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ABSTRACT OF DISSERTATION

Measuring Cellular Mechanics

with Quantitative Phase Microscopy

by

Thang L. Nguyen
Doctor of Philosophy in Bioengineering
University of California, Los Angeles, 2022

Professor Michael Alan Teitell, Chair

Quantitative phase imaging (QP]) is a label-free microscopy approach using the phase shift of light
as it passes through transparent objects, like mammalian cells, to quantify biomass distribution and
changes in biomass over time and space. QPI has seen immense interest and advances in hardware
and software leading to numerous applications in biology and expansions in utility within the last
decades. This dissertation presents a subset of those studies applied to questions of cellular biology
and biophysics along with an overview of the QPI field as whole. The initial proportion of this
thesis is devoted to modeling and dissecting various biomechanical properties of cellular
mechanics including cellular viscoelasticity and work across varying cell types and biological
perturbations using purely QPL. This is followed by an in-depth review of the field of QPI including

the development and lineages of the various QPI approaches along with the advances in QPI made



in the field of cellular biology, biophysics, and diagnostics. Finally, we conclude this thesis with
a review of the ongoing technical and biological advances made in QPI along with perspectives
on the directions that QPI field maybe proceeding towards. Demonstrating that QPI is not only a
robust tool in probing cellular biology and biophysics already but is also expanding its’ capabilities

towards more applications in and interrogating fundamental questions about biology.
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Chapter 1. Introduction



Quantitative phase imaging (QPI) is a label-free microscopy technique that measures cell
properties and behaviors, through cellular biomass via the phase shift of light as it passes through
matter, this phase shift is caused by the retardation of light as it passes through a material of

differing refractive index' and is described by the equation:

h
¢ = Z%Lzon(z)dz L

where ¢ is the phase shift of light. n is the refractive index of the sample, 4, height of the sample,
and z is the direction of integration. This measured phase shift is directly proportional to the dry
biomass content of the sample®. This dry mass includes all mass with different refractive index
from a reference which is in most case water. This can be seen in the increase of refractive index
of a protein solution with a proportional increase in protein concentration®. This relationship
between refractive index versus mass concentration is called the specific refractive increment' *
with the average specific refractive increment, a, for the contents of mammalian cells being around
0.185 pm?/pg', changing within ~6%>. The total cell dry mass within a given area, m, can then be

calculated using the specific refractive increment, a, of a sample as?:

m—ifmm )

- 2na
where A is the area of the cell. This ability of QPI to measure quantitative biophysical features of

the cell allows it a variety of applications and potential in biomedicine.

Branches of QPI methods
Traditional imaging detectors measure amplitude of incident light and not phase so all QPI
methods created must address this need to recover phase shift information from light. There are

many QPI approaches or lineages for this including interferometry® 7, wavefront sensing® °, phase

2



1% 1" and digital holography'?. In interferometry, phase information is generated via

retrieva
splitting of light incident on a sample into two paths a sample and a reference path before
recombining them at a detector. The magnitude of the resulting interference images is related to
phase shift of light passing through the sample compared to the reference via the interference
between the light from these two paths. Examples of interferometry techniques include the

Michelson'? (Figure 1) and Mach-Zehnder interferometer'# which are respectively a reflective and

transmission imaging setup.

light
reference source
chamber

sample

m=k| @\ dA
/ Y ea

mass phase shift
mass conversion factor

FIGURE 1 Schematic of a reflective interferometer setup called the Michelson interferometer.

Phase shift information is obtained by cellular sample via the splitting of the incident light into a



reference and sample path which is later recombined to generate an image of constructive and

destructive interference.

A related QPI imaging lineage is wavefront sensing which are approaches that seek to recover the
aberrations in a wavefront caused by phase delays within a sample. Some wavefront sensing
methods include Shack Hartmann wavefront sensing'® and Ronchi sensing'® with early wavefront
sensing using lateral shearing interferometry'® !7. Lateral shearing wavefront imaging make use of
incident wave that are sheared into two identical but tilted wave fronts that then interfere. These
resulting single-direction phase gradient when paired with multiwave interferometry techniques'®
can generate 2D gradient maps needed to recapitulate QPI images. Another QPI lineage is phase
retrieval methods which refers to non-interferometric methods that are computationally reconstruct
the phase shift from intensity images. These phase retrieval methods can be classified as either
iterative or deterministic'® with iterative methods using iterative computation to the phase
problem?°. One widely used iterative phase retrieval method is the Gerchberg-Saxton algorithm.
Deterministic methods solve for phase images without iteration with a commonly used approach
based on the transport of intensity (TIE) equation which relates phase data at the in-focus plane to

the axial derivative of intensity distribution®'.

The last branch of QPI we will discuss is digital holography which captures the interference
between a reference and the off-axis sample beam with a digital camera placed at a known distance
in front of the image plane. The interferogram is reconstructed through diffraction theory to
recover the complex object wavefront, which includes the phase shift and intensity modulation of

the light. Digital holography methods are based on those of holography as established by Gabor??



where light from a point source when interfering with secondary waves from light scattered by an
object can produces a negative photograph of a 3D image. All these QPI lineages have benefited
greatly from the increasing availability of high end computing allowing for greater digital image
acquisition and data processing allowing for convergence of QPI branches like with quadriwave
lateral shearing interferometry which combines principles of wavefront sensing with

interferometry and phase retrieval algorithms’.

Advantages and applications of QPI

Advantages QPI have include being label-free and containing quantitative information about phase
in each pixel of the captured images. Paired with the specific refractive increment®, which is the
refractive index of a material is related to its mass, of cellular mass which is around 1.8 —2.0 x 10-
4 m*/kg %33, QPI can generate biomass distribution images of individual cells or clusters (Figure
2a) at individual instances or through a time lapse set of images (Figure 2b) through its’ phase shift
information. These time-lapsed images can be used to extract information on cellular mass over
time (Figure 2¢) *2*%6, Additionally, repeated QPI measurements of dry cell mass over time can

)’ 2732 or the

provide dry mass accumulation or loss rates to quantify cell growth (Figure 2d
decrease in mass that occurs during cell death®-® . These type of mass accumulation
measurements have also been paired up with a number of extracellular perturbations including
changes in available glucose?® or introduction of small molecule inhibitors like tunicamycin to
induce cell stress’. Allowing for the development of QPI-based screens for agents that may cause

changes in cell growth rate and cytotoxicity” *. Furthermore QPI has also been applied to study

other cellular properties including motion (Figure 2e¢), migration, and metastatic potential®.
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FIGURE 2  QPI imaging captures information of mass accumulation and motion. QPI images
at (a) beginning and (b) end of 3h time lapse of MCF-7 cells. Time lapsed QPI images used to to

measure (c¢) dry biomass over time for MCF-7 cluster and can be used to extract (d) mass
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accumulation rate differences when treated with a drug treatment. Motion in QPI data can also be
captured shown via a (e) kymograph of travel by the leading edge of the cluster represented in the

white line in (a).

Due to QPI’s flexibility it has been applied to study variety cell types and applications including
primary human melanocytes*!, human pluripotent stem cells (hPSCs)*, immune cells**, and many
others. For example, where other growth rate measurements like proliferation rates may be
constrained due to limits on cellular replication like cells that are not proliferative like in
hypertrophic cardiomyocytes or primary cells due to the Hayflick limit, QPI is able to work around
this due to being a direct mass measurement as well as being to make such measurements on a
very short time scale. This allows for mass accumulation measurements on the aforementioned
hypertrophic cardiomyocytes and what media conditions may illicit hypertrophy (Figure 3a) as
well as allow QPI to interrogate primary and primary cell derived samples (Figure 3b). This allows
QPI a great advantage over the many other growth and mass measurement techniques and uniquely

positons it to interrogate other biological questions of size, growth, and cellular mass.
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FIGURE 3  Cellular growth applications of QPI in situations inconvenient to proliferation
assays. (a) Measurement of mass accumulation rate for cardiomyocytes under different media
conditions meant to induce hypertrophy (Reproduced with permission from *, © 2018 Wolters
Kluwer Health). (b) Determined there was no noticeable size or growth differences in primary BJ
fibroblast derived MSC vs. those of the rho0 + cell line mitochondria (Reproduced under Creative

Commons Attribution (CC BY) license with permission from %, © 2020 Patananan et al.).



Cellular mass and mass accumulation are not the only properties measured with QPI as shown by
QPI’s ability to quantify cellular motion as well (Figure 2e). What sets QPI apart from other
simpler microscopy techniques like phase contrast or bright field is QPI’s ability to measure not
only motion external or full displacement of individual cells but also the intracellular motion as
well by detecting the fluctuation of internal mass redistribution and motion. While typical
microscopy techniques might only be able to quantify differences in displacement by wild type
fibroblast (Figure 4a) vs collagen knockout ones (Figure 4b), QPI is able to quantify the differences
internal as well (Figure 4c¢). This difference in internal mass redistribution and motion can also be
applied to determine physiological differences between cell types shown by internal mass
redistribution being able to determine differences between cardiomyocytes of two different heart
fields (Figure 4d). This demonstrates QPI’s capability to extract even more information from its’
already extensive information on cellular mass and mass accumulation allowing for prospectively
extensive characterization cellular properties via different examination and manipulation of QPI

cellular mass information.
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FIGURE 4  QPIapplications of internal redistribution and intercellular mass motion. QPI phase
images of (a) GFP labeled wildtype and (b) collagen V knockout fibroblasts. (¢) The two types of
cells show marked differences in their internal redistribution of mass quantified as a decorrelation
rate (Reproduced with permission from #¢,© 2020 Elsevier). (d) Cardiomyocytes that comprise the
first (FHF) and second (SHF) heart field show drastic differences in mass redistribution
(Reproduced under Creative Commons Attribution (CC BY) license with permission from 47, ©

2021 Pezshouman et al.).

Applications of QPI in biophysics
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An emerging application of QPI is in the realm of biophysics due to QPI’s ability to measure
intracellular mass distributions and redistributions over time revealing information on cell
movement and intracellular transport phenomena. These measurements of the movement of mass
between cell regions enable applications in intracellular transport, while measurements of the
shape and structure of a cell over time enable measurements of cell mechanics. An example of
such applications can be found in measurements of label-free diffusion coefficients of organelles
and vesicles in neurons and cardiomyocytes*®. However, there are many more properties that can
be teased out and this thesis is devoted to further probing out these various biomechanical

properties with QPI and examining the state of the field QPI as whole in this regard.
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Chapter 2. Cell viscoelasticity is linked to fluctuations in cell biomass distributions
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Introduction
Viscoelastic properties of cells are important emerging biomarkers of disease state and

progression’

. The simplest approach to defining cell viscoelastic properties examines two
parameters: stiffness and viscosity, which characterize the elastic and dissipative components of a
cell’s response to stress®. The elastic response has been used as a biomarker for cancer cells® or
metastatic potential?, and has been related to cell migration during embryogenesis®. Cell viscosity
has been linked to multiple biological processes, such erythrocyte porous trafficking and

deformability®, diffusion’®, and cell disease state® '°.

Most approaches to interrogate cell viscoelastic properties use induced deformations!! or probes'?.
Approaches to measure the elastic component of cell viscoelasticity include atomic force
microscopy (AFM)!?, optical laser tweezers!*, magnetic tweezers'>, pipette suction'®, uniaxial
stretching rheometry!’, hydrodynamic stretching'®, and microrheology!'®2°. The viscous response

of cells has been measured using approaches that include microrheology!'® 2°

, electronic spin
resonance?!, fluorescent rotor protein®’, AFM?, pipette suction'®, and optical laser tweezers**.
These measurements, however, can be strongly influenced by the specific region of a cell that is

probed?®®, alterations of the cytoskeletal network by an applied stress or cell interactions with a

probe?’. All of these influences may bias measurements of cell viscoelasticity.

Therefore, we developed a contact-free, non-invasive approach that accurately measures cell
viscoelastic properties based on quantitative phase imaging (QPI), a method that we refer to as
quantitative phase rheology (QPR). QPI?® is a microscopy technique used to measure the phase-

shift or retardation of light due to its interactions with the relative dry mass, or the non-aqueous
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biomass, of a cell?’

. Using an experimentally determined cell-average specific refractive index, we
can relate the phase shift of light to cell biomass®®3!. QPI has been used to study cell growth®,
death®®, and responses to growth inhibition by chemotherapeutics or targeted inhibitors of

biological processes**3¢,

Previous studies have used what we refer to as QPR to measure membrane viscoelastic properties
of enucleated erythrocytes, including development of an analytical model linking observed
vibration modes to viscoelastic properties through the autocorrelation of quantitative phase data®”
38, However, this model does not directly translate to the more complex structure of nucleated
cells. In an application to nucleated cells, spatial and temporal autocorrelations of quantitative
phase data from human pluripotent stem cell colonies indicated both a larger degree of spatial
coordination and faster rate of temporal decorrelation for pluripotent cells compared to their
differentiated progeny*®. A more recent study found that spatial autocorrelations of quantitative
phase data can be used to indicate the intracellular disorder of cells, a parameter related to cell
stiffness in response to deformation to fluid shear*®. Other work on QPR indicates that temporal
autocorrelation of quantitative phase data relates to cellular transport properties including
diffusion*!"*, and show a correlative relation to cellular stiffness**. However, there is currently no
QPR method to concurrently model and measure both the elastic and viscous components of cell

viscoelasticity.

In the present study, we report that the temporal autocovariance of quantitative phase data for cells at
interphase of the cell cycle show a response similar to a mass spring damper system. The elastic and viscous

coefficients describing this behavior correlate with viscous and elastic stiffness components of interphase
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cells quantified by AFM measurements. We varied the cell stiffness of three different cell lines with
cytochalasin B%, an actin polymerization inhibitor, and show a high correlation between QPR results and
AFM viscoelasticity measurements. Finally, to validate our measurements in cells of the same genetic
origin during a cell state transition in which stiffness plays a physiological role, we apply QPR to a cellular
model of the epithelial to mesenchymal transition (EMT)*. These results show that QPR measures of
stiffness and viscosity correlate with EMT state. Overall, our results suggest that label-free QPR can be
used to indicate cell stiffness and viscosity, significantly expanding the utility of QPI for monitoring cell
behavior.

RESULTS

Autocovariance of cell QPI data exhibits damped oscillations

We used QPI to measure cellular biomass distribution over time (Fig. 1a-1¢) and computed the
autocovariance of these biomass distributions over time, Cyg, to quantify changes in the
distribution of biomass caused by the motion of cellular structures (Fig. 1d). The autocovariance
of the quantitative phase data (Fig. 1d) is well-fit by an equation describing damped harmonic
oscillations (R? = 0.99). The fitting coefficients in this equation are related to an effective stiffness,
k, and effective viscosity, u. Assuming the spring and damper act in series, & is given by equation

(9) (Methods) and i can be found by dividing equation (9) by equation (5) (Methods).
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FIGURE 1  Autocovariance of QPI biomass-density over time displays underdamped

oscillations. (a-c) QPI of MCF-7 cell cluster at 0, 6, and 12 h of imaging. (d) Autocovariance of

QPI data over timeshift 7 fitted to a complex exponential.

Automated detection and removal of cell division events in quantitative phase data

QPR detects large changes in both effective stiffness and viscosity during mitosis (Fig. S1). These
changes are consistent with previously measured increases in cortical tension and cell stiffness
during cell division and mitosis*’*°. However, our QPR analysis averages values obtained over a
period of approximately 5 h, so changes in cell stiffness due to single mitotic events are not

resolved. To measure population-level differences, we therefore restrict our analysis to interphase

cells.
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We filtered QPI data to automatically detect the localized increase in biomass density that occurs
during mitosis using a kernel consisting of a sigmoid function in time*® and a disk in space. This
kernel mimics the characteristic changes in cell phase shift that occur during mitotic cell rounding.
When applied using an image processing filter (e.g. imfilter in Matlab), this kernel highlights
regions of mitotic cells, without requiring any additional labels (Fig. S2 A-B). To validate this
method of automatically detecting mitosis, we used FUCCI green fluorescence to mark mitotic
cells (Fig. S2c¢). We observed >80% overlap between fluorescently labeled mitotic cells and cells
with high values of the QPI mitosis filter, indicating robust detection of mitosis. We then calculated
true positive versus false positive rates for detection of images that contain a division event (Fig.

S2d). This allowed us to determine a filter threshold that gives a true positive rate of > 0.95.

We then applied our label-free QPI mitotic filter to our autocovariance analysis. We calculated
autocovariance on all possible 5 h subsets of each cell cluster dataset. Any subset that was
determined to contain images with a mitotic event were removed from the analysis. This automatic
filtering eliminates cells in mitosis from QPI data to enable biomass-density decorrelation rate

measurements for interphase cells only.

QPR measurements of elasticity and viscosity

We performed QPR with filtered elimination of mitotic events for MCF-7 (Fig. 2a), HeLa (Fig.
2b), and BT-474 (Fig. 2¢c) cells. These curves display significant heterogeneity as detected by the
variable periods and amplitudes of oscillation seen in the autocovariance curves of individual
clusters. For example, BT-474 cells displayed the highest frequency of oscillation (b = 0.46+0.07)

and steepest exponential decay (a = 0.63+0.05) (Fig. 2c) compared to the other two cell lines,
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whereas HeLa cells appear to have the lowest oscillation frequency and exponential decay (b =
0.24+0.11 and a = 0.52+0.12) (Fig. 2b). These qualitative differences correspond to a predicted
lowest effective elasticity (aka stiffness) and viscosity for HeLa cells and a highest effective
stiffness and viscosity for BT-474 cells. The standard deviation for stiffness from repeated
measurements of single cells and clusters was 7-10%. The population standard deviation, however,
was significantly larger, approximately 100%., indicating significant biological heterogeneity

within each cell population.
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FIGURE 2  Autocovariance of QPI data from individual clusters and cells indicates significant
heterogeneity. (a) Autocovariance of MCF-7 (n=31), (b) HeLa (n=12), and (¢) BT-474 (n=51)

cells in 0 uM cytochalasin B with individual cell or cluster traces shown.

To induce a change in cellular stiffness and viscosity, we used the actin polymerization inhibitor
cytochalasin B to disrupt the cell cytoskeleton over a drug concentration range of 0-5 uM>! and
measured effective stiffness and viscosity with QPR (Fig. 3). These data display both significant
cell-to-cell heterogeneity as well as the expected trend of decreasing stiffness and viscosity with
increasing cytochalasin B concentrations. This is most easily detected in the population averaged
autocovariance signal between control (R? = 0.99+0.01) and 5 pM (R?= 0.99+0.01) cytochalasin
B treated MCF-7 cells (Fig. S3a), where the decay of the autocovariance for 5 uM treated cells is
more rapid than the control, indicating a decrease in viscoelasticity. This result is consistent with
similar data obtained using dynamic light scattering by others for the effect of lowered
viscoelasticity on autocovariance values®?. The stiffness change detected for HeLa (Fig. S3b) and
BT-474 (Fig. S3c) cells was less dramatic under these cytochalasin B treatment conditions.
Therefore, there are lower differences between the control (HeLa R?= 0.98+0.01, BT-474 R*> =
0.98+0.01) and 5 uM perturbation autocovariance values (HeLa R?= 0.99+0.01, BT-474 R? =
0.99+0.01) for these cells than for MCF-7 cells. The individual autocovariance values for both
control and 5 uM cytochalasin B treated cells fits the damped harmonic oscillation equations well,

as quantified by average R? > 0.98 for all perturbations in all 3 cell types.
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FIGURE 3  Population average QPR stiffness and viscosity values decrease with increasing
cytochalasin B concentration. (a) QPR stiffness and (b) QPR viscosity of MCF-7, HeLa, and BT-
474 over various 0-10 uM cytochalasin B concentration. QPR samples were collected at 0 uM
(n=12), 1.25 uM (n=20), 2.5 uM (n=14), and 5 uM (n=25) for HeLa, at 0 uM (n=31), 1.25 uM
(n=11), 2.5 uM (n=22), and 5 uM (n=34) for MCF-7, and at 0 uM (n=51) and 5 uM (n=31) for

BT-474 cells. Error bars represent SD. * p < 0.05 and ** p < 0.01.
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We then compared QPR with AFM data as AFM is a validated ‘gold-standard’ method for
measuring cell viscoelastic properties. We obtained a strong correlation (R? = 0.9) between fit
parameters for stiffness from QPR data compared with AFM measured stiffness values (Fig. 4a).
QPR viscosity data also correlated well with AFM viscosity data with an R? of 0.89 (Fig. 4b).
Additionally, the material relaxation time (Fig. S4) computed from QPR measurements (equation
(10), Methods) compares well to those of AFM relaxation of deformation under constant load from
published studies®> >*. Our measured values fall within the reported range>* >° for MCF-7 cells
(23.2£3.9s), whereas the other cell types BT-474 (21.8+4.1s) and HeLa (38.0+8.3s) fall within the
anticipated magnitudes for live cells, which ranges from seconds to one minute. These data
indicate that QPR approaches provide reproducible and accurate label-free measurements of

stiffness and viscosity.
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FIGURE 4 QPR predictions for stiffness and viscosity correlates with AFM data for multiple
cell lines and drug concentrations. (a) QPR effective stiffness versus cell stiffness measured by
AFM force curves for cells exposed to escalating doses of cytochalasin B. (b) QPR effective
viscosity versus cell viscosity estimated with AFM by force dissipation. AFM data were collected
at 0 uM (n=75), 1.25 uM (n=18), 2.5 uM (n=37), and 5 uM (n=133) for HeLa, at 0 uM (n=72),
1.25 uM (n=25), 2.5 uM (n=20), and 5 uM (n=66) for MCF-7, and at 0 uM (n=12) and 5 pM

(n=28) for BT-474 cells. QPR samples were collected at the conditions and sample numbers

indicated in Figure 3. Error bars represent SEM.
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QPR measurements during EMT

We investigated whether QPR would be useful for measuring changes in effective stiffness and
viscosity during changes in cell state. Therefore, we utilized our QPR approach for cells induced
to undergo EMT. A shift from relatively stiff non-metastatic cancer cells to mechanically ‘softer’
cells with metastatic potential occurs during the EMT>®, making this cell state transition an
important model system. We induced EMT in MCF-10A cells by TGF-1 exposure and observed
profound morphological changes by QPI compared with control, untreated cells (Fig. 5a) that were
consistent with previous studies’’. MCF-10A cells exposed to the TGF-B receptor-inhibitor
SB431542 also showed unique morphological features in QPI compared to untreated control and
TGF-B1 treated cells (Fig. 5a). Reduced steady-state expression of the epithelial biomarker, E-
cadherin, and increased expression of the mesenchymal biomarker, vimentin, in TGF-B1-treated
cells confirmed a transition to a mesenchymal state (Fig. 5b). Conversely, SB431542-treatment
enforced an epithelial state, confirmed by unchanged E-cadherin and markedly reduced vimentin
steady-state expression levels (Fig. 5b). Untreated cells had intermediate levels of both proteins,
suggesting a mixed population of cells in epithelial and mesenchymal states. Measurements of cell
biomass from QPI showed no statistically significant differences in biomass accumulation rates
between cells in these different biophysical states (Fig. 5¢). However, a clear difference in QPR
stiffness (p-value < 0.05) (Fig. 5d) but not in viscosity (Fig. 5e), was obtained between SB431542-
treated epithelial cells relative to untreated, mixed population, and TGF-B1-treated mesenchymal
cells (Fig. 5a). Furthermore, an increase in E-cadherin expression in TGF-B1-treated cells
corresponded with an increased stiffness that negatively correlates with vimentin expression (Fig.

5f). Overall, the data show that QPR stiffness could be an alternative, label-free physical biomarker
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for distinguishing cells in an epithelial state from those in a mesenchymal state, as well as cells

comprising a mixed heterogeneous population.

Non-treated TGF-f1 treated

SB431542 + TGF-B1 treated
a o n B 'y ,
, :

0 pg/um’ 2
b 0 Ladder 0 1 1 2 2 Ladder 1,2 1,2 0: untreated
. 1: TGF-p1
- E-cadh
B cadielil 5. SR431542
A — B-actin
Ladder 0 0 1 1 2 2 Ladder 1,2 1,2
vimentin
B-tubulin
*
C d 25 **
-~ G)
) Z 14
g =
b 0 1 1,2
e f
*
ok ok
— 2 pwx
E 2 )
*U)
g 1
L 0
0 1 1.2

O normalized QPR effective stiffness
o normalized vimentin expression
m normalized E-cadherin expression

30



FIGURE 5 QPR quantifies changes in effective stiffness and viscosity during EMT. (a)
Representative quantitative phase images of MCF-10A cells grown in control (non-treated) media,
media supplemented with TGF-f1, and media supplemented with both TGF-B1 and SB431542.
(b) Western blot of E-cadherin and vimentin expression in MCF-10A cells grown in untreated
(control), TGF-B1, SB431542, or TGF-B1 + SB431542-containing media. B-actin and -tubulin
are loading controls, 2 independent biological replicates per sample. (¢) Normalized growth rate,
(d) QPR effective stiffness, and (e) QPR effective viscosity for MCF-10A cells grown in the listed
conditions. (f) QPR stiffness, vimentin, and E-cadherin expression normalized to untreated cell
values for MCF-10A cells grown in the listed conditions. Non-treated »=20, TGF-B1 n=41, and

TGF-B1 + SB431542 n=37. Error bars are SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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DISCUSSION

Movement of cell biomass, quantified as the autocovariance of quantitative phase imaging
measurements, displays harmonic oscillatory motion (Fig. 2). A two-parameter viscoelastic model
captures the oscillation and decay of this autocovariance (Fig. 1d). Fitting this model to
experimental data enables the extraction of separate values of effective stiffness and viscosity of a
cell (Fig. 3). Although there are previous methods to measure stiffness*® with QPI data, our
analysis method based on temporal measurements of cell biomass motion captures both stiffness
and viscosity components of cell rheological properties. We refer to the measurement of these and

other**+3

rheological properties of a cell using QPI as QPR.

To use our QPR measurements to distinguish between different cell types, states and conditions,
we assume a consistent stiffness over the measurement period of approximately 5 h. This
assumption is not applicable during mitosis in which cell stiffness changes dramatically®. We
therefore developed an automated method to detect cell divisions for their removal from
quantitative phase imaging data. This enables QPR to automatically process live cell QPI data and
extract cell rheological properties. Future work could examine improvements to the spatial and
temporal resolution of QPR required to capture the magnitude of cell viscoelastic changes during

mitosis

We observed a strong correlation between QPR measurements of cell stiffness (Fig. 4a) and
viscosity (Fig. 4b) relative to AFM measurements. Relaxation times computed from QPR data are
also within the same range observed previously with AFM (Fig S4)3*: 53, This suggests that QPR

measures cell viscoelasticity within a similar force and time regime as AFM measurements.
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A physical interpretation of our results can be found in the model proposed by Qian® for single
particle tracking within a Kelvin-Voight material. This model gives similar predictions to the series
spring damper (Maxwell) material model we apply, suggesting that QPR is effectively tracking
displacements of small particles of cell biomass immersed in a Maxwell material. When we applied
the Kelvin-Voight model to our QPR data, we obtain a moderate fit to AFM viscosity values (R?
=0.81, Fig. S5) compared to the fit for a Maxwell model (R? = 0.89, Fig. 4b). This indicates that a
Maxwell material model is the more appropriate two-parameter, linear viscoelastic material model
for interpreting QPR data. Although this two-parameter, linear model represents a simplistic view

of cell viscoelasticity, this model nonetheless captures the essential features recorded in our data.

We note that this physical interpretation of the mathematical model includes an inertia term,
despite describing the behavior of a low Reynolds number fluid. We keep this term, which arises
in models of underdamped systems’®, to capture our observation of underdamped motion of cell
biomass (Fig.1d and Fig. 2). This phenomenological assumption, rooted in observation, allows us
to fit a two-parameter viscoelastic model and extract cell rheological properties from QPI data that
correlate to AFM values. In terms of a potential physical meaning of this term, recent work
indicates that inertia-like oscillations can occur in actively driven, viscoelastic fluids®. As the cell
is an active material®®, we speculate that the inertia-like behavior we record in our system is due
to a similar coupling between viscoelastic material properties and active force generation from
cytoskeletal rearrangements. This suggests the need for future modeling based on a more

sophisticated cell material model that can better incorporate these cellular mechanics.
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Despite the correlation between AFM and QPR measurements of stiffness and viscosity, there is a
large difference in magnitude of these values. This difference is partially explained by differences
in probe size. The radius of the AFM probe tip is 500 nm, whereas the effective probe for QPR is
the material within the cytoplasm. The observed difference in magnitude of QPR stiffness relative
to AFM stiffness is ~10* suggesting a QPR probe size of ~5 nm. This probe size is within the range
for a complex of average sized proteins that constitute the majority of mammalian cell biomass.
For example, in eukaryotes a ‘typical’ ~3 nm in radius®! protein has an average biomass of ~56
kDa%2. The difference in magnitude of AFM and QPR measurements can therefore be explained
by the difference in the cross sectional area of these probes. Furthermore, we model the cell as a
purely linear viscoelastic material; however, in general, cell rheology is dependent on length scale,
strain rate, and magnitude of applied force which may differ between these two approaches. In
addition, AFM measures viscosity from viscous dissipation, whereas QPR measures an effective
frictional coefficient felt by a particle due to the viscosity of a cell. These are technically two
different properties that are closely related through viscosity. Our QPR method is most similar to
passive particle tracking in microrheology®, which provides a stiffness value from the expected
relationship to passive particle motion. Microrheology measurements® when compared to AFM
measurements® for mouse embryonic fibroblasts show large differences in measured magnitudes:
14 Pa for microrheology stiffness versus 7.7 kPa for AFM stiffness. A similar order of magnitude
difference between AFM stiffness and microrheology stiffness was also obtained for MCF10A
breast epithelial cells as well®.

Additional parameters that may affect QPR measurements include the frequency of

measurements®’” and the ratio of water content to cell volume of our samples®® ®. To interrogate
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the effect of measurement frequency, we obtained QPR viscosity and elastic modulus data over a
range of measurement frequencies for a single MCF-7 cell cluster and for a population ofcells (Fig.
S6). We observed that both stiffness and viscosity values are within the standard error of the mean
(SEM) for QPI measurements at frequencies less than 15 min per frame. However, for QPI
measurement frequencies above ~30 min per frame, measurement accuracy and stability begins to
deviate from the SEM. For water content effects, cells persist within a physiological range of 260-
320 mOSM/kg’®, or within a range of ~60 mM for osmolality, with water losses of 10-15% or
less”!. Mechanisms’? that maintain this homeostasis are tightly controlled and regulating both
osmolality and water content losses. These values indicate, for the physiologically-relevant cell
culture systems employed here, minimal osmolality or water content influences on QPR
measurements. In addition, others have shown that significant stiffness changes require large

changes in osmolality® of at least 150 mM or in water content to change cell volumes®®.

Overall, our results show the potential of a label-free and non-contact method that can measure
cell rheological properties. As a transmitted light microscopy method, QPI is non-invasive and
therefore minimizes the confounding effects of probes when examining biological processes in
live cells. Because QPR builds on an existing quantitative phase imaging workflow, QPR can be

integrated with other measurements already commonplace with quantitative phase techniques,

40-43, 73

such as cell biomass or biomass accumulation rate (Fig 5c). This and previous studies on

alternative approaches to QPR suggests that the use of quantitative phase imaging data to measure

39, 40,73 41-44

cell structure and how cell structure changes over time*' ™ provides powerful methods in

biophysical research of cell state and state transitions.
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METHODS

Cells and cell culture

MCF-7 and BT-474 human invasive ductal breast adenocarcinoma cells and MCF-10A
immortalized human breast epithelial cells were purchased from the American Type Culture
Collection (ATCC). HeLa human cervical adenocarcinoma cells expressing fluorescence
ubiquitination cell cycle indicator (FUCCI)’* plasmids were received from Dr. Ran Kafri
(University of Toronto). FUCCI plasmids include mKO2-hCdt1, a monomeric fast-folding variant
of Kusabira Orange fused to amino acids 30 — 120 of human Cdt1, and mAG-hGem, a monomeric
version of Azami green fused to amino acids 1 — 100 of human Geminin”*. MCF-7 cells were also
transiently transfected with FUCCI mKO2-hCdtl and mAG-hGem expression plasmids using the
BacMam system (Fisher). We cultured MCF-7 cells in EMEM supplemented with 10% fetal
bovine serum (FBS, Omega Scientific) and 10 mg/L. human recombinant insulin (Sigma). BT-474
cells grew in Hybri-Care Medium (ATCC) reconstituted in cell culture grade water (Fisher) with
1.5 g/L sodium bicarbonate and 10% FBS (Omega Scientific). MCF-10A cells grew in MEGM
Bulletkit media (Lonza) with cholera toxin (Sigma-Aldrich) at 100 ng/mL and without
gentamycin-amphotericin B mix. HeLa cells were cultured in DMEM with 4.5 g/L glucose, L-
glutamine, and sodium pyruvate (Cellgro) along with 1% penicillin streptomycin (Cellgro), 1% Q-
max (Gibco), 1% non-essential amino acids (Gibco), and 10% FBS (Omega Scientific). We
incubated cells with escalating doses of cytochalasin B (Sigma Aldrich) dissolved in DMSO

solution or to 0.1% DMSO control, starting 4 h prior to experiments.

Quantitative phase and fluorescence Imaging
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QPI of MCF-7, BT-474, and HeLa cells was performed as described in Yu et al.””. Fluorescence
images were obtained with an EM-CCD C9100 camera (Hamamatsu Photonics) and an X-Cite
Series 120 Q (Lumen Dynamics) source. Image collection occurred every 5 min for 12 h at 14 —
16 imaging locations containing cells plated with sufficient spacing to enable automated image

processing and biomass segmentation.

Quantitative phase image analysis

Image processing was performed using custom MATLAB (MathWorks) scripts. Cells and cell
clusters were identified and segmented using a local adaptive threshold based on Otsu’s method*”-
76 and particle tracking code based on Grier et al.>*”’. Compensation for translational motion was
done by finding the maximum two-dimensional cross correlation of each cell or cell cluster image
against the immediately prior image. Manual detection of interphase, mitotic, and cell division
boundaries was by visual inspection of image frames containing cells whose mean phase-shift
increased, followed by splitting into two daughter cells then a decrease in mean phase-shift.
Automated detection of an interphase-mitotic event boundary was by pattern matching biomass
distribution images with a mitotic filter consisting of a one-dimensional sigmoid filter in time’®
and a two-dimensional disk filter of diameter 5 pixels in space. A mitotic filter value threshold of
0.6 A.U. for MCF-7, BT-474, and HeLa cells was chosen to maximize the true positive and
minimize the false positive rates for entry into mitosis by validation with manual detection and

fluorescence data.

AFM
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AFM experiments were performed on a Bioscope Resolve BioAFM using a MLCT D triangular
probe tip at 37°C (Bruker). Spring constants of cantilever tips measured 0.03-0.08 N/m and were
calibrated with nanoscope measurement acquisition software (Bruker). Samples were incubated in
media containing 0.1% DMSO or escalating doses of cytochalasin B for 4 h prior to the experiment
with an additional 30 min of system equilibration with the cantilever submerged. The cantilever
was calibrated using Nanoscope measurement acquisition software (Bruker). We analyzed force
curves by finding the slope of the linear region of the curve measured during cantilever retraction
of interphase cells in order to eliminate artifacts from pushing cells against the culture plate. This
corresponded to the region from 20% to 80% of the maximum applied force on the cell (Fig. S7).
Viscosity measurements were extracted from force curve data by calculating the area between the

extended and retraction force curves as performed in Rebelo ef al.?? (Fig. S7, shaded region).

Biomass accumulation rate calculation

Quantitative phase biomass distribution images were summed over the projected area of each cell
cluster to obtain the total biomass per cluster at specified time points. We calculated exponential
biomass accumulation rates by taking the logarithm of the biomass over time data and fitting to a

first order polynomial equation using MATLAB Polyfit (MathWorks).

EMT

One day before EMT induction, MCF-10A cells were placed in standard 6-well culture plates.
Recombinant human TGF-B1 (Sigma-Aldrich) was added to the culture media at 5 ng/mL to
induce EMT. Alternatively, the TGF-p receptor inhibitor SB-431542 (Sigma-Aldrich) was added

to the culture media at 10 pM final concentration to enforce an epithelial phenotype on MCF-10A
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cells. Cell exposure to these conditions for 7 d ensured full effects*®. Cells re-plated for imaging
or Western blot studies were cultured with no additives, 5 ng/mL TGF-B1, 10 uM SB-431532, or
both agents together. We incubated cells with or without additives for 2 d before imaging or

Western blot.

Western blot

MCF-10A cells were harvested and lysed in 2 mL of ice cold sample buffer containing 7 mL of
0.5 Tris-HCI (Sigma-Aldrich), 3 mL glycerol (Sigma-Aldrich), and 1 g of sodium dodecyl sulfate
(SDS) (Sigma-Aldrich) mixed with 1.2 mg of bromophenol blue (Sigma-Aldrich). 30 ug of protein
lysates with 3 uL. B-mercaptoethanol (Sigma-Aldrich) were loaded on a 10% polyacrylamide gel
(Sigma-Aldrich), electrophoresed, and then transferred to a nitrocellulose membrane (Fisher).
Membranes were incubated overnight with primary antibodies against B-actin (Sigma-Aldrich,
A2066), E-cadherin (Cell Signaling Technology, 14472s), B-tubulin (R&D Systems, MAB1195),
or vimentin (Cell Signaling Technology, 5741s). This was followed by incubation for 2 h with a
secondary antibody solution containing Li-Cor TBS blocking solution (Li-Cor) and either IRDye
800CW goat anti-rabbit (Li-Cor, 926-32211) and IRDye 680RD donkey anti-mouse (Li-Cor, 926-
68072) or IRDye 800CW goat anti-mouse (Li-Cor, 926-68070) or IRDye 680RD donkey anti-
rabbit (Li-Cor, 926-32214) antibodies and then imaging on a Li-Cor Odyssey FC (Li-Cor). Protein

abundance was normalized to either B-tubulin or B-actin for quantification of western blot data.

Statistical analysis
Statistical analyses were performed using two-tailed Student’s t-test with unequal variances and

sample size (Welch’s t-test).
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Autocovariance calculation from quantitative phase data

To measure the similarity of quantitative phase data over time we used an unbiased estimate of
autocovariance’® of the phase-shift signal, which is an autocorrelation of the mean subtracted data.
We normalized the temporal autocovariance to the number of data points used in each

autocovariance window, referenced to the end of the time shift window (#y), and defined as:

WS (@it~ JAD (e 1)) Bty — A0~ 3.1,)))
C¢¢(x’ Y tO,T) = = w—t/At (1)

(W_Ait) > (B yty = JAD = {g(x,y.1y)))°

where x and y are position after removing rigid translational motion of the cell cluster, # is the
initial time or time of the first position in the time window, ¢ is phase shift, N is the number of
data points used to calculate the signal, w is the number of images, Az is time between
measurements, and 7 is time shift. The autocovariance was then averaged over a cell or cell cluster

arca as:

(Coltsn),, == T Culurtys) @)

e allx,y in 4
where A4 is the area of a cell or cell cluster in pixels. We also took the average of the autocovariance

through time for all times corresponding to interphase cells,

<C¢¢(T)> -~ > <C¢¢(’0’7)> 3)

X, p5t . X,y
all interphase #,

where 7 is the number of different end time points.

Predicted autocovariance of cell biomass distributions
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Using biomass as a tracer for displacement and translating this equation into autocovariance space

yields:

w

D oA (jAL)

(o), =| ——= || 1= exp((a+bwi)(-7)). (4)
W PRCVAURLVAY

If we assume the observed damped oscillations are due to a series, harmonic @ and b can be written

as:

a=— (5)

where £ is the effective spring constant of the cell felt by the particle over the measurement period,

1 1s the effective damping coefficient from the viscous forces of the cell felt by the particle, and

<m> is the average biomass of particles in our system. Assuming that the system is ergodic,

(6080}, ={0t7A0), ™
the autocovariance equation then reduces to:

<C " (T)> =exp((a £bi)(-1)). (8)

X, 0.t

This means that effective stiffness can be described as:

LI 9)

(m)
and the effective viscosity can be found from dividing equation (9) by equation (5). Relaxation

time #-.iax Was calculated as:
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where At 1s the time interval between measurements.
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SUPPLEMENTARY DERIVATION

Summary:

We provide a derivation for how quantitative phase rheology (QPR) generates effective cell
stiffness and viscosity using the autovariance of quantitative phase imaging (QPI) data. To do this,
we establish a basic definition of the autovariance function and a basic equation that extracts
stiffness and viscosity from dry mass, or non-aqueous biomass, displacement. We combine this
definition and equation with QPI data to extract stiffness and viscosity regimes from the

autovariance function.
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Autocovariance

To measure the similarity of quantitative phase data over time we used an unbiased estimate of
autocovariance' of the phase-shift signal, which is an autocorrelation of the mean subtracted data.
We normalized the temporal autocovariance to the number of data points used in each

autocovariance window, referenced to the end of the time shift window (#y), and defined as:

wwi t(¢(x,y, ty— JAD) =(P(x, y,1.))) - ($(x, v, 1, — jAL = 7) = {h(x, 1,1,)))
Cop (X, 9,1, 7) = — — (S11)
(=0 2 (0.t = JAD =(9(x,,1,)))

Where x and y are positions after removing rigid translational motion of a cell cluster, # is the
time, ¢ is phase-shift, N is the number of data points used to calculate the signal, w is the number
of images, At is time between measurements, and 7 is time lag. The autocovariance was then

averaged over a cell or cell cluster area as:

(C,y (ty:7)) _1 > C (2t T) (S12)

X, p
allx,y in 4

where 4 is the area of a cell or cell cluster in imaging pixels. We also took the average of the
autocovariance through time for all times corresponding to cells in interphase of the cell cycle,

<C¢¢(T)>),,y,,=l Y {Cutym) (S13)

X,y
n an interphase 7, Y

where 7 is the number of different end time points.

Two-parameter
We treat the cellular structures imaged by quantitative phase as particles immersed in a Maxwell
liquid (Fig. 1A). Therefore, these structures feel the effect of a spring damper system in series

described as the following system of equations:
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d’X, dx,
Z Do o +f(t S14
(m) === 2+ f (1) (S14)
dx,
= S15
TH (S15)
X, =X +X, (S16)

where £ is the long term effective spring constant of the cell felt by a particle, u is the effective
damping coefficient from the viscous forces of the cell felt by a particle, f(2) is the applied impulse

force, X; is the elastic displacement, X is the viscous displacement, Xi. is the total displacement

of the biomass, and<m> is the average biomass of particles in the system. We observe long

timescales that are much greater than the average relaxation times of a cell (Fig. S3), so the long
timescale effects dominate and the active force can be considered as applied nearly
instantaneously. Rearranging equation (S4) in terms of only the elastic displacement X; or only

the viscous displacement X yields the following differential equations:

(m) Xk, _Hm) ax, (S17)

dar’ oo dt

(m) d'X, __ dX, k(m)d'X,
dar’ dt  p dtt

(S18)

Assuming that the total displacement X, contributes to the majority of biomass rearrangement and
oscillation, we integrate eq (S8) over time, add it to eq (S7), and rearrange this equation of a
damper spring system in series to obtain an inhomogeneous ordinary differential equation (ODE)

for the total displacement:

2
<m>dd)t€,m - kx, _k(ﬂ@%wl (819)
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where ¢; could be seen as a buildup of stress from past deformation or a memory function. Solving
for the general solution of equation (S9) gives a homogenous component and a particular solution

by the method of undetermined coefficients:

k k 1/2 k< > 1/2
m
sz,h(t):()(w—me,)exp Zi[—} [1— J it (S20)

(m)

C
Xtot,p(t) :;1 = Xt

ot rest

(S21)

where X0 1s the initial displacement and Xiosresr 1S the long term resting displacement of our
system. Because the relaxation timescale (Fig. S3) is over an order of magnitude lower than the
period of measurement, the active force can be modeled as an instantaneous displacement
represented as a delta function, J, at some time, #, not equal to zero. Solution of this spring damper

system without this active force yields:

1/2 1/2
Xor (0= (X = X )EXD %i[ﬁ} [l—’ﬁ?] i+ X, . (522)

With each individual impulse the displacement from the active force can be modeled as:

1/2 1/2
X ()= (X, = Xy +(t—1)) ) exp %i[%} (1_ "4 <ﬂ”§>j i |t]+ X, 0 (S23)

where ¢ is the time of each impulse displacement. Assuming a linear viscoelastic material, the total
displacement in time can be represented as the superposition of the various impulse displacements
from the active forces, which then simplifies to:

1/2 1/2
L k k k<m> )
X, )=|X,,-X —t, — | — | [1-—2L X
tot(t) ( tot,0 tot,rest+25(t tj)}exp 2,u+[<m>] [ 4/«12] L+ tot,rest

t;#0

(S24)
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where T is the period of observation. We then establish the relationship between biomass and

displacement of biomass by:

DM(E,1) oM(Z.1)
Dt dt

+F(F,0)- VM(F.0) (S25)

where M is biomass as a function of position x and time #, and v is velocity as a function of x and
t. We assume that the main contribution to the partial derivative of biomass with time is due to
growth and since our measurement occurs over a short time interval, growth is negligible,

therefore:

DM (%.1)

S =N VMG (S26)

We further assume that the cell velocity, v, and biomass, M, fields are isotropic with no dependence

on direction. Averaging over & in polar coordinates yields:

<M>g =(v(r,0)), { 1 6(r<M (r,1)), )J =(v(r,1)), G(M(r,r»e +MJ _

Dt 7 or or

(S27)
Assuming that this change in biomass over radial distance is small compared to the total biomass

over a radial distance » we obtain:

DM (r, M(r,1)),
<—D(t’” t)>9:<v(r,t)>9[—< . >]. (S28)

Averaging over a radial distance and assuming that velocity, v, radial position, 7, and biomass, M,

do not correlate over the radial distance because the system is isotropic we obtain:

<%t<f)> - <<v(r,r)>g M> ={0),, [%] |

(S29)
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Assuming this system is ergodic, the local spatial average of biomass is equal to the temporal
average biomass, which is constant with respect to time, and therefore the average biomass over

radial distance term is only a function of », which we call x(r):

y(r) ~ <M(t)>r,€ (S30)

"

where y(r) is the local spatial average of the biomass, which is constant over time and is therefore

xK(r)=

only a function of radial position:

<Dj‘;t(”>w = K(r) (1)), , = K<r><’”;f”>w . (s31)

Since « is independent of time, we can integrate and obtain:
(M), , =x(r{(XQ©),, - (S32)

Thus, the ratio of biomass over initial biomass is equivalent to the displacement over initial

displacement:

(M), _«0O{X@®), (X0),

= = — . (S33)
<M(t0)>r,6 K(I") <X(t0)>r,€ <X(t0)>r,9
The biomass for a particular area is directly proportional to the phase-shift*™:
M(Z.0) =1 a- p(F.0) (S34)

where ¢ is phase-shift, and «a is the specific refractive index, which is determined experimentally.
Therefore, phase-shift data, ¢, obtained via QPI can be used to obtain information about the

displacement of cell biomass over time.

