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Abstract
New Frontiers for Physics Beyond the Standard Model
by
Vijay Narayan
Doctor of Philosophy in Physics
University of California, Berkeley
Professor Surjeet Rajendran, Co-chair

Professor Lawrence J. Hall, Co-chair

We present three distinct pathways for theory and experiment beyond the Standard Model.
First, we propose an experimental design of a laboratory search for axions based on photon
regeneration with superconducting RF cavities. We then study a novel production mecha-
nism for ultralight vector dark matter in the early universe based on a parametric resonance
instability. Finally, we show that white dwarfs are in fact ideal “detectors” of ultra-heavy
DM over large regions of parameter space.
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Chapter 1

Preface

While the standard models (SM) of particle physics and cosmology provide our most complete
understanding of the Universe, they leave basic questions unanswered. Most conspicuously,
dark matter (DM) accounts for 85% of the observed matter density but its identity is un-
known. In addition, several hints such as grand unification, UV sensitivity of the Higgs mass,
the strong CP problem, and features in the CMB spectrum strongly suggest the existence
of new physics. Although rich extensions of the SM have been proposed to address these
problems, their resolutions are uncertain and the possibilities innumerable. For instance, the
mass of DM can viably span over 80 orders of magnitude while any non-gravitational inter-
actions of DM have yet to be determined. In light of this, it is crucial to cast a wide net in
the search for new physics. It is fruitful to consider the pairing of well-motivated possibilities
with the relevant tools capable of detecting them, from rapidly developing precision sensors
to observations of astrophysical systems. It is also important to identify novel interpretations
of existing searches as well as potential signatures not currently being looked for. This thesis
focuses on the connections between plausible theoretical models and emerging experimental
avenues beyond the SM, and first appeared as published works in [1, 2, 3, 4].

Physics in the far UV can generally lead to new light degrees of freedom. Axions are
particularly interesting as they are naturally ultra-light and have suppressed interactions with
the visible sector, perhaps solving puzzles in the SM. One way to produce and detect axions
is through their electromagnetic coupling: Light Shining Through Walls (LSW) experiments
make use of coherent axion-photon conversion in a static magnetic field to convert photons
into axions that can traverse an optical barrier and then convert back into photons. In
Chapter 2, we propose a novel design of a laboratory search for axions based on photon
regeneration with superconducting RF cavities. Our particular setup uses a toroid as a
region of confined static magnetic field, while production and detection cavities are positioned
in regions of vanishing external field. This permits cavity operation at quality factors of
Q ~ 10 — 10'2. The limitations due to fundamental issues such as signal screening and
back-reaction are discussed, and the optimal sensitivity is calculated. This experimental
design can potentially probe axion-photon couplings beyond astrophysical limits, comparable
and complementary to next generation optical experiments.
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Recently there has been a plethora of proposals to look for ultra-light DM models using
precision metrology including magnetometry, LC circuits, and atomic interferometry. These
experiments are sensitive to both (pseudo)scalar and vector DM models. In general, ultra-
light DM generally requires a non-thermal origin to achieve the observed density, while still
behaving like a pressureless fluid at late times. In Chapter 3, we show that such a production
mechanism naturally occurs for vectors whose mass originates from a dark Higgs. If the dark
Higgs has a large field value after inflation, the energy in the Higgs field can be efficiently
transferred to vectors through parametric resonance. Computing the resulting abundance
and spectra requires careful treatment of the transverse and longitudinal components. We
study these equations of motion in detail and find that the mass of the vector may be as
low as 107!® eV, while making up the dominant DM abundance. This opens up a wide mass
range of vector DM as cosmologically viable, further motivating their experimental search.

While substantial progress has been made to detect DM at or below the weak scale, the
challenge in directly detecting heavy DM is its diminished number density. Thus for ultra-
heavy DM, indirect signatures in astrophysical systems are a natural way forward. One
such signal is that DM can trigger runaway fusion and ignite type Ia supernovae in sub-
Chandrasekhar white dwarfs. In Chapter 4, we consider DM candidates that heat through
the production of high-energy standard model (SM) particles, and show that such particles
will efficiently thermalize the white dwarf medium and ignite supernovae. Based on the
existence of long-lived white dwarfs and the observed supernovae rate, we derive new con-
straints on ultra-heavy DM which produce SM particles through DM-DM annihilations, DM
decays, and DM-SM scattering interactions in the stellar medium. As a concrete example,
we rule out supersymmetric Q-ball DM in parameter space complementary to terrestrial
bounds. In Chapter 5, we further examine the ignition of supernovae by the formation and
self-gravitational collapse of a DM core containing many DM particles. For non-annihilating
DM, such a core collapse may lead to a mini black hole that can ignite supernovae through
the emission of Hawking radiation, or possibly as a by-product of accretion. For annihilating
DM, core collapse leads to an increasing annihilation rate and can ignite supernovae through
a large number of rapid annihilations. These processes extend the previously derived con-
straints on DM to masses as low as 10° GeV. Finally, it is intriguing that the DM-induced
ignition discussed in this work provide an alternative mechanism of triggering supernovae
from sub-Chandrasekhar, non-binary progenitors.



Chapter 2

Axion Production and Detection with
Superconducting RF Cavities

2.1 Introduction

Axions are well-motivated additions to the standard model (SM). They provide an elegant
solution to the strong CP problem [5, 6, 7, 8], are a natural dark matter candidate [9, 10,
11], can relax naturalness problems [12, 13], and appear generically in theories of quantum
gravity [14, 15]. Purely laboratory searches for axions are thus an important experimental
front. Given that axions can naturally be very light and have suppressed interactions with
the SM, a promising approach is to search for the coherent interaction of a classical axion
field with electromagnetic (EM) fields [16].

Photon regeneration, or “Light Shining Through Walls” (LSW), experiments make use
of axion-photon oscillations in a transverse magnetic field to convert photons into axions
that can traverse an optical barrier and then convert back into detectable photons [17].
Small axion-photon conversion probabilities are overcome by the use of resonators to sustain
large EM fields [18]. This is the basis of experiments such as the Any Light Particle Search
(ALPS) [19, 20, 21], which employ optical cavities aligned with dipole magnets over a long
baseline. LSW can also be done at radio frequencies (RF) [22, 23, 24], as in the CERN Reso-
nant Weakly Interacting sub-eV Particle Search (CROWS) [25], by producing and detecting
the axion through excited modes in matched RF cavities subject to an external magnetic
field. While interesting, current constraints from LSW experiments are less stringent than
those due to stellar cooling or searches for solar axions (see [26] for a review).

We propose a novel design for an axion LSW experiment using high-@) superconducting
RF (SRF) cavities, which can in principle reach beyond these astrophysical bounds. SRF
cavities provide an opportunity for a significantly enhanced axion search due to their ex-
tremely large quality factors; however, they must be isolated from large magnetic fields in
order to avoid catastrophic SRF degradation. This requires several qualitative modifica-
tions from previous setups, most notably the use of a sequestered axion-photon conversion
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region containing a confined static magnetic field while production and detection cavities
are positioned in regions of vanishing static field. The focus of this paper is to determine
the fundamental factors that affect the sensitivity of such an experimental design—a more
detailed consideration of experimental strategies is left to future work. We calculate the
optimal signal strength and irreducible noise sources, and find the proposed setup capable
of probing axion-photon couplings beyond astrophysical limits and with a reach comparable
and complementary to next generation optical experiments.

2.2 Conceptual Overview

LSW searches rely on the axion EM interaction, given by the effective Lagrangian

1 o1 1 1 -
—ZFWF“ + 5(@@)2 — éma2a2 — ZgaFWF“ : (2.1)

where a is the axion field of mass m,, P = P F,,, and g is the axion-photon coupling.
In the limit of classical fields, an axion obeys the equation of motion

(0+m?)a=—gE- B, (2.2)
and modifies Maxwell’s equations:
V-E=—gB-Va, (2.3)
- - OE . =~ =0a
B=——-gl(FE —B— ). 24
V x 5 ( x Va 8t> (2.4)

We will generally consider any light, neutral pseudoscalar a and treat {m,, g} as independent
parameters.

In an RF LSW experiment such as CROWS [25], a production cavity sources axions
through a non-vanishing E - B, where E is the electric field of an excited cavity mode and B
is an external, static magnetic field. These axions propagate into a detection cavity where,
again in the presence of a static magnetic field, they excite an identical frequency mode in
the detection cavity. The signal power that can be extracted is [22]:

4
gB
Psignal = Pinpthchdc (TO> |G|2 (25)

Here @)pc and Qqc are the loaded quality factors of production and detection cavities, f ~
GHz is the frequency of the excited modes, Py is the driving RF power delivered to the
production cavity, and By is the static field penetrating both cavities. |G| is a form factor
which depends on the arrangement of the cavities, choice of modes, etc. This is roughly
constant for m, < 27 f, and is exponentially suppressed for larger masses.

~Y
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Region

Production Cavity Detection Cavity

Conversion

Figure 2.1: Basic elements of an axion LSW experiment using SRF cavities and a conversion
region of confined static magnetic field, to be contrasted with an RF cavity experiment such
as CROWS [25].

The quality factors @) of both cavities are key factors in determining the sensitivity of such
an experiment. For normal conducting cavities, Q) ~ 10° — 10°, however advances in SRF
technology have led to the development of superconducting cavities with Q ~ 10 — 10!?
which have application in particle accelerators [27]. It is worthwhile to consider whether
these can be leveraged in an axion LSW search [28, 29]." A simple replacement of the RF
cavities? in the above arrangement with SRF cavities does not work—an external By greater
than the critical field ~ 0.2'T, at which flux penetrates the cavity, would result in excessive
dissipation and degrade Q).

This problem is avoided by placing production and detection SRF cavities in regions of
vanishing static field while confining a large, static magnetic field in a distinct conversion
region, depicted schematically in Fig. 2.1. The basic elements of an SRF LSW experiment
as follows:

1. Axions are sourced in a production cavity free of any external field.
2. The axions then convert into photons in an isolated region of static magnetic field.

3. The resulting photons propagate out of the conversion region—that is, the axion-
induced fields must not also be screened by the conductors which confine the large
static field.

4. Any resulting RF signal is coupled to and amplified by an SRF detection cavity.

We discuss a possible design that is able to realize all these conditions, and in what
follows we will use it to determine the optimal sensitivity of an axion SRF search.

1See [30] for a proposal to detect axions with SRF cavities that is quite distinct from ours.

2Tt is actually not obvious whether a larger signal is obtained by replacing both cavities or only the
detection cavity, see Sec. 2.3—we choose here to study an SRF production cavity as it involves some novel
considerations.
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(1) A specific mode or set of modes in the production cavity is driven such that E-B
does not identically vanish.

(2) A static By is generated and confined by DC current-carrying superconducting wires
wrapped to form a toroidal enclosure.

(3) There is a gap in this enclosure, preventing the toroid from acting as a shielding
cavity for the axion-induced fields. Our use of a gapped toroid is inspired by its related use
in experiments (ABRACADABRA and DM Radio) searching for dark matter axions [31, 32].

(4) The axion-induced fields are coupled to the detection cavity inductively via an outside
pickup loop. Here, we must properly account for the back-reaction of the amplified signal
onto the toroid. We emphasize that a realistic implementation would require a more detailed
signal field read-out mechanism in order to maintain a large effective () on the detection side.

2.3 Determining the Axion Signal

SRF axion source

The axion field produced by an SRF cavity is given by (2.2), with the EM fields on the right-
hand-side being those of the driven cavity modes. We focus on one frequency component w
of this E - B, which may arise from a single cavity mode with frequency w/2 or from two
distinct modes driven together whose frequency sum or difference is w:

. ikald—9|
a(Z,t) = —ge™ / i (E . B) , (2.6)
pc 4’7T|ZL' - y| w
where k, = y/w? —m?2 is the axion momentum and the subscript w on E - B indicates
restriction to a single frequency component. The integration ¢ is taken over the volume of
the production cavity and Z indicates any point in space, e.g., within the conversion region.
The driven modes must be chosen such that (E : E)w is not vanishing. This is not an issue
in principle, though care must be taken in order to ensure the largest possible magnitude of
the axion source (see Appendix A).

An SRF production cavity is unable to support EM fields greater than the critical field
at which @) severely degrades due to flux penetration. This sets a fundamental limit on the
strength of an SRF axion source which is independent of the cavity @), the input power, or
choice of modes. The limit depends only on the material properties of the chosen supercon-
ductor. For a standard niobium SRF cavity [33], the field limit is

(E - B)ar < (0.2 T)2. (2.7)

By comparison, the axion source produced by an RF cavity in a large static field (as in

CROWS) is
L. P 2 0.\ [ B
. ~ 2 input pc 0
(E - B)y ~ (0.1 T) (100 ) (105) (5 T). (2.8)
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Interestingly an SRF axion source may be similar in magnitude to that of a conventional
LSW setup. The improved reach of our set-up is primarily due to the increase in () on the
detection side, and the decision to employ an SRF or RF cavity for production would depend
on more detailed engineering considerations.

Gapped toroid conversion region

An axion interacts with the EO within our conversion region and induces EM fields, described
to leading order by effective sources

Peff = —géo . ﬁa, Jg = ggo(?ta (2.9)

For a toroidal magnet, the static field is of the form By, ~ B (r)ng within the volume
of the toroid, and ideally vanishes everywhere outside. This is the principle advantage of
using a toroid, as the SRF cavities can be located in regions of nearly vanishing static field.
However it is essential that the toroid be gapped, for instance due to spaces between wire
turns. A gapped toroid of this sort acts as a polarizer, confining the toroidal static field while
permitting the poloidal axion-induced field to propagate outside and be detected, as shown
in Fig. 2.2. Indeed, this behavior is same reason that a gapped toroid is being employed
in [31, 32].

We can understand this as follows: the axion effective current (]_;H‘ follows the direction
of the static toroidal field By and sources a poloidal field B,. Both fields vanish in the
toroid thickness as Meissner screening currents are set up on the internal surface. The static
field requires poloidal surface currents which are unaware of gaps in the toroid—they do not
encounter the gaps as they circulate. For this reason, the static B-field is effectively contained
within the toroid. Any leakage is due to fringe effects, which are suppressed by the small
size of the gap and can be made smaller than the critical SRF threshold. On the other hand,
the axion-induced field will drive toroidal currents which are aware of the gaps. An internal
toroidal current must either collect charge on the edges of the gap or propagate onto the
external surface of the toroid, where it sources detectable field. This field is unsuppressed by
the gap size, as long as the gap has a sufficiently small parasitic capacitance (see Sec. 2.3).

We now make the approximation that all length scales in the setup (cavity sizes, sepa-
rations, dimensions of the toroid, etc.) are comparable and of order w™'. We additionally
assume that the axion-induced poloidal field B, is able to escape the toroid without sup-
pression, as though the conducting toroid were not present. This is valid in the quasistatic
limit, as we motivate in Sec. 2.3. Combining (2.6) and (2.9), we find the axion-induced field
in the center of the torus has a magnitude

B :@5%107%T g GeV ’ ch ? By B
¢ w? 10-11 02T 5T 0.05)"

where B, is the field amplitude in the production cavity (note, we have simply taken F,. ~
B, in the above estimate) and w ~ 27 GHz. S is a dimensionless form factor which is a
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Figure 2.2: Schematic of the gapped toroid as a polarizer, zoomed on to the cross-section of
a gap. The static EO due to applied DC current (blue) remains internal, while the axion-
induced B, (red) causes Meissner screening currents (also red) to flow on internal and external
surfaces due to the gap. The external currents give rise to detectable fields outside the toroid.

function of the cavity modes, cavity and toroid geometries, spatial variation in 507 etc. The
size of (3 is estimated in Appendix A, and we find in principle that it can be made O(0.1) in
the limit m, < w.

Screening beyond the quasistatic limit

The reasoning presented above for the propagation of axion-induced fields outside the gapped
toroid is essentially valid for quasistatic frequencies, R < w™!, where R is the characteristic
dimension of the toroid. In the low-frequency limit, the axion-induced magnetic field scales
as B, x (Rw) and so we would try make our toroid as large as possible. However once
R becomes larger than w™! the axion-induced fields outside the toroid are suppressed (or
screened), and thus an optimal design would saturate the quasistatic limit R ~ w™!. We
discuss this in detail in Appendix B; here we will briefly describe the physical reasons for
this result.

Beyond the quasistatic limit, the cross-capacitance of the toroid becomes important:
radiation across the center will cause currents and charges on one side of the toroid to affect
those on the other side. Meissner currents flowing along the surface of the toroid are no longer
approximately uniform; instead, there will be multiple sections of current flowing in opposite
directions, with alternating charge buildups in between. The resulting Meissner currents
and charge distribution is spatially modulated and behaves as a multipolar source. We thus
expect the axion-induced fields outside the toroid to drop-off parametrically as a power-law
B, & (Rw)™", due to destructive interference of out-of-phase source contributions. We show
this behavior and calculate n > 0 explicitly for a toy model of a thin cylindrical conductor
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Figure 2.3:  (Left) Mapping of our experimental setup onto an effective circuit model.
This is parameterized by an axion effective current (I,) running through the toroid volume,
effective mutual inductance capturing the Meissner effect (M, ), toroid inductance (L), toroid
resistance (R;), shunting capacitance (C;), inductive coupling to an outside pickup loop (L,)
through a mutual coupling (M), and a detection cavity (Z.). (Right) Approximate equivalent
circuit, for the purposes of computing the maximum signal power. R o () is the detection
cavity shunt resistance and Z,,, contains all imaginary impedances.

in the high-frequency limit in Appendix B. Thus, we expect it is safe to saturate R ~ w™!

without concern that there will be a precipitous (e.g., exponential) drop in the external fields
for slightly larger sizes or frequencies. Likewise, we may treat the approximation of O(1)
field propagation as accurate even at the boundary of the quasistatic limit.

Note that in our setup the internal toroid signal currents will also have significant spatial
modulation beyond the quasistatic limit, but for a very different reason: the source axion
field (2.6) itself varies on length scales of order w™! due to the propagator factor, independent
of the choice of modes. In any case, the multipolar screening described in this section is more
general and results from satisfying boundary conditions on the superconducting toroid—this
would be present even if the axion field were spatially uniform.

Pickup and equivalent transducer circuit

To compute the signal strength, it is useful to describe this system with a model circuit, as
in the left side of Fig. 2.3. For concreteness we assume the axion-induced EM field is coupled
to the detection cavity via a pickup loop located in the central hole of the toroid. An actual
design would likely require a more sophisticated read-out mechanism in order to maintain a
large effective ), however this does not alter the optimal signal power.

The model circuit is a straightforward rendering of the signal current flowing on the
toroid. This current flows toroidally, distributed over the inner and outer surfaces of the
toroid, as discussed in Sec. 2.3. We focus on the loop of signal current nearest to the pick-up
loop, which flows around the central hole, concentric to the pick-up. This current path is
represented in the model circuit by the red arrows in Fig. 2.3, and it includes segments on
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both the inner and outer toroid surface. The magnitude of toroid current is determined by
the Meissner boundary conditions. It thus receives contributions from the magnetic fields
produced by both the axion effect current and any current in the pick-up loop, the latter
being a back-reaction which sets the maximal power that may be drawn from the pick-up
loop.

The axion effective current in the volume of the toroid is represented by [,, and its
coupling to the inner toroid surface current by an effective mutual inductance M,. The
self inductance of the toroid current path is L; ~ R, with R the toroid radius. We choose
M, ~ R, which ensures that the current driven in the model circuit due to I, agrees with
that required by the Meissner effect. The current induced on the inner surface of the toroid
can pass to the outer surface, where it couples to a pickup loop of inductance L, through
a mutual inductance M and then feeds into a cavity of impedance Z.. Alternatively, the
current may jump across the gaps between wires and remain on the inner surface: this is
captured by the shunting capacitance Cy. As we will show, wl; < (wC;)™!, and so current
always prefers to circulate between the inner and outer surfaces.

The resistances R; account for the tiny but non-zero surface losses on the toroid. It is valid
to ignore R; when determining the magnitude of axion-induced fields through. However, it is
important not to ignore it entirely when considering the amplification of signal fields by the
SRF cavity. The detection cavity will be rung up to contain a large current, for which the
pickup loop L, will act as an antenna and excite additional currents on the external surface
of the toroid, resulting in additional dissipation via R;. This back-reaction current is again
set by the Meissner boundary conditions, which are reproduced by M and L; ~ R in the
circuit model of Fig. 2.3. Taking the pick-up loop to have radius r and contain a current
I,, it will source a field at the toroid surface B ~ I,7?/R* which requires a Meissner current
I ~ BR ~ I,r*/R?. Since the mutual inductance is of order M ~ r?/R, the required current
is indeed I ~ I,M /L, that derived from considering our circuit.

We now estimate the relevant model circuit parameters. The current source I, represents
the total axion effective current threading the toroid and is of order J.gR?. More precisely,
it is the current that gives rise to the outside field B,:

2 D2 2 2
9°B2.By _ g GeV B, By o]
I, ~ ByR ~ —2—3~ 107" nA 3
o~ BuBR w3 107" n (1011> (O.ZT) (5T 0.05)"’

again with w = 27 GHz and m, < w.

Strictly speaking, the two toroid inductances labeled L, may be different as they in-
ductively couple to different objects. They are both set by the toroid size, however, so for
simplicity we take them both to be

Ly ~ R~ 125 nH <1OR ) . (2.10)

cm

If the toroid is composed of N turns of wire, then C; is given by

12 .
O - TR -d
N g

(2.11)



CHAPTER 2. AXION PRODUCTION AND DETECTION WITH
SUPERCONDUCTING RF CAVITIES 11

where d is the wire diameter and g = 27 R/N — d is the spacing between wires. For fixed
wire diameter, C; and the fringe fields can be made small by taking a large N and g =~ d,
which yields:

C, ~ 1072 pF (i) : (2.12)
mm

The use of superconducting wires allows R; to be as small as few n{2 (the minimum RF
surface resistance of type II superconductors [34]), or at worst as large as m$2 (the nominal
low-temperature resistance of quenched NbTi wires [35]). We expect the resistance will
be somewhat larger than n{2, as the wires operate in the vortex state and harbor toroidal
magnetic flux tubes. These tubes interact with RF currents in the wires via the so-called
Magnus force [36], and their resulting motion is a significant source of dissipation [37]. The
precise value of R; will depend on the detailed geometry of the flux tubes and the surface
current. We provide a rough estimate of this resistance, but stress that in what follows we
consider the consequences of any R; within the above bounds. Since the interaction of RF
currents and flux tubes is of the “Lorentz” form J x B , the resistance should scale as sin @,
the angle between the direction of flux tubes and that of the RF current. In this system, the
magnetic field inducing the flux tubes is toroidal but the axion-induced current is poloidal,
and so ideally # = 0. However, the flux tubes will not be perfectly toroidal: static fringe
fields provide a deflection of order § ~ By/B,. ABRACADABRA has measured the fringe
fields outside of their toroidal magnet to be 107% of the primary field [38], which we adopt
here. We assume that the deflected component of flux tubes contribute an RF resistance
similar to that of trapped flux in SRF cavities, which is on the order nQ2/mG [34]. Thus we

Finally, we choose to model the cavity as a parallel RLC circuit for concreteness, with
capacitance C', inductance L, resistance R, and thus an impedance:

A R
Z, = (ﬁ + L + sz) . (2.14)
This cavity has natural resonance frequency wi = (LC)~! and quality factor Q = R/woL >
1. We take wy ~ L' ~ C~! ~ 27 GHz, as set by the physical cavity size. Note that the
effective shunt resistance ‘R of this cavity model is very large, proportional to the inverse of
the small resistivity of the cavity walls.

All the circuit parameters have so far been estimated by physical considerations, except
the pickup loop inductance L,. This is a free parameter which we tune to optimize the signal,
within reasonable limitations as discussed in Sec. 2.3. We assume the mutual inductance
M can be made close to optimal, M ~ ,/L,L;. There is also some freedom in choosing
the frequency w sourced by the production cavity. Indeed, w need not be exactly equal the
detection cavity’s natural frequency wy, although we require that both lie in the GHz range.
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Optimal signal strength

The signal we are able to extract is given by the power dissipated in the detection cavity.
Here we compute the maximum of this power, varying the pickup inductance and driving
frequency. We use our model circuit for this, and employ the equivalent circuit shown on
the right side of Fig. 2.3. This circuit is constructed such that, to lowest order in the small
quantities R, and C}, the power dissipated in the resistor (L;/L,)9R is the same as the
power dissipated in the cavity impedance Z.. Similarly, the power dissipated in the resistor
(Lw)?/ R, is the same as the total power dissipated in the toroid resistors.

This can be demonstrated by making a series of transformations to sub-circuits of the
circuit on the left side of Fig. 2.3, each of which preserves the input, output, and dissipated
power of the transformed sub-circuit and results in a purely parallel topology. First, the
leftmost transformer can be replaced by a rescaled current source I,M,/L; and inductor
L;. Recall that M, ~ L;, so the rescaled current is O (/,). Next the elements between
the transformers can be rewritten to lowest order in R; and C; as a resistor (Ltw)2 /Ry and
capacitor (. Finally, the rightmost transformer and cavity impedance can be replaced by
an inductor L, and a rescaled cavity (L;/L,)Z.. The imaginary impedances are gathered
into Zi,,, which to lowest order in R; and C; is:

-1
1 . L
7+ zwL—jC> : (2.15)

2
Zim ~ ; + ith +
wly o

W

The system is on resonance when Z,' = 0. To lowest order in Cy, this occurs at the
frequency

Wres ~ Woy |1+ 2 (2.16)

L_pa

which we will choose to be our driving frequency w. On resonance, all current in the equiv-

alent circuit passes through the two resistors. The power dissipated in the cavity resistor is

maximized when these two resistors are equal, which occurs at a pickup loop inductance of
QR

L, ~L 22 2.17
Toon (2.17)

An inductance L, that is significantly less than L results in a resonance frequency that is
far perturbed from the natural one. In a realistic experimental implementation, care would
need to be taken to ensure that the loaded resonance frequency was not too far perturbed
from the detection cavity’s natural frequency, lest the quality factor degrade. As a heuristic
implementation of this, we will demand that w ~ wy and thus L, 2 L.

We will consider the optimal signal power in two parameter regimes. First, suppose the
cavity is of higher quality than the toroid, R = QwoL > 1/R,. Impedance matching requires
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L, = L, > L, happily yielding a resonance frequency very close to wy. We then draw the

toroid-limited power

(Lew)?
R,

P ~ 1\1'a|2 (2.18)
8

This is the maximal power that can be extracted from the toroid as long as the driving

frequency remains near wy. It thus depends only on the toroid properties and frequency, and

notably does not scale with Q.

In the second case, suppose that the toroid is of higher quality than the cavity, R =
QuwoL < 1/R;. We would hope to again match L, to L,, however that would require
L, < L and we are thus prevented from impedance matching. Insisting on L, 2 L, the
optimal choice is L, ~ L for which we draw the cavity-limited power

1
Prax ~ §|Ia|2QLtw0. (2.19)

In general, the maximum signal power is the lesser of (2.18) and (2.19), being limited by
resistive losses in the toroid or cavity, respectively:

L
Piignat ~ |L|2(wL¢) Min {% Q} (2.20)
¢
The relevant toroid parameter to be compared with @ is
wly 10 {100 n2
— ~ 10 ) 2.21
o~ 10 (1 221)

Thus for Q > 10'° the toroid impedance may indeed be non-negligible. The numerical
similarity between @) and wL,;/R; reflects the fact that both arise from the small resistivity
of superconductors to RF currents. This also suggests that the experimental details which
affect the losses in these systems will be important in determining which of the above regimes
is realized.

