estimate the influence of perturbations to
constraint bounds. These multipliers are referred to as SCM sensitivities. In this chapter,
a formal sensitivity-based SCM procedure for handling dataset inconsistency was described.
By example, we demonstrated that although the strategy can be successfully applied in some
cases (GRI-Mech 3.0) there are other cases where the results are less than satisfying (DLR-
SynG). The outcome of the DLR-SynG analysis motivates the developments presented in
the next chapter.
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Chapter 7

The Vector Consistency Measure

7.1 Introduction

The results of the previous chapter, particularly the questions posed in Section 6.7,
motivate the need for new methods to handle dataset inconsistency. In this chapter, we
propose a more refined tool, termed the vector consistency measure (VCM), for this purpose.
This new approach can be considered an extension to the SCM and opens a new path in the
B2BDC framework. Moreover, the introduction of weights into the VCM framework enables
an even richer form of consistency analysis.

7.2 The Vector Consistency Measure

For an inconsistent dataset, the decision variable γ in the SCM acts as a single re-
laxation to all model-data constraints. For convenience, we reproduce the formulation in
Equation (2.4) below,

CD := max
γ, x∈H

γ

s.t. Li +
(Ui − Li)

2
γ ≤ fi(x) ≤ Ui −

(Ui − Li)
2

γ

for i = 1, . . . , N.

(7.1)

This strategy can be made more flexible by instead allowing independent relaxations to each
constraint – the idea being that not every bound actually needs adjustment in order to induce
consistency. Hence, rather than having just a single scalar γ as a decision variable, multiple
γi are in play. Under such circumstances, a natural question to ask of the inconsistency is the
following: “of these relaxations, what is the fewest number required to reach consistency?”



CHAPTER 7. THE VECTOR CONSISTENCY MEASURE 71

This thought process leads to the optimization

V‖·‖0 := min
x,∆L,∆U ,δl,δu

‖∆L‖0 + ‖∆U‖0 + ‖δl‖0 + ‖δu‖0

s.t. Li −∆
(i)
L ≤Mi(x) ≤ Ui + ∆

(i)
U for i = 1, ..., N

lj − δ(j)
l ≤ xj ≤ uj + δ(j)

u for j = 1, ..., n

(7.2)

where the function ‖ · ‖0, sometimes called the 0-norm, expresses the number of nonzero en-
tries in the argument. The auxiliary variables ∆ and δ have been introduced as relaxations
to both model-data constraints and parameter bounds. If a dataset is consistent, then no
relaxation is required and the optimal value is zero. For an inconsistent dataset, solution
of the above problem provides three pieces of information: the smallest number of bound
adjustments required to reach consistency, a collection of optimal relaxations, and a corre-
sponding parameter vector that becomes consistent. Going further and actually removing
the model-data constraints flagged with nonzero relaxations results in a pruned dataset which
contains the largest subcollection of model-data constraints (from the original dataset) that
are together consistent. In general, we note that the relaxation variables in Equation (7.2)
can be taken as either strictly independent or supplemented with additional constraints to
account for known or prescribed dependencies. For example, in certain cases one may wish
to supply explicit correlations, like ∆

(1)
U ≤ ∆

(2)
U , or restrictions, like ∆

(1)
U = 0 and ∆

(2)
U ≤ 0.01.

The above optimization problem is difficult to solve as the 0-norm is nonconvex and
even linear problems with this objective are NP-Hard [79]. To address the nonconvexity, we
use the standard technique of replacing the 0-norm with the 1-norm, a well-known convex
heuristic for sparsity [32, 22, 23]. This modification produces

V‖·‖1 := min
x,∆L,∆U ,δl,δu

‖∆L‖1 + ‖∆U‖1 + ‖δl‖1 + ‖δu‖1

s.t. Li −∆
(i)
L ≤Mi(x) ≤ Ui + ∆

(i)
U for i = 1, ..., N

lj − δ(j)
l ≤ xj ≤ uj + δ(j)

u for j = 1, ..., n

(7.3)

which we term the vector consistency measure (VCM) to differentiate from the SCM’s scalar
relaxation. Note that in moving to a 1-norm objective, the magnitudes of the relaxations
are now penalized. In the context of a B2BDC analysis, we emphasize that the answer to
the above problem should be interpreted as a theoretical reference point; whether relaxing
the experimental bounds in the prescribed manner is justifiable or whether that relaxation
signals a deficiency of the underlying physical model f is to be addressed by domain science.
This aspect is emphasized in the following paragraph. What the analysis reveals is that
directly implementing the relaxations, removing the model-data constraints with nonzero
relaxations, or some combination of those actions are all strategies that result in a consistent
dataset. This proposed tool aims at efficiently exploring the different ways an inconsistency
can be resolved.

A consequence of the above formulation is that the VCM will never simultaneously relax
both sides of an inequality constraint. As a result, there is no clear distinction between



CHAPTER 7. THE VECTOR CONSISTENCY MEASURE 72

a relaxation to an experimental bound and an additive bias to the corresponding model
output. Without loss of generality, consider an inconsistent dataset with only model-data
constraints. Let ∆?

L and ∆?
U be the VCM-optimal relaxations. Thus, the set

F ′ = {x : Li −∆
?(i)
L ≤Mi(x) ≤ Ui + ∆

?(i)
U , i = 1, ..., N} (7.4)

is nonempty. Suppose constraint k has nonzero relaxations associated with both bounds.
Then there exists a z ∈ F ′ and such that ∆

?(k)
L > 0 and ∆

?(k)
U > 0. There are three cases

to consider: Mk(z) = Lk −∆
?(k)
L , Mk(z) = Uk + ∆

?(k)
U , or Lk −∆

?(k)
L < Mk(z) < Ue + ∆

?(k)
U .

In each case, a viable relaxation with smaller 1-norm can be found by either not including
∆
?(k)
U (case 1), not including ∆

?(k)
L (case 2), or reducing both relaxations by some small

amount (case 3). Therefore, VCM-optimal relaxations are only applied to a single bound
of a model-data constraint. It follows that the VCM can be rewritten in a more suggestive
form,

min
x,∆,δ

‖∆‖1 + ‖δ‖1

s.t. Li ≤Mi(x)−∆i ≤ Ui for i = 1, ..., N

lj ≤ xj − δj ≤ uj for j = 1, ..., n.