Predicted autocovariance of cell biomass distributions
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Using biomass as a tracer for displacement and translating this equation into autocovariance space

yields:

w

Y. (jA-G(jAY
<C¢¢(T)>x,y,t= WT |- A exp((a+bwi)(-7)) (S35)
W Zqﬁ(jAt)-cb(jAt)

where a and b are described in terms of coefficients as:

a=— (S36)

{5

where w, 7, ¢, and At are the same as in eq (S12), the average autocovariance function is the same

as in eq (S3), and @ and b are the coefficients described in eq (S26) and (S27). Assuming that the

system is ergodic:

(p(jan)”  ={o(jAn) (338)

W
wor/A

(o80)” {oGan) | =(6A0), {pUd0), =cloGan) 39

where

W

S oAt —wle(jany
o= 220 . (S40)

w

The autocovariance equation then reduces to:

(Coo(M),,, =exp(a£bi)(=T)) (841)
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This means that the fitting parameter, a, describes the effective damping particles encounter within

the cell, whereas the effective stiffness is described as:

L:a2+b2.

(m)

Relaxation time, 7.eqx, Was calculated as:

LAZ

relax —

where At is the time interval between measurements.
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FIGURE S1  Cell division induces large mass fluctuations affecting QPR stiffness and viscosity
measurements. (a, ¢, e, g) QPI of MCF-7 colonies before each mitosis plotted as 4 decorrelation
rate peaks in (i). (b, ¢, f, h) QPI of MCF-7 colonies after each mitosis corresponding to the period
after each trough in (i). (i) Time course of QPR stiffness measurement for MCF-7 cell colony in
(a-h) with 4 cell divisions during 24 h of QPL. (j) Time course of QPR viscosity measurement for

MCEF-7 cell colony in (a-h) with 4 cell divisions over 24 h of QPIL.
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FIGURE S2  Assessment of cell division by fluorescence and QPI to remove mitotic events. (a)
QPI of MCF-7 cells. (b) Filtered image of the same MCF-7 cells in (b) used to identify mitosis
and cell division. The filter kernel consists of a sigmoid function in time and a disk in space to
mimic and highlight round cells with a large phase shift in mitosis. (¢) Simultaneous fluorescence
image of MCF-7 cells in (b and c¢) expressing FUCCI fluorescence ubiquitination cell cycle

indicator plasmids mKO2-hCdtl and mAG-hGem. (d) ROC curves for detecting MCF-7 mitosis
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and cell division events using the computational filter versus fluorescence in 0 and 10 pM

concentrations of cytochalasin B.
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FIGURE S3 The average autocovariance of compliant (aka softer) cells decays more rapidly
than for stiffer cells. (a) Individual and population averaged autocovariance curves for all 0 (R% =
0.99+0.01) and 5 pM (R2=0.99+0.01) cytochalasin B treated MCF-7 cells analyzed. (b) Individual

and population averaged autocovariance curves for 0 (R2=0.98+0.01) and 5 pM (R?= 0.99+0.01)
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cytochalasin B treated HeLa, and (¢) 0 (R>= 0.98+0.01) and 5 pM (R?>= 0.99+0.01) cytochalasin

B treated BT-474 cells. Error bars represent SEM.
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FIGURE S4 Interphase relaxation time calculated from QPR measurements are similar for
multiple cell types and drug concentrations. Cells exposed to a range of cytochalasin B doses
mainly display similar relaxation times despite changes in stiffness and viscosity. QPR samples
were collected at 0 uM (n=12), 1.25 uM (n=20), 2.5 uM (n=14), and 5 uM (n=25) for HelLa, at 0
uM (n=31), 1.25 uM (n=11), 2.5 uM (n=22), and 5 uM (n=34) for MCF-7, and at 0 uM (n=51)

and 5 uM (n=31) for BT-474 cells. Error bars represent SEM.
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FIGURE S5 QPR predictions for viscosity using a Kelvin-Voight model show reduced
correlation with AFM data relative to a Maxwell material model (Fig. 4b, R? = 0.89). QPR samples
were collected at 0 uM (n=12), 1.25 uM (n=20), 2.5 uM (n=14), and 5 uM (n=25) for HelLa, at 0
uM (n=31), 1.25 uM (n=11), 2.5 uM (n=22), and 5 uM (n=34) for MCF-7, and at 0 uM (n=51)

and 5 uM (n=31) for BT-474 cells. Error bars represent SEM.
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FIGURE S6 Effective viscoelastic modulus of MCF-7 cells at different measurement
frequencies remains constant at an imaging rate under 15 minutes per frame. (a) Effective stiffness
divided by effective stiffness at 5 minutes per frame for a range of QPI measurement frequencies.
(b) Effective viscosity divided by effective viscosity at 5 minutes per frame for a range of QPI
measurement frequencies. Blue represents the population average for analysis of MCF7 cells. A
select MCF7 cluster was imaged at higher frequency and is shown in red. Error bars represent

SEM.
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FIGURE S7 Representative AFM stiffness and viscosity measured using best fit of the retraction
force curve and area difference between retraction and extend force curve. Data used for effective
stiffness from AFM consists of the force data between 20% and 80% of maximum force signal,

while viscosity measurements used data over 1 um distance from contact with cell.
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SUPPLEMENTARY UNPROCESSED WESTERN BLOTS

Western blot 1: Unprocessed immunoblot for E-cadherin (green) and B-actin (red) corresponding

to Figure 5B.
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Western blot 2: Unprocessed immunoblot for vimentin (green) and B-tubulin (red) corresponding

to Figure 5B.
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Chapter 3. Quantifying biomechanical work in proliferating cancer cells
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Introduction

! maintenance of membrane

Cell energetics is important because of links to metabolism
potential 2, transport >, and biosynthesis *. Despite its importance to the cell, it still remains
insufficiently understood how energy is allocated into motion and mechanical processes versus
biosynthesis and growth. The shuffling of energy via motion and mass production through the

different spatial regime is of particular interest as cell lines have varying rates of motion and

biosynthesis and thus may dissipate > or transfer motion into larger length scales ¢ at different rates.

Common methods to study cellular energetics measure chemical potential energy as ATP level
quantified with a luciferase assay ’ or fluorescence 8 or measure metabolic rate, for example, by

% or lactic acid production '°. Viscous dissipation of

measuring cellular oxygen consumption
energy which occurs due to cell deformation during cell spreading has been studied using a
combination of fluorescence microscopy with comparison to a simplified computational model of
the cell !!. This study suggests that model of the cell as a viscous material can capture the
dissipation of mechanical energy which occurs during changes in cell morphology. However,

application of this method to study is limited by the need to create a suitable computational model

and by the introduction of fluorescent labels that may affect cell behavior 2.

One solution is to use quantitative phase imaging (QPI) to measure time-dependent biomass
distributions in cell clusters and compare these measurements to model predictions for the scaling
of mass distribution fluctuations with spatial frequency. QPI is an imaging modality that quantifies
the phase shift of light as it passes through and interacts with cell biomass '*. Using an appropriate

cellular average for the linear relationship between density and refractive index, the phase shift of
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1415 resulting in an image of

light throughout the cell then becomes proportional to its biomass
the cell dry mass distribution '®. Previous biological applications of QPI include the measurement

of cell growth 7 and death '8, membrane mechanical properties '°, cluster-scale mass motion !¢,

and bulk diffusion and advection within cells 2.

To address the need for non-invasive quantification of mechanical energy usage we assume that
the majority of mechanical energy is dissipated at low length scales due to the highly viscous
environment inside a cell !'. We then extract the dissipation energy, or energy lost from motion in
a viscous environment, from QPI data through a kinematic energy conservation analysis. We also
examine how the energetic makeup of ATP production by cellular respiration and glycolysis from
various cell lines alters the amount of energy spent in motion versus biosynthesis and the relative

energetic efficiency of cell motion in cell clusters of varying size.

Results
Derivation of cellular work from QPI

Quantitative phase imaging can capture both the biochemical aspect of cellular work as
quantified via net biomass accumulation (Fig. 1A) as well as the biomechanical portion captured
in cellular motion (Fig. 1B). Values of net biomass accumulation grants information on the
magnitude of biosynthesis processes between different cell lines (Fig. 1A) while cellular motion
(Fig. 1B) gives us an idea on how much line might be focusing on motion. However, to compare
how cells allocate their work to either biosynthesis or motion we must first have to develop a

model to compare the two on the same magnitude.
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We do this by first assuming that our change in energy is directly related to cellular biomass
changes. Total energy of cell we assume is either stored biological represented as mass density
(p") times the enthalpy per unit of biomass (h) or kinetically as %2 p'v2. To track this change in
cellular energy we use a quantitative phase microscopy setup as depicted here (Fig. 1C). Assuming
spatial isotropy, an isothermal system, and low influence of intracellular pressure gradients, the

conservation of energy within a cell cluster in 2-dimensions is described by the following equation:

D
Dt

*
(0 () =p F 5 +V'TY kg’ (44)

where p*, h, v*, f* 1* k, t*, and V* represent the biomass density, enthalpy per mass, velocity,
body forces, shear stress, localized mass accumulation rate, time, and spatial gradient respectively.
We then assume that viscous forces dominate inertial forces and that the chemical potential energy
dominates over kinetic energy within a cell. Therefore when we nondimensionalize Eq (1) we

obtain:

2a,,..LTp,

motor pf‘"j+2v (V@V)V—ZkT,D (45)

Z(%—/;+(§-Vp)j =
Where y is the ratio of a Reynolds number over an Eckert number. Dividing through by chi gives
an equation (Fig. 1D) that relates the mass density (Fig. 1E), change in mass density (Fig. 1F), and
advection of mass (Fig. 1G) directly to the energy dissipation of the cell. With a spatial Fourier

transform our nondimensionalized energy conservation (Fig. 1D) becomes a quadratic equation

with the second order term corresponding to energy dissipation.

2|“’|2 2

q (46)
X

F{‘Z—’t’+(9-vp)} =G(q)= (%wz#(mf-v})—ﬂj(n(q)ﬁ

The fitting terms in our model which can be grouped together as either the terms that relate the

PSD (power spectral density) of mass distribution to the PSD of mass change which we call
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coefficient of mass change (o) and parameter fitting the quadratic which we call the dissipation
B):
G(g)=an(q)+pq’ (47)
When this model is fitted to single cluster data like for a MCF-7 cluster (Fig. 1H) we obtain
a very strong fitting (R*2 > 0.9) for this cluster with the population averaged fit of the entire cell
line (Fig. 11) having a similarly strong modeling (R"2 = 0.91). A reason why population fitting
maybe preferred can be seen in clusters of other cell lines that are not as well modeled (R"*2 <0.5)
by our derivation (Sup Fig. 1A). However, when we aggregate and average over many single
cluster data together for a population averaged fit, our fitting better match the data the more we
aggregate (Sup Fig. 1B-E) with the population sample having strongest fit (R*2 > 0.9) and having
the most consistent parameters from fitting (Sup Fig. 1H). This held true for the various other cell
lines we imaged including other breast cancer cell line like BT-474 (Fig. 2A), an embryonic kidney
line HEK-293 (Fig. 2B), and an osteosarcoma line 143-BTK (Fig. 2C) along with its’ various
mitochondria mutant lines (Fig. 2D-F). With the strongest population averaged fit for the model
being the BT-474 (Fig. 2A) with a R*2 of 0.96 and even the worse fitting cell line being 143 rho0

line (Fig. 2E) showing a relatively acceptable fitting (R"2 = 0.68).
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FIGURE 1  Quantitative phase imaging captures both biochemical and biomechanical
information allowing a model of cellular work. QPI captures information on biosynthesis measured
as the exponential constant of the mass accumulation rate (a) and motion measured as root mean
square displacement (b) for wide variety of cell types (BT474, MCF7, HEK293, and 143BTK)
and mitochondrial mutants of the 143 line (MeLas, delta cytochrome B, rho0). This data from
captured from any (c¢) QPI setup could be used to model cellular work outlined from a (d) work
balance equation. This derivation requires QPI information on (e) mass distribution, (f) mass
change, and (g) advection of mass. The resulting fit in Fourier space for (h) a single MCF-7 and

for an (i) entire population describes over 90% of the data.
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FIGURE 2 Model of cellular work consistent across different cellular lines and mitochondrial

mutants. By using the Fourier transform of the mass distribution and mass change QPI data for

various different cell line like (a) HEK-293, (b) BT-474, (¢) 143-BTK, and different mitochondrial
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mutants like (d) 143 delta cytochrome B, (e) 143 rho0, and (f) 143 MeLas we obtain various good

(R*2>0.65) population fit to our model.

Correlation of QPI and metabolic properties

We validated the fitting terms in our model by correlating the various terms to other QPI
properties along with cellular energetics properties (Fig. 3). The energetic properties were the rate
of glycolysis and cellular respiration measured as either extra cellular acidification rate (ECAR)
(Sup Fig. 2a) or oxygen consumption rate (OCR) (Sup Fig. 2b) along with a general net ATP
production quantity calculated from the combination of using both measurements 2!. We found as
expected that there was strong correlation between ECAR and ATP production normalized per pg
with normalized growth (R = 0.83, R= 0.91), explained by glutamate production via glycolysis
being a driver behind protein synthesis 223, and motion (R = 0.60, R = 0.64) across all cell lines
implying more energetically active cells spent more energy both in motion and biosynthesis. Some
expected negative correlation we observed were between OCR and ECAR (R = -0.86) as well as
the negative correlation between mean single cell mass and normalized mass accumulation (R= -
0.80). Correlation of our fitting terms showed that there was a strong correlation between
magnitude of dissipation () with RMSD (R= 0.96), mass fluctuations (R= 0.86), and normalized
growth (R= 0.82). Similarly, there was a strong correlation between single cluster coefficient of
mass change (alpha) to the various mass fluctuations properties of RMSD (R= 0.52), mass
fluctuations (R=0.82), and normalized growth (R=0.46). Showing that there was a strong overlap
between our properties of dissipation and coefficient of mass change and disambiguation of terms

were needed.
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FIGURE 3  Correlation of experimental fitting parameters to traditional QPI and metabolic
measurements. Correlation plot of the various traditional QPI parameters of mass accumulation,
motion, and mass on both single cell and cluster scale along with metabolic information of cellular
respiration (OCR), glycolysis (ECAR), and calculated ATP production generated from OCR and
ECAR compared to novel QPI cellular work fitting parameters on both the cell cluster and

population level.

Validation of QPI cellular work properties
In order to dissect the functional difference between the two terms of dissipation and

coefficient of mass change we first examined the foundation of our dissipation term. This
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dissipation term is supposed to be the energy dissipation via motion (Fig. 4A) and should therefore
change if there was more mass motion or specifically more uncoordinated mass motion. We
therefore modulated both amount of mass motion along with the cellular coordination of motion
by examining the epithelial to meschenymal transition system in MCF-10A breast cancer cells
where well-coordinated in the epithelial state (Fig. 4B) should expend less energy through motion
than meschenymal cells (Fig. 4C) that are less coordinated. We find that while there was no
significant difference in mass change coefficient (Fig. 4D) between the two states there was a
significant difference (p < 0.05) in their dissipation (Fig. 4E). Another experimental setup were
we increased the mass fluctuations but did not induce the same discoordination in motion but
instead had net change mass accumulation was in a MCF-7 cytochalasin B treated system. Here
we observed a significant change in coefficient of mass change (p < 0.05) (Fig. 4F) but not in
dissipation (Fig. 4G) showing that there are different underlying mechanisms behind our two
terms. Although there is still a strong correlation (R*2 = 0.71) between our dissipation term and
cellular mass motion across the different cell lines (Fig. 4H) which makes sense since our

dissipation is supposedly the energy dissipation via motion.
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FIGURE 4  Dissipation and coefficient of mass change are effected by different perturbations.
(a) Dissipation of energy term from cellular work derivation can be distinguished from mass
change coefficient via changing cell state as seen in the QPI images (b) MCF-10A transition with
(c) tgf-beta treatment. Resulting in a nonsignificant change in (d) mass change coefficient but
significant change in (e) dissipation. This is in contrast to the significant change in (f) mass change
coefficient and not significant change in (g) dissipation from MCF-7 cell treatment with
cytoskeletal disrupting agent cytochalasin B. Validating the theory that the dissipation term is the
dissipation of energy via motion further evidenced in (h) the plot of population average dissipation

vs average normalized mass change.

We next moved on to examining the mass change coefficient which in our derivation is
comprised of two components biosynthesis and active transport (Fig. SA). We attempted to isolate
the active transport component via addition of the mass change coefficient (o) with the
biosynthesis term (kT) obtaining (a+kT) which should be a measure of the active transport. We
checked our assumption plotting the active transport component (a+kT) to the motion across all
our different cell lines and conditions (Fig. 5B) and an exceptional strong correlation (R*2 > 0.9)
between the two matching our theory. We then examined what portion of the biosynthesis term
(kT) vs the active transport term (a+kT) comprised the majority of the cellular work in our various
cell lines by dividing each net total work from both term (Fig. 5C). We found across the board that
all the different cell lines spent at least 55% of their total work on motion with HEK293 line
spending the most at nearly 80%. Cell lines that spent the most on biosynthesis were two of the
mitochondrial mutants of the 143 lines spent nearly 42-43% of the work on building mass which

was significantly higher than their parent line, which we would expect due to increased
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glycolysis?®. Another expected trend was seen in the transduced tgf-beta MCF-10A lines spending
seemingly more of their work on motion compared to the epithelial line. All this shows that we

were able to make comparisons of cellular work from biosynthesis and motion from our derivation.
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FIGURE 5  Separation and quantification of cellular work for biosynthesis and motion. (a)
Mass change coefficient term is described by a biosynthesis and transport portion. (b) Transport
portion of the mass change coefficient term is strongly related to motion across all cell lines. Once
separated we compared the (c¢) percentage of cellular work being used for transport or biosynthesis
across the cell lines HEK-293, BT-474, 143-BTK, MCF-10 A, different mitochondrial mutants

143 delta cytochrome B, 143 rho0, 143 MeLas, and tgf-beta treated MCF-10A.

Discussion
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Many of our assumptions made to simplify the derivation like viscous forces dominating
over inertial forces or that the chemical potential energy dominates over kinetic energy within a
cell can be validated by literature on the of fluid dynamics within a cell, as seen viscous forces
being dominate®®, or be can be seen in models of cytoskeletal networks for chemical potential
energy being king?®. Other assumptions like the spatial isotropy of mass can be seen as the reason
why the population average fitting better matched the model (Fig. 2) than single cluster (Sup Fig.
1) given that any single cluster would be anisotropic given that individual cells have polarity®® and
can have preference for motion given an orientation?’. This anisotropy of single cluster could be
drowned out by the averaging over many clusters over an entire population which would start to
approach our spatial isotropic assumption seen in our data resulting in better fits (Sup Fig. 1). This
averaging over many clusters over many different points in time could also be the reason why
other assumptions like intrinsic viscosity and enthalpy per unit mass become valid since they start
to approach the average viscosity and enthalpy per unit mass of the cell line. Although removing
certain assumptions may result in a better fit it would also result in a much more complicated
model than our relative simplistic model that we have right now which already fits majority of our
population experimental data (Fig. 1) and allows us to extract information on dissipation and work

being done by the cell via the coefficient of mass change.

The one notable cell line that did not fit our model (Fig. 2) as well as the others was the
143 rhoO mutant line. It fitted the worst out of all cell line and conditions to our model which may
be due to its’ mitochondria deficiency when compared to the other lines. Even the other
mitochondria mutants that did not have working mitochondria still had more mitoDNA intact than

the 143 rho0 which may play some part in signaling the cell’s physiological energetic response.
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Or it could also be because that mutant line tended to also not like to aggregate resulting in the

same breakdown of the model due to being more single cell as we outlined above.

The correlation of various QPI and metabolic parameters to our two new parameters of
dissipation and coefficient of mass change (Fig. 3) results in certain relationships that we expect
from theory. The strong connection between dissipation and coefficient of mass change with the
different units of mass fluctuations and motion was to be expected given that both of the model
terms were somewhat connected to motion. The interlinking between mass fluctuation and mass
accumulation could also be explained given the need of cells to traffic more mass around as it
underwent more biosynthesis. The relationship between metabolic properties of glycolysis with
biosynthesis is well explained via glutamate production via glycolysis being a driver behind
protein synthesis (ref) and served as check that we could indeed identify known biological

relationship with QPL

An explanation on why there was a significant change in mass change coefficient for
cytochalasin B treatment but not dissipation for the MCF-7 cell line (Fig. 4) can be seen in the
dual effect on structure and biosynthesis by cytochalasin B. The cytochalasin B treatment had
significant detrimental effect on mass accumulation while as increasing the mass fluctuation in the
cells due to disrupting the cytoskeletal network and lowering resistance to motion there. This
decreases in biosynthesis and increase in fluctuations leads directly to the increases in mass change
coefficient as described in our model while the negligible change in dissipation could be due to
the loss of resistance to motion from the structural changes from cytochalasin B (ref). This is in

direct contrast to the tgf-beta treatment of MCF-10A which saw no significant change in mass
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accumulation but increases in mass motion and movement disorder resulting in the significant

change in dissipation while not coefficient of mass change (Fig. 4).

The final breakdown of how cells spend their energy or cellular work (Fig. 5) showed that
majority of work was spent in motion. It also showed that increasing glycolytic processes enough
to significantly shift the percentage of work being used in biosynthesis as seen in the 143 mutant
mitochondrial lines compared to the parent line. It was also possible that biological transition like
EMT could induce a shift in cellular work in the opposite direction with the meschenymal tgf-beta
treated cells using more cellular work on motion than the normal epithelial MCF-10A which can
be explained in the biological shifting of priorities attributed to EMT?3. Overall our derivation
allows a simple process to use QPI data to compare and contrast the cellular work in terms of

biochemical and biomechanical processes.

Methods

Cells and cell culture

MCF-7 and BT-474 human invasive ductal breast adenocarcinoma, HEK293 human embryo
kidney, 143-BTK osteosarcoma, and MCF-10A immortalized human breast epithelial cells were
purchased from the American Type Culture Collection (ATCC). 143 rhoO cells were generated
from 143-BTK parent using DDC treatment and checked using uridine selection. 143-BTK MeLas
mutant and 143BTK delta cytochrome B mutant were generated via method described by
Patananan et al.?® . MCF-7 cells were cultured in EMEM supplemented with 10% fetal bovine
serum (FBS, Omega Scientific) and 10 mg/L human recombinant insulin (Sigma). BT-474 cells

were grown in Hybri-Care Medium (ATCC) reconstituted in cell culture grade water (Fisher) with
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1.5 g/L sodium bicarbonate and 10% FBS (Omega Scientific). MCF-10A cells grew in MEGM
Bulletkit media (Lonza) with cholera toxin (Sigma-Aldrich) at 100 ng/mL and without
gentamycin-amphotericin B mix. HEK293 were cultured in DMEM with 4.5 g/L glucose, L-
glutamine, and sodium pyruvate (Cellgro) along with 1% penicillin streptomycin (Cellgro), 1% Q-
max (Gibco), 1% non-essential amino acids (Gibco), and 10% FBS (Omega Scientific). 143-BTK
parent, 143-BTK MeLas mutant, 143BTK delta cytochrome B mutant, and 143 rhoO cells were
grown in the same media supplemented with 0.05 mg/mL uridine. We incubated cells with
escalating doses of cytochalasin B (Sigma Aldrich) dissolved in DMSO solution or to 0.1% DMSO

control, starting 4 h prior to experiments.

Quantitative phase imaging
Imaging of all cell lines were performed as described in Nguyen et al.’’. Images were collected
once every 10 min for 48 h over 20 — 30 imaging locations with sufficient spacing between cells

to enable automated image processing and segmentation.

Quantitative phase image analysis

Image processing was performed using custom MATLAB (MathWorks) scripts. Cells and cell
clusters were identified and segmented using a local adaptive threshold based on Otsu’s method*!
32 and particle tracking code based on Grier et al.****. Compensation for translational motion was
done by finding the maximum two-dimensional cross correlation of each cell or cell cluster image

against the immediately prior image.

Biomass accumulation rate calculation
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Quantitative phase biomass distribution images were summed over the projected area of each cell
cluster to obtain the total biomass per cluster at specified time points. We calculated exponential
biomass accumulation rates by taking the logarithm of the biomass over time data and fitting to a

first order polynomial equation using MATLAB Polyfit (MathWorks).

EMT

MCF-10A cells were placed in standard 6-well culture plates and applied with recombinant human
TGF-B1 (Sigma-Aldrich) to the culture media at 5 ng/mL one day after to induce EMT.
Alternatively, the TGF-B receptor inhibitor SB-431542 (Sigma-Aldrich) was added to the culture
media at 10 pM final concentration to enforce an epithelial phenotype on MCF-10A cells. Cell
exposure to these conditions for 7 d ensured full effects®>. Cells re-plated for imaging were cultured
with no additives, 5 ng/mL TGF-B1, 10 uM SB-431532, or both agents together. We incubated

cells with or without additives for 2 d before imaging.

Statistical analysis
Statistical analyses used two-tailed Student’s t-test with unequal variances and sample size

(Welch’s t-test).

Mitochondrial Oxygen Consumption (OCR) and Extracellular Acidification Rate (ECAR)
Measurements
OCR and ECAR was measured using a Seahorse XF96 Extracellular Flux Analyzer (Agilent). For

all cell lines, 1 —2 x105 cells per well were seeded onto 2 different V3 96-well plate (Agilent, Cat.
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# 101085-004) and grown overnight before analysis. A mitochondrial stress test quantified OCR
at basal respiration and after the sequential addition of mitochondrial inhibitors oligomycin,
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and rotenone, while a glycolytic
stress quantified ECAR before addition of glucose, after addition, with the addition of

mitochondrial inhibitors oligomycin, and when added with 2-deoxyglucose.

RNA Extraction

All samples were grown in biological triplicates and technical duplicates to 70-80% confluence
and purified using the RNeasy Mini Kit (Qiagen, Cat. # 74104) and RNase-free DNase (Qiagen,
Cat. # 79254) following the manufacturer’s protocols. All samples showed a A260/280 ratio >
1.99 (Nanodrop; Thermo Scientific). Prior to library preparation, quality control of the RNA was
performed using the Advanced Analytical Technologies Fragment Analyzer (Advanced
Analytical, Inc.) and analyzed using PROSize 2.0.0.51 software. RNA Quality Numbers (RQNs)
were computed per sample between 8.1 and 10, indicating intact total RNA per sample prior to

library preparation.

RNA-Seq Library Preparation

Strand-specific ribosomal RNA (rRNA) depleted RNA-Seq libraries were prepared from 1 pg of
total RNA using the KAPA Stranded RNA-Seq Kit with Ribo-Erase (Kapa Biosystems, Roche).
Briefly, rRNA was depleted from total RNA samples, the remaining RNA was heat fragmented,
and strand-specific cDNA was synthesized using a first strand random priming and second strand
dUTP incorporation approach. Fragments were then A-tailed, adapters were ligated, and libraries

were amplified using high-fidelity PCR. All libraries were prepared in technical duplicates per

89



sample (n = 60 samples, 120 libraries total), and resulting raw sequencing reads merged for
downstream alignment and analysis. Libraries were paired-end sequenced at 2x150 bp on an

Illumina NovaSeq 6000.

RNA-Seq Pre-Processing

All samples were each sequenced in biological triplicates and technical duplicates (n = 30 total
samples) to account for variation in extraction and culturing. Raw sequencing reads were
converted into fastq files and filtered for low quality reads and Illumina sequencing adapter
contamination using bcl2fastq (Illumina). Reads were then quasi-mapped and quantified to the
Homo sapiens GENCODE 28 (GRCh38.p12, Ensembl 92, April 2018) transcriptome using the
alignment-free transcript level quantifier Salmon v0.9.1 338 A quasi-mapping index was prepared

’

using parameters “salmon index -k 31 —type quasi”, and comprehensive transcript level estimates
were calculated using parameters “salmon quant -l A —seqBias —gcBias --discardOrphansQuasi”.

Transcript level counts were collapsed to gene level (HGNC) counts, transcripts per million

abundances (TPM) and estimated lengths using R Bioconductor package tximport v1.6.0 *°.

Gene Set Variation Analysis (GSVA)
GSVA on total transcripts was performed using R Bioconductor package GSVA v1.36.2 function
gsva() with parameters ‘‘method = gsva, abs.ranking = FALSE, min.sz = 10, max.sz = 500, kcdf

9999

= “Poisson™’ using a log2(TPM + 1) transformed gene expression matrix (Hanzelmann et al.,

2013) and gene sets were acquired from the KEGG Database. GSVA scores were extracted and
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correlated with QPM and metabolic data using the R Bioconductor package function corplot() with

parameters “type = “upper”, sig.level = 0.01, tl.cex = .75, tl.col = “black™”.

QPI cellular work calculations

A diffusion rate of cellular motion was extracted from QPI data using the method described in
Ceballos et al.*°. This diffusion value was then paired with QPI mass distribution images and used
to simulate the expected motion purely due to diffusion through numerical methods 2" order
Runge Kutta. A total mass change image data was calculated by using 3 consecutive QPI mass
distribution images and finding the rate of change in mass at each pixel using a best fit line for the
3 consecutive time points. This total mass change image data was subtracted from using the
simulated diffusion motion to get a calculated mass motion due to advection image. All three
images composited into new 5x5 (Sup. Fig. 2a) and were Fourier transformed in order to remove
the effect of the frequency drop off (Sup. Fig. 2b). Frequency was then gated to the actual spatial
frequencies of the image to remove drop off effect (Sup. Fig. 2¢) was then collapsed down using

polarity coordinates to generate fitting data for equation 4.
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SUPPLEMENTARY DERIVATION

Assumptions:
1. Isothermal
2. Spatial Isotropy
3. Low pressure influence VP=0

7.

8.

Average enthalpy per mass is an intrinsic value (e = constant)
Viscosity is an intrinsic value (i = constant)

Newtonian fluid

Viscous forces dominate over inertial forces

Chemical potential dominates over kinetic potential

Conservation of Energy

Basic equations:

o lllvest

)dV = —HQ-ndS+mp frov dV+ﬁz-v ds +”jkep dv (1)

e = enthalpy per mass

* .
v =velocity

O = heat
f" =body forces

o =density

2 = surface force
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Using Gauss theorem convert surface integral in (1) into volume integral

2

kS

v

SV =~ [ lIV*-QdV +f ! [p s oviar+| l [vieoviar +| l [kep'av (2)

D .
I

Since all terms are expressed as volume integral over arbitrary material volume the following true

for every point in space:

2

s

D 5 v * * x o+ * * *
Ep (€+T)=—V 'Q+p f v +V eov +k€p (3)

With Fick’s law of heat conduction

Q = KV*T;empemture (4)

Since it is isothermal

VT, =0(5)

temperature
Then Q=10

The surface forces can be broken down into a shear and pressure component with pressure being negligible

from assumption:
VoV =V ePv +V or'y = (O)-I—V* oV =Very (6)

With Plugging (4) and (6) back into (3)

2

*

D A%

Dtp( 2

) = p*7-\7 +VierV 4+ kep (7)
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Expand the left hand side in (7)

Dp pD s T TE o x *
e+ = v +V et v +kep (8
[ 2]Dt 2 Dt P P ®)

V2V op = ) p[ov = o e S S .
e+— || —+v eV +— —+v VY |= v +V et v +kep (9
( ot g 2 ot P # )
Nondimensionalize (9)

* L * * *
v NvmaxE?;p NIOO’t NT’f Namotor;v -

ﬂa_p eIOOvmax = povmax2 avz IOOVmax3 = 2 IOOVmalx2 2a_p /)Ovmavc3 2 (=
T o +—L (v Vp)-l— T n P + o7 n(v V(v ))+—v +—— (

_pO motor maxpf.v+ inax V.TV kepop(lo)

v
Divide (10) through by A0V and consolidate derivatives

2L

2e Dp Dp D(G*) 2a,,. L - . 2e
+ = motor oV + Very — kTp(11
v 2Dz o P D v 2 24 LoV L v 2 p(1)

max max

Since viscous forces dominate over inertial forces we define our first nondimensional number:

Al (17
P (12)

&=

And chemical potential dominates over kinetic potential we define our second nondimensional

number:
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2
e, Evr;_a;<<1(13)

Rewrite (11) in terms of (12) and (13)

motor

2 2 LT -
40P, 2Py PV 2 TPy G vy Gk p(14)
g, Dt Dt Dt Y7, &

Since we assume & and &, to be small we dismiss the terms multiplied by those when considering

O(1), however we don’t know the ratio between the two which we will define as:

&
=—(15
7= 15
Consider O(1):
0 ~ 2 LT -
y(a—’? + (v-Vp)) = a’””t‘”—popf-v +2Verv—ykT p(16)
Y7,
Since we assume Newtonian fluid, the non-dimensionalized strain rate tensor becomes:

r=(Vev) = G((W) + (VV)T)jn (17)

In Cartesian coordinates Vv is the Jacobian matrix where:

\Y% _ % 18
( v)ji_a( )

l

In 2 dimensions the strain rate tensor would then be:
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ov. Ov, ov, O, ’ ) ov, ov, N v,
1Y'|| ox oy ox  ox 1 Ox oy Ox
2| | o || 2O vy

ox 0Oy oy 0oy ox Oy oy

ov ov
X X v, X ) X
e E( ov. ¢ ov )({ }) B E( ov. o ov )20)
MRS — ! (—=+ vx)VX+2 Yy
ox Oy oy ox Oy y
Since we assume spatial isotropy we can rewrite (20) as:
ov ov
28vxvx+(8vx+ )y Zav"vx+ Sy +av"v
1 ( Ox oy ox 7 - 1 ( Ox ox ~ oy 7 y21)
2 ov, ov ov, 27 ov ov ov
(—+— ), +2—v Ly +—Sv 42—y
ox Oy oy Ox oy oy

The divergence of (21) this is then:

1| ox ox 7 ox
Verv=— . =
21 0 || ov, v,
Y v +—v +2 v,
Y1 ox y )y
2 2 82 82
28\/2'XVX+2(6VX)2+( 2y 4 el av"+av"v + vyvx+ szv ++(%)2+2(
Ox Ox Ox ox oy oyox B oyox T oxt 7 oy

=V wWv+V-w(Vv) =V -%V(vz) +V -%VT(vz)
Assuming an isotropic Newtonian fluid:
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\Y -%V(v2)+V -%VT(#) =V.-V(?)=VH’(22)
Now Plugging (22) into (16) we get:
2 LT -
7/[2—’?+(\7-Vp)j = o 2P0 745 42V - ykT p(23)
Y7,

We will Fourier transform (23) with respect to space with limits of integration for x and y being

from 0 to L where L is the length of the viewing window:
LL ap
I I y (5 +(v -Vp)j exp(—igx)dx exp(—iqy)dy =
00

LL
2
J'j amotor pO pf.v + 2V2 2 ykTp eXp( lq.X)dX CXp( lqy)dy
00
Where:

F{p(x,t)} = n(q,t);F{v(x,t)} Ea)(q,t);F{f(x,t}} = a(q,t)

an
ot

2 LT
YL+ 0¥ giy = Lmo =2 P sk g% 6~ 20 (0% ) - ykTr (24)

Dividing by 7 and move terms, and see that the convolution of @ with itself results in the

multiplication with its complex conjugate giving the value of its magnitude squared.

2a LT P
8_77:Mn*a*w—kTﬂ—w*nqi_ng(ww)
o wy 4
2a LT
2T oy i vt of (29
1y 4

103



Taylor Approximations:

Since we defined: F' { P (x, t)} =n (q, t) , Then since dp/dt is the derivative with respect to time, it should

have no bearing in space thus:

- {@p(x,f)} _on(@1) )

ot ot
Also we know that:
op(x.t) _ - p(x,1) p(x,t+At)( )
ot At —0 At

Thus if we sample 0 (x )t ) close enough in time we can approximate the derivative of it

p(x.1)—p(x,t+At) _ Ap(x,t) o)~ ap(x,t)

At(2
~ v for small t( 8)

Then

Conservation of Mass:

Dp
E = Dszp +kp(30)

D, = averagediffusion coefficient for biomass

k = rateof metabolic change of biomass

Expanding the left hand side and rearranging in (31) we get:
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Z—’t’+ (VeVp)=D,V’p+kp(31)

VeVp=D V’p+kp —2—?(32)
With sufficiently small At we can Taylor approximate in time and plug equation (28) into (31):
VeVp =D V’p+kp—g(x,1)(33)

We know that the Laplacian can be written as:

o0 oOp
V?p=VeVp =—L(34
P r Ox O ( )

x
With small enough Ax we can Taylor approximate (34) to:

X +Ax,1)=2p(x,,t)+ p(r, — Ax,,1)
Ax?

vip=y 2 ~ b(x.1)(35)

Plugging Dp with the average bulk diffusion, k with the average normalized growth rate, and (35)
into (33):
VeVp =D b(x,t)+kp(x,t)-g(x,1)=1(x,1)(36)
The Fourier transform of (36):
F{I(r,t)}=L(q.t) = F {¥+Vp} = 0*nqi(37)
Plugging in (29) and (37) into (25):

2amot0r L TIDO

Gla.r)= Hy

77"‘a*oo—an—L(q,t)—zq2 |a)|2 (38)
v
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Rearranging terms in (38) we get:

2 LT
Mn*a*w—km—gf of (39)
4

G(g,t)+L(g,t)= ”

Where the imagery portion of (39) is:

T'p,

Im(G(g.1)+L(g.t)+kTn)) = Im(mn *a* ©)(40)
Hy

The square of G and L would be:
Im(G(q,t) +L (q,t))2 = Im(MU *a* @)’ - 2Im(kTn) Im(Mn *a* )+ Im(kTn)’ (41)
My Hy
Now condense terms we get:
Im(G(q,t) +L (q,t))2 =a’ Im(n*a*w)’ - 2a¢Im(n)Im(n * a * w)+ ¢ Im(n)* (42)
Substituting (40) into (42):

Im(G(q,t) + L(q, t))2 = Im(G(q,t) + L (q,t) +¢n)" —2¢Im(n) Im(G(q,t) + L (q,t) +¢n)+¢° Im(n)* (43)

We can fit (43) to a surface to find the constant .

While the real portion of (39) contains the dissipation energy term:

Re(G(q,t)+L(q,t)+¢n)=aRe(n*a *w)—f(f \a)\z (44)

Re(G(q,1)+ L(q,t)+¢n)* = a* Re(n*a* w)* - 2aRe(n*a *co)(%qz o) —(iq2 o[ )2(45)

Rearrange the terms in (44) and we can substitute to solve for dissipation energy in (45):
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Re(G(q,t)+L(q,t)+¢n) +§q2 \a)\z = aRe(n* a * w)(46)

Rewriting the body force term we get:

|2

|Z(q.0)

o [n*a*of =a |af ul |of = o[ @
2
o’ ||a||2 M =(aRe(n*a* w))’ + (aIm(n * a* w))* (48)
q

The power spectrum of the rearranged (40) gives:

[ =a’r*a*of —2aRe(*a* o) Be’ o] )~ (B |of

HG(q,t) +L(q.t)
+2Re(gn) * (a Re(n * a * w) + Bq° |60|2) +21Im(¢n) * aIm(n * a * w) + ($17)° (49)

Now condense and rearrange terms:

2
‘2 — A2 ||L(q’2t)| —2ABR€(7]*a*a))(qz)—Bz(qz)z

q
+2CRe(n) * (ARe(n * a* w) + Bq*) + 2ACIm(n) * Im(n * a * ) + C* (n)* + D(50)

HG(q,t) +L (q,t)

Where:

a=A4

Blol =5
p=C
Cons.Integration = D
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SUPPLEMENTARY FIGURES

a b

FIGURE S1 Dissipation modeling of cellular data show increasing fit with sample size. Fittings
of the experiential spatial frequency power spectrum of the rate of mass change of BT474 cells to
the theoretical energetic model using an averaged power spectrum of 1 (a), 5 (b), 10 (c), 50 (d),

and the entire sample size of cells (e). (f) Plot of dissipation coefficient (beta) derived from model
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fitting of the spatial frequency power spectrum of the rate of mass change vs. the goodness of fit

(R?) for averaged value of 1-240 BT-474 cells.
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FIGURE S2  Correction of zeroth frequency drop off in power spectrum analysis. (a) QPI images
were applied with 5x5 transformation before Fourier transformed. (b) This to was correct for the
frequency drop off seen in the spatial frequency information of QPI data. (¢) Power spectrum data

when corrected using the 5x5 transform no longer show the effect of frequency drop off.
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Chapter 4. Quantitative Phase Imaging: Recent Advances and Expanding
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VOCABULARY

Phase (of light): Property that, along with amplitude (intensity), wavelength (color), and
polarization, defines light as an electromagnetic wave. Shifts in phase are caused by a delay in
propagation speed, as occurs when passing through a sample of higher refractive index.
Quantitative phase imaging (QPI): Method in which the phase shift of light as it interacts with
matter is measured. Returns measurements of integrated refractive index through sample thickness
at each pixel.

Interferometry: Method in which source light is split into a sample and reference beam, then
recombined at or before the detector, generating interference patterns. Can be applied to acquire
QPI data.

Wavefront sensing: Method that measures aberrations in the wavefront of light due to the
distribution of phase shifts within the sample, typically without the reference beam used in
interferometry.

Phase retrieval: A class of methods in which intensity images, often with some perturbations, e.g.
partial defocusing, chromatic aberrations, partial illumination, plus knowledge of the optical
transfer function are used to reconstruct the distribution of phase shifts through the sample.
Digital holography: Method in which a hologram is captured on a digital imaging sensor. The
resulting digital hologram can be used to reconstruct QPI data.

Quantitative phase tomography: Method to measure the three-dimensional (3D) distribution of

phase shifts within a sample. Returns measurements of average refractive index within each voxel.
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INTRODUCTION

Advances in microscopy have driven advances in biology and medicine by enabling visualization
and a greater perspective on the machinery of life. In this review, we discuss advances in
quantitative phase imaging (QPI), a label-free microscopy technique that measures fundamental
cell properties and behaviors, including mass, mechanical properties, growth, and intracellular
transport. We discuss the history of QPI, technical aspects of its applications, and emerging
developments that will shape future applications of this technology for addressing opportunities

and challenges in biomedicine.

QPI methods measure the phase shift of light as it passes through a transparent sample. This phase
shift is caused by light slowing down as it passes through a material with a higher refractive index

than water! and can be written as:

h
¢ = ZTHL n(z)dz )

where ¢ is the phase shift of light (in fractions of a wavelength) contributed by all elements in the
sample of varying refractive index, n, through the height of the sample, 4, in the z direction. This
measured phase shift is directly proportional to the dry mass content of a biological sample®. Dry
mass includes all mass excluding water and is therefore inclusive of biological macromolecules.
For example, the increase of refractive index (real component) for a protein solution is proportional
to the increase in protein concentration®. The slope of refractive index versus mass concentration
defines this relationship and is called the specific refractive increment! . The average specific

refractive increment, o, for the typical contents of mammalian cells, including proteins, nucleic
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acids, sugars, and lipids is ~0.185 pm?/pg', a value that is correct to within ~6%>. The cell dry

mass, m, can then be calculated using the specific refractive increment, «, of a sample by*:

m—ifmm )

- 2na
where this integral is performed over A4, the area of the cell. The ability of QPI to measure
quantitative, biophysical features of the cell, such as mass, is central to its applications and

potential in biomedicine.

Along with QPI, there are other widely used methods for leveraging the phase shift of light as it
passes through a cell or other biological sample to generate image contrast. These include Zernike
phase contrast microscopy® ’ and Nomarski differential interference contrast (DIC) microscopy®.
In phase contrast microscopy, illumination of a sample is with a limited spatial frequency range
(background light). The refractive index distribution of non-uniform structures within cells then
causes this background light to diffract and undergo a phase shift relative to the unperturbed
background light. Both this diffraction and phase delay helps to generate contrast in the resulting
image. As a result, even minute differences in refractive index translate into amplitude changes in
the resulting image. In DIC microscopy, image contrast arises by splitting the incident light based
on orthogonal polarization and introducing a small lateral shear of one polarization angle relative
to the other using a Nomarski-modified Wollaston prism. Recombination of this polarized light
after passing through the sample at a second Wollaston prism causes interference based on the
relative phase shift between the two polarization angles. The image intensity in DIC microscopy,
therefore, relates to the gradient of phase in the shear direction. Both phase contrast and DIC

microscopy enable label-free measurements of cell shape and position. However, the intensity of
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images from phase contrast and DIC imaging do not linearly relate to the corresponding phase
unless used as the basis for a phase retrieval method” !°. As a result, and in contrast to QPI, phase
contrast and DIC microscopy remain qualitative phase methods. As discussed further, the
quantitative data available with QPI enables more precise statistical and incremental studies for

probing biological mechanisms than are available with qualitative methods.

In this review, we introduce the fundamental problem of QPI and trace the development of methods
to solve this problem (Figure 1a). With the ever-increasing availability of computational
resources, these solutions have increasingly converged, leading to a number of key applications in
quantitative biology and a dramatic increase in research interest in QPI (Figure 1b). Finally, we
conclude by discussing four key ongoing areas of QPI research that we believe will have the

greatest influence in the future.
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FIGURE 1 QPI has undergone a steady increase in interest driven by advances in different
fields of optics. (a) Schematic of four main QPI approaches with interferometry (green timeline),
wavefront sensing (orange timeline), phase retrieval algorithms (light blue timeline) and
holography methods (red timeline) indicated. These methods have improved extensively over time
with the emergence of greater computational resources (thick black line). The improved efficiency
of computational resources led to technical advances in QPI that include quantitative phase
tomography (magenta timeline), in vivo QPI (dark blue timeline), multi-modal approaches (brown
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timeline), and machine learning methods (yellow-green timeline). (b) The growth in interest and
advances in QPI over time depicted by the number of publications on Web of Science using search

terms “Quantitative Phase Imaging” or “Quantitative Phase Microscopy” by year.

SOLVING THE FUNDAMENTAL PROBLEM OF QUANTITATIVE PHASE

QPI techniques seek to recover the phase shift of light that passes through a sample. However,
conventional optical detectors recover only the amplitude of incident light, so additional optics
and/or computations are necessary to recover phase shift information. This is the fundamental
problem that all QPI methods must solve, which has stimulated the development of multiple QPI
techniques. Here, we discuss the development of QPI in the context of these solutions, focusing

on the four primary approaches that have had the largest impact on modern QPI methods and

2 14

applications: interferometry'"> ', wavefront sensing'® !4, phase retrieval'> !°, and digital
holography!’. While many of these approaches have integrated methods and concepts from
electron, x-ray, and radio-wave techniques, here we use the term QPI to refer specifically to
methods for phase retrieval based on visible light. We then discuss the convergence of these

various techniques at the end of this section.