2.4 Sensitivity to Axion-Photon Coupling

Noise

The fundamental sources of noise in this system are thermal and quantum fluctuations of
current in the toroid and detection cavity, as well as the intrinsic noise of the device which
reads the amplified signal from the cavity. The thermal and quantum noise can be estimated
from the circuit on the right side of Fig. 2.3. The equivalent resistances of both the cavity
and toroid will source Johnson currents, behaving as additional parallel current sources.
With L, tuned as outlined in Sec. 2.3, the noise sourced by the effective cavity resistance
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is always greater than or equal to that sourced by the toroid resistance, so we take a noise
source Ir:

1L,
—— dv. 2.22
R I, (2.22)
The system temperature Tg,s is the sum of the thermal temperature 7" and the quantum
noise temperature Ton ~ w ~ 50 mK. I drives fluctuations of the physical magnetic flux

®1 inside the detection cavity,

(Hr*) ~ AT,

R |L
|Br| = —4 [+

I 2.23
NI (2:23)

resulting in a noise spectrum of cavity flux,

I\ 2 P T 3 0 3
gl/2 AT, SQ_ ~ 20 sys
¢ S wo VHz \0.1 K 1010

where @ is the fundamental magnetic flux quantum.

Consider coupling the small signal flux in the cavity to a low-noise read-out device, such as
a SQUID magnetometer. The intrinsic flux noise in such devices is of order 1076 &, /v/Hz [39],
much smaller than the cavity fluctuations (2.24). We thus take (2.24) as the dominant source
of noise.

Projected sensitivity

The noise power extracted from the cavity due to the fluctuations (2.22) is

Ly
Pnoise = 9%L_p <’[T|2> ~ 4Jﬂ’sys dv (224)
and the signal-to-noise ratio (SNR) thus
1 . |wly Lint
SNR ~ —|I,|* (wL) Min | == 2.25
SILI (o) Min | 2.0 72 2.2

where the relevant bandwidth dv is given by the inverse of the total integration time ;.

One may be concerned that tuning L, to as outlined in Sec. 2.3 to maximize the power
draw is not truly optimal, as the best measurement will result from maximizing the SNR.
The signal and noise powers extracted from the detection cavity for a general L,, derived
from the circuit on the right side of Fig. 2.3, are

(Lw)? (L, L\ 2
Psi nal 7~ ’[a|2 - 5 |\ 7 1 + — 5 (226)
¢ R, \L, L,

L -1
Proise ™~ Tsys dv <1 + _*> . (227)
Lp
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The SNR thus nominally increases with decreasing L,, although it saturates to the intrinsic
SNR of the toroid at the impedance matched L, = L,. The optimal choice of L, is thus
either L, or L, the same as that which draws the maximal power (2.20).

Demanding SNR > 5, the estimated reach at low axion masses m, < w is given by:

4 o (w/2m Bo\ 2( Boe \ [ B\
9> 2107 GeV '(—)( ) (o.z—T> (m)

GHz 5T
1
Tsys 1
— ) 2.2
<O.1 K) (2.28)

Lo N2 ( R \'(f tw\
125 nH 100 n$2 year

This is independent of the detection cavity quality factor if it is sufficiently large (Q > 10'°
for these parameters). The full sensitivity is show in Fig. 2.4 using:

N[
[NIE

N[
N

% —GHz, Bye=02T, By=5T, L =125nH, ty =1 year, Tiy = 0.1 K,

and considering two cases of cavity and toroid losses:
(1) Ry =100 nQ and Q > 10", (2) Ry =nQ and Q > 10"

We have used a form factor of 5 = 0.05, assuming m, < w (see Appendix A). The estimated
sensitivity of our SRF axion design is capable of surpassing current astrophysical limits, and
is comparable to the expected reach of the next generation optical experiment, ALPS II [21].

2.5 Discussion

We have proposed a novel design for an LSW axion search leveraging SRF cavity technol-
ogy and employing a region of isolated, static magnetic field. Our particular realization
uses a gapped toroid, similar to that of [31, 32], to contain a static field while allowing the
propagation of axion-induced signal fields. It would be interesting to consider other possi-
ble geometries for the conversion region, though the gapped toroid illustrates the necessary
features. Our focus in this work is understanding the fundamental factors which set the
sensitivity of such an experiment, namely the possible screening of the signal fields beyond
the quasistatic limit and back-reaction from the non-negligible toroid impedance. We cal-
culate the optimal signal strength, and for reasonable toroid parameters and SRF quality
factors we find a sensitivity to axion-photon couplings in excess of astrophysical limits and
comparable to complementary optical experiments. Notably, the optimal sensitivity is in
fact independent of both production and detection cavity @) factors in the limit of large @,
and is instead determined by the properties of the conversion region.

We conclude with a few comments on experimental feasibility that have not yet been
addressed. We have modeled the coupling of the detection cavity and axion-induced signal
fields with an inductive pickup, yet a naive implementation of such a coupling would likely
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Figure 2.4: Projected sensitivity of proposed SRF LSW setup to axion-photon couplings—
see text for the choices of experimental parameters. Also shown are existing solar axion
(CAST) [40] and stellar cooling bounds and, for comparison, the future projected reach of
the next generation optical experiment ALPS II [21].

compromise the detection () due to losses in the pickup wire. It is critical to explore coupling
mechanisms that will not degrade (), which is complicated by the fact that the toroid operates
on the extreme of the quasistatic regime and thus requires microwave engineering. There
are other sources of noise not considered here which must be understood and managed in a
practical implementation, such as stray external fields which require shielding and additional
losses due to non-superconducting support materials used in the system. Finally, perhaps
the biggest engineering challenge here is the necessity of frequency-matching the two SRF
cavities to within 1/Q < 107!% This demands a precise resonance monitoring and feedback
mechanism to counter frequency drifts, and is a major hurdle for any photon regeneration
experiment utilizing high-@Q cavities, such as [41].
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Chapter 3

Parametric Resonance Production of
Ultralight Vector Dark Matter

3.1 Introduction

The existence of dark matter (DM) is one of the observational evidences for physics beyond
the Standard Model (SM). Recently, vectors (X,) have gained significant attention as an
intriguing DM candidate with unique experimental signatures [42, 43, 44]. Theoretically,
light vectors arise as gauge bosons of dark U(1)s, a simple extension of the SM and a common
prediction of high energy theories. The origin of the vector mass is model-dependent and
can either be a fundamental parameter in the full theory via the Stueckelberg mechanism,
or can be generated through its coupling to an additional field which spontaneously breaks
the corresponding U(1) via the Higgs mechanism. In either scenario the mass of the vector
is stable under quantum corrections, motivating the possibility of vectors with ultralight
masses, myx < MeV, limited only to having wavelengths small enough to form galaxies,
mx 2 10722 eV.

Experimentally, light relic vectors present different opportunities depending on their cou-
pling to the SM. The overarching challenge in experimental prospects is competing with the
powerful limits from stellar cooling [44, 45] and fifth forces [46] while restricting considera-
tions to the (approximately) conserved currents of the SM (otherwise one generically expects
dominant constraints from flavor changing neutral currents [47, 48]). Nevertheless there exist
many experimental proposals to search for vector DM in unexplored parameter space. Such
states can be observed through their coupling to electrically charged particles that could be
searched for in resonant cavities [49], LC circuits [31], dish antennas [50], absorption in direct
detection experiments [51, 52, 53], and low-energy threshold detectors [54, 55, 56, 57, 58].
If the vector couples to an unscreened force such as B — L then its coupling to neutral
matter can be searched for in torsion balances and atom interferometry [59], gravitational
wave detectors [59, 60], and pulsar binary systems [61]. With current and proposed ex-
periments, searches for vector DM can be undertaken over almost the entire mass range
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10722 eV < mx < MeV.

While ideas to detect vector DM are plentiful, the theoretical prospects for producing
ultralight vector DM are much less explored. For light vectors there are three classes of
production which have been studied in the literature: freeze-in [62], misalignment [44], and
inflationary fluctuations [63]. Freeze-in production is generically constrained by the bound
on warm DM. Particles “frozen-in” through an interaction with the SM are produced with
energy /momentum ~ T, the temperature of the thermal bath. Without additional dynamics
the momentum of the relics will redshift with the expansion of the universe and hence track
the SM photon temperature, limiting the produced DM mass to be above a keV to be
consistent with the observation of small scale structure.

Misalignment has long been a standard non-thermal production mechanism for light
bosons, first proposed for axions [9, 10, 11], and later considered for massive vectors [43, 44].
Here, a zero-momentum condensate of particles is produced as a result of the coherent
oscillations of the field initially displaced from its minimum. For a generic scalar ¢ the energy
density in the field pg ~ ming remains constant when the Hubble scale is greater than its
mass H > mg and the field value is stuck. Crucially, this is not the case for a massive vector
X: the energy density in the vector field continues to red-shift as px ~ m3 X, X" < a2
when H > mx due to the scale factor dependence in the FRW metric on the vector norm.
Thus any initial energy density in a massive vector field is exponentially diluted during
a period of inflation, and the minimal misalignment production of vector DM fails. This
problem is avoided if an O(1) non-minimal coupling to gravity is added to make the vector
conformally invariant and hence impervious to the expansion of the universe [44]. However
such a special coupling quantum-mechanically destabilizes the mass of X, thus destroying
one of the primary motivations for considering vector DM.

Alternatively, vector DM can be produced by the quantum fluctuations during infla-
tion [63]. This is a very interesting possibility, as such a production has no dangerous
large-scale isocurvature perturbations and appears unique to vectors. Here, the observed
DM abundance is saturated for myx ~ 107> eV (10" GeV/ Hinf)4, and thus observational
constraints on the Hubble scale during inflation [64] limit the production to masses greater
than about 107° eV.

In this paper, we propose a new production mechanism for vector DM that occurs nat-
urally if it obtains mass through a dark Higgs field. Generically, the production relies on a
scalar field being displaced far from its minimum by the end of inflation. As the field rolls
down its potential and begins to oscillate, its coupling to a vector results in a rapidly oscillat-
ing mass for the vector. This leads to non-perturbative production of X particles through a
parametric resonance (PR) instability (as is the case in theories of reheating [65, 66, 67, 68],
though the dynamics we consider take place solely during radiation domination). Crucially,
the rate of production is much greater than that of any possible perturbative process. The
produced particles then have more time to red-shift, significantly relaxing the coldness con-
straint and allowing for the production of ultralight DM. This is in analogy with earlier
work [69] on the PR production of axion DM via dynamics of a Peccei-Quinn symmetry
breaking field (for other work on non-perturbative production of relics, see [70, 71, 72, 73]).
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In this paper we focus on the minimal case where the scalar field is a dark Higgs. The
nature of the resonance and resulting abundance of vectors and dark Higgses is different
depending on the strengths of the gauge coupling e and dark Higgs quartic coupling, .
We examine both limits and find that vector DM can be produced with masses as light as
myx = 10718 eV, consistent with all constraints. This opens up most of the mass range
for vector DM as cosmologically viable, and further motivates the experimental program
searching for such particles.

The paper is organized as follows. In Sec. 3.2 we outline the model of interest and show
the limitations of a perturbative Higgs decay in producing light vector DM. In Sec. 3.3 we
review the relevant non-perturbative dynamics of PR, specifically as it applies to vector
production. In Sec. 3.4 we examine the PR production of ultralight vector DM, and in
Sec. 3.5 we discuss additional cosmological consequences and constraints on the mechanism.
Finally, in Sec. 3.6 we conclude and discuss future directions.

3.2 The Model

We now present an outline of the model and detail the dynamics of an oscillating scalar field
in the potential. As our starting point we consider a complex scalar field, ¢, that will give
a mass to the vector:

1 v
L=—1XuX" + | Dupl? = V(p), (3.1)

where D, = 0, +ieX,, e is the dark gauge coupling constant (we absorb the scalar charge
into the definition of e), and X, is the field strength tensor. We consider the simplest model
of spontaneous symmetry breaking with a potential parameterized as

Vg =2 (1= %) 32)

Expanding ¢ around the vacuum expectation value (VEV), we obtain:

Loof,, o)
LD Z¢Y (1 + ;) X, Xt =V(p), (3.3)
where .
V(6) = X6 (¢ +20)". (3.4)

The vacuum masses of X and dark Higgs boson are mx = ev and mg = V2, respectively !
Furthermore, we refrain from making any assumptions about the magnitude of the vector

'Note that while the vector mass is radiatively stable, the scalar mass is not and naturalness would
suggest a cut-off of order A < vmin{l, my/mx}. Ultimately we will be interested in VEVs much larger than
the weak scale, so fine-tuning in the dark Higgs sector is not a serious constraint and we will not address it
further.
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coupling to the SM, up to assuming the coupling is not so large that it efficiently thermalizes
the two sectors (or is phenomenologically excluded in other ways).

We assume ¢ starts out displaced from its minimum after inflation with an initial field
value, ¢y. The classical equation of motion for ¢ is

b+ 3Ho 4+ N2(¢* + 3v¢® + 20%¢) =0, (3.5)

which is valid as long as the back-reaction due to any created particles is negligible (these
effects are crucial in the termination of non-perturbative particle production and will be
addressed later). The field is stuck until H ~ meg(¢po) where meg(¢) = /V"(¢) is the
effective (field-dependent) mass, at which point ¢ begins oscillating about the minimum. As
long as ¢y < My, (regardless of the hierarchy between ¢, and v) the universe is radiation-
dominated at the onset of oscillations which begin at,

Tosc ~ 0.5\/meﬁMp1 (36)

where My = 2.4 x 10'® GeV is the reduced Planck mass.

We now consider the two limits for the initial field value, ¢9 < v and ¢y > v. If
¢o < v, oscillations start at T,s. and the solution is the well-known harmonic oscillations,
¢(t) = ®cos (myt). The amplitude of oscillations red-shifts with the scale factor a (we use
the convention that a = 1 at the onset of oscillation) as ®(¢) = ¢oa~>/2, and the energy
density in coherent oscillations acts as non-relativistic matter p, o< a™.

Conversely, if the field value is large, ¢y > v, then the effective mass is meg(do) =~ V3¢
with Tose >~ /A¢oMyp1. Due to the conformal invariance of the quartic potential, it is most
convenient to switch to conformal coordinates. Furthermore, it is convenient to absorb the
oscillation time into our definition suggesting the coordinate transformation ¢ = a¢/@, and
dz = A¢odt/a. The equation of motion is then simply:

¢ +¢° =0, (3.7)

where we use primes to denote derivatives with respect to z. The exact solution is an elliptic
cosine function with elliptic modulus of 1/2,

$(2) = cn(z). (3.8)

This function is usually well-approximated by the simple cosine function, ¢ ~ cos(0.85z),
the first term in its Lambert series expansion, but some features require keeping higher order
terms and so we refrain from making this approximation. Here, the (original) field amplitude
instead red-shifts as ®(t) = ¢oa~! and the energy density in coherent oscillations acts like

radiation p, oc a2

Perturbative Decay

The dynamics of particle production depend critically on the initial field value, and we
postpone a careful treatment to Sec. 3.3. However, we generally expect non-perturbative
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effects are negligible if ¢y < v and we briefly review the physics in this limit. We first
compute the production of vector DM from perturbative decay of the dark Higgs—this will
eventually highlight the effectiveness of parametric resonance. Coherent oscillations of the
¢ field result in an yield of dark Higgs:

Y p¢ - 05 ¢0 2 v 3/2

¢ = — ez \ M., ’ (39)
megs A v My

where s is the entropy density. This population can decay into X if it is kinematically allowed,

i.e., my > 2my. Since the co-moving number density in the dark sector is conserved, the dark

Higgs condensate will fully convert into a co-moving number density of vectors Yx = 2Yj.

The timescale for this conversion is set by the decay rate I';_, x x, which is dominated by the

decay into longitudinal modes of X:

3

my, |
32mv?
The underlying challenge with DM production via decays is that the X particles are initially
highly boosted with momentum O(m,). In this case, the produced vectors begin red-shifting
as non-relativistic matter once the universe cools to a temperature

Mp1>\) 1/2

(%

(3.10)

F¢—>XX ~

Tyr ~ 0.1 my ( (3.11)
From here on Tygr, and in general the term “temperature”, refers to that of the SM thermal
bath (this is distinct from a possible dark sector temperature, which may or may not even
be in thermal equilibrium). As expected, Tyr increases with A which corresponds to earlier
decays. Observations of cosmological large-scale structure require that the DM be non-
relativistic by around a keV and so we require Tyg 2, keV [74, 75, 76] (precise constraints
range from ~ 1 — 5 keV though suffer from astrophysical uncertainties). Based on (3.9)
and (3.11), we find the vector abundance equals the relic density of DM for masses:

~ TI%RTQQ> v ( v )1/2
mx ~ 10 ( \ ™ , (3.12)
where Ty, ~ 0.75 eV is roughly the temperature at matter-radiation equality. Note that
production of light vector DM here favors large values of A, which is ultimately limited by
perturbativity A < 27 (this is in fact a stronger condition than ¢y < My;). Saturating the
coldness and perturbativity constraints, we conclude that it is impossible to produce vector
DM with mass less than a keV using perturbative decays of the scalar field.

3.3 Parametric Resonance

If ¢ > v, the production rate of vectors can be much larger than the perturbative rate.
Such a large initial field value is a generic expectation unless the coupling with an inflaton
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strongly fixes ¢ to the origin. In the classical background of an oscillating ¢ field, the
field X feels a large, oscillating, mass. This may lead to a period of non-perturbative,
exponential production of vectors though parametric resonance (PR). ? Particle production
by PR is a well-studied phenomena, particularly in the context of reheating after inflation
(so-called preheating) [65, 66, 67, 68]. However, vector production by PR has not been studied
nearly as extensively as for scalars. PR production of gauge fields at the end inflation has
been previously considered in [77, 78, 79], e.g. to seed primordial magnetic fields [80]. In
addition, [78] and [79] also discuss the enhanced production of longitudinal modes. In this
section we review the theory of PR for a vector, and show that the dynamics in our case
depend delicately on the hierarchy between couplings e and A and require a careful treatment
of the transverse and longitudinal modes. We present the differential equation which governs
the production of longitudinal modes that is distinct from the well-studied Mathieu and
Lamé equations (the typical differential equations studied in the context of PR). The classes
of solutions are presented in an instability chart of the exponentially growing momentum
modes as a function of e/, and we compare the PR production of longitudinal and transverse
modes in the different limits of interest. Ultimately we show that, as a consequence of both
initial conditions set by inflation and a longitudinal mode enhancement in the coupling, the
longitudinal mode dominates production for a wide range of couplings.

Parametric Resonance for a Higgsed Vector

Using the conventional diag(1, —a?, —a?, —a?) metric in an expanding universe, we can write
the kinetic and mass term of X explicitly in terms of its temporal and spatial components:

| 11 , 1 )
1. 1. 1
3 2X, Xt = 5m? (X,? - |X|2> , (3.14)

where m = mx (1 + ¢/v). Since X; does not contain a kinetic term, it is an auxiliary field
and can explicitly be integrated out using its equation of motion. Switching to k-space,
we separate X into its longitudinal and transverse components such that k- X = kX and
k- X7 = 0. As a result, the action for the vector field separates for the transverse and
longitudinal components S = Sp + Sy

add3k 1 12 - 2
ST = /dtWﬁ (}XT’ - (kQ/az —i—m2) ‘XT} ) s (315)
A3k 1 202 oy g

2This is distinct from tachyonic resonance, which is an exponential instability that occurs for modes with
a negative effective frequency-squared.



CHAPTER 3. PARAMETRIC RESONANCE PRODUCTION OF ULTRALIGHT
VECTOR DARK MATTER 23

(k/ A¢o)>

KZE

e2//l2

Figure 3.1: Instability charts of transverse (red) and longitudinal (blue) modes. The dashed
lines represent different values of k, and resonance bands above K = e/\ correspond to
relativistic production. In the inset we show the e/A < 1 limit in which the enhancement
of longitudinal mode production over transverse modes is seen explicitly.

Note for here and throughout we use k£ to denote co-moving momentum.

We now study the PR production of the transverse and longitudinal modes. Exponen-
tially growing modes naturally occur in specific resonance bands, and it is conventional to
map out the regions of unstable momentum as a function of the couplings. The dominantly
produced modes lie in the widest resonance band and generally have a large exponential
instability, resulting in a rapid conversion of the energy density in the oscillating scalar field
into these modes. We present the instability charts for the transverse and longitudinal modes
in Fig. 3.1 and refer to it throughout—this is obtained by numerically solving the relevant
equations of motions and identifying the choice of couplings that result in exponentially-
growing solutions.

Transverse Modes It is convenient to switch to dimensionless, conformally invariant
quantities: a time variable, dz = A¢ydt/a as introduced in (3.7), a momentum x = k/A¢y,
and a conformal oscillating mass, u = am/A¢y = (e/N)en(z). Doing so, the equation of
motion for transverse modes becomes:

X7+ (K + p?(2)) Xp = 0. (3.17)
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This equation is known as the Lamé equation and has been extensively studied in the lit-
erature (see e.g. [81]). ® Solutions to this equation are exponentially growing for certain
momentum modes X7 o e#+*. The characteristic exponents, pu,, are a non-trivial function
of momentum as well as the ratio of couplings. PR is often classified as either broad or
narrow, based on the width of resonance bands and the size of the characteristic exponents.
For the mode equation of (3.17), the resonance is broad if e > A and narrow if A > e. We
will be interested in both these limits, which have previously been solved analytically.

In the case of A > e the first resonance band around % ~ 1 dominates production
while subsequent resonance bands (at larger k) become increasingly narrow. Such narrow
resonances are known to have suppressed production with a small range of produced momenta
and characteristic exponents, Ax?, p, o< €2/X2. Thus we conclude production of transverse
modes is not efficient in this regime. For e > ) the resonance is instead broad and can
achieve much more efficient production. Inspection of Fig. 3.1 shows that the structure
of the resonance, in particular the size of s in the first resonance band, depends critically
on the value of e/\. Interestingly, it is still the case that for e > A there is an upper
bound on the produced momentum which can be estimated analytically [81]. A necessary
condition for exponential instability in the regime of broad PR is non-adiabatic change in
the frequency of fluctuations. The (dimensionless) frequency felt by the transverse modes is
w(t) ~ /K2 + (e/A)2cn2(z). If one defines an adiabatic parameter R = |w'|/w?, then for most
of the oscillation period this is close to zero and the frequency changes adiabatically. The
only time R > 1 is when the background field oscillates toward zero, cn(z) — 0 and k2 < e/,
which is an estimate of the upper bound on the dominantly produced momenta. In fact this
is bound is evident in Fig. 3.1, where the widest resonance band (red) always lies below the
line Kk = \/e/_)\. We thus find that the typical physical momenta produced by PR here is
much less than the time-averaged mass of the vector, ~ e¢, and vectors are produced non-
relativistically. We compute the maximum characteristic exponent numerically for e > A
and find p, ~ 0.2, in agreement with the previous literature [81].

Longitudinal Mode PR for the transverse modes reduce to equations that have been
solved extensively in the literature. We now move to the longitudinal mode which, as we
will show, dominates the production of vectors in a wide range of parameters. Starting
from (3.16) and making the transformations to conformal fields, we find the equation of
motion:

2 2 !
Xy 4+ X1 (4 ?) X = 0. (3.18)

K2+ P p

The dynamics governed by this differential equation have not been studied in great detail
in the literature. Here we present a brief analysis, and leave an extensive study for future
work.

3As long as the scalar oscillations are well approximated by the harmonic approximation, the solutions
are the same as those of the well-known Mathieu equation.
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First we note that in the limit x — 0, the equation of motion (3.18) reduces to precisely
that of the transverse modes:
X7 4 (K + p*) X, ~0. (3.19)

This is expected, since at low energies the longitudinal mode can no longer be distinguished
from the transverse modes and should obey the same dynamics. We also see this directly
in Fig. 3.1, where the resonance bands of the two modes roughly coincide (except for very
particular values of the couplings) in the limit of small momentum x < 1.

The high energy limit is more challenging to analyze since the physics is obscured by a
divergence in the friction term as the oscillating field passes through the origin. While it is
in principle possible to solve the equation as is, it is simpler to introduce a field redefinition,

Being a linear transformation, this does not mix the different momentum modes and hence
does not obscure the structure of the resonance. The resulting equation of motion is:

2 1 20"
" / 2 2 _
T —K2+M27T—|— __M+’€2+N2+K +up ) m=0. (3.21)

If we then take the high-energy limits, x > pu and p < 1, we recover a familiar form:
7" 4+ (k2 + e (2))T ~ 0. (3.22)

This is analogous to the equation of motion for transverse modes (3.17), though crucially the
amplitude of the oscillations is enhanced by a factor A\?/e?. As a result, the PR dominantly
produces longitudinal modes with x2 ~ 1, which can also be seen directly in the inset
of Fig. 3.1 where there is a wide instability band (blue) for the longitudinal mode in the
limit e/\ — 0. This result in the high-energy limit can also be derived directly from the
action of the dark Higgs ¢ using the Goldstone boson equivalence theorem. Expanding
o= (p+v+ix)/ V2 and switching to conformal fields, we find the same equation of motion
for y as found for the longitudinal mode in this limit (3.22).

We are now in a position to complete the discussion of PR for the longitudinal mode
as a function of the couplings. Firstly we consider the limit of A > e (where we found
the transverse modes are not efficiently produced). In this case the longitudinal mode is
produced strictly in the high-energy regime x > u, and the results follow the approximate
form of the mode equation (3.22). Here we find the resonance is efficient for k? ~ Ax? ~ 1
and we again have a large characteristic exponent u, ~ 0.1. We emphasize that, in contrast
to the transverse modes, the longitudinal mode has a marginally narrow resonance allowing
it to be produced efficiently. In addition, the longitudinal modes are produced highly boosted
with relativistic momenta. We now turn to the limit e > A which is much more interesting.
Although the mode equations become identical in the limit x < 1, PR production only
occurs when the vector mass is rapidly varying (i.e. when adiabaticity is violated). At
this point x is of order the oscillating mass p, and the longitudinal mode equation (3.18)
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does not approximately reduce to any well-known forms (due to the non-negligible friction
term). Indeed, as is evident from Fig. 3.1, there are substantial differences between the
resonance structures of the longitudinal and transverse modes in this regime. While the
solutions for the longitudinal mode similarly suggest an upper bound on the dominantly
produced momenta, the bound may be larger than that of the transverse modes depending
on the coupling. This is an intriguing feature that opens up the possibility of producing
relatively boosted longitudinal modes, although we still expect that the momenta in the first
resonance bands satisfy x? < e/ such that produced modes are not relativistic. Finally, we
compute the typical characteristic exponent for longitudinal mode production in this limit
to be p, >~ 0.2.

