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.ABSTRACT

We obtain estimates for the asymptotic properties of a symmetric
pendent liquid drop as ihe vertex height u, approaches negative
infinity. The estimates make use of the Delaunay comparison surfaces
we have employed previously, but in a manner more precise, so as to
yield an improvement of an order of magnitude. For large |uo| the
vertical section of a drop is shown to have near the vertex the
general form of a succession of circular arcs joined near the axis‘by
small arcs of large curvature. The section contrécts at first toward
a.certain hyperbola, the circular arcs gradually changing shape buﬁ
remaining, until a certain fixed height (asymptotically -as u, —0),
within a narrow band surrounding the hyperbola. The continuation of
the section eventually projects simply on u = 0, separates from the
hyperbola, and continues in an oscillatory manner to infinity.

We prove a preliminary (weak) form of our conjecture, fhat as
Uy > - the section converges uniformly (as a point set) to a solution
with simple projection (for all r >0)on u =0 and an isolated sin-

gularity at r = 0, whose existence we have proved previously.



This paper is an addendum to our earlier work [1]; its purpose is to
provide new information on the asymptotic behavior of axially symmetric
"péhdent drop" solutions of the capillary equation, as the vertex height
u, .bécaomes largé in magnitude.' We assume here familiarity with the format
of the problem, as presented in [1]; we use.the notation and refer to the

‘results of that paper, without further explanation.

Our specific concern hereris the problem discussed in §VI of [1],
namely the asymptotic convergence of the pendent drop solution to the
singular solution U(r). We do not yet settle completely our conjecture
on this matter, but we do provide some.new information in that direction.

The crucial new step in the present discussion consists in a more
precise use of the Delaunay comparison surfaces éé a device to control

the behavior of the solutions of

-«

(5) . (r sin w)r = 2 ru.

In [1] bounds on these surfaces were used for estimation of integrals
.qf the right side of (5); we now propose to intrbduce the Delaunay profiles
themselves into these integrals. It turns out the results can be'expresséd
succinctly in terms of elliptic integrals, leading to an improvement in an
order of magnitude oflthe estimates of 8III. We are led to recurrence
relations (107, 136, 137) for the displacement of‘successive "vertical points"
from the hyperbola rﬁ =-1, whiéh show fhat, initially, the solution curve
becomes closer to the hyperbola with each successive loop. Integration of
these relations shows that thé solution cur#e at first gontracts toward the

hyperbola, at least until a height of order |uo|7/9, after which it remains

confined within a strip whose width has order. IuOI-l,'until a height of
order |u0|(2a+l)/9: for any a > %% . Thus, the solution curve converges

asymptotically to the hyperbola, uniformly in. |u| >v|uol(2a+l)/9.
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For all sufficiently.large |u|, we show the solution curve is confined
to & strip about ru = -1, whose width has order |u|_9/7, wniformly in uj
as |u | > .

In this paper the symbols A, B are used to denote quantities inde-
pendent of the other terms within a relaiion, but whose values may however
‘_change within a context. Thus, from y < A A+x2 we may conclude y < Alx]|
for large |x|. The symbol ~ s used to indicate a relationship in which
terms of (relatively) small magnitude are neglected.

We start with general estimates on Delaunay arcs v(r), which are

solutions of

(40) | ~ (r sin y), = 2rH, H>O0,.

'

vertical at (ra,vé), (rb,vb), r, < Ty (see figure 1). We note

a
» ~ 1
(41) H o= s
: "a b
and an inflection appears at
(42) , | r, = /T .

We distinguish two cases:

Case a) ¢ < m/2: Solving for r(y), we find

(13) - Siny ¢ vkZ - cos?y X = o~ Ta
. s )
2H ryt Ty

where the upper (lower) sign is to be chosen, according as r > (<)ri.

Setting cos ¥ = k sin ¥, and using u'(r) = tan ¥, we integrate (43)

1)

to obtain
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/2

ool § o)

(44) Vi =V, =

m
[ Ao = ¢ EK),
' (o] .

where E(k) 1is the complete elliptic integral of the second kind, of

modulus k.
If A <v < Vi s then
}
21 1 .
(45) | v-v, = 7 E(k) - 5 [k sin @+ E(®,X)]
where

®
E(®,k) = [ /1-Kk’sin’t dt
o}

is the incomplete elliptic integral of the second kind.

Ir vy <v < Vis then

(46) R Fr [~ X sin @+ E(®,k)] .

At the inflection (ri,vi)

(47) | vi=21—H(-k+E(k))+va.

Case b) lpi m/2: The discussion is unchanged, except in this case

- 1/2 <9 < 0. We find now

(48) vy~ vy = F EK).