(7.5)

where sign of the relaxation determines to which bound it is applied. Therefore, the VCM
can also be interpreted as providing the minimal additive “correction” to the model and
parameters required to achieve consistency. This form shares structural similarities with the
inclusion of an additive bias or discrepancy term in the probabilistic approach of [10].

An additional consequence of the VCM formulation is that the relaxed constraints will
always be met with equality. This can again be demonstrated by contradiction. Continuing
with the notation above, suppose that the constraints with upper bound relaxations are
not always met with equality. Then there exists a z ∈ F ′ and an index k such that either
Lk ≤ Mk(z) < Uk or Uk ≤ Mk(z) < Uk + ∆

?(k)
U . So, either the relaxation is unnecessary

or it can be made smaller. A similar argument can be made for constraints with lower
bound relaxations. We conclude that the relaxed constraints are met with equality for all
parameters in F ′. In the context of a VCM analysis, F ′ is the feasible set that arises
from directly implementing all of the determined relaxations. Thus, the resulting model
predictions of the relaxed QOIs (Section 2.5) are exact (without uncertainty) and equivalent
to the adjusted bound. In practice, F ′ may consist of a single point, suggesting no parametric
uncertainty and hence no uncertainty in model predictions of other QOIs. Such a result
must be regarded with caution. This newfound certainty comes from a purely mathematical
source (i.e., the search for minimal relaxations) rather than from any physical considerations.
For these reasons, we often interpret the optimal relaxations as simply flagging potentially
problematic constraints.

In general, inequality relaxation is a component of constrained optimization and has
been used in different settings, e.g., the sum of infeasibilities method [19, p. 580] and the
elastic filter [24, p. 101]. The application to UQ was suggested as early as [35, p. 41]. The
optimal value of the above problem is still difficult to compute as the nonconvexity of the
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models has yet to be addressed. For quadratic surrogate models, the VCM can be cast as an
NQCQP and the convex relaxation techniques described in Section 2.7 can be applied. The
computational aspect as well as comparison with the SCM is discussed in detail in Section 7.7
.

7.3 Linear examples

In order to develop some perspective on this new consistency measure, we first investi-
gated the technique with linear models. In this setting, the VCM can be cast as a linear
program and the bracketing strategy described in Section 2.7 is unnecessary. The exam-
ples in this section demonstrate that although the above formulation is intuitive, it fails to
guarantee certain key properties that one might wish to have. The findings herein motivate
the inclusion of weights into the vector consistency framework for an additional layer of
flexibility.

Consider the following specialization of the Equation (7.3) to linear models,

min
x,δ
‖δ‖1

s.t. Ax ≤ b+ δ
(7.6)

where A ∈ RN×n and b ∈ RN . As in the original setup, if the constraint Ax ≤ b is feasible,
the minimizer δ? will be the zero vector. Suppose we start with a feasible dataset Ax ≤ b,
corresponding to some underlying ground truth, and tighten the constraint to inconsistency
using a scaling factor α > 0 and error vector e ∈ {0, 1}N such that {x : Ax ≤ bα} = ∅
where bα = b−αe. Note that as discussed in the preceding section, the introduced error can
be either interpreted as an error in the bounds or as a bias in the model.

We pose the following question: as α becomes arbitrarily large, can we guarantee that
Equation (7.6) eventually recovers the error, i.e., δ? = αe? Can we expect to recover the
underlying “true” feasible set? Although this would be a desirable property, the answer
turns out to be no. This is illustrated in the following counterexample.

Let A =

[
1.5
−1

]
, b =

[
1
1

]
, and e =

[
1
0

]
. Hence, the error is introduced only to the first

QOI bound. With these settings, Equation (7.6) can be rewritten as,

min
x,δ
‖δ‖1

s.t.

[
1.5
−1

]
x−

[
1
1

]
+ α

[
1
0

]
≤
[
δ1

δ2

]
.

(7.7)

The dataset can be shown inconsistent for any α > 2.5. The optimal relaxation δ? can be
characterized by the intersection of two regions,

Kα = {y ∈ R2 : ∃δ such that ‖δ‖1 ≤ c?, y ≤ δ}
Gα = {y ∈ R2 : y = Ax− b+ αt, x ∈ R},

(7.8)
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where c? is the smallest value such that the intersection is nonempty (i.e., the solution of
Equation (7.7)). This intersection is displayed in Figure 7.1 for two values of α. Although
the error has been introduced along the y1 axis, Gα will always meet Kα along the y2 axis
due to its slope. Thus, the VCM will always produce a relaxation to the second constraint
despite the error being introduced in only the first constraint. Simply put, δ? 6= αt for any
α > 0. Regardless of the magnitude of the error, the VCM will always select the wrong
constraint.

Figure 7.1: Illustration of the counter example. The dashed lines indicate the 1-norm ball
with radius c?.

This single counterexample illustrates a somewhat contrived situation in which the VCM
is unable to recover a specified error. To explore and test the significance of this result, we
investigated the performance of the VCM on multiple random instances of Equation (7.6).
How frequently is the technique unable to recover the ground truth?
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Let A ∈ R60×20 have entries selected from a uniform distribution on [−1, 1], and let b ∈
R60 be chosen such that the inequality Ax ≤ b is feasible for some x ∈ R20. Additionally, let
e ∈ {0, 1}60 be defined as above with a total of ne 1s placed in random entries. Notationally,
ne refers to the number of errors introduced. Let α > 0 be such that {x : Ax ≤ bα} is empty.
In order to measure the success of recovering the correct error, define the following ratios,

φe =
|supp(δ?) ∩ supp(e)|

ne

φδ =
|supp(δ?) ∩ supp(e)|

|supp(δ?)|

(7.9)

where supp(a) = {i : ai 6= 0} denotes the support of vector a, |S| returns the cardinality
of a set S, and δ? is the optimal value of Equation (7.6). The quantity φe measures the
fraction of errors correctly identified by the optimization, whereas the term φδ measures the
number of correctly identified errors relative to the total number of identifications. Both
ratios range between zero and one, with (φe, φδ) = (1, 1) indicating perfect identification.
If φe < 1, then the approach identifies only some, but not all, of the errored constraints.
If φδ < 1, then the algorithm identifies extra constraints. Together, these ratios account
for both under-identifying and over-identifying the QOIs involved in the inconsistency. The
results of 10, 000 random trials for nE = 1 and two values of α are displayed in Figure 7.2.
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Figure 7.2: Histogram of ratios for 10,000 random trials with ne = 1.
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With this setup, the methodology displays exact identification for the vast majority of
trials. When ne is increased to ne = 4, however, the number of possible explanations for the
inconsistency increases as well, making the identification more challenging. This is illustrated
below in Figure 7.3.