¢ Fluctuations In addition to vector production, an oscillating ¢ field will inevitably also
resonantly produce ¢ fluctuations with non-zero momentum (denoted as d¢ to differentiate
from the zero-momentum condensate which we continue to denote by ¢) from the self-
coupling, A. We emphasize that these excitations are in addition to the zero-mode condensate
that results from coherent oscillations and carry a particle interpretation similar to the vector
fluctuations. The mode equation can be derived from (3.5) by restoring the momentum
term and expanding the field as ¢ + d¢, keeping order linear terms in the fluctuations. The
resulting equation of motion is identical to that of the transverse modes (3.17) but with the
replacement e? — 3\%:

6¢" 4+ (K* + 3en(2)?) 69 = 0. (3.23)

The PR is qualitatively similar to that of the longitudinal mode in the A > e case (3.22).
Fluctuations of ¢ are dominantly produced at momentum ? ~ 1 with a width Ax? ~ 1 and
(slightly smaller) characteristic exponent p, ~ 1072

Initial Conditions We have seen that due to parametric resonance, there is an exponential
amplification of fluctuations in the fields X and ¢ for certain momentum modes. However,
an important effect we have yet to address are the initial conditions for the fields. Assum-
ing a period of inflation, we can estimate the initial conditions for each field. Transverse
components of the vector are conformally invariant and do not experience the expansion
suggesting that they should have an initial field value given by the Bunch-Davies vacuum
with a power spectrum, Pr(k) ~ k*. The initial conditions of the longitudinal mode are
more dramatic. These are created by coupling to the metric during inflation and can far
exceed their transverse counterparts [63] with a power spectrum, Pr (k) ~ (Hiuck/ego)? (this
applies for both A > e and e > X and assumes the vector mass during inflation is e¢g). This
gives a ratio of the longitudinal to transverse mode amplitudes at the end of inflation as,

Xr(k) ™~ ego

which is independent of k. Since we do not consider parameter space such that the vector
mass is above the scale of inflation, the longitudinal mode will dominate the transverse

(3.24)
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mode production as long as they can both be produced efficiently. The scalar fluctuations
during inflation behave similarly to the longitudinal mode and will have comparable initial
conditions.

Final Relic Abundance and Momenta

The exponential production from PR does not last indefinitely. Thus far we have neglected
the non-linear back reaction of these fluctuations on PR itself. There are three kinds of back
reactions:

(1) The vector and scalar fluctuations grow large enough and give large mass contributions
to both ¢ and X that subsequently red-shift as o 1/a, and can lead to other interesting
cosmological effects that will be discussed later. Here, we see that a changing mass acts to
shift the resonance bands and can thus ruin the important Bose enhancement in final states
that leads to continued exponential production for growing modes.

(2) Scattering of fluctuations with the zero-mode condensate as well as fluctuations shift
the particle momenta out of resonance bands. Again, this destroys the Bose enhancement
in produced fluctuations and can also shut down exponential production.

(3) The scattering also depletes the zero-mode condensate and terminates PR.

A fourth effect, due to the expansion, is not present in this theory due to its conformal
nature. In practice these effects occur simultaneously and act to cease particle production
when the energy density of the fluctuations becomes comparable to the original energy
density in the condensate. While these effects are highly non-linear and challenging to
compute, if particle production lasts long enough the condensate will completely convert
into the produced ¢ and X particles, regardless of the detailed processes involved. We
assume that the zero-momentum field is completely depleted and does not make up any of
the DM today (we expect this is a reasonable approximation due to significant scattering
with produced fluctuations at the end of PR). In this sense, a full solution to the equations
of motion, including back reactions, gives us the relative fraction in these two populations.
We can parameterize the yields after the conclusion of PR production as:

P,0sc Po,osc
Yy=f—""— Y54 =(1— f)—————1—. 3.25
X fEXS(Tosc) » 00 ( f) E6¢S(Tosc) ( )

Here pgosc = }1)\%‘0‘, f is the relative fraction of the condensate co-moving energy density
dumped into vectors, and E? = , /k:ii + m? are the co-moving energies of the particle species

i (m; denotes the time-varying mass of the particle). For simplicity, we assume particles are
produced with a co-moving momenta peaked at k., though in practice there will be small
corrections associated with an (1) spread around this typical value.

Once PR stops being efficient the produced particles are in a highly non-equilibrium
state with peaked momenta. These particles can still undergo collisions within the sector
scattering their momenta and changing their number densities. This includes simple 2 — 2
elastic scattering as well inelastic processes inducing cannibalization. Tracking the dynamics
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rigorously throughout this “post-scattering” phase requires a dedicated computation putting
vectors and scalars on lattices and is beyond the scope of this work. However, we can still
qualitatively estimate the behavior in each limit.

For A > e, the longitudinal mode and the fluctuations only differ by their parity and
hence have comparable energy densities after decay (f ~ 1/2) as well as momenta k, ~ A¢y.
In this limit, the symmetry between the longitudinal mode and the fluctuations of ¢ allows
us to treat them as a single fluid regardless of the details of the post-scattering phase.
Furthermore, we do not expect these processes to be active even if either species becomes
non-relativistic. We thus expect that the vectors and scalars should have comparable number
densities and momenta at late times:

1 Po,osc
Yx,Yso > ——7F—7—. 3.26
000 9 M 0(Tose) (3.26)

For e > ), the situation is more subtle. As shown, vectors are primarily produced
non-relativistically from PR (a detailed spectrum will depend on the coupling e/)\), while
fluctuations of ¢ are produced mildly relativistically. At this point, elastic and inelastic
processes are efficient in driving the sector toward a state equating the momenta and number
densities of X and ¢ (f ~ 1/2). Effective scattering during this time relies on a Bose
enhancement of the final state which is spoiled at large enough momenta. We estimate that
such processes cannot produce vectors with momenta larger than their mass e¢q, and as a
result both species should eventually be up-scattered to a co-moving momenta as large as
k. ~ epg. We thus expect yields of X and ¢ at late times of order:

1 Po,o0sc
Yy.Y; _— 3.27
X100 7 5 s (Tow) (3.27)

We have confirmed this expectation employing a lattice computation using LATTICEEASY [82]
and approximating the vector interaction by that of a scalar field with a quartic coupling to

o.

3.4 Vector Dark Matter from Parametric Resonance

The above results apply for any Higgsed vector in the early universe, and we now consider the
implications of PR for the production of ultralight vector DM. For the rest of this section, we
assume a large initial field value ¢y = v. In practice, PR production is not instantaneous but
requires sufficiently long exponential growth so we in fact have the condition ¢ /v = 10—100.

There are four (a priori) independent parameters in the model: {¢g, v, mx, mgy} or alter-
natively {¢o, v, e, A\}. As we have seen, the nature of PR depends on the relative strengths
of the couplings in a non-trivial way. This is also true for the resulting constraints on safely

4A stable PR still occurs even if ¢g < v in the case A > e, but this is a narrow resonance and highly
inefficient.
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obtaining the correct relic abundance of vector DM. Thus we look at the two simplifying
limits separately: A > e and e > \. Here we focus on the fundamental challenge of being
consistent with constraints on warm DM while producing the entire DM abundance. Addi-
tional constraints and phenomenological consequences of the vector production are examined
in Sec. 3.5, which we refer to in the results of Fig. 3.2 and 3.3.

Case 1: X > e¢

We begin with the case where the gauge coupling is small with respect to the quartic (and
hence also my < my). In Sec. 3.3 we estimated a yield for the X and ¢ fluctuations to be
roughly equal at late times:

0.01 / ¢ \**

In the absence of any additional interactions these yields are conserved until today. Once
X and ¢ become non-relativistic, X constitutes a small fraction of the energy density of the

dark sector: Q
X mx €
~ 2D 3.29
QDM m¢ )\ ( )

Furthermore, the typical co-moving momenta of each species is of order k, ~ A¢y. This
is related to the physical momenta by red-shifting from the time of production. Crucially,
particles are produced from PR at very early times near the start of oscillations. Due to
the conformal invariance, we can effectively treat the yields (3.35) as being produced with
a physical momenta \¢q at a temperature T,s. even if the particles are dominantly created
somewhat later (PR results in rapid, through not instantaneous, particle creation).

Given the relative energy densities between the scalar and vector, it is most natural that
the dark Higgs constitutes nearly all of the DM today, with the vector being a subdominant
component. In order for this scenario to be consistent with observations we require the
dark Higgs be both non-relativistic by around a keV and satisfy the relic density condition.
Requiring the dark Higgs yield to be the right relic abundance fixes the required initial field

value: 3
bo AT,
— ~10 ) 3.30

M mé ( )

pl

The temperature at which the Higgs becomes non-relativistic is given by

1/3
AM,, 1/2 UQmi
~ ~ (). . 31
TNR v < ¢0 ) 0.5 Teq (3 3 )

If the fraction of vector DM is greater than a few percent, it must also be sufficiently cold;
otherwise, the relic vectors will be a hot DM subcomponent which is ruled out by the cosmic
microwave background [76]. We show the viable parameter space for a vector subcomponent
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Figure 3.2: Viable parameter space for parametric resonance production of vectors in the
limit A > e. We fix the initial condensate amplitude ¢q such that the dark sector saturates
the DM relic abundance Qx + €y =~ Qpy. Shown are constraints from coldness ( ),
cosmic strings (red), isocurvature (purple), late time dark Higgs decays (brown) and suffi-
ciently long PR (blue) as described in the text. Left: At every point in parameter space
we fix mg ~ 100mx. We do not incorporate any additional interactions, and the dark
Higgs makes up nearly all the DM, i.e. Qx ~ 1072Q,. Right: Vectors make up all of the
DM, and the dark Higgs is eliminated at late times. At every point in parameter space we
fix my = 10 GeV and show the corresponding constraint from thermalization requirements
( ) as described in Appendix C.

of DM in Fig. 3.2 (left), fixing the fraction of vector DM to be 1072 (with the rest made up
by the dark Higgs).

Even if vectors make up a small fraction of the DM abundance, they may still be de-
tectable. Nevertheless, it is interesting to consider the possibility that vectors make up all
of the DM due to some dynamics which eliminated the dark Higgs yield at later times. In
particular, it is possible to introduce additional couplings to the model that drastically alter
the expected relic abundance of dark Higgses, without affecting the abundance of vectors
produced from PR. (Although we might have naively suspected that the large initial yield
of ¢ particles could simply decay away to vectors through the perturbative process (3.10),
such population of vectors constitutes an O(1) hot DM component.) For now we will take
it as a given that Yy reproduces the entire observed DM density. This fixes the initial field
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T2
D0y a) (3.32)
My mx
The X population becomes non-relativistic when the universe is at a temperature:
M , 1/2 m 1/3
Txr ~ —) ~05( =2 . 3.33
NR = MXx ()\%) T \2 ( )

As before, we require Tyr 2 keV. Note that the initial field amplitude has a maximum value
consistent with the vector DM abundance and coldness constraints:

T\ 2
¢ ~ 10Mp, < eq) $2x10' GeV. (3.34)
Ixr
This makes the condition on oscillation during radiation-domination (¢o < Mp;) trivially
satisfied.

We now return to the elimination of the dark Higgs yield in the above scenario. If
we assume the vector constitutes all of DM as per (3.32), then to avoid the dark Higgs
dominating the energy density of the universe at an intermediate time the yield should
have been destroyed by the temperature ~ Teqme/myx. This is not a constraint, though
a necessary condition for the above formula to hold as they assume radiation domination
throughout. If, on the other hand, the universe has gone through a period of dark Higgs
domination that later gets dumped into the SM this could have profound implications on
small scale structure [83, 84, 85] and changes the predicted relic abundances. If we assume
this matter-dominated era lasts until the dark Higgs reheats the universe to a temperature
Tg, the resulting entropy production dilutes the yield of relic vectors Yy ~ Tgr/mg. A
concrete example of the such a cosmology occurs if the dark Higgs is able to thermalize with
the SM. This generically requires the dark Higgs to have a substantial coupling to the SM,
and as a result the allowed mass range of ¢ will be subject to experimental constraints. The
simplest interaction of the dark Higgs with the SM is a Higgs-portal coupling. As we show
in Appendix C, this has severe constraints from star cooling and rare meson decays below
around 5 GeV. We show the viable parameter space for vector DM production in Fig. 3.2
(right), assuming the large dark Higgs yield is eliminated at late times before dominating the
energy density of the universe. Here we fix the dark Higgs mass to be my = 10 GeV and show
the requirements on dark Higgs thermalization through the Higgs portal interaction, leaving
a detailed examination of the necessary conditions to Appendix C. We do not explicitly show
the parameter space for vector DM production in the case of dark Higgs domination though
we have checked the lower reach in my is ultimately the same as that in the case of no
entropy production.

Case 2: ¢ > )\

We now turn to the limit where the gauge coupling is much larger than the quartic (and so
mx > my). Due to the effects of post-scattering, the co-moving number densities of ¢ and
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X at late again become comparable and are given by,

A 0.01 / ¢ \*/?

This difference in mass of ¢ and X leads to vectors dominating the energy density at late
times, and the dark Higgs becomes a subdominant component with a fractional abundance
A/e. In addition, vectors are produced non-relativistically with typical co-moving momentum
k. < egg, while the dark Higgses are dominantly produced from vector fluctuations with a
similar spectrum and are thus highly relativistic.

The observed DM abundance is reproduced for the initial field amplitude of

1/3
¢0 eQTqu
—~1 . .
i, 0o (3.:36)

The temperature at which the vectors become non-relativistic is given by:

Ml/\ 1/2 m4 )\2 1/3
Tar ~ 2mx < ¢ope2) ~ 0.5 T:ie4 . (3.37)

Note that by T\r, the vector mass (initially dominated by fluctuations of ¢ after PR) assumes
the vacuum value. Since the vector makes up most of the DM, we require the coldness
constraint Tyg = keV. On the other hand, if the fraction of produced dark Higgses is
roughly greater than 1072, then this subdominant component must also be sufficiently cold.

We show the viable parameter space for vector DM production in Fig. 3.3 for e/A = 10
(left) and e/\ = 10° (right), with the value of ¢, fixed at every point to achieve the correct
relic abundance. For e/A = 10 the dark Higgs is a non-negligible subcomponent and in
addition to the vectors being sufficiently cold we also require the dark Higgs is non-relativistic
by a keV, while for e/ = 10 we only require that the vector population satisfies the coldness
constraint (3.37). The lowest possible vector masses can be obtained by saturating e — A
where we find we can produce cold DM for myx = 107'8 eV (though saturating this limit
results in the vectors being accompanied by non-negligible dark Higgs abundance).

3.5 Phenomenology

In this section, we summarize some distinctive features of vector production through para-
metric resonance which could be used to differentiate it from other non-thermal cosmologies.

Dark Higgs Perhaps the most prominent prediction of PR production would be searching
directly for the accompanying light scalar. The detectability of the scalar depends on its
model-dependent coupling (if any) to the SM, and in general no such coupling is required to
produce vectors. However, if A >> e than the scalar is either a large fraction of the DM abun-
dance today, or the scalar is destroyed by some additional mechanism (e.g. thermalization
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Figure 3.3: Viable parameter space for parametric resonance production of vectors in the
limit e > \. We fix the initial condensate amplitude ¢q such that the dark sector saturates
the DM relic abundance Qx + €y =~ Qpy. Shown are constraints from coldness ( ),
cosmic strings (red), and sufficiently long PR (blue) as described in the text. Both plots
have the vector making up nearly all the DM. Left: At every point in parameter space we
fix mx ~ 10my and thus Q4 ~ 107'Qx. Right: At every point in parameter space we fix
mx ~ 1000mg4 and thus Q, ~ 1073Qx.

with the SM) so that vectors make up all of the observed DM abundance. If the scalar is a
non-negligible relic today then it could be searched for directly through experiments sensitive
to light scalars. Furthermore, if it dominates the DM density then it could be observed as
a (cosmologically slow) dark decay into the vectors from anomalous changes of equation of
state of the universe [86]. The current consistency with the ACDM picture allows us to set
a bound on this decay rate as given in Fig. 3.2.

Alternatively, if the dark Higgs is assumed to thermalize with the SM then the mini-
mal required coupling to achieve thermalization sets a convenient target for experimental
searches. We study these specific requirements in the context of a Higgs portal coupling in
Appendix C.

Cosmic Strings As we have seen, PR produces large quantum fluctuations in the X and
¢ fields. These fluctuations can lead to a large positive effective mass for ¢ resulting in the
symmetry being temporarily restored once PR terminates and a subsequent non-thermal
phase transition once the mass of ¢ becomes negative [87]. This has an intriguing prediction
of the formation of cosmic strings [88]. Cosmic strings are one-dimensional topological de-
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fects, characterized by a string tension p ~ v?. After formation, it is expected that the string
network quickly approaches a scaling regime, i.e., energy density in strings scales with the
energy density of the universe but roughly suppressed by the factor Gu, where G = 1/ 87TM§1
is Newton’s constant. Such strings have several characteristic predictions owning to their
induced large energy gradients in the universe. Perhaps the most robust detection of cos-
mic strings can be extracted from the cosmic microwave background, whose gravitational
interaction would induce small temperature distortions leading to inhomogeneities in the
temperature map [89]. Using the WMAP data with a combination of cosmological observa-
tions such strings have yet to be observed, putting a constraint Gu < 1077 [90].

An additional prediction of cosmic strings comes from gravitational radiation emitted
by the string oscillations. The evolution of a scaling cosmic string network is expected to
contribute to the stochastic gravitational wave background [91] as well as induce gravitational
wave bursts [92]. This is contrast to global strings, which predominantly radiate massless
Goldstone bosons (e.g., axion strings). The gravitational wave spectrum from a cosmic
string network can be computed, under basic assumptions. The, thus far, null observation
of a stochastic gravitational wave background by LIGO and pulsar timing arrays constrain
Gu <1071 93, 94, 95], which roughly translates to a bound on the VEV v < 10! GeV.
Future pulsar timing array measurements are expected to have improved sensitivity with
the upcoming future Square Kilometer Array [96] and provide an opportunity to probe these
non-thermal phase transitions.

Isocurvature Perturbations Another prediction of this production mechanisms is due to
the lightness of the dark Higgs, inducing isocurvature perturbations in the cosmic microwave
background (CMB). During inflation, we presume ¢ is stuck with an initial field amplitude
obeying A¢y < Hing, and fluctuations, d¢p ~ Hiye/2m. During PR the energy density of the
¢ condensate is transferred to the observed DM abundance and instills these isocurvature
perturbations in the DM spectrum. These perturbations can be looked for in the CMB
though they have yet to be seen [64]. This can be interpreted as a bound on the Hubble
scale during inflation Hi,s < 3 x 107°¢, which in the simplest picture suggests a bound
A < 3 x 107°. This puts a relevant constraint for A > e if the dark Higgs is required
to thermalize with the SM but turns out to be negligible when we do not enforce this
requirement. We note that, in principle, this isocurvature perturbation can be suppressed if
the Hubble induced mass of ¢ is larger than Hjy.

3.6 Discussion

In this work we present a new production mechanism for vector DM in the early uni-
verse through its (possible) coupling to a dark Higgs. The mechanism relies on the non-
perturbative dynamics associated with parametric resonance, thus allowing the produced
vectors to be ultralight while still being consistent with the stringent constraints on warm

DM.
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Vector production from parametric resonance has qualitative differences from the well-
studied theory of scalar production. We study the equations governing the PR production of
transverse and longitudinal modes and present an instability chart. For A > e the transverse
mode production is highly inefficient while the longitudinal mode is rapidly produced (this
can be understood as a consequence of the Goldstone boson equivalence theorem). Fluctu-
ations of dark Higgses are also produced which results in a Higgs-dominated dark sector.
In order for vectors to make up the entire DM abundance, additional interactions can be
considered to thermalize the dark Higgs with the visible sector. We find produced vectors
can be as light as 1072° eV if they form 1% of the energy density in DM (with the dark Higgs
making up the rest). If, on the other hand, we require the dark Higgs to thermalize with
the SM it is difficult to foresee a viable model without making the dark Higgs heavier than
around 10 GeV (otherwise there are tight constraints on its coupling). This restricts the
produced vector DM to having masses above around 10~ eV. In the case where e > \ both
the transverse and longitudinal mode can be efficiently produced, though as a consequence
of initial conditions set by inflation we still expect the longitudinal mode to dominate for
a wide range of parameters. As in the previous case fluctuations of ¢ are rapidly produced
resulting in comparable number densities between vectors and dark Higgs, although due to
the ratio of masses the DM energy density today is dominated by vectors. Ultimately, the
coldness constraint restricts the viable vector DM mass to be above 10718 eV.

Our study of PR production of ultralight vectors was not meant to be exhaustive, and we
conclude by commenting on directions we feel merit further attention. Firstly, the focus of
this work was entirely on vectors which get their mass from a dark Higgs. In principle, this
could easily be generalized to other types of scalars which obtain a large field value. Secondly,
in this work we did not attempt a complete lattice simulation of the non-linear effects. This
would be particularly important in the limit of e > X since in this case it is possible that
the coldness constraint is significantly weakened if the vectors do not get boosted to their
maximum possible momenta, e¢y. Furthermore, it is important to note that a general feature
of this framework is the necessity for tiny couplings (for the mass range in the e > X case,
gauge couplings in the viable parameter space go down to as low as ~ 107%). While such
couplings are technically natural, it would be interesting to see how viable these are in a UV
model. Lastly, in this work we briefly explored the prominent phenomenological signatures
of this production mechanism though it may be fruitful to consider these in more detail as
well as others to differentiate PR production from other possible production mechanisms.

Note Added: During the preparation of this work, we became aware of [97], [98], and [99]—
these all discuss possible production of light vector DM from an oscillating axion field via
the tachyonic instability.
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Chapter 4

White Dwarfs as Dark Matter
Detectors

4.1 Introduction

Identifying the nature of dark matter (DM) remains one of the clearest paths beyond the
Standard Model (SM) and it is thus fruitful to study the observable signatures of any yet-
allowed DM candidate. Many direct detection experiments are designed to search for DM,
e.g. [100, 101], yet these lose sensitivity to heavier DM due to its diminished number density.
Even for a strongly-interacting candidate, if the DM mass is above ~ 10*? GeV a terrestrial
detector of size ~ (100 m)? will register fewer than one event per year. While these masses
are large compared to those of fundamental particles, it is reasonable to suppose that DM
may exist as composite states just as the SM produces complex structures with mass much
larger than fundamental scales (e.g., you, dear reader). Currently there is a wide range
of unexplored parameter space for DM candidates less than ~ 10*® GeV, above which the
DM will have observable gravitational microlensing effects [102]. For such ultra-heavy DM,
indirect signatures in astrophysical systems are a natural way forward. One such signal first
proposed in [103] is that DM can trigger runaway fusion and ignite type la supernovae (SN)
in sub-Chandrasekhar white dwarf (WD) stars.

In addition to constraining the properties of DM, this raises the intriguing possibility that
DM-induced runaway fusion is responsible for a fraction of observed astrophysical transients.
The progenitors of type Ia SN are not fully understood [104], and recent observations of
sub-Chandrasekhar [105, 106], hostless [107], and unusual type Ia SN [108] suggest that
multiple progenitor systems and ignition mechanisms are operative. Other suspected WD
thermonuclear events, such as the Ca-rich transients [109], are also poorly understood. While
mechanisms for these events have been proposed [110, 111, 112, 113], the situation is yet
unclear and it is worthwhile to consider new sources of thermonuclear ignition.

Runaway thermonuclear fusion requires both a heating event and the lack of significant
cooling which might quench the process. The WD medium is particularly suited to this as
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it is dominated by degeneracy pressure and undergoes minimal thermal expansion, which
is the mechanism that regulates fusion in main sequence stars. Thermal diffusion is the
primary cooling process in a WD, and it can be thwarted by heating a large enough region.
The properties of a localized heating necessary to trigger runaway fusion were computed
in [114]. Consequently, it was realized [103] that if DM is capable of sufficiently heating a
WD in this manner, it will result in a SN with sub-Chandrasekhar mass progenitor. This
was used to place limits on primordial black holes which transit a WD and cause heating by
dynamical friction, although the authors of [103] identify several other heating mechanisms
which may be similarly constrained. Note that the idea of using observations of WDs to
constrain DM properties has been pursued before, e.g. through an anomalous heating of
cold WDs [115, 116] or a change in the equilibrium structure of WDs with DM cores [117].
These are quite distinct from the observational signature considered in this work, which is
the DM trigger of a type la SN (although see [118] for a related analysis).

In this paper, we examine DM candidates which have additional non-gravitational inter-
actions and are thus capable of heating a WD and igniting a SN through the production of
SM particles. An essential ingredient in this analysis is understanding the length scales over
which SM particles deposit energy in a WD medium. We find that most high energy particles
thermalize rapidly, over distances shorter than or of order the critical size for fusion. Particle
production is thus an effective means of igniting WDs. Constraints on these DM candidates
come from either observing specific, long-lived WDs or by comparing the measured rate of
type Ia SN with that expected due to DM. It is important to note that these constraints
are complementary to direct searches—it is more massive DM that is likely to trigger SN,
but also more massive DM that has low terrestrial flux. The WD detector excels in this
regime due to its large surface area ~ (10* km)?, long lifetime ~ Gyr, and high density. We
demonstrate these constraints for generic classes of DM models that produce SM particles
via DM-SM scattering, DM-DM collisions, or DM decays, and consider the significantly en-
hanced constraints for DM that is captured in the star. For these cases, we are able to place
new bounds on DM interactions for masses greater than m, > 10'® GeV. As a concrete
example we consider ultra-heavy Q ball DM as found in supersymmetric extensions of the
SM.

The rest of the paper is organized as follows. We begin in Section 4.2 by reviewing the
mechanism of runaway fusion in a WD. In Section 4.3 we study the heating of a WD due
to the production of high-energy SM particles. Detailed calculations of the stopping of such
particles are provided in Appendix D. In Section 4.4 we parameterize the explosiveness and
event rate for generic classes of DM-WD encounters, and in Section 4.5 we derive schematic
constraints on such models. The details of DM capture in a WD are reserved for Appendix E.
Finally we specialize to the case of Q-balls in Section 4.6, and conclude in Section 4.7.
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4.2 White Dwarf Runaway Fusion

We first review the conditions for which a local energy deposition in a WD results in run-
away fusion. Any energy deposit will eventually heat ions within some localized region—
parameterize this region by its linear size L, total kinetic energy &, and typical temperature
Ty. These scales evolve in time, but it will be useful to describe a given heating event by
their initial values.

The fate of a heated region is either a nonviolent diffusion of the excess energy across the
star, or a runaway fusion chain-reaction that destroys the star. The precise outcome depends
on Ly, & and Tj. There is a critical temperature 7%, set by the energy required for ions
to overcome their mutual Coulomb barrier, above which fusion occurs. For carbon burning,
Ty ~ MeV [119]. Any heated region T > Ty will initially support fusion, although this
is not sufficient for runaway as cooling processes may rapidly lower the temperature below
Ty. This cooling will not occur if the corresponding timescale is larger than the timescale at
which fusion releases energy. Cooling in a WD is dominated by thermal diffusion, and the
diffusion time increases as the size of the heated region. However, the timescale for heating
due to fusion is independent of region size. Thus, for a region at temperature 2 T, there is
a critical size above which the heated region does not cool but instead initiates runaway. For
a region at the critical fusion temperature 7', we call this critical size the trigger size Ap.
The value of Ay is highly dependent on density, and in a WD is set by the thermal diffusivity
of either photons or degenerate electrons. This critical length scale has been computed
numerically in [114] for a narrow range of WD densities and analytically scaled for other
WD masses in [103]. As in [103], we will restrict our attention to carbon-oxygen WDs in the
upper mass range ~ 0.85 — 1.4 Mq (these will yield the most stringent constraints on DM).
This corresponds to a central number density of ions nj,, ~ 103% — 1032 em =3 and a trigger
size of A\ ~ 1073 — 107 cm.