If v f_vivi, then

b

(29) Vet = - 2 [k sin 0+ E@,)].



L

5 [k sin @ - E(®,k)].

(50) o vevy %I-E(k)-

We have, in this case,

(51) vy

<

1 ..
2H (k+E(k)) +

We shall need to evaluate integrals of Delaunay arcs, of the form

be

b
(52) Iy ==~/ " evlpldp
Tr
a
pe T
2 r, 21‘ dp
a
Tr
2’0 1, T2 0 54y
=-S5 s s Y g
a o} m/2

for the case Y < m/2; the last two integrals refer to the portions of the
curve preceding and following the inflection. For ¢ > 7/2, @ <0 and

the 1limits in the last two integrals become - w/2.

Case a) Y < w/2: Taking r(®), v(cb) from (43, 45, 46), and setting

&@,x) = /I-kZsin%p; we find, according as r 2 Ty

(53) r2 % = g%g' {1( 1—k2)A¢ 4k2A cos‘2<£‘-3kA2 cos @— k3 0053 }.

After taking account of some cancellation, we obtain
!

2 /2

T
(54) Iab = - % [r.ivb - rava] +§%{T f [(1—k2 A+ 4k2A cosch] dp
[s) ’ .

_ 1.2 2 .. 1
-3 [rb"b'ra"a]_*m‘? S(k),



with
(55) S(k) = 88(k) - (1-K2)(E(K) + 4K(K))
where
n/2 1
K(k) = ——————dp
' o) vI-kZsin%p

is the complete elliptic integral of the fifst kind, of modulus k.
Case b) Y z_ﬂ/2:, In this case, we find by an analogous discussion

- 1 2 2 o1
(56) Iap = - 5'[rbvb"rava] T 24H3

S(k).

We indicate in a particular configuration‘how the above expressions
can be used to estimate the solution u(r) of (5). We consider an arc
u(r) that is vertical at (ra,ua) and at (rB,uB), Uy < g (figure 2).

We compare this arc with a Delaunay arc v(r), with curvature H = -%u ,

a

and'Vertical at (ra,va) = (ra,ua). The second vertical then appears at

(rb,vb), de?ermined by

r_ +r
(57) _uiz 8.2 b
o

and by

' , _ 2

(58) Vb-ua_--u;E(k)
with

. r. -r .

(59) K=2 & 14py |

r, + o
b’ Ta
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The general comparison principle IIi applies in the interval ry ir < Ty

‘and yields u'(r) < v'(r), uw(r) < v(r) in this interval. A consequence is

that

(60) ry <rB, u*=u(rb) <V

We extend v(r) to the interval (ra,rB) by defining v(r)

r > r, . From the equation (5) we now find

I'B I‘b I‘B .
(61) rg=ry = -J "pudp>-J " pvdp - J Tpugdp
ra ra rb
1,2 2 1 B, 2 2
> - S vy raua] + ST S(k)'T(rB'rb)

1,2 2
757 S(k) + 5 (ry - rg)eg

with EB = uB_Vb .

We can obtain a similar estimate in the reverse direction by introducing

a Delaunay surface v(r), vertical at (ra,ua) “and at (;b’(;b)’ and with

A

mean curvature H = - % ug- The comparison principle now yields

vr) <u(r), r <r _<_rB; v(rb) <\ b

(63) T, < Tg <T; o

b)

(see figure 2). ‘Integrating (5) we obtain

~ A

' r T r r
(64) r =-f8pudp<-fprdp=-fbp\7dp+fbp\7dp
T r

-r
B "a
' a - Ta a B
1 AN 2 1 A 1 ~ a2 2
<-5 rbvb-raua] + —— S(k) + > rb—rB)

24H3



by (56, 63). We rewrite (64) in the form

1

~

24H3

24 10 A
erb-frB) < (§-ra S(k).

(65) (

u +r )+
a o

N T

In ordef to' extract useful information froﬁ (62, 65), we need conditions
under which a second vertical wu will appear, and an estimate for €g and
the consequent estimates on ﬁ, 1?; .we proceed to obtain them.