Interferometry

One method for computing phase information is interferometry. In interferometry, light incident
on a sample is split into two paths, a sample path and a reference path, before recombining at a
detector (Figure 2a). The amplitude of the resulting interference image relates to the phase shift
of light passing through the sample with respect to the reference path by constructive and

destructive interference between the light from these two paths. Interferometry was invented by
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Albert Michelson and improved further in collaboration with Edward Morley and famously used
for the Nobel prize winning 1887 Michelson-Morley experiment that provided evidence against
the existence of the luminiferous aether'® (Figure 1a). Major early improvements were the
introduction of separate sample and reference cells in the Mach-Zehnder interferometer'® and use
of thin calcite films faced at 45° to enable micro-interferometry?’. These dual path interferometers
were followed by common-path interferometers where the reference beam and sample beam travel
along the same path, reducing measurement sensitivity to vibration?"> 2. A common-path

interferometer microscope built by Dyson was used to image fixed biological specimens?.
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FIGURE 2  Examples of the four primary QPI lineages identified in Figure 1. (a) Mach-
Zehnder interferometry uses interference between light passing through a sample and a reference
beam to generate an interferogram that encodes phase information in image amplitude (e.g.'?). An
in-focus interferogram is then used to generate the phase image. (b) Wavefront sensing with
quadriwave lateral shearing interferometry (QWLSI) uses a diffraction grating that captures
gradients in phase shift as local distortions in the resulting intensity grid pattern on the camera
sensor'#. Sample images are compared to a reference wavefront image to determine the wavefront
distortion due to the sample itself. This is numerically integrated to recover phase. (¢) Differential
phase contrast (DPC) microscopy, a deterministic phase retrieval method, images a sample using
half-circle patterns of illumination that extend beyond the microscope objective numerical
aperture. Light refraction through the sample then causes intensity increases (or decreases) in one
half-circle image and decreases (or increases) in images with the opposing half-circle pattern. The
normalized difference between these two images approximates the gradient of phase along one
axis'>. Multiple pairs of images are collected, and the phase is numerically integrated. (d) Digital
holographic microscopy (DHM) computationally reconstructs the phase image from a slightly out-
of-focus interferogram obtained using an interferometer®*. A slightly off-axis reference beam is

used to avoid the twin image problem, where the image and its conjugate sit on top of one another.

The next major advance in QPI towards biomedical applications was the calibration of a specific

25,26

refractive increment’ using varying specimen composition that enabled the calculation of cell

dry mass. The earliest applications of cell dry mass measurements with interferometry mostly
27,28

focused on regularly shaped organisms such as yeast and bacteria to simplify calculations

Early work on irregularly shaped cells used multiple images to find the total projected area and
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average optical thickness, the product of which is proportional to total cell dry mass through the

specific refractive increment?’

. The integration of the scanning optical microspectrograph with the
interference microscope increased resolution®®, although not to the level of modern systems?'.
Other major improvements in interferometry focused on convenience for use in biological studies.
This includes the polarization interference microscope that replaced the partially silvered reflecting
layers of earlier common path systems with a birefringent layer’’. The Baker interference
microscope, which was used widely on mammalian cells, is a polarizing microscope modified into
a two beam interferometer*> **. Additional improvements include the use of a warmed stage to

t3# or bacteria?®, and the replacement of uneven mercury lamp illumination with

measure live yeas
fiber optics. Although the relationship between amplitude and phase in interferometric images is
straightforward, the required phase reference increases the complexity and number of optical
elements, and increases susceptibility to vibrations® and instability of a light source®. Therefore,

it was not until the introduction of digital cameras and image processing’” 3® that interferometry

provided truly quantitative data for internally complex mammalian cells.

Advances in a number of areas of interferometry-based QPI measurements benefit from the
increasing use of computers. Automated image focusing has improved interference imaging
accuracy and speed”. Single-wavelength interferometry cannot distinguish adjacent imaging
pixels with a phase difference exceeding one quarter of a wavelength?, but substantially larger
phase shifts can be accurately measured by digitally combining images taken at two wavelengths*.
Errors introduced from the unevenness of a reference surface can also be digitally corrected*!.
Phase shifting interferometry, in which multiple interference images are acquired at sub-

wavelength shifts in the reference relative to the sample path length, corrects error due to external
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disturbances®®. Applications of this approach with the required temporal and spatial resolution to
study subtle changes in the shape of cancer cells requires tight integration with computers for
motion control and image processing®'. Automated cell segmentation enables interferometry to
measure the growth of many cells simultaneously in uniform'? or mixed populations*?. Automated
segmentation has also improved the application of phase unwrapping, or removal of phase jumps
of one wavelength (27 radians) created due to the inherent ambiguity in interpreting interferometry
data, thereby reducing errors in dry mass measurements®’. Overall, computer control of
interference microscopes and digital image processing of the resulting data has revolutionized this
100+ year old method and led to a convergence with other methods, as discussed below. This also
points towards the future of QPI, as the linkage to ever-expanding compute power enables

increasingly sensitive approaches, and portends leveraging advances in machine learning.

Wavefront sensing

Wavefront sensing refers to approaches that seek to recover the aberrations in a wavefront caused
by phase delays within a sample. Important wavefront sensing methods include Shack Hartmann
wavefront sensing* and Ronchi sensing®. Of these, the Shack-Hartmann wavefront sensor is the
most commonly used version, with construction that uses either an array of evenly spaced holes
or a lens microarray for improved image quality. Either of these arrays creates a pattern of focused
light spots on the camera sensor*®. Aberrations in the light wavefront causes these spots to move,

allowing reconstruction of the total phase shift through the sample.

The earliest work in wavefront sensing used lateral shearing interferometry*> #’. Lateral shearing

wavefront imaging is similar to Nomarski DIC imaging in that the incident wave shears into two
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identical but tilted wave fronts that then interfere. The resulting single-direction phase gradient
from lateral shearing interference data lacks the necessary gradient information to generate a
complete two dimensional phase-field and thus requires the use of multiwave interferometry
techniques*® that generate more than one gradient direction. Numerical reconstruction of the
wavefront is possible, with such methods developed in 1986*. However, this method is
computationally intensive, and was later used in practice on images captured using a three-wave
shearing interferometer configuration®. Typical wavefront sensors lack the resolution needed for
imaging cells. Quadriwave lateral shearing interferometry (QWLSI) uses a modified, micro-
fabricated Hartmann mask, resulting in a pattern of dark spots that measures phase gradients along
perpendicular directions®!, allowing the measurement of both intensity and phase (Figure 2b).
Importantly, this mask enables high resolution images to support the live cell application of

wavefront sensing in measurements of phase using QWLSI on erythrocyte cells>2.

Wavefront sensing has multiple advantages, such as higher sensitivity, speed and temporal
resolution with less complex instrumentation than typical interferometry methods!#. Importantly,
wavefront sensing techniques do not require a reference arm'#, and therefore are less affected by
vibrations and other disturbances than double-path systems. Wavefront sensing typically uses
single image acquisition, resulting in high potential temporal resolution®. However, this approach
has a trade-off with lower spatial resolution as the light from each phase measurement spot is
spread over many pixels of a digital camera sensor. Thus, wavefront sensing is best for imaging
high-speed cell dynamics requiring accurate phase information, but has a downside of lower spatial
resolution. In applications to single cell imaging, QWLSI phase images require a low degree

polynomial fitting to flatten the image background for accurate biomass measurements®*. This
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requirement and an inherent amount of both spatial and temporal noise due to the recovery of phase
by numerical integration can impact cell segmentation. Overall, however, this approach can

achieve high accuracy for measurements of the dry mass of cells, even at high cell densities™.

Phase retrieval algorithms

Phase retrieval refers broadly to non-interferometric methods that computationally reconstruct the
phase shift from a sequence of intensity images taken under varying conditions. The primary
advantage of phase retrieval methods is that they can be performed using simpler optical systems,
or used to enhance the performance of more complex optical systems. Phase retrieval methods can
be classified as either iterative or deterministic®®. Iterative methods use iterative computation to
satisfy constraints in object and Fourier space between intensity images at the sample and detector
plane to resolve the phase problem®’. Iterative methods of phase retrieval were originally
developed for electron microscopy to reconstruct the wavefront propagation between image and
diffraction planes from the corresponding amplitude images®®. The Gerchberg-Saxton (GS)
algorithm was a widely used iterative phase retrieval method. The GS method seeks to iteratively
approximate the source (e.g. illumination) and target (e.g. image) intensities and complex phase
distribution from measured intensity images of the source and target. However, the GS algorithm
typically requires a large number of iterations and can become stuck at local minima and therefore
not converge to the real phase solution®. This was addressed by the introduction of the steepest
gradient search® and input-output methods®®. One common implementation of iterative phase
retrieval is in Fourier ptychography®!%*. Ptychography was developed to solve the phase problem
in electron diffraction measurements®. Fourier ptychography recovers high spatial resolution (or

large field of view) phase information at the object plane from a series of intensity images, such
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as at varying angles, resulting in data from which a higher spatial frequency image can be
reconstructed®> %, Fourier ptychography has also been used to visualize the three-dimensional

(3D) structures from light scattering signals®’ or complex transmittance functions®.

Deterministic methods directly solve for phase images without iteration, enabling real time phase
imaging. One commonly used approach is based on the transport of intensity (TIE) equation which
relates phase data at the in-focus plane to the axial derivative of intensity distribution®. The TIE
equation was proposed based on conservation of energy and describes the transport of energy in
an optical field'®. Differential phase contrast (DPC) microscopy, another commonly used
deterministic imaging method, evolved from the idea of contrast enhancement by asymmetric
illumination®. In DPC microscopy, multiple images of the specimen are obtained at different
angles of half plane illumination to recover phase information’ (Figure 2c). In this way, DPC
imaging is similar to Schlieren imaging in which half plane illumination is used to remove half the
spatial frequencies from the intensity image in one direction, giving phase gradients in orthogonal
dimensions’!. The earliest work on DPC imaging used a half plane electron source in a scanning
transmission electron microscope (STEM)’? and was later applied to imaging with visible light”

and applied to increase contrast in images of fixed cells’.

In contrast with interferometric methods, phase retrieval is typically less costly or uses more
widely available optics, such as DIC”®, phase contrast’® 7’ or custom made imaging systems'>. This
is because phase retrieval algorithms eliminate the use of a reference based on knowledge, or
approximation, of the optical transfer function of the imaging system’s. Phase retrieval is also

possible with partially coherent light sources’®!. However, the requirement of multiple images as
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inputs for phase retrieval methods lowers the imaging temporal resolution compared to
interference and wavefront sensing methods>*. The use of iterative algorithms for phase retrieval

also increases the overall workflow time.

As a primarily computational method, phase retrieval has benefited greatly from advances in
compute power. The practical application of phase retrieval for QPI therefore began in the 1990s
with extensive use of computing resources®> 83, Advances in optical systems further enhanced
phase retrieval QPI, including the use of color-multiplexing to obtain phase data from a single
image®*, lens-less phase retrieval with super-resolution reconstruction®, and volumetric
holography using asymmetric illumination®. Looking forward, phase retrieval stands to benefit
greatly from future advances in computation. This is especially evident in recent applications of
machine learning, where phase retrieval is possible without an optical physics model®” %, A
possible limitation that needs addressing as this field moves forward is that with more computation,
more noise tends occur. Additionally, the opaquer the method, the harder it is to track down sources
of error, a particular concern with machine learning approaches. Overall, however, these advances,
combined with the ability to work from data acquired with diverse sets of optics, point towards a

larger role for phase retrieval in the future of QPL

Digital holography

Digital holography captures the interference between a reference and off-axis sample beam with a
digital camera placed at a known distance in front of the image plane. Reconstruction of the
resulting interferogram uses diffraction theory to recover the complex object wavefront, including

the phase shift and intensity modulation of light passing through the sample. Digital holography
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emerged from the establishment of holography by Gabor®® for which he won the Nobel prize in
1971%°. Gabor’s work demonstrated that light from a point source interfering with secondary waves
from light scattered by an object produces a negative photograph of a 3D image. However, a
conjugate image is also superimposed on the reconstructed image, resulting in ambiguity due to
the present of this twin image. It was later shown that use of an off-axis reference beam can
separate the real and conjugate image®! °2. Marine plankton provided an early application of live
cells imaged using holography in a chamber with close proximity to a photographic plate®.

9495 and numerical reconstruction’® has greatly improved the

The use of digital cameras
accessibility of holography. Since the 1970s, holography has been used extensively for cell
imaging”’. Later, digital holography was introduced for 3D imaging enabling visualization of

specimens with highly fluctuating phase profiles such as pollen®®

. Initial applications of
holography to quantitative phase measurements were restricted to measuring the refractive index
distribution of inorganic materials®”. The broader application of digital holography to QPI was
enabled by the development of efficient computational reconstruction of holograms in the early
2000s'% as well as developments in the field of electron microscopy'®. This lead to digital
holographic microscopy (DHM) of live neuron cells in culture with high phase accuracy**.
Improved computational resources sped up the hologram reconstruction process for applications
such as mapping the refractive index of cells'®> 1%, Even Schlieren images were generated from

104

holography of patterns in inorganic materials ™, which were later used to measure optical

thickness'®.

DHM has been implemented in multiple hardware configurations!%. Of these, the Mach Zehnder

interferometer'® is the most widely used (Figure 2d), although this approach has the same
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disadvantages of other double-path interferometers discussed previously. Traditionally, DHM
requires spatially and temporally coherent laser light, leading to speckle noise. However, a number
of white light and incoherent DHM alternatives are available, including spatial light interference
microscopy (SLIM), a combination of digital holography and Zernike’s phase contrast
microscopy'”’. By processing a hologram of the 3D specimen wavefront, DHM also allows
computational refocusing. However, this process can lead to errors in phase measurements, unless

the proper refocusing plane is selected for repeatable measurements.

Evaluation and standardization of QPI methods

Each lineage of QPI methods has advantages and disadvantages compared to each other, which
have diminished in magnitude over time from technological advances and verified
standardizations. Briefly summarizing the four QPI lineages described above, interferometry is
accurate but sensitive to reference arm noise; wavefront sensing has good temporal resolution and
no reference arm, but has low spatial resolution; phase retrieval provides a large field of view and
higher spatial resolution, but has low temporal resolution; and DHM has high temporal resolution,

but is susceptible to noise from a reference arm.

A number of technical improvements address key limitations of these four QPI lineage approaches.
For example, adapting DPC microscopy to work with multicolor illumination instead of separately

imaging individual illumination patterns'%-!!!

achieved temporal resolution as high as 100 frames
per second (fps)!'2. A high speed interferometry method using a diffraction grating generated a

temporal resolution of 10* fps''!. Recent developments in DHM systems enabled removal of a

reference arm, for instance by using a self-referencing module''. It was shown that holography
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could mathematically retrieve phase using single intensity images through an illumination control
without a reference!'*. The use of coherent and partially coherent illumination can also help to
reduce noise in QPIL. Coherent illumination, such as from a laser, while useful for generating
interference, has a disadvantage of being sensitive to noise from system optics, especially speckle

115

noise’ . Use of partially coherent illumination, such as from an LED or lamp, can eliminate these

artifacts, at the cost of a moderate increase in difficulty aligning the optical system. Sub-Rayleigh

116

resolution has been achieved by adjusting the illumination source’ '°. Mach Zehnder interferometry

has been adapted for biosensing within microchannels, increasing sensitivity!%% 10,

Another approach to generate improvements in QPI is to combine principles from different QPI
lineages. For example, interferometry using a diffraction grating in a Mach Zehnder system can
eliminate the need for a reference arm and increase phase sensitivity, by reducing measurement
noise''?. The use of iterative phase retrieval algorithms on single-shot holographs also enables the
3D reconstruction of QPI images without needing a reference standard®’. The same iterative phase
retrieval has also been successfully applied to transport of intensity algorithms using holographic
microscopy'!’. The transport of intensity equation can be used to capture 3D QPI images at the
diffraction limit using an electrically tunable microlens array, similar to that used in wavefront
sensing, thereby significantly increasing temporal resolution' %,

119, 120 and

Polystyrene beads are a widely used phase calibration standard for many QPI methods
have been used with DHM'?!, QWLSI'*, and DPC!?? techniques. However, there is variability in

the refractive index of polystyrene!'?’, and typically large refractive index differences between

polystyrene beads relative to cell culture media, combined with sharp ‘imaging edges’ of these
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round beads, can lead to phase unwrapping artifacts that are not usually encountered with live cell
samples. Potential phase unwrapping artifacts using polystyrene bead calibration standards can be
mitigated by, for example, mounting the beads within material with a closer refractive index 2% 124,
However, this approach also moves the calibration data range further from actual cell imaging
conditions, which could impact experimental accuracy. Red blood cells have also been used as a
phase calibration standard in the development of QPI methods because of their ready availability
and fairly uniform shape and size'> 2. Typically, non-diseased RBCs show a population dry mass
variation of ~15%!%6. However, as a biological sample, this can be more challenging to work with
than an inanimate calibration standard. A number of studies have used USAF resolution test targets
that are readily available because of their wide use in calibrating imaging systems!'”- >’ However,
these standards are typically used for calibrating intensity images and are made of thin metal films,
meaning that they do not function as pure phase objects. A phase specific calibration standard for
QPI was developed and used in a comparison with atomic force microscopy (AFM), which showed
that QPI has nanometer sensitivity over a wide range of spatial frequencies®?. A 3D phase
“phantom” that captures subcellular features of cells for calibration in 3D QPI methods has also

been demonstrated'?®, with further development and characterization of widely accessible
p y

standards an area that needs further attention to support continued advances in QPL

QPI systems and image quality are defined by parameters including spatial and temporal
resolution, phase measurement sensitivity, and signal-to-noise ratio (SNR). The SNR in QPI is
measured as the signal over the standard deviation of the measured signal'?’. Noise in QPI
measurements can be reduced, increasing the SNR, by increasing the number of measurements.

This is especially important when using coherent illumination®®. Analytic software packages for
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assessing QPI measurements is another key system consideration. Some QPI approaches have
available commercial analytic packages from Wyko Corporation, Phasics Corporation, Phase
Holographic Imaging PHI, Inc. and other vendors, whereas additional analytical packages are
custom-coded in MATLAB or Python. Table 1 summarizes the category of QPI hardware, key
benefits, reported performance and available software of example methods from the four lineages

of QPI discussed in this review.

Table 1. Example methods, key benefits, performance and software for different QPI lineages.

Lineage Example methods Key Resolution | Accuracy SNR Software
improvements
Interferometry | Mach Zehnder | No reference | 100 fps!!®, | 2%!'%, Wyko  Vision
interferometer, Baker | arm 250 fps'30 | 0.5%*"13! software3! 132
interferometer
Wavefront Lateral shearing | Increased 10* fpslll 2% (1 nm | <8'33 Phasics'?,
sensing interferometry, spatial sensitivity)' MATLAB!3
QWLSI resolution
Phase retrieval | Iterative algorithms: | Increased 100 fps'!'? | 0.1-0.21% <6'36. | Python'®,
algorithms Defocus methods (GS | temporal 137, Imagel',
algorithm, Hybrid | resolution <100 | MATLAR!0: 141
input-output 8
algorithm,  others),
Fourier
ptychographic
microscopy.
Deterministic
methods: TIE, DPC
Digital Same as | Self- 100 nm'? | 0.3 %!* Peak HoloStudio
holography interferometry, referencing SNR< | (Holomonitor,
reconstruction in | module'?3, less 5513, | phi)!*,  Koala
addition susceptible to SNR< | (Lyncee tech)'*°,
noise 10'* | Python!”

Computational convergence
Starting in the early 2000s, QPI began to rely increasingly on digital image acquisition and data
processing, with the field also advancing from creative method combinations that were emerging

from multiple technical lineages. For example, SLIM combines principles of digital holography
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with phase contrast methods'?’

, and QWLSI combines the principles of wavefront sensing with
interferometry and phase retrieval algorithms'#. The combination of DHM with principles from
lateral shearing interferometry addresses the twin image problem'*’, and this combined approach
can reconstruct optimally sampled QPI data'*®. Further improvements in computation and machine
learning are enabling approaches analogous to QWLSI using an unstructured, random phase mask.
These exciting developments point toward the future of QPI with increasing availability of

computational resources and algorithms, including creative applications of machine learning,

which will further advance quantitative studies in biology and medicine.

ADVANCES IN QUANTITATIVE BIOLOGY

As QPI approaches have advanced, so too have QPI applications. One advantage of QPI is that it
is label-free. Therefore, QPI can study cell behavior with minimal impact, a feature that has been
leveraged in a number of applications. As summarized above, there are also a number of other
label-free microscopy approaches, including the more widely used methods of phase contrast and
DIC microscopy. The primary advantage of QPI over these other approaches, however, is that, in
contrast to phase contrast or DIC microscopy, the data contained in each pixel of a QPI image is a
quantitative measure of the phase delay of light as it passes through that portion of a sample.
Measurement of this phase delay can utilize any of the approaches already discussed above. Once
this phase data is captured, its analyses can provide quantitative insights into numerous biological
systems. Here we summarize key advances in the application of QPI to quantitative biology
studies, ranging from applications that quantify the behavior of individual cells to emerging

opportunities in clinical diagnostics.
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QPI applications using measurements of cell mass or growth rate

The refractive index of a material is related to its mass through a quantity called the specific
refractive increment®. For cells, a typical average value is 1.8 — 2.0 x 10-4 m*/kg %% 3. The phase
shift measured by QPI is the integral of the difference in refractive index between a cell and its
surroundings through the thickness of the cell’s projected area. The measured phase shift of a cell
is proportional to the mass of the cell’s contents excluding water, which is the dry mass of the cell.
This provides a quantitative measure of cell size, which can provide valuable information on cell
viability, growth over time, replication, and function. Measuring cell volume is an alternative
method to cell mass quantification that can be used to measure cell growth!*’. However,
measurements of cell volume typically requires a simplifying assumption about cell shape (e.g.
spherical mammalian cells, rod-shaped bacterial cells) and cell volume changes depend upon intra-

and extracellular osmolality, which can be unrelated to internal dry mass amounts'

. By contrast,
dry mass is independent of osmolality and instead depends upon the balance of biosynthetic
(anabolic) and degradative (catabolic) processes within a cell. In the early- to mid-1950s, several
investigators began using QPI to measure the absolute total dry mass of live eukaryotic cells,
including measurements of mass through the cell cycle * 226 34 151 (Figure 3). Additionally,
repeated QPI measurements of dry cell mass over time can provide dry mass accumulation or loss
rates to quantify cell growth!? 130152156 (Figure 3), or the decrease in mass that occurs during cell
death!371%2  Below, we discuss example applications of QPI measurements of cell mass and

growth in studies of basic biological processes, including in immunology and in the behavior of

neurons.
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FIGURE 3  The evolution of complexity and information content from QPI measurements of
cell dry mass and mass distributions within living cells. Representative images and data analysis
are shown in a time series. (a) QPI film image of 7Tradescantia bractea pollen grain (top) along
with QPI pollen grain dry mass measurements (bottom, upward arrowheads are no sucrose
estimates and downward arrowheads show measurements with a 5% sucrose solution) and volume
(circles) during different phases of development (Adapted with permission from '*!,Copyright
1954 Company of Biologists Ltd.). (b) QPI of chicken fibroblasts with dry mass densities ranging
from 0.01 (darkest grey) to 0.6 (white) pg/um>(top), processed to measure spread area relative to

163" Copyright 1995 Company of

total cell mass (bottom) (Adapted with permission from
Biologists Ltd.). (¢) QPI of human H929 multiple myeloma cells (top) showing computationally
processed data that simultaneously captures drug responses of hundreds of single cells, shown as
initial cell mass versus normalized changes in mass during drug treatment (bottom) (Adapted and
dataset with permission from 2, Copyright 2011 Elsevier). (d) High resolution QPI of a human

buccal epithelial cell (top) and an example of changes in dry mass of HeLa cells undergoing
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apoptosis triggered by exposure to cytotoxic paclitaxel (bottom) (Adapted with permission under

Creative Commons Attribution (CC BY) license from '>°, Copyright 2017 Zuo et al.).

Applications of QPI to studies of cell growth and associated biological processes

Several example studies discussed here demonstrate the utility of QPI measurements for providing
insight into the regulation of cell size, growth and additional fundamental biological processes. In
studies of cell size regulation, QPI measurements during fibroblast cell spreading revealed that the
spread area is actively regulated by an undefined mechanism that adjusts the total area of spreading
proportionally to the total cell mass'®®. Separately, dry mass quantification using SLIM during the
cell cycle showed that osteosarcoma cells exhibit a mass-dependent growth that was best
approximated by an exponential rather than a linear model of cell growth!>2. More precise QPI
measurements of cell mass revealed oscillations in growth rate that were previously unappreciated,
suggesting that a pure exponential model of cell growth is insufficient to explain the regulation of

mammalian cell growth!®4,

The impact of extracellular perturbations on cell size and growth have also been interrogated by
QPI. For example, changes in available glucose!>, or the addition of small molecule inhibitors
such as tunicamycin to induce cell stress'?, led to reproducible, QPI-quantifiable changes in cell
dry mass and growth rate as indicators of cellular responses. These study results led to the use of
QPI as a label-free method for screening different stimulants or inhibitors. Examples include QPI-
based screens for agents that cause changes in cell growth rate and cytotoxicity'? '>. QPI has also
been applied to study the influence of mechanical properties of the extracellular matrix on growth

rate, migration, and metastatic potential of melanoma cells'®®. Long-term SLIM studies of cell
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growth in epithelial and fibroblast co-cultures examined the influence of cell clusters on
neighboring cells, with a few clusters, termed ‘influencer clusters’, showing a strong correlation
between growth rate and distance, with potential implications for organogenesis and cancer cell

metastasis'®.

QPI has also been applied to study the impact of genetic mutations on cell growth. For example,
QPI was used to track the growth and division of primary human melanocytes for 30 days in
culture'”’. This study found that proliferative arrest associated with oncogene expression,
previously thought to be caused by GO cell cycle phase senescence, was instead identified as a
reversible and conditional mitotic arrest, an observation subsequently validated using clinical
specimens. QPI was also used to confirm the impact of transcription factor YAP expression in
HEK293 cells as a potential coordinating mechanism between cell and tissue size'*®.Finally, QPI
also has demonstrated utility for assessing whether different cell states, and transitions between
cell states, alters the absolute dry mass or dry mass accumulation or loss rates of cells. One study
quantified cell dry mass partitioning between daughter cells during and following cytokinesis and
showed that mass asymmetry present at the time of cleavage furrow formation persisted through
cytokinesis'!. Addition of cytoskeleton-disrupting agents with differing mechanisms of action,
including latrunculin A, blebbistatin, nocadozole, and cytochalasin B increased the number of
daughter cell pairs exhibiting asymmetric dry mass partitioning. This suggested an absence of an
active mass partitioning mechanism after cleavage furrow positioning and the requirement for
mass adjustments by dynamic changes in cell growth rate, and/or cell cycle time, over the
succeeding cell cycle. The lineage non-directed differentiation of human pluripotent stem cells

hPSCs)!'® was also interrogated using QPI measurements of absolute dry mass and changes in
g g
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growth and mass redistribution rates prior to and following the induction of differentiation. Study
findings included that hPSCs grow at a consistent, exponential rate independent of colony size,
with coordinated intra-colony mass movement ceasing with the onset of differentiation. In
contrast, growth and proliferation rates decreased by only ~15% during early differentiation
despite global changes in gene expression and energy metabolism, suggesting that the regulation

of mass and proliferation are independent of pluripotency during early differentiation.

Applications of QPI to studies of immune cell behavior

Another example area of impact is the application of QPI measurements to gain insight into the
functions of cells of the mammalian immune system. At the cellular level, the adaptive immune
response requires rapid, massive cell growth to support the generation of both effector and long-
lived memory cells. QPI, therefore, is well suited to studying the regulation and features of this
process. For example, QPI measures of dry mass changes in a binary cytotoxic T lymphocyte
(CTL) — cognate cancer- cell killing assay were illuminating. Study results revealed that the cancer
cell mass decreased 20-60% over 1-4 h during a successful CTL attack, with a 4-fold increase in
CTL mass accumulation rate at the start of killing and a 2-3 fold increase in CTL absolute mass
relative to the mass of unresponsive T cells*’. These results provide a kinetic, quantitative
assessment of CTL activation in tumor cell killing and, potentially, a relatively rapid way to
identify specific, activated patient-derived T cells for applications in cancer immunotherapy.
Furthermore, QPI measurements of reconstituting donor T cells following hematopoietic stem cell
transplantation showed mass changes correlated with immune reconstitution within the first few
weeks post-transplant, a finding which could guide the withdrawal of immunosuppressive drugs

and reduce the likelihood of graft-versus-host disease or cancer relapse'”.
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In studies of B lymphocytes, QPI measurements also uncovered rapid mass accumulation and cell
proliferation within the first 24 h of B cell activation accompanied by sustained AMP-kinase
activation in the absence of energetic stress, an unexpected result because AMP-kinase activity
strongly opposes anabolism and constrains mass accumulation in most biological contexts'”!. QPI
was also used to measure variability in naive B cell size and partitioning of mass between daughter
cells during B cell expansion, providing support for an in silico model suggesting that intrinsic
biological noise plays a key role in determining the extent of B cell proliferation, which ultimately

determines which cells contribute to an immune response'’>.

Applications of QPI to measure neuron behavior

Neuron growth and behavior is another impactful area for QPI applications. Many studies would
benefit from imaging with a label-free method that avoids phototoxicity and photobleaching from
long duration fluorescence imaging. As an example enablement, label-free QPI separately
quantified neuronal body (soma) and projection (neurite) masses, which showed that most mass
accumulation during a 5 d in vitro neuronal differentiation protocol goes towards the production
of new neurite connections rather than strengthening of existing connections'”>. The process of
neuronal branching has also been quantified using QPI plus machine learning as an alternative to
fluorescent staining'’*. The high sensitivity of QPI has been leveraged to track the transport of
individual vesicles within neuronal processes'’>. QPI has also been applied to measure long term
(~1 min) responses of neurons to stimulation related to transmembrane ion fluxes!’® as well as

short term (~0.1 ms)'®* fluctuations in neuron shape during neuronal spikes'!!,
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Applications of QPI in biophysics and biomechanics studies

In addition to measuring total cell mass, QPI can also measure the distribution of dry mass within
cells. Measurements of intracellular mass distributions and redistributions over time can also
reveal cell movement and intracellular transport phenomena. These two features of QPI data
collection and analysis are foundational for applications in cell biophysics and biomechanics. In
particular, measurements of the movement of mass between cell regions is enabling for
applications in intracellular transport, whereas measurements of the shape and structure of a cell

and how it changes over time is enabling for measurements of cell mechanics.

Applications of QPI in measuring the physical structure of a cell

Another biophysical application of QPI is to measure the structural features of individual cells and
use this information to inform physical models. A recent study showed that the morphological
differences in retinal nuclei of mice correspond to a pattern of nuclear architecture common to
other nocturnal mammals'”’. Specifically, adult mouse retinal cells showed a spatially organized
nuclear refractive index pattern, which contrasted with a more dispersed refractive index pattern
uncovered in diurnal pig or immature mouse retinal cells. Simulations of light transmission found
that the refractive index pattern in mouse retinal cells more effectively focused light and reduced
scattering, suggesting a potential role in enhancing nocturnal vision. This result generated much
discussion on the role of refractive index patterns in the nucleus. The appearance of a large phase
shift through cell nuclei supports a physical model of a reduced nuclear refractive index'’®, which
has been validated in other studies reporting a lower refractive index in nuclei than in the
cytoplasm!”*-182, These results were further supported by 3D QPI results that also showed a lower

nuclear refractive index outside of the nucleolus'®> 134,
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Applications of QPI in studies of intracellular transport

Intra- and inter-cellular transport of biomaterials are required for cell growth and function, with
patterns of transport providing information on cell behavior, disease states, and cellular responses
to changing environmental conditions. Two relatively common, non-QPI methods for studying
cellular transport employ fluorescent labels typically attached to biomolecules, or to introduced

particles, coupled with live cell imaging'®> 8

, and label-free techniques, such as DIC
microscopy'®’. Imaging of fluorescently tagged markers provides a high degree of specificity, and
can be quite sensitive, but suffers the disadvantages of photobleaching, limiting transport study
times, phototoxicity, which can induce cell stress and modify cell behavior, and autofluorescence,
which excitation or emission filters may not completely remove'®®. These imaging limitations are
irrelevant for QPI, although there is a loss of biomolecule specificity and sensitivity'®’. As
discussed previously, QPI, unlike DIC and phase-contrast imaging, also quantifies the dry mass of
cells and some tracked intra- and inter-cellular components, such as lipid droplets, revealing that
lipid trafficking motion ranges from subdiffusive to active transport'3’. As a label-free method that

provides additional quantitative data on cell behavior, QPI is a good option to consider for

measurements of intracellular transport.

Imaging interferometry coupled to finite element analysis measured the intracellular transport of
dry mass in fibroblasts at low resolution and showed that the kinetic energy of intracellular motility
can be several hundred times greater than the kinetic energy of cellular translocation across a
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surface’””. Recent improvements in image processing speed and methods are helping to increase

the scope of intracellular transport studies available to QPI platform methods. For example, SLIM
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measured the label-free diffusion of organelles and vesicles in hippocampal neurons and
cardiomyocytes using a Laplace operator, with extended transport study time enabling extraction
of diffusion coefficients'”®. SLIM also revealed the 3D time series movement of dry mass in
neurons. Results were analyzed using dispersion-relation phase spectroscopy, a method to measure
the spatiotemporal decay of the autocorrelation signal of phase!”, and revealed differences
between transport in neuronal bodies and neurites, and also between longitudinal and transverse
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trafficking orientations ~'. Additional SLIM platform studies were inconsistent with purely passive

diffusion and suggested advective transport of cargo within neuronal dendrites, also using the

dispersion-relation phase spectroscopy analytic technique'”

. A holo-tomographic version of QPI
combined with epifluorescence examined mitochondrial network and lipid droplet dynamics inside
HeLa endocervical carcinoma cells. Features uncovered included the shape and dry mass dynamics

of lipid droplets, endocytic structures, and a multi-organelle spinning phenomenon whose

underlying mechanism remains undefined 2.

An alternative to QPI tracking of individual particles is phase correlation imaging. This method
measures the temporal decorrelation time of QPI collected data based on fluctuations of cell
refractive index as an indicator of intracellular mass transport. A549 lung carcinoma cells were
imaged using SLIM and treated with an actin polymerization inhibitor, cytochalasin-D, which
showed only small local effects, but also uncovered a distribution of correlation times that is
qualitatively different for quiescent and senescent cells, without cell labeling, providing a creative
method for identifying quiescent versus senescent cells within a cell population!®®. Another
application of phase correlation imaging revealed that intracellular mass transport rates were

significantly different for osteoblast cells with different levels of migratory capacity!**. Studies of
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aggressive, highly metastatic HeLa cells using SLIM and dispersion-relation phase spectroscopy
revealed that mass transport in the cytoplasm was mainly active (ballistic, directed), compared to
the nucleus which showed active and passive (diffusive) components, with faster mass transport

in the cytoplasm than the nucleus'®.

Applications of QPI to cell migration assays

QPI provides a label-free alternative method to DIC or phase contrast microscopy for conventional
cell motility or wound healing assays. An advantage of QPI in this application is that it additionally
captures quantitative information on other cell features. For example, a commercially-available
digital holographic cytometry version of QPI was equipped with semi-automated image
acquisition, segmentation, and analysis software. Measurements of melanoma cell motility and
metastatic potential were highly accurate in a comparison with field-standard measures of wound
healing, transwell migration, and invasion assays, with the added benefits of identifying rare
hypermotile metastatic cells and an ability to distinguish motility from cell division associated cell

t!%. Measurements of cell mass and morphology with the same system could similarly

displacemen
track kinetic epithelial-to-mesenchymal cell transitions in heterogeneous cultures'®’. Finally,
optical diffraction tomography, a three-dimensional, label-free QPI-based imaging method, was
used to study and quantify the dynamics of NIH3T3 cell migration in a wound healing assay,
revealing single cell resolution of subcellular structure behavior and transport that underlies the

mechanisms involved in gap closure and closure rate, with potential implications for

pharmaceuticals development or re-purposing'®®,

Applications of QPI for measuring biophysical cell properties
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QPI can measure the distribution of mass within a cell, including the mass due to structural
elements such as the cytoskeleton, and how this distribution changes over time. It is, therefore,

193195 quch as

possible to extract information about the biophysical properties of single cells
effective cell stiffness and cell viscosity, from QPI data. These viscoelastic properties, in turn,
underlie cell structure, movement, and function and have increasingly served as biomarkers for
diseases'”, cell states®®, and biological transitions®'. A standard method for measuring cell
viscous and elastic properties is to examine stiffness and elastic, dissipative responses to an applied
stress. Numerous physically interactive methods have evolved to make such measurements,
including by cell deformation using an AFM?**2%_ or by using external and intracellular introduced
probes, as in particle tracking microrheology?®*®. The use of probes®® and applied stress?’,
however, can affect cell behavior and impact measurements of cell viscoelasticity. Thus, the use

of non-interactive techniques, such as those based on QPI, could circumvent or at least minimize

these potential confounding influences.

QPI measurements of viscoelasticity divide into two main categories: (1) static measurements
based on the spatial distribution and structure of mass within cells, including the cell cytoskeleton,
and (2) dynamic measurements of changing cell mass distributions based on the temporal
redistribution of mass. Early QPI dynamic measurements of viscoelasticity utilized sustained and
rhythmic, temporal actuation and relaxation of magnetic beads as a form of spherical indenter, to
induce local, transmitted stress on fibroblasts and observe the resulting mass redistribution and
cell stiffening over time*!. Actuated magnetic beads and QPI measurements also probed different
cell types with and without cytoskeletal disruptions*”’ (Figure 4a), whereas an optical stretching

method was also applied in conjunction with DHM to examine differentiating marrow precursor
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cells for changes in subcellular structure and refractive index>%

. A key disadvantage in these
studies, however, is that they required the use of non-native probes. By contrast, probe-
independent, noncontact studies of RBCs used QPI to measure fluctuations in cell shape, coupled
to a mechanical model of the relatively simple discoid structure of RBCs. This method was then
used to quantify changes in RBC membrane shear, area, and bending moduli during transitions
from discoid to abnormal echinocyte and spherical shapes, with potential implications for
circulation and oxygen delivery to tissues’®” (Figure 4b). However, this method requires a
mechanical model, which in this case is limited to enucleated RBCs. More recent noncontact
studies linked static QPI measurements of mass distribution in nucleated cells to spatial disorder
strength, a measure of mass organization within cells including the cytoskeleton (Figures 4c¢), to
HT-29 colon cancer cell shear stiffness?!® and the elastic moduli of two breast cancer cell lines
(MCF-7 and BT-474 cells) 2!!. Dynamic QPI measurements of mass redistribution rates for MCF-
7, BT-474, and HeLa cells quantified both cell stiffness and elastic moduli during growth (Figure
4d) and during an epithelial-to-mesenchymal cell state transition’'2. Combined, these and future
studies suggest a powerful and emerging opportunity for QPI to quantify cellular biophysical and

biomechanical properties that traditional biochemical, molecular, and cell biology measurements

alone cannot provide.
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FIGURE 4  QPI biomechanics measurement evolution. (a) Early QPI biomechanical analyses

time

required physical perturbations, such as actuation of a magnetic bead indenter on NIH3T3
fibroblasts (top) or HeLa carcinoma cells to extract Young’s modulus (£; bottom) (Adapted with
permission from 2°’, Copyright 2008 IOP Publishing Ltd.). (b) Detailed mechanical modeling from
contactless measurements of biomechanical properties of red blood cells (RBCs; top left) using
natural fluctuations in phase caused by membrane motion (top right) captures mechanical property
variations (bottom) for populations of normal (DC), speculated (EC), and spherical (SC) shaped
RBCs (Adapted with permission from 2%, Copyright 2010 National Academy of Sciences, U.S.A.).
Scale bar = 1.5 um. (¢)QPI phase (top-middle) of more complex cells HT-29 wild-type and shARNA
(top left), HT-29 with CSK shRNA-mediated knock down (top middle), A431 epidermoid
carcinoma control (top right) and cytochalasin D treated A431 (middle left) cells, and A549 lung
adenocarcinoma cells (middle right) used to compute a mean phase disorder strength, related to

intracellular cytoskeletal structure and independent measurements of shear stiffness (bottom)
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(Adapted with permission from 2!°, Copyright 2017 Elsevier). (d) Time lapse QPI data (top)
showing the redistribution of mass within single cells and cell clusters, which provides both
resistance to deformation and decay terms. These terms were validated by comparisons with AFM
measurements of stiffness (bottom left) and viscosity (bottom right) for MCF-7 and BT-474 breast
carcinoma cells, and for HeLa endocervical carcinoma cells, treated with different concentrations
of cytochalasin B (Adapted with permission under Creative Commons Attribution (CC BY)

license from 2!2, Copyright 2020 Nguyen e al.).

Emerging QPI applications in preclinical and clinical studies

There are a growing number of potential applications for QPI in clinical studies, with current
studies mainly at the technology development, applications and validation stages. There are at least
two major directions under development for QPI aiming towards clinical applications (Figure 5),
which are (1) measurements of cell dry mass changes in response to therapeutic agents (Figure
5¢) and (2) measurements of cell morphologies and disease states (Figures 5a, 5d). These
applications leverage QPI for quantitative and label-free measurements of individual cells and cell

clusters.

QPI biomass applications in screening and drug therapy

Changes in dry cell mass detected by QPI has been used to measure single tumor cell sensitivity
to cancer therapeutics®'>. The range of applications shown includes evaluating mitotic inhibitors
with different mechanisms of action?'#, examining the rate and extent of cancer cell escape and re-
growth following senescence induction?!®, and uncovering the response heterogeneity of a mixed

sensitive and resistant cancer cell population to specific drug treatment™. Because QPI can track
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the kinetics of dry mass growth responses of individual cells or clusters of cells within large
populations of cells over time, heterogeneous cell responses to therapeutics are readily identified.
For example, rare drug resistant diffuse large B cell lymphoma (DLBCL) cells within a population
of DLBCL cells sensitive to a PI3-kinase inhibitor, idelalisib, were identifiable by continued mass
accumulation and could, in concept, be isolated and recovered for further studies™ !> 2! Pre-
clinical dry mass accumulation rate studies using patient derived xenografts predicted drug
sensitivity for triple negative breast cancers, providing a potential QPI application for drug
selection in the emerging area of personalized oncology®'”: 2!® (Figure 5c). A separate drug
screening in breast cancer study applied QPI to capture drug sensitivity that was consistent with
findings from current standard approaches, as well as multiple additional physiologically relevant
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parameters that characterized cell responses to therapy~~. As discussed above, QPI measured

212 a state transition

viscoelasticity can differentiate between epithelial and mesenchymal states
that is a cardinal feature of cancer cell metastasis, and phase correlation imaging discriminated

between quiescent and senescent cells, with potential implications for drug resistance and tumor

reemergence!®>.

QPI morphological applications in diagnostics

Anatomic pathologists have long used changes in cellular morphology and tissue architecture to
diagnose disease, as changes in morphology represent changes in cell state and function as, for
example, plasma membrane blebs can indicate dynamic cytoskeleton-regulated cell protrusions in
apoptosis, cytokinesis, and cell movement??’. Accordingly, diagnostic applications of QPI focus
on cell state to provide a diagnostic tool with early attempts using features from QPI images to
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screen for cancerous tissue”'. QPI tissue spatial correlation, a measure of refractive index map
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correlation length that may represent nanoscale cell morphology in fixed tissue samples, provided
a biomarker that distinguished between malignant and benign breast cancer biopsy samples??.
When combined with dry mass measurements, QPI identified and classified different kinetic states
for a population of melanoma cells in culture®?®. In applications with RBCs, morphology studies

using QPI identified Plasmodium falciparum infection of RBCs?2*

and suggested the possibility
that QPI measurements of cell membrane dynamics could identify additional pathologies that
cause or accompany other human diseases??*22* (Figure 5a). QPI using white light interferograms
with red, green and blue wavelengths separated electronically helped determine morphological
features of RBCs??°, as did using DHM with data clustering and discriminant analysis®*°. “Real
time” QPI measurements of blood samples have been demonstrated, utilizing parallel computing
strategies to calculate diagnostically relevant cell parameters without storing phase images,
allowing for smaller electronic storage and data transmission requirements, which could benefit
remote diagnoses of RBC diseases*?’. QPI has also been used to measure morphology changes in
HTori thyroid cells during treatment with plasma from a nanosecond dielectric barrier discharge??®,
changes in macrophages from chemically induced apoptosis and dynamic phagocytosis'®?, and for
sperm selection for bovine in vitro fertilization??°. SLIM and tissue spatial correlation analysis was

used to assess breast cancer fixed tissue microarrays and showed a 94% sensitivity and 85%

specificity for cancer detection?*’ (Figure 5d), independent of tissue staining quality.
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FIGURE 5  Progress towards QPI clinical applications as a screening and selection tool for
treatments, and as a diagnostic tool to identify healthy versus diseased states. (a) Specific QPI
features can be used to identify disease or changes from a healthy or control state. For example,
QPImeasured differences in RBC membrane fluctuations at 37°C and 41°C in vitro can distinguish
between healthy and ring, trophozoite, or schizont diseased states with P. falciparum parasitic
infection (Adapted with permission from 2?4, Copyright 2008 National Academy of Sciences,
U.S.A.). (b) Once QPI features of interest are identified, validation is sought with an independent,
orthogonal method, if available. For example, shown here is an area under the curve (AUC) or
receiver operating characteristic (ROC) plot of the true positive (sensitivity) versus false positive
(specificity) rate determining malignance from hematoxylin and eosin counter-stained tissue

biopsy. This previously validated method is used to validate QPI determined malignant state for
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breast tissue biopsies (Adapted with permission under Creative Commons Attribution (CC BY)
license from**, Copyright 2018 Majeed et al.). (¢) Validation of a QPI measured feature in a
specific context can broaden its utility. For example, validation of QPI measured changes in
growth rate was successfully applied to identify effective treatments from a pool of candidate
agents against carboplatin-resistant, patient-derived xenograft HCIO9 breast carcinoma cells
(Adapted with permission under Creative Commons Attribution (CC BY) license from '3,
Copyright 2019 Murray et al.). (d) Example of QPI as a diagnostic tool, with spatial light
interference microscopy (SLIM; middle and right columns) identification of benign (top row)
versus malignant (bottom row) glandular tissue, validated by pathological classification of

hematoxylin and eosin stained biopsy material (left column) (Adapted with permission under

Creative Commons Attribution (CC BY) license from 23°. Copyright 2018 Majeed et al.).

ONGOING DEVELOPMENTS

Quantitative phase tomography

The transition from generating two-dimensional (2D) quantitative phase images to tomographic
images that capture the 3D structure of specimens is an ongoing development in QPI. While 3D
imaging is fairly common with fluorescent biomarkers using confocal or widefield microscopy
and digital image processing reconstruction®!, the use of fluorescence tags has disadvantages that
include photobleaching and phototoxicity with increased imaging time**?. Imaging based on the
inherent contrast provided by natural variation in refractive index eliminates these label-related
problems. Tomography refers to the stacking of 2D planes or images acquired at multiple imaging
angles to reconstruct 3D structures of specimens called tomographs. Although the principle of
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interferometric tomography was proposed in the 1960s~° and experimentally demonstrated in the
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1980s*, tomographic image reconstruction was too computationally intensive to be routinely
used for QPI until decades later’*>. Reconstruction of quantitative phase tomography from
scattering images of polystyrene beads using Mach-Zehnder interferometry**®, and then
polystyrene foam from DHM images was demonstrated?’’, followed by measurements of the 3D

refractive index and the absorbance profile of optical fibers using phase retrieval and tomographic

reconstruction”**(Figure 6a).