Figure 7.3: Histogram of ratios for 10,000 random trials with ne = 4.

For a large magnitude error (α = 10), the majority of trials yield φδ ≈ 0.5 and φe = 1.
Thus, the VCM suggests relaxations to all four of the ground truth errored constraints plus
approximately four extra constraints. In a lesser but significant number of trials, the VCM
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is unable to identify all of the errors and suggests relaxations to extra constraints. There
are many paths to consistency and in these cases Equation (7.6) finds alternative relaxation
strategies (other than to the errors in e) that have smaller 1-norms.

In the context of resolving inconsistency, framing the problem as one of recovering a single
“correct” relaxation is somewhat misrepresentative and oversimplifies the issue. As discussed
above, for any given inconsistent dataset, there may be a multitude of relaxations that could
lead to consistency. Each of these plausible relaxations may lead, after implementation,
to different feasible parameter configurations. The presumption of sparsity, the guiding
principle behind the VCM, does not alone provide enough information to pick out this so-
called correct relaxation in a reliable manner. To achieve this would require physical insights
and information from domain experts. This feature can be incorporated into the vector
consistency framework through the inclusion of user-specified coefficients to the relaxations
that act as weights.

The impact of weights can be illustrated by revisiting the earlier counterexample and
solving a modified version of Equation (7.6):

min
x,δ
‖δ‖1

s.t. Ax ≤ b+ Wδ,
(7.10)

where W is a diagonal weighting matrix with nonnegative entries along the diagonal. A
choice of W11 = 2 and W22 = 1 leads to the result in Figure 7.4, in which the errored con-
straint is now identified by the algorithm. The weights distort the 1-norm ball by stretching

Figure 7.4: Counter example with weighted linear VCM.

along directions with large values. Hence, specifying a larger weight for relaxations to the
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first constraint allows the error to be recovered. The real question becomes: “how to pick
the appropriate weights?”

7.4 Weighted vector consistency

The inclusion of weights into the VCM, as described in the previous section for linear
examples, adds an additional layer of flexibility to the framework. Specifically, it allows
domain experts to emphasize or prioritize certain model-data constraints over others in the
process of resolving an inconsistency. An example of this may be a situation in which one has
prior knowledge or an opinion that certain experiments are more reliable than others. This
notion of reliability may also be interpreted in the context of the underlying computational
model; certain physics-based components of the model, perhaps linked to particular QOIs
and therefore specific constraints, may be of higher fidelity than others. Naturally, how
inconsistency is resolved should account for these preferences – we should be less inclined
to adjust model-data constraints that are believed credible. For different problems, criteria
other than reliability may be useful. For example, certain QOIs may be more relevant to the
intended use of the dataset. In the context of predicion, QOIs that are most relevant to the
prediction case should be prioritized in some fashion during the investigation. We extend
the weighted linear VCM of Equation (7.10) to a more general form in Equation (7.11),

V‖·‖1(w) = min
x,∆L,∆U ,δl,δu

‖∆L‖1 + ‖∆U‖1 + ‖δl‖1 + ‖δu‖1

s.t. Li −W (i)
L ∆

(i)
L ≤Mi(x) ≤ Ui +W

(i)
U ∆

(i)
U for i = 1, ..., N

lj − w(j)
l δ

(j)
l ≤ xj ≤ uj + w(j)

u δ(j)
u for j = 1, ..., n

(7.11)

where w collects the weight coefficients {WL,WU , wl, wu}. In the above formulation, the
optimization prefers relaxing constraints with large weights as that action has a lesser impact
on the penalty in the objective. In contrast, constraints with small weight coefficients are
protected from relaxation as they require larger penalties in the objective. For instance,
setting the parameter coefficients w

(j)
l and w

(j)
u to zero enforces the original parameter bounds

and allows no modification. Hence, the corresponding relaxations δ
(j)
l and δ

(j)
u are forced

to take on values of zero. Similarly, setting the weight coefficients of the ith model-data
constraint, W

(i)
L and W

(i)
U , to zero would imply that the corresponding constraint bounds

are immutable. In essence, these weights specify the degree of flexibility afforded to certain
constraint relaxations.

In general, the weights should be chosen to characterize the relative importance of certain
model-data constraints over others. How to choose numerical values to quantify this relative
importance, however, remains a challenge. There are several standard weight configurations
that may be informative. For instance, the original vector consistency measure presented in
Equation (7.3) is reconstructed by setting all weights to one. A list of simple weight settings
and their interpretations are summarized in Table 7.1 for a generic constraint.
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Table 7.1: Example weights for a generic constraint: L− wLδL ≤ f(x) ≤ U + wUδU

Weight δL, δU — Interpretation
wL = wU = 1 Absolute change in bound (“unit weight”)

wL = wU = (U − L) δL+δU ∼ percent expansion in uncertainty interval
(“interval weight”)

wL = |L|, wU = |U | Percent decrease/increase in lower/upper bound
(“bound weight”)

wL = wU = 0 No relaxation permitted (“null weight”)

7.5 Using the VCM

The outcome of a VCM analysis can motivate several different actions. First, directly
implementing the determined relaxations by expanding the bounds produces a consistent
dataset. Second, the removal of the flagged QOIs, i.e., those associated with nonzero relax-
ations, leads to a consistent dataset composed of only the retained QOIs. Note, the removal of
model-data constraints can be equivalently interpreted as widening the flagged QOI bounds
beyond the recommended amount until the inequalities become inactive. Third, some com-
bination of the first two strategies can be administered, leading to a consistent dataset with
both expanded bounds and removed QOIs. In some cases, the inconsistency might be sus-
pected to originate in the underlying computational model rather the experimental bounds.
Then refining the underlying model, perhaps in a manner informed by the flagged QOIs and
corresponding relaxations, may also lead to consistency. As discussed previously, the deci-
sion of how to proceed is to be resolved by domain scientists. Examples of these strategies
in the context of a general consistency analysis are highlighted in the paragraph below.