We consider, for the case Y < m/2, the generic conf‘igui‘ation indicated

in figure 2. Setting, as before, u* = u(rb), p* = lp(rb), we find from (5)

2y,

Ty
I o

v
in o¥-r = b 2
(66) Ty S}nw -r, T - pudp > - = (rf -

a
For the upper Delaunay surface v(r) we have from (40, 41, 57)

u

’ _ a . 2 2
(67) Ty =T, = -?(rb—ra).
Combining these relations, we obtain
o . Ty * Ty
(68) | rb(l-smw ) <(vb—ua)-——2——(rb-ra)
so that, by (43, 44, 57)
'\ — k1
(69) | 1- sin y* < 4E(k) Y u&
from which
2 V2 /E(kx) [k
*
(70) ~ cos Y* < = %
We now observe (sin W)r = - (cos w)u and write (5) in the form

sin w

(71) — - (cos w)u = -u .
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‘ For all r > Ty for which the solution can be continued in the form

U= u(r){ we conclude

u
Q

1 N
(72) - (cos ¥), > -u - === -u+

b

Integrating in u between the values u* and u, observing cos ¢y > O

and using (70), we find

1,.2. ,% Ja 2 V2 /i) [k
(73) X 5(511) +(u —ﬁ)du— ua l+k> 0,

where we have set &u = u-u¥, on the arc considered. We have also

by (58, 60), and thus

1+k "a

(74) %—(6u)2+( s u -ZE(ak))Gu-’? /é-ua (k) //E> 0

on any continuation of the solution arc to values u > u*. We conclude

a second vertical must appear, in every situation for which

(75) . kué»l.

Under this condition we obtain from (74) the simple expression:for
§*u = max (u-u¥*) = uB-u*,

Yp<m/2

2/2_mﬁc-ﬁ+—k7< A __e
k_ué-ZE(k)(l-*kT ‘»’Eu; Tug I

A

(76) s¥*u

which limits, fhe_ height change between the successive verticals. Here.

e >0 is arbitrarily small, for large kui .
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We note the condition.(76) ensures that the second vertical (rB,uB)
lies to the right of the hyperbola ru = -1, that is, rgug < -1. We show
that under this condition, the hyperbola is crossed exactly once between
(ra,u&) and (rs,us). To see this, we first observe that . the comparison
function v(r) has exactly one inflection, which must appear in the initial
interval determined by rv > -1. Alsb the vertical distance from (rb,vb)
to the hyperbolé ruv =-1 1is

1 k 2E(k)

-V, T - =21
b b 1+k "o ua

which is positive if kui >>1. -Thus, ryv, < -1, and it follows that v(r)

meets the hyperbola exactly once. Since by II'i, u'(r) < v'(r), u(r) meets
the hyperbola exactly once in the interval [ra,rb]. We now observe

k o, 2E(k) _A
1+k "o Uy /K ué

(77) db-6*u > -

by (76). The condition kui > B implies
1 B A
(78) - 6%u > (= - 2E(k) - =)
dy [a T ' T+% =

which is positive for large B. Thus, u(r) cannot cross the hyperbola

in the interval [rb,rB], which completes the proof.

The result (76) permits us to estimate the error terms in (62, 65).

We find, using (58, 60, 76),

(79) 0 <H-H=2x(u

)= E(u* Loty < 2 (v, - L5
5 u)—-‘g-(u--uOL)+2<Su<2(vB ua)+26u

B™ “a

C_E(K) Lok o _E(K) L _A

U WK

™|

for large ku2. Similarly, by (57, 58, 60, 76),



~ _ o
(80) O<rB—rb<rb-rb—2 —
B a
LE(k) . 6%u 1
:..——-!—-+-—-!—+0(‘ )
Uy ul |ua|5

uniformly in k. It follows that

2 2 A
(81) 0<I‘B-I‘b<m—g

again uniformly in k.

A

- We have k = 1+i-aud, k = 1+rau8, so that by (_59, '76}

_ 2E(k),

u

A _ . .. ¥
(82) O<k-k—ra(u8-ua)<ra(6.u y

2B(k) , &*u
ERE S

< 13',15 (2E(k) + €)
o

2

for large kua. A formal calculation, using the asymptotic estimates for

E and K for k ~1 (cf. [2], Chapter V),now yields

B(K) - B(k) = O(3p)
(83) o

s(k) - S(x) = O(x)
o

uniformly in k. The singularity of K near k = 1 is here canceled by
the factor (1-k) in (82).
We note next

A

2
\/fua

(84) - (Vb-\';(rb))<EB<6*u+u*-vb<6*u<
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We estimate the left side of (84) using the explicit representation

(45) for the surface \/;(r). This representation will apply, as Gi < \'}( rb)

for ﬁui » 1. In the present case we find

_2E(x) , _ 2K(k)
Yo uy - (2B(R)/ug)

(85) vb_?r(rb) =

A

V%
b
+ 1 — (x sin @, * [ Vi-K’sin’¢ d9).
u, - (2E(k)/u8) 0

A

From the definition of v, v we find

b
(86) rb-ra=-uaf odp
Ta
. i
(87) r, sin w(rb)-ra=-u8f pdp.
T
Thus
r?-r?
. _ b o
(88) 1- sin w(rb) = (uB—ua)T

2

and from 1-sin l,l;=_122

sinZCB there follows, using (59, 67, 79)

' . A Xk
(89) ~k° sin Cp(ﬁgﬁ'

We place this result in (85) and use (79) to obtain

A

2
il

(90) 0 < vb-?,(rb) <

uniformly in k.