Whereas 2D QPI measures the integral of An, the refractive index of the sample relative to the
surrounding media through the thickness of the sample in each imaging pixel, Quantitative phase
tomography maps An within each voxel. Advances in tomography have focused on increased

precision and accuracy of 3D refractive index mapping using DHM assisted tomography?®*’

(Figure 6b). Tomography has also been developed from phase shifting interferometry®*, and
light-emitting diode (LED) array microscopy, which forms the basis of DPC phase
reconstruction®® 24! LED array systems are capable of an impressive 0.25 s acquisition time, made
possible with optimized sample illumination’*? (Figure 6¢). Another method for acquiring
tomographic images for use in image reconstruction is by acquisition of holographic phase images
at a series of angular projections using illumination with a rotating fiber optic, resulting in a 1 Hz

imaging rate’®. Intensity diffraction tomography using annular LED illumination has improved

imaging speed, and achieved diffraction limited resolution®**,
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FIGURE 6  Progress in QPI tomography from applications with static optical fibers to
multicellular organisms. (a) QPI tomography analysis of cross-sections of optical fibers (top). A
common feature of QPI tomography is recovery of the 3D refractive index distribution, rather than
the integrated refractive index through the sample thickness, as in 2D QPI. This is shown by the
refractive index distribution measured as a line profile through the sample (bottom) (Reproduced
from 238, Copyright 2000 Elsevier). (b) QPI tomography of single cell protozoan, Hyalosphenia
papilio, with refractive index reconstructions shown as different 2D slices (Adapted from
239 ©2006 The Optical Society). (¢) Multiplexed intensity diffraction tomography of multicellular
Caenorhabditis elegans embryos. Shown are in-focus refractive index (top row) and depth-coded
projections of volumetric reconstruction (bottom row). Red and orange arrows indicate
developmental stages of the embryos. Individual developing tissues, the buccal cavity (white box),
intestine (blue box), and native bacteria (blue arrow), are visible (Reproduced with permission

from 242, ©2019 The Optical Society).

150



A promising application of tomographic QPI to measure subcellular structures is the interrogation
of biomolecular condensates, which are membrane-less organelles or organelle subdomains that

245 and

have been implicated in a wide range of cell behaviors including bone metastasis
autophagy®*. The process of phase separation has been studied with 3D QPI with identification
confirmed by fluorescence?*’. Future applications of QPI tomography can be combined with other
QPI data analysis methods to reveal the essential biological mechanism(s) behind these structures.
Another promising application of QPI tomography is the measurement of mass within
multicellular specimens, such as whole animals®* (see in vivo section, below), or 3D organoids
that are often used as in vitro models of development or disease?*®. 24>24’Gradient light interference
microscopy (GLIM) developed by combining aspects of DHM, DIC microscopy and low
coherence interferometry enables 3D imaging of samples ranging from single cells to intact

embryos for measurements of internal structures and their evolution in time?*’

. Optical projection
tomography uses DHM and analyzes movies of flowing samples to acquire images at multiple
angles, resulting in reduced imaging time and a non-invasive solution for phase measurements of
RBC aggregation®°, an offshoot of which is called limited-angle holographic tomography. White
light diffraction tomography performed by deconvolution of QPI stacks generates high-resolution
QPI data of intracellular structures'®*. Quantitative oblique back-illumination microscopy (qQOBM)
enables tomography of a wide range of samples, from thick highly scattering®*® to opaque®'
samples, by using multiple scattering paths generated within the sample to create an effective light
source deep within the sample despite illuminating the sample in epi-mode. Overall, these selected
example applications and approaches in quantitative phase tomography show that the ability to

view and quantify sample features in 3D is very powerful. Since quantitative phase tomography is

another QPI approach that relies heavily on computation for generating and processing 3D data,
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this area will continue to benefit from ongoing advances in computing power and analytic

software.

QPI in tissues and in vivo

There are ongoing efforts to apply QPI to tissue slices and the in vivo environment to limit the
confounding effects of studying cell behavior in vitro (Figure 7). However, there exists several
roadblocks to fully realizing this goal, including light scattering of thick samples, phase
unwrapping errors due to long optical path lengths through thick tissues, and the small size of
microscopes needed for imaging inside living organisms. One approach is to continue modifying
techniques that have already been adapted for in vivo imaging for phase retrieval. A key example
of this approach is the use of optical coherence tomography (OCT). OCT is a low-coherence
interferometry method that leverages low temporal coherence to exclude scattered light outside a
tissue slice of interest, coupled with backscattering of light, to image cross-sectional areas of

252,253

tissues in situ . An early approach added phase retrieval to OCT to enable QPI of human

cheek cells(Figure 7a)*>* and isolated chicken cardiomyocytes®>. Phase sensitive OCT has also

been extended into in vivo imaging of the human retina®*® and its’ associated motion®’

. However,
despite great improvements in phase stability, there is a still often a need for either manual or

automatic phase unwrapping to correct for phase errors with this emerging technique.

Another adaptive approach is to use QPI methods developed in an in vitro setting to address issues
of light scattering in thick samples and phase unwrapping and then translate them for in vivo
imaging through miniaturization. This has led to attempts to miniaturize certain platforms, such as

diffraction phase microscopy (DPM), into an endoscope (i.e., eDPM)?*, or to making a fiber optics
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based qOBM system?*°. Demonstrations of these techniques have so far been limited to ex vivo

258

imaging. The eDPM system has been used to measure stained white blood cells*° and a similar

260 whereas the

holographic endoscope method was applied to mouse esophageal tumor samples
fiber optics qOBM imaging system has examined gliosarcoma cells from excised and formalin-
fixed rat brain tissue(Figure 7¢)*>°. The most definitive application of in vivo QPI has been DHM
imaging of red blood cells in micro capillaries within the mesentery of live mice (Figure 7b)?!.
By using 2D holograms from different angles, Sung et al. was able to reconstruct a 3D tomogram
via optical diffraction tomography 262. Overall, work so far in this area points toward a bright future

of applying various in vitro quantitative phase approaches to studies of mass regulation,

biophysics, and the building of diagnostics based on QPI measurements of cells in vivo.
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FIGURE 7  Progression of in vivo QPI approaches. (a) Sample preparation for an in vivo
technique called spectral-domain optical coherence phase microscopy (SD-OCPM; top) which

generated optical path difference maps for human epithelial check cells (bottom) (Adapted from
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234 © 2005 The Optical Society). (b) Diagram of live mouse heating stage setup for in vivo QPI
(top). Representative QPI data from a live mouse mesentery showing mouse microvasculature
represented as optical phase delay maps reconstructed from holograms (bottom) (Adapted with
permission under Creative Commons Attribution (CC BY) license from 2!, Copyright 2016 Kim
et al.). Scale bar = 10 um. (¢) Schematic of a fiber-based quantitative oblique back-illumination
microscopy (qOBM) platform for imaging tumor tissue in excised rat brain (top), thereby
generating QPI images from deconvolution of intensity images (bottom) (Adapted from 2%°, ©

2021 The Optical Society.). Scale bar = 50 um.

Multimodality approaches

A key advantage of QPI is that it is label-free and captures data on all components that contribute
to cell mass. However, a related limitation is that QPI data is not specific for any individual
component of the cell. Therefore, a number of approaches and studies have combined QPI with
other imaging modalities to learn more about cell structure and behavior (Figure 8). Two of the
most promising connections are the combination of QPI with fluorescence detection through the
tagging of specific molecules, and the combination of QPI with vibrational spectroscopy, for label-

free measurements of chemical compositions within the cell.

Early combinations of fluorescence detection methods with QPI approaches?®* to interrogate RBCs
measured physical and optical thickness?**, resolved substructures within cells?®>, and identified
and characterized the mass distribution of subcellular components®®* 2% (Figure 8). These initial
approaches demonstrated QPI identification and measurement of different subcellular components

within a cell that were manipulated to fluoresce. Fluorescence combined with QPI has also been
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used to segregate different populations of cells in a mixed culture experiment®, track the behavior
of rare subpopulations of primary human cells ex vivo'¢’, or to determine different cell states?!?
concurrently with mass accumulation and mass density measurements from niche cell populations.
Dual fluorescence plus QPI combinations have also enabled biomechanical interrogations of cell
responses to optical tweezers’®’ and dual traction force and growth measurements?®®. The
combination of SLIM and an epifluorescence traction stress imaging method, Hilbert phase

269

dynamometry“®”, was used to study mesenchymal stem cell growth and differentiation into

osteocytes and adipocytes. Results showed that during osteogenesis and adipogenesis, greater
force is exerted by these cell types on their growth substrates than by mesenchymal stem cells,

which develop the least force and show the lowest growth rate?¢%,
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FIGURE 8  Examples of the opportunities available from coupling QPI with additional imaging
modalities. (a) QPI of kidney cells paired with fluorescence detection enables the identification
and quantification of dry mass changes, represented by phase shifts, within subcellular regions
(right), such as the nucleus, identified by Hoechst staining (bottom left) (Reproduced with
permission from 2%, © 2006 The Optical Society). (b) Enhanced fast image acquisition of dual 3D
fluorescence (top right) and refractive index measurements from tomographic QPI (top left). This

accelerated approach provides the necessary capture speed in image scanning to reconstruct 3D
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tomograms of A549 cells for both fluorescence (bottom right) and QPI (bottom left) measurements
from z-step data (Adapted with permission from 2’°, © 2017 The Optical Society). (¢) Molecular
vibrational spectroscopy paired with QPI of COS7 cells (top left) examined for molecular
signatures, such as CH> (top center) and peptide bending (top left), corresponding to subcellular
phase shifts within the nucleus (orange), cytoplasm (blue), relative to empty space control (grey)

(bottom) (Reproduced with permission from 2’!, © 2020 The Optical Society).

In general, combined 3D QPI/ 3D fluorescence techniques can differentiate subcellular
components while rendering a map of cell refractive index?’? and identifying the refractive index
of subcellular regions®’>. Combined 3D fluorescence detection and refractive index tomography
on cells with fluorescently labelled nuclei, mitochondria and actin enabled registration of the
refractive index profile with the labeled subcellular components?’#. Optical diffraction tomography
has also been used in combination with 2D fluorescence to validate measurements of lipid

content?’?

. Moving towards the acquisition of functional data from 3D structure, studies using
combinations of refractive index tomography with fluorescence sub-diffraction microscopy enable
concurrent studies of cell biophysical properties and biochemical functions?®> 27°. Further
advances include high-speed correlative 3D QPI/3D fluorescence techniques?’®, which have
evolved to enable 200 Hz imaging of 4D maps of cell structures?”>. With the addition of machine
learning, more advances are possible due to the vast amount of morphological and molecular data

collected by dual fluorescence QPI combination modalities, thereby enabling more complex

analyses.

156



Another multimodal approach of interest is the combination of QPI with molecular vibrational
spectroscopy to measure chemical composition (Figure 8c). Extracting chemical composition
from QPI alone has been attempted as quantitative phase spectroscopy (QPS), but with limited
success. QPS uses phase measurements over a range of wavelengths to estimate the component
distributions in samples. This approach has been applied to measure hemoglobin®’® or BSA%”
concentrations in solution, and has been applied to measure healthy?’” and diseased*’® RBCs. This

approach has also been extended to 3D tomography?"

. However, using this approach to decipher
more complex cellular contents is limited by the relatively small variation in phase delay of
biomolecules in visible light. Molecular vibrational spectroscopy techniques generate vibrational
spectra of molecules measured from their linear absorption and inelastic light scattering?®®. These
vibrational spectra are dependent on the chemical structure and environmental interactions of the
molecules and thus can provide information on the chemical composition of materials. Raman
spectroscopy, which is a type of vibrational spectroscopy, relies upon the inelastic scattering of
photons to determine the vibrational modes of molecules, allowing for the detailed identification
of chemical composition. However, use of scattering spectroscopy methods may generate an issue
with limited signal in applications with live cells. To overcome this limitation typically requires
either high illumination power, which induces phototoxicity, or metal probes for surface enhanced
Raman, which can foul in solution environments. Nonetheless, label-free identification of

chemical compositions within cells is an ideal complement to the less specific biomass information

obtained with QPL

Dual modality QPI plus molecular vibrational spectroscopy has been applied with a mid-infrared

light source to characterize specific molecular contents with cellular mass distributions?’!. Raman
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spectroscopy has been applied to characterize both the morphological dry mass and chemical
composition within cells*®!. Combined Raman QPI approaches have also examined dry mass, mass
density, and protein and lipid composition under ultraviolet radiation?®?, and with the help of
machine learning classified normal and cancerous tissues?®>. Combined, QPI with molecular
vibrational spectroscopy enables the examination of chemical composition and biomass kinetics
(Figure 8c¢), to further dissect core biological mechanisms and processes.

Brillouin microscopy is a noninvasive, label-free microscopy method to measure viscoelastic

properties of cells and tissues?®*

that has also been combined with QPI. Brillouin microscopy uses
inelastic scattering to determine the viscoelasticity of heterogeneous materials of known density
and refractive index. Brillouin microscopy was combined with optical coherence tomography to
study biomechanical properties in tissues, including stiffness, elasticity and structural changes in
embryos®> 28, Brillouin microscopy has also been combined with optical diffraction tomography
and fluorescence microscopy to measure the refractive index, density and elasticity of specific

fluorescently labelled structures inside cells*’.

As a label-free method based on brightfield microscopy, QPI can be added to other microscope
imaging modalities beyond fluorescence and vibrational imaging methods. For example,
quantitative label-free imaging with phase and polarization (QLIPP), a combination of defocused
QPI and polarization microscopy, can measure volumetric phase, retardance and orientation,
which is useful for studying structures in cells and tissue slices®®®. There is, therefore, a broad

potential future for multimodality work in biological and potential clinical applications of QPI.

Machine learning

158



Machine learning has propelled many recent advances in QPI, such as improving phase
reconstruction for QPI images, improving segmentation and tracking for processing QPI data, and
improving data labeling and classification (Figure 9). In terms of pre-processing, machine learning
can help improve the reliability of phase reconstruction algorithms. Most work applying machine
learning to QPI uses convolution neural network (CNN) variants, such as U-Net?®*, CNN is well
suited for phase recovery as it considers multiple pixels in the process of data condensation, unlike
perceptron models that use individual pixel input*. For example, in the area of phase retrieval,
machine learning has been used to reconstruct TIE results with a single intensity image, and can
eliminate errors arising at the boundaries of images during TIE reconstructions as well as the
impact of noise®’. Machine learning can also benefit wavefront sensing?®® !, For example, a
diffuser can be used to generate random speckles that then work as a wavefront sensor, when
combined with a neural network trained on phase objects*?. Phase unwrapping is often an issue
in interferometric methods*, and a one-step correction for phase unwrapping errors has therefore
been introduced using machine learning methods®>*. Holographic image reconstruction has also
been performed from single intensity images using machine learning, with validation on pap

smears and human tissue samples®®.

Machine learning is also helpful in QPI data post-processing steps. Here, CNNs are the most
widely used approaches as well. Machine learning networks have been designed to segment
microscope images>**, and process cell tracking data, counting, and characterization®”®>. Machine
learning algorithms on unlabeled QPI images can compute or false-colorize staining patterns
created by computer labelling of different organelles and components within cells. For example,

machine learning can be used to identify lipid droplets in unlabeled QPI images*®. A related
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machine learning approach, called PhaseStain, was developed for label-free staining of QPI

images?®’. This method has been extended for real-time staining and classification of sperm

298 299

cells””®, identification of cells from subcellular components™, and generation of pseudo-
fluorescence images from label-free QPI data®” 3%, The change in dry mass of subcellular
structures has been measured over time using phase imaging with computational specificity

(PICS), which segments QPI data with machine learning approaches®!.

One especially promising application of machine learning methods for QPI studies is in the
classification and identification of cells and tissues. Classification schemes using machine learning
algorithms can help reduce the time and labor involved in traditional pathology, while the label-
free nature of QPI simplifies data collection. Statistical classification from QPI data was
demonstrated wusing basic feature recognition algorithms for the classification of
microorganisms>*% 3%, Similar classification schemes were later improved using machine learning
approaches®** 3% Machine learning has since been used with QPI data for classifying specific cell
death pathways’®®; categorizing the health and quality of human spermatozoa for in vitro

307 308.

fertilization ; screening red blood cells for hematologic disorders®®® 31 i

including sickle cell
disease®!! and malaria®'?; and identifying and classifying microorganisms®'®. In cancer studies,
machine learning has been applied to QPI data for scoring cancer cells as epithelial or
mesenchymal in origin®'¥, phenotypic profiling of cancer and non-cancer cell lines’’>, as a
diagnostic tool in pancreatic cancer’'®, and to quantify dynamic responses of melanoma cells to
therapy??® (Figure 9d,e). Machine learning with QPI in combination with data from additional
techniques helps increase the accuracy of classification, as it increases the number of data inputs

into selected classification methods. For example, QPI, fluorescence, and Raman spectroscopy
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have been combined as inputs into a machine learning algorithm to detect macrophage
activation®'’. Raman imaging and QPI combined with machine learning has also been applied to

318 Overall, machine learning is poised to

recognize stages of B cell acute lymphoblastic leukemia
play an ever-increasing role in both the generation and interpretation of QPI data, and has already

touched upon nearly every major application of QPL
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FIGURE 9  Machine learning has been applied to all three stages of a typical QPI processing
and analysis pipeline: 1. computation of phase data, 2. labeling of phase images, and 3. feature-
based cell classification. (a) Phase image reconstruction from a single over-focus or under-focus
image using deep learning and transport of intensity (TIE) algorithm. The error of phase
calculation using the combined deep learning TIE method is under 0.06 © for the 'Network+'
learning-based method using one over-focus image and the 'Network-' method using an under-
focus image when compared to the ground truth calculated from three images using TIE

(Reproduced with permission from 87, Copyright 2020 Elsevier). (b) PhaseStain is a digital staining
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method developed using deep learning on holographic microscopy images, to perform virtual
staining of tissues from label-free QPI images. The stained images produced are similar to
histological staining observed under a brightfield microscope. (¢) A zoomed-in view comparing
the liver tissue section stained using PhaseStain and Masson's trichrome staining (Reproduced with
permission under Creative Commons Attribution (CC BY) license from 27, Copyright 2019
Rivenson et al). (d, e) Machine learning to classify cell states during the epithelial-to-
mesenchymal transition (EMT). M-phase, pro-apoptotic, and growth-arrested cell states occurring
during EMT can be distinguished from untreated control cells using machine learning, utilizing
cell features identified from QPI (Reproduced with permission under Creative Commons

Attribution (CC BY) license from 223, Copyright 2017 Hejna et al.).

CONCLUSIONS AND PERSPECTIVE

QPI is an approach with a long history. However, the last two decades have seen great leaps in
both the abilities and applications of QPI. The rapid recent development of QPI is from impressive
advances in image processing capabilities enabled by digitalization and increasing computational
power (Figure 1a). This development and application of computational tools has substantially
increased the utility and power of QPI in its application to biomedicine and permitted the
development and commercialization of prebuilt and user-friendly QPI platforms. Consequently,
recent years have witnessed a surging interest in QPI, coupled to a dramatic increase in QPI
enabled publications and discoveries (Figure 1b). This marked expansion of QPI applications is
also being fueled by leveraging machine learning approaches and is increasingly impacting areas
that are beginning to include disease diagnoses and measurements of biological state transitions.

While exciting, this recent and rapid adoption of QPI platforms and associated published studies
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has also highlighted the dearth of standardization tools and practices beyond the adaptation of

124 a5 phase standards. Developing and circulating such tools will be critical for

polystyrene beads
reproducible studies and validation of future QPI-based diagnostics and other applications.

Current areas of QPI utility include studies of cell size and its regulation, cellular diagnostics and
screens, and biomechanics and biophysics. One key strength of QPI approaches includes label-
free classification of key cellular behaviors such as programmed cell death pathways,
differentiation, cell cycle progression, and immunological responses. Assessing these behaviors in
the context of changes in biomass density, morphology, transport, and viscoelastic properties
provides a deeper understanding of adaptations during cell or organismal life. A second key
strength is the ability to study single cells or individual cell clusters over long periods of time. As
techniques in single cell profiling continue development with increasing reports on molecularly
distinct subpopulations of cells, QPI provides a platform for assessing distinct phenotypes and
behaviors within these heterogeneous populations. Further development of multimodal approaches

will be critical for merging the observations made using single cell molecular profiling with QPI

single cell phenotyping.

Finally, although there have been a large number of studies pointing towards clinical utility of
QPL, this approach is ready for more robust validation and testing with clinical samples. As a label-
free approach that can quantify multiple physiologically relevant parameters describing the
behavior of living cells, QPI is well positioned to work with clinical samples. QPI therefore has
the potential to enable a wide range of clinical applications in functional and diagnostic medicine,

both as an addition to current approaches that rely on staining and as an independent ex vivo
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approach. Further work is therefore needed to build on the demonstrated capabilities of QPI to

translate this technology to clinical utility and ultimately to improve the standard of patient care.
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Chapter 5. Conclusion
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The works presented in this thesis are just two ways to approach modeling biomechanical
properties with QPI. The first study looked at using mass redistribution as measured with QPI via
autocorrelation and modeling with a simple viscoelastic mechanical model to generate information
on stiffness and viscosity for a variety of cell lines along with molecular perturbations and
biological transition. The second study examined how information extracted from QPI could be
used to quantify the amount of work cells were used for mass accumulation versus that of motion
through a series of mechanical derivations. Finally, this thesis presented a comprehensive review

of the QPI with respect with to its’ usage in biomedicine.

FUTURE DIRECTIONS

Expansion on the preexisting work in this thesis can be found applying various QPR models of
viscoelasticity to interrogate other biological questions. An example would be applying these QPR
techniques to measure the changes in viscoelasticity during differentiation or immune responses,
it also be explored how chemical or biological perturbations on viscoelasticity during such
scenarios may affect the outcome or survival of certain cells as they differentiate or are targeted
by an immune response. Other biological relevant question would be how mtDNA damage or
mutantation may facilitate cascading signals that modulate cellular viscoelasticity. The same
approach could be applied to the studies on cellular work, where there is a great deal of interest on
how cells undergoing different germ lineage differentiation end up partitioning their energy usage

in terms of mass accumulation vs. motion as well as during other biological transitions.

Besides further perturbation of these established biomechanical properties or exploration of other

ways to dissect out more information from QPI data, there are four broad directions that QPI is
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expanding towards. This thesis had already extensively examined them in the previous section but
to summarize they are quantitative phase tomography, QPI in tissues and in vivo, multimodality
approaches, and machine learning. Each approach expands the limits of QPI either by unlocking

more questions to which QPI can be applied or the amount of information QPI could generate.

A simple advancement of QPI is the application into 3D structures through quantitative phase
tomography which makes use of the already extensive possibilities of QPI with the added effect
of extra axis in space. Where 2D QPI measured the integral of the refractive index of the sample
through the thickness of the sample at each imaging pixel, quantitative phase tomography does
same but within each voxel. These QPI tomography are developed from phase shifting
interferometry', and light-emitting diode (LED) array microscopy® °. This transition into 3D
allows QPI to probe mass within multicellular specimens, such as whole animals' or 3D organoids
which are in vitro models of development or disease* expanding the range of biological questions

QPI can tackle.

On topic of animal models is the efforts to apply QPI to tissue slices and the in vivo environment
due confounding effects of studying cell behavior in vitro. The approaches to this is to either
modify techniques of in vivo imaging for phase retrieval like with optical coherence tomography’
or use in vitro QPI and translate for the in vivo setting through miniaturization. An example would
be moving the QPI diffraction phase microscopy system into an endoscope®. This would allow for
more invasive studies in living organism instead of being confined to structures closer to the

regions close to the surface of the skin’.
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Another approach is to simply combine QPI with other imaging or measurement modality in QPI
multimodality approaches. The most widely used multimodality QPI approach is QPI with
fluorescence detection®, while more obscure ones are QPI molecular vibrational spectroscopy
approaches’ including QPI Raman'® and Brillouin!! 2. This allows QPI to probe and dissect more
information from the data collected by using the second imaging modality in order to segment or
parse out structure, cellular state, or even chemical composition enabling QPI to answer even more

mechanistically intensive questions.

Incorporation of machine learning into QPI is another promising approach with studies already
using them to ease image processing'® and post-processing'* steps for QPI. A popular approach to
machine learning with QPI is to use the algorithm for classification using QPI'> 6. With the
increasing numbers of biomechanical properties that can be measured with QPI including QPR
viscoelasticity and cellular work, machine learning algorithm be better positioned to identify and
classify cells in even more ambiguous cases. A novel approach for QPI machine learning can be
using machine learning algorithm to fish for properties that are pertinent in identifying differences
between cell types or state and then modeling what biological relevance such properties would

have.
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CONCLUSIONS

The studies covered in this dissertation show the ability of QPI to tease apart biophysical properties
of the cell through examination of cellular biomass and its’ associated properties. These studies
demonstrate that even through a multitude of biological processes and transition QPI still retains
its’ ability to dissect and model cellular properties through their relation to biomass regardless of
cellular state or process. How cells and other biological samples produce and consume biomass is
integral to biology and thus QPI with its’ ability to interrogate this property and the vast interaction

underpinning is integral to answering questions in biology.
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Appendix L. 3D Printed Electromagnet Compatible QPM System
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Cellular viscoelasticity is an important property that can serve as biomarkers of disease! and is
usually defined via two parameters stiffness and viscosity characterizing either the elastic or
dissipative components of a cell’s response to stress®. The elastic component has been widely used
as a biomarker for cancer cells®, metastatic potential®, and cell migratory pattern®. The viscosity
portion has been linked to multiple biological processes, including diffusion® 7, and cell disease

state®?.

Components that contribute most to cellular viscosity in mammalian cells are the various cellular
cytoskeletal components from the lipid bilayer to the actin cortex. These components include
things like microfilaments, microtubules, motor proteins, and various other structures. These
structures are implicated in a host of different processes from adhesion'® to differentiation'!.
Although there are approaches to measuring cell viscoelastic properties including induced
deformations'? or probes!®. There are concerns on how these mechanical forces propagate

throughout the cell'* or cell interactions with a probe'>.

There has been great interest using a contact-free, non-invasive approach that can accurately
measures cell viscoelastic properties, one of which is based on quantitative phase imaging (QPI).
QPI'® is a microscopy technique that measures the phase-shift of light due to its interactions with
the non-aqueous biomass of a cell'’, through experimentally determined cell-average specific
refractive index, we can relate the phase shift of light to cell biomass'® !°. QPI has traditionally
been used to study cell growth?, death?!, and responses to chemotherapeutics or targeted

inhibitors?224,
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Previous work?® by Reed et al. has shown that that it entirely possible to such mass information
from the various organelle components of the cell as displacement probes. With the use of force
perturbation via magnetic breads on the QPI, Reed et al. was also able to show how localized stress
affected the mass distribution and rearrangement. Here we show a modified version of the device
introduced by Reed et al. fabricated using an electromagnet and 3D printed materials allowing for

ease of fabrication and more control of the force generated via the magnetic beads.

Results

The device is a modified version of the one by Reed at al. (Fig. 1a) which makes use of an
electromagnet instead of a magnet with a stepper motor. The body of the device was fabricated
through 3D printing with ABS materials from a CAD file designed (Fig. 1b) through Solidworks.
In order to accommodate the electromagnet, the body of the device (Fig. 1c) that sits below the
cell sample is hollow so an electromagnet can be set within and sealed with a round coverslip. The
3D printed body is hollow due to the method of fabrication and so a heat conductive epoxy resin
is used to fill up the hollow regions. A heat conductive base is then used to seal the bottom of the

device with a hole to allow wiring to connect the electromagnet to a control device.
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FIGURE 1  Schematic and example of electromagnet QPI setup. (a) A schematic using the base
of the device fabricated by Reed et al. showing the substitution of an electromagnetic (Modified
with permission from 2°, © 2008 American Chemical Society). (b) CAD design of the body of the

device generated via Solidworks. (¢) Picture of a fully 3D printed and assembled device.

The device was then tested with nickel microspheres on cantilevers and imaged on a Michelson
interferometer showing the change in displacement due to the magnet turned off (Fig. 1a) and on
(Fig. 1b). The system was then setup for live cell experiments using MCF-7 cells with intensity
images for the cell bread setup (Fig. 1c) and QPI phase shift images taken of the cells (Fig. 1d).
Demonstrating the system was cell compatible and had a functioning electromagnet for activing

the microsphere for probing capabilities.
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FIGURE 2  QPIimages and data captured from electromagnet QPI setup. Distance distribution
images of magnetic beads on cantilever (a) before and (b) activation of electromagnet. (¢) Intensity

and (d) phase images of MCF-7 cells with nickel microspheres.
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SUMMARY

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet
little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart
scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical in-
crease in post-infarction scar size with worsening of heart function. A systems genetics approach across 100
in-bred strains of mice demonstrated that collagen Vis a critical driver of postinjury heart function. We show
that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback
between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation
and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased
post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates
scar size in an integrin-dependent manner.

INTRODUCTION diac function (Gulati et al., 2013). Despite the immense patho-
physiologic importance of scar burden, litfle is known about

Following acute myocardial infarction (MI), dead cardiac muscle  factors that regulate scar size after ischemic cardiac injury (Fran-

is replaced by scar tissue. Clinical studies demonstrate thatscar  gogiannis, 201 7).

size in patients with prior Ml is an independent predictor of mor- To identify factors determining scar size after M|, we subjected

tality and outcomes, even when normalized with respect tocar-  animals to ischemic cardiac injury and performed franscriptional

m
,; Call 182, 545-562, August 6, 2020 @ 2020 Elsevier Inc. 545
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profiling of heart scars isolated from 3 days to 6 weeks post
injury. We observed that scars rapidly attained ranscriptional
maturity, and there were minimal transcriptional changes in the
maturing scar tissue beyond 2 weeks of injury. We thus hypoth-
esized that genes that regulate scar size are likely to be differen-
tially expressed early after ischemic injury. Collagens were one of
the most highly differentially upregulated genes in the injured
heart early after ischemic cardiac injury. Collagens | and Il are
the most abundant collagens present in the uninjured heart,
comprising approximately 90%-85% of all cadiac collagens
(Bashey et al., 1992; Frangogiannis, 2017; Weber, 1989). They
belong to the family of fibrillar collagens that are thought to
confer mechanical strength to the cardiac matrix. However,
more than 26 different types of collagens have been described
in mammals, and we observed a large number of collagens
that are minimally expressed inthe uninjured heart to be robustly
induced following injury. The physiological necessity for the het-
erogeneity of collagen expression in scar tissue is unclear.

Inthis report, we demonstrate that collagen \ (Col V), a fibrillar
collagen that is minimally expressed in the uninjured heart and a
minor component of scar tissue, limits scar size after ischemic
cardiac injury. Animals lacking Col V in scar tissue exhibit a sig-
nificant and paradoxical increase in scar size after ischemic
injury. In the absence of Col V, scars exhibit altered mechanical
properties that drive integrin-dependent mechanosensitive
feedback onfibroblasts, augmenting fibroblast activation, extra-
cellular matrix (ECM) secretion, and increase in scar size. Mod-
ulation of such mechanosensitive feedback cues rescues the
Col-V-deficient phenotype of increased scarring. These findings
provide insight into the physiological role of Col V in regulating
scar size and have implications for the treatment of dysregulated
wound healing in genetic diseases caused by mutations in Col-
V-encoding genes.

RESULTS

Heart Scars Attain Transcriptional Maturity Early after
Acute Ischemic Cardiac Injury

We subjected adult C57BL/6 mice to ischemic cardiac injury
(Ubil et al., 2014) by permanent ligation of the left anterior de-
scending coronary artery and observed acute and progressive
loss of cardiac function (Figure S1A). Hearts were harvested at
3, 7,14, 21, and 42 days after ischemic injury, and the fibrotic
scar tissue in the injured and the region remaote to the area of
injury were dissected from the same heart for RMA sequencing
(RMA-seq) to gquantify temporal changes in gene expression.
Principal-component analysis (PCA) showed samples from
remote regions at all ime points clustered together (Figure 1A).
Principal component 1 (PC1) separated transcriptional signa-
tures of injured and wninjured regions acrss all time points
examined (Figure 1A), suggesting that gene expression differ-
ences continue to persist between the injured and uninjured re-
gions. PC2 separated the samples of scar tissue in a temporal
manner following injury (Figure 1A). In particular, significant dif-
ferences were observed between scar tissue harvested at 3
and 7 days following injury, as well as between that harvested
at 7 days and subseguent time points. However, the transcrip-
tional signatures of the injured region of the hearts at 14, 21,
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and 42 days after injury clustered together, demonstrating that
most transcriptional changes occur within 2 weeks of injury (Fig-
ure 1A). Analysis of differentially expressed genes (DEGs)
demonstrated that the largest number of DEGs occurred be-
tween injured and uninjured samples at each analyzed time point
(from 1,210 to 1,931) (Figure 1B; Table S1). Comparisons be-
tween time points of injured regions detected 247 and 100
DEGs between days 3 and 7, and days 7 and 14, respectively.
Almost no differences were detected between scar tissue har-
vested at later time points (Figure 1B). These data demonstrate
that major transcrptional changes within scar tissue occur eary
after injury and further maturation of scartissue beyond 2 weeks
is not associated with significant transcriptional changes.

We hypothesized that genes that directly regulate scar size are
upregulated eardy after ischemic cardiac injury. Collagens were
one of the most differentially upregulated genes in the injured re-
gion early after injury. We examined expression patterns of
genes encoding obligatory subunits of all types of collagen (Fig-
ure 1C). In addition to type | and Il collagens, weobserved genes
encoding for various subunits of Col V, V1, VIll, X1, XII, XIV, XV,
¥V, and XVIIl to be significantly induced after heart injury (Fig-
ure 1C) with expression of most collagens increasing by
3 days, peaking at 7 days, and declining by 42 days after injury
(Figure 1C). Next, to confirm our findings, we performed qPCR
for the principal genes encoding all mammalian collagens (Fig-
ure 1D, Figure S1B). Coltal and Col3a? demonstrated the
most robust gene expression changes after acute injury, consis-
tent with them being the principal cardiac collagens (Figure 1D).
Collagen-encoding genes that are known o be abundantly ex-
pressed in extra-cardiac tissues such as Col2al, Col7al, and
Col8a2 demonstrated dynamic expression changes (Fig-
ure S1B), but absolute levels of expression were low (Fig-
ure 51C). Taken together, these data demonstrate that a diverse
set of collagen genes, including several that are minimally ex-
pressed in the uninjured heart, are robustly induced early after
acute ischemic cardiac injury.

Col5al Expression Overlaps Col7al and Col3al
Expression in the Infarcted Region with a Single Cardiac
Fibroblast Expressing All Three Collagens

We next dissected the nascent scar tissue at 7 days following
inmjury and first performed proteomic analysis of the collagens
differentially expressed between the scar and uninjured tissue
(Figure 2#4). We confirmed increased levels of the fibrillar
collagen peptide chains COL1A1, COL3A1, and COLSA1 and
other collagen peptides (Figure 2A). Colfal and Col3al genes
were the most abundantly expressed fibrillar collagen genes in
scar tissue at 7 days following injury (Figure 2B). Out of other
fibrillar collagens (I, V, XI), ColSal was the only one that was
induced robustly earty in scar tissue (Figure 2B).

We next examined the spatial expression of the fibrillar colla-
gens Col |, lll, and V. The objective of this experiment was to
determine whether the same cell expressed all three fibrillar col-
lagens (I, ll, and V) or whether the collagens were expressed by
different cells in scar tissue. To prevent cross reactivity of anti-
bodies to different collagens and to facilitate accurate fluoro-
phore colocalization, we chose to perform BRNA fluorescence in
sty hybridization (RNA-FISH) to determine the spatial

217



Cell ¢ CelPress

A 50 w B
.ﬁ‘i ’. * Romote
% 04 D(‘w A Injured .
= Q
o |a E
Q) -50 D3 K
@ EEL 67 l964 9?1T 940 705 nsm 756 nBS? 550 nasg
=004 Ak | D2 ] 180 72 o
e B D42 g — — — —-
G0 k0 6 &8 100 = &7 28 o 9
c PC1 (55%)
e D
-2 0 2 Z-score
m Col1ai Wl Gemote W [njured
. Col1a2
| Col3al = Colial Col3al Coldal
. Coldal 20 80
Colaz %
| Coldah LU * A
- Colsal %’E
. Col5a2 2 1
- Colfa3 S8 0
aiba = @ +*
Col6a2 £ E 5094 —
- Coléa3 2
. Colgal = - o
— 0 ColBa2 Days after Mla Ti42142 3 7142142 3 7142142
Coll1al
= Col12ai = Col5a2 Col5a3 Col&a
Colld4al 3 F
Col15a1 |- o 4
— Cal16al o0
I Col18a1 Do o 20
F ISP F TGS £3 .
e @ V9 EAINY R
5‘&’ éﬁ?ﬁé‘ﬁ? ‘g@? & @b 2'm s 1
EESEFITITESSE BE «lg*
Rl 5 M i *
= a0 e [}
Days after M| 3 7142142 142142 3 7142142 3 7142142
Call4al Col15a1 Col16al Cel18al
£ - *
g *
P * % % and
= 101 &
m
=] a0
oA
o 5
$E * 2]
=3
£ o o 0
Daysaﬂel’MI 3 7142142 3 7142142 3 7142142 142142 142142 3 T142142

Figure 1. Temporal Changes in Gene Expression of Scar Tissue following Acute Ischemic Cardiac Injury

{4) Principal-component analysis based on expression profiles of all genes (n=4).

{B) Summary of differential gene expression analysis. Arrows and numbers indicate direction and numbers of differentially expressed genes detected in each
pairwize comparizon (false discovery rate [FOR] 1%, fold change = 4).

{C) Heatmap with expression patterns of collagen genes fn = 4).

D) Expression of collagen genss encoding for obligatory units of the respective collagen by gPCR (mean + 8D, *p < 0.05, n=5).

See also Figure 51.

expression of ColSal versus Collal or Col3al post injury.
RMA-FISH demonstrated robust and overlapping expression
of Caol5al with either Col3a7 or Colla? mRNA in the injured
region of the heart (Figure 2C), and we observed the same cell
to express both CofSal and Col3ai/Colfal (Figure 20). To
confirm these observations, we performed RMNA-FISH in mice

with genetically labeled cardiac fibroblasts. For this purpose,
mice expressing fibmoblast Cre drivers (Col1a2CreERT or
TCF21MerCreMer) were crossed with the lineage reporter Ro-
sa?6tdTomato mice (Acharya et al., 2011; Pillai et al., 2017;
Zheng et al., 2002) and tamoxifen was administered to induce
genetic labeling of cardiac fibroblasts (Fillai et al., 2017; Ubil
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etal, 2014). ANA-FISH on hearts harvested at 7 days post injury
demonsirated tdTomato-labeled cardiac fibroblasts to express
Col5al (Figure 2E). As cardiomyocytes are known to express
collagens (Heras-Bautista et al., 2019), we performed immuno-
staining for cardiac troponin |, but did not observe cardiomyo-
cytes to express Col5a1 (Figure 2F). To provide corroborative ev-
idence, we next performed single-cell RNA-seq (scRMA-seq) of
the non-myocyte cell fraction of the injured region of the heart
at 7 days post injury and observed significant overlap between
Col5al expression and Col3a7 and Colfla1 expression (Fig-
ure 2G). Taken together, these observations demonstrate that
Caoll, Il, and V have overlapping expression in the area of injury
and that a single cardiac fibroblast has the ability to produce
bath Col V and Col IA11.

Mice Deficient in Type V Collagen Exhibit a Paradoxical
Increase in Fibrosis and Scar Size after Heart Injury
Homozygous deletion of the ColSal gene results in absence
of functional Col V protein in tissues and causes early embry-
onic lethalty (Wenstrup et al, 2004). Mice heterczygous for
Col5al deficiency exhibit increased fibrosis in their valves
and myocardium at birth, suggestive of a role of Col V in regu-
lating ECM output (Lincoln et al., 2006). To determine the
functional role of Col V in the injured heart, we first crossed
the Col1a2CreERT mice with Col5a? floxed mice (Sun et al.,
2011). We administered tamoxifen to progeny mice for
5 days prior to injury and continued for seven days post injury
to maximize labeling and generate Col5a1CKO (conditional
knockout) mice. Control animals included litermates that
lacked the Cre transgene but had both ColSal alleles floxed
and were injected with tamoxifen in an identical manner.
RMA-FISH on the Col5a1CKO hearts demonstrated 66.6% +
17.8% reduction of Col5al expression (mean + SD, "p <
0.05) (Figures S2A and S2B). We ocbserved significant depres-
sion of cardiac contractie performance (ejection fraction [EF
and fractional shortening [F3]) by 7 days in the Col5a1CKO
group following ischemic injury, which persisted throughout
the next 6 weeks (mean = SD, *p < 0.05) (Figures 3A and
3B), and this was associated with a strong trend toward
chamber dilatation (p = 0.06 for LVID(d) at 6 weeks post M)
(Figure 3B). Histology demonstrated that the area of fibrotic
scar tissue was significantly greater by 1.5-fold in the Co-
5alCKO compared to wildtype lttermates (mean + SD,
*p = 0.05) (Figures 3C and 3D). To further analyze the wound
healing response in ColSalCKO animals, we determined the
fraction of animals that exhibited mild, moderate, or severe
fibrosis after ischemic injury. We defined mild, moderate,
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and severe fibrosis as scar surface area less than 20%, be-
tween 20% and 40%, and greater than 40% of the left ventric-
ular surface area, respectively, measured at 6 weeks folowing
injury, and observed that greater than 58% of the Col5a1CKO
animals had severe fibrosis compared to approximately 12%
of animals in control littermates (Figure 3E). There were no sig-
nificant differences in interstitial fibrosis of the uninjured
myocardium in Col5a1CKO and control mice (Figure S2C).
As scars mature, collagen fibrils undergo crosslinking within
scar tissue and become less soluble. We found that the
amount of insoluble collagen (surrogate for crosslinked
collagen) was increased by 254% + 64% (mean + SD, "p <
0.05) in the Col5a1CKO group at 6 weeks post injury (Fig-
ure 3F). Col V is thought to initiate organization of Col | and
Il fibrils in the ECM and is intercalated between the staggered
arrangement of Col | and 11l fibrils maintaining organization of
the ECM (Wenstrup et al., 2004). We performed toluidine blue
staining and observed the typical wavy nature of collagen fi-
brils compactly arranged in parallel in the injured control ani-
mal hearts, but the hearts from the Col5a1CKO animals
showed a loose arrangement of collagen fibers (Figure 3G).
We performed fransmission electron microscopy, and instead
of the smooth parallel arrangement of collagen fibrils in scars
of control animals, we observed fibrilar disarray with fibrils
running at orthogonal axes to each other in the Col5a1CKO
scars (Figures 3H and 3l). Collagen fibril diameters were
significantly greater (Figures %) and 3K), and a histogram of
the numbers of collagen fibrils versus their diameter demon-
strated a rightward shift of the curve in Col5a1CKO mice (Fig-
ure 3L). Finally, we perfoomed electron tomography and
observed shorter length, irregular fibrillar structure and breaks
in collagen fibrils in the Col5a1CKO scar compared to wild-
type scar (Figures 3M and 3N). Taken together, these obser-
vations demonstrate that deletion of type V collagen leads
not only to increased scar size, but also results in grossly
abnormal scar architecture.

Asincreased scar sizeinthe post-infarcted heart is associated
with adverse phenotypes such as hyperirophy of cardiomyo-
cytes in the border zone (Frangogiannis, 2017, 2019), we har-
vested hearts at 6 weeks following injury and observed signifi-
cantly greater heart-weight/body-weight ratios of Col5alCKO
hearts compared to control |ittermates (mean = S0, *p < 0.05)
with no significant differences in body weight alone (Figures
52D and S2E). Immunostaining for cardiac froponin | confimed
robust hypertrophy of cardiomyocytes abutting the margins of
the scar (border zone) in Col5a1CKO animals (Figures S2F
and S2G).

Figure 2 Expression of Col5a1 in Relation to Collal and Col3ai

{8) Proteomic anahysis of individual collagen chains in injured and remote region of myocardium at 7 days post Ml {n =3).

{B) Nommialized expression levels freads per kilobase of transcript, per milion mapped reads [RPKM] for selected collagen genes. Average expression levels
&across time points are shown in black symbols and dashed lines. Expression levels for individusl replicates are shown in colored symbaols (n = 4).

{C) RNA-FISH to demonstrate expression of CalSai, Col1a7, and Col3a1 in the heart at 7 days post Ml {solid amowhead, representative images, n =4, unfilled
amowhead indicates remote region, images wene acquired and stitched togsther using Nikon softwars).

(D) Higher magnification demonstrating coJocalization of Col5a1 with Colial and Col3al within the same cell {arrows, representative images, n = 4).

{E and F) Expression of Col5a1 in cardiac fibrobl asts genstically lsbeled by the TCF21 or Col1 &2 label {E) butnat in cardiomyoc yte= Troponin | stained)in the injury

region (F) (amows, representative images, n=3).

{3 Single cell RMA-seq of non-myocytes at 7 days post Ml demonstrating typical cell phenaotypes in clusters and distribution of Cal?a?, Col3a7, and ColSal

n=3.
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Validation of Phenotype of Collagen V Deficiency in the
Injured Heart Using an Alternative Cre Driver

To validate our observations noted with the Col1a2Cre driver, we
generated another CKO of the Col5a1 gene using the Tcf21Mer-
CreMer driver (Tcf21 MCM), Tcf21 being a specific marker of car-
diac fibroblasts in the adult heart (Acharya et al., 2011; Kanisicak
etal., 2016). The Tef21 MCM mice were crossed with the ColSal
floxed mice and tamoxifen-administered 5 days prior to injury
and for 7 days following injury to create Tcf21 MCM:Col5a1CHD
mice. Controls included littermate animals that had both Col5a1
alleles floxed but lacked the Cre transgene and were injected
with tamoxifen in an identical manner. At 7 days post injury,
CoplSal expression in the injury region of Tef21 MCM: ColSa1CKOD
decreased by almost 60.1% + 10.1% (mean + SD, *p <0.05) (Fig-
ures S3A and S3B). Tcf2IMCM:Col5al CKO mice exhibited sig-
nificant decline in cardiac contractile function by 7 days of injury
that persisted for the next 6 weeks (Figures S3C and S3D0), and
this was also associated with a frend toward greater chamber
size (LVID) (Figure S30). We observed a significant 1.5-fold in-
crease in scar size in Tcf21MCM:Col5a1CKO animals versus
control littermates (mean + SD, *p < 0.05) (Figures S3E and
S3F). The fraction of animals that exhibited severe fibrosis
(>40% surface area) was 40% in the Tcf2 1MCM:Col5a1 CKO an-
imals compared to approximately 11% in the control littermates
(Figure 53G). The Tcf2IMCM:Col5a1CKO animals exhibited
significantly greater heart-weight/body-weight ratios at 6 weeks
after injury (no change in body weight) (Figures S3H and S31), and
histology confirmed significantly greater myocyte hypertrophy
(mean + SD, *p < 0.05) (Figures S3J and S3K). To exclude a po-
tential role of tamoxifen in contributing to post-injury contractile
dysfunction, tamoxifen was administered in an identical manner
to TCF21 MCM mice but withoutthe ColSal floxed alleles. Mo dif-
ferences in cardiac function were observed within 1 and 2 weeks
of injury following tamoxifen administration (Figure S4A). Taken
together, these observations using an independent Cre driver
mirror and provide compelling evidence that deletion of type V
collagen leads to an exacerbated fibrotic repair response.