In work by Feeley et al. [37], inadequacy in the computational model was primarily
believed to be due to the uncertain parameter values rather than missing physics. The
inconsistency of the dataset was rectified by identifying possibly problematic QOIs using the
SCM and then revising the corresponding experimental bounds based on recommendations
from the associated researchers. In Slavinskaya et al. [105], the temporary removal of
certain QOIs was justified due to perceived faults in the instrument models rather than the
underlying physical model. In Iavarone et al. [59], an inconsistent model was replaced by
an updated model form consistent with experimental data.

Weights are included in the VCM framework to aid in this decision-making process. The
VCM analysis can be repeated in a trial-and-error fashion, using different weight configura-
tions to explore a given dataset’s inconsistency. If the VCM detects the presence of a massive
inconsistency, e.g., by always requiring the adjustment of numerous model-data constraints,
then this suggests possibly severe limitations in the underlying model. The VCM and its
weighted counterpart aim to provide a more efficient tool for examining inconsistency as
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compared to the SCM. This is demonstrated in the following section where we revisit the
GRI-Mech 3.0 and DLR-SynG examples.

7.6 Examples: GRI-Mech 3.0 and DLR-SynG

As with the SCM analysis described in Section 6.6 and Section 6.7, the GRI-Mech 3.0
and DLR-SynG datasets are used here as platforms to illustrate VCM-based resolutions to
inconsistency. Note that both the results presented below and the previous SCM sensitivity
analysis utilize the same type of redundant inequalities to strengthen the convex relaxation.
Hence, the outcomes of both types of analysis can be directly compared. Of course, a key
difference between both approaches is that the decision variable for the VCM is of greater
dimension, i.e., z =

[
xᵀ ∆ᵀL ∆ᵀU δᵀl δᵀu

]ᵀ
. As the VCM is cast as a minimization, the

computational strategy leads to VCM ∈ [SDP, local solution]. Hence, a positive SDP result
certifies that the dataset is inconsistent. Moreover, no collection of relaxations with 1-norm
less than the SDP result can lead to consistency.

GRI-Mech 3.0

The GRI-Mech 3.0 dataset was previously demonstrated inconsistent by the SCM. The
same is possible with the VCM; an initial application with unit weights on the QOIs and
null weights on the parameters leads to V‖·‖1(w) ∈ [0.017, 0.024]. The positive lower bound
of 0.017 proves that the dataset is inconsistent. Moreover, any collection of relaxations
with 1-norm less than 0.017 will not result in consistency. Conversely, the upper bound of
0.024 corresponds to a local solution to the optimization. In this case, the following QOIs
are identified by the analysis: the QOI #37 lower bound (“f5”), relaxed by 0.013 (a 0.8%
decrease), and the QOI #36 upper bound (“f4”), relaxed by 0.011 (a 0.8% increase as well).
As expected, these flagged QOIs are identical to those in the SCM analysis of Section 6.6.

The same analysis can be repeated for both bound and interval weights on the QOIs.
For bound weights, V‖·‖1(w) ∈ [0.011, 0.016]. As presented in Table 7.1, the choice of bound
weights leads to ∆ (and δ) being interpreted as the percent change in the corresponding
bound. Hence, the SDP result of 0.011 informs us that the total sum of these percent
changes cannot be smaller than 1.1%. In this case, only the QOI #37 lower bound is
identified, with a relaxation of 0.025 (a 1.6% increase). We have again confirmed the finding
that the GRI-Mech dataset can be made consistent by removing just a single QOI. Moreover,
we now know by exactly how much the corresponding bound must be changed to achieve
consistency. Alternatively, interval weights produces V‖·‖1(w) ∈ [0.25, 0.41] and demonstrates
that the GRI-Mech 3.0 dataset can also be made consistent by adjusting the upper bounds
of both QOIs #36 and #37.

The relaxations in terms of percentage change in the corresponding bound are displayed
below in Figure 7.5 for the different weight configurations.
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Figure 7.5: VCM optimal relaxations for three standard weight configurations.
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These results illustrate that although the GRI-Mech 3.0 dataset is inconsistent, it is very
close to consistency – expanding a single bound by under 2% provides a sufficient fix.

In each of the above results, QOI #37 was flagged either for the lower bound (with
unit and bound weights) or the upper bound (with interval weights). The weights may
be manipulated to ask more sophisticated questions about the inconsistency. For example,
suppose QOI #37 and the associated uncertainties were believed accurately characterized.
Then a natural question to ask is: “can the dataset be made consistent without adjusting
QOI #37?” Setting W

(37)
L = 0 and fixing unit weights to the other QOI bounds leads to

V‖·‖1(w) ∈ [0.019, 0.35], with expansions to the upper bounds of QOIs #35 and #36 of 0.5%
and 2% respectively. The answer to the question posed is therefore “yes, the dataset can be
made consistent while preserving the contribution from QOI #37.”

The initial result with unit weights flagged two bounds: the lower bound of QOI #37 and
the upper bound of #36. We may further explore this particular set of relaxations by (a)
fixing zero weights to the other bounds and (b) varying the weights for just the two identified
bounds. This investigation produces the trade-off curve shown below in Figure 7.6.

Figure 7.6: VCM relaxations for QOIs #36 and #36 (blue dots) due to random selection of
weights. Other feasible relaxations lie in the shaded gray region. The red region is certified
infeasible by the SDP results.