We are now in position to put (62, 65) into more effective forms.

We write first, from (62), with H = - %-ua, 5
(01) Luyrgr s As Ly s )7 Lo 1oga0s 2 w)
2 T8 ug T 20y T 2% ey T3 T 3w 25 87D
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from which

1 1,2 1, 1,1 1 1
(92) gua{<r8+38-> ~(ry+=) 1> 7 T T S(k)

o Uy u,
u_ -u
1 o B 2.1 2
+-2-——ué——(1‘6u8+1) +-2-I‘b uB—vb).
We‘have
(93) : | Ug = Uy = Ug =Vt V-
=6*u+u*—vb+v -u
=-2E(k)+6*u+u -V
u b
o
which implies, by (76, 90)
J_A_2E(X) oy <o 2E(K), A
vk u? Yo B a Yo vk u?
a
The same calculation yields
(95) | lug-vyl < A
vk u?
We have also, by (80, 76)
(96) 0 < rB-rb<;b rb=—4E(3k)+ A
Uy, vk u&

with |A] bounded uniformly in k, u, for large

lual, from which we derive

2
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(97) l-*rBu6 = l-+rbvb-+(r8u8-rbvb)

2E(k)
) u

= k-

- rb+r8(u8—vb) + vb(rB-rb)

so that the above estimates yield

A
(98) ' K].+r8u8) + k| < Eg

uniformly in k.

Returning to (92), we may now write

1 1 Iii(r —m el 1y (IHME(K) S(k)_ A
(99) > ua{(ra4-ua)j-(r84-u8 }{(rB ra)+uB ua} > u& Ty u&
- Y vk u*
a
with
. 2 (1+%k2)E(k) - (1-k2)K(k)
(100) a(k) = B(k) - 3 = .
The expression
m/2 . 2 /2
(101) 3q(k) = -2 [ =S ® g4 7 ATsIin? @ dp
' o) /I-X2sin? ¢ o
shows that q(k) decreases monotonically from q(0) = 0 to q(l) = - 1/3.

We now write

r,-r >r -r =—§-l£
8 b o u
a
(102)
-7 <;..r =_2(. ..gli-i- A

and, as in (96)



(103) =T

We put these estimates into (99) to obtain

(104) (1ee){(r +L)s (rye i)} < - 2kQ(H) , A
{ Ta Uy, s ug } u, e u&

where |e| is small and |A] 1is bounded, depending only on kui >> 1.
Repeating the entire procedure starting with (65), we are led to the
reverse inequality, with k replaced by k on the right. Applying (82)

we obtain (104) with the inequality reversed, and thus

1 .1, _  2kq(k) A
(105) (ra+ﬁ';)+(r8+ )_-_33_(1+€)+& .

ug
Y

We place this estimate back into (99) (and the corresponding expression

with k) to find, using (102) and (103),

/ 1
(106) |e{(ra+-{l—g)+(r6+@)}| <&u ’

~the € being the one that appears in (104). We are led to the basic

relation for an outgoing arc (on which 0 < ¢ < m/2)

2kq(k) . A
= 3
Ug Yk u

(107) (r_a+;1;) +(r8+-ulE) - “
i a
with bounded IAI, depending only on kui >>1.

The case of a returning arc (y > m/2) does not yield immediately
to the same discussion, and it is necessary to distinguish the case k ~ 1.
We note (fig. 3) that the comparison Delaunay surface v(r) of curvature

H=- %-ue now lies below u(r), and now pfovides an upper bound rather

than a lower bound for rB-ra. To obtain a lower bound, we observe that
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since 1 < E(k) < m/2 and E'(k) < 0, there is (for iarge |u8|) a

unique positive solution T of
A2 A A
+ -] - - =
(108) T uBTi-ZE( 1-ugrg Trs) 0,

that is, there exists a unique Delaunay comparison surface \’;(r) through

(rB,uB) with mean curvature H = - %'Ga’ so that
(109) o5 oy, = - &)
a B A

Va
with
: : r, -1

ro B a_ .50 oL

(110) k = r8+f'a = 1+rava l_rBVa'