If a heated region is smaller than the trigger size, its thermal evolution is initially domi-
nated by diffusion. However, this will still result in runaway fusion if the temperature is of
order Tt by the time the region diffuses out to the trigger size. For our purposes it is more
natural to phrase this in terms of the total energy & deposited during a heating event. Of
course, the relation between energy & and temperature Ty depends on the rate at which
WD constituents—ions, electrons, and photons—thermalize with each other within the re-
gion size Ly. Given that the different species thermalize rapidly, the excess energy required

to raise the temperature to 7 in a volume V' is given by a sum of their heat capacities
o B 2/3 3
TR / AT (Nign + 03T + T3), (4.1)
0

where n, is the number density of electrons. Note that we use the heat capacity of a
degenerate gas of electrons, since the Fermi energy Er = MeV for the densities we consider.
The minimum energy deposit necessary to trigger runaway fusion is simply

Evoom ~ Ne(nionTs +n?/°T? + T7) = 10'° — 10% GeV. (4.2)
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Figure 4.1: The minimum energy deposit (4.2) necessary to trigger runaway fusion, based
on numerical results for Ay [114] and the WD mass-density relation [120]

Evoom 18 shown over the range of WD masses in Figure 4.1, where we have employed a numer-
ical formulation of the WD mass-density relation as given by [120]. Once again, for a given
WD density the critical energy threshold is primarily set by Ap—this length scale has been
carefully computed and tabulated in [114], along with the attendant assumptions. In any
case, we expect the simplified expression (4.2) to be accurate at the order of magnitude level,
and we refrain from a more detailed analysis here. Thus for a heating event characterized
by its Lo, &, and Ty 2 T}, there is an ignition condition:

L)’
&0 2 Evoom - max 1, — 5 . (4.3)
Ar

Any &, satisfying this condition is minimized for Ly less than the trigger size, where it is
also independent of the precise value of Lj. For broader deposits, the necessary energy is
parametrically larger than E,oom by a volume ratio (Lo/Ar)?. As a result, understanding the
Lg for different kinds of heating events in a WD is critical to determining whether or not
they are capable of destroying the star.

4.3 Particle Heating of White Dwarfs

Production of high-energy SM particles in a WD will result in heating of the stellar medium.
The critical quantity to understand is the length scale over which such heating occurs—this
scale determines the efficiency of the heating event in triggering runaway fusion, as described
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Figure 4.2: Dominant energy loss and thermalization processes in the WD as a function
of energy, with energy decreasing towards the right. Hadronic processes are shown in the
upper panel and EM processes in the lower panel. High energy particles will induce showers
that terminate into elastic thermalization of the WD ions, moving from left to right in the
diagram. The quoted energies are for a ~ 1.37 M WD, although the cartoon is qualitatively
the same for all densities.

by condition (4.3). Note that this is a question of purely SM physics. The unknown physics
of DM will serve only to set the initial properties of the SM particles.

We find that SM particles efficiently heat the WD regardless of species or energy (neutri-
nos are a slight exception)—the heating length is typically less than or of order the trigger
size Ap. This is accomplished primarily through hadronic showers initiated by collisions with
carbon ions. In some cases electromagnetic showers are important, however at high energies
these are suppressed by density effects and even photons and electrons are dominated by
hadronic interactions. These showers rapidly stop high-energy particles due to their loga-
rithmic nature, transferring the energy into a cloud of low-energy particles which heat the
medium through elastic scatters. A schematic for the flow of energy during deposition is
given in Figure 4.2. In this light, the WD operates analogously to a particle detector, in-
cluding hadronic and electromagnetic “calorimeter” components. Runaway fusion provides
the necessary amplification to convert a detected event into an observable signal.

The remainder of this section will discuss the above heating process in more detail. We
summarize the dominant source of energy loss and the resulting stopping lengths A\ for SM
particles of incident kinetic energy e. The total path length traveled by a particle before
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depositing O(1) of its energy is approximately

€

Rsp ~ ————
PR Jda

(4.4)

where dF /dx is the stopping power in the WD medium. If the mean free path to hard scatter
Ahard 18 smaller than this path length Rgp, then the particle undergoes a random walk with
Nhparq scatters, and the net displacement is reduced by v/ Nparq. We therefore approximate
the stopping length as

A ~ min {Rsp, vV RSP)\hard} (45)

This random walk behavior is relevant for low-energy elastic scatters.

Stopping lengths are plotted in Figures 4.3 and 4.4, and a detailed treatment of the
stopping powers is given in Appendix D. We will consider incident light hadrons, photons,
electrons, and neutrinos—as we are concerned with triggering runaway fusion, we restrict
our attention to energies € > Ty ~ MeV.

High-Energy Showers

Hadronic Showers. Incident hadrons with kinetic energy larger than the nuclear binding
scale ~ 10 MeV will undergo violent inelastic collisions with carbon ions resulting in an O(1)
number of secondary hadrons. This results in a roughly collinear shower of hadrons of size

1 € 1032 cm ™3
Xpag ~ ——1 (—)%10*6 .
had NionOinel o8 10 MeV o Nion

where the inelastic nuclear cross section is oy, &~ 100 mb and we have taken the logarithm to
be ~ 10. The shower terminates into pions and nucleons of energy ~ 10 MeV, whose cooling
is discussed below. Note that neutral pions of energy 10 — 100 MeV have a decay length
to photons of d,0 ~ 107% cm. Hadronic showers will therefore generate an electromagnetic
component carrying an O(1) fraction of the energy.

Photonuclear and Electronuclear Showers. A photon or electron can directly induce
hadronic showers via production of a quark-antiquark pair, depicted in Figure 4.5. The
LPM effect, discussed below, ensures that these process dominate the stopping of photons
and electrons at high energies, ¢ > 10* — 10° GeV.

The only substantial difference between photonuclear showers and purely hadronic ones
is that they require a longer distance to initiate. Roughly, the photonuclear cross section is
suppressed relative to the hadronic inelastic cross section oj,e by a factor of «, and so the
photon range is

(4.6)

1032 -3
Aa = 107° ¢cm <$) .

Nion
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Figure 4.3: Stopping lengths for incident hadrons as a function of kinetic energy in a WD
of density njon ~ 10*! cm™ (&~ 1.25 M), including the hadronic shower length (magenta).
Any discontinuities in the stopping lengths are due to approximate analytic results in the
different energy regimes. See Appendix D for calculation details.
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hadrons hadrons

Figure 4.5: Photonuclear (left) and Electronuclear (right) interactions. The shaded region
contains, at high energies, the familiar point-like processes of deep inelastic scattering and
for energies below Aqcp is best described by exchange of virtual mesons.

Here A, 4 is the distance to initiate a hadronic shower, whereas the shower itself extends a
distance Xp.q. Note that A\, 4 is of order the trigger size.

The electronuclear showers are qualitatively different, as the electron survives the inter-
action. This process is best described as a continuous energy loss of the electron, due to
radiation of virtual photons into hadronic showers. The stopping power is again radiative,
which gives the constant stopping length

(4.7)

32 -3
Aea ~ 1074 cm (10&) .

Nion

This is suppressed by an additional factor of a relative to the photonuclear interaction,
although a full calculation also yields an O(10) logarithmic enhancement. We see that
the electronuclear length scale A.4 is at most larger than the trigger size by an order of
magnitude.

Electromagnetic Showers. Of course, electrons and photons can also shower through
successive bremsstrahlung and pair-production. An electromagnetic shower proceeds until a
critical energy ~ 100 MeV, at which point these radiative processes become subdominant to
elastic Coulomb and Compton scattering. Below this scale radiation can still be important,
though electromagnetic showers do not occur. Note that bremsstrahlung and pair-production
are strictly forbidden for incident energies below the Fermi energy Fr.

At sufficiently high electron/photon energies and nuclear target densities, electromagnetic
showers are elongated due to the Landau-Pomeranchuk-Migdal (LPM) effect. High-energy
radiative processes necessarily involve small momentum transfers to nuclei. These soft virtual
photons cannot be exchanged with only a single ion, but rather interact simultaneously with
multiple ions. This generates a decoherence, suppressing bremsstrahlung/pair-production
above an energy FEppy which scales inversely with density:

1032 cm_3)

Nion

Eripvy =~ 1 MeV ( (4.8)
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The corresponding shower lengths are

1/2
€
Xem ~ Xo - (ELPM> ¢ > Erpu

(4.9)
1 €< ELPM
where
1032 -3
Xo~ 107" cm (0&> (4.10)
Nion

is the unsuppressed EM shower length. See Appendix D.3 for details. At the highest WD
densities radiative processes are always LPM-suppressed, while at lower densities we observe
both regimes. We emphasize that for all densities, throughout the energy range where it
is relevant, the length of electromagnetic showers is never parametrically larger than the
trigger size.

Neutrinos. Neutrinos scatter off nuclei with a cross section that increases with energy. In
these interactions, an O(1) fraction of the neutrino energy is transferred to the nucleus with
the rest going to produced leptons—this is sufficient to start a hadronic shower [121, 122].
At an energy of ~ 10! GeV, [121] calculates the neutrino-nuclear cross section to be ~
10732 cm?. Conservatively assuming this value for even higher energies, we find a neutrino
mean free path in a WD of order ~ 10 cm. Therefore, any high-energy neutrino released in
the WD will (on average) only interact after traveling a distance > Ar. As per the discussion
above, this makes the heating of a WD via the release of multiple neutrinos highly inefficient
due to the (enormous) volume dilution factor in (4.3). Interestingly, a single high-energy
neutrino with energy greater than &, .o, will still be able to efficiently heat the star and
trigger a runaway. This is because the neutrino mean free path is simply a displacement
after which a compact shower of size X},q occurs. If the energy contained in a single shower
is large enough, then the heating caused by this single neutrino can effectively be considered
as a separate and efficient heating event.

Low-Energy Elastic Heating

The showers of high-energy particles described above terminate in a cloud of low-energy
€ ~ 10 MeV neutrons, protons, and charged pions, and ¢ ~ 10 — 100 MeV electrons and
photons. Of course, particles at these energies may also be directly produced by the DM.
At these energies, elastic nuclear, Coulomb, and Compton scatters dominate and eventually
lead to the thermalization of ions. Once again, the physical expressions for all computed
stopping powers and stopping lengths are given in Appendix D whereas we simply quote the
relevant numerical values here.
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Hadrons. Neutral hadrons are the simplest species we consider, interacting at low-energies
only through elastic nuclear scatters with cross section o, ~ 1 b, where 1 b = 10724 cm?.
Note that the large ion mass requires ~ 10 — 100 hard scatters to transfer the hadron’s
energy in the form of a random-walk. This elastic heating range is

1032 cm_3)

Nion

Aet & 107" cm ( (4.11)
and is always less than the trigger size.

Charged hadrons are also subject to Coulomb interactions, which would provide the
dominant stopping in terrestrial detectors. In this case, however, Coulomb scatters off de-
generate WD electrons are strongly suppressed and charged hadrons predominantly undergo
elastic nuclear scatters like their neutral brethren. This suppression is due to (1) motion
of the electrons, which fixes the relative velocity to be O(1) and removes the enhancement
of Coulomb stopping usually seen at low velocity, and (2) Pauli blocking, which forces the
incident particle to scatter only electrons near the top of the Fermi sea. For an incident
particle with velocity vy, < 1, the first effect suppresses the stopping power by a factor of
v relative to that off stationary, non-degenerate electrons and the second by an additional
factor of vy,. Note that there is a small range of energies in which Coulomb scatters off ions
dominate the stopping of charged hadrons—either way, both length scales are well below the
trigger size.

Electrons and Photons. For electrons and photons below ~ 100 MeV the dominant
interactions are Coulomb scatters off WD electrons and Compton scatters, respectively.
The length scale of these processes is smaller than any interaction with ions, and so these
electrons and photons will thermalize into a compact electromagnetic “gas” with a size set
by the radiative length scale Xgy. The EM gas will cool and diffuse to larger length scales,
eventually allowing thermalization with nuclei via the subdominant Coulomb scatters of
electrons off ions. The photons of the EM gas will not undergo photonuclear showers here,
as the gas will cool below ~ 10 MeV by the time it diffuses out to a size A\,4. This gas
temperature is initially at most ~ 100 MeV. At these temperatures the heat capacity is
dominated by photons, so as the gas diffuses to a size A, 4 it cools by a factor (Xgn/Aya)>/* ~
1072—10"!. Note that for temperatures T less than Er, the electrons are partially degenerate
and heating proceeds via the thermal tail with kinetic energies € ~ Er + T. Therefore, the
relevant thermalization process is Coulomb scattering of electrons off ions.

Like the hadronic elastic scatters, an electron Coulomb scattering off ions will occasionally
hard scatter, and thus deposit its energy along a random walk. This reduces the stopping
length at low energies, yielding

3/2 /1032 cm ™3
Aoyt & 107 ( € ) 412
: 10 Mev Nion (4.12)

which is below the trigger size.
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4.4 Dark Matter-Induced Ignition

Any DM interaction that produces SM particles in a WD has the potential to ignite the
star, provided that sufficient SM energy is produced. The distribution in space, momentum,
and species of these SM products is dependent on unknown DM physics and is needed to
determine the rate of DM-induced ignition. This can be done precisely for a specific DM
model, as we do for Q-balls in Section 4.6. In this Section, however, we study some general
features of DM-WD encounters involving DM that possesses interactions with itself and the
SM. We collect below the basic formulas relating DM model parameters to ignition criteria,
SN rate, etc.

DM can generically heat a WD through three basic processes: DM-SM scattering, DM-
DM collisions, and DM decays. For ultra-heavy DM, these processes can be complicated
events involving many (possibly dark) final states, analogous to the interactions of heavy
nuclei. In the case of DM-SM scattering, we consider both elastic and inelastic DM scatters
off WD constituents, e.g. carbon ions. We classify DM candidates into three types accord-
ing to the interaction that provides the dominant source of heating, and refer to these as
scattering, collision, and decay candidates. We also make the simplifying assumption that
the above events are “point-like”, producing SM products in a localized region (smaller than
the heating length) near the interaction vertex. Where this is not the case (as in our elastic
scattering and Q-ball constraints, see Sections 4.5 and 4.6), then the same formalism applies
but with the event size added to the stopping length.

The SN rate may be greatly enhanced if DM is captured in the star, so we also consider
separately “transiting DM” and “captured DM”. In general, there is some loss of DM kinetic
energy in the WD. In the transit scenario, this energy loss is negligible and the DM simply
passes through the star. In the capture scenario, the energy loss is not directly capable of
ignition but is sufficient to stop the DM and cause it to accumulate in the star. Energy loss
may be due to a variety of processes, but for simplicity we will focus on an DM-nuclei elastic
scattering. Of course, due to the velocity spread of DM in the rest frame of a WD, there
will necessarily be both transiting and captured DM populations in the star.

DM Transit

DM-SM Scattering. Runaway fusion only occurs in the degenerate WD interior where
thermal expansion is suppressed as a cooling mechanism. The outer layers of the WD,
however, are composed of a non-degenerate gas and it is therefore essential that a DM
candidate penetrate this layer in order to ignite a SN. We parameterize this by a DM stopping
power (dE/dx)sp, the kinetic energy lost by the DM per distance traveled in the non-

degenerate layer, and demand that
dE myv2
—_— ——= 4.13
( dx ) SP < Reny ( )
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where R, is the nominal size of the non-degenerate WD envelope and v ~ 1072 is the
escape velocity of the WD, at which the DM typically transits the star.

DM-SM scattering will result in a continuous energy deposit along the DM trajectory
(if the interaction is rare enough for this not to be true, then the encounter is analogous to
the case of DM decay). This is best described by a linear energy transfer (dF/dx)ygr, the
kinetic energy of SM particles produced per distance traveled by the DM. If these products
have a heating length Ly then the energy deposit must at minimum be taken as the energy
transferred along a distance Ly of the DM trajectory. Importantly, as per the ignition
condition (4.3), such a deposition is less explosive unless Ly is smaller than the trigger
size Ay. We thus consider the energy deposited over the larger of these two length scales.
Assuming the energy of the DM is roughly constant during this heating event, the ignition

condition is:
dE vom Lo )2
(—) > & -max{—o, 1} . (4.14)
dz LET )\T /\T

Note that the DM stopping power (dE/dx)sp and the linear energy transfer (dE/dz) gt are
related in the case of elastic scatters, but in general the two quantities may be controlled by
different physics. In addition, a transit event satisfying condition (4.13) will have negligible
energy loss over the parametrically smaller distances Ar or Ly, validating (4.14).

The above condition sums the individual energy deposits along the DM trajectory as
though they are all deposited simultaneously. This is valid if the DM moves sufficiently
quickly so that this energy does not diffuse out of the region of interest before the DM has
traversed the region. We therefore require that the diffusion time 74, across a heated region
of size L at temperature 7y be larger than the DM crossing-time:

2

L > L ; (4.15)
a(Tf ) Uesc

where «(T) is the temperature-dependent diffusivity. This condition is more stringent for
smaller regions, so we focus on the smallest region of interest, L = Ap. Then (4.15) is
equivalent to demanding that the escape speed is greater than the conductive speed of the
fusion wave front, veona ~ @(7f)/Ar. Numerical calculations of veonq are tabulated in [114],
and indeed condition (4.15) is satisfied for all WD densities.

The rate of transit events is directly given by the flux of DM through a WD

Tdiff ™~

2
Px 12 Vesc
r rans "~ R alos 4.16
¢ - wn( ) Unal (4.16)

X Vhalo

where p, is the DM density in the region of the WD, and Rwp is the WD radius. Here vya10 ~
1073 is the virial velocity of our galactic halo. Note the (vese/Vnalo)? ~ 100 enhancement due
to gravitational focusing.

We will not consider here captured DM that heats the star via scattering events, as such
heating will typically cause ignition before capture occurs. However, it is possible to cause
ignition after capture if the collection of DM leads to an enhanced scattering process.
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DM-DM Collisions and DM Decays. For a point-like DM-DM collision or DM decay
event releasing particles of heating length Lg, ignition will occur if the total energy in SM
products satisfies condition (4.3). Such an event will likely result in both SM and dark sector
products, so we parameterize the resulting energy in SM particles as a fraction fsy of the
DM mass. For non-relativistic DM, the DM mass is the dominant source of energy and
therefore fq < 1 regardless of the interaction details. A single DM-DM collision or DM

~Y

decay has an ignition condition:

L 3
mfoM Z gboom + max {)\_;7 1} . (417)

Thus the WD is sensitive to annihilations/decays of DM masses m, > 10'° GeV.
DM that is not captured traverses the WD in a free-fall time tg ~ Rwp/Vesc, and the
rate of DM-DM collisions within the WD parameterized by cross section o, is:

2 3
Vesc
grliln ~ (ZX ) UXX ( ) UhaloR%VD- (418)

X Uhalo

Similarly the net DM decay rate inside the WD parameterized by a lifetime 7, is:

1 p v
raeey (e ) RS 4.19
e e (2= g (1.9

DM Capture

Review of DM Capture. We first summarize the capture and subsequent evolution of
DM in the WD, ignoring annihilations or decays—see Appendix E for details. Consider a
spin-independent, elastic scattering off carbon ions with cross section o, 4. The rate of DM
capture in gravitating bodies is of course very well-studied [123, 124]. However, this rate
must be modified when the DM requires multiple scatters to lose the necessary energy for
capture. Ultimately, for ultra-heavy DM the capture rate is of the form

. 2
1_‘\t:ap ~ 1—“crams : Hlil'l {17 Nscat mlongesc } ) (420>

xVhalo

where Ngp ~ NionOyalwp is the average number of DM-carbon scatters during one DM
transit. For the remainder of this Section, all results are given numerically assuming a WD
central density nj,, ~ 103! ecm™3. The relevant parametric expressions are presented in
further detail in Appendix E.

Once DM is captured, it eventually thermalizes with the stellar medium at velocity
vin ~ (Twp /mx)l/ > where T\p is the WD temperature. The dynamics of this process
depend on the strength of the DM-carbon interaction, namely on whether energy loss to
carbon ions provides a small perturbation to the DM’s gravitational orbit within the star
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or whether DM primarily undergoes Brownian motion in the star due to collisions with
carbon. For simplicity, we will focus here only on the former case, corresponding roughly to
interactions

m
A S X

~ 10726 o2 (L) 421
~ pwpRwp e (421)

1016 GeV
where the DM is able to make more than a single transit through the star before thermalizing.
Note that the opposite regime indeed also provides constraints on captured DM and is
unconstrained by other observations, see Figure 4.9, however the resulting limits are similar
to those presented here.

In the limit (4.21), captured DM will thermalize by settling to a radius Ry, given by the
balance of gravity and the thermal energy Tywp,

Ox

N My —-1/2

This settling proceeds in two stages. Captured DM will initially be found on a large, bound
orbit that exceeds the size of the WD, decaying after many transits of the star until the
orbital size is fully contained within the WD. This occurs after a time

N 16 mX 3/2 Oy A -3/2
nrTx 10" (ts) (ees) (4.23)

The DM then completes many orbits within the star until its orbital size decays to the
thermal radius, occurring after a further time

1014 My OxA -1
107 s (1016 GeV) (10_35 cm2> ' (4:24)

Note that the difference in scalings between ¢; and ¢ is due to the fact that, while the two
times are ultimately determined by scattering in the star, the dynamics of the settling DM
are quite distinct in each case. t; is dominated by the time spent on the largest orbit outside
the WD (which additionally depends on o, 4) while ¢, is dominated by the time spent near
the thermal radius. Subsequently the DM will begin steadily accumulating at Ry, with the
possibility of self-gravitational collapse if the collected mass of DM exceeds the WD mass
within this volume. This occurs after a time
m ~1/2 oA -1

ty ~ 10° s (m) (m) . (4.25)
Of course, not all of these stages may be reached within the age of the WD 7wp. The full
time to collect and begin self-gravitating is ¢; + o + tg,.

At any point during the above evolution, captured DM has the potential to trigger a SN.
We will consider ignition via either the decay or annihilation of captured DM. Of particular
interest are events occurring within a collapsing DM core, as such cores have the additional
ability to ignite a WD for DM masses less than &,qom, either via multiple DM annihilations
or by the formation of a black hole. This is discussed in detail in [4]. In the following, we
restrict attention to the limit (4.21) and require DM masses sufficiently large so that a single
collision or decay will ignite the star, and give only a quick assessment of DM core collapse.
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Captured DM-DM Collisions. We now turn to the rate of DM-DM collisions for cap-
tured DM. Of course, the thermalizing DM constitutes a number density of DM throughout
the WD volume. Assuming that t; + to < 7Twp, the total rate of annihilations for this
“in-falling” DM is peaked near the thermal radius and is of order:

2
N 0y Ugh- (4.26)

If Tinpante > 1, then a SN will be triggered by the in-falling DM population. Otherwise if

[intant2 < 1, the DM will start accumulating at the thermal radius. If ¢5, < 5 (as expected

for such heavy DM masses) there will be no collisions during this time and thus a collapse will

proceed. For a DM sphere consisting of NV particles at a radius r, the rate of annihilations is
N? GNm,

Fcollapse ~ 3 OxxUx, Ux ™ , . (427)

Of course, there may be some stabilizing physics which prevents the DM from collapsing
and annihilating below a certain radius, such as formation of a black hole or bound states.
To illustrate the stringent nature of the collapse constraint we will simply assume some
benchmark stable radius, as in Figure 4.10. We assume that the timescale for collapse at
this radius is set by DM cooling t...1, which is related to t5. Note that if a single collision has
not occurred during collapse, one may additionally examine annihilations of the subsequent
in-falling DM down to the stable radius—for simplicity, we do not consider this scenario.

Captured DM Decays. Lastly, we compute the rate of decays for captured DM, which
is simply proportional to the number of DM particles in the WD available for decay at any
given instance. In the transit scenario (4.19), this rate is I' ~ Ty T ansts. In the capture
scenario, this number is instead determined by the thermalization time within the WD
[~ T eapta, conservatively assuming that after a thermalization time, the DM quickly
collapses and stabilizes to an “inert” core incapable of further decay. If this is not the case,

then the captured DM decay rate is given by I' ~ 7.~ T capTwWD-

4.5 Dark Matter Constraints

We now constrain some generic DM candidates which will ignite a WD via one of the
processes parameterized in Section 4.4. These release SM particles that deposit their energy
and thermalize ions within a distance described in Section 4.3. First, however, we review
how WD observables constrain DM candidates capable of triggering SN.

Review of WD Observables

Following the discussion of [103], our constraints come from (1) the existence of heavy,
long-lived white dwarfs, or (2) the measured type Ia SN rate. The ages of WD can be
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estimated by measuring their temperature and modeling their cooling over time, and we
take the typical age of an old WD to be of order ~ Gyr [125]. RX J0648.04418 is one
such nearby star and one of the heavier known WDs, with a mass ~ 1.25 Mg [126] and
local dark matter density which we take to be p, ~ 0.4 GeV/cm?®. Of course, this is not
the only known heavy WD—the Sloan Digital Sky Survey [127] has found 20+ others. The
NuStar collaboration has also recently uncovered evidence for the likely existence of heavy
WDs near the galactic center [128], where the DM density is assumed to be much greater
Py = 10% GeV/cm?® [129]. Such heavy candidates are particularly suited for our constraints
as the energy deposit necessary to trigger SN (4.3) is a decreasing function of WD mass.
However, less dense white dwarfs are significantly more abundant in the galaxy. Thus, even
if a sufficiently massive DM is unable to trigger a violent heating event within the lifetime of
a WD, it could still ignite enough lighter WDs to affect the measured SN rate of ~ 0.3 per
century. The DM-induced SN rate is estimated using the expected number of white dwarfs
per galaxy ~ 10! and their mass distribution [127]. Simulations indicate that only WD
masses heavier than ~ 0.85 M) will result in optically visible SN [103]. Therefore, most of
the stars exploded in this manner will be in the mass range ~ 0.85 — 1 M), resulting in
weaker SN than expected of typical Chandrasekhar mass WDs.

To summarize, a bound on DM parameters can be placed if either a single explosive event
occurs during the lifetime of an observed star such as RX J0648.04418, or the SN rate due to
such DM events throughout the galaxy exceeds the measured value. Note that for low-mass
WDs dominated by photon diffusion, Eyeom is a strong function of WD density. The average
density for WDs is typically a factor ~ 1072 — 107! less than the central density, although
it is found that the WD density only changes by an O(1) fraction from the central value up
to a distance ~ Rwp/2 [130]. Therefore the central density is a valid approximation as long
as we consider heating events within this “modified” WD volume. For simplicity, we employ
this approach.

Scattering Constraints

In order to constrain a DM model with a scattering interaction, we require that it satisfy the
ignition condition (4.14). This is given in terms of an LET, which parameterizes the ability
for DM to release sufficient energy to the star in the form of SM particles. Here we consider
a DM elastic scattering off carbon ions with cross section o, 4, which has an LET:

(@) ~ nionaxAmionveQSC. (4.28)
dz ) gy

This can be expressed in terms of the cross section per nucleon o,,,—see Appendix E Each
elastic scatter transfers an energy of order mj,,v2%. ~ 1 — 10 MeV to the target nuclei, thus
enabling fusion reactions. Note that the stopping power of the DM in the non-degenerate
envelope is of the same form, but with the density replaced by its diminished value in this

region. It is interesting that combining the ignition condition (4.14) with the requirement
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that the DM adequately penetrates the non-degenerate layer (4.13) yields a lower bound on

DM mass.
Renv penv 1
> Evoom —_, 4.29
T b ( )\T ) (pWD) vgsc ( )

where pwp is the central density of the WD. Here R, ~ 50 km is the width of a non-
degenerate WD envelope—the density in this region pe,, is typically a small fraction ~ 1073
of the central density [125]. We conservatively take the envelope to be composed of carbon
ions; if it were primarily hydrogen or helium, then the condition for penetration is weakened
by 4 orders of magnitude due to the reduced energy transfer and cross section for scattering.
We find that the DM must be heavier than ~ 10%® GeV to ensure an explosive transit of a
1.25 Mz WD and minimal loss of kinetic energy in the non-degenerate layer. For the sake
of comparison this corresponds to a macroscopic DM mass of order ~ 20 kg.