Another question that can be asked is, “can the dataset be made consistent by adjusting
just the prior bounds on the parameters?”. We note that this question is somewhat ill-
considered as the surrogate models Mi(x) are only constructed over H (or more accurately,
in just the associated active parameters). In any case, attaching null weights to the QOIs
and unit weights to the parameters produces V‖·‖1(w) ∈ [0, 0.74]. The lower bound of a
single variable, x14, is relaxed by 74%.
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DLR-SynG

The SCM results of Section 6.7 suggested that many of the model-data constraints in the
DLR-SynG dataset contribute to the inconsistency. In that example, the sensitivity-based
iteration led to a roundabout procedure with several points of ambiguity. A VCM-based
analysis, however, provides a more direct set of results.

An initial application of the VCM with unit weights on the QOI bounds and null weights
on the parameter bounds produces V‖·‖1(w) ∈ [7.15, 12.59]. Hence, no collection of relax-
ations with 1-norm smaller than 7.15 can lead to consistency. In total, 43 QOI bounds are
flagged with nonzero relaxations. These results are plotted below in Figure 7.7.
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Figure 7.7: VCM relaxations for the DLR-SynG dataset with unit weights on the QOI
bounds and null weights on the parameter bounds.

A number of the QOI bounds require expansion in excess of 10%. The scale of the
inconsistency is clearly much greater than that of the GRI-Mech 3.0 dataset. As investigated
in the previous example, alternative weight schemes can be used to further explore the
inconsistency.

Placing bound weights on the QOIs and null weights on the parameters yields V‖·‖1(w) ∈
[1.13, 1.69]. Therefore, the total sum of the percent expansions in bounds cannot be smaller
than 113%. As shown in Figure 7.8, this weight configuration leads to 37 constraint relax-
ations.
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Figure 7.8: VCM relaxations for the DLR-SynG dataset with bound weights on the QOIs
and null weights on the parameters.

Switching to interval weights for the QOIs leads to V‖·‖1(w) ∈ [9.29, 13.22]. In this case,
38 QOIs are identified as requiring bound relaxation.

20 40 60 80 100 120 140

-25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 7.9: VCM relaxations for the DLR-SynG dataset with interval weights on the QOIs
and null weights on the parameters.

As one might expect, there are many QOI bounds that commonly arise in the above
results. For example, the upper bound of QOI #141 appears with significant relaxation
regardless of the selected weight configuration. Suppose domain science determined that QOI
#141 had both a highly reliable (surrogate) model and reliable experimental data. Then
a pertinent question to ask is “can consistency be reached without having to relax either
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bound of QOI #141?” Assigning null weights to both both bounds of the QOI and unit
weights to the remaining QOIs produces V‖·‖1(w) ∈ [8.05, 15.63], with 46 bound relaxations.
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Figure 7.10: VCM relaxations for the DLR-SynG dataset with null weights on both QOI
#141 as well as the parameters. The remaining QOIs were assigned unit weights.

Hence, the dataset can be made consistent without adjusting QOI #141.

7.7 Comparison with the SCM

The previous examples demonstrate that the VCM provides a more comprehensive tool
for analyzing dataset inconsistency. Here, both the SCM and the VCM are treated in a
unified setting to highlight their comparison. Note, the boldface text SCM and VCM are
used below to refer to the specific formulations developed in this section.

For quadratic models, Equation (2.4) and Equation (7.11) can be rewritten in a more
general form by rearranging terms and indices. A weighted version of the SCM can be
reformulated as,

SCM : max
x∈Rn,γ

γ

s.t.

[
1
x

]ᵀ
Qi

[
1
x

]
≤ −wiγ i = 1, ..., N

aᵀj

[
1
x

]
≤ 0 j = 1, ...,m

(7.12)

where Qi is the coefficient matrix of the corresponding surrogate model and the experimental
bounds have been absorbed into the constant term, the parameter prior H is defined by a
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collection of affine constraints constraints involving vectors aj, and the weights wi ≥ 0. The
VCM can be similarly rewritten as,

VCM : min
x∈Rn,∆∈RN ,δ∈Rm

1ᵀN∆ + 1ᵀmδ

s.t.

[
1
x

]ᵀ
Qi

[
1
x

]
≤ Wi∆i i = 1, ..., N

aᵀj

[
1
x

]
≤ wjδj j = 1, ...,m

∆ ≥ 0

δ ≥ 0

(7.13)

where 1d is the d−dimensional vector containing only ones as elements.
The SDP relaxations to both the SCM and VCM can be formulated in an equivalent

manner. For the SCM, first recall that the constraints in Equation (7.12) can be rewritten
as,

trace

[Qi 0
0 0

]1
x
γ

1
x
γ

ᵀ+ trace

 0 0 0.5wi
0 0 0

0.5wi 0 0

1
x
γ

1
x
γ

ᵀ ≤ 0

[
Aᵀ 0

] 1
x
γ

 ≤ 0

(7.14)

where A is the matrix with columns aj ∈ Rn+1, i.e., A =
[
a1 a2 ... am

]
∈ R(n+1)×m.

In what follows, we use entrywise notation similar to MATLAB to clarify the subvectors and
submatrices: v(k:l) denotes the subvector containing the kth through lth entries of v and
V(k:l, p:q) denotes the corresponding rectangular submatrix of V. As in Section 2.7, Sd ⊂
Rd×d is used to denote the collection of symmetric matrices. Let v =

[
xᵀ γ

]ᵀ
denote the

decision variable associated with SCM. The SDP relaxation can then be expressed as

rSCM: max
Z∈S2+n

Z(2+n, 1)

s.t. trace (QiZ(1:1+n, 1:1+n)) + wiZ(2 + n, 1) ≤ 0 i = 1, ..., N

AᵀZ(1:1+n, 1) ≤ 0

AᵀZ(1:1+n, 1:1+n)A ≥ 0

Z(1, 1) = 1

Z � 0

(7.15)

Note that in the above formulation, we allow all of the redundant inequalities discussed in
Section 6.5 to be included.