The solution curve u(r) satisfies u'(r) > v'(r), u(r) < ¥(r),
and hence u(r) can be continued from rg through decreasing r at least
to the value ;a‘ Letting ‘v(r) denote now the Delaunay sérface through
(rB,uB) with mean curvature H = - %UB’ we find u'(r) < v'(r), u(r) > v(r);
it follows u(r) camnot be continued to the minimum value Ty of definition
of v(r). ' ~

The relations analogous to (62, 65) become

(111) %rgu8+r8 < %riva+ra + -j%l-é- S(k)

’ 1l 2 1 ~2~ 1 ° 1 ~2 2

(112) —é-rBuB+rB >S T v T+ ;{;S(k) - 3 u(r] ra)
a

As before, we may rewrite these relations:

: \

1.2 U, -Ug 1 ( 1+raua)

r,+=)] <
a u 2

+ )
a U Ug Uy

2
(113) '21"18“1‘8*?35) - (

1 1 .2 ‘
+ 3?6-8(1{) +§ra(va-ua)
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2
1 12 1.2 Yug g (lerug)
(110)  Zugllrgrgp) -l ) > =~ g+ —=
1 A 1 ;2(\’; -u )
= S(k) + 5'aa o't

3vg

The further estimates must proceed differently, at least in the
range k ™~ 1.

From the defining relation (108) for T and the analogous one for

~ -1 ‘

T = v, -Uug, follow T, T < A|u8| for large |uB|. From
D p = 4Bk

(115) r, =T, = ————

+7)2
uB(uB T)
thus follows
(116) . 0<r -r_ = Alug

with bounded A.

Let u¥ = u(fa). For given X > 0, consider a rectangle» R of width
A|uB|'3 and height valuBl_3 as in figure 4. Since u(r) cannot be
extended to r = r_, there must be at least one point (rp,up) in R
at which [tan ¢| > A, i.e., at which

1 s A
’ sin ¢ > .
,/’j+)\2 ,/i+)\§

(117) |cos y| <

From (71), which holds also on a returning arc, we find, for all r < ;a’

(118) | (cos w)u>u+%‘k

r
a

and hence,at the given point,

(19)  (eos ), > u v —A— = L Ay . 2EE),
, h r I+ AZ 1-k I+2Z A
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We note E(ﬂ) < m/2; for any given k,, 0<k < 1, we choose A so that

(120) -

For all sufficiently large |uB], the right side of (1195 will then be
positive for all u > ug» for any ﬁ in kO < i < 1. Thus, cos ¥ is
increasing (from a negative value) at r = rp, and we conclude that (120),
and hence also (119), continue to hold for all r < T, to which u(r) can
be continued. Integrating (119), we find that a vertical must appeaf within

a height change

=D

* 1- * _
(121) 6u<A-|u—Br, 4 (Su—uau,

uniformly in ko < i < 1.

For given k < 1 and large |u| we may improve this result by estimating

cosiﬂ* éxplicitly. We have N
T
. B u
2 ain 0¥ = - B R2_22
(122) rg-T, sin Y i pudu < - = (rB o
- T
a
A Va2 a2y
(123) rg-T, = -?(rB—ra)
from which
T, + T
~ N * ~ B a ~
(124) ra(l-31n Yr) < (va-us) 5 (rB-ra)
so that
(125) 1-sin y* < 4EK) X
v 1-k
a
and hence »

(126) cos y* < 272 VE(k) ///i' ;
-, 1-k
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We note (126) is similar to (70), however the term (1+k) of (70)
is replaced here by l-ﬁ. This is the reason the range k ~'1 requires
special cdnsideration on a returning arc.

Repeating now the reasoning that led to (121), with (117) repléced

by (126), leads to

(127) 6*y <
VK u?
B
for all k <k < 1. This estimate holds for all sufficiently large ]uBI.
A returning arc has in all cases exactly one inflection between the
vertical points (IT iii)., It is obvious a returning arc meets the hyperbola
ru = -1 in exactly one point.