To complement these obsenations, we subjected the ColSal
heterozygous KO mice (Col5al Y-} (Wenstrup et al., 2004) to
ischemic cardiac injury. Compared to wild-type littermates, the
heterozygote Col5alKO exhibited a significant reduction in car-
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diac contractile function by 1 and 2 weeks of injury and exhibited
greater degree of cardiac hyperirophy as assessed by heart-
weight’body-weight ratios (Figures S4B-54D). The data pre-
sented earlier show thatscars rapidly attain franscriptional matu-
rity, and cardiac function is signfficantly compromised within
7 days of injury in the Col5a1CKO mice. Considering these ob-
servations, we postulated that the effects of Col5al deficiency
on cardiac function early after cardiac injury may be related to
its mole in mediating an acute fibrotic repair response. To investi-
gate this, we deleted Col5al after the acute phase of injury by
administering tamoxifen from post-injury day 4 for 10 days. We
obsenved that the TCF21 MCM:ColS5a1CKO animals (with dele-
tion of Col5al after the acute injury response) did not exhibit a
reduction in cardiac function at 2 weeks after injury (Figure S4E).
These observations suggest that type V collagen affects post-
injury cardiac function by playing a critical role in the early fibrotic
repair response.

Col5a1 Is a Critical Determinant of Post-Injury Heart
Function vis-a-vis Other ECM Genes

A large number of collagens and other ECM proteins are upregu-
lated in the region of scarring (in addition to Col V), and an argu-
ment can be made of the functional importance of Col V vis-a-vis
other ECM proteins. We adopted a population genetics
approach to determine the relative functional importance of
Col V in driving post-injury cardiac function vis-a-vis other
ECM genes. The hybrd mouse diversity panel (HMDP) com-
prises approximately 100 diverse inbred and recombinant
strains of mice, and each strain can be subjected to an identical
environmental perturbation to determinge the genetic factors un-
derlying responses (Ghazalpour et al., 2012; Lusis et al., 2016).
The individual mouse strains in the HMDP were subjected to
continuous isoproterenol infusion for 3 weeks that induces a
chronic form of cadiac injury chamcterized by cardiomyocyte
hypertrophy and interstitial fibrosis (Wang et al., 2016). Key fraits
of cardiac function such as cardiac confractility, chamber size,
and fibrosis were followed over 3 weeks. Gene expression
changes in the heart following isoproterenol infusion were deter-
mined in each strain, and these were statistically integrated with
clinical traits to identify key loci or genes involved (Figure 4A)
(Rau et al., 2017; Rau et al., 2015). We first analyzed a set of

Figure 3. Animals with ColSa7 Deletion in Cardiac Fibroblasts Exhibit a Paradoxical Increase in Scar Tissue after Heart Injury
&) M-mode echocardiogram demonstrating left ventricular (L) walls and internal dimension fyellow ling) prior to basal and & weeks post Ml frepresentative

images).

{B) Ejection fraction (EF), fractional shortening (FS), LV dimensionsin end diastale (LVIDd), and end gystole (LVIDs) at different time points post MI{n = 12/control
and 27/CHKO at basal, n =10/control and 22/CKO at 3 days, n = Ycontrol and 15CHD at 1 week, n= 9/control and 13/CKO at 2 wesks, n= B/control and 12/CKO

at 4 and & wesks post MI).

{C) Masson trichrome staining of hearts sactioned at the base (just distal to suture line) at mid-ventricle and apex 6 wesks post Ml representative images).
D) Quantification of surface area of scar nomalized to the surface area of the ventricle (n = 8/control and 12CKO).
{E) Fraction of animals demonstrating mild'moderate or severs scaming at 6 wesks post M.

{F) Measurement of insoluble collagen in scar tissue at 4 wesks post Ml jn= 4)

{5) Toluidine blue staining of scar tissue at 4 wesks post Ml {arowhead, representative images, n= 2)

{H) Transmission electron microscopy (TEM) of scar area showing fibrillar disamay in the Col5a1CKO {armowheaad, FB = fibroblast)

1) Highear magnification with TEM demanstrating fibrillar disaray with fibrils running in orthogonal axes to each other in the Col5alCKO scar amowhead).
) Cross-gectional TEM view demonstrating fibril diam eter size (amowheads, n =2 for all TEM).

{K) Average collagen fibril diameter in scars fn = 2).

L) Histogram of collagen fibril diameters demonstrates a clear shift to the right in ColSa1CHO (n = 2).
M and N) Blectron tomogram of scararea from (M) control and {N) Gol5a1CHKO animal. Data shown as mean = 50, *p < 0.05.

See also Figures 52, 53, and 54.
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ECM genes including collagens (Extracellular Matrix -
GCr0031012 or Collagen Metwork - GO:009B8645) that are abun-
dantly expressed in the heart (Figure S4F) for correlations with
clinical traits mentioned above (Figure 4B). Col5al expression
significantly correlated with cardiac ftraits of chamber size
(LVID systole or diastole), cardiac hypertrophy (LV mass), and
systolic and diastolic function (EF and E/A mtios) (Figures 4C—
4G). We also observed genetic variation in the average expres-
sion of Col5al across the strains in the HMDP (Figure S4G).
We next analyzed the strength of association between Col5al
gene expression and the abovementioned set of ECM genes af-
ter isoproterenol. While several significant relationships were
observed between Col5a1 and ECM genes, there did not appear
to be consistent patterns of overall positive or negative concor-
dance (Figure 4H; Table S2). Given that (1) ECM genes strongly
cormelate with clinical traits and (2) Col5a? gene expression
strongly correlates with a subset of ECM genes, we performed
conditional analyses to evaluate the functional importance of
Copl5al in mediating ECM:trait correlations. If ColSa1 signifi-
cantly contributed to the strength of comelation between ECM
genes and traits, then adjustment for Col5a7 expression should
reduce the overal significance of correlations (Figure 41). Condi-
tioning on Col5a1 expression led to a significant reduction in the
overal strength of the association between rest of ECM genes
and cardiac traits of chamber size, LV mass, and EF, while mea-
sures of diastolic compliance (E/A ratio) were not affected
following ColSat adjustment (Figure 4J). To test whether the cor-
relation was specifically dependent on ColfSal, we conditioned
on each of the other ECM genes and then assessed the
change in significance of the correlations. As can be seen in
Figures 4K~4M, while conditioning on several genes reduced
the strength of the correlations, Cof5a7 showed the highest
changes in significance following adjustment for LVID (systole),
LVID (diastole), and ejection fraction. Only for cardiac
mass was Col5al in ranked second after Collal (Figure 4M).
Using alternative cardiac injury models and complementary
genetics approaches, these data support our principal observa-
tions of the physiological importance of Col V in regulating
heart re pair.

Collagen V Deficiency Increases Myofibroblast
Formation and Expression of Extracellular Matrix Genes
in Scar Tissue

We next investigated mechanisms by which ColSai deficiency
leads to increase in scar size and examined whether the defi-
ciency of Col5a1 altered cell populations in the scar or affected
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their transcriptional signatures. As maximal changes in tran-
scriptional signatures of scars occur within the first few days af-
ter cardiac injury (Figure 1A), we harvested injured and uninjured
regions of hearts, isolated non-myocyte cells, and subjected the
cells to scANA-sequsing the 10x Genomics platform. A tSME (t-
distributed stochastic neighbor embedding) plot demonstrated
the major cell populations in the injured region at 7 days (Figures
S5A and S5A). We next determined the fraction of cells contrib-
uting to each cluster in the Col5a1CKO and wild-type controls
(Figure 5B) and observed a comparable distribution of cels
across fibroblast, endothelial, smooth muscle, and other cell
populations with a slightly higher number of macrophages (Fig-
ures 5B and SSB). As Col5al was deleted principally in cardiac
fibroblasts, we focused on DEGs in the cardiac fibroblast cell
cluster and first confirmed decreased expression of Cof5a1 in fi-
broblasts from Col5a1 CKO mice (Figure 5C). We observed that
fibroblasts from Col5a1CKO hearts exhibited significantly
greater expression of Acta 2 (zsmooth muscle actin or 2SMA)
(Figure 5D), a gene that is not expressed by cardiac fibroblasts
in the uninjured heart, but is a marker of myofibroblasts, a pop-
ulation of activated fibroblasts expressing smooth muscle con-
tractile proteins (Frangogiannis, 2019). Myofibroblasts exhibit a
synthetic and contractile phenotype and are thought to be the
principal cells that secrete ECM proteins to form scar tissue
(van den Borne et al., 2010). Other smooth-muscle-specific con-
tractile proteins (Cnn2 [calponin] and Actn 1 [Actinin 1), markers
of smooth muscle differentiation SM22z (Tagin), proteins regu-
lating smooth-muscle contraction such as regulatory myosins
Myl 6 and M), or calcium handing during smooth muscle
contraction (S 100a4 and s100a6) were also significantly upregu-
lated in fibroblasts of Col5a1CKO animals, suggestive of broad
cytoskeletal organization and activation of fibroblasts (Figures
5E and S5C). Lysyl oxidase (Lox), which mediates crosdlinking
of collagen, was also upregulated (Figure S5C), consistent with
increased amounts of insoluble collagen in scar tissue of Co-
15a1CKO hearts. We next examined the subsets of fibroblasts
residing within the fibroblast cluster (Figure 5F) and observed
that «SMA was abundantly expressed in Cluster 0, identifying
that cluster as a population enriched in myofibroblasts (Figures
5G and S5H). We observed that the number of myofibroblasts
(defined as fibroblasts expressing aSMA) (Cluster 0) was signif-
icantly increased by 33% in the Col5a1CKO animals (Figure 5[).
To confirm these findings, we performed double immunofluores-
cence staining for 23MA and vimentin (fibroblast marker) on
hearts of Col5a1CKO mice and observed that the number of my-
ofibroblasts (defined as the fraction of =SMA«+vimentin+/total

Figure 4. Importance of ColSal in Regulating Cardiac Function Post Injury vis-a-vis Other ECM Genes

%) HMDP comprising 96 strains of mice were subjectad to continuous isopraterenol infusion for 3 wesks.

{B) Gene X trait anahysis demonstrating strength of association between individual ECM genes and cardiac traits.

{C—G) Scatterpiots show corrslation of Cola 1 expression with fraits of (C) LVIDs, (0 LVIDd, {E) LV mass, {F) EF, and §G) E/A ratio following isoproterenol injsction

across sl HMDP strains.

{H) Strength of association betwesn ColSa 1 expression and that of ECM genes (p < 0.01).
1) Hypothesis of how adjustment for ColSal could significantly change the strength of associstion between ECM genes and cardiac traits.
) Conditicnal an alysis demonstrating the strength of comelation (4og p value) between ECM genes and different cardiac traits following adjustment for ColSal

expression (*p < 0.005,"*p <0.01, compared to isoproterenol unadjusted).

{K-N) Change in significanc e of rest of ECM genes and specific trait K) LVDs, (L) LVIDd, (M) LV mass, and {N) EF following a djustm ent for specific gena (horizontal

dotted line shows a cut-off p value =0.071).
See also Figurs 54,
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number of vimentin+ cells) was 2- to 2.5-fold greater in the scar
tissue of ColSa1CKO mice (Figures 5J and 5K) or that of
Tef21MCM:Colsa1CKO mice (Figures 5L and 5M) (mean +
SD,*p < 0.05). Analysis of differentially expressed ECM genes
demonstrated a large number of ECM genes to be significantly
upregulated in Col5a1CKO fibroblasts, including several colla-
gens (ColBat and Col11af1), fibronectin, osteopontin, and fibrilin
(Figure SN). Our data suggest that increased numbers of myofi-
broblasts along with increased expression of myofibroblast
markers and other ECM genes in cardiac scar tissue of Co-
5a1CKO animals contribute to the increase in scar size. We
next determined whether increased myofibroblast numbers in
Col5alCKO scar tissue were secondary to increased prolifera-
tion. We examined the expression of cell cycle genes that regu-
late S/G1 as well as G2/M transitions of the cell cycle in cluster
0 (myofibroblast population) (Figures S6A and S6B), but the
average expression of such genes did not show any difference
between the myofibroblasts of control and ColSa1CKO animals
(Figure S6C). We performed immunostaining for a marker of pro-
liferation (Ki67), but also did not observe any significant differ-
ences between the fraction of fibroblasts expressing Kig7 (Fig-
ure S6D0). Collectively, these observations suggest that
increased myofibroblast differentiation or formation, rather
than myofibroblast proliferation, likely underlies the increased
myofibroblast numbers observed in Col5alCKO scar tissue
compared to that of control litermates.

Collagen V Deficiency Alters Mechanical Properties of
Fibroblasts and Matrix in Scar Tissue

Wenext explored the molecular underpinnings of increased my-
ofibroblast differentiation and hypothesized that altered me-
chanical properties of the mafrix could be driving feedback
cues to drive myofibroblast differentiation. We first performed
atomic force microscopy (AFM) to determine the stiffness of
mid-ventricular scar tissue 7 days post injury and observed
that the Young's modulus was significantly decreased by 15%
in the ColSalCKO animals (Figures 6A—60D) and a less-stiff scar
is more prone to expansion by hemodynamic forces. Scar
contraction is another major determinant of scar size. During
wound healing, confractile forces generated by camiac fibro-
blasts shrink the size of the scar, but if the surrounding matrix
is less stiff, this would decrease the forces transduced through
scar tissue. We explored this hypothesis by examining force
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contraction relationships of mutant and control fibmoblasts iso-
lated from scar tissue at 7 days following injury. We fabricated
a device with polydimethyl silbxane (PDMS) posts, isolated car-
diac fibroblasts from infarcted hearts, incorporated the fibro-
blasts into a collagen hydrogel to form tissue scaffolds, and sub-
sequently suspended the fibroblast-embedded hydmogel
between two PDMS posts (Figure 6E). We observed a signifi-
cantly lower displacement of the PDMS posts with the Co-
15a1CKO fibroblasts that reflects decreased contractile ability
of Col5a1CKO fibroblasts (approximately 34% reduction, *p <
0.05) (Figures 6F-6H). Next, we isolated cardiac fibroblasts
from Col5al floxed mice and infected the cardiac fibroblasts
in vitm with a lentivirus encoding Cre recombinase gene or
GFP as control (Figure 6l). To minimize artifacts from repeated
passaging, we immortalized the isolated ColSalfi/fl cardiac fi-
broblasts by infecting them with a lentivirus encoding the SV40
large T cell antigen prior to infecting the cells with Cre recombi-
nase or control GFP virus (Mali et al., 2008; Welm et al., 2008).
Cells infected by Cre recombinase lentivirus (Truitt &t al., 2016)
were identified by co-expression of GFP fluorescence and
sorted by flow cytometry, and we found an approximately 60%
+ 20% decrease in ColSal expression (mean + S0, *p < 0.05).
Successfully transduced cells were then incorporated into
collagen hydrogels and suspended between PDMS posts ina
similar manner. We observed a significant reduction in pillar
displacement and hydrogel contraction, suggestive that the defi-
ciency of ColV is sufficient to affect fibroblast contractile forces
(Figures 6J and 6K). Taken together, these experiments show
that ColV depletion leads to decreased scar stiffness and atten-
uated tissue scaffold contraction by fibroblasts, which could
both contribute to increased scar size.

To assay the mechanical properties of fibroblasts, we sub-
jected the ColSaifloxed cardiac fibroblasts (following lenti Cre
infection) to a cell deformability assay. In this assay, cell deform-
ability is determined by paraliel microfitration (PMF), where the
ability of cells to filter through a porous membrane over the ime-
scale of seconds in response to an applied pressure is deter-
mined (Kim et al., 2016, 2019; Qietal., 2015). More deformable
cells will fitter more quickly through the pores, resulting in alower
volume of cell suspension retained in the top well (Figure 6L). We
observed that Col5alCKO fibroblasts are significantly less
deformable (Figure 6M), while there were no significant differ-
ences in cell size or viability between lenti Cre or lenti GFP

Figure 5. Single-Cell RNA-Saq of Mon-myocytes of Control and ColSa1CK O Hearts Harvested at 7 Days following Injury
{4) tSME plot demonstrating non-myocyte cell populstions of the heart at T days post M.

{B) Distribartion of non-myocyte cells from injured control and Col5al GO hearts across these clusters.

{C—E) Vidlin plot demonstrating expression of {C) ColSal, () Acta? («5MA), and {E) Cnn2 {Calponin) in fibroblast clusters.

{F) Sub-clustering of fibroblast population.
{5) UMAP plot with expression of «25MA in fibroblast subclusters.
{H) Expression of Acta? in subclusters of fibroblasts.

1) Cell numbers in cluster 0 jmyofibroblasts) versus clusters 1 and 2 (non-myofibroblasts).

) Immiunostaining for ssmoath muscle actin (x5MA) and vimentin (Vim) in the scar of Col5alCKO at T days post M| {amows, representative images).

{K) Quantitstion of the number of «SMA expressing myofibroblasts (n = 4./control and 50K O).

L) Immunostaining for 25MA and Vim in the scar of TOF2IMCM:Col5a1CKO hearts at T days post Ml (amows, representative images).

(M) Quantitation of the number of «5MA expressing myofbroblasts (n = G/control and 4/CHO).

{N) Dot plot repre senting expresson of ECM genes that are significantly upregulated in fibroblasts of Col5a1CKO hearts at 7 days post M (adjusted p value <

10.05). Data =hown as meaan « S0, *p <005
See also Figures 55 and 56,
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cardiac fibroblasts (Figures S7A and STB). To further investigate
the attered physical properties of ColSa1CKO fibroblasts, we
performed quantitative phase microscopy (QPM) to measure
therate at which biomass redistributes within individual cells (de-
cormelation rate). We observed that the decorrelation rate was
faster (approximately 2-fold higher) in Col5a1CKO fibroblasts
versus control-GFP virus infected fibroblasts; mean + 8D, "p <
0.05) (Figures S7C-STE), further substantiating the altered phys-
ical properties of Col5al CKO fibroblasts.

We next examined whether stiffer cardiac fibroblasts affect
cardiomyocyte contractie forces, thereby reducing cardiac
function. We co-cultured neonatal rodent ventricular cardiomyo-
cytes (NRVMs) with Col5al-deficient or control cardiac fibro-
blasts generated in vitro. We performed fraction force micro-
scopy to determine myocyte contractile forces generated in
the presence of conirol of Col5a1CKO candiac fibroblasts. A
co-culture of cardiomyocytes and control or ColSa1 CKO cardiac
fibroblasts was seeded onto a Matrige| surface on a PDMS scaf-
fold containing gold-labeled nano-particles (Figure 6M). As the
myocytes contract, the movement or displacement of the gold
particles is captured, and machine learning approaches are uti-
ized to calculste contractile forces (Figure 60). Using this
approach, we observed that the stress generated by myocytes
in the presence of Col5a1CKO fibroblasts is significantly
decreased (mean + SD, “p < 0.05) (Figure 6P). These observa-
tions are consistent with our in vivo findings of decreased cardiac
contractile forces in Col5a1CKO hearts following ischemic car-
diac injury.

Collagen V Deficie ncy Induce s Myofibroblast Formation
via Altered Integrin Expression on Cardiac Fibroblasts
Given the abnormal biomechanical properties of the scar, we hy-
pothesized that altered mechanical cues were driving a myofi-
broblast gene expression program and increasing myofibroblast
formation. First, we determined whether the deficiency of ColSal
in cardiac fibroblasts was sufficient to induce myofibroblast dif-
ferentiation and expression of ECM genes. To address this ques-
tion, we again generated Col5al -deficient cardiac fibroblasts by
lentiviral Cre transduction and observed significant upregulation
of canonical myofibroblast and ECM genes such as aSMA, peri-
ostin, Col3al, Myh11, etc. (Figure TA). These observations
demonstrate that the loss of ColSa1 is sufficient to induce activa-
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tion of a myofibroblast gene expression program. Integrins are
mechanosensitive receptors on the cell surface, and alterations
in mechanical properties of the extracellular environment can
lead to rapid changes in integrin profile. Moreover, integrins
are known to regulate key cellular events such as cell survival,
proliferation, and differentiation (Hynes, 2002; Katsumi et al.,
2004). We hypothesized that augmentation of a myofibroblast
gene expression program in Col5a1CKO fibroblasts could be
secondary to attered integrin expression on the Col5atCHKD fi-
broblasts. We performed flow cytometry on ColSal-deficient
cardiac fibroblasts and observed that a significantly greater frac-
tion of ColSa1-deficient cardiac fibroblasts expressed the integ-
rins swp3 and «vps (Figures 7B and 7C). In contrast, {1, B2, «5,
and av integrins did not show any changes in expression(Figures
STF-571). These integrins were chosen as they have shown to
affect smooth muscle and fibroblast function (Deb et al., 2004;
leda et al., 2009; Liu et al, 2010), and particularly for avf3/
avfi5, there is evidence that these integrins promaote myofibro-
blast differentiation by modulating latent TGFP signaling (Asano
et al., 2005; Lygoe et al., 2004; Sarrazy et al., 2014).

Immunostaining demonstrated robust expression of avp3
and avf5 integrins in cardiac fibroblasts of Col5a1CKO scar tis-
sue compared to that of control littermates (Figures 7D and 7E).
Myocardium remote to the area of injury did not show any
expression of avp3 and avf5 integrins (Figure S8A). Given the
upregulation of avp3 and avp5 integrins in Col5a1CKD cardiac
fibroblasts, we next determined whether there was a causal
relationship between these differentially expressed integrins
and myofibroblast differentiation. To address this question,
we adopted a pharmacologic loss-of-function approach by us-
ing the drug cilengitide, a specific inhibitor of avp3 and a5 in-
tegrins. Cilengitide is a cyclic Arg-Gly-Asp peptide that has
been used in human clinical trials of various malignancies,
such as gliomas, and is a specific inhibitor of the «vi3 and
avp5 integrins (Belvisi et al., 2005; Dechantsreiter et al., 1999;
Scaringi et al., 2012). We infected the Col5a1 floxed cardiac fi-
broblasts with a lentiviral Cre or control GFP and added cilengi-
tide to cardiac fibroblasts at the same time. After 7 days,
expression of myofibroblast markers was significantly
increased in the Col5a1CKO fibroblasts, but the addition of cil-
engitide significantly reduced expression of myofibroblast
markers (Figure 7F).

Figure 6 Col5al CKO Fibroblasts Exhibit Altered Mechano-biological Properties

{A) Schamatic illustration of atomic force microscopy (AFM) instrumentation.
|{B) Represantative image of AFM probe and cantilever over tissue saction.

{C) Representative image of collagen | (Caol 1) indirect immunofluorescence detection in scar region (amow) that was probed with AFM.
{0 Young's Modulus measurements from injured regions jmean « SEM, *p <005, n = 3).

{E—H) Determination of mutant or control cardiac fibroblasts (CFs) to generate contractile forces. (E) GFs were isolated at 7 days post M| and incorporated into
hydrogel scaffolds and suspended betwesn PDMS posts. (F) Contraction of OF s determined from dizplacem ent of PDMS posts. {G) DisplacementofPOMS posts
by CF tizsue scaffold in = 3). {H) Contraction forces generated by either control or ColSa 1CKO CFs(n=13).

{1-¥) Determination of contractile forces by generating Col5a1CKD CF s ex vivo. ([) CFs from heartz of Col5a1flfl mice were infected with a lentiviral Cre or GFP
wvirus to create GolSal deficient CFs. (J) Displacemeant of the PDMS pasts and () contractile forces generated by Col5a1CKO GFs fn= 3).

L) Schematic illustration of parallel microfiliration (PMF) assay.

M) Relative retention of cells measured by PMF assay and nomalized to the control {Lenti-GFF) CFs {n = 3).

{N) Schematic of set up of traction force microscopy where myocytes and CFs are sesded onto a2 matrigel layer contsining gold-4abeled nanoparticles.

{0 and P) Heatmaps demonstrating displacement of clusters of contracting myocytes {0) and determination of stress forces generated by myocytes in the
presence of ColSa1CKO CFz F) {n = 3). Data, unless otherwize stated, shown == mean « 50, *p < 0.05.

See also Figurs &T.
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Considering these observations, we investigated the effects of
injecting cilengitide in wwo to Col5a1CKO animals to determine
effects on post-injury scar size and cardiac function. We sub-
jected ColsalCHKO to ischemic cardiac injury and injected cilen-
gitide or vehicle at 20mg/kg daily (Bagnato et al., 2018) for
14 days starting from the day of injury (Figure 7G). We cbserved
that the Col5a1CKO animals injected with vehicle exhibited a
significant decline in post-injury canrdiac function, but the Co-
15a1CKO animals treated with cilengitide had a complete rescue
of function and the post-injury heart function was not signifi-
cantly different from the control littermates (Cre(-) ColSai™®
(Figures TH and 7). In contrast, cilengitide infusion did not affect
post-injury cardiac function of control (Cre(-Col5a1"™ littermate
animals (Figure 7H). Histology demonstrated significant reduc-
tion in scar size in Col5a1CKO animals injected with cilengitide
compared to vehicle-injected Col5a1CKO animals (Figures 7J
and 7K). To demonstrate that the benefits of cilengitide on
post-injury cardiac function of Col5a1CKO animals was second-
ary to its effect on the infarcted region, we performed myocardial
strain imaging. Longitudinal strain generated by different seg-
ments of myocardial walls is a surrogate for contractile forces
generated. With MI, the basal segment of the myocardium close
to the suture line was relatively unaffected compared to the ante-
rior apical wall (Figures 588 and SB8C). Following cilengitide
administration, the functional improvement was resiricted to
the apical segment and not the basal segment, demonstrating
that the beneficial effects of cilengitide were not secondary to
augmentation of contractile forces of the non-injured myocar-
dium (Figure S80). Cilengitide did not affect the scar size of con-
trol animals (Cre(-}Gol5a 1% following injury (Figures 7J and 7K).
The Col5alCKO animals injected with cilengitide had a much
lower fraction of animals exhibiting severe fibrosis (Figure 7L).
We next examined the numbers of myofibroblasts in the scars
of Col5al CKO animals and observed that the number of myofi-
broblasts was significantly reduced in the cilengitide group (Fig-
ure 7M). We subsequently determined whether cilengitide
reversed increased expression of ECM genes in cardiac fibro-
blasts of Col5a1CKO animals. We examined the set of ECM
genes that were upregulated in cardiac fibmoblasts in Co-
15a1CKO hearts at 7 days following injury. scRNA-seq of fibro-
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blasts isolated from Col5a1 CKO hearts following 7 days of cilen-
gitide therapy demonstrated reversion of expression of these
genes, and average expression of this module of genes was
significantly lower in cardiac fibroblasts following cilengitide
treatment (p =9.3e—7) (Figures 7N and 70). The degree of myo-
cyte hypertrophy was also substantially reduced in the cilengi-
tide-injected Colsa1 CKO animals (Figures S8E and S8F). Taken
together, these experiments demonstrate that the differential
expression of «vf3 and «vp5 integrins in cardiac fibroblasts of
Colsa1CKO animals drives myofibroblast differentiation, and
phamacologic inhibition of such integrins is sufficient to rescue
the phenotype.

DISCUSSION

Our data can be used to construct a collagen-V-dependent
model of cardiac wound healing where Col V regulates wound
healing at least in part by modulating the mechanical properties
ofthe scar. Inthe absence of Col V, the scar is less stiff, and less-
stiff scars are prone to sudden scar expansion (Hog-Zielinska
et al., 2016). In addition, the reduced scar stiffness drives integ-
rin-mediated mechanical feedback cues that promote myofibro-
blast differentiation, further ECM production, and scar size. The
feedback response is critical to the phenotype as modulation of
specific integrin signaling reverses increased ECM gene expres-
sion and rescues the phenotype.

Our findings could also have implications for Ehlers Danlos
syndrome (EDS), a heterogeneous group of connective tissue
disorders characterized by abnomnalities in skin extensibility,
joint hypermobility, and tissue fragility (Ghali et al., 2019). Individ-
uals with classical EDS (cEDS) most commonly have mutations
in genes encoding for type V collagen (ColSa? and Col5a2)
(Wenstrup et al,, 2000). Atthough there is scant clinical data on
the prognosis of Ml and heart scarring in these patients (owing
to the relatively rare nature of the disease), patients with cEDS
have abnomal mechanical properties of the ECM and exhibit
dysregulated wound healing withincreased scar size. Moreover,
fibroblasts isolated from skin of patients with cEDS demonstrate
increased expression of avp3 integrins (Zoppi et al., 201 8) thatis
thought to reflect a response to abnormal ECM and raise the

Figure 7. Inhibition of «vf3 and «vfi5 Integrins Rescues Increased Scarring and Cardiac Dysfunction in Col5alCKO Animals
{4) Expression of ECM and myofibroblast genes in Colba 1CKO CF s generated ex wivo (n = 8).

{B and C) Flow cytometry to determine expression of {B) avfi3 and {C) avfi5 integrins on Col5al KO CFs n = §).

{0 and E Immunostaining for Vim, (D) =wf3, and (E) «vf5 in scartissue at 7 days post M| farrows, representative images).

{F) Expression of key myofibroblast genes in Col5a1CKO CFsin the presence or absance of cilengitide [n = §).

{5) Experimentzl design to treat animals with daily cilengitide (20mg/kag).

{H) BF and FSiin control and Gol5a1CKO injected with cilengitide or vehicle [ Col5a1CKD+Cilengitide [red dotted line] wersus ColSa 1CKO+Veh [red solid line], n=
13 CKO+Cilengitide 10Vother groups at basal, n = 12/CKO+Cilengitide, 6'CKO+Veh, % Control+Cilengifide, 7/Control+Veh at 2 wesks post MI.

1) Re presentative images of M-mode echocardiogram (yellow line indicates end systolic diameter).

) Masson trichrome steining of mid-ventricle at 2 wesks post Ml to show scar size jarrowhead, n = same number at 2 wesks post M|, a= above).

{K) Quantitstion of fibrotic area {n = same number as above).

L) Fraction of ColSal G0 animals demonstrating mild, moderate, and sevens fibrosis following vehicle or cilengitide infusion
M) immunostaining for « SMA and Vimentin in hearts of ColSa 10K recsiving wehicle or cilen gitide and quantitation of the fraction amows, represe ntative images,

n = 10/CKO+Cilengitids, n = 6/CKO+Vish, n = 6/animals for all ather groups).

{N) Dotplot representing expression of ECM gen es that are upregulate din CFs of ColSal CHO hearts at T days post Ml compared to controls feft panel). The same
genes ware shown in fibroblasts fom Col5a1CKO+Vehicle and ColSa1CHO+Cilen gitide samples fright pansl).
{0) Baxplot showing the module scores of 28 genses from (M) in fibroblasts from ColSa1C KO+Veh and ColSal OK O+ Cilengitide. Data shown s mean £ 8D, *p <

10.05, ns: not @gnificant.
See also Figures 57 and 56
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possibility that inhibitors of specific integrins such as cilengitide
may have a role in mitigating dysregulated wound healing
in cEDS.

In summary, we demonstrate that a feedback mechanism
between the mechanical properties of scar tissue and cardiac
fibroblasts are pivotal to the regulation of scar size. Teleologi-
cally, such a feedback loop provides an efficient way to inte-
grate the output of ECM and strength of scars. Our observa-
tions illustrate a model of wound healing in which the
structural constituents of scar tissue function to limit the size
of scar itself.
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Antibodies

Rabbit anti-Vimeantin Abcarm Cat# ab4a7003; RRID: AB_2257230

Mouse anti-smooth muscle actin Dako Cat# MOBS1; RRID: AB_2223500

Mouse anti4rtegrin =V 3 Abecam Cat# abT166; RRID: AB_305742

Mouse anti4ntegrn «V 5 R&D Cat# MAB2528; RRID: AB_2280706

Rabbit anti-cardiac troponin | Abcam Cat# abdT003; RRID: AB_BE99&2

Rabbit Anti-Mouse Collagen Type | Cedardane Laboratores Cat# CL50151AP; RRID: AB_ 10061240

Rabbit anti-RFP Rockand Cat# 600-402-379; RRID: AB_828331

Rat anti-integrn «V, PE-conjugated Irvitrasgen Cat# 12-0512-82; RRID: AB_465704.

Rat anti-integrn «5, PE-conjugated Biolagend Cat# 103805; RRID: AB_313054

Rat anti-integrn 1, PE-canjugated Irvitragan Cat# 12-0181-82; RRID: AB_465572

Amercan hamster anti-integrin 2, PE-conjugated Invitrogen Cat# 12-0281-82; RRID: AB_TE3478

Rabbit anti-integrin «V 3 ThemoRsher Scientific Cat# MAS-32195; RRID: AB_2809482

Rabbit anti-integrin 2V p5 Bioss Antibodies Cat# bs-1356R; RRID: AB_10853044

Mexa Flour 594 conjugated WGA Invitragen Wii262

Chamicals, Paptides, and Recombinarnt Proteins

Cilengitide MGE HY-16141

Tamaxiten Sigma To648

Hurmnan basic fibroblast growth factoor Millipore GFO03

Protease Inhibitor Cocktail Sigma P8340

Critical Commercial Assays

RMNAscope Multiplex FL eagent kit v2 ACD bio 323100

Sircdl Insoluble Collagen Assay Kit Biocolor 52000

RiNeasy Mini Kit QIAGEN 74104

Masson Trchrome Stain Kit Theme Fsher Sciantific 87019

Fierce Quantitative Colordmetric Peptide Assay Thermo Fsher Scientific 23275

M.O.M Immunodetection Kit, Basic Vector BME-2202

Awidin/Biotin blocking kit Vector SP-2001

Fluorescain avidin DCS Vector A-2001

Daposited Data

HMDFP ventricular expression aray data Rau et al., 2017 (GSE48760

Myocardial infarction RMaseq data This paper GSE151834

Myocardial irfarction single cell RNaseq data from This papar GSE152122

wild-type molse

Myocardial infarction single cell RNaseq data from This papar GSE151695

Col5al CKO mouse

Myocardial irfarction single cell RNaseq data from This papar GSE151685

Colsal CKO mouse treated with cilengitide

Figures for STAR Methods This papar Mendaiey Data https:/doi.org/10.17632/
ZvshOyvks 2

Expermental Modets: Call Lines

Mouse: immortalized Colsal flifl cardiac fibroblast This papar A

Mouse: primary cardiac fibroblast This papar i
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Modals: Organisme/Strains

Mouse: ColSal fifl: C57BLS Sun et al,, 2011 PMID: 22158420

Mouse: Colla2-CreERT: C5TBL/G Zheng et al., 2002 PMID: 12000713

Mouse: TCF21-MearCraMer: C5TBL/S Acharyaetal, 2011 PMID: 21432988

Mouse: R26RtdTomate: CSTELG The Jackson Laboratory 007914

Mouse: C5TEL'G The Jackson Laboratory 000664

Mouse: Colsal KO: C5TBL/G Wenstrup et al., 2004 PMID: 1538:3546

Oligonucleotides

Mouse Col1a1-G1 probe AGD bio 393N

Mouse Col3a1-G2 probe ACD bio 455771-C2

Maouse ColSal-C3 probe ACD bio 521291-C3

Quantitative real-time PCR Primers Table 53 MA

Recombinant DNA

Efla_Lame T-antigen |res Puro Mali et al., 2008 Addganedi 8922

Lanti-pHN-EGFP Welrn et al., 2008 Addpens#21373

psPAX2 Trono Lab Packaging and Addpene#12260

Envelope Plasmids unpublished)
pMD.G2 Trono Lab Packaging and Addgens# 12259
Envelope Plasmids unpublished)

pLV-EGFP-Cra Truitt et al, 2016 Addgene#86805

Software and Algorthms

Vevo LAB VisualSonics https:/fwww.vis ualsonics.comiproduct/
software/vevo-lab

imagaJ NIH https:/fimage. nih.gov/ij/

Fohwdo Folwdo https:www. flowjo.com

Caliranger mkfastg 10x Genomics 30.2

R package Seurat Bicconductor a0.2

Proteome Discovensr Themo Fisher Sciertific 22

WGCNA CRAN https:feran. r-project.org/weby/pac kages
WECNA Index.htmi

pheatmap CRAN https:{feran.-project org/web/packages/
pheatmap/index . Htmil

Prism 8 GraphPad NA

JPKSPM Data Processing Bruker, JPK NA

UCSF Chimara REVI, UCSF http:dwww.cgl.ucsh.edw/chimera/

Other

Niken Edipse Ti2 confocal microstopy Nik ar Https:fwwiw . microscope healthcare.
nikon.com/prod ucts/inverted -microscopes/
aclipse-tiZ-sanes

Vevo 2100 Imaging System VisualSonics ht tps: v vis ualsonics.comiproduct
imaging-systems/vevo-2100

Q Exactive Plus Hybrid Quadrupole-Orbitrap Thermo Fisher Sciertific IOLAAEGAAPFALGMBDK

Mass Spectrometer

JEM 1200EX transmission alectron microscope JEOL httpes:fwww jeclusa com/PRODUCTSS
Transmission-Electron-Microscopes-TEM

TF20 TEM FEI https:fwww. felmi-zfe.at/instrumentation/
tam./fei-tecnai-f20/

SHOCONGG-TL AFM Probes AppNans SHOCONGG-TL

JPK Manowizard 4A BicAFM Bruker, JPK https:/fus a jpk.com/products/

atomic-force-microscopy/nanowizand-
ultra-spead-2
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfiled by the Lead Contact, Ajun Deb
(adeb@mednet.ucla.edu)

Materials Availability
This study did not generate new reagents.

Data and Code Availability
Theaccession number for the bulk RMA sequencing and single-cell RNA sequencing in this paper are available in NCBI GEQ dataset.
Myocardial infarction bulk RMaseq data: GSE 151834, Myocardial infarction sc RMaseq data: GSE152122, Myocardial infarction sc
RMaseq data from Col5a1CKO/Control mouse: GSE 151695, Myocardial infarction sc RMNaseq data from Col5a1CKO mouse treated
with cilengitide or vehicle: GSE151695.

Figures for STAR Methods are available in Mendeley data (https://doi.org/10.17 632/z3vsb9yvks. 2)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and use

All animal studies were approved by the Animal Research Committee, University of Calfornia, Los Angeles. All animals were main-
tained at the UCLA vivarium according to the policies instituted by the American Association for Accreditation of Laboratory Animal
Care. Sample size was estimated based on published literatures on murine myocardial infarction models (Hinkel et al., 201 5; Ren
et al., 2005). Male and female animals aged between 10 and 14 weeks were used in the study. All animals belonged to the
C57BL/6 strain, were healthy, immune-free, and drug or test naive and were not involved in other experimental procedures. Litter-
mates were used as controls for all experiments.

Generation of animals with genetically labeled cardiac fibroblasts and fibroblast specific deletion of Col5ai
Colla2CreERT (BE background) and TCF21MerCreMer (B6 background) animals were crossed with the lineage reporter
Rosa?6tdtomato (B6 background) animals to generate progeny animals as described (Fillai et al. 2017). Tamoxifen
was administered for 10 days prior to ischemic cardiac injury followed by RNA-FISH to determine whether genetically
labeled fibroblasts co-expressed the RMA signal. For generation of Col5a1CKO mice, Col1a2CreERT or TCF21MerCreMer
mice were crossed with the Col5al floxed (BE6 background) mice (Sun et al.. 2011) and progeny mice were administered
tamoxifen (1 mg IP daily) for 5 days prior to ischemic injury and continued for 7 days following injury. For the experiment
on TCF21MerCreMer mice to demonstrate an effect of Cre recombinase on heart function and fibrosis, these mice were
administered tamoxifen for 5 days prior to ischemic injury and continued for 7 days following injury as as for generating
Col5a1CKO mice. For experiments related to administration of tamoxifen after acute injury, TCF21MerCreMer mice
crossed with the Col5al floxed mice were administered tamoxifen from 4 days to 14 days post injury. ColSa1(+/—) heterozy-
gous KO (B6 background) mice (Lincoln et al., 2006) were used for experiments to confirm Col5a1CKO post infarction
phenotype.

Murine models of acute ischemic cardiac injury
Allanimal studies were approved bythe Animal Research Committee, University of California, Los Angeles. Myocardial infarction was
performed by ligating the left anterior descending (LAD) coronary artery following open thoracotomy as described (Pillai et al., 2017;
Ubil et al., 201 4). Briefly, Mice were anesthetized with ketamine (80 mg/kgh/xylazine (20 mg/kg) by intraperitoneal injection. Respira-
tionwas provided by mechanical ventilation with 95% O2 (tidal volume 0.5 mi, 130 breaths/min). The LAD coronary artery was ligated
inframurally 2mm from its origin with a 9-0 proline suture.

For experiments related to use of cilengitide, 20mg/kg of Cilengitide diluted in PBS was administered by intraperitoneal injection
every day until harvest and PBS was used as vehicle as a control.

Echocardiogram

Animals was assessed at prefreatment baseline and at the time point of 3 day, 1 week, 2 weeks, 3 weeks, 4 weeks, and 6 weeks
post-Myocardial infarction. Animals were continuously anesthetized with 1.5% isoflurane and 95% O2. Vevo2100 imaging system
and a 30-mHz scan head (Toronto, Ganada) were used to acquire shortflong axis B-mode and M-mode images. Long axis
B-mode view was used for analyzing peak longitudinal strain rate. All measurements and calculations were conducted using
Vevo2100 software.
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METHOD DETAILS

Antibodies and probes

The following primary antibodies, reagents, or probes were used for immunostaining: rabbit anti-Vimentin (1:100, Abcam, ab45939);
mouse anti-smooth muscle actin (1:100, Dako, M0B51); anti-cardiac Troponin |(1:100, Abcam, ab47003); mouse anti-integrin <VE3
(1:50, Abcam, ab7166); mouse integrin «VES (1:20, R&D, MAB2528); Alexa Fluor 594 conjugated WGA (Spg/mL, Invitrogen, W11262).
For dual RMA-FISH/mmunostaining: rabbit anti-RFP (1:50, Rockland, 600-401-379). For flowcytometry: rabbit anti-integrin
aVp3(C051/CD61) (1:100, ThermoFisher, MAS-32195); rabbit anti-integrin oV S (1:30, Bioss, bs-1356R); PE-conjugated rat anti-in-
tegrin aV (1:20, Invitrogen, 12-0512-82); PE-conjugated rat anti-integrin A1 (1:20, Invitrogen, 12-0181-82); PE-conjugated american
hamster anti-integrin {2 (1:20, Invitrogen, 12-0291-82); PE-conjugated rat anti-integrin «5 (1:100, BioLegend, 103805); PE-conju-
gated rat IgG isctype control (same dilution for target antibody, Biolegend, 400508). For RNA-FISH: mouse Collal-C1 probe
(1:50, ACD, 31937 1); mouse Col3ai-C2 probe (1:50, ACD, 455771-C2); mouse Col5al-C3 probe (1:50, ACD, 521291-C3).

Bulk RNA-seq, single-cell RNA-seq and qPCR

For bulk RMNA-seq, the injured and uninjured regions of the heart were harvested at different time points following injury, total RNA
extracted using RNeasy Mini kit (QIAGEN) and used to generate AMA-Seq libraries followed by sequencing using lllumina 4000 plat-
form (single-end, 65bp). Reads were aligned to the mouse reference genome (mm10) using STAR aligner (Dobin et al., 2013), and
used to quantify normalized expression values (RPKM) for annotated genes (Ensembl v.86). RPKM values were used for principal
component analysis (PCA) and gene expression visualizations. Differential expression analysis was performed using edgeR
quasi-likelihood pipeline (Robinson et al., 2010). Differential expressed genes (DEGs) were identified at FDR 1% and minimum
fold-change value of 4.

For sc- RMA-seq, 1wk post M| hearts were harvested and digested by liberase as described later. After digestion, cells were incu-
bated with 10pM Calcein AM (Abcam, abl41420) and flow sorted to identify live cells followed by library preparation. Library was
generated by Chromium Single Cell 3' Library Construction (10x Genomics) and sequenced by lllumina NextSeq 500 Sequencing
Systermn. After sequencing, fastg files were generated using Cellranger mkfastq (version 3.0.2). The raw reads were mapped to human
reference genome (refdata-celranger-mm10-3.0.0) using cellranger count. Digital expression matrix was extracted from the fitter-
ed_feature_bc_matrix folder outputted by the cell ranger count pipeline. Multiple samples were aggregated by cellranger aggr. To
identify different cell types and find signature genes for each cell type, the R package Seurat (version 3.0.2) was used to analyze
the digital expression matrix. Cells with less than 500 unique molecular identifiers (UMIs) or less than 100 genes, or greater than
50% mitochondrial expression were removed, resulting in a final dataset of 17 826 cells and 21,447 genes for further analysis.
The Seurat function Mormalize Data was used to normalize the raw counts. Variable genes were identified using the FindVariableFea-
tures function. The ScaleData function was used to scale and center expression values in the dataset, the number of unigue molec-
ular identifiers (UMI) was regressed against each gene. Principal component analysis (PCA), t-distributed stochastic neighbor
embedding (tSNE), and uniform manifold approximation and projection (UMAP) were used to reduce the dimensions of the data,
and the first 2 dmensions were used in the plots. The FindClusters function was sued cluster the cells. Marker genes were found
using the FindAliMarkers function for each cluster. Cell types were annotated based on the marker genes and their match to canon-
ical markers.

For gPCR, For RNA-seq, the injured and uninjured regions of the heart were harvested at different time points following injury, RMA
extracted using RNeasy Mini kit (QIAGEN). cDNAs were generated using iScript cDNA Synthesis Kit (BioRad) and gPCR performed.

Col5a1 correlation with extracellular matrix pathway accounts for clinical trait association in the HMDP

The data used for analysis, including left ventricle expression arrays and clinical traits can be found using the GEO accession:
GSE48760 and within the following studies [5, 6]. Midweight bicorrelation coefficients and corresponding p values were generated
from HMDP data using the R package WGGMNA. To calculate adjusted regressions using the same approaches and compare directly,
residuals from each ECM gene correlated with Col5al were exfracted from the regression using the base Im() function in R. These
residuals were then integrated with original expression values and comrelated against indicated traits also using WGCNA to enable
direct comparisons. For purposes of comparisons, we also adopted a similar approach by collapsing all ECM genes into eigengenes
using WGCNA and correlated with either traits or traits adjusted for Col5al expression. Distributions of p values resulting from these
analyses were compared using a Student's t test (two-way). Plots for visualization were made sing either ggplot? or pheatmap pack-
ages in R.