An SDP relaxation of the VCM is constructed in an identical fashion, however, with
the decision variable of VCM set as v =

[
xᵀ ∆ᵀ δᵀ

]ᵀ
. For notational convenience, let
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d = 1+n+N+m and denote by diag(w) the diagonal matrix with the vector w along the
diagonal. The constraints in Equation (7.13) can be rewritten as,

trace


Qi 0 0

0 0 0
0 0 0




1
x
∆
δ




1
x
∆
δ


ᵀ+ trace




0 0 −0.5Wie
ᵀ
i 0

0 0 0 0
−0.5Wiei 0 0 0

0 0 0 0




1
x
∆
δ




1
x
∆
δ


ᵀ ≤ 0

[
Aᵀ 0 −diag(w)

] 
1
x
∆
δ

 ≤ 0

(7.16)
where ei refers to the ith standard basis vector. The SDP relaxation of VCM is therefore,

rVCM: min
Y∈Sd

1ᵀN+mY(2+n:d, 1)

s.t. trace (QiY(1:1+n, 1:1+n))−WiY(1+n+i, 1) ≤ 0 i = 1, ..., N

AᵀY(1:1+n, 1)− diag(w)Y(2+n+N :d, 1) ≤ 0

AᵀY(1:1+n, 1:1+n)A− diag(w)Y(2+n+N :d, 1:1+n)A−
AᵀY(1:1+n, 2+n+N :d)diag(w)+

diag(w)Y(2+n+N :d, 2+n+N :d)diag(w) ≥ 0

Y(2+n:d, 1) ≥ 0

Y(1, 1) = 1

Y � 0.
(7.17)

Due to the nature of the SDP relaxation, the following inequalities are immediate: SCM ≤
rSCM and rVCM ≤ VCM.

The GRI-Mech 3.0 and DLR-SynG examples of the previous section illustrated how differ-
ent weighting configurations can be used to explore different resolutions to an inconsistency.
For example, null weights were used to enforce certain constraints. In fact, null weights
can also be helpful in proving inconsistency, which requires that rVCM > 0. To see this,
consider two different VCM problems for the same dataset. Let rVCM0 denote the first
VCM problem and let rVCM1 denote the second. Let both problems share identical weights
except for those indices in the subsets JW (QOI indices) and Jw (parameter indices). For
these subsets, let rVCM0 have null weights, i.e., i ∈ JW ⇔ Wi = 0 and j ∈ Jw ⇔ wj = 0.
Moreover, define J = {1+n+JW} ∪ {1+n+N+Jw} to be the adjusted set of indices to
account for the ordering in the decision variable. Suppose Y?

0 is the minimizer of rVCM0.
Take Y ∈ Sd to be

Y(i, j) =

{
0 i ∈ J or j ∈ J
Y?

0(i, j) otherwise.
(7.18)
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Hence, we are simply zeroing out the rows and columns associated with the null weights.
Thus, Y is feasible with respect to rVCM0 and hence 1ᵀN+mY(2+n:d, 1) = 1ᵀN+mY?

0(2+n:d, 1).
Moreover, note that Y is also feasible with respect to rVCM1 thus implying that rVCM1 ≤
rVCM0. This was numerically illustrated in the previous section. For example, included
a null weight on one of the QOIs in the GRI-Mech 3.0 dataset led to the SDP relaxation
increasing from 0.017 to 0.019. In other cases, if rVCM1 cannot prove inconsistency, com-
puting rVCM0 may do so.

Given the success of the VCM in handling inconsistent datasets, a natural question to
ask is “can the VCM supplant the SCM?” We answer this question in the negative by
demonstrating that rSCM is a stronger tool for detecting inconsistency.

Theorem 7.7.1. If rSCM ≥ 0, then rVCM = 0 for any choice of weights.

Proof. Suppose rSCM ≥ 0 (the dataset is provably consistent) and let Z? ∈ S2+n be the
corresponding maximizer. Let W ≥ 0 and w ≥ 0 be any weight configuration. Define
Y ∈ Sd by

Y(i, j) =

{
Z?(i, j) i, j ≤ 1+n

0 otherwise
(7.19)

Since Z? is feasible with respect to Equation (7.15) and Z?(2 +n, 1) ≥ 0, Y must be feasible
with respect to Equation (7.17). Moreover, 1ᵀN+mY(2+n:d, 1) = 0 and since rVCM is
always nonnegative, rVCM = 0.

The contrapositive of Theorem 7.7.1 states that if rVCM > 0 for some choice of weights,
then rSCM < 0. Hence, the collection of datasets for which rVCM proves inconsistency is
a subset of the collection of datasets for which rSCM proves inconsistency.

It turns out that this containment is strict. We demonstrate this by constructing a
numerical example in which rSCM < 0 (SCM proves inconsistency) and rVCM = 0 (VCM
does not prove inconsistency). Consider a purely artificial dataset with dimensions n = 2,
N = 2, and m = 2.

Q1 =

0.0881 0.460 0.4769
0.460 0.5613 0.4948
0.4769 0.4948 0.3550

 Q2 =

0.2448 0.1876 0.1492
0.1876 0.2664 0.7218
0.1492 0.7218 0.1476


a1 =

0.9207
0.9295
0.1368

 a2 =

0.8716
0.0124
0.7220


W1 = W2 = w1 = w2 = 1

(7.20)

Here, the only redundant constraint added to the rSCM is aᵀ1Z(1:3, 1:3)a2 ≥ 0 as the other
constraints are implied by Z � 0, and similarly for rVCM. Using CVX [52, 53], it can be
shown that rSCM = −1.0857 and rVCM = 0. To avoid issues of precision in the numerical
evaluation of rVCM, we round the minimizer Y ? to the second digit and find that it is still



CHAPTER 7. THE VECTOR CONSISTENCY MEASURE 90

feasible with some margin. Hence, rVCM = 0 and rSCM < 0 therefore implying that the
converse of Theorem 7.7.1 does not hold.

7.8 An extension to rational quadratic surrogates

A natural follow-up question to the previous sections is: can these developments be
directly extended to datasets composed of rational quadratic (RQ) surrogate models? It
turns out that the extension is not so immediate. To illustrate this, we first review how the
SCM is computed for such datasets.

Consider the following version of the SCM, without the coefficient to γ,

CD := max
γ, x∈H

γ

s.t. Li + γ ≤ Ni(x)

Di(x)
≤ Ui − γ

for i = 1, . . . , N.