" We proceed to obtain further estimates for k ~ 1, analogous to

(79-90).
We have
' r.-r r -;
(128) k=i k-t
B "a g Ta
thus
) '\_1 A ~
(129) A 0<k-Xk= E'rBqua(ra"ra)
<A ug2

by (115). We note the factor (1-k) of (82) nod longer_appeafs;

The estimate for Ga-v(fa) is complicated by the strong:dependence
on k of the position"of the inflection on v(r). We avoid this difficulty
by noting that the hemispherical,suerCe“:w(r) of constant mean curvature
rél,_that passes through (rB,uB), has larger mean cﬁrvature than .does

v(r), hence v(r)-w(r) > 0. It follows that
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(130) ¥ -v(F,) < (v, -w(0))+(w(0)-w(F,))
= (v -uB—rB 4—(r /F—?;T)
= - ‘,;( k) - T »’{—(rz/r ).
a

Formal estimation gives

2 2
(131) B(k) ~ 1 - 35 (log 3+ 1)
for kX near 1. Further,
1 .1 . 2E(k)
(132) ~To R
Va B B8
ihus
2E(K) + r u, A 2
N BB l k
(133) v, -v(F,) < —-———-—uB 5 _f

< A1-K)|10g(1-k) |
8
with bounded [A|, uniformly in Xk for large IuBl.
A repetition of previous procedures, using (128-133) in place of

(79-90), leads after some calculation to

2k q(k) . A(1-k)log(1-k) 1 1,
(134) ué + ué < (ra + ua) + (rB + EE)

. 2k q(x) , B(1-k)log(1-k)
3

u3l

U8 B

with |A] and |B| bounded uniformly in k for large luBI. A formal,
if tedious, calculation, based on asymptotic estimates for E and K for

k ~1, yields
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(135) la(x) - q(k)] < EAg'

We place this estimate and (129) into (134) to obtain the basic estimate,

for a returning arc with k ~1,

1y - 2% Egk) . A (1-k)log(1-k) .

1
136 —
(136)  (rg + )+ (rg + & : o

If, for some fixed ko’ there holds- O < k f-ko <1, kug >» 1, then

the same procedure, using (127) in place of (121), yields for large ]uBI

i B
with [A] < A (k).

We summarize the information obtained thus far.

VIi: A solution vertical at (ra,ua), such that rou, > -1 and (75)
holds with % = 1:+raua, will again become vertical at (rB,uB), with
Tgug < -1. Between the two verticals there holde 0O < Y < /2. The height
change is estimated by

_ 2E(k)
(138) ug = Y, - " + e
with
A
(139) le] < .
/K u?
a
The solution arc meets the hyperbola rTu = -1 in exactly one point. The

change in horizontal distance to the hyperbola at the two vertical points

18 controlled by (107)-
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VI ii: Let k = -1-r8u8,‘zet

A

(140) k = -1--era = —1-r8(u8 -

2E(f<))

(ef. (109)).
118+T :

A solution vertical at (rB,uB), such that rgug < -1 and kué >1, will

again become vertical at (ra,ua) with ru > -l Between the two

verticals there holds = < Y < M. There ts exactly one inflection and

2
one intersection with ru = -1. The height change is estimated by
_ 2E(k)
(141) Uy =Yg - o + €
with
1-k
(142) lEl <A-|—U;|-

and A < Ao(ko) <% in any range 0 <k, < k <1. The change in horizontal
distance to the hyperbola ru = -1 1is controlled by (136).

In any range 0 <k < k <1, if kué >»>1, then the solution will again

become vertical at (ra;ua), r U, > -1; the height change is again esti-

mated by (141), but with

(143) ' le] < -2 -

7k ug
in place of (142). The change in horizontal distance to the hyperbola

ru = -1 <8 controlled by (137).

VII Asymptotic Estimates

The results of VI show that for large lul, the solution curve contracts
toward the hyperbola ru = -1 between any two successive verticals. The
estimates (107, 136, 137) contain quantitative information, which we now

proceed to integrate to obtain new global information on the behavior of
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the solution, when luol is large. We set r, = 0, denote the successive

vertical points by (rJ.,uJ) and write

- 1 - -
cJ = rJ. + El s kj = -cJ.uJ. , GCJ = cj+l-c,j’
(144) N
T, = - <, k., = [1+r.(u.,+1.)| .
J 2.+ J St B
J
Using (144), (107, 136) now take the form, for k,k ~1,
: 2k, q(k,) 1
(145) Sc, = - —-Lu-a-—-*l— + A, , - j even,
J J I A, u
3
2k; a(k;) (1-1?j JLog(1-%,)
(146)_ <ScJ. = - G + Aj “j" ) j odd,

with IAJ.I < A < ° , uyniformly for all sufficiently large IuJ. |, in any
range O<k0ik<1.
We are interested in (145, 146) for large |u|. We note - q(k) i-q(l)=l,

E(k) i% , and choose u;' to be the (unique) solution of  the equation

1
(147) -%Qlog%%g%.
Let -
(148) %) = max{k: - 2kq(k) < - 2A(1-k + G","—)log(l-k + Tg—)} )
m1 1

Clearly, 0 < K1) <1, and
(149) k(l) > max{k: -2kq(k) < -2A(l-ﬁ)log(l-1?)}

1)

For all k; > k( , there holds - A( HA‘J )log(l-ij) < -kj a( kj) .
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2

3
Now choose um2 so that (k(l)) q2(k(l))u; > A®. For values
2

2 2 2
(150) uj > max{uml,umz}
we may wriﬁe, since kj = -cjuj,

3

(151) S§c, = - P,c’

J J J
with

. la(k)] 3la(k)]
152 min q < P, < max .