Proteomic analysis of scar tissue

Injured and uninjured regions of the mouse heart at Day 7 following injury were dissected and homogenized in lysis buffer (200 ul,
12 mM sodium lauroyl sarcosine, 0.5% sodium deoxycholate, 50 mM triethylammonium bicarbonate (TEAB)), Sigma Protease Inhib-
itor Cocktail (0.89 mg/mL final concentration)), then subjected to bath sonication (10 min, Bioruptor Pico, Diagenode Inc. (Denville,
MJ)) and heated (35°C, 5 min). An aliquot of the resulting solution (9 ul) was taken for measurement of total protein concentration
(bicinchoninic acid assay; Micro BCA Protein Assay Kit, Thermo Fisher Scientific, Wattham, MA, using BSA as a standard). The re-
maining samples were diluted to 0.5 mg protein/mL with lysis buffer, and an aliquot of each (100 ul) was treated with tris(2-carbox-
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yethyl) phosphine (10uL, 55 mMin S0mM TEAB, 30 min, 37°C) followed by treatment with chloroacetamide (10 uL, 120 mM in50mM
TEAB, 30 min, 25°C in the dark). They were then diluted 5-fold with agueous 50 mM TEAB, and incubated overnight with Sequencing
Grade Modified Trypsin (1 ugin 10 ulL of 50 mM TEAB; Promega, Madison, Wi) following which an equal volume of ethyl acetate/tri-
fluoroacetic acid (TFA, 1001, wv) was added. After vigorous mixing (5 minj and centrifugation (13,000 x g, 5 min), the supematants
were discarded and the lower phases were dried in a centrifugal vacuum concentrator. The samples were then desalted using a
modified version of Rappsilber's protocol (Happsilber et al., 2007) in which the dried samples were reconstituted in acetonitrile/wa-
ter/TFA (solvent A, 100 ul, 2/98/0.1, v/vA) and then loaded onto a small portion of a C18-silica disk (3M, Maplewood, MM) placed ina
200uL pipette tip. Prior to sample loading the C18 disk was prepared by sequential reatment with methanol (20 ul), acetonitrile/wa-
ter/TFA (solvent B, 20 uL, B0/20/0.1, v/wiv) and finally with solvent A (20 ul). After loading the sample, the disc was washed with sol-
vent A (20 uL, eluent discarded) and eluted with solvent B (40 ul). The collected eluent was dried in a centrifugal vacuum concen-
trator. The samples were then chemically modified using a TMT10plex Isobaric Label Reagent Set (Thermo Fisher Scientific) as
per the manufacturer's protocol. The TMT-labeled peptides were dried and reconstituted in solvent A (50 ul), and an aliquot (2
uL) was taken for measurement of total peptide concentration (Pierce Quantitative Colorimetric Peptide, Thermo Fisher Scientific).
Thesamples were then pooled according to protein content (10ug of peptide from each sample; 100 ug total), and desalted using the
modified Rappsilber's protocol described above. The dred multiplexed pooled sample was reconstituted in water/acetonitrile with
10mM ammonium bicarbonate (solvent C, Sul, 982, v/v, pH10) prior to fractionation (2.7 ul injection) via high pH reversed-phase
chromatography using a 1260 Infinity LC Systemn (Agilent Technologies, Santa Clara, CA) and a ZORBAX 300 Extend-C18 column
(Agilent Technologies, 0.3 x 150 mm, 3.5 pm) equilibrated in solvent C and eluted (6 ul/min) with an increasing concentration of sol-
vent D (acetonitrile/water with 10mM ammonium bicarbonate, 80/20, w'v, pH10: min/% D; 0/0, 5/14, 65/60, 75/0, 95/0). The fractions
were eluted into a 96-well plate with 20 uL of 5% formic acid (FA) in each well over the course of 68 min. The 96 fractions were then
condensed into 12 fractions prior to another desalting again using the modified Rappsilber's protocol described above. The eluants
were then dried and reconstituted in water/acetonitrile/FA (solvent E, 10 uL, 98/2/0.1, v/w/v), and aliquots (5 uL) were injected onto a
reverse phase nanobore HPLC column (AcuTech Scientific, C18, 1.8um particle size, 360 um x 20 cm, 150 um D}, equilibrated in
solvent E and eluted (500 nL/min) with an increasing concentration of solvent F (acetonitrile/water/FA, 98/2/0.1, viw/iv: min/% F; 0/
0, 53, 187, 7412, 144/24, 153/27, 162/40, 164/80, 174/80, 176/0, 180/0) using an Eksigent NanolLC-2D system (Sciex (Framing-
ham, MA)). The effluent from the column was directed to a nanospray ionization source connected to a hybrid quadrupole-Orbitrap
mass spectrometer (O Exactive Plus, Thermo Fisher Scientific) acquiring mass spectra in a data-dependent mode atternating be-
tween a full scan (m/z 350-1700, automated gain control (AGC) target 3 = 10%, 50 ms maximum injection time, FWHM resolution
70,000 at m/z 200) and up to 10 MS/MS scans (quadrupole isolation of charge states = 2, isolation width 1.2 Th) with previously
optimized fragmentation conditions (normalized colision energy of 32, dynamic exclusion of 30 s, AGC target 1 x 10% 100 ms
maximum injection time, FWHM resolution 35,000 atm/z 200). The raw data was analyzed in Proteome Discoverer 2.2, which pro-
vided measurements of relative abundance of the identified peptides.

Histological studies

Hearts were harvested under anesthesia and perfused with PBS followed by fixation in 4% formalde hyde in PBS at 4pC for24 h, and
subsequently subjected to dehydration in sucrose solution. Then the hearts were embedded in Tissue-Tek O.C.T compound (SA-
KURA, Finetek, USA) and sectioned with 10pm-thickness.

For immunostaining, tissue sections were incubated with pre-chilled acetone at —20pC for 10 min, blocked in 10% species-spe-
cific normal serum in 1% BSA/PBS for 1 h, and primary antibodies diluted in 1% BSA/PBS at4pC ovemight. Secondary antibodies
were diluted in PBS and incubated with the sections for 1 h. Samples were counterstained with DAPI (1 pg/mL, Invitrogen, D3571) and
mounted with SlowF ade Gold Antifade reagent (Invitrogen, S36936). Images were taken using Nikon Eclipse Ti2 confocal microscopy
{Nikon,USA) and analyzed in MIS Element AR software (Mikon). For detection of ssmooth muscle actin, integrin «Vp3, and V5,
M.O.M immunodetection kit (Vector) was used. Breifly, tissue sections were incubated with pre-chilled acetone at —20pC for
10 min, incubated with Avidin/Biotin blocking buffer (Vector) for 15 min, M.O.M blocking buffer for 1 h, and primary antibodies diluted
in M.O.M diluent at 4pC overnight. Biotinylated 2nd antibody against mouse (Vector) was diluted in M.O.M diluent (1:250) and incu-
bated with the sections for 10min. Samples were incubated with diluted fluorescien avidin DCS (1:60) for 5 min. Samples were coun-
terstained with DAPI (1pg/mL, Invitrogen, D3571) and mounted with SlowFade Gold Antifade reagent (Invitrogen, S36936).

For Masson Trichrome staining, sections were stained using Masson Trichrome Stain kit (Thermo Scientific, 87019). Images were
taken in heartsections from apex, mid-ventricle, and close to suture and fibrotic area analyzed from apex to mid-ventricle. Scar tissue
area was calculated as the fraction of left ventricular surface area occupied by the scar tissue. Severity of fibrosis was classified as
sample showed > 40%: fibrotic area as "severe,” 20%—40% as "moderate,” or <20% as "mild"” for 6wks post Ml hearts and > 50%
fibrotic area as “severe,” 30%-50% as "moderate,” or < 30% as "mild" for 2wks post M| hearts.

RMNA-Fluorescence in situ hybridization

RMA-FISH was performed using RNAscope Multiplex Fluorescent reagent kit v2 (ACD Inc, USA) as per manufacturer instructions.
Tissue sections were incubated with hydrogen peroxide for 15 min followed by incubation with RNAscope Tamet Retrieval Reagent
at'99pC for 5 min. Then the section was incubated with Protease |l reagent at 40pC for 30 min in HybEZ || oven (ACDInc). After pre-
treatment steps, RNAscope probes were hybridized at 40pC for 2 h, AMP1 for 30 min, AMP2 for 30 min, AMP3 for 15 min, channel-
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specific HRP reagent for 15 min, diluted TSA Plus fluorophores (PerkinElmer, LISA) in RMNAscope TSA dilution buffer (1:1000 dilution)
for 30 min, HRP-blocker reagent for 15 min. Stained section was counterstained with DAPI solution and mounted in SlowFade Gold
Antifade reagent (Invitrogen, S36936).

For dual RMA-FISH and immunostaining, tissue sections were pre-treated, and signals developed as described above. Following
RMA-FISH, the sections were blocked with 10% normal goat serum/1%BSA in PBS, incubated with anti-RFP (1:50, Rockland, 600-
401-379) or anti-cTnl (1:50, Abcam, ab47003) at 4pC overnight, HRP-conjugated secondary antibodies against rabbit (1:200, Invi-
trogen, #31470) for 30 min, diluted TSA Plus TMR (1:300, PerkinEimer, FP1169) in RNAscope TSA buffer for 15 min, and counter-
stained with DAPI.

Insoluble collagen assay

Insoluble collagen assay was conducted using Sircol Insoluble Collagen Assay Kit (Biocolor, S2000). The injured regions of the heart
were harvested at 4 weeks following injury and weight their wet weight. Tissues were homogenized in 0.1mg/mL pepsin/.5M acetic
acid and incubated ovemight at 4pC. lysates were centrifuged at 12K r.p.m for 10min and supernatants were transfer to new tubes.
Tissue residues were incubated with Fragmentation Reagent at 65pC for 2 h with vortex every 30 min during incubation, centrifuged
at 12K r.p.m for 10 min, and supernatants were transferred into new tubes. Supernatants were mixed with 1ml of Sircol Dye Reagent
and incubated for 30 min with gentle shaking. Precipitates were collected by centrifuge at 12K r.p.m for 10minand washed with 750l
of ice-cold Acid-Salt Wash Reagent. Washed precipitates were dissolved in 500 of Alkali Reagent, transferred 200ul of each sample
and collagen standards into a 96-well plate, and measured absorbance at 550nm using Synergy H1 microplate reader (BioTek).

Transmission electron microscopy

Samples were fixed in 2% glutaraldehyde in PBS at 40C for 3 h. Fixed samples were embedded in low-viscosity resin (Agar, UK) as
following: samples were osmicated using 1% Os04; stained with 3% uranyl-acetate; dehydrated in 30-50-70-95%—100% ethanol
and embedded in low-viscosity resin (Agar, UkK). Plastic-embedded samples were sectioned using UCT uttramicrotome (Leica,
Austria) and diamond knife (Diatome, Austria). Sections 50-55nm thick were mounted on home-made EM grid(s) with plastic-carbon
support film, stained with saturated uranyl-acetate and Sato’s lead-citrate. Sections were imaged using JEM1200EX transmission
electron microscope (JEOL, Japan) at 80 kV equipped with BioScanB0OW digital camera (Gatan, USA). Images were prepared for
publication using a Photoshop (Adobe, USA). Approximately 500 fibrils were measured by Imaged for analyzing fibril diameter in
each group.

Tomaography of collagen fibers

Sections 200 nm thick were mounted on 150 meshhexagonal copper grids (Ted Pella, USA). Thereafter, grids with attached sections
were stained with saturated uranyl acetate, lead citrate, 10nm gold from both sides. Layer of carbon was evaporated on top of the
section. Grids were loaded into high-resolution tomography holder Model 2020 (Fischione, USA) and imaged with TF20 TEM (FEI,
Netherlands) at 200 kV. To collect tomograms, FEI Batch Tomography software was used. The tomograms were processed using
IMOD software (Kremer et al.. 1296). Alignment of the stack was performed using fiducial markers (10 nm gold) on both sides of
the tomogram. The final 3d model calculation was performed by SIAT (IMOD). Obtained 3d models were visualized in Chimera (Pet-
tersen et al.. 2004). They were filtered with Gaussian filter and segmented in Segger, part of Chimera package. Final models were
imaged in Chimera also.

Plasmid construction and Lentivirus preparation

plLenti-Largen T antigen (Cat#18922), Lenti-pHIV-eGFP (Cat#21373), PSPAX2 (Cat#12260), PMD.G2 (Cat#12258), pLV-eGFP-Cre
(Cat#BBB05) were purchased from Addgene. Total 13ug pasmids (object gene, PSPAX2, PMD.G2) was co-transfected into 75cm”
flask with 283T cells in 10 mL DMEM Medium, 6-7ml fresh DMEM medium were changed after plasmids co-transfected 8-10 h.
The medium was collected and centrifuged at 4°C in 500x g for 10 min after transfected 72 h. The medium with virus was aliquoted
and stored at —80pC.

Isolation of primary culture adult cardiac fibroblast

5-7 hearts were harvested from wild-type C57BL/6 mice or Col5a1 floxed mice. Valves and atriums were removed from the hearts,
and the hearts rinsed in ice-cold HBSS. The hearts were chopped into 1mm square pieces, suspended in 0.1pg/mL liberase TH
(Sigma, 5401151001) in Tyrodes buffer (136mM NaCl, 5.4mM KCI, 0.33mM MaH.PO,, ImM MgClz, 10mM HEPES, 0.18% Glucose),
and incubated with shaking incubator at 37pC for 30 min at B0 rpm. Digested hearts were fitered with a 40um cell strainer (Fisher,
22363547), centrifuged at 200x g for 5 min, resuspended cells with 10ml of 20%FBS in F12K medium, and seeded the cells into
100mm? dish. After 2 h, medium was changed to human basic FGF (10ng/mL, Milipore, GF003) containing 20%FBS in F12K me-
dium. |solated cardiac fibroblast was used for experiments in 2™ gr 3 passage.

Generation of Col5a1 deficientimmortalized cardiac fibroblast
Cardiac fibroblasts were isolated from Col5al fi¥fl mouse as described above. These cells were infected with Lentivirus-Large T an-
tigen in presence of polybrene (Bug/mL) for 16 h, treated with puromycin (2pg/mL) for selection of infected cells. Immortalized cells
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were cultured with 10%FBS containing high glucose DMEM. Cells so immortalized were then infected with Lentivirus-Cre recombi-
nase or lentivirus-GFP to generate ColSal deficient cardiac fibroblast or control cardiac fibroblast, respectively. These cells were
cultured for 6-7 days and used for each experment to determine effects on gene expression. To determine an effect of Cilengitide
on these cells, Col5a1fi/fl cardiac fibroblasts were pretreated with Gilengitide (1pM) in 10%FBS containing high glucose DMEM for
1h before infection with lentivirus-Cre recombinase or lentivirus-GFP. These cells were treated with Cilengitide/vehicle for 7 days and
medium was changed every 2 days.

Flow cytometry

For cultured cardiac fibroblasts, cells were harvested and fixed in 4% formaldehyde/PBS for 10min on ice, incubated for primary
antibodies diluted in 1%B3A/PBS for 1 h on ice. For unconjugated antibodies, cells were incubated with diluted Alex Fluor 594 sec-
ondary antibody (1:200, Invitrogen). Data was analyzed using Flowjo software.

Measurement of force generated by Col V deficient cardiac fibroblasts

Device fabrication

The device to make microtissues was designed using AutoCAD software (Autodesk Inc., USA). STAR Methods Figure 1A shows the
three-dimensional (30) design of master mold. STAR Methods Figure 1B shows the 3D schematic of the replicated design with wells
and two microposts. The top view of the replicated design is shown in STAR Methods Figure 1C. By using a laser cutter with a fine-
tuned laser power and speed, poly(methyl methacrylate) (PMMA) master molds were fabricated as shown in STAR Methods Fig-
ure 1D. After sticking the mold to a Petri dish with glue, a mixture of polydimethylisiloxane (PDMS) prepolymer and its curing agent
with the mass ratio of 20:1 was prepared and poured on the mold. After removing bubbles and curing at 80°C for 2 h, the PDMS was
peeled off from the mold as shown in STAR Methods Figure 1E.

Fabrication of microtissues

In order to make micratissues, after sterilizing the PDMS platform, a collagen hydrogel at density of 3 mg/mL was prepared. Cardiac
fibroblasts were mixed with the gel at density of 5 Million cells/mL. The small well around microposts was filled with the cell-aden gel
and then incubated for 1 h to encourage the gel formation. After the incubation, sufficient cell culture media was added to the
samples.

Measurement of contraction force of microtissues

The pictures of issues were taken on days 1,2, and 3 of culture by using ToupView microscope integrated with SeBaView software.
The images were then analyzed with ImageJ software to measure the deflection of microposts due to the tissue contraction. The
cantilever beam theory was used to quantify tissue force. This theory correlates the tissue force to small deflection of microposts
as shown in STAR Methods Figure 1F. The stiffness of microposts can be calculated by Equation 1 and the contraction force can
be calculated by Equation 2 by measuring the deflection of the free end of each micropost as follows:

3nEd*
k = # Equation 1
F =ka Equation 2

where k is the stifiness of each micropost that is a function of length (L), diameter (d), and Young's modulus of PDMS post (E). The
Young's modulus of PDOMS was considered to be 1.1 MPa (Brown et al., 2005; Wang et al.. 2014). In the Equation (2), F is the contrac-
tion force, 4 is the deflection of free end of the micropost (Beussman et al., 2016; Ma et al., 2019; Oyunbaatar et al., 2016; Ribeiro
et al., 2016).

Numerical simulation

To confirm the measurements of PDMS deflection and contraction force, finite element analysis (FEA) implemented in COMSOL Mul-
tiphysics 5.3 software was used. The FEM model consisted of two cylindrical PDMS microposts with the post height of 3.1 mm and
diameter of 0.8 mm inside a well. The microposts were fixed to the well and deemed as a cantilever beam. The PDMS assembly was
modeled as linear elastic material with a uniform Young's modulus of 1.1 MPa. After setting appropriate boundary conditions and by
applying a single force to the free end of the microposts, the displacement distribution of the microposts were determined as illus-
trated in STAR Methods Figure 1G. Moreover, the simulation showed a linear relationship between the applied force and micropost
deflection, which is in agreement with the cantilever beam theory (STAR Methods Figure 1H).

Measurement of decorrelation rate of Col V deficient cardiac fibroblasts

Quantitative phase microscopy (QPM) was used to determine decorrelation rate as follows. Cardiac fibroblasts were isolated from
Col5al floxed mice, immortalized and then treated with a Cre expressing or GFP lentivirus to generate Col5a1CKO or control fibro-
blasts. Cells were imaged every 5 min for 20 h at 20x with a SID-4 Bio (Phasics) camera to acquire QPM data via quadriwave |ateral
shearing interferometry(Bon et al. 2009). This was on an Axio-vision Observer Z1 (Zeiss) equipped 0.4 numerical aperture objective
lens with illumination was provided by a 660 nm center wavelength collimated LED (Thorlabs). The ColSa1CHKO fibroblasts and the
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control fibroblasts were imaged withenough spacing between cells to allow for automated particletracking (Crocker and Grier, 1996;
Zangle et al., 2013a) and cell or cell cluster segmentation (Otsu, 1979; Zangle et al.. 2013b). Automated detection of cell division
events were done by pattern matching (Zangle et al., 2014) of quantitative phase images. Using experimentally determined cell
average specific refractive index, quantitative phase shifts is related to the dry biomass of cells (Barer. 1952; Davies and Wilkins,
1952). All image processing was performed using custom MATLAB (MathWorks) scripts.

QPM decorrelation rate via temporal autocorrelation

‘We quantified the rate of biomass redistribution by examining the similarity of the OF M data over time through an unbiased estimate
of autocorrelation (Bendat and Piersol, 201 3) of the phase shift signal. The temporal autocorrelation was normalized with respect to
the number of data points used in each autocorrelation window, referenced to the end of the time shift window (t;), and defined as:

wor/dt

Y odlxy. ty —idt)-p(x.y tg —idt —7)
i-0

Caslx,y.tg.7) = — =
(w-%) 3 [blxy.to —idt)f
f=0

Where x and y are the spatial positions after emoving rigid translational motion of the cell cluster, §; is the time, ¢ is phase shift, wis
the number of images used to calculate the signal, and 7 istime lag. The autocorrelation was then averaged over the cell or cluster
area as:

Tl =5 3 Coltyiterr)

allxy naA

where A is the area ofthe cell or cluster in pixels. The slope of alinear least-squares fit to the averaged autocorrelation from r=0tor =
1 h (12 frames) was defined as the decorrelation rate and used to quantify the biomass redistribution rate within cell clusters. Any
decorrelation rate measurements that included images with mitotic cells were excluded.

Traction force measurement of neonatal rat ventricle myocyte and fibroblast co-culture

Fabrication of bio-sensor devices

The bic-sensor devices were fabricated by first spin coating a layer of photoresist (AZ 4620, 2500rpm, 60 s) onto a glass slide, and
baking it at 390 Celsius for 3 min. Then, gold nanoparticles suspended in citrate buffer (Sigma-Alrich 742090) were deposited onto the
photoresist and left to dry in & vacuum desiccator (Thermo Scientific 53100250) overnight, as illustrated in STAR Methods Figure 2A.
A mixture of polydimethylsioxane (PDMS) comprising 1 part of Sylgard 184 (Dow Comning) with 6 parts of Sylgard 527 (Dow Corning)
was then poured onto the surface of dried gold nanoparticles. The Sylgard mixture was put under vacuum to remove the air bubbles
before acoverslip glass was put on top of it, as shown in STAR Methods Figure 28. The devices were then left to cure in the oven at 60
Celsius for 12 h. Thereafter, the devices were released by immersing them into acetone overnight to dissolve the photoresist. This
reveals the final structure shown in STAR Methods Figure 2C.

Cell Seeding and Microscopy

Matrigel (at concentration of B3ug/mL)was then coated for 12 h on the surface of the PDMS devices. On day 1, neonatal rat ventric-
ular cardiomyocytes (NRVMs) were seeded at 75% confluence on the devices for the mutant group, and at 90% confluence on the
devices for the control group. The confluence in the 2 groups was made different in order to account for the fact that each mutant
fibroblast occupies 3 times more area than each control fibroblast. On day 2, control and mutant fibroblasts were separately seeded
onto their respective devices. Onday 3, the cells were stained with Calcein AM (Invitrogen), before they were imaged under dark field
and fluorescence microscopy (Zeiss AxioScope A1, EC Epiplan-Neofluar, 20x, N.A. = 0.5). The gold nanoparticles were also imaged
under dark field microscopy. The gold nanoparticles moved when the cells were beating, due to the mechanical coupling betweenthe
cells and the substrate.

Machine Learning Model

Before we could process the images obtained from microscopy, the numerical model needed to be built. The numerical model was
built by first generating 1000 different random continuous stress distributions in COMSOL (finite element software) by using 2-dimen-
sional random functions. An example of the stress distribution is shown in STAR Methods Figure 2D. The stress distributions were
applied as boundary loads onto the top surface of the device in COMSOL. Stationary studies were done in COMSOL to solve for the
equilibrium displacement of the POMS surface. One example of the displacement of the PDMS surface is shown in STAR Methods
Figure 2E. Thereafter, the 1000 different cases of stresses and displacements were used to train the linear regression machine
learning model (scikit-learn).

Processing of Experimenial Images

An area spanning 200pm by 200pm was selected from the video taken by a 20x magnification objective lens under a dark field mi-
croscope (Zeiss AxioScope A1, EC Epiplan-Neofluar, 20x, M.A. =0.5). Two image frames were used to calculate the displacement of
the gold nanoparticles. The reference frame was chosen as the frame in which the cells were not beating. The peak frame was chosen
as the frame in which the cells and gold nanoparticles had the largest displacement. The positions of the gold nanoparticles were
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determined using the Gaussian fitting method as described(Xiao et al., 201 8). The displacement was taken to be the difference in the
positions of the gold nanoparticles between the peak frame and the reference frame. STAR Methods Figures 2F and 2G show the
displacement of each of the gold nanoparticles. The displacements in STAR Methods Figures 2F and 2G were then interpolated
and a two-dimensional Fourier transform filter was applied to process the interpolated data to eliminate the components of high
spatial frequencies. The resulting interpolated displacements after Fourier filtering are shown in STAR Methods Figures 2H and
2l. The displacements from STAR Methods Figures 2H and 2| were then input into the machine leaming model. The machine learning
mode| then output the stress distributions as shownin STAR Methods Figures 2J and 2K. The predicted stress distributions were then
inputted back into the COMSOL software to confirm that the simulated displacements (STAR Methods Figure 2L) match with the
interpolated displacements (STAR Methods Figure 2H) with an overall emor of 2% for the control group. The overall error of the dis-
placements was 10% for the mutant group (STAR Methods Figures 2| and 2M). The errors were calculated by the expression:

Vo Wamumea % ¥) = Usoaw(%.))° + 52, | (Vaimstasat (€. ) = Vacruai(. 1))

E,,yfummwfx.]f:' ¥+ E,‘,,iv..—m-[x.y:- F

WHETE Ugimyssme( X, ¥) 8N Veimyiama (%, ¥) are the x and y vector components of the simulated displacement from COMSOL in STAR
Methods Figure 2L, and tgeye (2. ¥ ) 8Nd Ve x. y) are the x and y vector components of the displacement in STAR Methods Fig-
ure 2H. Note that the displacements are functions over space (xy). It can be seen that the magnitude of the stresses is larger for
the control group STAR Methods Figure 2J as compared to the mutant group STAR Methods Figure 2K.

Parallel microfiltration

To measure the deformability of wild-type and Col5a1 null fibroblasts, we used parallel microfittration (PMF) as described in our pre-
vious studies(Kim et al., 2016; Kim et al., 2019; Qi et al.. 2015) to assess the ability of cells in a suspended state to fitter through 10 pm
pores of a membrane in response to applied pressure. The volume of retained cell suspension retained in the top well indicates the
number of pores that are occluded, which is largely determined by cell deformability: lower retention indicates a sample with more
deformable cells. Polycarbonate membranes with 10 pm pore size (TCTP14250, Millipore) were used for all filtration experiments.
Prior to the PMF assay, trypsinized cells were rested 20 m at room temperature, counted using an automated cell counter (TG20,
Bio-Rad), and resuspended in medium to a density of 5 % 10% cells'mlL. Cell suspensions (400 L) were loaded into each well of a
96-well plate sample loading plate (4 wells per sample). We measured cell viabilty by staining cells with Trypan Blue (T8154, Sigma)
and verified that cell suspensions prior to filtration consisted of single cells; therefore, the filtration behavior is largely determined by
the occlusion of viable single cells rather than apoptotic cells or larger aggregates of cells. Since cell size can also impact occlusion,
we measured cell size distributions and confirmed there were no significant size differences between wild-type and knock-out cells in
a suspended state (Figure S7A). To drive cell suspensions to filter through the 10 pm pores, we applied an air pressure of 2.0 kPa for
30 s. To quantify retention volume, we transferred the cell suspension retained in the top well after filtration to a 96-well plate and
measured the absorbance of phenol red at 562 nm using a plate reader (SpectraMax M2, Molecular Devices). Using a standard curve,
we calculated the retained volume. Retention was determined by the volume of cell suspension that remains in the top well after fitra-
tion divided by the initial volume loaded (Volumesa/Volumesmsa).

Atomic force microscopy

For atomic force microscopy (AFM) ex periments, PBS- perfused hearts were dissected and mounted in OCT (Tissue-Tek, Sakura Fi-
netek, Torrance, CA, USA) and flash frozen in liguid nitrogen-cooled isopentane. Cardiac tissue cryosections (30 wm) were mounted
onto microscope slides with an adhesive coating (#5UMGP1 4 Matsunami Glass Ind. Ltd., Kishiwada, Osaka, Japan). Cardiac sec-
tions were incubated in rabbit anti-mouse collagen type | antibody (CLS0151AP-1; 1:250; Cedarlane Labs) in PBS at 4°C overnight
and were detected by indirect immunofluorescence using Alexa Fluor 488 goat anti-rabbit secondary antibody (AB150156; 1:500;
Abcam). AFM measurements were performed on each section in PBS using a JPK Manowizard 4A BioAFM with a
200x200x200 pm HybridStage (Bruker/JPK BioAFM, Billerica, MA, USA) coupled to a Leica M 205 stereoscope (Leica Microsystems,
Wetzlar, Germany). Scar regions were identified by collagen | dense immunofluorescence signal which was used as a guide for over-
laying the AFM cantilever for force spectroscopy (Figures 68 and 6C). Mon-scar regions were selected in areas where collagen | signal
was confined to the interstitial matrix surrounding cardiomyocytes and at least 1000 pm away from a scar region. Both scarregions
and non-scar regions were probed with AppNano SHOCONGG-TL cantilevers with a 10 pm silicon dioxide sphere (nominal freq
(kHz) = 21(8-38), k(N/mj) = 0.14 (0.01-0.6); AppMano, Mountain View, CA, USA). The sensitivity and spring constant of each probe
were calibrated before each experiment using the contact-free calibration method. All measurements were taken in force spectros-
copy mode and force-versus-indentation curves were generated from an average of 200 points/sample. Approach and retraction
speeds for all force measurements were 2 pm/sec with a setpoint force of 2.5 nM and a retraction distance of 10 pm. Data analysis
was performed using JPKSPM Data Processing software. To evaluate tissue stiffness, Young's modulus was calculated from =100
AFM force curves, using the Heriz-Sneddon model (Sneddon, 1965). Young's modulus data were plotted and statistics calculated in
GraphPad (Prism) software using the Kolmogorov-Smirnov nonparametric test.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All data is presented as mean + standard deviation (SD) except Figure 6D (mean + SEM) and mentioned in the figure legends. The
exact value of n is mentioned in the figure legends and always stands for separate biological replicates. Statistical analysis was per-
formed using GraphPad (Prismj) software using Student’s ttest (Two tailed) and one-way ANOVA with Tukey's multiple comparison
analysis as appropriate. A P value < 0.05 was considered as statistically significant. For analysis of strain imaging data, outlier iden-
tification was conducted in ROUT (Q = 2%) method using GraphPad (Prism) software. The values identified as outlier were excluded
from statistical analysis.
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Figure 51. Dynamic Changes in Expression of Collagen Genes following Injury, Related to Figure 1

{A) Temporal changes in ejection fraction ({EF) and fractional shortening (FS) after ischemic cardiac injury {data shown as mean £ 5.0, n = 8 animals/group/time
|point {B) gPCR demonstrating tempaoral changes in collagen genes that are not abundantty expressed in the heart {data shownas mean « 5.0, n= 5 animals/
group/time point, “p < 0.05, compared to expression of respective collagen gene in uninjured region at that time point) {C) Heatmap demonstrating temporal
changes in collagen genes fthat are ususlly expressed in extra cardiac tissues) as well 2= RFKM walues from RNA-seq of injured and uninjured region of heart

demonstrating low expression of such collagen genes.
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Figure 52. ColS5aiCKO Animals Exhibit Decreased Col5al Expression and Have Myocardial Hypertrophy after Ischemic Cardiac Injury,
Related to Figure 3

{4) Conditional deletion of Col5al {ColSa1CKO mice) was performed by crossing mice harboring the Col1a2CreERT driver with ColSal floxed mice. RMA-FISH
demonstrating decreased expression of ColS5al in ColSa1CKO mice compared to control iittermates at T days following injury (amows, representative images,
images were acquired and stitched togsther with Nikon softwars). The decrease inintensity is compared to Colial in ColSal CKO and control littermates. (B)
mean imensity of ColSal expressionnomalized to Collal expression inthe CGol5a1CKO and control animals (mean £ 5.0, *p<0.05, n=9 Gontrol and 15 GKO)
{C)Mazzon trichrome staining in remote area of Col5a1CKO and Control animals at Gwks post M| demonstrates minimal fibrosis in both groups. (D) Body weight
and (E) Heart weight body weight ratio of Col5a1CKO and control animals at 6 weeks post injury {mean + SD., *p <005, n= 8 control and 12/CKO, ns: not
significant). {F) Immunostaining for cardiac troponin | and wheat germ agglutinin (W&EA) demonstrates increased myocyte surface ares in Colsa1CKO animals at
6 wesks following injury (amows, representative images, same number of animals a5 above) {G) Quantitation of myocyte surface area in border 2one region of
Colba 1CKO and Control animals fmean = S0, *p < 0.05, n = 8 control and 12/CKO).
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Figure 53. Col5al1CKO Mice Generated by Using the TCF21MerCreMer Driver Also Exhibit horeased Scarring following Ischemic Heart
Injury; Related to Figura 3
1A) TCR21 MCM: Col5a1CK O mice were generated by crossing the TCF21MerCreMer mice with the ColSa 1 floxed mice. Expression of ColSal inthe injury region
by RNA-FISH in TCF21 MGM:Col5a1CK O animals compared to control littermates at T days post M| {amows, represantative images, images were acquired and
stitched together with Mikon software). {B) Quantitative decrease in Col5al expressionin TCF21MCM: ColSa 1CKO mice compared to control ittermates jmean =
S0, *p < 0.05, n =6 animals/Control and 4/CKO). {C) M modse echocardiogram demonstrating left ventricular walls and imtemal dime nzion (yellow ling) prior to
{basal) and 6 wesks following injury in TCF21MCM:Col5a1CHO and control litterm ates (representative images, n = 12 Control and 18 CKO at basal. n=9 Control
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and 10 GKO at Gwks post MI). () Ejection fraction and Fractional shortening in TCF21MCM:Caol5a 1GK0 and control ittermates at difierant time points following
injury{mean =5 .D., *p< 0.05, n= 12 animals'Control and 18/CK0 atbasal, n="%Control and 14/CKO at 30 post MI. n=8/Control and 12/CKO at Twk postMI, n=
9 /Control and 10/CKO at 2-6wks post MI). Left ventricular dimensions in end diastole (LVIDd) and end systole (LVIDs) at different time points following injury )
Masson trichrome staining of hearts of TCF21MCM:ColSa1 GO and control littermates sectioned at the base (just distal to suture line) at mid ventricle and apex
& wesks followin g injury freprese ntative images shown, n = 9 animals/Controland 10/CKO) (R Quantification of surface area of scar nomialized tothe surface area
of the left ventricle jmean + 5.0, *p < 0.05, n= 9 animals/Control and 10/CKD). {G) Fraction of animals in the TCF21MCM: Col5a1CKO and control groups that
demonstrate mild/moderate or severe scaming at 6 weaks following injury. fmild scarring < 20% of surface area, moderate between 20and 40% of wertri cular
surface area and severs = 40% of surface ares). (H) Body weight in TCF21MCM: Col5a 1CKO and control animals at & weeks following injury. jmean « 5D, n=9
Control and & CKO) () Heart weight/body weight ratio in TCF2 1MCM Caol5a1 KO and control animals at & wesks following injury. fmean = 5D_*p <005, n=9
Control and 8 CKO) ) Immunostaining of mid wventricular heart sections of TCF2 1MCMCol5a1 00 and control littermates with Troponin | and Wheat germ
agglutinin (WG A) até weeks following injury to determine surface area feross sectional area, armowhead) of cardiomyocytes (representative images, n = 7animals’
Control and 9/CHO) () Quantitation of surface area of individual cardiomyocytes betwsan TCF2 IMCM ColSat CKO and Control groups at & wesks following
injury (meaan + S.0., *p < 0.05, n =7 animals/Control and 9/CKO).
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Figure S4. Cardiac Function and Scamring in TCFZIMCM, Col5ail Heterozygous KO, and TCF21IMCM:Col5aiCKO Animals, But with
Tamoxifen Administered from Day 4 Onward, and Expression of ECM Genes and Col5al across All Strains in the HMDP following lsopro-
terencl Infusion for 3 weeks, Related to Figures 3and 4

&) TCF21MCM animak dwild type animals were administened tam oxifen and subjected toischemic cardiac injury. Cardiac contractile function in TCF21MCM
and wild type littermates 1 and 2 wesks following injury (p = 0.05) {n = 4 foreach group)

{B-0y Col5al heterozygous KO mice orwild type |ittermate s were subjected to cardiac injury and (B) cardiac function (EF,FS) determined at 1 and 2 wesks after
injury (“p = 0.05, n = 8 wild-typen = & Col5al heterozygous KO animals at bassl, n =7 wild-type n = 4 Col5a1 heterozygous KO animals at 1 and 2 wesks after
iinjury) and {C and Oy Cardiac hypertrophy assessed by heart weight/body weight ratios (p < 0.05, n =7 wild-type n = 4 GolSa1 heterozygous animals, ns: not
significant) (E) TCF21MCM:Col521CKO or control littermates were subjected to ischemic injury but tamoxifen administerad for 10 daye starting at 4 days after
iinjury. Cardiac contractile function between groups at 1 and 2 wesks after injury (n = 8 conmtrol n = 7 Col5a1CKO animals at basal, n=6control n= 6
TCF21MCM:ColSa 1CHO animals &t 1 and 2 weeks after injury, p = 0.05).

Average expression of ECM and Col5al genes {y axis) versus approximately 96 strains of mice on the x axis. Each data point refers to the average gene
expression for ECM genes (F) or ColSa1 {3 in the left ventricle of that particular strain following izoproterenol infusion.
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Figure S5. Identification of Cell Phenotypes According to Expression of Canonical Genes and Numbers of Cells in Each Phenotype in Co-
5a1CKO and Control Animals from scAMNA-Saq Analysis Performed on Mon-myocytes at Day 7 following Injury, and Expression of Myofi-
broblast Genes in Control and Col5a1CKO Cardiac Fibroblasts from Analysis of scRNA-Seq data, Related to Figure 5

) lustration of clusters of canonical genes used to identify various cell phenotypes of non-myocytes inthe heart at 7 days following injury. (B) Fraction of cellsin
aither Col5a1CKO or control animals belonging to each phenatype. fn = 3 samples/group). {C) Expression of smoath muscle contractile proteins or calcium
regulatory protsinsin cardiac fibroblasts of Control or Colsa1 CKO animals. Single cell RMA-seq data analysis demonstrating expression of Tagln {p = 1.86E-121),
S100s4 FSP1, p = 7 38E-20), Myl (p=1.72E-128, Myl fp = 2. 82E-107, Lox [p = 3 6BE-37) and Actn1 {p = 7.11E-45) in cardiac fibroblasts in Col5a1CKO and
control hearts harvested at 7 days following injury
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Figure S6. Myofibroblasts in Hearts of Col5a1CKO Animals Do Mot Display Higher Rates of Proliferation Compared to That in Control
Littermate Animals, Related to Figure 5

Cluster 0 {myofibroblast population) in both control and Col5a1 G0 animals wers analyzed for expression of cell cycle genes at T days following injury. (Aand B)
Dot blot demonstrating expression of {4) cell cycle genes regulating 5/G1 phase and {B) G2/M phass in both control and CKO animals {C) Violin plot demon-
strating average expression of genes regulating 5/G1 and G2'M phases in myofibroblasts of Col5al1 CKO and control littermates; A score denoting average
expression of all cycle gene=in 5/G1 or G2/M was used and thers were no significant differences in expression of genes betwesan the groups. {0 Immunostaining
fior vimentin and K6 7 {marker of proliferation) in scar tissue of hearts of ColSa 1CK0 and control animals at T days following injury and quantitation ofthe fraction of
|profiferating fibroblasts (KIET +Vimentin+"Vimentin+) jmean « 5.0, ns = not significant, representative images shown, n =& Control n = 4 CKO)
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Figure 57. Cell Deformability and Decorrelation Rate of Col5a1CKO and Wild-Type Cardiac Fibrob lasts, and Flow Cytometry Demonstrating
Expression of Integrins on Col5a1CKO Fibroblasts Generated Ex Mivo by Lentiviral Transduction, Related to Figures 6 and 7

{A) Gell size {n = 600) messured right before the PMF assay. Baxplot shows the minimum an d masxdimum with median (ling) and whiskers. (B) Cell viability mea sured
by Trypan Blue staining right before the PMF assay. {mean « S0n=13 independeant experiments, n= not significant). {C-E) Quantitstive phase microscopy (OPM)
to determine cell stiffness of ColSal CKO cardiac fibroblasts and control cardiac fibroblasts. (C and D) Representative GPM images demonstrating heatmap of
mass/density in {C) control and ) Col5a1CKD fibroblasts and (E) decomelation rate of control and ColSa 10KO fibroblasts (mean « 5D, *p <005, n =3 in-
dependent exparimants with 11 cell clusters examined/control and 18 cell clusters/Colba 1CKO).