Of course, this bound is only applicable if the energy input to the WD is solely coming
from DM kinetic energy. We may also consider DM inelastic scattering off carbon ions which
transfer more than ~ MeV per collision. Examples of such a process include baryon-number
violating interactions which can release the nucleon mass energy ~ GeV per collision. This
is similar to Q-balls, which absorb the baryon number of nuclear targets and liberate binding
energy rather than transferring kinetic energy—this interaction is examined in Section 4.6.
Note that the assumption of a “point-like” interaction requires that the physical size of the
DM is much smaller than Ay—this is sensible up to masses of order ~ 10*” GeV, at which
point the gravitational radius of the DM exceeds Arp.

In Figure 4.6 we constrain the DM elastic scattering cross section per nucleon oy, as a
function of DM mass m, using the different classes of observables described above. Note that
the scattering cross sections constrained here are incredibly large > 107!° ecm?—however, the
constraints from WDs reach to very large masses for which no other constraints exist. At
these masses, the most stringent limits on DM elastic scattering are from CMB and Lyman-
« spectrum analysis [131], which constrain %’Z < 100 Thege cross sections also require

GeV *
that the DM involved be macroscopically large, of order or larger than the trigger size, and

so the interaction is decidedly not “point-like.” This fact does not weaken our constraints,
however, since the energy transferred to each ion in the DM’s path is greater than ~ MeV.

Collision and Decay Constraints

In order to constrain a DM model through its annihilations or decays within a WD, we
require that it satisfy the ignition condition (4.17). Consider a single annihilation or decay
with fsuy = 1 that releases a spectrum of SM particles. As shown in Section 4.3, the constraint
has minimal dependence on the released species if the typical energy € of secondary products
is greater than an MeV. In the case of neutrinos, we may simply demand that e is sufficiently
large that a single neutrino can ignite the star. With this schematic for the DM interaction,
we can constrain the cross section for collision o, and lifetime 7,,. This is done in Figures 4.7
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Figure 4.6: Constraints on DM-carbon elastic scattering cross section. Bounds come from
demanding that the DM transit triggers runaway fusion (4.14) and occurs at a rate (4.16)
large enough to either ignite a 1.25 M WD in its lifetime or exceed the measured SN rate
in our galaxy (blue shaded). We also demand that the DM penetrates the non-degenerate
stellar envelope, taken at the highest densities, without losing appreciable kinetic energy.
Constraints from the CMB /large-scale structure [131] are depicted as well.

and 4.8 in the case of transiting DM using the different classes of observables for DM-DM
collisions and DM decays, respectively.

Of course there are existing limits on DM annihilations and decays, complementary to
the ones placed from WDs. DM annihilations/decays inject energy and affect the ionization
history of our universe, which can be probed by measurements of the CMB temperature
and polarization angular spectrum [134, 132, 133]. These constraints are of order o,,v <
10-%7 C‘?B (15°&sy) for annihilations, and 7, > 107 Gyr for decay. There are also constraints
on DM annihilation/decays in our halo from the cosmic ray (CR) flux seen in large terrestrial
detectors. Here we provide a crude estimate of the expected constraints from CRs in the
case of DM annihilation (decays are qualitatively similar). A more detailed analysis is
beyond the scope of this work. The Pierre Auger Observatory [135] has detected the flux
of Ey ~ 10" GeV cosmic rays with an exposure of order Aps ~ 40000 km? sr yr. Ultra-
heavy DM annihilations m, > 10'% GeV will generally produce secondary particles of energy
€ 2 FEy, via final-state radiation. For a simple 2-2 process (e.g. xx — ¢q), the expected
number of final-state particles radiated at Ej;, due to QCD showers is approximated by the
Sudakov double logarithm

dovg m m
Nrag ~ — log< . )log (E—X) ~ 100, (4.30)

Aqep th
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Figure 4.7: Constraints on DM-DM collision cross section to SM products of energy € >
MeV. Bounds come from demanding that the DM transit interaction triggers runaway
fusion (4.17) and occurs at a rate (4.18) large enough to either ignite an observed 1.25 Mq
WD in its lifetime or exceed the measured SN rate in our galaxy (blue shaded). Also shown
are the CMB [132] (red) and CR flux (black) constraints on DM annihilations.

where «y is the QCD coupling constant. Similarly, the estimated number of final-state
particles at Ey, due to EW showers is &~ 50. We expect that CRs at this energy originating
in our galaxy will be able to strike the earth unattenuated. Thus, such events would affect
the measured CR flux of Pierre Auger unless

2
Px Rhalo
— ——— Npag X Appa S 1. 4.31
(mx) OxxV An d PA O ( )

Here we assume an average value for DM density p, ~ 0.4 GeV/cm? as a reasonable approx-
imation to the integral over our galactic halo volume. Surprisingly, the above CR constraints
are (within a few orders of magnitude) comparable to the constraints due to the observation
of long-lived WDs. This is actually due to a coincidence in the effective “space-time vol-
umes” of the two systems. A terrestrial CR detector such as Pierre Auger sees events within
a space-time volume (R3_ Rpalo X tdet ), Where Rger ~ 50 km, Ry ~ 10 kpe, and tge ~ 10 yr.
This is similar in magnitude to the WD space-time volume (R X Twp)-

It is important to note that there is a large parameter space in o, which will lead to DM
capture, thermalization, and core collapse in a WD. This is depicted in Figure 4.9, along
with the existing constraints on DM elastic scattering. As detailed in [136], direct detection
experiments such as Xenon 1T [137] are only sensitive to DM masses m,, < 10'7 GeV. For
even larger masses m, < 10?® GeV there are constraints from the MACRO experiment [138]
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Figure 4.8: Constraints on DM decay to SM products of energy € > MeV. Bounds come
from demanding that the DM transit interaction triggers runaway fusion (4.17) and occurs
at a rate (4.19) large enough to either ignite an observed 1.25 Mz WD in its lifetime or
exceed the measured SN rate in our galaxy (blue shaded). Also shown are the CMB [133]
(red) and CR flux (black) constraints on DM lifetime.

and from ancient excavated mica. The latter has been studied in [139]. We have similarly
estimated the bounds from MACRO assuming a detectable threshold of ~ 5 MeV /cm [138].

In the case of captured DM, we show the constraints on o, and 7, assuming a benchmark
value of the elastic scattering cross section o,, = 1073 cm?. With regards to DM-DM
collisions, we also assume a stabilizing radius for the collapsing DM sphere. This is done in
Figures 4.10 and 4.11—for simplicity, here we only show the constraints from the existence
of nearby, heavy WDs.

4.6 Q-balls

Having derived constraints on generic models of ultra-heavy DM, we turn towards a concrete
example. In various supersymmetric extensions of the SM, non-topological solitons called
Q-balls can be produced in the early universe [140, 141]. If these Q-balls were stable, they
would comprise a component of the DM today. For gauge-mediated models with flat scalar
potentials, the Q-ball mass and radius are given by

MQ ~ mSQ3/4, RQ ~ mngl/A‘, (4.32)

where mg is related to the scale of supersymmetry breaking, and @) is the global charge of the
Q-ball—in our case, baryon number. The condition Mg/Q) < m, ensures that the Q-ball is
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Figure 4.9: Viable parameter space (above the black line) in which DM-nucleon elastic
scattering leads to DM capture in a 1.25 Mz WD. All of this space is subject to constraints
on DM decay and DM-DM annihilation analogous to those given in Figures 4.11 and 4.10.
Note the blue region, reproducing Figure 4.6, indicates DM which causes SN via elastic
heating. We also indicate here estimates of the scattering constraints from cosmology, direct
detection, MACRO, and ancient mica [139].

stable against decay to nucleons. The interaction of relic Q-balls with matter depends on its
ability to retain electric charge [142]. We restrict our attention to electrically neutral Q-balls,
which induce the dissociation of incoming nucleons and in the process absorb their baryonic
charge. During this proton decay-like process (see Figure 4.12), excess energy of order Agcp
is released via the emission of 2-3 pions. We assume that for each Q-ball inelastic collision,
there is equal probability to produce 7° and 7#* under the constraint of charge conservation.
The cross section for this interaction is approximately geometric

oq ~ TRY, (4.33)

and thus grows with increasing (). Note that a sufficiently massive Q-ball will become a
black hole if Rg < GMg. In the model described above, this translates into a condition
(Mp/mg)* < Q.

We now determine the explosiveness of a Q-ball transit. This process is described by a
linear energy transfer

dE
(—> ~ Nion0QNre€, (4.34)
dz /1 gr

where the nuclear interaction results in N, ~ 30 pions released, each with kinetic energy
€ = 500 MeV. These pions induce hadronic showers which terminate in low-energy hadrons
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Figure 4.10: Constraints on DM-DM collision cross section to SM products of energy e >
MeV, assuming DM is captured with an elastic scattering cross section o,, = 107*? cm?.
Bounds come from the observation of 1.25 Mz WDs in local DM density. We consider the
annihilation rate during the in-falling thermalization stage (4.26) (blue shaded) and during
self-gravitational collapse (4.27) to a stable radius 7 = 107° cm (green shaded). See text
for details.

that rapidly transfer their energy to ions via elastic scatters, as discussed in Section 4.3.
The pions have a heating length Xy.q < Ar; however, we will see the Q-ball has a finite size
R 2 Xhad in the region we are able to constrain. So, as mentioned in Section 4.4, we take
the heating length to be Ly ~ Rg + Xnaqa ~ Rg. The ignition condition is then given by
equations (4.14) and (4.34):

1 gboom RQ 2 1
R > —=1 . 4.35
@~ Nion >\T max{ )\T 7 } (10 GGV) ( )

This implies 0 2 107'% cm? is sufficient to ignite a 1.25 Mz WD, which corresponds to a
charge Q > 10*2 (mg/TeV)*. Note that for sufficiently large @, the radius will grow larger
than Ap. This situation still results in ignition, however, as the energy ~ 10 GeV released
per ion is much larger than the ~ MeV needed per ion for fusion. Note finally that the Q-ball
interaction described above results in minimal slowing for Q-balls this massive, so transits
will easily penetrate the non-degenerate WD envelope (4.13).

The existing limits on Q-balls primarily come from Super-Kamiokande and air fluores-
cence detectors of cosmic rays (OA, TA) [143]. However, the constraints that come from
considering the ignition of WDs are in a fundamentally new and complementary region of
parameter space. These are plotted in Figure 4.13. We have also included the constraints
that result from gravitational heating of a WD during a Q-ball transit, as in [103].
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Figure 4.11: Constraints on DM decay to SM products of energy € > MeV, assuming DM
is captured with an elastic scattering cross section o, = 10732 ¢cm?. Bounds come from the
observation of 1.25 Mz WDs in local DM density. We consider the rate of decays during
the in-falling thermalization stage (blue shaded) and for a decaying DM core (green shaded).
See text for details.

Figure 4.12: Interaction of a baryonic Q-ball with a nucleus A. The Q-ball destroys the
nucleus and absorbs its baryonic charge, while the excess energy is radiated into roughly A
outgoing pions of energy Aqcp.
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Figure 4.13:  Constraints on Q-ball DM. Bounds come from demanding that the Q-ball
interaction during a DM transit is capable of igniting WDs, occurring at a rate large enough
to either ignite a single observed 1.25 Mz WD in its lifetime (WD in local DM density is
blue shaded) or exceed the measured SN rate in our galaxy. Also shown is the corresponding
constraint from gravitational heating of WDs (orange shaded), and existing limits from
terrestrial detectors (red) [143].

4.7 Discussion

The detection of ultra-heavy DM is an open problem which will likely require a confluence of
astrophysical probes. Here we present a guide to constraining these candidates through DM-
SM scatters, DM-DM annihilations, and DM decays inside a WD that release sufficient SM
energy to trigger runaway fusion. In particular, we calculate the energy loss of high-energy
particles due to SM interactions within the WD medium and determine the conditions for
which a general energy deposition will heat a WD and ignite SN. Ultra-heavy DM that
produces greater than 10'® GeV of SM particles in a WD is highly constrained by the
existence of heavy WDs and the measured SN rate. The formalism provided will enable
WDs to be applied as detectors for any DM model capable of heating the star through such
interactions. We have done so for baryonic Q-balls, significantly constraining the allowed
parameter space in a complementary way to terrestrial searches.

We have explored briefly the application of this WD instability to self-gravitational col-
lapse of DM cores, which has very interesting possibilities. The decay or annihilation of DM
which is captured by a WD and forms a self-gravitating core is highly constrained for DM
with mass greater than 10'® GeV. In addition, such collapsing cores can provide enough
heating via multiple annihilations to ignite the star for much smaller DM masses than those
considered here, e.g. 10" GeV, and can induce SN through other means such as the formation
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and evaporation of mini black holes. This is addressed in Chapter 5.

Finally, in addition to the constraints mentioned above, the general phenomenology of
these DM-induced runaways will be the ignition of sub-Chandrasekhar mass WDs, possibly
with no companion star present. Some of the mechanisms considered above are also likely
to initiate fusion far from the center of the star. This is in contrast with conventional single-
degenerate and double-degenerate mechanisms, which require a companion star and ignite
fusion near the center of a super-Chandrasekhar mass WD [104]. This raises the tantalizing
possibility that DM encounters with WDs provide an alternative explosion mechanism for
type Ia SN or similar transient events, and that these events may be distinguishable from
conventional explosions. Understanding and searching for possible distinguishing features of
DM-induced events is an important follow-up work.
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Chapter 5

Type Ia Supernovae from Dark
Matter Core Collapse

5.1 Introduction

Dark matter (DM) accounts for over 80% of the matter density of the Universe, but its
identity remains unknown. While direct detection [144] is a promising approach to identifying
the nature of DM, searches for indirect signatures of DM interactions in astrophysical systems
is also fruitful, particularly if the unknown DM mass happens to be large.

It was recently suggested [103] that white dwarfs (WD) act as astrophysical DM detectors:
DM may heat a local region of a WD and trigger thermonuclear runaway fusion, resulting
in a type Ia supernova (SN). DM ignition of sub-Chandrasekhar WDs was further studied
in a companion paper [3], where we showed that generic classes of DM capable of producing
high-energy standard model (SM) particles in the star can be constrained, e.g., by DM
annihilations or decay to SM products. As an illustrative example, [3] placed new constraints
on ultra-heavy DM with masses greater than 10! GeV for which a single annihilation or
decay is sufficient to ignite a SN.

Here we examine the possibility of igniting SN by the formation and self-gravitational
collapse of a DM core. We study two novel processes by which a collapsing DM core in a
WD can ignite a SN—these were first pointed out in [3], and are studied here in more detail.
If the DM has negligible annihilation cross section, collapse may result in a mini black hole
(BH) that can ignite a SN via the emission of energetic Hawking radiation or possibly as
it accretes. If the DM has a small but non-zero annihilation cross section, collapse can
dramatically increase the number density of the DM core, resulting in SN ignition via a
large number of rapid annihilations. Both of these processes extend the previously derived
constraints on DM in [3], notably to masses as low as 10° GeV.

A number of potential observables of DM cores in compact objects have been considered
in the literature. These include: (1) gravitational effects of DM cores on the structure of low-
mass stars [145, 146, 147, 148, 149], WDs [117], and neutron stars (NS) [150, 151, 152, 153],
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(2) BH formation and subsequent destruction of host NSs [154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168], and (3) anomalous heating from DM annihilations
or scatters in WDs and NSs [169, 170, 171, 172, 173, 174, 175, 176]. See also [177, 178] for
unique astroseismology signatures of possible low-mass bosonic DM cores. We emphasize
that the signature of a DM core igniting a type Ia SN is distinct from these, and thus the
constraints derived here are complementary. For instance, while it has been known that
DM cores which form evaporating mini BHs are practically unobservable in a NS, this is
decidedly not the case in a WD where (as we show) such BHs will typically ignite a SN.
Note that [118] considers DM cores in WDs which inject heat and ignite SN through elastic
DM-nuclear scatters—we discuss this process in more detail later as it pertains to our new
constraints.

The paper is organized as follows. In Sec. 5.2, we review the triggering of runaway fusion
by localized energy deposition in a WD. In Sec. 5.3, we summarize the necessary conditions
for DM core collapse and discuss the generic end-states of such collapse. In Sec. 5.4 and
Sec. 5.5, we derive constraints on DM cores which would ignite SN by the processes described
above, namely black hole formation and DM-DM annihilations. We conclude in Sec. 5.6.

5.2 Triggering thermonuclear runaway

Thermonuclear runaway in a carbon WD generally occurs when the cooling timescale of a
hot region exceeds the fusion timescale. Cooling is dominated by the thermal diffusion of
either photons or degenerate electrons, while the highly exothermic fusion of carbon ions
is unsuppressed at temperatures greater than their Coulomb threshold ~ MeV. Crucially,
the diffusion time increases with the size L of the heated region while the fusion time is
independent of L. This defines a critical trigger size and temperature for ignition:

L2 A and T 2 MeV = ignite supernova. (5.1)

Ar was numerically computed in [114] and is Ay ~ 107° c¢m at a number density ni,, ~
1032 ecm~3.

One can also consider, as in [3], the critical energy E,oom required to heat an entire
trigger region A3 to an MeV. E,oom ~ 101 GeV for njy, &~ 1032 cm™ and sharply increases
at lower WD densities—this agrees with the expectation that WDs grow closer to instability
as they approach the Chandrasekhar mass. Of course to trigger runaway fusion, an energy
in excess of &yoom mMust also be deposited sufficiently rapidly. The relevant timescale is the
characteristic diffusion time 74 across a region of size Ay at a temperature ~ MeV. This
diffusion time is also computed in [114] to be 7gi¢ &~ 10712 s at densities njo, & 103 cm™3.
Therefore a total energy £, specifically deposited within a trigger region < A3, and a diffusion
time < Tgir, will ignite a SN if:

E 2 Evoom = ignite supernova. (5.2)
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One possibility is that the necessary energy (5.2) is deposited directly to carbon ions,
e.g., by a transiting primordial BH [103]. It is also possible to deposit this energy indirectly,
e.g., by DM interactions releasing SM particles into the stellar medium [3]. To this end the
stopping distances of high-energy (> MeV) particles in a WD was calculated in [3], where
it was shown that hadrons, photons and electrons all transfer their energies to the stellar
medium within a distance of order Ay (the sole exception being neutrinos). We thus safely
presume that any & > Epeom released into these SM products inside A3, will be efficiently
deposited and thermalized within this region as well.

In summary, the rate of any process which deposits an energy € (defined to be localized
spatially within A3 and temporally within 74g) that satisfies (5.2) can be constrained. This
is done by either demanding that a single explosive event not occur during the lifetime of an
observed heavy > 1.2 M, WD!, or that the occurrence of many such events throughout the
galaxy in predominantly lower mass WDs not affect the observed SN rate. For simplicity we
just utilize the former here and the existence of a WD with properties:

Nion & 103! cm_3, pPWD = 3 - 108 ig,
cm

Here nj,, and pwp refer to the central density of the WD, and we relate this to its mass
and radius using the equation of state formulated in [120]. While the average density is
smaller by a factor ~ 107!, n;o, only changes by O(1) from the central value out to distances
~ Rwp/2 [130]. For such a WD, the relevant trigger scales are of order:

A~ 4-107° em,  Epoom = 7-10'% GeV, 1ag~4-107M s (5.4)

These values are approximate, but we expect they are accurate at the order of magnitude
level, as are the ensuing constraints. Finally, we assume the WD has a typical interior
temperature Tywp =~ keV and lifetime mwp ~ 5 Gyr [125].2

5.3 Dark matter core collapse

Here we review the conditions for DM capture, collection, and self-gravitational collapse in
a WD. As much of this discussion is already present in the literature, in what follows we
simply quote the relevant results. We assume throughout that the DM loses energy primarily
by short-range nuclear scatters. While other dissipation mechanisms are certainly possible
(such as exciting dark states or emitting radiation) we will not treat these here.

Consider DM with mass m, > 10 GeV and scattering cross section off ions o, 4. For
spin-independent interactions, o, 4 is related to the DM-nucleon cross section o,,, by

2
2 [ HxA 2 4 72
v = 42 (B4) Pghor, ~ AP 55)
Hxn

'For instance, the Sloan Digital Sky survey has cataloged > 10 such heavy WDs [127].

2The age of a WD is typically estimated by measuring its temperature and modeling the cooling over
time.
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where F?(q) is the Helm form factor [179], and ¢ ~ Mion¥rel ~ MionMax|v, viy| is the mo-
mentum transfer between the DM at velocity v and a nuclear target. Currently the most
stringent constraints on o,,, come from Xenon 1T [144]:

m
orn < 107 cm? (ﬁ) , (5.6)
It is also possible for DM to have spin-dependent interactions (e.g., Majorana DM) which
does not benefit from a A? coherent enhancement and is less constrained by direct detec-
tion [180]. WDs predominantly consist of spin-zero nuclei (*2C, 190), though as pointed out
by [156] DM capture/thermalization can proceed by scattering off a lower density of non-zero
spin nuclei (e.g., a small fraction of ¥C). For simplicity, we will restrict our attention here
only to spin-independent interactions.

Core formation

DM capture in compact objects has a long history [123, 124], though the usual formulae
must be modified to account for heavy DM requiring multiple scatters to be captured (e.g.,
see [3]). DM transits the WD at a rate

2
Px 2 Vesc
r rans "~ —R alos 5.7
t m WD< ) Uhal (5.7)

X Uhalo

where Ve ~ 2 - 1072 is the escape velocity and vhae =~ 1073 is the virial velocity of our
galactic halo. p, is the DM density in the region of the WD-—we may consider either
nearby WDs [127] with p, ~ 0.4 €Y or WDs close to the galactic center [128] where it is

expected that p, > 10% S€¥ [129]. Meanwhile, DM is captured by the WD at rate that is
parametrically

(5.8)

FCap ~ Ftrans - min |:17

Nscat :|
Ncap (Uhalo> .

Nscat ~ Nion0yaRwp is the average number of DM scatters during a single transit, and

Neap(V) ~ vaz is roughly the number of scatters needed for DM with velocity v asymp-
totically far 5%5? from star to become gravitationally bound, though with a necessary min-
imum of Ng,, > 1. More properly, I'c,, should be numerically calculated [181], though the
expression in (5.8) is parametrically correct. Based on the assumed WD parameters (5.3),
we find Neap(Vhato) > 1 for DM masses m, > 10 TeV; in this regime, the capture rate scales
as I'cap o 2(_3? as opposed to the usual I'cap, o< i)ﬁf—;‘ result that is often used.

We now turn to DM thermalization. This may proceed in either of two qualitatively
different regimes, orbital decay or terminal drift, depending on the strength of dissipation.
For simplicity we compute detailed constraints only for the case of orbital decay, which is
applicable in the case of sufficiently small DM-nuclei cross section o, 4, though we also briefly

comment on the dynamics of DM terminal drift.
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In the limit of orbital decay, DM within the WD follows gravitational orbits which grad-
ually shrink as the DM dissipates energy. We require here that the timescale of energy loss
is much slower than the DM orbital period, which is simply the gravitational free-fall time

in the star
b | —— 0.1 (5.9)
~ ~ 0.1 s. .
T Gpwp

The rate of energy loss due to nuclear scatters is given by

dE
dt

~ pwDO V> Max[v, Vioy), (5.10)

where vion ~ 1/ 2 &~ 4.10* is the thermal ion velocity and v is the velocity of the “in-

Mion
falling” DM. The maz function distinguishes between the regimes of “inertial” and “viscous”
drag, with the latter being relevant once v drops below v;,,. This dissipation is always small
on orbital timescales provided o, 4 is below a critical cross section
My

oM 310738 2<7nx>. 5.11
on PWD Uesctff o TeV ( )

In addition to the drag force of (5.10), nuclear scatters will inflict a slight Brownian motion
on the DM trajectory, though this only becomes important at cross sections well above oy.

An individual nuclear scatter will transfer a small amount of momentum dp < m,v to the
DM

dp ~ Mion Max([v, Vi), (5.12)

which is set by the ion momentum in the rest frame of the DM and is roughly constant for
hard scatters. Over the course of one orbit, an accumulation of momentum transfers will
yield a net change Ap. This accumulation is a Brownian process as each scatter transfers
momentum of roughly the same magnitude dp (5.12) but with a random direction, giving
Ap ~ 8p - NY2 where N ~ njon0, 4 max[v, vion] t is the number of scatters occurring during
an orbit. We find that Ap is small compared to the DM momentum m,v provided that
oya < og. Thus the DM undergoes negligible deflection during an orbit, and Brownian
motion may indeed be ignored for the case of orbital decay.

Thermalization in the orbital decay limit proceeds in three stages (e.g., see [156] for a
detailed derivation). First, the DM will pass through the star many times on a wide elliptic
orbit of initial size R; > Rwp set by the number of scatters during the first stellar transit:

m 1
Ri~R X : 5.13
WP (mion) maX[Nscata 1] ( )

The time for the DM orbital size to become contained within the WD is then:

m R, 1/2
t1 ~ X : , R, — R . 5.14
' PWDO x AVesc <RWD> ( WD) ( )
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Note that t; is parametrically shorter if the DM scatters multiple times in a single transit
Neeat > 1 (see (5.13)), corresponding to cross sections oy, > 107 cm?. This results in a
change of slope at 10~%' ¢cm? in the constraints shown in Fig. 5.1, 5.4, and 5.5. Subsequently
the DM completes many orbits within the star, losing energy according to (5.10). Eventually
the DM reaches velocities vy, and settles at a radius Ry, where its kinetic energy is of order
Twp and balances the gravitational potential of the enclosed WD mass:

TWD 7 my -1/2
~ ~ 10 (—) , 5.15
Ueh My 108 GeV ( )
TWD 1/2 m —-1/2
R~ [ —%2 )~ 500 (—X) . 5.16
o (GmXpWD> 108 Gev (5.16)

The DM first slows to v, in a time

ty ~ M (Vese = Vion)- (5.17)

)
PWDO x AVion

and then to vy, in a time that is logarithmically greater:

ts ~ tylog ( Tx ) , (Vion = Vin)- (5.18)

A DM core will thus form within the age of the WD for 0,4 < og if
t1 +to+t3 <Twp (form DM core). (5.19)

We now consider o, 4 > og, the regime of terminal drift, in which case the condition for
core formation is parametrically different than (5.19). In particular, the time required for
DM to settle to Ry, increases with increasing o, 4, which sets an upper bound op.x on the
cross sections for which a DM core can form within the age of a WD. In this scenario, O(1)
of the DM kinetic energy is rapidly lost in the first pass through the star. The dynamics are
then dominated by the drag force corresponding to (5.10)

Fa ~ pwp0oyav max(v, Vien, (5.20)

and the DM will fall towards Ry, on a predominantly radial trajectory with the infall velocity
given by the terminal speed at which F4 balances gravity. To estimate o,,.,, we consider
the extreme case of large o, 4 and a radial infall. Here F4 takes the linear form as v is small,
and the DM drifts always with the local terminal speed, yielding a drift time

i Rwp
t rift ™~ — 1 . 21
drift t 0og ( R, ) (5 )

Core formation occurs if g4 < Twp, which sets an upper bound . ~ 10! 0. Finally,
with o, 4 > o, the Brownian nature of nuclear scatters may become important before a DM
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particle reaches Ry, and its motion will then be a random walk with an inward gravitational
drift. Indeed, the terminal velocity may fall below vy, as the DM approaches the center
of the star, at which point the DM becomes thermal even outside of Ry, and equilibrates
with the stellar medium. The DM then settles into a Boltzmann distribution of temperature
Twp, in this case a Gaussian density profile with size Ry, in the center of the star. The
relevant core formation timescale is now the time required for thermal DM particles located
at some r > Ry, to settle into this distribution. But, such a biased random walk proceeds
precisely as Brownian motion about a center which drifts inward at the terminal speed—thus
the timescale for infall is just (5.21) and the bound oy, is valid regardless of the onset of
Brownian motion.