(152) k> k(1) kK I g (1) ¥

Integration of (151), with ey = -ugl, yields

-2 2
(153) 2NP ~ e\ - ug

for some P in the range indicated by (152).

We consider also the relation, which follows from (141-143),

"1 ~ ~
(154) 6uj = - Ajuj s 22 Aj ST,
and which intqgrates to'
N
2 2 ~ A A~

(155) uy ~ug - 2AN, 23ATT.

o

From (153) and (154) we calculate

g

(156) kN m N p AP )
. 2 2 -

and setting uy = (l-1ﬁuo,
(157) 2 ~P1-1)

N p+n
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civen 19, K1) ¢ k(0) (1 tnere will be, for all sufficiently
large |u [, a unique smallest N = M) por which
(1) _ p-m% . (0)
’ p\i-n
(158) k < [-5;774 < k ’
(0)

the ?alue of the expression iﬁ (158)_tends to k ‘with increasihg luol.
- . We reformulate our result slightly, and summarize the information thus
far obtained. We note that any set of points kj = const lies on the
hyperbola 1+ ru = const, and that the singular solution U(r) is asymp-
totic to the hyperbola ru = -1, as r + 0. The following result holds

for all |u | sufficiently large.

i

VIi: Given any k(o), k(l) < k(o) < 1, there exists n(k(o)) > 0.

such that the solution curve, starting at (O,uo), "separates" from the

arts. r = 0 and from the hyperbola ru = -2, after an interval uN-uo~%n[uO|,

in the sense that near the height uy all points on the curve lie between

(0) ' i (1) . m
Between u_ and Uy 'al number N 3K Y5

of vertical points appear, and each vertical point is_beZowed by another

(on the opposite side of ru = -1) at a height cﬁanée’ Gﬁj “'-Augl;

the hyperbolas ru = -1tk

To. proceed further, we return to the relatlons (107, 136, 137), 31nce

(1- k(o)) #0 (k(o) 1ndependent of u, ), we may use (143) to write (145, 146),

for j > N(l), in the common form
2kq(k) A
(159) Se, = - u3 —_t
o Jo /5 ul

~ We cohsider an interval in which the last two terms on the right in

(122) will be small in relation to the first term. Since
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. ka(k) . @
(160) | k;imo 3 - ¢
the condition takes the form
-2/7

(161) k > A|u]

for suitable A. Integration of (159) and of (154) yields, as above,

| BN
(162) . ky ~‘(1+p) T
so that (161) now reads
7
(163) oyl > Afuy) .
We can in fact achieve the situation
x ~ Afu|~%/7
(164)
7/9
[u] ~ Alu,]

for suitably large A (independent of uo), asymptotically for large |u0|,

in a number N(Z) ~'£K ug steps. In this configuration, the solution curve

has "contracted" towards the hyperbola ru = -1; we compute in fact from

(153, 155)
: c(2) A2
(165) lc-g-"‘(m)

as |u | +oo.
() _ ) _
At the level u (2) the relation (159) no longer ensures a contraction
N L : ’
at each step. The conditions for appearance of successive vertical points_
are, however, still satisfied, and (159) still suffices to bound the change
ch at each step. . , 20-8

Let o satisfy %; < a < 3. In any range Alul"z/7 >k Z_B|u|20‘+l

b

we find
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(166) 1< ac®
vk ub
a
and we consider the inequality
(167) |8c, | < A%,

We integrate and simplify, noting

1-q 2
(168) _ CN(Z) >>uN(2)

for large |u_|, to obtain

A< XN < B
c
o)
20+]
9
(169) gl > Ju |
208

9
kN > IuO[ ;

thus the solution remains in a strip of sensibly constant width about

ru = -1, until a height
20+1

IUN(3)| ~ [l

We conclude in particular the existence of a constant A such that
in an interval

2a+1 20+1
9

' 9
(170) lu, | < Jul| < 2fu |

20-8 .
there holds Ky < A|u|2a+1. We assert that for all sufficiently large |ul,

the solution curve lies interior to a strip determined by

(171) k=-cu-= (A+1)|u|'2/7
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uniformly in u_ as !uol'* o, for any A sufficiently large to justify

0
(164)5 This is clearly the case in the interval (17Q). If the curve u(r)
were to extend outside the strip (171) for values of u exceeding - Iuo[(2a+l)/9,
there must Be a first point p on the boundary of the strip. By comparison

with Delaunay surfaces through the pbiht P, one then sees (note either the
condition (75) or the corresponding condition with ug 1is satisfied at p)

that a vertical would appear on or outside the strip k = A]u|_2/7.