(7.21)

where Ni(x) =

[
1
x

]ᵀ
Ni

[
1
x

]
and Di(x) =

[
1
x

]ᵀ
Di

[
1
x

]
are known RQ surrogate models fit

using the strategies discussed in Chapter 4.
Recall that for such surrogates constructed over H, we impose the condition that 1 ≤

Di(x) ≤ κi for all x ∈ H. Since the denominator is always positive in this region, Equa-
tion (7.21) may be rewritten as,

CD := max
γ, x∈H

γ

s.t.

[
1
x

]ᵀ
(Ni + (γ − Ui)Di)

[
1
x

]
≤ 0[

1
x

]ᵀ
((Li + γ)Di −Ni)

[
1
x

]
≤ 0

for i = 1, . . . , N.

(7.22)

where we have expanded the quadratics to emphasize the cubic interaction between the
scalar decision variable γ and the components quadratic in the vector decision variable x.
Importantly, this means that the formulation is no longer an NQCQP. Thus the strategies
discussed in Section 2.7 for computing an upper bound CD through convex relaxation cannot
be directly applied. Note that for fixed γ, the constraints in Equation (7.22) (including the
prior constraint x ∈ H) can be assembled into a quadratic “pseudo” dataset. To handle the
difficulty, Feeley [35, Section 5.4] proposed a bisection-on-γ algorithm in which each step fixes
a value for γ, formulates the corresponding quadratic pseudo-dataset, checks the feasibility
of that dataset (i.e., computes the standard quadratic consistency measure), adjusts γ, and
then iterates. This strategy cannot be directly extended to the convex relaxation of the
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VCM. Recall in the VCM, the scalar variable γ is replaced by the vector variables ∆L and
∆U . Hence, in the resulting formulation there are multiple cubic interactions among the
different ∆(i) and components of x.

For RQ surrogate models, how the relaxations are implemented becomes important if
one wishes to use B2BDC’s computational toolbox. As discussed above, the standard way
of incorporating the relaxations, i.e.,

Li −∆
(i)
L ≤

Ni(x)

Di(x)
≤ Ui + ∆

(i)
U , (7.23)

cannot be implemented using the bisection approach associated with the SCM as each bound
has a unique relaxation variable ∆(i). Note that we may still solve this problem to get a
local solution, and hence an upper bound on the VCM. Our aim, however, is to find a useful
lower bound too. An alternative approach is to formulate the relaxations by the pairing,

Ni(x)− UiDi(x) ≤ ∆
(i)
U

LiDi(x)−Ni(x) ≤ ∆
(i)
L .

(7.24)

Note that for notational convenience we ignore weights as well as the relaxations to the
parameter bounds. As the QOI relaxations (∆L,∆U) appear linearly with the vector decision
variable x, there is no difficulty in applying the standard B2BDC SDP techniques. The two
formulations in Equation (7.23) and Equation (7.24), however, have different meanings. For
instance,{

Ni(x)− UiDi(x) ≤ ∆
(i)
U

LiDi(x)−Ni(x) ≤ ∆
(i)
L

}
⇔ Li −

1

Di(x)
∆

(i)
L ≤

Ni(x)

Di(x)
≤ Ui +

1

Di(x)
∆

(i)
U . (7.25)

The relaxation in this alternate formulation essentially has a parameter dependent weighting
(D−1

i (x)) associated with it. Since 1 ≤ Di(x) ≤ κi for x ∈ H, the following general relations
hold:

Li −
1

Di(x)
∆

(i)
L ≤

Ni(x)

Di(x)
≤ Ui +

1

Di(x)
∆

(i)
U ⇒ Li −∆

(i)
L ≤

Ni(x)

Di(x)
≤ Ui + ∆

(i)
U , (7.26)

and conversely,

Li −
1

κi
∆

(i)
L ≤

Ni(x)

Di(x)
≤ Ui +

1

κi
∆

(i)
U ⇒ Li −

1

Di(x)
∆

(i)
L ≤

Ni(x)

Di(x)
≤ Ui +

1

Di(x)
∆

(i)
U . (7.27)

The implication in Equation (7.26) says that the outcome of solving the associated VCM
problem, i.e.,

VCM-RQ′ := min
x,∆L,∆U

‖∆L‖1 + ‖∆U‖1

s.t. Ni(x)− UiDi(x) ≤ ∆
(i)
U for i = 1, ..., N

LiDi(x)−Ni(x) ≤ ∆
(i)
L for i = 1, ..., N

lj ≤ xj ≤ uj for j = 1, ..., n

(7.28)
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leads to a feasible bound relaxation. If we let VCM-RQ denote the solution to the VCM
with constraints of the form in Equation (7.23), then this implies VCM-RQ′ ≥ VCM-RQ.
Although it differs from the typical VCM construction, the formulation VCM-RQ′ provides
one strategy for extending the VCM to RQ surrogates. In general, the impact of parameter
dependent weighting, as in Equation (7.25) would be a interesting area of future investigation.

7.9 Consistency measures that count: a possible

future direction

The VCM strategies discussed and illustrated in the preceding sections are both practical
and useful additions to the B2BDC framework. They are not, however, without flaws. The
original motivation was to address the question posed by Equation (7.2): “what is the fewest
number of constraint modifications required to reach consistency?” Switching to the 1-norm
was a natural step in formulating a more tractable question: “what is the smallest sum
of independent constraint relaxations required to reach consistency?” This new question
became the baseline for the VCM. By definition, the SDP relaxation provides a global lower
bound on this objective, with two interpretations: first, as a proof of inconsistency; and
second, as a statement about the scale of the inconsistency. Investigating only the sum
of relaxations, however, does not provide provable information on how the relaxations are
distributed among the dataset constraints. For this, we relied on local solutions. In this
section, we briefly illustrate how VCM-like ideas can be used to forge additional tools that
provide complementary information. Although the results here are comparable to those
in the preceding sections, we believe that further investigations in this direction could be
fruitful in developing new consistency measures.

An alternative formulation of Equation (7.2) with the aim of explicitly counting constraint
removals can be constructed by casting the relaxations as binary decision variables,

V‖·‖0 = min
x,∆

N∑
i=1

∆i

s.t. Li −∞ ·∆i ≤Mi(x) ≤ Ui +∞ ·∆i

∆i ∈ {0, 1} for i = 1, ..., N

lj ≤ xj ≤ uj for j = 1, ..., n.