Asymmetric DM Collapse

First consider the evolution of a core of non-annihilating DM, herein referred to as asymmet-
ric DM [182, 183]. Upon formation, the DM core will steadily collect at Ry, at a rate I'cap.
If its density ever exceeds the WD density pwp, then the core will become self-gravitating.
The critical number of DM particles needed for the onset of self-gravitation is

pwo Ry, 32 < MMy )_5/2
N, ~ PWDTh 5 g2 (T , 5.22
& My 108 GeV ( )

while the total number of DM particles that can possibly be collected within mwp is simply:
Nite ~ I'capTwp- (5.23)

Thus self-gravitational collapse requires
Ngg < Nie, (core self-gravitates). (5.24)

This sets an upper limit on the DM mass that can form a self-gravitating core m, 2 100 TeV
(or Ryp < 0.1 km), taking the maximum possible capture rate I'cap = I'iyans and p,, = 0.4 f;!

Of course, this assumes that the DM core obeys Maxwell-Boltzmann statistics throughout
the collection phase. In general, the quantum statistics of DM with velocity v in a core of
size N becomes important once the de Broglie wavelength of individual DM particles exceeds
their physical separation in the core. For the thermal DM population at Ry, this occurs

after it has collected a number:

Tap
(GPWD ) 3/2

which is greater than N, for all DM masses m, 2 GeV. In the case of bosonic DM, if the core
reaches Nqu, tn before the onset of self-gravitation it will begin populating a Bose-Einstein
condensate (BEC). A more compact BEC could then self-gravitate earlier, as considered
by [154, 158, 157] in a NS. We find this is not possible in a WD, namely Nou, th > MNite
even for light bosonic DM m, < GeV. Thus the condition for core collapse is indeed (5.24).

NQM, th 7~ (mXTWD)3/2R§h ~ ~ 1052, (525)
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For simplicity, we focus on DM which scatters infrequently with the medium, o, 4 < o4,
see (5.11). The orbital timescale of the constituents of a collapsing core decreases faster than
the timescale of energy loss due to nuclear scatters, so in this regime the DM trajectories
will continue to have the form of slowly decaying orbits during the entire collapse.

In summary, the conditions (5.19) and (5.24) on {m,, oy, } parameter space for which a
DM core forms and collapses in a WD are depicted in Fig. 5.1. One can check that for DM
masses and scattering cross sections satisfying (5.24), the left-hand side of the core forma-
tion condition (5.19) is ultimately dominated by ¢;. We also show a rough amalgamation
(e.g., see [130]), extending to large DM masses and cross sections, of the constraints from
underground direct detection experiments including Xenon 1T [144].

We now turn to the dynamics of collapse. In order for a self-gravitating DM core to
shrink, it must lose the excess gravitational potential energy. The “cooling” timescale t.q
(leading to gravitational heating of the DM) is initially independent of DM velocity but
hastens once the DM velocity exceeds vi,,. For a collapsing DM core with a number of
particles N, the velocity and characteristic collapse time at size r is:

/ GNco
/Ucol(r) ~ +W7

m U2 U;
teol (1) ~ —2X°L__ ¢, min |1, —= 5.26
i(r) dE [dt(vee) Qmm{ ’ vcol]’ (5.26)

where we have used elastic scatters (5.10) as the dominant dissipation mechanism. This
should be modified once v, = 21072 and the momentum transfer becomes ~ Aqcep. At
this point the interaction is not described by elastic scattering off nuclei, but an inelastic
scattering off constituent quarks. This is a non-perturbative QCD process that will result
in the release of pions. Since the typical momentum transfer here saturates at ~ Aqcp, the
energy transfer per scatter scales linearly with velocity and is roughly of order ~ Aqcpveol-
For simplicity, we assume that the cross section for this inelastic interaction is also of order
o4 (with the form factor (5.5) set to A™2). The rate of energy loss in this regime is
parametrically

dE

E ~ AQCDnionaxAvgol- (527)

Thus at velocities v, > 2 - 1072, the characteristic core collapse time saturates to te, ~
nma;”m. One can also check that t., is always greater than the (decreasing) dynamical
time ~ 7 /veol.

We emphasize that while cooling by nuclear scatters during core collapse is the minimal
assumption, other dissipation mechanisms (e.g., radiating as a blackbody) could become
efficient due to the increasing DM density, as considered by [154]. However since this is more
model-dependent, we do not consider any such additional cooling mechanisms here.

Actually, the initial number of collapsing particles can be parametrically greater than
the critical self-gravitation number N, > N, As discussed in [3], this occurs when the



CHAPTER 5. TYPE IA SUPERNOVAE FROM DARK MATTER CORE COLLAPSFEG9

time to capture a self-gravitating number is much less than the time for the DM core to
collapse, i.e., when Ny, < I'capteor. We find this is relevant for DM masses m,, 2 104 GeV.
Here the collapsing core will inevitably “over-collect” to a much larger number until these
two timescales become comparable Ny ~ I'capteol, although the density profile of the core
at this point is highly non-trivial. It is worth noting that the collapsing core would likely be
non-uniform even in the absence of over-collection, as emphasized in [160]—realistically, the
core might develop a “cuspy” profile similar to the formation of galactic DM halos. In either
case, a precise understanding of the DM core density profile is beyond the scope of this work.
For simplicity we will assume a core of uniform density with a number of collapsing particles

Ncol - InaX[ng, Fcaptcol]' (528)

However, this assumption of a uniform density core is likely a conservative one with regards
to our constraints. For asymmetric DM, a density peak within the collapsing core (e.g. due
to over-collection) would collapse to BHs of smaller mass than otherwise assumed and (as
we show) would still ignite a SN. For annihilating DM, a density peak may have a greater
rate of annihilations depending on the density profile which would ignite a SN sooner than
otherwise assumed.

Though irrelevant prior to self-gravitation, QM effects may become important during
the collapse itself. For a number of collapsing particles N.o = Ny, this occurs once the de
Broglie wavelengths of DM particles in the core begin overlapping: 1 ~ —1. That is,

Mveol(r)  NY/PT
once the core has shrunk to a size
1 m —-13/6
Row ~ ——— &3 107 em (X o) (5.29)
Gm3 Nof 108 GeV
and has a density
N, m2 Ty, GeV 5
par ~ 8 TOCWD g2 ( T ) (5.30)
Réy PWD cm? \ 108 GeV

Of course this assumes that the core has not already formed a BH GNym, < Rqum. This
means that QM collapse is only relevant for DM masses:

my S p\;V—D ~ 10° GeV, (QM affects collapse), (5.31)
Tiyp

for which it is indeed the case that N., = Ng. Note that the extreme densities of the DM

core (5.30) are not necessarily problematic as we always assume the DM is point-like with

no substructure; however, with an explicit model one should be wary of higher dimension

operators modifying the collapse dynamics by potentially triggering new interactions.

Fermionic DM If DM is a fermion, (5.29) is precisely the radius of stabilization due to
degeneracy pressure. A degenerate DM core will sit at Rqn until it collects an additional
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number of particles N > Ny, and subsequently shrinks as 7 ~ W Note that additional

captured DM particles are still able to dissipate energy and decrease their orbital sizes
below the thermal radius under the gravitational influence of the compact core. For DM
masses (5.31) the collection time — is always far greater than the cooling time . (5.26),
and thus the shrinking proceeds adlabatlcally at a rate ['cap.

Fermi pressure is capable of supporting a self-gravitating degenerate DM core until it
exceeds the Chandrasekhar limit

M3 m -3
NE o Pl g 188 (—X> . 5.32
Cha mg”( 108 GeV ( )

Thus the fermi degenerate core will collapse to a BH as long as
N&y. < Nige,  (BH from degenerate core), (5.33)

which is the case for m, 2 10% GeV, assuming I'cap = I'irans and p, = 0.4 fgg We note that
the presence of attractive e.g., Yukawa-type DM self-interactions can drastically reduce the
critical number required to overcome Fermi pressure (see [164]), though we do not consider
this possibility here.

Bosonic DM If DM is a boson, once the DM core collapses to (5.29) it starts populating
a BEC. Further collapse results in increasing the number of particles in the BEC, with the
density of the non-condensed particles fixed at pgum, see [L60] for details. The size of the
BEC is initially set by the gravitational potential of the enveloping self-gravitating sphere,
and particles in the BEC have a velocity set by the uncertainty principle:

1 1/4 —7/4
T'BEC (—2> ~ 10_16 cm (L> s

Gpqum?, 108 GeV
1 m 3/4
- ~ 10-° ( x_> , 5.34
VBEC My TBEC 108 GeV (5.34)

The BEC sits at rggc until it becomes self-gravitating at a number:

3 —5/4
PQMTBEC 16 ( My )
Nigo, o ~ POMIBEC 9 qpt6 (T . 5.35

BEC, s My 108 GeV ( )

A self-gravitating BEC will continue to add particles, and in the process shrink as rggc ~

m. The rate at which DM particles are added to the BEC is set by the rate at which
X
the non-condensed DM core sheds the excess gravitational energy. The time to condense a

number of particles N < N, is:

N
teec(N) ~ N

sg

tcol(RQM>- (536)



CHAPTER 5. TYPE IA SUPERNOVAE FROM DARK MATTER CORE COLLAPSET1

L Ny

logm(a')(,,/cmz)
2

_48]]]]]]]]]]]]]]]]
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Mass log,y(m, /GeV)

—_
=}

Figure 5.1: Parameter space {m,,o,,} of asymmetric DM in which a DM core forms and
collapses within 7wp ~ 5 Gyr in a WD of local DM density p,.. See text for details.

Note that the typical DM velocity in the non-condensed DM sphere at this stage is:

G Nggmy,

UCO](RQM) ~ RQM

N My 1/3
~0.3 (—108 GeV) . (5.37)

The pressure induced by the uncertainty principle is capable of supporting the self-
gravitating sphere of DM particles until it exceeds the so-called bosonic Chandrasekhar
limit:

M? m -2
Nb o~ 2Pl 102 <—>< ) .
Cha mi 0 108 GeV ’ (5.38)

which is far less than Ny, for all DM masses (5.31). Interestingly, this limit is dramatically
affected by even the presence of miniscule DM self-interactions [184]. These may be a generic
expectation given the already assumed scattering cross section off nucleon, as emphasized
in [163]. In the case of a repulsive A|x|* interaction potential where A > 0, no stable
configuration exists beyond a critical number

M21 A ]\421 1/2
Neha, selt ~ m—;’ (1 + 32—7””—12)) : (5.39)
X X

We find that N, . is still less than Ny, as long as A < 1072, An attractive self-interaction
could reduce the necessary critical limit, although this is highly model-dependent. From
here on, we will use (5.38) as the relevant critical limit.
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Annihilating DM Collapse

Now consider the case of DM with an annihilation cross section oy, into SM products, e.g.,
quarks. We will restrict our attention here to DM masses m, < Epoom such that multiple
annihilations are necessary to ignite a SN. As in the asymmetric case, for simplicity we focus
on DM which scatters infrequently, o, 4 < og.

As described above, the thermalizing DM constitutes a number density of DM through-
out the WD volume. Depletion of this in-falling DM is dominated by the total rate of
annihilations near the thermal radius:

(Ceapta)”

. 5.40
Ry, 40

Dingan ~

Therefore a DM core at Ry, will steadily collect at a rate roughly I'c,, as long as
Cintann < Teap,  (steady DM collection). (5.41)

Of course this collecting DM core is also depleting via annihilations, and will at most reach
an equilibrium number

Fca R3 1/2
N ~ (P—th) : (5.42)

O-XXUth

This results in a more stringent condition for self-gravitation:
Nyg < min|[Nyge, Neg), (core self-gravitates). (5.43)

If Ngg > Nijge or Ngg > Neg, the DM core has either saturated at a number Ny, or is still
continuing to collect at a number Ny, whichever comes first. In either case if the core
does not reach self-gravitation (i.e. (5.43) is not satisfied), we found that the total rate of
annihilations within a core subregion of volume A3, < RJ is much too small to ignite a SN.

We thus turn to core collapse, during which annihilations become more rapid as the core
shrinks. The conditions (5.19), (5.41) and (5.43) on the {m,, o\, v} parameter space for
which a collapse takes place are depicted in Fig. 5.2. Here we have taken a fixed fiducial
value of the scattering cross section o,, = 107 ¢cm?, though the allowed parameter space of
collapse in the case of annihilating DM exists for any o, within the region shown in Fig. 5.1.
We have checked that there are no existing constraints at these low DM annihilation cross
sections, for instance from DM annihilations in the galactic halo contributing to the observed
cosmic ray flux.

As before, a self-gravitating DM core shrinks at a rate set by cooling (5.26). However the
core is also annihilating so that N(r) is decreasing from its initial value N, (5.28). When
the DM core is at a radius r, the total rate of annihilations is:

N2

FXX ~ 7’_3 OxxVcol, (544)
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Figure 5.2: Parameter space {m,, 0y, v} of annihilating DM in which a DM core forms and
collapses within 7wp ~ 5 Gyr in a WD of local DM density p,. We take a fixed value of the
DM-nuclei scattering cross section o,, = 107 cm?. See text for details.

The collapse will initially proceed unscathed, with the number of collapsing particles roughly
constant N(r) &~ N, until the characteristic annihilation time % is of order the collapse
time t.,1. The size of the core at this stage is an important scale, which we denote as R,,,.
Note that R,, as defined is trivially smaller than Ry, if conditions (5.41) and (5.43) are
satisfied. The expression for R,, depends on whether this takes place during the “viscous”
or “inertial” drag regimes, or in the inelastic scattering regime (5.27). Written in terms of

the annihilation cross-section oy, v, this scales as:

(5.45)

R (JXXUCO1)1/3 Veol < Vion OF 2+ 1072 < v
o 25y, 21072
(Uxxvcol) Vion < Vcol <

Note that v, is to be evaluated at R,, in these expressions.

Once the DM core collapses to within R,,, it begins depleting appreciably. We call this
an annihilation burst. Once r < R,,, the continued evolution of the DM core is driven by
two competing effects: scatters with the stellar matter drive the core to collapse to smaller
radii, as before, but at the same time annihilations drive the core to expand by weakening the
gravitational potential. We do not work out this detailed evolution, but rather conservatively
consider the constraints only for r 2 R,,.

For DM masses (5.31), if R,, > Rqu then the core effectively annihilates before any
quantum statistics become significant. On the other hand, if R,, < Rqm then the core
remains roughly intact and can form a fermi degenerate core or BEC, as in the asymmetric
DM case. We examine the subsequent evolution of the core in the case R,, < Rqum, but
with the added presence of annihilations.
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Fermionic DM If DM is a fermion, a fermi degenerate core will continue to collect DM
particles and shrink (and thus the rate of annihilations increases). During this stage, the
degenerate DM core can saturate at an equilibrium Nf(x when the annihilation rate I'y, is
of order the shrinking rate set by DM capture I'c,p,. If N;X < Ny, the fermi degenerate core

sgy
saturates while still roughly at Rqum (5.29). If Nf(x 2 Ny, the core substantially shrinks
before saturating at a number:

~Y

/3
NE ~ ap N> N, 5.46
XX Gmi(axxvcol)l/ 3 e ¢ ( )

Of course, for sufficiently low annihilation cross section a saturated core may never form in
the WD lifetime Ny < N)f(X or before forming a BH Néha < N>f<x'

Bosonic DM If DM is a boson the core will condense particles into a BEC. As the non-
condensed core collapse proceeds at constant density, it will never burst as the rate of an-
nihilations in the enveloping sphere only decreases. However the BEC can saturate at an
equilibrium number when the annihilation rate in the compact region becomes of order the
condensation rate given by (5.36). We have checked that this saturation is never reached
before the BEC self-gravitates at a number (5.35). Subsequently the BEC adds particles
from the core and shrinks (and the rate of annihilations in the BEC increases). The self-
gravitating BEC then either saturates at a number

b
NXXN<

or first reaches N, when annihilations are negligible and forms a BH.

N. 1/5
) . N\ > Npgc, s 5.47

Endgame

There are many possible outcomes of the DM core collapse in a WD.For asymmetric DM
the core can collapse to a mini BH, either directly or by first forming a fermi degenerate
core or populating a BEC.As detailed in Sec. 5.4, such a BH can ignite a SN by emission of
Hawking radiation or, as we motivate, possibly even during its accretion. For annihilating
DM the core annihilates at an increasing rate until collapsing to R,,, at which point it is
effectively annihilating an O(1) fraction. As detailed in Sec. 5.5, this large number of rapid
annihilations can even ignite a SN before the core reaches R, .

It is also the case that the DM core is directly heating the WD via nuclear scatters. This
may be sufficient to ignite a SN, as first calculated by [118]. We estimate the total energy
deposited by a collapsing core of size r inside a trigger region A3, during a time 74;z as:

; A’
Ealr) ~ Negmy v, (Zd—flf) - min [1, (TT) ] . (5.48)
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In considering this process, [118] additionally required that (1) the DM core be self-
thermalized (e.g., due to DM-DM self interactions) and (2) the core must uniformly heat
a trigger region A3, thus restricting the analysis to core sizes r > Ap. Neither of these
requirements are necessary, however. While a deposited energy well inside the trigger region
may not immediately ignite a conductive flame as per [114], it will eventually if the energy is
sufficiently large (5.2) once the heat has diffused out to a size ~ Ar (see [3] for a more detailed
discussion of this evolution). This observation allows the derived constraints of [118] to be
extended to larger DM masses: we simply require &4 2 Epoom satisfies the condition (5.2)
in order for scattering to ignite a SN.

We emphasize that the heat deposited in the stellar matter during a DM collapse would
be drastically affected by the presence of an additional cooling mechanism which drives the
collapse, e.g., emitting dark radiation. In particular, if such a cooling mechanism is present
and efficient in a collapsing core, ignition due to heating by nuclear scatters as in [118] might
not occur. As we show in Sec. 5.4 and Sec. 5.5, however, most collapsing DM cores would
still ignite a SN from BH formation or annihilations. For this reason, while we show the
extended constraints on DM-nuclear scatters from (5.48), we will also consider and show the
consequences of core collapse to smaller radii, below the size at which nuclear scatters (as
the sole cooling mechanism) would deposit sufficient energy to be constrained.

5.4 Black hole-induced SN

As described in Sec. 5.3, a BH formed by DM collapse will have an initial mass (shown in
Fig. 5.3):
N&amy  my $10° GeV  fermionic DM
Mgy ~ ¢ N&amy  my, S 10° GeV  bosonic DM . (5.49)
GNem,,  my 2 10° GeV

Note that any such BH will necessarily have some angular momentum. The DM core initially
inherits its angular velocity from the rotating WD, though loses angular momentum to the
stellar medium as it cools and collapses. We find the dimensionless spin parameter of the
initial BH is always small GﬁgH < 1072, assuming a WD angular velocity of Qwp ~ 0.01 Hz.
Thus the newly formed BH is approximately Schwarzschild, and has a radius:

_ Mgy
Fate of a BH
It is generally believed [185] that BHs have a temperature
1 Mgy -
Tsn = ~6MeV | ——F— 5.51
B Y Ren ¢ <1039 Ge\/) ’ (5:51)
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Figure 5.3: Initial black hole mass formed by DM core collapse in a WD. We take a rep-
resentative value of the scattering cross section, though Mgy is independent of o,,, except
for large DM masses where Ny < I'capleo. As plotted Mpy cuts-off at points where a DM
core does not even form or collapse, or where a fermi degenerate core does not have time to
collect a Chandrasekhar number N&, ..

and lose mass by emitting particles at a rate

dMBH [0
= —— .H2
()~ ey 5

where a(Mgpy) encodes the different particle emission rates, roughly increasing as the BH
temperature exceeds the mass threshold of a new species. Detailed calculation [186] finds
a ~ 2.8-107* for Tgy < MeV, accounting for emission of photons, gravitons, and three
neutrino species. Counting only experimentally verified SM degrees of freedom, the emission
rate effectively asymptotes to o & 4.1- 1072 for Tgy = 100 GeV [187]. Thus an evaporating
BH (by this we mean a BH which only Hawking radiates without any accretion)® has a
lifetime less than 7wp ~ 5 Gyr if:

Mgy < 2-10%® GeV  (evaporate in Twp). (5.53)

The BH primarily accretes nuclear matter and additional DM particles: which dominates
depends on the BH mass, or more precisely the DM parameters. In the hydrodynamic
spherical so-called Bondi approximation, the former is given by

dMgp G Mgy \ 2
= 47\ . 54
( dt >WD ™ < Cg ) PwWDC (55 )

3 An evaporating BH loses angular momentum rapidly and has a decreasing spin parameter—thus rotation
is negligible throughout the evaporation [188].




CHAPTER 5. TYPE IA SUPERNOVAE FROM DARK MATTER CORE COLLAPSET7

where ¢, &~ 2 - 1072 is the sound speed (approximated from numerical calculations in [189]),
and A ~ O(1) [190].

The accretion of DM potentially has two contributions. Under the influence of the BH
gravitational potential, individual DM particles will continue reducing their orbit size below
the thermal radius by scattering with the stellar medium. Once it crosses the angular
momentum barrier 4G Mgy, the DM will rapidly fall into the BH [190]. A steady state is
soon achieved after the BH is formed where DM feeds the BH at a rate set by the capture

rate: M
< de) = Deapiy (5.55)
X

There may also be large overdensity of DM particles in the vicinity of the newly formed
BH, which is likely if the DM core collapses with non-uniform density. In the collisionless
spherical approximation [190], a DM population with density p., and velocity v, far from

the BH accretes at a rate:
dMBH . 167TpooG2M]_g,H
dt ), N '

o (5.56)
Such accretion is especially relevant for bosonic DM if the BH is formed from a compact
BEC within an enveloping non-condensed DM core [160]. For our purposes we will only
consider (5.56) in this scenario, where p, is given by the very large density (5.30) and v, is
given by (5.37).

The fate of a BH is determined by:

dM, M dM dM
BH _ _ BH + BH + BH . (557)
dt At )y it ) wp it ),

We first consider BHs that are not formed from a BEC. Without DM accretion, we find

Hawking evaporation beats Bondi accretion, i.e., (dﬂng)HR > (%%)WD at masses:
Mgy < 10°® GeV,  (Hawking beats Bondi). (5.58)

Including the steady accretion of DM (5.55), we find Hawking evaporation beats the largest

possible DM accretion, i.e., (d]\ng)HR > (d]\ng)X when I'cap = I'trans at masses
My < 2-10% GeV,  (Hawking beats DM), (5.59)

where Hawking also clearly beats Bondi. The critical mass My at which dMpy/dt =
0 depends on the strength of the steady DM accretion (5.55), and for the relevant DM
parameter space lies in the range:

Mgy ~= 2 -10* — 10*® GeV, (5.60)

where the upper end of this range holds when Bondi dominates the accretion, and all lower
values apply when steady DM accretion (5.55) dominates.
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We now consider the timescales involved in accreting or evaporating, which can estimated

by the characteristic time:
Mgy

= dMpy/dt

If the BH is evaporating, 7sg o< M3y and is set by the time spent at the largest BH mass,
i.e. the initial BH mass. If the BH is dominantly accreting by Bondi then gy o Mgﬁ is set
by the time spent at the smallest BH mass, If, however, the BH is dominantly accreting by
DM (5.55) then msy o< Mgy is instead set by the time spent at the largest BH mass—this
is the BH mass at which Bondi accretion takes over 103 < Mgy < 10*! GeV (depending on
the capture rate I'c,p). Miraculously, we find 7y &~ Gyr for BH masses Mpy ~ 10%® GeV,
coinciding with the upper end of (5.60) where Bondi accretion becomes of order the Hawking
evaporation. This can also be seen from the fact that M.y (5.60) lies just below the BH
mass necessary to evaporate within 7wp &~ 5 Gyr in the absence of any accretion (5.53).
Thus it is clear that whether the BH is evaporating or accreting, it will necessarily do so in
a characteristic time less than a Gyr.

Returning to the case of BHs formed from a BEC, we find that the DM accretion of the
non-condensed enveloping DM core (5.56) in fact beats Hawking evaporation over the entire
DM mass range of interest. Note that this outcome is strikingly different from the analogous
process in a NS, where it has been found that such BHs always dominantly evaporate [160].
The difference arises from the fact that the density of the DM core (5.30) is significantly
smaller at NS densities/temperatures and at the lower DM masses considered by [160].

We now briefly address the question: is Bondi always a valid estimate for the accretion of
nuclear matter onto the BH? As is well-known, accretion could be in the Eddington-limited
regime: this occurs when the radiation produced by in-falling matter exerts a significant
pressure so as to back-react on the accretion. In the spherical approximation, this yields a
maximum luminosity:

(5.61)

TBH

47TGMBHmion
O_ )

Leqd = (5.62)

where ¢ is the dominant interaction by which outgoing radiation transfers momentum to the
in-falling matter. Assuming photon energies near the horizon w 2 MeV, this is either set
by hard Compton scattering off electrons o ~ Wi‘“—; ~ 100 mb (ﬁ)_1 or inelastic photo-
nuclear interactions off ions ¢ ~ mb (see [3] for details). Accretion is Eddington-limited
if € - (dMpg/dt)wp exceeds Leqq, where € is the radiation efficiency. If we conservatively
take € ~ 0.1, we find Bondi accretion is not Eddington-limited for BH masses less than
Mgy < 10%° GeV. Note that even if the accretion is Eddington-limited at larger BH masses,
the timescale 7gy then becomes independent of Mgy and is still much less than a Gyr.

The accretion could also be stalled by the stellar rotation: this occurs when the in-
falling matter possesses excess angular momentum that must be dissipated to accrete, e.g.,
by viscous stresses during a slow phase of disk accretion [190]. [162] examines the effect
of rotations for mini BHs in NSs, concluding that kinematic viscosity can maintain Bondi
spherical accretion as long as the BH mass is sufficiently small. Based on the analysis of [162],
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we crudely estimate that Bondi accretion would hold for Mgy < 10% GeV, assuming a
(conservative choice of) WD viscosity [191]. Even if the BH accretion is stalled beyond this
point we suspect the accretion timescale is still much smaller than a Gyr, though a detailed
understanding is beyond the scope of this work.

Constraints

Hawking. The Hawking radiation emitted by a BH will ignite a SN if

gBH . min[TdiH, TBH] (563)

«
T 2ME,
satisfies the condition (5.2) Egy 2 Evoom. If the BH is evaporating, then 1gy is just its
remaining lifetime (which is greater than 74 for BH masses Mpy = 10?2 GeV). Even if a
BH is technically accreting, it is possible to ignite a SN by the large amount of Hawking
radiation emitted during its infancy. In this case, one can check that (5.63) still approximates
the dominant contribution to the total energy emitted during a time 7q;g.