Col5atfifl cardiac fibroblasts were infected with Cre or GFP lentivirus and then flow sorted based on GFP expression and then subjected to flow cytometry to
determine expression of (F) B1 {3 B2 H) 25 () 2v integrins (mean + 5.0, ns = not significant, n = 3 independent experiments)
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Figure S8. Effect of Cilengitide on Injured/Uninjured Myocardium and Cardiac Hypertrophy following Ischemic Cardiac Injury, Related o
Figure 7

{8) Immunostaining for vimentin and a3 or «v[is in remote tissue of ColSa1 CKO and control littermate heartat T days following injury jrepre sentative images). (B)
A schematic of myocardial regions identified from the parastemal long axis view. {C) Peak longitudinal strain rate ofbasal posterior and a pical anterior region from
Colba 1CKO and control littermate at 7 days following injury jmean « 5.0, *p < 0.05, bassal posterior; n= 18 animals/Control and 25/CKD apical anterior; n =20
animals/Control and 22/CKO). (D) Peak longitudinal strain rate of basal posterior and apical anterior region from ColBaiCKO treated with vehicle or cilengitide at
T days following injury jmean + 5 D, * p< 0.05, bassl posterior; n =12 animals wehicle and 18/cilengitide . apical anterior; n =10 anim als/vehicle and 18/cilengitide,
outliers in the strain imaging data were excluded afteridentifying them with Prizm & (ROUT (Q = 2%). (E) Heart weight/body weight of hearts harvested at 2 weeks
following injury (mean = 5.0., *p < 0.05, n = 12 CKD animals recsiving cilengitide, n =& CKO animals injected with vehicle, n =8 control animals recsiving cil-
engitide, n = 7 control animals injected with vehicle) (F) Immunostaining for cardisc troponin and WGA to determine myocyte surface area as a surrogate for
hypertrophy in the border zone region of Col521CKO animals injected with wehicle or cilengitide {arrows, represantathe images, means S0, *p< 005 n =10/
CKO+Cilengitide, n = & CKO+Veh, n = &/animals for all other groups).
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Table S1, Related to Figure 1. Bulk RNA-seq of injured and uninjured
hearts at various time points after ischemic cardiac injury.

gene remote | injured | logFC | PValue padj

Ecil 212.485 | 10.5747 | -4.3262 | 2.3E-13 | 1.9E-09
Hopx 137.718 | 4.90668 | -4.8158 4E-13 | 1.9E-09
Coql0a 85.4086 | 5.20377 | -4.0414 SE-13 | 1.9E-09
Sord 65.3544 | 4.87722 | -3.7407 | 7.6E-13 | 2.1E-09
C3arl 3.16885 | 33.7355 | 3.41109 1.2E-12 | 2.1E-09
Pxmp2 48.7392 | 1.54707 | -4.9802 1.3E-12 | 2.1E-09
Pla2g5 14.1208 | 0.32171 | -5.4446 | 1.7E-12 | 2.1E-09
Lilrb4a 7.45589 | 76.312 | 3.35256 2E-12 | 2.1E-09
Efnb3 22.12 | 0.28632 | -6.262 | 2.4E-12 | 2.1E-09
Epha4 15.8721 | 1.31671 | -3.5891 | 2.8E-12 | 2.1E-09
Arhgap20 5.69792 | 0.42001 | -3.7712 | 2.8E-12 | 2.1E-09
Plin5 62.3632 | 1.83697 | -5.1019 | 2.9E-12 | 2.1E-09
Slc16a3 0.73492 | 13.9908 | 4.2392 | 3.6E-12 | 2.1E-09
Nnt 96.8762 | 7.29169 | -3.736 | 3.6E-12 | 2.1E-09
Uqgerl 1 544.224 | 63.4257 | -3.1005 | 4.3E-12 | 2.1E-09
Ndufal?2 133.209 | 18.2867 | -2.8636 | 4.4E-12 | 2.1E-09
Tcap 796.169 | 26.3537 | -4.9385 | 4.5E-12 | 2.1E-09
Ndufa5 339.506 | 30.495 | -3.4807 | 4.7E-12 | 2.1E-09
Tcirgl 3.28181 | 28.4011 | 3.11918 | 5.1E-12 | 2.1E-09
Hadh 132.494 | 8.68993 | -3.937 | 5.1E-12 | 2.1E-09
Tecr 116.96 | 14.8088 | -2.9837 | 5.1E-12 | 2.1E-09
Mgst3 194.348 | 13.8882 | -3.8161 5.7E-12 | 2.1E-09
0610009020Rik | 62.4813 | 10.4165 | -2.5847 | 5.7E-12 | 2.1E-09
Gcedh 30.6936 | 4.00038 | -2.9401 5.7E-12 | 2.1E-09
Echl 614.676 | 31.1068 | -4.2992 6E-12 | 2.1E-09
Fitm1 97.0067 | 2.6166 | -5.2313 6E-12 | 2.1E-09
Adamts4 1.02968 | 20.3908 | 4.31557 | 6.2E-12 | 2.1E-09
Tcea3 70.8157 | 5.2562 | -3.7522 | 6.3E-12 | 2.1E-09
Ndufs3 88.0693 | 11.3406 | -2.9583 | 6.8E-12 | 2.1E-09
Pink1 232.258 | 17.5277 | -3.7189 7E-12 | 2.1E-09
Gstkl 48.4676 | 3.10138 | -3.9818 | 7.2E-12 | 2.1E-09
Mylk4 12.0123 | 0.20432 | -5.8988 | 7.5E-12 | 2.1E-09
Csf2ra 2.28256 | 26.4183 | 3.53019 | 7.7E-12 | 2.1E-09
Itgb3 0.83645 | 9.88875 | 3.56389 | 7.8E-12 | 2.1E-09
Abhd18 10.1543 | 0.78878 | -3.6927 | 8.1E-12 | 2.1E-09
HsdI2 126.304 | 10.8197 | -3.552 | &.1E-12 | 2.1E-09
Ppa2 10.5046 | 1.75347 | -2.5824 | 8.4E-12 | 2.1E-09
Dnajc28 19.6975 | 1.25348 | -3.9743 | 8.4E-12 | 2.1E-09
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Table S2, Related to Figure 4. Correlation of Col5al with ECM genes and

Col5al and ECM

genes with traits following isoproterenol infusion.

probe gene Col5al bicor | Iso Col5al pvalue adj

ILMN 1234774 | 2010005H15Rik 0.294440677 0.004171698
ILMN 2683656 | 2300002M23Rik 0.023567252 0.822577053
ILMN 2639818 | Acan -0.019844226 0.850248691
ILMN 2645654 | Acan 0.180855727 0.082765999
ILMN 3161887 | Adamts15 0.032593912 0.756442651
ILMN 1227398 | Agt -0.169998965 0.103287676
ILMN 1243738 | Abll -0.078599441 0.453921288
ILMN 2675551 | Abll -0.040132175 0.702505671
ILMN 2742730 | Abll -0.267783645 0.009457366
ILMN 2796842 | Abll 0.10410819 0.320658177
ILMN 1240933 | Ambn -0.200332189 0.054182927
ILMN 1226183 | Antxrl 0.60274776 1.63E-10
ILMN 1229643 | Antxrl 0.591077748 4.45E-10
ILMN 2759144 | Col2al -0.084161864 0.422509566
ILMN 2759142 | Col2al 0.035669596 0.734277633
ILMN 2606039 | Colllal -0.040706995 0.698448722
ILMN 1217703 | Colllal -0.141365222 0.176491302
ILMN 2776931 | Colllal -0.05249345 0.617267558
ILMN 2623644 | Colecl0 -0.202631179 0.051422863
ILMN 2862538 | Coll2al 0.533157083 3.76E-08
ILMN 2706693 | Col9al -0.098325727 0.348414406
ILMN 2939882 | Col9al -0.083046934 0.428703354
ILMN 2706692 | Col9al 0.066444358 0.526864347
ILMN 1256550 | Clecl4a 0.093987331 0.370194975
ILMN 2683958 | Col3al 0.593583534 3.60E-10
ILMN 1258629 | Col3al 0.627965127 1.61E-11
ILMN 2884751 | Cerl 0.134958447 0.197120262
ILMN 2865074 | Collla2 -0.236260663 0.022608851
ILMN 2711663 | Colecl2 0.185145159 0.07561398
ILMN 2613636 | Col4a3bp -0.172712496 0.097819328
ILMN 1245536 | Col4a3bp -0.1955361 0.060332789
ILMN 2902575 | Col4a3bp 0.011120238 0.915746943
ILMN 1257219 | Colecl?2 0.104403433 0.31928022
ILMN 2595260 | Creb3l1 0.292162225 0.004487587
ILMN 2591027 | Coll4al 0.813262976 4.07E-23
ILMN 1248099 | Coll6al 0.811726321 5.70E-23
ILMN 1257585 | Ddrl -0.329677718 0.001250875
ILMN 2713898 | Ddrl -0.027380759 0.794456434
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Table S3, Related to Key resources. Primer sequences for qgPCR

Mouse Collal primer Forward: GAAACCCGAGGTATGCTTGA

Mouse Collal primer Reverse: GGGTCCCTCGACTCCTACAT

Mouse Col2al primer Forward: GGGAATGTCCTCTGCGATGAC

Mouse Col2al primer Reverse: GAAGGGGATCTCGGGGTTG

Mouse Col3al primer Forward: GCACAGCAGTCCAACGTAGA

Mouse Col3al primer Reverse: TCTCCAAATGGGATCTCTGG

Mouse Col4al primer Forward: CTGGCACAAAAGGGACGAG

Mouse Col4al primer Reverse: ACGTGGCCGAGAATTTCACC

Mouse Col5al primer Forward: TTCCAGGCCAAACGGTACAT

Mouse Col5al primer Reverse: TGAGACACTGTTACAACGATTCCT

Mouse Col5a2 primer Forward: TTGGAAACCTTCTCCATGTCAGA

Mouse Col5a2 primer Reverse: TCCCCAGTGGGTGTTATAGGA

Mouse Col5a3 primer Forward: CGGGGTACTCCTGGTCCTAC

Mouse Col5a3 primer Reverse: GCATCCCTACTTCCCCCTTG

Mouse Col6al primer Forward: TGGCTCACCTGAGCTCCTAT

Mouse Col6al primer Reverse: ACGGATAGGTTAGGGGCAGT

Mouse Col7al primer Forward: GCCCAGAGATAGAGTGACCTG

Mouse Col7al primer Reverse: CGCACTTCTCGAAAGTTGCTG

Mouse Col8al primer Forward: ACTCTGTCAGACTCATTCAGGC

Mouse Col8al primer Reverse: CAAAGGCATGTGAGGGACTTG

Mouse Col9al primer Forward: CGACCGACCAGCACATCAA

Mouse Col9al primer Reverse: AGGGGGACCCTTAATGCCT
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Mouse Col10al primer Forward: TTCTGCTGCTAATGTTCTTGACC

Mouse Col10al primer Reverse: GGGATGAAGTATTGTGTCTTGGG

Mouse Colllal primer Forward: ACAAAACCCCTCGATAGAAGTGA

Mouse Colllal primer Reverse: CTCAGGTGCATACTCATCAATGT

Mouse Coll12al primer Forward: AAGTTGACCCACCTTCCGAC

Mouse Coll12al primer Reverse: GGTCCACTGTTATTCTGTAACCC

Mouse Coll3al primer Forward: GGAGCACCTGGACTAGACG

Mouse Coll3al primer Reverse: GCCTTGGACTGGTAAGCCAT

Mouse Coll4al primer Forward: TTTGGCGGCTGCTTGTTTC

Mouse Coll4al primer Reverse: CGCTTTTGTTGCAGTGTTCTG

Mouse Coll5al primer Forward: CCCAGGGAAGAATGGAGAAGT

Mouse Coll5al primer Reverse: CCAGAGCCTTCAATCTCAAATCC

Mouse Coll6al primer Forward: GAGAGCGAGGATACACTGGC

Mouse Coll6al primer Reverse: CTGGCCTTGAAATCCCTGG

Mouse Coll7al primer Forward: GAAAGGAGACAAAGGTGACCA

Mouse Coll7al primer Reverse: CGGCTTGATGGCAATACTTC

Mouse Col18al primer Forward: GGGGAAAGGATTCTTGCCTATG

Mouse Col18al primer Reverse: GAAGGAACAGAGAGTAAACCGTG

Mouse Col19al primer Forward: GGCTCTTGGAAATTGTGGACC

Mouse Col19al primer Reverse: AGCACACTTCCCAACTTGAAA

Mouse Col20al primer Forward: AGCCGACTCATTTGCCAAAAA

Mouse Col20al primer Reverse: GGGTGGGTATAAGGCTGGAG

Mouse Col22al primer Forward: GGGGAACCTGGATACGCTAAA
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Mouse Col22al primer Reverse: CAAAGTACGCACACTGGGAG

Mouse Col23al primer Forward: CCCCATCTGAGTGCATCTGTC

Mouse Col23al primer Reverse: CTTGCCGTCCAGACCTAGAG

Mouse Col24al primer Forward: TTCACTGTCTAAACACCCCAAGG

Mouse Col24al primer Reverse: CCATCCTGAATCTTGCAGTCAT

Mouse Col25al primer Forward: TTCCATCCGCTGTCTGACAC

Mouse Col25al primer Reverse: CCTGGCCGTTCTTATTTTAGCC

Mouse Col26al primer Forward: GCCATCACACGGTGACAAG

Mouse Col26al primer Reverse: GAGTCCTGTAACTCACGAGGT

Mouse Col27al primer Forward: CCTTCCCGTAGGGACTCCAT

Mouse Col27al primer Reverse: GGCACAGTAATTGTGAGCGAC

Mouse Col28al primer Forward: AGCAGCGGGTCAAGTCTCT

Mouse Col28al primer Reverse: ACGCCATCTTTACGCCCTTC

Mouse Acta2 primer Forward: CCTTCGTGACTACTGCCGAG

Mouse Acta2 primer Reverse: ATAGGTGGTTTCGTGGATGC

Mouse Postn primer Forward: CGAATCATTACAGACACACCTGC

Mouse Postn primer Reverse: ACGGCCTTCTCTTGATCGTC

Mouse Pail primer Forward: CCGATGGGCTCGAGTATGAC

Mouse Pail primer Reverse: TTCTCAAAGGGTGCAGCGAT

Mouse Myhl1 primer Forward: AAGCTGCGGCTAGAGGTCA

Mouse Myhl1 primer Reverse: CCCTCCCTTTGATGGCTGAG

Mouse Des primer Forward: GTGGATGCAGCCACTCTAGC

Mouse Des primer Reverse: TTAGCCGCGATGGTCTCATAC
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Mouse Cnn2 primer Forward: AGGAAGCAGAACTCCGAAGC

Mouse Cnn2 primer Reverse: CCAGTTCTGCATAGAGCGGT

Mouse Gapdh primer Forward: ACAACTTTGGCATTGTGGAA

Mouse Gapdh primer Reverse: GATGCAGGGATGATGTTCTG
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Appendix III. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian
Cells of Desired Genetic Combinations and Fates
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SUMMARY

Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of
mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mito-
chondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by trans-
ferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (p0) cells.
Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor
mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a p0-like cell metabolome and tran-
scriptome despite growth in restrictive media. We reprogrammed non-immeortal SIMR fibroblasts into
induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types,
including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after
reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipu-
lated control fibroblasts carried through the same protocol. Thus, our MitoPunch “pipeline’” enables the pro-
duction of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in mul-
tiple cell types.

INTRODUCTION tion (Fatananan et al, 2018). Each mitochondrion contains

=1,100 nucleus-encoded and imported proteins (Calvo et al,
Mammalian mitochondria are cellular power plants with addi-  2016) with numerous copies of a circular ~16.5-kilobase pair
tional roles in apoptosis, reactive oxygen species (ROS) and  (kbp) mitochondrial genome (mtDMA) encoding 13 proteins
Fe-8 clLBtBrgmBraﬁnn,Caz'reg.llaticn,and metabolite produc- required for electron transport chain (ETC) activity and

@ Cell Reports 33, 108562, December 28, 2020 & 2020 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (hitp.//creativecommons.org licenses,/ by-nc-nd’4.0/).
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respiration. As many as 1:5,000 people have mtDNA mutations
that impair high-energy-demand tissues and contribute to debil-
tating diseases, including cancer, diabetes, and metabolic syn-
dromes (Schaefer et al., 2004). In addition, cells may contain a
mixture of different mtDMNA sequences, a situation termed heter-
oplasmy, with up to 1in 8 asymptomatic individuals camying an
unsuspected pathogenic mtDNA mutation (Elliott et al., 2008;
Rebolledo-Jaramillo et al., 2014). Thus, an ability to controllably
manipulate mtDNA sequences could enable studies of mito-
chondria and potentially develop disease models or therapies
for mtDNA disorders.

In human reproduction, several types of mitochondrial
replacement strate gies were developed to exchange pathogenic
mtDMA in a zygote with non-detrimental mtDNA from a healthy
donor oocyte. These approaches have potential for preventing
transmission of mtDMNA disorders from camer mothers to their
children (Wolf et al., 2015; Wolf et al., 2019). However, in vitro
methods to change mtDNA sequences within somatic cells
and tissues remain limited (Patananan et al., 2016). Cell fusions
that produce "cybrids” permanently retain donor mitochondria
(Wong et al.. 2017), altthough fusion partners are typically trans-
formed cells that cannot be reprogrammed. Also, endonucle-
ases imported into mitochondria can shift heteroplasmy ratios
to alter mitochondria and cell functions by targeting specific se-
quences for destruction. However, these endonucleases are
laborious to produce, are limited to certain mtDMA sequences,
are inefficient, and do not yield homoplasmy (Campbell et al..
2018; Yahata et al., 2017; Yang et al., 2018). Of note, a recent
and exciting development using a bacteral cytidine deaminase,
DddA, to edit mtDMA single-base sequences is tempered by low
efficiency and an undesirable off-target rate (Mok et al.. 2020).

Several methods transfer isolated mitochondria into mtDNA-
deficient cells, known as p0 (rho null) cells, to restore respiration
(Kim et al., 2018; Nzigou Mombo et al., 2017). In addition, some
studies reported endoyctosis of mitochondria by mammalian
cells (Clark and Shay, 1982; Kesner et al., 2016). However, these
studies were not concerned with rescuing p0 cells and gener-
ating stable isolated mitochondrial recipient (SIMR) clones that
permanently retain donor mtDNA (Kesner et al., 2016; Kitani
gt al., 2014; Sun et al, 2019). A recent study did produce a
limited number of SIMA clones by coincubating high concentra-
tions of isolated HEK293T donor mitochondria with p0 osteosar-
coma cells (Patel et al., 2017). We (Dawson et al., 2020) and
athers (Al Pour et al., 2020) have recently reported similar find-
ings in which cells are capable of endocytosing exogenous
mitochondria and even altering metabaolic functions for a limited
period of time (~1 week), but these exogenous mtDNAs are lost
over time. To address this problem, we previously developed a
photothermal nanoblade to stably fransfer small quantities of
isolated mitochondria into p0 osteosarcoma cells (Wu et al,,
2016). Unfortunately, the nanoblade is laborious and low
throughput, and two of three SIMR clones reported did not reset
the pD cell metabolome. A technigue that generates many non-
transformed stable clones is desirable to examine nowvel
mtDMNA-nuclear DMA (nDMNA) combinations through reprogram-
ming to pluripotency and differentiation into multiple cell types.

Here, we describe a simple-to-use mitochondrial transfer
technigue called "MitoPunch” to rapidly generate numerous
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non-transformed SIMR clones. We apply MitoPunch to imple-
ment a pipeline that demonstrates donor miDNA functions in
recipient host primary cells at different cell fates. Our study es-
tablishes this resource pipeline to generate primary SIMR cels
using non-immortalized materials. We also measure the status
of the metabolome, transcriptome, and biophysical properties
of SIMR cells with defined mtDNA-nDMA combinations to guide
future studies generating somatic cells with desired miDNA-
nDMNA combinations.

RESULTS

MitoPunch Generates SIMR Cells with a Range of Cell
Types and mtDNAs

MitoPunch is a massively parallel, pressure-driven, large camgo
transfer platform based on prior photothermal nanoblade and
biophotonic laser-assisted cell surgery tool (BLAST) technolo-
gies (Sercel et al, 2020; Wu et al, 2016; Wu et al., 2015). Mito-
Punch uses a mechanical plunger to physically deform a pliable
polydimethylsiloxane (PDMS) reservoir containing isolated mito-
chondria suspended in phosphate-buffered saline (1x PBS [pH
7.4])(Figure 1A). Plunger activation propels the suspended cargo
within the PDMS delivery chamber through a porous membrane
containing numerous 3-um-diameter holes on which a confluent
layer of adherent cells is grown. This action directly forces iso-
lated mitochondria into the cytosol of recipient cells.

To demonstrate MitoPunch generation of SIMR cells, we
transferred isolated mitochondria from ~1.5 x 107 HEK293T
cellsinto ~2 % 10° 143BTK- p0 ostecsarcoma cells. Post-trans-
fer, we select for and isolate SIMR colony clones with perma-
nently retained donor mtDMA using uridine-deficient media.
This selection is enabling because respiration-defective p0 cells
have inactive dihydroorate dehydrogenase and depend on
exogenous uridine or restored respiration for pyrimidine biosyn-
thesis (Grégoire et al., 1984). Compared to the coincubation of
the same amount of isolated mitochondna with cells (Clark and
Shay, 1982; Kesner et al., 2016), only 143BTK— pD cells with
HEK283T mitochondria from MitoPunch fransfer (143BTK
p0+HEK293T) permanently retained donor mtDMA and survived
uridine-deficient media selection (Figurs 1B). In a representative
set of mitochondrial fransfer experiments, MitoPunch generated
~75 independent crystal-violet-stained SIMR clones in compar-
ison to no clones obtained by coincubation (Figure 1B).

We next examined whether MitoPunch could generate SIMR
clones with defined mtDMNA-nDMNA pairs that transfer features
of mitochondrial disease. We isolated mitochondria from cybrid
cells containing either an A324 3G mtDMA substitution commonly
associated with mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS) or wild-type (WT), non-mutant
mtDMA from the same individual (Picard et al, 2014). The
AZ243G point mutation is in the HNALEU gene and results in
altered production and assembly of ETC complexes with
impaired oxidative phosphorylation (Chomyn et al., 1992; Sasar-
man et al., 2008). Following MitoPunch into 143BTK - p0 recip-
ients and 2 weeks of selection, two of several dozen independent
SIMR clones that permanently retained MELAS (143BTK
pD+MELAS) or WT (143BTK~ p0+WT) mtDMNA were tested for
oxygen consumption rate (OCR) using the Seahorse
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Figure 1. MitoPunch Is a Versatile Mitochondrial Transfer Technology

{8) Schematic representation of the MitoPunch mitochondrial transfer platform.

{B) Images of crystal-viol et-stained SIMR colonies from coincubation or MitoPunch delivery of either 1% PBS (pH 7.4) (sham control) orisolated HEK293T call
mitochondria into 143BTK — pl osteosarcoma cells after selection in undine-depleted medium. Data are the maans « S0 of three technical replicates.

{C) OCR measurements for -1.5 x 10* 1438TK -, 143BTK- p0, WT cybrid, MELAS cybrid, 143BTK - p0+MELAS SIMR, and 143BTK - p0+WT SIMR celis by
Seahorse XF96 Extracsllular Flux Analyzer. Values were calculsted by standard procedures {zee STAR Methods). Data are the means + S0 of four technical
replicates.

{legend continued on naxt page)
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Extracellular Flux Analyzer. Results showed 143BTK
pO+MELAS clones had significantly impaired basal respiration,
maximal respiration, and spare respiratory capacity compared
to patient-matched 143BTK~ p0O+WT and native 143BTK -~ con-
trol cells (Figure 1C), indicating stable miDMA transfer of the pri-
mary metabolic deficit of the MELAS phenctype.

We then expanded mitochondrial donor and recipient cell pair-
ings beyond these initial studies to demonstrate the versatility of
MitoPunch. As examples, mitochondria were isolated from har-
vested C57BL/6 mouse tissues and MitoPunch transferred into
C3H/An-derived L929 p0 immoralized fibroblasts. Two weeks
of selection yielded dozens of SIMR clones from each mitochon-
drial source. SIMR clones generated with high-energy-demand
heart, lung, or muscle-derived mitochondria showed the most
robust respiratory profiles, in contrast to SIMR clones that
received low-energy-demand spleen- or kidney-derived mito-
chondria (Figure 1D). We also evaluated MitoPunch delivery of
heteroplasmic mtDMNA mixtures into cells. Mitochondria isolated
from mouse cybrid lines containing mtDMA mutations in the
cytochrome B (mt-Cyth), MADH dehydmogenase subunit 4 (-
nd4), and MADH dehydrogenase subunit 6 (mit-nd6) genes
were MitoPunch transferred individually or in 1:1 mixtures by
protein content into L929 0 fibroblasts. SIMR cells with a single
source of mutant mtDMA continued to show severe respiratory
impairments (Figure 1E). In contrast, SIMR cells with a mixture
of non-overlapping mutant mtDMAs showed markedly improved
respiratory profiles, strongly suggesting that both miDMNAs were
stably maintained (Figure 1E). Thus, MitoPunch and selection is a
versatie approach for generating human or mouse SIMR celis
with desired mtDMA-nDMA pairs. Co-transfer of multiple mtDMNA
types into the same recipient cell also provides a simple method
to examine complementation for mutant miDMA mixtures.

Mito Punch Generates Non-Transformed, Non-
Malignant SIMR Cells
To obtain SIMR cells with mtDNA-nDNA combinations using
non-immaortalized recipient cells, we established a human fibro-
blast mitochondrial recipient pipeline. Hayflick-limited BJ fore-
skin (BJ) fibroblasts, neonatal demal fibroblasts (NDFs), and
adult dermal fibroblasts (ADFs) were treated for 3 weeks with
FDA-approved 2'.3'-dideoxycytidine (ddC) (Nelson et al.. 1997)
to deplete endogenous mtDMA. Primary p0 human fibroblasts
had undetectable mtDMA (Figures S1A and S1B) and cellular
respiration (Figures S1C and 51D) by gPCR and Seshorse assay,
respectively. Because ddC could cause nDMA akterations, we
examined BJ p0 fibroblasts by whole-genome sequencing and
identified only a few non-synonymous mutations at 0.6 muta-
tions per megabase, on average, with no chromaosomal breaks
and no changes in DMA copy number (Table 51).
Subsequently, mitochondria isolated from a human peripheral
blood mononuclear cell lot (PBMC1) were transferred into
fresh p0 fibroblasts, followed by an empirical and reproducible
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selection protocol with wridine-deficient galactose medium.
From 5-10 BJ fibroblasts, MDFs, or ADFs, p0+PBMC1 SIMR
clones were isolated that showed the correct mtDNA-nDMNA
sequence pairs and human leukocyte antigen (HLA) recipient
cell haplotypes (Figures 2A-2C). Primary, non-immortal SIMR
clones were also obtained from independent PEMCZ2 and
HEK293T cell mitochondrial transfers. We observed variable ef-
ficiencies for HEK293T cell and the PEMCZ mitochondrial trans-
fers, whereas ADFs p0+PBMCZ did not yield clones (Figure S1E).
Analysis of the bulk culture representing 23 BJ p0+HEK293T
SIMR clones confirmed the correct mtDMNA-nDMA pairing and
HLA haplotype (Figures S1F and S1G).

We examined the respiratory function of BJ p0+PBMC1 and BJ
p0+HEK293T SIMR fibroblasts by Seahorse assay, which showed
statistically improved basal and maximal respiration and spare
respiratory capacity for both SIMR cell types compared to BJ
pl0 fibroblasts, albeit remaining lower than levels for control BJ fi-
broblasts (Figures 2D and 51H). Immunofluorescence (IF) micro-
scopy showed BJ p0 fibroblasts with a fragmented mitochondrial
network morphology lacking mtDNA-containing nucleoids, as
observed previously for p0 cells (Kukat et al., 2008) (Figure 2ZE).
In contrast, native B. fibroblasts showed a reticular mitochondrial
network with dozens of nucleoids per cell (Figure 2E). By IF
nucleoid speckle numbers, both BJ p0+PBMC1 and BJ
pD+HEK283T SIMR cells appeared to restore miDMNA content to
levels equivalent to or exceeding that of native BJ fibroblasts (Fig-
ures 2E and S11). SIMR cell mitochondria showed a reticular mito-
chondrial network morphology similar to that of native BJ fibro-
blasts, atthough with denser and more swaollen mitochondria
(Figures 2E and S1l). Despite SIMR fibroblasts permanentty re-
taining donor mtDNA, OCR and IF suggest that assimilation of
transferred mtDNA results in cells with features in between those
of BJ p0 and native BJ fibroblasts.

SIMR Fibroblasts Are Reprogrammable

We reprogrammed B.J p0+PBMCA and BJ pO+HEK293T SIMR fi-
broblasts along with native BJ fibmblasts using OCT4, S0X2,
KLF4, cMYC, NANOG, and LIN28 RMAs and quantified for TRA-
1-80* staining clones. In two independent experiments, native
BdJ fibroblasts yielded an average of 136 reprogrammed TRA-1-
60" clones (0.0688% efficiency), compared to 21 (0.011%) and
three (0.0015%) clones for BJ p0+PBMC1 and BJ pO+HEK233T
cells, respectively (Figures 3A and S1J). Three unique reprog-
rammed clones of BJ p0+PBMC1-iPSCs (1, 2, and 11) and BJ
pO+HEK293T-IPSCs (1, 2, and 4) were tested for pluripotency bio-
markers and stained positive for OCT3/4 and SOX2 transcription
factors by flow cytometry, as did BJ-induced pluripotency stem
cell (iPSC) control, but not native BJ fibroblasts, as expected (Fig-
ures 3B and S1K). Conversely, the differentiated cell biomarker
CD44 (Quintanilla et al., 2014) was negative in all reprogrammed
BJ p+PBMC1-iPSC, BJ pO+HEK293T-PSC, and control BJ-
iPSC clones and immunostained only the native BJ fibroblasts

D) OCR measurements for - 1.5 =% 10° L9249 p0 and L2429 pl SIMR cells generated with mitochondria from C57BLA mouse tissues. Data are the means + S0 of 12

technical replicates (L9209 0 cells had four technical replicates).

{E) OCR measurements for 1.5 x 10* L929 p0 and L9249 p0 SIMR cells generated by transferring isolsted mitochondria alone or in combinations from mouse
cybrids with non-overapping mtDNA mutstions (Mito 1, Mito 2, and Mito 3). Data are the means « 5D of eight technical replicates.
Statistical significance for (Bl—E) by unpaired, two-tsiled Student's t test. “p £ 0.05; *p £ 0.01; **p £ 0.007; ***p £ 0.0001. See also Figurs 51,
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Figure 2. Generation of SIMR Fibrob lasts
{A) Selection waorkflow (in days) for genarating
SIMR cells from p0 primary human fibroblastsand
SIMR clone generation efficiency data. Mito-
chondria from -3 % 107 peripheral blood mano-
nuckear cells (PBMCT) were MitoPunch trans-
femed into BJ p0, NOF 0, or ADF p0 recipient
fibroblasts. After sslection, SIMR colonies were
stained with crystal wiolet and quantified. Clons
counts from asingle representative mitbchondrial
transfer into -1 % 10° recipient p0 fibroblasts are
indicated.
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(Figures 3B and S1K). BFPSC and all SIMR-iPSC reprogrammed
clones werealso SSEA-4" (Abujarour etal., 201 3)and OCT4" by IF
(Figures 3C and 51L). Seahorse assays of BJ p0+PBMC1-iPSC
and BJ pO+HEK283T-iPSC clones showed minimal or no statisti-
cal differences in basal respiration, maximal respiration, and spare
respiratory capacity compared to the native BJ-iPSC control (Fig
ures 30 and S1M). Thus, SIMR fibroblast reprogramming gener-
ated iPSCs with donor mtDMA.

single-nucieotide polymophisms.

{C) Major histocompatibility complex (MHC) class
| HLA A, B, and C locus genotyping using Opti-
Type w1.3.1 for native BJ, BJ p0, and BJ
p0+PBMC1 SIMR fibroblasts.

(D) OCR measurements for ~1.5 x 107 nathe BJ,
BJ p0, and BJ p0= PBMC1 SIMR fibroblasts by the
Seahorse XF36 Extracellular Flux Analyzer. Values
were calculated by standard procedurss (zes
). Data are the means + 5D of four
technical replicaes. Statistical significance by
unpaired, two-tailed Student's t test. *p £ 005
p £0.001

(Ej Representative images of native BJ, BJ p0, and
BJ p0+PBMC1 SIMR fibroblasts immuneostained
for double-stranded DMNA [dsDNA) fgresn) and
TOM20 fred) with colocalization indicated frellow).
Images (100x) were acquired on a Lsica SPB
confocal microscope. Scale bars, 15 pm.

See also Figure S1and T 51

Other studies have shown iPSC re-
programming of fibroblasts from individ-
uals with pathogenic mtDNA mutations
(Cherry

et al, 2013; Folmes et al., 2

but this has not been aitempted for
SIMR fibroblasts with donated, non-
native mutant mtDMA. Therefore, mito-
chondria containing an A3243G MELAS
mtDMA mutation or WT miDNA were iso-
lated, followed by MitoPunch transfer
into BJ p0 fibroblasts and selection. BJ
pO+MELAS SIMR fibroblasts showed
impaired proliferation during reprogramming and did not yield
IPSCs (data not shown). Therefore, we switched to MDF pOrecip-
ient fibroblasts and generated SIMR fibroblasts using isolated
MELAS (NDF pO+MELAS), WT (NDF pO+WT), or NDF (NDF
p0+MNDF) mitochondra. Seahorse assays showed that NDF
p0+MELAS fibroblasts had a significant reduction in basal respi-
ration, maximal respiration, and spare respiratory capacity
compared to native NDF, NDF p0+NDF, and NDF pO+WT
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Figure 3. SIMR Fibroblasts Can Be Reprog-
rammed

{A) Native BJ and SIMR fibroblasts reprogrammed
to iPSCs with TRA-1-60 clones counted by mi-
croscopy. Data are the means of biclogical dupli-
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{C) Representatie phase contrast and IF micro-
scopy images of native BJ fibroblast jnegative
control), BJ-iPSC (positive control), and three BJ
pO-+PBMC1-iPSC clones immunostained for plu-
ripotency biomarkers SSEA4 and OCT4. Scale
bars, 100 pm.
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fibroblasts (Figure S1M). Restriction fragment length polymaor-
phism (RFLF) PCR analyses confirmed the generation of homo-
plasmic NDF p0+MELAS SIMR fibroblasts (Figure S10). We also
genemted ~25%-50% heteroplasmic NDF p0+MELAS/WT fi-
broblasts, which was verified by RFLP analyses (Figure S10).
Homoplasmic MDF p0+MELAS fibroblasts underwent RMA-
based reprogramming as described earlier, but all developing
IPSC clones spontaneously differentiated (Figure S1F). Reprog-
ramming of NDF p0+MELAS/WT heteroplasmic fibmoblasts (Fig-
ures 510) yielded 20 iPSC clones, butall clones retained only WT
mtDMNA by RFLP analysis (Figures S1P and S$1G). To examine
whether the reprogramming method influenced mutant mtDMNA
SIMR-IPSC generation, NOF pO+MELAS fibroblasts underwent
integrating DNA, lentiviral, and Sendai virus reprogramming stra-
tegies. In all cases, MDF pO+MELAS cells spontaneously differ-
entiated despite early signs of reprogramming (Table S2). In
addition, no MDF pD+MELAS-IPSCs were obtained when re-
programming was performed with additional uridine supplemen-
tation, antioxidant N-acetylcysteine, a Rho-associated protein

6 Cell Reports 33, 1085682, December 29, 2020
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kinase (ROCK) inhibitor, or low oxygen
tension (data not shown). Similar resutts
were also obtained with all four reprog-
ramming strategies for NDF p0 SIMR fi-
broblasts containing additional miDNA
mutations including a cytochrome B dele-
tion, a Kearns-Sayre common deletion,
and AB344G or TB293G miDMA substitu-
tions (Table 52). Thus, SIMR fibroblasts
readily maintain a large variety of mtDNA
sequences, in contrast to SIMR-IPSCs,
which can be generated only with non-detrimental mtDMNA se-
quences. Further biochemical investigations are needed to
determine how mtDMA sequences dictate SIMR reprogram-
ming, whereas native mutant mtDMA fibroblasts can be reprog-
rammed (Haméldinen et al., 2013; Ma et al., 2015; Pek et al.,
2019).

BJ p0+PBMCI-IPEC

SIMR-iPSCs Produce Functional, Differentiated Cell
Types

We next determined whether SIMR-iPSCs with isogenic nuclei
and non-native donor mtDMAs could differentiate. We chose o
examine defined medium differentiation of mesenchymal stem
cells (MSCs) because of their relevance to potential therapies
and current use in over 850 clinical trials (Hsu et al.. 2016). A
BJ-iPSC control, BJ p0+PBMC1-iPSCs, and BJ pO+HEK293T-
iPSCs were differentiated into MSCs and validated with an
antibody panel against surface biomarkers established by the In-
ternational Society for Cellular Therapy (ISCT) (Dominici et al.,
2006). Flow cytometry verified that the BJ-MSC conirol, BJ
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p0+PBMC1-MSC clones, and BJ pD+HEK283T-MSC clones
were positive for MSC biomarkers CD73, CD20, and CD105,
and negative for a cocktail of non-MSC biomarkers, including
CD11b, CD19, CD34, CD45, and HLA-DR (Figurses 44 and
S1R). BJ-MSCs and all SIMR-MSC clones from both mtDMA do-
nors adhered to plastic, consistent with |SCT criteria for MSCs
(Figures 4B and S15).

Seahorse assays of BJ-MSC control, BJ p0+PBMC1-MSC
clones, and BJ pO+HEK223T-MSC clones revealed no or mild
differences in basal respiration, maximal respiration, and spare
respiratory capacity, indicating that respiratory changes are
mutable for p0 fibroblasts after MitoPunch with reprogramming
and differentiation (Figures 4C and S51T). Quantitative phase mi-
croscopy (QPM) was used to examine key cellular biophysical
properties in SIMR MSCs and detected minimalto no differences
in cell growth rate, area, and biomass among the BJ-MSC con-
trol, BJ p0+PBMC1-MSC clones, and BJ pO+HEK293T-MSC
clones (Figures 4D and 51U). The function of SIMR-MSC clones
and the BJ-MSC control was compared by co-culture with hu-
man PBMC-isolated T cells in a standard immunosuppression
assay, which measures MSC clinical immunomodulatory perfor-
mance (Djouad et al, 2003; Ghannam et al, 2010). Al BJ
p0+PBMC1-MSC and BJ pO+HEK293T-MSC clones repressed
T cell prolferation (Figures 4E and S1V). BJ p0+PBMC1-MSC
clone 11 showed the greatest immunosuppression and reduc-
tionin T cell proliferation, whereas no large differences were de-
tected between the remaining SIMR-MSC clones and the BdJ-
MSC control. Finally, we performed directed trilineage different-
ation of SIMR-MSCs into adipocytes, osteoblasts, and chondro-
cytes to demonstrate the clinical potential of MitoPunch-engi-
neered lines. The BJ-MSC control, BJ p0+PBMC1-MSCs, and
BJ p0+HEK293T-MSCs all formed these three MSC-differenti-
ated lineages (Figures 4F and 51W). Adipocytes and chondro-
cytes were phenotypically similar between the BJ conirol and
SIMR clones, whereas SIMR osteoblasts tended to qualitatively
produce more calcium deposits. Thus, our mitochondrial rans-
fer strategy enables the generation of iPSCs, MSCs, and further
differentiated cell types from p0 fibroblasts by stable incorpora-
tion of specific, non-detrimental, and non-native donor miDNAs.

SIMR Cell Metabolism and RNA Transcript Change s with
Fate Transitions

We used ultra-high-performance liquid chromatography-mass
spectrometry (UPHLC-MS) to quantify 154 steady-state metabo-
lites in native BJ, BJ p0, BJ pO+PBMC1 clones, and BJ
pO+HEK293T clones at fibroblast, iPSC, and MSC fates. Hierar-
chical clustering showed distinct, grouped profiles for fibroblasts,
iPSCs, and MSCs independent of mitochondrial transfer status
(Figures S2A and S2B; Table S3). Principal component analysis
(PCA) of metabolite data also showed three main clusters repre-
senting fibroblast, iPSC, and MSC fates but no clear differences
between SIMR and native control cells within each fate (Figures
S0C and S20). Metsbolite set variation analysis (MSVA) and
Euclidean distance analysis of the BJ p0+PBMC1-iPSC and BJ
pl+PBMC1-MSC clones showed similar metabolite pathway pro-
files to themselves and to their respective BJ-IPSC and BJ-MSC
controls (Figures S2A, S2E, and S2F). In contrast, BJ
pO+HEKZ283T-PSC clones 1 and 2 clustered separately from
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clone 4 and the BJ-PSC control for several metabolic pathways,
particulady purine, pyrimidine, glutathione, and ethanol meta-
bolism (Figures 52B, S2E, and S2F). This separation in BJ
pO+HEK233T-iPSC cloneswas nolonger present upon further dif-
ferentiation to BJ pO+HEK283T-MSC clones (Figures S2B, S2E,
and S2F). In summary, steady-state metabolite analyses showed
that SIMR cells are comparable to native control cells, with only a
few differences that are resolved upon iPSC reprogramming and
differentiation to MSCs.

We utilized RMA seguencing (RNA-seq) to evaluate whole-
transcriptome profiles for SIMR cells at fibroblast, iPSC, and
MSC fates. DE Seq2 was used to identify significant differentially
expressed genes (DEGs), defined as genes showing an absolute
log 2-fold change > 0.5 and adjusted p < 0.05. For bath BJ
p0+PBMC1 and BJ p0+HEK293T SIMR cells, the greatest num-
ber of DEGs compared to native BJ control cells with an adjusted
p = 0.05 occurred at the fibroblast fate (Figures SA and S3A).
RAMNA-seq identified 1741, 194, and 224 elevated and 1827, 68,
and 115 repressed DEGs by comparing BJ p0+PBMC1 cells to
native BJ parent cells at the fibroblast, iPSC, and MSC fates,
respectively (Figure SA; Table S4). Transcriptomic analysis of
the independently generated BJ pO+HEK283T cells similarly
identified 1,377, 537, and 239 elevated and 1,564, 648, and
210 repressed DEGs compared to native BJ parent cells at fibro-
blast, iPSC, and MSC fates, respectively (Figure S3A; Table S4).

Reactome pathway enrichment analysis of DEGs showed
diverse pathways alttered in SIMR fibroblast transcript profiles
compared to those in native BJ fibroblasts, includingthose asso-
ciated with extracellular matrix organization and the complement
cascade (Figure S3B; Table S5). Differential expression and
pathway enrichment analyses comparing all SIMR-PSCs and
SIMR-MSCs to native BJ-iPSC and BJ-MSC controls, espec-
tively, identified a dramatically smaller number of DEGs, with
overrepresented pathways driven primarily by a cluster of his-
tone transcrpts (Figures S3C and S3D; Table S5).

Further detailed transcriptome analyses uncovered metabolic
pathway differences based on cell condition and fate. Somatic
cell reprogramming to iPSCs requires a metabolic shift from pre-
dominantly oxidative phosphorylation tomainly ghlycolysis, which
corresponds with all BJ p0+PBMC1-iPSC and BJ p0+HEK293T-
iPSC clones showing elevated expression of glycolysis-associ-
ated transcripts by gene set varation analysis (GSVA) (Figures
544 and S4B). Additionally, GSVAshowed increased expression
of ETC transcripts in BJ p0, BJ p0+PBMC1, and BJ pO+HEK293T
SIMR fibroblasts compared to that in native BJ fibroblasts (Fig-
ures 544 and S4B). However, immunoblats for succinate dehy-
drogenase (SDHB; complex |}, ubiguinol-cytochrome ¢ reduc-
tase core protein 2 (UUQCRC2; complex lll), cytochrome C
oxidase |l (MT-COXIl; complex V), and ATP synthase F1 subunit
alpha (ATPSA; complex V) demonstrated the opposite result,
with ETC proteins in SIMR fibroblasts reduced compared to
those in the native BJ fibroblast control (Figure S4C). Owverall,
whole-transcriptome data analysis showed that initial large dif-
ferences between SIMR clones and native control cells at the
fibroblast fate progressively dissipated during reprogramming
and differentiation.

‘We examined the RNA transcript levels of 1,158 nuclear genes
listed in the MitoCarta2.0 database that encode proteins that
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localize to the mitochondria. Hierarchical clustering analysis of
franscripts from these genes identified a separation of BJ
p0+PBMC1, BJ pO+HEK293T, and BJ p0 transcripts away
from the native BJ transcripts at the fibroblast fate (Figures 5B
and 538). Pathway analysis of DEGs between these two groups
showed an enrichment for genes encoding ETC proteins in the
native BJ fibroblasts (Table S4). Of note, this differential clus-
tering was not observed at the iPSC and MSC fates (Figures
58 and S5A).

Closer examination of miDMA-encoded transcripts only
demaonsirated, as anticipated, that BJ p0 cells have dramatically
lowered expression of all 13 coding gene franscripts compared
to transcripts from SIMR and native fibroblast cells (Figures 5C
and S5B). Additionalty, both BJ p0+PBMC1 and BJ
pO+HEKZ283T fibroblasts showed significantly reduced expres-
sion of the 13 mtDMA-encoded genes compared to native BJ
fibroblasts (Figures 5C and S5B). By contrast, no significant
difference was observed in mtDMNA transcript levels after reprog-
ramming SIMR and control fibroblasts to iPSCs, followed by dif-
ferentiation to MSCs (Figures 5C and S5B).

We then used the MitoXplorer pipeline (Yim et al., 2020) to
quantify the representation of 38 distinct mitochondrial pro-
cesses within the identified DEGs. As anticipated from abolished
respiration, BJ pOfibroblasts showed DEGs for 29 mitochondrial
processes compared to native BJ fibroblasts, especially within
axidative phosphorylation, mitochondrial genome translation,
and amino acid metabolism processes (Figure 5D). Similarly,
BJ p0+PBMC1 and BJ pO+HEK233T fibroblasts had altered
gene expression profiles in 30 and 29 mitochondrial processes,
respectively, in comparison to native BJ fibroblasts (Figures 5D
and S5C). Further analysis at this fate using MitaXplorer high-
ighted differences between the two SIMR lines, as the BJ
p0+PBMC1 had fewer DEGs for mtDMA-associated oxidative
phosphorylation and mitochondrial genome translation
compared to BJd p0+HEK293T fibroblasts. Furthermore, both
SIMR fibroblast lines had more DEGs associated with nuclear-
encoded mitochondrial translation and calcium signaling and
transport than the BJ p0 line, when compared to native B. fibro-
blasts. Of note, the number of affected mitochondrial processes
was dramatically reduced by reprogramming, with only 7 and 16
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processes exhibiting DEGs in BJ p0+PBMC1-iPSCs and BJ
pO+HEK293T-iPSCs, respectively (Figures 5D and S5C). Finally,
BJ p0+PBMC1-MSCs and BJ pO+HEK293T-MSCs exhibited
only 3 and 8 mitochondrial processes with DEGs, respectively,
with only ROS defense similarly altered between the two
SIMR-MSC lines and MSC control (Figures 5D and S5C). These
data uncover transcriptomic aterations to translation, among
additional mitochondrial processes, at the fibroblast fate as a
potential difference maker for exogenous miDMA function in
SIMR cells. Combined, the results show that, although SIMR
cell mitochondrial function becomes more similar to that of the
BJ control with reprogramming and differentiation, differences
still exist that are based on the transferred mDNA sequence.

DISCUSSION

Here, we use MitoPunch to report on a rapid, versatile pipeline to
generate transformed or non-immortal cells with specific mtDMNA-
nDMA combinations, anadvance with certain advantages over cy-
brid technology (Patananan et al., 2016; Wong et al., 2017), un-
controlled selection in physiologic mitochondrial “bottlenecks™
(Latorre-Pellicer et al., 2019), or time-consuming screens for cells
with desired miDNA mutations (Fayzulinet al., 2015; Lorenz et al.,
2017). We show that the transcriptome and metabolome of SIMR
fibroblasts resemble those of p0 matched recipient cells and that
reprogramming to pluripotency followed by differentiation resets
these profiles to closely resembile those of unmanipulated control
cells. Our studies would be difficult or impossible using other mito-
chondrial transfer approaches, such as those that use immortal
cell lines incapable of reprogramming. Although it is also possible
to generate SIMR cells with the nanoblade and microinjection,
these low-throughput methods suffer practical and experimental
limitations. In contrast. MitoPunch is an accessible approach to
generate numerous clones with desired, stable miDNA-nDNA
combinations within 2 weeks.

SIMR clone formation was achieved for all p0 recipient fibro-
blasts studied. Of note, some mtDNA-nDNA combinations pro-
duced SIMR clones at lower efficiencies than other combina-
tions, which could only be detected using a high-throughput
platform like MitoPunch. In contrast to 143BTK~ pO+HEK293T

Figure 4. SIMR iPSCs Produce MSCs with Trilineage Differentiation Potential

{4) Flow cytometry of MSC biomarkers COT3, CD90, and CD105, and a cocktsilof negative MSC biomarkers. iImmunostained samples are indicated in color, with
isotype negative controls in gray. Data for BJ-MSC control are the same data as in Figure S5A. Representative clones for native BJ-MSCs and BJ p0+PBMGC1-
MECs are indicated.

{B) Bright-field microsc opy showing unmanipulsted BJ-MSC and BJd pl+PBMGCT-MSC clones 1, 2, and 11 adhering to plastic at 20x magnification {scale bars,
100 pmij. Data for BJ-MEC control are the same data as in Figure 55B.

{C) OCR measurements for - 1.5 ® 10° native BJ-MSCs and BJ p0+PBMC1-MSC clones 1, 2, and 11. Data for BJ-MSC control are the same as in Figurs S5C.
Data are the means « SO of three technical replicates. Statistical significance by unpaired, two-tsiled Student's t test. *p 2 0.05; *p £ 0.01.

D) Quantitstive phase microscopy of native BJ-MSCs and a 1:1:1 mix of BJ pl+PBMC1-MSC clones 1, 2, and 11. Data for BJ-MSC control are the same asin
Figure S50. Shown are box-and-whisker Tukey plots with outliers identified. Data were averaged from 77 and 172 cells for native B.J-MSC= and BJ p0+PBMC1-
MESCs, respectively. Statistical significance by Welch's t test.

{E) Tcell= were added into native BJ-MSC or Bd pi+PBMC1-MSC clone 1, 2, or 11 cultures at 1:2, 1:1, 5:1, and 10:1 Tcal: MSC ratios. After 5 days of co-culture,
Toell prolifer ation was measured using a GFSE dye dilution assay by flow cytometry. The data labeled "NS" jno stimulus) denote T cells without CO3/CO28 bead
activation. The datalabsled "-vwe" (negative) denote noaddition of MSCs to stimulated T cells. The datalabeled "+ve" |positive) denote a 1:1 addition of mysloid-
derived suppressor cells to T cells. Data are the means « 50 of three technical replicates.

{F) Triline=ge differentistion of native BJ-MSCs and BJ p0+PBMC1-MSC clones 1, 2, and 11. Representative sactions were fixed and stained with 1 M Bodipy
483 /503, 1% glizarinred §, and 0.1% Safranin O, respectively. Shown are adipocytes ffirst row, 20 x; scale bars, 100 pm), osteocytes {second row, 20x; scale
bars, 200 pm), and chondrocytes (fourth row, 5x; scale bars, 500 jm).

See also Figurs 51,
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SIMR cells that produced ~75 clones, MitoPunch transfers into
primary fibroblasts yielded fewer SIMR clones, possibly related
to the Hayflick limit or a sub-optimal response to the MitoPunch
procedure. For example, ADF pD recipients grew the slowest,
reached senescence shorfly after mtDMNA depletion (data not
shown), and resulted in the fewest SIMR clones. On average,
twice as many BJ pO+HEK293T clones were obtained compared
to BJ p0+PBMC1 clones, which may be from a more compatible
mtDMNA-nDMNA pairing and more favorable metabolic profile (La-
torre-Pellicer et al,, 2016). SIMR fibroblasts also showed a 10-
fold reduction in reprogramming efficiency compared to native
fibroblast contfrols. A similar reduction was observed in mouse
embryo fibroblast reprogramming with non-native mtDNA,
perhaps from a lower mtDMA-nDNA compatibility (Latorre-Pel-
licer et al., 2019).

Evidence for incomplete mtDMNA-nDNA assimilation in SIMR
fibroblasts was observed in franscriptome data that showed
hundreds of DEGs between SIMR and unmanipulated fibro-
blasts. Also, MitoCarta2.0- and mtDMNA-encoded transcripts
were most similar for SIMR and ;0 fibroblasts, despite SIMR
cell culture in restrictive medium requiring ETC activity for
growth and survival. These data suggest that exogenous
mtDMA in SIMR fibroblasts do not fully communicate and influ-
ence the nDNA, despite being able to support a selectable level
of ETC activity and adeguate synthesis of metabolites for cell
proliferation. Supporting evidence for this suggestion includes
that ddC exposure yielded minimal nDMA damage and that
the metabolome and transcriptome profiles of SIMR fibroblasts
are mostly reset to unmanipulated BJ-iPSC profiles in SIMR-
iPSCs. Our results agree with a report showing that p0 cells
have atered metabolism and an epigenome that can only be
partially reset by cybrid formation (Smiraglia et al., 2008). Qur
study provides a platform for investigating the resetting of p0
cell transcription and metabolism after stable mtDMA trans-
plantation and subsequent cell fate changes. Further work is
needed to determine whether cells that receive exogenous
mtDMA by other forms of mitochondrial transfer also have dis-
rupted mtDMA transcription profiles.