(7.29)

Of course this cannot be implemented directly, but the intention is clear – a value of ∆i = 1
implies the corresponding model-data constraint is relaxed until ineffective, which is the
same as removing the constraint. Hence, the sum in the objective counts the number of
these relaxations/removals. The choice of ∞ is rather excessive and can be replaced by
any finite quantity that renders the constraint inactive. One way of selecting such values is
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through prediction over the prior H. Let B
(i)
L and B

(i)
U be such that,

B
(i)
L ≥ Li −min

x∈H
Mi(x)

B
(i)
U ≥ max

x∈H
Mi(x)− Ui.

(7.30)

For quadratic or polynomial surrogate models, we may compute the values of BL and BU by
replacing the predictions over H with their SDP relaxations. This ensures that the values
are larger than necessary to render the constraints inactive over the prior. Equation (7.32)
may then be rewritten as,

V‖·‖0 = min
x,∆

N∑
i=1

∆i

s.t. Li −B(i)
L ∆i ≤Mi(x) ≤ Ui +B

(i)
U ∆i

∆i ∈ {0, 1} for i = 1, ..., N

lj ≤ xj ≤ uj for j = 1, ..., n.

(7.31)

Relaxing the binary constraints from ∆i ∈ {0, 1} to the interval constraint ∆i ∈ [0, 1] leads
to a continuous optimization problem and ensures that optimal value is not greater than the
optimal value of Equation (7.31). We term this new formulation as the count VCM, or V#.

V# := min
x,∆

N∑
i=1

∆i

s.t. Li −∆iB
(i)
L ≤Mi(x) ≤ Ui + ∆iB

(i)
U

∆i ∈ [0, 1] for i = 1, ..., N

lj ≤ xj ≤ uj for j = 1, ..., n.

(7.32)

The SDP relaxation of Equation (7.32) therefore provides a lower bound on the above prob-
lem, which is in turn a lower bound on the number of constraint removals required to reach
consistency. We additionally note that this new formulation is essentially a version of the
weighted VCM in Equation (7.11), albeit with additional constraints and a special choice of
weights.

Applying this new tool to the DLR-SynG dataset produces somewhat weak results. The
computational strategy finds that V# ∈ [4.15, 5.34], certifying that fewer than 5 QOI removals
can never bring about consistency. The corresponding relaxations ∆ are plotted below in
Figure 7.11.
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Figure 7.11: Count VCM relaxations.

Rounding up the nonzero results in Figure 7.11 to one and summing produces an upper
bound on Equation (7.31). Hence the removal of the 40 identified QOIs (flagged with ∆i > 0)
leads to a consistent dataset. Hence, V‖·‖0 ∈ [5, 40]. Although this result is not as informative
as one might hope, it does provide additional information that the previous VCM strategies
did not. Even though the computation of V# is quite tight, the wide gap in V‖·‖0 is due to
relaxing the binary constraint.

7.10 Chapter summary

Consistency analysis is a fundamental component of B2BDC. In this chapter, a new
consistency measure, termed the vector consistency measure (VCM), was introduced to ad-
dress shortcomings of the SCM in diagnosing inconsistency. The utility of the VCM was
demonstrated in two real-world cases arising from combustion chemistry: GRI-Mech 3.0 and
DLR-SynG. In both of these examples, the VCM led to new insights and enabled new ques-
tions to be asked of an inconsistency. We note that the material in these sections is based
on and was first reported in our recent work [54].

The end of the chapter saw both the comparison of existing methods as well as a sug-
gestion for possible future directions. The SCM was shown to be stronger than the VCM in
proving consistency whereas the VCM was demonstrated to be more practical for diagnosing
inconsistency. New consistency measures that provide complementary information, such as
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improvements to the count VCM, would be a welcome addition to the B2BDC framework.
These final sections highlight the following important fact: there is no universal consistency
measure. Rather, we see that a more complete picture of an inconsistent dataset requires a
toolkit capable of exploring different questions. In this spirit, we emphasize that consistency
measures are numerical tools to assist domain scientists.
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Chapter 8

Conclusion

The methodological contributions of this dissertation are twofold. First, Chapter 3 pre-
sented an iterative approach for dataset construction that progressively hones in on useful
regions of the parameter space. This new strategy was a direct outcome of exploring the rela-
tionship between B2BDC and Bayesian history matching. These techniques were extended in
Chapter 4 and Chapter 5. Second, a novel tool for diagnosing inconsistent datasets was mo-
tivated in Chapter 6 and developed in Chapter 7. This tool, the vector consistency measure
(VCM), investigates inconsistent datasets by seeking out the fewest number of constraint
modifications that lead to consistency. The inclusion of weights allow domain scientists to
play a more involved role in the resolution process.

These two contributions essentially tackle the same question: how can model-data agree-
ment be quantified while accounting for both parametric and experimental uncertainty? In
B2BDC, this question is posed by first constructing a dataset and then verifying its consis-
tency. The iterative strategy discussed above extends the method’s applicability by perform-
ing consistency checks sequentially over a shrinking feasible region. Through this procedure,
accurate representation of the dataset QOIs becomes paramount. At each iteration, fitting is
focused on the corresponding feasible set and the surrogate models are continually improved
as accurately-represented QOIs are assimilated into the analysis. The procedure terminates
if all QOIs are accounted for or if inconsistency is proven. If a dataset is consistent, the anal-
ysis can shift to other vital tasks such as prediction. Inconsistency, however, stymies further
progress on this front and demonstrates disagreement among models, data, and prior infor-
mation. The VCM seeks to quantify this disagreement. Incorporating weights into the VCM
framework facilitates a more detailed diagnosis of the inconsistency by exploring multiple
ways of reconciling the conflict. For example, the presence of a massive inconsistency could
indicate significant model deficiencies. The information gleaned from such analysis could
then be used to aid in revising the underlying computational model and/or observations. In
essence, these steps of dataset construction, consistency checks, and further diagnosis serve
as a general workflow to accomplish model validation in the presence of uncertainty.
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