Assuming 7g¢ < 7TH, applicable for all starting BH masses we consider, Hawking is

explosive at BH masses:
MBH. boom =~ 2 - 10*° GeV. (5.64)

Of course, any DM core that results in a BH initially less than Mgy, boom ignites a SN upon
formation. In addition, DM cores that result in a BH initially greater than Mgy boom but
less than the critical threshold M, evaporate and eventually ignite a SN within a Gyr.
Coincidentally, any BH initially greater than M, will not ignite a SN via Hawking but will
instead accrete—this is evident from the fact that (5.64) lies just below the lower end of
the critical threshold (5.60). However this is notably not the case for accreting BHs formed
from a BEC: we have checked that all BHs formed from a BEC immediately ignite a SN by
Hawking despite the large accretion rate from the large enveloping DM density.

Accretion. Finally, we comment on the final outcome of an accreting BH. It is conservative
to suppose that such a BH simply eats the star. However, it is plausible that accreting BHs
in WDs ignite SN once they grow sufficiently large. We can think of at least two potential
mechanisms for this:

(1) The flow of stellar matter into the BH leads to the formation of a sonic horizon
R, ~ GMpgy/c? ~ 10* Rgy, with supersonic flow as the matter enters free-fall near the BH.
The kinetic energy of a carbon ion at the sonic horizon is mi,,c? ~ MeV, increasing as it
falls inward. It is reasonable to suppose that the flow inside the sonic horizon is not perfectly
radial, in which case this violent swarm of carbon ions may ignite thermonuclear fusion. BH
masses Mgy = 10 GeV have sonic horizons R, 2> A\r. Assuming substantial non-radial
flow, such BHs may then have carbon ions colliding at large enough energies to overcome the
coulomb barrier and initiate fusion over a large region. As this fusion is happening within the
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sonic horizon, a resulting fusion front would need to propagate out as a supersonic shockwave
(e.g., a so-called detonation front [125]) in order to ignite the rest of the star.

(2) Inflow onto the BH also increases the density of stellar matter near the BH, for
instance by roughly a factor ~ 10 — 100 at the sonic horizon [190]. This increased density
may be sufficient, even at low temperatures, to ignite the star outside the sonic horizon
through pycnonuclear fusion without the need for a supersonic shockwave (or inside the
sonic horizon, with an accompanying supersonic fusion front.) Runaway pycnonuclear fusion
begins when a sufficiently large region of carbon achieves a critical density ~ 10*° g/ cm’ [125],
which is a factor ~ 30 greater than our chosen central density. Note that the corresponding
pycnonuclear trigger size Ap may be different from the thermonuclear trigger size A\r as the
rates of fusion and diffusion depend on density and temperature, and both may be modified
by dynamics near the BH. However, if we simply assume Ap ~ Ay ~ 107° cm, then large BH
masses Mpy =~ 10 GeV would have a sonic horizon R, > \p, and could thus potentially
ignite a SN via subsonic fusion front.

To confirm either of these mechanisms leads to ignition would require more detailed
numerical calculations, which we do not attempt here. In any case, whether an accreting
BH eats the star or ignites a SN, we are able to constrain any such BHs by the existence of
observed WDs given that the accretion timescale is less than a Gyr.

To summarize, BHs formed by DM core collapse will either ignite a SN by Hawking
radiation, or accrete and subsequently eat the star or ignite a SN. The resulting constraints
on DM parameters are shown in Fig. 5.4 (fermionic DM) and Fig. 5.5 (bosonic DM). For
fermionic DM these constraints extend well beyond those previously derived which consider
BH formation/accretion in NSs, and are thus complementary. For bosonic DM these con-
straints are entirely new—in the DM mass range of interest, there are in fact no bounds due
to BH formation in NSs (see [160] for details). We also show the constraints from DM-nuclei
scatters igniting a SN during core collapse at any point before formation of a BH (or a fermi
degenerate core or BEC).

5.5 Annihilation-induced SN

A collapsing core of annihilating DM has an increasing annihilation rate, and effectively
depletes O(1) (“bursts”) upon shrinking to a size r ~ R,,. However, even while r 2 R,,
and the DM core roughly retains its initial number N (r) & N, the energy deposited by a
small fraction of the core may be significant. We estimate the energy deposited in the large
number of annihilations within a trigger region A% and diffusion time 74 for 7 2 R,

SXX(T> ~ mXT_Cg,OlO-XXUCOITdiff + 1mn [17 <TT> ] . (565)

This is sufficient to ignite a SN if it satisfies £y, 2 Epoom (5.2).
As expected, the annihilating core deposits energy more and more rapidly as it shrinks
to smaller radii. We can also evaluate the deposited energy (5.65) at the bursting point
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Figure 5.4: Constraints on fermionic asymmetric DM which forms a DM core and collapses to
a mini black hole in a WD. The black hole either ignites a supernova via Hawking emission
(red) or accretes and eats the star (or possibly ignites a supernova) (blue). Also shown
(purple) are the constraints on DM-nuclei scatters igniting a supernova during core collapse
before formation of a black hole.
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Figure 5.5: Constraints on bosonic asymmetric DM which forms a DM core and collapses to
a mini black hole in a WD. The black hole either ignites a supernova via Hawking emission
(red) or accretes and eats the star (or possibly ignites a supernova) (blue). Also shown
(purple) are the constraints on DM-nuclei scatters igniting a supernova during core collapse
before formation of a black hole.
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r ~ Ry. Interestingly for R,, < Ap, we find &,,(R,,) scales inversely with annihilation
cross section &, (Ryy) X (0yyVeol) /? in the regime vion < veol(Ryy) < 2+ 1072, i.e. the DM
core is more explosive for lower annihilation cross section. This is basically a result of the
collapsing core focusing and becoming more dense before annihilating O(1), thus making
this energy deposition at r ~ R,, more violent. It is also interesting that &, (R,,) scales
inversely with DM mass—this is just a result of the greater number of collapsing particles
at lower DM masses. Similarly, in the regimes veo1(Ryy) < Uion OF Ueol(Ryy) > 2 - 1072 we
find &, (Ryy) is independent of annihilation cross section oy, v., i.e. the ignition condition
Exvx(Ryy) 2 Evoom simply corresponds to an upper bound on DM mass. This variation in the
dependence of &, on 0,,v., for different regimes of vee(R,,) is responsible for the change
in slope of the constrained regions of Figure 5.6 and 5.7 for 10! GeV < m,, < 10'? GeV.

If the core has not yet ignited a SN by the time it collapses to R,,, could it do so after-
wards? Although the number of collapsing particles at this point is depleting appreciably,
the shrinking of the core may still drive the total rate of annihilations to increase; if so,
there is the possibility of igniting a SN at sizes r < R,,. We have estimated that this is
not the case. However, as described in Sec. 5.3, the evolution of the annihilating DM core
here is somewhat complicated and requires more detailed study—thus we only consider the
constraints on annihilations while the DM core is still at sizes r 2 R,,.

Of course, the DM core may never annihilate efficiently if it first collapses to a BH
GNeomy 2 Ry, though the energy deposited by annihilations before the core shrinks to
within the Schwarzschild radius may still be sufficient to ignite a SN. Similarly, if the DM core
first reaches the size at which QM effects become important before efficiently annihilating,
Rqom 2 Ry, then the energy deposited by annihilations at or before this point may still be
sufficient to ignite a SN. We have included both of these constraints.

We now consider annihilations igniting SN after formation of a fermi degenerate core or
a BEC. As shown in Sec. 5.3, a fermi degenerate core shrinks by capturing additional DM
and can saturate once the capture rate is of order the annihilation rate. If this saturation
occurs before the core has a chance to shrink much below Rqu, then it does not ignite a
SN. On the other hand if saturation occurs at a number (5.46) much greater than the initial
collapsing number, then annihilations in the fermi degenerate core can ignite a SN at a
number N < N>f<x‘ The energy deposited in a trigger region A\3. and a diffusion time 7qg is:

. N2 . Ar)® 1
5XX(N) ~ mXT—SO'XXUCOI(T)Tdiﬁ - 1mMin 1, (T) y r o~ W (566)
Thus a shrinking fermi degenerate core ignites a SN through annihilations if (5.66) satisfies
c‘,f(X 2 Evoom (5.2). Of course this assumes that N < Ny and that the core has not yet
collapsed to a BH first N < N{,..
Similarly, a self-gravitating BEC that is collecting particles from the enveloping non-
condensed core will saturate at a number (5.47). This highly compact BEC can ignite a SN

at any number N < Nl?x. The energy deposited by annihilations in the BEC within a time
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Taige (or (5.36), whichever is shorter) is simply:

. N2 , Ar\° 1
E(N) ~ mXT—SJXXUBEC(T)TdiH -min |1, s , T~ GmiN (5.67)

and will ignite a SN if it is satisfies E;)X 2 Eboom (D.2). Of course this also assumes that the
BEC has not yet collapsed to a BH N < N¢,.,. Note that the DM annihilation cross section
must be extremely small for a shrinking BEC to have not ignited a SN before formation of a
BH: the requirement S}(’X(Ngha) 2 Eboom implies cross sections as low as oy, VpEc 2 Epoom_ .,

M Tais
107" ¢m?/s would ignite a SN through annihilations in the BEC. ’

To summarize, a collapsing DM core can ignite a SN by a large number of rapid anni-
hilations. These constraints are valid regardless of the nature of the annihilation products
as long as they deposit their energy within a trigger sized region. The resulting constraints
on DM parameters are shown in Fig. 5.6 (fermionic DM) and Fig. 5.7 (bosonic DM), taking
a fixed value of the scattering cross section o,,, = 1072 ¢cm?. This roughly corresponds to
the interaction strength for Z boson exchange, i.e., heavy hyper-charged DM (or “WIM-
Pzilla”) [192, 193, 194, 195]. We also show the constraint from DM-nuclei scatters igniting
a SN during core collapse at any point before DM annihilations would have done so. Note
that the particular shape of the bounded regions in Fig. 5.6 and Fig. 5.7 results from the
expressions for the energy released in annihilations, e.g. as in (5.65).

For an explicit DM model o,,v is typically related to the DM mass in a calculable way,
e.g. s-wave annihilation of hyper-charged DM oy, v ~ a3/m3, as is the SU(2), gauge cou-
pling. As shown in Fig. 5.6 and Fig. 5.7, we constrain annihilation cross sections many
orders of magnitude smaller than this naive estimate. However, this estimate is based upon
annihilations of DM its antiparticle yxy — SM, with both existing in roughy equal abun-
dances today. It is straightforward to imagine a scenario in which essentially no y particles
remain today, and yet y is capable of annihilating itself through a parametrically suppressed
interaction. To demonstrate, an explicit DM model of this sort is hypercharged DM with
a large vector-like mass and an additional small dimension-5 Majorana mass term. We em-
phasize though that any DM candidate which can annihilate itself through higher dimension
operators may have o,,v small enough to be constrained by our results e.g., annihilation to
SM fermions through a Planck-suppressed cross section oy, v ~ mi / Mél.

5.6 Discussion

We have studied the possibility of DM core collapse triggering type Ia SN in sub-Chandrasekhar
WDs, following up on previous work [3]. Collapse of asymmetric DM can lead to the forma-
tion of a mini BH which ignites a SN by the emission of Hawking radiation, and collapse of
annihilating DM can lead to large number of rapid annihilations which also ignite a SN. Such
processes allow us to place novel constraints on DM parameters, as shown in Fig. 5.4, Fig. 5.5,
Fig. 5.6, and Fig. 5.7. These constraints improve on the limits set by terrestrial experiments,
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Figure 5.6: Constraints on fermionic DM which forms a DM core and ignites a supernova
through annihilations (red). For sufficiently small o,,v the core first collapses to a black hole
(blue), and is otherwise constrained, see Fig. 5.4. Also shown (purple) are the constraints
on DM-nuclei scatters igniting a supernova during core collapse before annihilations could
do so.
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Figure 5.7: Constraints on bosonic DM which forms a DM core and ignites a supernova
through annihilations (red). For sufficiently small o,,v the core first collapses to a black
hole (blue), and is otherwise constrained, see Fig. 5.5. Also shown (purple) are the constraints
on DM-nuclei scatters igniting a supernova during core collapse before annihilations could
do so.
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and they are complementary to previous considerations of DM capture in compact objects.
It is interesting to contemplate that the ignition of type Ia SN through the evaporation of
mini black holes represents a potential observable signature of Hawking radiation. Further, it
also interesting that the extremely tiny annihilation cross sections constrained in this work,
which to our knowledge have no other observable consequences, can nonetheless be capable
of igniting a SN.

The processes studied here present a number of opportunities for future work. The DM
constraints presented in this paper are based on the existence known, heavy WDs. It would
also be interesting to calculate the constraints on DM core collapse scenarios arising from
the observed galactic SN rate—these may depend more sensitively on the timescale to form
a core, or in the case of BH formation, the evaporation time. In addition, we have restricted
our attention here and in [3] to DM candidates which interact with the SM through short-
range, elastic nuclear scatters. It would be interesting to broaden our scope to relics with
qualitatively different interactions, such as inelastic scatters or radiative processes. DM
which can cool via emission of dark radiation will be more susceptible to collapse, and is
likely to be more strongly constrained than models possessing only elastic cooling. Another
particularly interesting case is electrically charged particles [196] or magnetic monopoles.
Ultra-heavy monopoles and anti-monopoles could be captured in a WD and subsequently
annihilate, igniting SN—we estimate that such a process can be used to place constraints on
the flux of galactic monopoles exceeding current limits [197].

Finally, though we have not touched upon it here, there are many puzzles in our under-
standing of the origin of type Ia SN and other WD events, such as Ca-rich transients. It is
plausible (e.g., see the discussion in [3]) that DM is responsible for a fraction of these events.
To this end, it is important to identify the distinguishing features of SN that would originate
from DM core collapse (e.g. the lack of a stellar companion) in order to observationally test
such tantalizing possibilities.

Note added: While this paper was in the final stages of preparation, [198] appeared which
has some overlap with this work.
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Appendix A

Estimate of the Axion-induced Fields

In this section we estimate the magnitude of the axion-induced fields, assuming a simple
geometry for the production cavity and toroidal conversion region. From the expressions for
the axion source field (2.6) and effective current (2.9), the axion-induced magnetic field at a
detection point 7 is generally of the form:

B,(F) = “"g /d?’“/ &7 {)\xBO( >{F A}%(ﬁ: B)w}. (A.1)

Here the integration ¢ is taken over the volume of the production cavity, & is over the volume
of the conversion region, and X = (”"— ) is the separation vector between points in the toroid
and a detection point 7. The time-dependent J.g has been evaluated at the retarded time
t, =t — X (A.1) also uses the approximation that the axion-induced fields fully propagate
outside of the toroid, as expected for quasistatic frequencies. B, lies in the poloidal direction
and has an amplitude:

z-B,= 5(77)a (AQ)

w2
where the dimensionless form factor 8 contains information about the choice of cavity modes,
ete.

First we specify the dimensions involved. Consider a circular cylindrical cavity (“pill-
box”) of radius a and height h. The resonant frequencies are

2
™ _ Trp\? | (4T3 TE _ Trp qm\?

“rpa = \/ (52) +(F) - wim- \/ (7 () (4-3)
for TM,,q and TE,,, modes respectively, where x,, and z;,, are the pth roots of the nth
order Bessel function J,(z) and its derivative J/ (z) [199]. Setting a = h/2 = 10 cm ensures
resonant frequencies of order ~ GHz for low-lying modes, typical of SRF cavities.

Next consider a toroid of inner radius R and rectangular cross section of height and width
R. We take the cylindrical cavity to be aligned axially with the toroid, with a minimal
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separation distance of (h+ R)/2. Though this should be gapped toroid, we can approximate
the static field contained inside the toroidal volume as

By(r) = By (g) o, (A.4)

for r € [R,2R] where r is the cylindrical radial distance from the center. If we require the
toroid size saturates the quasistatic limit Rw ~ 1, an economical choice for the dimension is
simply R = a.

We now consider the axion source in this setup. The source axion field is greatest when
E - B is maximal and coherent throughout the production cavity volume. Since we have
assumed a cylindrical cavity with no external field, it is necessary to drive multiple modes
to ensure a non-vanishing (E_" . B )w- The choice of these modes is not obvious and requires
care even in this simple setup.

To demonstrate an ill-advised choice consider the TMg;9 and TM;;; modes which results
in (E-B),,  sin (7z/h) sin(¢). Note that the integral of (E-B),, vanishes over z € [~h/2, h/2]
of the production cavity. This z-dependence is in fact a general feature of any cylindrical
cavity modes chosen, but it is not detrimental as we are operating in the near-field regime.
Rather, TMg;9 and TM;i; represents a poor choice of modes because of the ¢ dependence—
the sourced axion field will be purely harmonic in the azimuthal angle, and thus would
integrate over the toroid to give a highly suppressed signal field near the center. This
cancellation is essentially a consequence of the symmetry and alignment of the cylindrical
setup and is easily avoidable. One potential solution is to place the production cavity in a
position off the axial axis. Another is to modify the toroid wiring so By also varies with the
azimuthal angle while still being effectively confined. One can also select cavity modes such
that (E . ﬁ)w is not purely harmonic in ¢: the lowest-lying combination of cylindrical modes
which yields this angular behavior is the TM;;; and TE;;; modes.

In any case, we can estimate a reasonable upper limit to § in (A.2) by postulating a
perfectly uniform E-B throughout the production cavity volume. Taking this optimal
axion source, we numerically find that g is roughly constant for points in the center of the
toroid:

Boptimal ~= 7 - 1072, z=0andr <R. (A.5)

Here we have also taken the limit in which the mass is negligible, m, < w. At masses
m, 2 w, there is the usual exponential drop-off from producing off-shell axions. If we instead
use a perhaps more realistic axion source by driving the TM;;; and TE;;; combination, we
numerically find that Sreanstic ~ 41074, again roughly constant near the center of the toroid.

In summary, we expect the form factor 8 can in principle be made O(0.1) in any suitably
engineered designs. As discussed, it is important to determine a suitable geometry and
choice of modes to be driven in the SRF production cavity, as a poor choice could lead to a

significant suppression of the signal fields.
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Appendix B

A Toy Model for Screening

We ultimately rely on the quasistatic approximation in assuming the axion-induced fields
propagate O(1) out of the gapped toroid, similar to [32]. This limits the size of the toroid
to be less than or of order the inverse frequency of the axion. However it is important
to understand the degree to which the fields outside the toroid are suppressed at larger
frequencies or larger toroid size. This is a complicated boundary-value problem and a full
study would require a detailed numerical computation which is outside the scope of this
work. We will demonstrate here the power-law nature of this suppression.

To gain some intuition, consider an electromagnetic field of frequency w impinging on
a perfect conducting sheet. If the conductor is infinitely large, then the incoming field is
reflected and vanishes on the far side of the conductor (i.e., metals are shiny). An anal-
ogous behavior holds for fields sourced inside of a region bounded by a closed conducting
surface—the field is exactly screened outside (i.e., phones do not work in elevators). The
common feature is that the conductors lack a boundary. We thus expect incident fields to be
suppressed, but not exactly screened, outside of a large yet finite conductor with a definite
boundary. This will occur when the conductor size H is much larger than the wavelength
wL.

Now suppose the conductor is small relative to w™!. This is just the quasistatic limit, so
we may asses the conductor’s response by considering its response to a static field. In this
familiar situation, the field will induce charges and currents on the surface of the conductor
in order to screen the bulk. It is clear that the boundaries play an important role in this
limit. For example, a conducting block in a static electric field will develop a screening
charge density on the boundary, which modifies the net external field but does not result in
a parametrically small external field. For wH < 1 we therefore expect the field on the far
side of the conductor to only differ from the incident field by O(1) factors.

We study here a toy model of electromagnetic fields incident on a finite cylindrical con-
ductor. The parametric effects of screening can be sensibly extracted in the high-frequency
limit, and we find the magnitude of external, detected fields are only power-law suppressed
compared to the internal fields. The physical mechanism underlying this suppression, as
summarized in Sec. 2.3, is expected to hold generically in varied geometries.
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Figure B.1: Screening of EM fields (E,, B,) sourced inside a finite cylindrical wall. In the
high-frequency limit, the conductor response results in charge buildup ) on the edges and
a configuration of screening currents Iy, Iy, on the inner and outer surfaces. These in turn
determine the fields (Edet, édet) detected outside the cylinder.

Consider a perfectly conducting cylinder of height H and radius R. More precisely,
take this to be a tube of negligible thickness separating an inner and outer cylindrical wall.
Suppose there is an EM field (Ea, Ea) = (F.2, Bagzg), sourced by an infinite line of current
I,e*“'2 “in the throat” of the cylinder. This is labelled suggestively in analogy to fields
sourced by the axion interaction with a static magnetic field, although for simplicity we
assume a spatially uniform 7,. We specifically examine the limit of a thin cylinder and take
R ~ w™! < H, which is of course well beyond the quasistatic approximation. Here the fields
radiated by I, are cylindrical plane waves, with approximate magnitudes:

' 1\ 12
E,(r) ~ By(r) ~ wl,e™" (—) , RSr < H. (B.1)

wr

These source fields will be compared to the detected fields (Edet, gdet) at a point r ~ H
outside the cylinder. This is depicted in Fig. B.1. From here on, we restrict our attention to
the behavior of fields in the region R < r < H, extending from the cylindrical surface to the
detection point. We will also ignore any contributions to the fields due to the source wire
1, “sticking out” the ends, since this finite cylinder is intended to resemble an “unwrapped”
version of our gapped toroid.

To determine the detected fields, the conductor response is paramount. Boundary con-
ditions dictate that the electric and magnetic fields vanish in the thickness of the cylinder,
and the z-component of the electric field vanishes on the surface. Importantly, for a finite
cylinder the inner and outer surfaces are connected, so that the current established on the
inner wall is communicated in some form to the outer wall. This communication, and the de-



APPENDIX B. A TOY MODEL FOR SCREENING 105

tected fields that result, can be estimated by approximately satisfying boundary conditions
as follows:

Firstly, I, drives a screening current /. on the inner walls in order to cancel the source
fields. By continuity, there is then necessarily a charge buildup £Qe™! at the top and
bottom edges of the cylinder, respectively. We will not attempt to explicitly satisfy boundary
conditions near these edges (which involves complicated fringe effects). Instead, we will
consider the effects of this charge on the rest of the cylinder at locations far from the edges—
that is, H/2 — |z| > R, where z = 0 corresponds to the vertical center of the cylinder. Here
the oscillating rings of charge at z = +H/2 appear as points and produce an electric field
on the cylinder surface:

. = e (1 4wz e (1 + iwz_
z. EQ(R, Z) ~ Qezwt ( ( 5 +) + ( - )) , (BQ)
where 2. = H/2 £+ z. Up to a phase, this is approximately
iwt
Z-Eg(R,z) ~ % cos(wz). (B.3)

To continue satisfying boundary conditions, this field must now be canceled. Therefore,
a “back-reaction” current [, must be set up on the cylinder walls, chosen to cancel EQ.
Numerically, we find that a current of the form Iy, (z) ~ I, cos(wz) sources electric fields
with the necessary sinusoidal behavior:

[br eiwt

Z- Ebr(Ra Z) ~ m

cos(wz). (B.4)
We can ensure that this back-reaction does not also violate the previously satisfied boundary
conditions by taking I}, to flow in the same same direction on both inner and outer walls. It is
notable that near the center of the cylinder, (B.4) vanishes as the height increases H — co.
Such a scaling can be understood by considering a cos(wz) current on the surface of an
infinitely tall cylinder. In that case, the z-component of the electric field exactly vanishes
as there is a cancellation between the field sourced by the current and the field sourced by
stripes of charge which are present due to charge continuity. This cancellation is weaker near
the edges of a finite cylinder, leading to larger 2 - E}, there.

The above charges/currents must be self-consistent. The initial screening current I . on
the inner wall, charge buildup @) on the edges, and back-reaction currents I, on both walls
here are related by charge continuity:

% = w@Q ~ Iy — 2L, (B.5)
where the factor of 2 accounts for the fact that I, flows in the same direction on both
walls. Since the cylinder is tall and thin, we can invoke the infinite-cylinder solution to
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approximately cancel the source fields, and thus we take I, ~ I, on the inner surface.
Comparing (B.3) and (B.4), to cancel the fields produced by the charge buildup requires back-
reaction currents of order I, ~ w(@. These currents, taken together, then approximately
satisfy boundary conditions everywhere away from the edges. Now further demanding the
constraint of continuity (B.5), we find the charge buildup should be @ ~ I,/w, and therefore
the back-reaction currents are of order Iy, ~ [, cos(wz). The z-component of the back-
reaction field is parametrically smaller than the source field (B.1) on the surface:

3 En(R, 2)

PR (wH) ' < 1. (B.6)

This is consistent with our use of the infinite-cylinder solution for the inner screening current
I ~ 1,.

To summarize, we have found there are additional currents Iy, ~ I, cos(wz) on the inner
and outer cylinder surfaces, arising from the need to satisfy boundary conditions in the
presence of charge build-up. These are inevitably of the same order as the source current,
but with a crucial spatial modulation. Based on these currents, we estimate the detected
fields at a point » < H (and near z ~ 0) outside the cylinder:

5 . 1 1
Eget(r, 2) ~ I, cos(wz)e™" (—f + 2) ,
r

H+r
. I, "
Byt (1, 2) ~ — cos(wz)e™ ¢. (B.7)
r

The fields radiated by the oscillating charges on the cylinder edges are of this same magni-
tude.

The charge buildup and back-reaction currents thus propagate fields outside the cylinder.
Importantly, the magnitudes of these fields (B.7) fall off as r~, faster than the 7—'/2 behavior
of the source fields (B.1) that would be seen if the conductor were not present. Comparing
these, we see the magnitude of the external, detected field is power-law suppressed:

Baet/Ba ~ (WH) V2 < 1. (B.8)

This is fundamentally because the fields radiated by a modulated, multipolar current decay
more rapidly than the fields from a spatially uniform current.

Lastly, we briefly comment on the low-frequency behavior of our toy model. The spatially
modulated current distribution we had found on the surface is a consequence of modulated
fields from non-negligible charge buildup—this feature, however, is only present at sufficiently
high frequencies. In the opposite limit R, H < w™!, the analogous secondary fields from
charge buildup are uniform across the cylinder surface and drive an unmodulated current
that results in equal and opposite currents flowing on the inner and outer surfaces. This is
the familiar quasistatic result in which no screening occurs and a uniform current loop is
established, as in the operation of a cryogenic current comparator [200].
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Appendix C

Dark Higgs Thermalization

In this section we further examine vector production by PR for the case A > e requiring that
the vector constitutes all of the DM today. In Sec. 3.4, we explored the parameter space in
this scenario assuming that the large initial yield of dark Higgs after PR thermalizes with the
SM. Here, we explicitly study the case of thermalization through a Higgs-portal coupling,

Loyl H, (C.1)

where H is the SM Higgs doublet. After electroweak symmetry breaking, there is a mixing
between the two real scalars with an angle,

2U’UEW
2 _ a2
my, md)

tan 20 ~ y? (C.2)

where vgw ~ 246 GeV. For simplicity, we will consider the regime m, < my so that
0 ~ y?v/vgw. This interaction must satisfy a number of conditions in order for the cosmology
to be viable, namely:

1. The thermalization occurs sufficiently rapidly,
2. The dynamics of PR is largely unaffected,
3. The coupling is not ruled out by experiments.

Our aim here is to show the existence of a viable parameter region in dark Higgs mass and
coupling for which all conditions can be consistently satisfied.