Let q -
be the first such point. The estimate (159), applied now in the directidn

of increasing 1u|, shows that a preceding vertical can be found at a point
Q> with horizontal distance to ru = -1 exceeding that from Q- The strip
k = Alu|-2/7 is however narrower ét q, than at Q- This contradiction

establishes the assertion.

We summarize:

VI ii: Given k(o) > k(l), Iuol large, ihere 18 an n(k(o)) (deter-
mined by (158)) so that k < 1(0) for luNI < luN(l)l ~/1-7 luol. The
curve can be continued through successive verticals to a height |uN(2)|‘~A|uo|7/9,
for suitably large A, at which level it has contracted towards ru = -1 1in

23

a ratio given by (165). For any a, Fac<s the curve can be continued
further through successive verticals till a height IuN(3)|‘~ ]u()l(‘ao”l)/9 s
and is confined to a strip of sensibly constant width, as indicated by (169).
For smaller values of |ul (relative to Iubl) vertical points presumably
cease to appear, however the curve lies within a strip about ru = -1, of
width determined by k = A|u|-2/7, for sufjiciently large A (independent
of uo). Specifically, there exists A such that for any fixed (suffi-

eitently large) U, there holds, for (T,2) on the solution curve,
(172) |§-%|~§Alﬁl‘9/7
. u _

uniformly in u_, as Ivuol + oo



28~
The global asymptotic behavior is sketched in figure 5.

VIO A Compactness Property

Let us consider the family of solution curves, represented in the
form r = f(u;uo), with uj as parameter, [uo[ + o . The result (172)
shows that for large |u| the curve is confined to a narrow strip about
ru = -1, and the method of proof of (172) yields as corollary the existence

of a constant A such that on any fixed interval a <u f.b’

of
RISy

for all sufficiently large ]uol.

It follows there is a subsequence of values u, > - % such that tﬁe
corresponding functions f(u;uo) converge, uniformly on compact intervals,
for all |u| sufficiently large that (172) applies. The limit curve

€: r = 3(u), when described with arc length as parameter, yields a

solution of the parametric system (3) of [1]. There holds

(173) 11+u )| < aju] 7?7

for all large |u].

Each of the curves f(u;uo) can be extended globally without self-
intersection as indicated in Theorem 6 of [1]. Applying the general continuous
dependence theorem, we find that the limit curve ¥ has the same property
(a reasoning similaf to the proof of Theorem 6 excludes self-intersection).

The curve @ has the asymptotic property u J(u) ~-1 for large [u],
and the oscillatory behavior indicated in figu:é 1 of [1] for large r.
It seemsllikely the curve € 1is the singular solution U(r), and we

conjecture that is the case.
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Footnote, p. 2

1)

We note for reference the alternative representation Vp= Vg = raK(§)+ ry E(k),
where K and E are complete elliptic integrals of first and second kind,
S (22t | ~
and Xk = (rb-ra) /r,. Similarly, (45) takes the form v-v, = r F(®,k)+
rb[ E(k)-E(9,k)], where F is the incomplete integral of the first kind,

and r(l-l‘z2

2 -~
sin CP)i =T rb(l-k2 sin2¢)§= r. In this form of the re-
presentatign there is no need to distinguish the inflection, however the

formulae become technically more complicated in other respects.
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(rysvy)

(ra,va) (rb,vb)

i) outgoing arc ~ ii) returning arc

Figﬁre 1. Delaunay arcs
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Figure 2. Comparison with Delaunay arcs; outgoing case
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Figure 3. Comparison with Delaunay arcs; returning case



-33-

8’ Yg

(r )

Figure 4. Estimate for u, when k ~ 1
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Alu |7/9

iv) behavior far from o

ii) contraction toward hyperbola

vi-n U 2%;1

A]u | /
o !
!
!
/

)

!
! ]
] !
I |
| |
| ]
! !
! |
| ]
| |
y | |
7/9 | 1
Aluo] | |

iii) confinement to strip of constant width

i) initial separation from axis

Figure 5. Asymptotic behavior for large |u | at four levels (scales differ)
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