We first address the requirements on thermalizing the dark Higgs. The relevant processes
differ if thermalization occurs before or after the electroweak phase transition which depletes
the SM Higgs. Above this scale the dominant number-density depleting process that brings
the dark Higgs into chemical equilibrium is through a Higgs absorption ¢H — H. Proper
calculation of this rate requires non-equilibrium field theory techniques. The thermalization
rate is roughly of order [201] Ty i ~ y*v?/T. From this we estimate the temperature of
dark Higgs thermalization Ty, ~ (y*v?M,)Y/3. Requiring this thermalization temperature
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to be above ~ 100 GeV puts a constraint on the mixing angle, § > 10~7. Below the
electroweak scale, ¢ will continue to interact with SM fermions in the thermal bath. For
instance, thermal ¢ particles can scatter off fermions (e.g. quarks) in the plasma with a
rate [201], Tgqgg ~ 02y3T, where y; is the largest fermion Yukawa coupling still in the SM
bath. For this to be above the mass of the fermion requires > 1078/ V/Yy- This ensures ¢
has a thermal abundance and thus dumps its energy to the SM bath when T" < my. If, e.g.,
me = 10 GeV, this process is in thermal equilibrium with bottom quarks by the time the
temperature drops to T ~ my, as long as 6 > 1077,

Next we consider the implications the Higgs portal coupling on the PR mechanism. As
long as the coupling is not fine-tuned 6 < my/my,, the SM Higgs mass correction at the time
of PR is less than the expected thermal mass. Therefore, the Higgs portal coupling gives a
mass correction 5m35 ~ y*T2 . to the dark Higgs at the onset of oscillations. If this is larger
than the assumed effective mass-squared m2g ~ \2¢Z, the dark Higgs would have oscillated
earlier with a large frequency (set by the size of y?), thus rendering the PR production of
vector modes narrow and relatively inefficient. Requiring this thermal contribution to be
sufficiently small dm} < A?¢j translates into an upper bound on the mixing angle,

— Mg ®o
o507 (GeV) <10—1Mp1> (€3)

For Fig. 3.2 where we fix my ~ 10 GeV, this is the dominant upper bound on the mixing
angle.

A second possible effect of the Higgs portal coupling is PR production of the SM Higgs.
For thermalization we generically require y > A which would suggest that PR may be
efficient in producing the SM Higgs; this is ultimately not the case due to the large thermal
mass of the Higgs. We can verify this by computing the adiabatic parameter R = |w|/w? for
the SM Higgs with a time-dependent frequency w(t) ~ \/k2 + mp(T)? + $y%¢(t). Since the
thermal mass is strictly larger than the mass contribution from the oscillating field at the
time of PR (y?¢% < T2.), the adiabatic parameter is always less than unity. We conclude
that there is no significant non-perturbative production of the SM Higgs.

There are a number of phenomenological constraints on a Higgs-portal scalar. These
constraints depend on whether the scalar decays visibly or appears invisible (at least on
detector scales.) For detailed review see, e.g., [202]. For low masses my < MeV, we find
stellar cooling constraints [203] are in tension with the requirements of thermalization. For
intermediate masses, MeV < m, < 300 MeV constraints from Supernova 1987A and rare
Kaon decays are powerful, but it may be possible to have a scalar in this mass range with
a sufficiently large 6 consistent with thermalization if it sits in the small gap between these
constraints. For masses GeV < my S 5 GeV, rare B meson decays roughly constrain
6 < 1073. Above this scale, scalar production at LEP constrains § < 107! although this is
weaker than the condition (C.3). Interestingly, if ¢ decays visibly then lower values of 6 in
this mass range could also be probed by future experiments designed to look for long-lived
particles [204, 205, 206, 207, 208].
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Lastly one may wonder if the dark Higgs ever dominates the energy density of the uni-
verse. Dark Higgs domination will take place if the temperature of thermalization is less
than < Toq(mg/mx), or in terms of the mixing angle:

T3 1/2 3/2 3/2 /104 eV 3/2
65(2“1 ) (ﬂ) N5.10*6(m¢) ( © ) . (C.4)
Viw Mpl mx GeV mx
We see that for m, ~ 10 GeV and the relevant vector mass range my = 107* in Fig. 3.2,

this is never the case as long as we satisfy the condition of thermalization.
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Appendix D

Particle Stopping in a White Dwart

Here we provide a more detailed analysis of the stopping power (energy loss per distance
traveled) of high-energy SM particles in a carbon-oxygen WD due to strong and electromag-
netic interactions. We consider incident electrons, photons, pions, and nucleons with kinetic
energy greater than an MeV.

D.1 WD Medium

For the WD masses that we consider, the stellar medium consists of electrons and fully-
ionized carbon nuclei with central number densities in the range n. = Znjn ~ 103 —
1033 ecm™ where Z = 6. The internal temperature is T ~ keV [125]. The electrons are a
degenerate and predominantly relativistic free gas, with Fermi energy

Ep = (31*n.)"% ~ 1 — 10 MeV. (D.1)

The carbon ions, however, are non-degenerate and do not form a free gas. The plasma
frequency due to ion-ion Coulomb interactions is given by

drnion 220\ 2
Qp:<u) ~1—10 keV, (D.2)

Mion

where mj,, is the ion mass. Finally, the medium also contains thermal photons, though these
are never significant for stopping particles as the photon number density n, ~ 7% is much
smaller than that of electrons or ions.

D.2 Nuclear Interactions

Elastic Scattering of Hadrons. Hadrons with energy less than the nuclear binding en-
ergy Fpu. ~ 10 MeV will predominantly stop due to elastic nuclear scatters with ions. These
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are hard scatters, resulting in a stopping power

dE
22« fionCal ( m ) E (D.3)

dl‘ ion

for a hadron of mass m < mj,, and kinetic energy E. o, is the elastic nuclear scattering
cross section, which is of order oo ~ b at these energies and drops to g, ~ 0.1 b above

10 MeV [209], ignoring the nontrivial effect of nuclear resonances in the intermediate regime
1 —10 MeV.

Inelastic Scattering of Hadrons. For energies above E,,., the stopping of hadrons is
dominated by inelastic nuclear scatters. In such a collision, an incoming hadron interacts with
one or more nucleons to produce a O(1) number of additional hadrons which approximately
split the initial energy. At incident energy greater than ~ GeV, the majority of secondary
hadrons are pions with transverse momenta ~ 100 MeV [209]. Below ~ GeV, it is found that
roughly equal fractions of protons, neutrons, and pions are produced in each collision [210].
We will thus have a roughly collinear shower terminating at an energy ~ 10 MeV which
consists of pions for most of the shower’s development and converts to an mix of pions and
nucleons in the final decade of energy. This cascade is described by a radiative stopping
power

dFE
% ~ nionainelEa (D4)

where the inelastic nuclear cross section is given by o, &~ 100 mb and roughly constant in
energy [209]. The total length of the shower is only logarithmically dependent on the initial

hadron energy FE,
1 FE
Xpag ~ ——1 ) D.5
had NionOinel °8 (Enuc) ( )

Photonuclear Interactions. Photons of energy greater than 10 MeV can also strongly
interact with nuclei through the production of virtual quark-antiquark pairs. This is the
dominant mode of photon energy loss at high energy. The photonuclear scatter destroys the
photon and fragments the nucleus, producing secondary hadrons in a shower analogous to
that described above. The photonuclear cross section o4 is roughly given by 0,4 & aoinl,
again ignoring the nuclear resonances that occur for £ < GeV [209]. For E 2 GeV, 0.4 is
likely a slowly increasing function of energy due to the coherent interaction of the photon over
multiple nucleons [211], however, instead of extrapolating this behavior we conservatively
take a constant photonuclear cross section 0,4 ~ 1 mb.

Electronuclear Interactions. Electrons can similarly lose energy to nuclei by radiating
a virtual photon that undergoes a photonuclear scatter, which indeed provides the dominant
energy loss for high energy electrons. The cross section for this process is roughly given by
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the photonuclear cross section, scaled by a factor representing the probability to radiate such
a photon. This can be estimated with the Weizsacker-Williams approximation, which gives
a stopping power that is suppressed from the photonuclear result by a but enhanced by an
O(10) logarithmic phase space factor [211]:

dE

E
e a NignTy 4 ' log (—) . (D.6)

e

Unlike the photonuclear interaction, the electronuclear event is a radiative process that
preserves the original electron while leaving hadronic showers in its wake.

D.3 Radiative Processes

Electromagnetic showers due to successive bremsstrahlung and pair production events off
carbon ions are the dominant stopping mechanisms for intermediate-energy electrons and
photons. Both of these processes result in radiative stopping powers, derived semi-classically
as [212]

dE F

dr T Xy
Xy is the well-known radiation length, and log A is a Coulomb form factor given by the range
of effective impact parameters b:

3
-1 2 &
XO = 4nionZ ﬁ log A. (D?)

e

bmax
A = Jmax (D.8)

bmin

The maximal impact parameter is set by the plasma screening length (see D.4) and the
minimum by the electron mass, below which the semi-classical description breaks down.
Note that for the highest WD densities A < 1, in which case (D.7) ought be replaced by a
fully quantum mechanical result as in [213]. This still results in a radiative stopping power,
and so for simplicity we employ (D.7) with log A ~ O(1) for all WD densities.

LPM Suppression A radiative event involving momentum transfer ¢ to an ion must,
quantum mechanically, occur over a length ~ ¢~!. All ions within this region contribute
to the scattering of the incident particle, and for sufficiently small ¢ this results in a de-
coherence that suppresses the formation of photons or electron-positron pairs. This is the
“Landau-Pomeranchuk-Midgal” (LPM) effect. The momentum transfer ¢ in a given event
decreases with increasing incident particle energy, and so the LPM effect will suppress ra-
diative processes for energies greater than some scale Eppy. This can be calculated semi-
classically [212],

2
mzXoo

ELPM = (D9)

32 -3
~ 1 MV (10&) .
78

Nion
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which is quite small due to the high ion density in the WD. The stopping power for
bremsstrahlung and pair production in the regime of LPM suppression £ > FEypy is

dE F (ELPM

1/2
o & E> By, D.1
iz "X, \E ) > fLPM (D.10)

In addition to the LPM effect, soft bremsstrahlung may be suppressed in a medium as the
emitted photon acquires an effective mass of order the plasma frequency €2,. However, for
high-energy electrons this dielectric suppression only introduces a minor correction to (D.10),
in which soft radiation is already suppressed [212].

D.4 Elastic EM Scattering

Electron Coulomb Scattering off Ions. Coulomb collisions with ions are the mechanism
by which electrons of energy 1 —10 MeV ultimately thermalize ions. In this scenario we may
treat the ions as stationary and ignore their recoil during collisions. The nuclear charge
will be screened by the mobile electrons of the medium, so incident particles scatter via a
potential

Z
V(r) = 2% e/, (D.11)
T

The screening length Arg is given in the Thomas-Fermi approximation by [190]:

Er 1
/\QTF =

= ~ . D.12
6ran. aFE% ( )

This plasma screening suppresses scatters with momentum transfers below ~ )\}é, corre-
sponding to a minimal energy transfer of wy,;, = /\;% /2Mion. Tons may in principle also cause
screening through lattice distortion, however this may be ignored as the sound speed of the
lattice ¢, ~ 1072 is much smaller than the speed of an incident relativistic electron. From
the Born approximation, the cross section for energy transfer w is

do o2 7202 1

— = , D.13
dw — Mionv?, (W + Winin)? ( )
where vy, is the incident velocity. Thus the stopping power is
dE Wmax d 2 ionZ2 2 max
— = / dw nion—gw ~ 2T 5 a log (w ) , (D.14)
dx 0 dw Mion Vi, Winin

where the second line is valid if Wyayx > Wiin. Wmax 1S the maximum possible energy transfer.
This may be due to 4-momentum conservation, or in the case of incident electrons, the
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impossibility of scattering to a final energy less than Er. 4-momentum conservation sets an
upper bound wy;,, which for a stationary target is

2Tnionp2
+m2 4+ 2Emio,

Wikin = D.15

", (D12)
with p, F the incoming momentum and energy. The Fermi upper bound is wp = E' — Ef so
for incident electrons we take wpax = min {wyin, wWe -

For scatters that transfer energy less than the plasma frequency €,,, one may be concerned
about phonon excitations. This occurs for incident electrons with energy below ~ 10 MeV.
We estimate this stopping power treating each ion as an independent oscillator with frequency
(2, (an Einstein solid approximation) and compute the stopping power due to scatters which
excite a single oscillator quanta. There are two key differences between this and the free
ion case: incident particles must transfer an energy €2,, and the cross section to transfer
momentum ¢ is suppressed by a factor ¢*/ 2Mion Yy = Whee/Sdp. Whee 18 the energy transfer
that would accompany a free ion scatter with momentum transfer q. The resulting stopping
power is unchanged from the free case (D.14), as the increased energy transfer compensates
for the suppressed cross section.

As electrons transfer their energy at the rate (D.14), they occasionally experience a hard
scatter with mean free path

2,2
p Uin
TNion 2 2002

)‘hard =~ (D16)

For sufficiently small incident energies, the electron experiences several hard scatters before
it has deposited its energy by elastic scatters, and the stopping length is reduced by the
resulting random walk. This effect is not significant for incident pions due to their larger
mass.

Finally, we note that for highly energetic incident particles the cross section (D.13) should
be modified to account for the recoil of the ion. However, at such energies the dominant
stopping power will be from hadronic or electromagnetic showers anyway, so we do not
include these recoil effects.

Relativistic Coulomb Scattering off Electrons. The scattering of incident electrons
off degenerate electrons determines the termination energy of electromagnetic showers. This
calculation demands two considerations not present when scattering off ions: the targets are
not stationary and they require a threshold energy transfer in order to be scattered out of the
Fermi sea. However for relativistic incident particle, with momentum p > pp, the stopping
power off electrons is ultimately of the same form as the stopping power off ions (D.14). In
this limit, all particle velocities and the relative velocity is O(1), and the deflection of the
incident particle will generally be small. It is reasonable then that scattering proceeds, up to
O(1) factors, as though a heavy incident particle is striking a light, stationary target. The
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cross section is given by the usual result,
do 2ma? 1
do = Ep w?’
where we have accounted for the target’s motion by replacing its mass with its relativistic
inertia &~ Ep. This is equivalent to a boost of the cross section from the rest frame of
the target into the WD frame. Note that plasma screening can be ignored in this case, as
Pauli-blocking will provide a more stringent cutoff on soft scatters. Scatters which transfer

an energy w < Fp will have a suppressed contribution to the stopping power as they can
only access a fraction of the Fermi sea. In this limit it is sufficient to ignore these suppressed

scatters: iE " p 5 )
max o TN w
— = dwn,—w~ ———1 max D.18

dx /EF wn dww Er Og( Er ) ( )

where, as described above, Wy = min{wyin, wr}. This derivation is admittedly quite heuris-
tic, and so it has been checked with a detailed numerical calculation accounting fully for the
target’s motion and degeneracy. Equation (D.18) is indeed a good approximation to the
stopping power for incident energies larger than the Fermi energy.

(D.17)

Non-Relativistic Coulomb Scattering off Electrons For non-relativistic incident par-
ticles, the Coulomb stopping off electrons becomes strongly suppressed due to degeneracy.
Stopping in this limit appears qualitatively different than in the typical case—the slow inci-
dent particle is now bombarded by relativistic electrons from all directions. Note that only
those scatters which slow the incident particle are allowed by Pauli-blocking.

As the electron speeds are much faster than the incident, a WD electron with momentum
pr will scatter to leading order with only a change in direction, so the momentum transfer
is |q] ~ pr. We again take the incident momentum p 2 pg, which is valid for all incident
particles we consider. This results in an energy transfer
P -9’

2m 2m

~ UinEF- (D]_g)

For v, < 1 the energy transfer is less than Fermi energy, so Pauli-blocking will be important.
The incident particle is only be able to scatter from an effective electron number density

Er w
Neff = / g(E) dE =~ 3n.—, (D.20)
Ly

Ep—w
where g(F) is the Fermi density of states. At leading order the electron is not aware of the
small incident velocity, so the cross section is given by relativistic Coulomb scattering off

a stationary target o ~ o?/¢* [214]. The incident particle thus loses energy to degenerate
electrons at a rate:

(D.21)
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Note that this includes a factor of the relative velocity which is O(1). As a result, the
stopping power is parametrically
dE 1 dE o?
dr vy, dt Er
As above, this heuristic result has been verified with a full integration of the relativistic cross
section.
We can compare (D.22) to the stopping power of non-relativistic, heavy particles off

roughly stationary, non-degenerate electrons %€ ~ neﬁ, which is the familiar setting

dx
of stopping charged particles in a solid due to ionization [215]. Evidently, the analogous
stopping in a WD is parametrically suppressed by v3 m./Er. One factor of vy, is due to
Pauli blocking, while the other factors are kinematic, due to the relativistic motion of the
targets.

Compton Scattering Compton scattering off degenerate electrons is the dominant in-
teraction for photons of incident energy k < Er. As we will show, this stopping power is
parametrically different from that of high-energy photons due to Pauli-blocking and the mo-
tion of the electron. For k > Ep, the effect of Pauli-blocking is negligible and the stopping

power is simply:
dk  ma’n k
— ~ °1 — D.2
dx & (m ) ’ (D.23)

EF e

where again we have (partially) applied the heuristic m, — EF replacement to boost the
usual result for stationary electrons while avoiding divergence at the Fermi energy. This,
along with the low-energy estimate below, matches a full integration of the relativistic cross
section well.

We now turn to the regime of interest, & < Er. Only those electrons near the top of the
Fermi sea are available to scatter, so the photon interacts with only the effective electron
density (D.20). In addition, Compton scatters will only occur off electrons moving roughly
collinear with the photon momentum - a head-on collision would result in an energy loss for
the electron, which is forbidden by Pauli exclusion. In the electron rest frame these collinear
scatters are Thompson-like, and the photon energy loss is dominated by backward scatters.
For relativistic electrons near the Fermi surface, these scatters transfer an energy

2

m
~kl1l-— = ~ k. D.24
“ ( 4E%> (D-24)

The cross section can be taken in the electron rest frame o ~ a?/m?, along with an ‘aiming’
factor 1/4m to account for the restriction to initially parallel trajectories. This gives a
stopping power

dk N a’n k>

— . D.25
de  4mm?Ep ( )
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Appendix E

Dark Matter Capture

Here we give a more detailed discussion of DM capture in a WD and its subsequent evolution.
For the remainder of this section all numerical quantities are evaluated at a central WD
density pwp ~ 3 x 10°E5 (nign ~ 10*" em™), for which the relevant WD parameters
are [120]: Mwp ~ 1.25 M, Rwp =~ 4000 km, and vese & 2 x 1072, Depending on the
context, the relevant density may be the average value which we take to be ~ 103° cm™3.

We also assume an average value of the WD temperature Tywp ~ keV.

E.1 Capture Rate

Consider spin-independent DM elastic scattering off ions with cross section o, 4. This is
related to the per-nucleon cross section

2

rea =221} g, = Ao, 1)
Hxn

where F?(q) is the Helm form factor [179]. If the DM is at the WD escape velocity, the

typical momentum transfer to ions is ¢ ~ i, avVesc ~ 200 MeV. As this ¢ is less than or of

order the inverse nuclear size, DM scattering off nuclei will be coherently enhanced. We find

F?(q) = 0.1 for ¢ ~ 200 MeV.

For the DM to ultimately be captured, it must lose energy ~ m,v?, where v is the DM
velocity (in the rest frame of the WD) asymptotically far away. Since typically v < vesc,
the DM has velocity ves. while in the star and must lose a fraction (v/ves)? of its kinetic
energy to become captured. Properly, the DM velocity is described by a boosted Maxwell
distribution peaked at the galactic virial velocity vphao ~ 1073. However, this differs from
the ordinary Maxwell distribution by only O(1) factors [124], and we can approximate it by
(ignoring the exponential Boltzmann tail):

px (2 <
dny )y (vﬁam> U= Phalo (E.2)
0 U > Upalo
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The DM capture rate is given by an integral of the DM transit rate weighted by a probability
for capture P,y

dF rans
Teap ~ / dv (;U Prap(v), (E.3)
where the (differential) transit rate is
dFtrans dnx 2 Vesc 2
—trams X : A4
dv dvRWD(U)U (E4)

P..p depends on both the average number of scatters in a WD

Nscat ~ nionaxARWDa (E5)

and the number of scatters needed for capture

2

Neap ~ max {1, Th? } , (E.6)

2
Mion Uesc

and is most generally expressed as a Poisson sum

Neap—1 —
o N7 (Nscat)n
Pap=1-— ) exp(—Noeat) 1= (E.7)

n=0

For our purposes we will approximate the sum as follows:

1 Nscat > Ncap
PCap ~ Nscat Nseat < Ncap and Ncap =1. (ES)
0 else

Here we ignore the possibly of capture if Ny < Neap except in the special case that only
one scatter is needed for capture. If Ny > Neap, we assume all DM is captured. Most
accurately, this capture rate should be computed numerically, e.g. see [181]. However with
the above simplifications we find that the capture rate is of order

mionv§SC
— (E.9)

mXUhalo

Leap ~ Tirans - min {1, Nyuymin{B,1}}, B =

B here encodes the necessity of multiple scattering for capture. For ultra-heavy DM m, >
10*® GeV, B < 1 and essentially multiple scatters are always needed.
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E.2 Thermalization and Collapse

Once DM is captured, it thermalizes to an average velocity

TWD _11 m —-1/2
~ ~ 10 (—X) , E.10
b My 1016 GeV ( )

and settles to the thermal radius

TWD 1/2 m —-1/2
Ry~ ——— ~ 0.1 (—X ) :
th ( GmXpWD ) e 1016 GeV

where its kinetic energy balances against the gravitational potential energy of the (enclosed)
WD mass. This thermalization time can be explicitly calculated for elastic nuclear scat-
ters [156]. The stopping power due to such scatters is

dE

™ PWDOXA U max{v, Vion }, (E.11)

where vjon ~ v/Twp/Mion is the thermal ion velocity. The max function indicates the
transition between “inertial” and “viscous” drag, as the DM velocity v slows to below vjy.
DM first passes through the WD many times on a wide orbit until the size of its orbit decays
to become contained in the star. The timescale for this process is

3/2
t ~ < M ) ftwp _1 L (E.12)

Mion Vesc Nscat maX{Nscata 1}1/2

3/2 oui ~3/2
~ T x 10 (L) (;> .
"\1016 GeV 10-% cm?

Subsequently, the DM completes many orbits within the star until dissipation further reduces
the orbital size to the thermal radius. The timescale for this process is

ty ~ (mx > L1 (E.13)

Mion / MionTxA Vion

—1
~ 10" s (o) (o)
*\106 Gev/ \10-% cm?

There is an additional O(10) logarithmic enhancement of the timescale once the DM velocity
has slowed below v;,,. Note that time to complete a single orbit is set by the gravitational

free-fall timescale:
/1
tg ~ ~ 0.5 s. E.14
T Gpwp ( )

In the above description, we have assumed that the DM loses a negligible amount of
energy during a single transit:

OxA 1

(E.15)

my  pwpBwp
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This also ensures that the dynamics of DM within the star is that of Newtonian gravity along
with a small drag force. In the opposite regime, the qualitative evolution of captured DM
differs from the picture presented in detail below. In this case there is no stage of external
orbital motion corresponding to t;—DM will instead rapidly thermalize to a speed vy, after
entering the star. The internal motion now proceeds as a gravitationally-biased random
walk, with a net drift of DM towards the center of the star. For sufficiently large 0,4, DM
will collect at a radius 7. which is larger than 7, given above, due to a balance of gravity with
outward Brownian diffusion. This may delay the onset of self-gravitation, possibly beyond
TwD, as we now require the collection of a larger mass pWDrg’. It is important to note that the
differences between the Brownian and orbital regimes are immaterial for constraints on the
decay of captured DM (e.g., Fig. 4.11), which cares only about the quantity of DM present
in the star. For annihilation constraints, however, the internal evolution of DM is quite
important. For the largest unconstrained cross sections o,4 (see Fig. 4.9), one can check
that captured DM is distributed across a large fraction of the star due to Brownian motion
and does not collapse. This DM population still yields a strong constraint on o,,, similar
to but somewhat weaker than the constraints which can be placed on DM that undergoes
self-gravitational collapse after capture (e.g., Fig. 4.10).

When Brownian motion is insignificant, the DM will begin steadily accumulating at R,
after a time t; + t2. Once the collected mass of DM at the thermal radius exceeds the WD
mass within this volume, there is the possibility of self-gravitational collapse. The time to
collect a critical number Ny, of DM particles is

N, pwp R} m —1/2 Oy -1
by v %~ DB 1010 g (g ) (T E.16
e T My Lenp "\10%6 GeV 10-% cm? (E-16)

Typically, the timescale for collapse is then set by the DM sphere’s ability to cool and shed
gravitational potential energy. This is initially just £5, while the time to collapse at any given
radius r decreases once the DM velocity rises again above vjgy:

GN
tcool ~ tQmin{Uion/Uxa 1}7 UX ~ mxa (E17)
T

where N is the number of collapsing DM particles. Note that when m, > 10*' GeV, the
number of particles necessary for self-gravitation Ny, as defined in (E.16) is less than 2. In
this case we should formally take Ny = 2.

Finally, there is a further subtlety that arises in the growing of DM cores for the large
DM masses m,, of interest to us. The time ¢4, to collect a self-gravitating number of particles
decreases for larger DM masses. However, the dynamics of the collapse are set by the cooling
time, which is initially t¢oo1 o< m,. For m, > 10'% GeV, the collection time may be shorter
than the cooling time ¢y, < o0 (depending on the cross section). In fact, the collection
time may even be shorter than the dynamical time tg. If tg < tss < tcoo1, the DM core will
be driven to shrink because of the gravitational potential of the over-collecting DM. The
timescale for the shrinking is set by the capture rate of DM. Ultimately, the collapsing DM
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core will consist of Ny enveloped in a “halo” of I'capteool > Ny particles, which will also
proceed to collapse. If instead ts, < tg < tcoo1, the DM core will rapidly accumulate to
this large number before dynamically adjusting. For the purpose of the collapse constraints
on DM annihilation, if {5, < tcoo1 We will simply assume a number of collapsing particles
N = T'capteoor. This is the case for the constraints plotted in Fig. 4.10.



	Contents
	Preface
	Axion Production and Detection with Superconducting RF Cavities
	Introduction
	Conceptual Overview
	Determining the Axion Signal
	Sensitivity to Axion-Photon Coupling
	Discussion

	Parametric Resonance Production of Ultralight Vector Dark Matter
	Introduction
	The Model
	Parametric Resonance
	Vector Dark Matter from Parametric Resonance
	Phenomenology
	Discussion

	White Dwarfs as Dark Matter Detectors
	Introduction
	White Dwarf Runaway Fusion
	Particle Heating of White Dwarfs
	Dark Matter-Induced Ignition
	Dark Matter Constraints
	Q-balls
	Discussion

	Type Ia Supernovae from Dark Matter Core Collapse
	Introduction
	Triggering thermonuclear runaway
	Dark matter core collapse
	Black hole-induced SN
	Annihilation-induced SN
	Discussion

	Bibliography
	Estimate of the Axion-induced Fields
	A Toy Model for Screening
	Dark Higgs Thermalization
	Particle Stopping in a White Dwarf
	WD Medium
	Nuclear Interactions
	Radiative Processes
	Elastic EM Scattering

	Dark Matter Capture
	Capture Rate
	Thermalization and Collapse