In summary, we provide a proof-of-principle mitochondrial
transfer pipeline to generate cells of different fates with spe-
cific mtDMA-nDMA combinations, including clonal lines with
genome pairings not found in nature. Future studies will
generate SIMR-derived cells representing high-energy-de-
mand tissues, such as cardiomyocytes or neurons, and will
investigate the current inability to generate SIMR-IPSCs con-
taining mutant mtDMAs to enable patient-specific disease
and drug screening models with isogenic nuclei for mtDMA
diseases. Furthermore, our results show that the interpretation
of mitochondrial transfer experiments must consider that cells
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initially generated may not show complete miDMNA-nDNA inte-
gration and subsequent restoration of cellular pathways. This
is particularly salient for cells that lack subsequent reprogram-
ming potential, such as fransient or transformed mitochondrial
transfer cell lines, since our results show that reprogramming
and differentiation are required for resetting the nDMNA expres-
sion profile. Finally, this mitochondrial transfer pipeline by-
passes the evolutionary pairwise selection of mtDMAs and
nDMAs in cells to expand upon the repertoire of genomic
combinations present in the human population and generates
a library of cells at various fates with defined mtDNA-nDMNA
combinations and unique functional properties for research
and potential therapeutic applications.
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CD4+ T cell isolation kit Mitteryi Biotec Cat#130-086-533
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MesenCult-ACF Basal Meadium StemCall Tachnologies Cat#05449
MesenCult Adipogenic Differentiation Kit StamCall Technologies Cat#05412
MesenCult Ostecgenic Differentiation StemCell Technologies Cat#05465
meadium

AGF Enzymatic Dissociation/Inhibition StemCell Technologies Cat#05426
Solutions

MesenCult-ACF Chondrogenic StemCell Technologies Cat#05455
Differantiation Medium

Y¥-27632 Stam Call Technologies Cat#72304
BCA protein assay ThemoFisher Cat#23225
CallROX Grean Flow Cytometry Assay Kit ThamaoFishar Cat#C10492
KAPA Stranded RMA-Seq Kit with Ribo- Kapa Biosysterns, Roche Cat#0Te62304001

Erasa

Daposited Data

RNaseq cournt matices and raw reads This paper GEQ: GSE115871
Metabolite ralative amounts This paper MNiA
Expearimental Modals: Call Linas
HEK283T ATCC Cat#CRL-3216
B Foreskin Fibroblast ATCC Cat#CRL-2522
Primary Damal Fibroblast; Mormal, Human, ATCC Cat#PC5-201-012
Aduit
Primary Dermal Fibroblast Marmal; Human, ATCC Cat#PCS-201-010
Meonatal
Leigh Syndromea ATP Syrthase 6 (T8993G) Corell Institute Cat#GM13411
Fibrobl ast
Keams-Sayre Syndroma (commaon Corall Institute Cat#GMO6225
deletion) Fibroblast
MELAS (43243G) Cybrid (CL3) Gift from Douglas Wallace (Children's M

Haospital of Philadelphia Ressarch Institute)
‘Wilkdtype Cybrid (CL3) Gift from Douglas Wallace (Children's MNia

Haspital of Philadelphia Research Institute)
MELAS (43243G) Cybrid Gift fram Cados Moraes (University of M8

Miami)
MERAF (AB3440G) Cybrid Gift from Caros Moraes (University of M

Miarni)
A Cytochrome B 3.0 Cybrd Gift fram Cados Moraes (University of M8

Miami)
L2929 pd Mouse Fibrobl ast Gift from Jose Antonio Endquez Dominguez MNia

{Centro Macicnal de Investigacionas

Cardiovasculares Cardos Il {TNIC))
Oligonuclaotidas
ND1 forward -CCCTA o7 M
AAACCCGCCACATCT
MO raverse - GGAT IoT MiA
GGTGAGAGCTAAGETC
GAPDH Forward - TGCAC o7 M
CACCAACTGCTTAGC
GAPDH Reverse - GGCA o7 M8
TGEACTGTEGTCATGAG
RPLPO Forward -CGA oT MNiA
COTGGAAGTCCAACTAGC
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RPLPO Revarse -ATCT o7 A
GCTGCATCTGCTTG

D Loop Forward - TTCCAA 10T A
GGACAAATCAGAGAAAAAGT

D Loop Reverse - AGCC o7 A
COTCTARACATTTTCAGTGTA

RFLP Forward - CCTC 0T MNA
GGAGCAGAACCCAACCT

AFLP Aaverss - CGAA o7 A
GGGTTGTAGTAGCCCGT

Software and Algodthms

FlowJdo Softwarne Version 10.4.2 Flowdo, LLC A

Salmon v0.9.1

Statistical Language R v35.0
Bicconductor v3.9.0

R Bioconductor package timport vi.12.3
R Bicconductor package DESeq2 vi24.0
R package ggpubrv0.1.6

R package pheatmap v1.0.12

R package gplots va.0.1

R package FactoMineR v22

R package factoaxtra vi.0.6

R Bisconductor package Mfuzz v2.38.0

R package ggplot2 v3.2.0

R Bisconductor package GSVA v1.32.0

R Bisconductor package limma v3.40.6

R Bicconductor package clusterProfiler
vai2.0

R Bicconductor package ReactomePA
v128.0

TracaFinder v3.3
MitaXploner 1.0

{Hamow et al., 2012; Mudge and Harrow,

2015; Patroet al., 2017)
{R Core Team, 2017)
(Huber et al., 2015)

{Soneson et al., 2015)

{Huber et al,, 2015; Love et al., 2014)
{Kassambara, 2017)
{Warnes et al., 2016)

(Kolde, 2015)

{Husson, 2020)

{Kassambara, 2015

{Kumar and Futschik, 2007)
(Wickham, 2019

{Hédnzelmann et al., 2013)
(Benjamini and Hochberg, 1995; Ritchie
et al,, 2015)

{u and He, 2016)

(Yuetal.,2012)

ThermoFshar
(im et al., 2020)
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https:/ fwwe r-project.ong’
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hitps:/fsupport.bisconductor.orgdp/
106345/

hitps://biccond uctor.org/packages/
release/bicc html /DE Seq2.htmi

https:/ fwwe rdocumentation. ong
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hitps:/fwww rdocurmentation. org/
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hitp:/mitoxploneribdm. univ-mrs.fr

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfiled by the Lead Contact, Dr.

Michael A Teitell (mieitel@mednet.ucla.edu).
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Materials Avail ability
All materials generated in this study are available upon reasonable request to the Lead Contact, Dr. Michael A Teitell.

Data and Code Availability

All raw RMA-Seq reads, transcript abundance values, and processed gene count matrices are submitted to the NCBI Gene Expres-
sion Omnibus (GEQ). The accession number for the RNA-seq reads reported in this paper is GEQ: GSE115871. All other data are
available upon request. All software used is available either commercially or as freeware. All custom code is available on GitHub
at hitps://bitbucketorg/ahsanfasinmitoDesigner/src/master/.

EXPERIMENT MODEL AND SUBJECT DETAILS

Cell Lines

HEK293T cels expressing mitochondria-targeted DsRed protein (pMitoDsRed, Clontech Laboratories) were made as previously
described (Miyata et al.. 2014). Primary, non-transformed human fibroblast sources include BJ (ATCC, Cat. # CRL-2522), ADF
(ATCC, Cat. # PC3-201-012), and NDF (ATCC, Cat. # PCS-201-010). Isogenic cybrid cell lines derived from the same patient con-
taining either the homoplasmic A3243G MELAS substitution or homoplasmic WT sequence were obtained from Douglas Wallace
(Children’s Hospital of Philadelphia Research Institute). An alternative A324 3G MELAS cybrid cell line, in addition to A8344G MERRF
and Acytochrome B 3.0 cybrid cell lines, were from Carlos Moraes (University of Miami). Two primary A3243G MELAS fibroblast lines
were from Anu Suomalainen Wartiovaara (University of Helsinki). Primary fibroblasts associated with Leigh Syndrome (T8293G, Cat.
# GM13411) and Kearns Sayre Syndrome (common deletion, Cat. # GMO0G225) were obtained from the Coriell Repository.

BJ, NDF, ADF, and HEK293T-DsRed cells were grown at 37°C and 5% COs in complete media containing DMEM (Comning, Cat. #
1001 3CV) supplemented with 10% Fetal Bovine Serum (FBS, Hyclone, Cat. # SH30088.03HI0), penicilin-streptomycin (Coming, Cat.
# 30-002-Cl), GlutaMax (ThermoFisher, Cat. # 35050-061), and non-essential amino acids (MEM NEAA, ThermoFisher, Cat. # 11-
140-050). BJ p0, NDF p0, ADF p0, MELAS, MERRF, Acytochrome B 3.0, Leigh Syndrome, and Keams Sayre Syndrome cells
were grown in complete media supplemented with 50 pg/ml uridine (Sigma, Cat # U3003). iPSCs were grown on matrigel (Coming,
Cat. # 356234) coated plates in mTeSA1 media (StemCel Technologies, Cat. # B5850) according to the manufacturer's protocol.
MSCs were grown in defined, MesenCult-ACF media (StemCell Technologies, Cat. # 05449) following the manufacturer's protocol.
Cells tested negative repeatedly for mycoplasma using a universal mycoplasma detection kit (ATCC, Cat. # 30-1012K).

Human Tissues

The following human tissues were used: PBMC1 (PBMCs from leukopak donor 351, Caucasian female, 42 year old, Donor |D:
D326351, HemaCare Corp) and PBMCZ2 (PBMCs from leukopak donor 298, Hispanic/Latino male, 25 year old, Donor |D:
D316153, HemaCare Corp).

METHOD DETAILS

miDNA Depletion and gPCR Verification

A 1000x stock of ddC (Sigma, Cat. # D5782) was prepared in water and added to BJ, ADF, and NDF cells grown in complete media
with 50 pg/ml uridine to an appropriate final concentration. Cells were passaged every 3-4 d with fresh ddC added over 3 weeks.
Following ddC freatment, total DMA was extracted (QIAGEN, Cat. # 63504) and mtDNA quantified using SYBR Select Master Mix
for CFX (Life Technologies, Cat # 4472942). mtDMNA-encoded MT-NDT1 was amplified with the following primers: forward:
CCCTAMAMCCCGCCACATCT; reverse: CGATGGTGAGAGCTAAGGTC. mtDNA levels were normalized to nucleus-encoded
GAPDOH using the following primers: forward: TGCACCACCAACTGCTTAGC; reverse: GGCATGGACTGTGGTCATGAG. RPLPO
served as an altemative nucleus-encoded gene for normalization using the following primers: forward: CGACCTGGAAGTCCAAC-
TAG; reverse: ATCTGCTGCATCTGCTTG. gPCR was run on a BioRad GFX Thermal Cycler using the following protocol: 1) 50°C
for 2 min, 2) 95°C for 2 min, and 3) 40 cycles at 95°C for 10 s and 60°C for 45 s. Samples were compared by calculating AACT
and fold differences.

Mitochondrial Transfer into p0 Recipients

Mitochondria were harvested from HEK293T-DsRed cells, PBMCs (PBMC1 or PBMC2), or other cell types using a Qproteome Mito-
chondria Isolation Kit (QIAGEN, Cat. # 37612) following the manufacturer's protocol. Mitochondrial pellets were re-suspended in 1x
PBS, pH 7.4, at 1 mg total protein/ml. Mitochondrial suspensions were delivered into p0 cells using MitoPunch.

The MitoPunch platform is a force-based mitochondrial transfer device. Briefly, a 5V solenoid (Sparkfun, Cat. # ROB-11015) is
mounted on a threaded plug (Thor Labs, Cat # SM1PL) and inserted into a threaded cage plate (Thor Labs, Cat. # CPO2T). Above
the solenoid, assembly rods (Thor Labs, Cat. # ER3) supportan upper plate (Thor Labs, Cat. # CP02). The upper plate holds a custom
machined aluminum washer (outer diameter, 25 mm; inner diameter, 10 mm) that supports a deformable PDMS (10:1 ratio of Part A
base: Part B curing agent) fluid reservoir above the solenoid. The PDMS reservoir is composed of a bottom circular layer (25 mm
diameter, 0.67 mm height) chemically bonded to an upper circular ring layer (outer diameter, 25 mm; inner diameter, 10 mm; height,
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1.30 mm) and can hold approximately 120 pl of isolated mitochondrial suspension. Cells are seeded onto a porous membrane with
3 pm pores (Corning, Cat. # 353181) 24 h prior to mitochondrial ransfer.

To perform mitochondrial transfer, this membrane with adherent cells is secured on top of the PDMS reservoir using an upper plate
(Thor Labs, Cat. # CP0O2). The solenoid is controlled by a 5% power supply mini board (Futurlec, Cat. # MINIPOWER) and powered by a
12V, 3 Amp DC power supply (MEAN WELL, Cat. # RS-35-12). The activated solenoid strikes the center of the PDMS chamber, de-
forming the bottom circular layer by approximately 1.3 mm. This deformation rapidly injects the mitochondrial suspension throughthe
membrane and into the monolayer cell culture on the opposite side. A tunable MitoPunch prototype was developed by ManoCav LLC
with variable plunger force which improves SIMR generation efficiency especially in replication-limited fibroblasts.

As a comparson to MitoPunch, we performed isolated mitochondria coincubation control expenments. An equal number of co-
incubation recipient cells were seeded alongside MitoPunch recipients in 12 well dishes instead of the porous membrane. After
~24 h, an equal volume of mitochondrial isolate as loaded into the PDMS reservoir for MitoPunch was pipetted into the cell medium
of each coincubation recipient well and incubated at 37°C for 2 h before being released, collected, and plated on 10 cm dishes for
selection as described below.

For human fibmoblasts and mouse recipients, cells were grown in complete media with 50 pg/mL uridine for 4 d following mitochon-
dria delivery and on day 5 post-delivery, cells were shifted to uridine-free complete media prepared with 10% dialyzed FBS (Life
Technologies, Cat. # 26400-044). On day B post-delivery, cells were shifted to glucose-free, galactose-containing medium
(DMEM without glucose, GIBCO, Cat. # 11966025) supplemented with 10% dialyzed FBS and 4.5 g/l galactose. Colonies emerged
at approximately 10 d post-delivery and cells were shifted back to uridine-free medium before colonies were counted by microscopy
or isolated using cloning rings. For human 143BTK- p0 recipients, cells were grown in complete media with 50 pg/mL uridine
following mitochondria delivery and shifted to uridine-free complete media prepared with 10% dialyzed FBS on day 3 post-delivery,
and clones ememed approximately 10 d post-delivery and were quantified.

Confocal microscopy

Cells, ~1x10% were plated on glass coverslips (Zeiss, Cat. # 474030-9000) in 6 well dishes in 2 mL of media and cultured for approx-
imately 24 h. The media was aspirated and cells then fixed by incubation of 1 mL freshly diluted 4% paraformaldehyde (Thermo Fisher
Scientific, Cat. #28906) in 1x PBS, pHT .4, for 15minat RT. Paraformaldehyde was removed and cells were washed 3xwith PBS, and
then washed 3= with PBS with 5 min RT incubation during each wash. Cells were permeabilized by a 10 min AT incubation with 0.1%
Triton X-100 (Sigma, Cat. # X100). Permeabilized cells were washed 3x with PBS and then blocked by incubation for 1 hat RT with 2%
bovine serum albumin (BSA) dissolved in PBS. After blocking, cells were incubated with primary antibodies at 1:1000 dilution in 2%
BSA blocking buffer against dsDMA (Abcam, Cat. # ab27156) and TOM20 (Abcam, Cat. # ab78547), and then washed 3x with 5 min
AT incubation with PBS. After washing, cells were incubated for 1 h with secondary antibodies (Invitrogen, Cat. #'s A31573 and
A21202) diluted 1:100 in 2% BSA blocking buffer protected from light at RT, and washed 3x with 5 min incubations with PBS. To
mount coverslips on slides, samples were removed from the 6 well dish, dipped in deionized water, dried with a Kimwipe, and
mounted using ProLong Gold Antifade Mountant with DAPI (Invitrogen, Cat. # P3691) on microscope sides (VWR, Cat. # 48311-
601). Mounted samples were allowed to dry protected from light at AT for 48 h prior to imaging with a Leica SP8confocal microscope.

Mitochondrial Oxygen Consumption Me asurements

OCR was measured using a Seahorse XF96 Extracellular Flux Analyzer (Agilent). For fibroblasts or MSCs, 1 -2 x10° cells per well
were seeded onto a V3 96-well plate (Agilent, Cat. # 101085-004) and grown overnight before analysis. iPSCs were treated similarly
but plated on matrigel-coated V3 plates. A mitochondrial stress test quantified OCR at basal respiration and after the sequential addi-
tion of mitochondrial inhibitors oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and rotenone.

Mitochondrial Isclation from Mouse Tissues and Delivery

Spleen, liver, lung, bone marrow, heart, skeletal muscle, and kidney were harvested from an ~8 month-old female C57BL/6 mouse.
Briefly. tissue was dissociated by passage through a cell strainer using the plunger of a syringe, and mitochondria were isolated from
dissociated tissue using the Qproteome Mitochondria Isolation Kit (QIAGEN, Cat. # 37612) following the manufacturer’s protocol.
Mitochondrial suspensions were delivered into L829 p0 fibroblasts using MitoPunch. L8298 p0 recipient cells were grownin complete
media supplemented with 50 pg/mL uridine for 4 d following mitochondria delivery. On day 5 post-delivery, cells were shifted to uri-
dine-free complete media prepared with 10% dialyzed FBS (Life Technologies, Cat. # 26400-044). On day 8 post-delivery, cells were
shifted to glucose-free, galactose-containing medium (DMEM without glucose, GIBCO, Cat. # 11966025) supplemented with 10%
dialyzed FBS and 4.5 g/ galactose. Colonies emerged at approximately 10 d post-delivery and cells were shifted back to uridine-free
medium before colonies were counted by microscopy or isolated using cloning rings.

iPSC Reprogramming

Reprogramming of fibroblast lines to iPSCs was done using the StemRNA-MM Reprogramming kit (Stemgent, Cat. # 00-0076)
following the manufacturer's protocol. Briefly, fibroblasts were plated on a matrigel (Comning, Cat. # 356234) coated 6-well plate
at 2x10° cels/wel on 0 d. Daily transfections of non-modified (NM)}-RMNA reprogramming cocktail were performed for 4 d using
Lipofectamine RMAIMAX (ThermoFisher, Cat. # 13778100). On 10-12 d, iPSC colonies were identified by staining with TRA-1-60
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antibody (Stemgent, Cat. # 09-0068). TRA-1-60" iPSC colonies were picked and re-plated on matrigel coated 12-well plates and
maintained in mTeSA 1 medium (StemCell Technologies, Cat. # 85850). Atternative reprogramming strategies for fibroblasts included
using ReproRMA-OKSGM (Stem Cell Technologies, Cat. # 05330), STEMCCA Lentiviral (MiliporeSigma, Cat. #5CR510), and Cyto-
Tune-iPS 2.0 Sendai (Fisher Scientific, Cat. # A16517) kits according to the manufacturers’ protocols.

MSC Differentiation

MSC lines were generated from iPSCs using the STEMdiff Mesenchymal Progenitor Kit (StemCell Technologies, Cat. # 05240)
following the manufacturer's protocol over the course of 21 d. Briefly, iPSCs were dispersed as single cells, plated at ~5 10t
cells’em®, and cuttured for 2 d on Matrigel with mTeSR1 medium before the medium was changed to STEMdiff -ACF Mesenchymal
Induction Medium. STEMdiff -ACF Mesenchymal Induction Medium was changed daily for 3 d, and on day 4, the medium was
changed to MesenCult -ACF Plus Medium. Cells were fed again with MesenCult -ACF Plus Medium on day 5. On day 6, cells
were colected with Gentle Cell Dissociation Reagent (StemCell Technologies, Cat # 07174) and passaged onto plastic plates
with MesenCult -ACF Plus Medium with 10 pM ROCK inhibitor (Y-27632; Stem Cell Technologies, Cat. # 72304). Daily half-medium
changes were made for ~1 week when cells were ~80% confluent. Cells were further passaged by dissociation with ACF Enzymatic
Dissociation Solution and resuspended in MesenCult -ACF Plus Medium before further analysis.

Human miDNA D-Loop Sequencing

Total DNA was extracted from 1x10° cells using the QIAGEN DNasy Blood and Tissue kit. PCR was performed using Phusion high-
fidelity PCR master mix with HF buffer (NEB, Cat # M05315) and the following primers: forward - TTCCAAGGACAAATCAGA-
GAMAAAGT, reverse — AGCCCGTCTAAACATTTTCAGTGTA. PCR was run on an Eppendorf vapo.protect thermal cycler at 1)
98°C for 2 min, 2) 30 cycles at 98°C for 15 s, 58°C for 30 5, 72°C for 30 s, and 3) 72°C for 5 min. PCR products were run on a
0.8%—1% agarose TAE gel, extracted with the QIAGEN QIAQuick Gel Extraction kit (QIAGEN, Cat. # 28704), and Sanger sequenced
using the same PCR primers.

ROS Quantification

CellIROX Green Flow Cytometry Assay Kit (ThermoFisher, Cat. # C10492) was used according to the manufacturer's protocol. Briefly,
7.5x10* cells were plated ina 6-well plate ~24 h prior to measurements. 250 pM tert buty hydroperoxide (TBHP) and 750 M CellROX
reagent were added to the cells ~2 hand 1 h prior to quantification, respectively. Cells were released using Accutase, washed once
with FACS buffer (5% FBSin 1x DPBS, pH 7.4), and quantified using a LSRFortessa flow cytometer (BD Bioscience).

iPSC Flow Cytometry

iPSCs were harvested by 15 min AT incubation with Gentle Cell Dissociation Reagent. Cells were centrifuged at 300 = g for 5 min,
washed in 1ml DPBS + 10% FBS, and re-suspended in 100 pl. BD Perm/Fix Buffer (BD Bioscience). Cells were incubated at 4°C
for 15 min and washed twice in DPBS + 10% FBS. Following the second wash, cells were incubated in 50ul DPBS + 10% FBS con-
taining conjugated antibodies. Antibodies used were OCT3/4 AlexaFluord 88 (BD Bioscience 561628 1:10), SOX2 V450 (BD Biosci-
ence 5616101:10), Mouse lgG1 « Isotype Control AlexaFuord88 (BD Biosciences 557782 1:10), Mouse lgG1, k Isotype Control V450
(BD Bioscience 560373 1:10), and CD44 PE(BD Bioscience 562245 1:21). Cells were incubated with conjugated antibodies for 30 min
and then washed twice in DFBS + 10% FBS. Data was acquired on a LSRFortessa flow cytometer (BD Bioscience) and analyzed
using Flow.Jo software (FlowJo, LLC).

MSC Flow Cytometry
MSCs were harvested by 5 min, 37°C incubation with Accutase (BD Biosciences). Cells were centrifuged at 300 x g for 5 min, washed
in 1ml DPBS + 10% FBS, and re-suspended in DPBS + 10% FBS at 5x10° cells/ml. Cells were incubated in 100 DPBS + 10% FBS
for 30 min at 4°C with the antibodies provided in the Human MSC Analysis Kit (BD Biosciences, Cat. # S62245) for 30 min and then
washed twice in DPBS + 10% FBS. Datawas acquired on a LSRFortessa flow cytometer (BD Bioscience) and analyzed using Flow.Jo
software (Flowdo, LLC).

Fluorescence Microscopy

iPSCs were cultured on matrigel-coated 6-wel plates and fixed with 4% paraformaldetyde for 10 min. Blockingwas donefor 1 hinix
PBS, pH 7.4, with 5% FBS and 0.3% Triton X-100. Cells were stained with SSEA4 (eBioscience, Cat. # 12-8843-42) and OCT4 (eBio-
science, Cat. # 53-5841-82) antibodies, and Hoechst 33342 dye (ThermoFisher, Cat # R37605) overnight at 4°C in blocking buffer.
Phase contrast and fluorescence images were obtained with a Zeiss Axio Observer 71 microscope and Hamamatsu EM CCD camera
(Cat. # C9100-02).

MSC Immunosuppression Assay
MSC inhibition of T cell proliferation was performed as described previously (Hsu et al., 201 5). Briefly, MSCs were plated in a 12-well

plate the day before assay. PBMCs were isolated by Ficoll gradient from a healthy de-identified leukopak donor. CD4* T cells
were isolated from PBMCs using the CD4" T cell Isolation Kit (Miltenyi Biotec, Cat. # 130-096-533) and labeled with CFDA SE
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(ThermoFisher, Cat. #V12883). Labeled CD4" T cells were stimulated with Dynabeads Human T-activator CD3/CD 28 (ThermoFisher,
Cat. # 111310) at a ratio of one bead per T cell. T cells were added into M3C cultures at the following T cel: MSC ratios: 1:2, 1:1, 5:1,
and 10:1. After 5d of co-culture, T cell proliferation was measured using CFSE signature dye dilution by flow cytometry.

Tri-line age Differentiation

Adipocytes, osteoblasts, and chondrocytes were generated from MSCs. For adipocyte differentiation, M3Cs between passages 3 -
4were plated on 6-well plates with MesanCult-ACF Basal Medium (StemCell Technologies, Cat. # 05449) at 4- 5 x 10° celis per well.
Differentiation was performed using the MesenCult Adipogenic Differentiation Kit (StemCell Technologies, Cat. # 05412) according to
the manufacturer's protocol. Media changes wene done every 3 -4 d until 13 d. For osteogenic lineage differentiation, MSCs between
passages 3-4 were plated on a 6-well plate with MesenCutt-ACF Basal Medium (StemCell Technologies) at 3 -4 x 10° cells per well.
Differentiation was performed using MesenCult Osteogenic Differentiation medium (StemCell Technologies, Cat. # 05465) according
to the manufacturer's protocol. Medium changes were done every 3 — 4 d until 13 d. For 3-D pellet chondrogenic differentiation,
MSCs were first released from T25 flasks using ACF Enzymatic Dissociation/Inhibition Solution (StemCell Technologies, Cat. #
05426) and coliected in polypropylene tubes at2.5 — 3 % 10° cells per tube with MesenCult-ACF Chondrogenic Differentiation Me-
dium (StemCell Technologies, Cat. # 05455) according to the manufacturer' s protocol. Medium changes were done every 3 - 4 days
until 13 d.

Triline age Differentiation Analyses

QOsteogenic differentiation was assayed by staining cells with 1% Alizarin Red solution. Medium was removed from cells grown on 6
well plates and cells were washed 3 times with 1X DPBS. Cells were fixed in 4% PFA in 1X DPBS at 4°C for 15 min prior to 15 min
incubation with 1% alizarin red at RT. Alizarin red solution was aspirated and the cells were imaged using a standard inverted
microscope.

Adipogenic differentiation was assayed by staining cells with 0.1% Bodipy solution. Medium was removed from cells grown on 6-
well plates and cells werewashed 3x with 1X DPBS. Cells were fixed in 4% PFA In 1 X DPBS at 4°C for 15 min and washed twice with
1X DFBS prior to a 10 min incubation with 0.1% Bodipy at RT. Bodipy solution was aspirated and the cells were washed with 1X
DPBS prior to acquiring phase contrast and fluorescence images with a Zeiss Axio Observer 21 microscope and Hamamatsu EM
CCD camera (Cat. £ C2100-02).

Chondrocyte differentiation was assayed by staining chondrogenic sphercids and spheroid sections with 0.1% Safranin O so-
lution. For staining whole spheroids, the medium was removed from the sphenoids and they were fixed in 4% PFAfor 15 min at RT.
The sphemids were washed twice with 1x PBS, pH 7.4, before 15 min incubation with 0.1 % Safranin O solution at RT. The stained
spheroids were washed twice with 1ml water and transferred by serological pipette to a 48-well dish for imaging. For spheroid
section staining, spheroids were fixed in 10% formalin for 18 h, washed twice in water, and placed in 70% ethanol. Spheroids
were microtome sectioned by the UCLA Translational Pathology Core Laboratory, tissue placed on microscope slides. Sections
were deparaffinized and rehydrated by washes in xylenes, ethanol, and water. Unstained sections were stained with hemataxylin
and eosin or 0.1% Safranin O for 10 min at AT prior to washing in ethanol. Sections were imaged under a standard inverted
MICroscope.

UPHLC-MS Metabolomics Processing

Ultra-high-performance liquid chromatography mass spectrometry (UHLPG-MS) was performed as described previously (Xiao etal.,
2018) to quantify metabolites from ~7x10° cells. Briefly, cells were rinsed with cold 150 mM ammaonium acetate, pH 7.3, followed by
addition of ice-cold B0% methanol. Cells were detached with scrapers, transferred into microcentrifuge tubes, and 1 nmol D/L-nor-
valing added. After vortexing, the suspension was centrifuged at 4°C at maximum speed. The supernatant was transferred into a
glass vial, metabolites dried down under vacuum using an EZ-2Elite evaporator at 30°C, and re-suspended in 70% acetonitrile.
To normalize samples, pellets were re-suspended in 58 mM Tris-HCI, pH 6.8, 5% glycerol, and 17 mg/ml sodium dodecyl sulfate
and quantified by BCA protein assay (ThermoFisher, Cat. # 23225).

Metabolites were separated on a Luna NH2 (150 mm x 2 mm, Phenomenex) column using 5 mM NH AcO, pH9.9 (buffer A), aceto-
nitrile (buffer B), and the following gradient: initially at 15% buffer B, 18 min gradient to 90% buffer B, 9 minisocratic at 90% buffer B,
T minisocratic at15% buffer B. Samples were analyzed with an UltiMate 3000RSLC (Thermo Scientific) coupled to a Q Exactive mass
spectrometer (Thermo Scientific) run with polarity switching (+3.50 kV / —3.50 kV) in full scan mode and myz range of 65-975. Me-
tabolites were quantified with TraceFinder 3.3 using accurate mass measurements (< 3 ppm) and retention times of pure standards.

RNA Extraction

Fibroblasts, iPSCs, and MSCs were grown in biologicaltriplicates and technical duplicates to 70— 80% confluence and purified using
the RNeasy Mini Kit (QIAGEN, Cat. # 74104) and RMase-free DNase (QIAGEN, Cat. # 79254) following the manufacturer's protocols.
All samples showed a A260/280ratio> 1.99 (Manodrop; Thermo Scientific). Prior to library pre paration, quality control of the RMA was
performed using the Advanced Analytical Technologies Fragment Analyzer (Advanced Analytical, Inc.) and analyzed using PROSize
2.0.0.51 software. RNA Quality Numbers (RQONs) were computed per sample between B.1 and 10, indicating intact total RMA. per
sample prior to library preparation.
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RMA-Seq Library Preparation

Strand-specific ribosomal RNA (RNA) depleted RNA-Seq libraries were prepared from 1 pg of total RMA using the KAPA Stranded
RMA-Seq Kit with Ribo-Erase (Kapa Biosystems, Roche). Briefly, rRNA was depleted from total RNA samples, the remaining RNA
was heat fragmented, and strand-specific cDMA was synthesized using a first strand random priming and second strand dUTP
incorporation approach. Fragments were then A-tailed, adapters were ligated, and libraries were amplified using high-fidelity
PCR. All libraries were prepared in technical duplicates per sample (n = 60 samples, 120 libraries total), and resulting raw
sequencing reads merged for downstream alignment and analysis. Libraries were paired-end sequenced at 2x150 bp on an lllu-
mina NovaSeq 6000.

Restriction-Fragment Length Polymorphism Heteroplasmy Assay

To quantify relative levels of mtDMA containing the A3243G substitution, total DMA was isolated from cells using the DNeasy Blood
and Tissue kit (QLAGEN, Cat. # 63504). PCR amplification of the MELAS region to generate a 634 bp product was performed using the
following primers: forward - COCTCGGAGCAGAACCCAACCT and reverse - CGAAGGGTTGTAGTAGCCCGT. Apal digestion (NEB
Biolabs, Cat. # R0114S) of the PCR product was performed according to manufacturer's protocol for 2 h at 25°C, and deactivated
at 65°C for 20 min. Sample was separated on a 2.5% agarose gel at 100V for 1 h.

QUANTIFICATION AND STATISTICAL ANALYSIS

miDNA Depletion and gqPCR Verification
Statistical details are provided in each figure legend.

Mitechondrial Oxygen Consumption Rate Measure ments
Statistical details are provided in each figure legend.

Metabolomics Data Analysis

Data analysis, including principal components analysis (PCA) and clustering, was performed using the statistical language R v3.6.0
and Bioconductor v3.9.0 packages (Huber et al.. 2015; R Core Team, 2017). Metabolite abundance was normalized per pg of protein
content per metabolite extraction, and metabolites not detected were set to zero. Metabolite normalized amounts were log trans-
formed and then scaled and centered into Z-scores for relative comparison using R base function scale() with parameters “scale =
TRUE, center = TRUE". Heatmaps and Euclidean distance similanty plots were created using the Z-scores in R package pheatmap
v1.0.12, and hierarchical clustering was performed using the Euclidean distance measure.

PCA was performed using R packages FactoMineR v2.2 and factoextra v1.0.6. PC scores computed from normalized metabolite
counts with function PCA() using parameters “scale.unit = TRUE, ncp = 10, graph = FALSE".

Pathway-level metabolite set enrichment analysis was performed using R Bioconductor package GSVA v1.32.0 (Hanzelmann
et al.. 2013). Metabolite normalized abundances were standardized using a log2(normalized amounts + 1) transformation, and me-
tabolites per sample were converted toa pathways per sample matrix using function gsva() with parameters “method = gsva, maseq =
FALSE, abs.ranking = FALSE, min.sz = § max sz = 500". GSVA pathway enrichment scores were then extracted and significance
testing for multiple transfer conditions was calculated using R Bioconductor package limma v3.40.6, as described above. Pathway
metabolite sets were constructed using the KEGG Compound Database and derived from the existing Metabolite Pathway Enrich-
ment Analysis (MPEA) toolbox (Kanehisa et al., 2012; Kankainen et al., 2011).

RNA-Seq Pre-Processing

Fibroblasts, iPSCs, and MSCs were each sequenced in biological triplicates and technical duplicates (n = 60 total samples) to ac-
count for variation in extraction and culturing. Raw sequencing reads were converted into fastq files and fittered for low quality reads
and lllumina sequencing adaptor contamination using bel?fastq (llumina). Reads were then quasi-mapped and quantified to the
Homo sapiens GENCODE 26(GRCh38.p12, Ensembl 92, April 2018) transcriptome using the alignment-free transcript leve| quantifier
Salmon v0.9.1 (Harrow et al., 2012; Mudge and Harrow, 2015; Patro et al., 2017). A guasi-mapping index was prepared using param-
eters “salmon index -k 31 <type quasi™, and comprehensive transcript level estimates were calculated using parameters “salmon
quant - A -seqBias —gcBias-discardOrphansQuasi™. Transcript level counts were collapsed to gene level (HGNC) counts, franscripts
per million abundances (TPM) and estimated lengths using R Bioconductor package tximport v1.12.3 (Soneson et al., 2015).

Differential Gene Expression Analysis

The resulting sample gene count matrix was size factor normalized and analyzed for pairwise differential gene expression using R
Bioconductor package DESeq2 v1.18.1. Expression changes were estimated using an empirical Bayes procedure to generate
moderated fold change values with design “~ Batch + Sample,” modeling batch effect variation due to day of RNA extraction (Huber
etal..2015; Love et al., 2014). Significance testing was performed using the Wald test, and resulting P values were adjusted for mul-
tiple testing using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). DEGs were fittered using an adjusted false
discovery rate (FDR) g value < 0.05 and an absolute logs: ransformed fold-change = 0.05.
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Mito Xplorer Analysis
Differential expression analysis was performed using DESeq2, specifying an absolute log2 transformed fold change threshold = 0.5.
Result lists including all genes were uploaded to the MitoXplorer 1.0 pipeline (hitpy/mitoxploreribdm.univ-mrs.fr/index.php)
comparing SIMR-fibroblasts, -iPSCs, or -MSCs to the comesponding cell fate of the BJ control. DEGs were filttered using alog, trans-
formed fold-change threshold of 0.05. Subsequently, the number of upregulated and downregulated DEGs for each mitochondrial
process were counted.

Gene Expression PCA and hierarchal clustering

Variance stabilized transform (VST) values inthe gene count matrix were calculated and plotted for PCA using R Bioconductor pack-
ages DESeq2, FactoMineR, and factoexira, as described in the metabolomics methods (Huber et al., 2015; Love et al. 2014). For
PCA of nucleus-encoded mitochondrial protein and mtDNA franscripts, relevant transcripts were extracted using localization evi-
dence derived from MitoMiner v4.0, subsetting VST matrices using genes listed in MitoCarta 2.0 (Calvo &t al., 2016; Smith and Rob-
inson, 2016). Clonal heatmaps were prepared using R Bioconductor packages pheatmap v1.0.8 and gplots v3.0.1 (Warnes et al.,
2016; Kolde, 2015). Heirarchal clustering was performed using R based function hclust and plotted using the dendextend package.

Metabolic Transcript Gene Set Variation Analysis (GSVA)

GSVA on metabolic transcripts was performed similarly to metabolomics data as noted above. Pathway-level metabolic gene set
enrichment analysis was performed using R Bioconductor package GSVA v1.32.0 function gsva() with parameters “method =
gsva, raseq = FALSE, abs.ranking = FALSE, min.sz = 5, max.sz = 500" using a logz(TPM + 1) transformed gene expression matrix
(Hanzelmann et al., 2013). GSVA pathway enrichment scores per sample were extracted and assessed for signficance using R Bio-
conductor package limma v3.40.0, as described above except with a Benjamini-Hochberg adjusted P value threshold = 0.01.
Pathway metabolite sets were constructed using the KEGG PATHWAY Database, utilizing gene sets annotated to the metabolic
pathways overview map HSA01100 (Kanehisa et al., 2012). Significance testing across clones and conditions for each gene set
were calculated using Kruskal-Wallis ANOVA.

Gene Set Overrepresentation Analysis (ORA)

DEGs were extracted and analyzed for pathway/gene ontology (GO) term overrepresentation using the R Bioconductor package
clusterProfiler v3.12.0 and ReactomePA v1.28.0, using a background gene set of all genes expressed with at least one read count
in the sample gene count matrix (Yuand He, 2016; Yu et al., 2012). Overrepresented Reactome/MEGG pathways and GO terms were
identified across DEG lists and conditions using clusterProfiler function compare Clusten) with significance testing cutoffs of p < 0.05,
and an adjusted FDR < 0.25.

HLA Class | Genotyping

MHC Class | HLA genotypes were identified using OptiType v1.3.1(Szolek et al, 2014). All raw RNA-Seq sample FASTOs were
aligned to the HLA Class | reference transcriptome packaged in OptiType using BWA MEM v0.7.17 with standard parameters (Li
and Durbin, 2010). HLA subset reads were then analyzed for Class | genotype using OptiType in paired-end RNAmode with standard
parameters.
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Figure S1. The MitoPunch Pipeline Generates Functional Cells with Unique m{DNA-nDNA Pairings, Related
to Figures 1, 2, 3, and 4.

(A) Native BJ fibroblasts were exposed to the indicated doses of ddC for three weeks. mtDNA levels were
quantified by gPCR using primers for MT-ND1 and normalized to GAPDH. Data are the mean = SD of three
independent biological replicates.

(B) Native ADF and NDF cells were exposed to the indicated doses of ddC for three weeks. mtDNA levels were
quantified by qPCR. using primers for MT-ND1 and normalized to RPLP). Data represents the mean of three
technical replicates.

(C) OCR measurements for ~2 0x10* native BJ and BJ p0 fibroblasts. Agents injected were oligomycin (0),
Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and antimycin A (AA) at the indicated fume points.
Data are the mean = SD of five technical replicates.

(D) OCR. measurements for 1.5 — 2 0x10* NDF, ADF. NDF p0, and ADF p0 (by exposure to the indicated amounts
of ddC) fibroblasts. Data are the mean = 5D of four technical replicates.

(E) Mitochondria from HEE293T cells and from ~3x107 peripheral blood mononuclear cells (PBMC2) were
MitoPunch transferred into BJ p0, NDF p0. or ADF p0 recipient fibroblasts. Following selection. SIMR. colonies
were stained with crystal violet and quantified. Clone counts from a single representative mitochondria transfer into
~1x10° recipient p0 fibroblasts are shown.

(F) D-loop hypervariable region miDNA sequences from native BJ, HEK293T cell, and BJ p0+PBMC2 SIMR
fibroblasts. Stars denote single nucleotide polymorphisms.

(G) MHC Class IHLA A B, and C locus genotyping using OptiType v1.3.1 for native BJ, BT p0, HEK293T. and BT
pH+HEK293T SIMR cells.

(H) OCR measurements for ~1.5x10" native BI, BJ p0, and BT p0+HEK293T SIMR. fibroblasts. Data are the mean =
SD of four technical replicates. Statistical significance for by unpaired, two-tailed Student’s t test. ***p = 0.001;
**=*p < 0.0001

(I) Representative images of native BJ, BJ p0. and BJ p0+HEE293T SIMR. fibroblasts immunostained for dsDNA
(green) and TOM20 (red) with co-localization indicated (vellow). Images (10030) acquired on a Leica SP8 confocal
microscope. Scale bars are 15 pm.

() Native BJ and BJ SIMR. fibroblasts reprogrammed to iPSCs with TRA-1-607 clones counted by microscopy.
Data 1s the mean of biological duplicates. BJ fibroblast control shows the same data used in Figure 34

(K) Flow cytometry of pluripotency biomarkers SOX2 and OCT3/4, and fibroblast biomarker CD44.
Immunostained samples are shown in color with 1sofype negative controls in grey. Representative data for native BJ
fibroblasts and BJ-PSCs, and for B] p0+HEK293T-1PSC cells. The native BJ fibroblast and BJ-PSC data shown
here 15 the same as in Figure 3B.

(L) Representative phase contrast and [F microscopy images of unmedified BJ fibroblast (negative control), BI-
1PSCs (positive confrol), and three BJ p+HEK293T-1PSC clones immunostaimed for pluripotency biomarkers
SSEA-4 and OCT4. Scale bar is 100 pm.

(M) OCR measurements for ~1.5x10% native BJ-iPSCs and BJ p0+HEK203T-iPSC clones 1, 2, and 4. BJ-PSC
control shows the same data used in Figure 3D. Data are the mean = SD of four technical replicates. Statistical
significance was by unpaired, two-failed Student’s t test. *p =0.05

(N) OCR. measurements for ~1.5x10* native NDF, NDF p0+NDF, NDF p(+WT, and NDF p(+MELAS SIMR.
fibroblasts. Data are the mean = SD of five technical replicates.

Statistical significance was by unpaired, two-tailed Student’s t test. **p < 0.01; ****p < 0.0001

(O) RFLP analysis of mtDNA from homoplasmic NDF p0+NDF, NDF p0+MELAS, and NDF p0+WT SIME.
fibroblasts, and 1:1 heteroplasmic NDF p0+MELAS/WT SIMR fibroblasts. Apal restriction enzyme cleaves the 634
bp amplicon into 424 bp and 210 bp bands when the MELAS A3243G sequence 1s present.

(P) Representative phase contrast images (430) of native NDF, NDF p0+NDF, NDF p(+MELAS. and NDF
pOH+MELAS/WT cells during reprogramming to 1PSCs. Exposure and fint adjusted for subpanel consistency.

(Q) RFLP analysis of mfDNA from 20 independent. 1:1 heteroplasmic NDF p0+MELAS/WT-PSC clones. Apal
restriction enzyme cleaves the 634 bp amplicon into 424 bp and 210 bp bands when the MELAS A3243G sequence
15 present.

(R) Flow cytometry of MSC biomarkers CD73, CD20. CD103, and a mix of negative MSC biomarkers.
Immunostained samples are shown in color with isotype negative controls in grey. BI-MSC control shows the same
data used in Figure 4A_ Representative clones for native BI-MSCs and BI p0+HEK293T-MSCs are shown.

(S) Brightfield microscopy showing native BI-MSC, BT p0+HEE293T-MSC clones 1, 2. and 4 adhering to plastic at
20% (scale bar, 100 pm) magnifications. BJ-MSC control shows the same data used in Figure 4B.
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(T) OCR measurements for ~1.5x10* native BJ-MSCs and BJ p0+HEK293T-MSC clones 1. 2, and 4. BI-MSC
control shows the same data used in Figure 4C. Data are the mean = SD of three technical replicates. Statistical
significance was by unpaired, two-tailed Student’s t test. *p =0.05

(U) Quantitative phase microscopy of mnmodified BJ-MSCs and a 1:1:1 mix of BT p0+HEE293T-MSC clones 1, 2,
and 4. BJI-MSC control shows the same data used in Figure 4D. Shown are box-and-whisker Tukey plots with
outliers identified. Data was averaged from 77 and 124 cells for native BJ-MSCs and BT p0+HEK293T-MSCs,
respectively. Statistical significance was by Welch's T test. *p = 0.05

(W) T cells were added into native BJ-MSC or B p0+HEE293T-MSC clone 1, 2, or 4 cultures at 1:2, 1:1, 5:1, and
10:1 T cell: MSC ratios. After 5 days of co-culture, T cell proliferation was measured using a CFSE dye dilution
assay by flow cytometry. The data labeled “NS™ (no stimulus) denotes T cells without CD3/CD28 bead activation.
The data labeled “-ve” (negative) denotes no addition of MSCs to stimmlated T cells. The data labeled “+ve”
(positive) denofes a 1:1 addition of MDSCs to T cells. Data are the mean = SD of three technical replicates.

(W) Tri-lineage differentiation of native BJ-MSCs and BJ p0+~HEK293T-MSC clones 1. 2. and 4. Representative
sections were fixed and stained with 1 uM Bodipy 493/503, 1% alizarin red S, and 0.1% Safranin O, respectively.
Shown are adipocytes (first row 203, scale bar 100 pm), osteocytes (second row 2030 200 pm), and chondrocytes
(third row 53; 500 pm).
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Figure S2. SIMR Metabolome Tracks Mainly with Cell Fate, Related to Figure 5.
(A) Quantification of 154 metabolites in native BJ, BI p0. and BT p0+PBMC1 cells by UHPLC-MS. Z-scores were

calculated from the normalized. log transformed abundance of mefabolites across averaged samples. Samples were
clustered by similarity using an unbiased approach.
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(B) Quantification of 154 metabolites in native BJ, BI p0. and B p0+HEE283T cells by UHPLC-MS. Z-scores
were calculated from the normalized, log transformed abundance of metabolites across averaged samples. Samples
were clustered by similarity using an unbiased approach.

(C) PCA of normalized metabolite abundance. Colors denote fibroblasts (red), iPSCs (green), and MSCs (yellow).
whereas shapes denote native BJ control (), BJ p0 (A). and BT p0+PBMC1 (+) cells. Scatter plot shows the first
(Dim1) and second (Dim?2) principal components along the x- and y- axes. respectively.

(D) PCA of normalized metabolite abundance. Colors denote fibroblasts (red). iPSCs (green). and MSCs (yellow).
whereas shapes denote native BJ control (), BJ p0 (A), and BJ p0+HEK293T (+) cells. Scatter plot shows the first
(Diml) and second (Dim?2) principal components along the x- and y- axes. respectively.

(E) Metabolite set variation analysis (MSVA) indicating metabolite pathway enrichment across averaged samples.
FRows indicate independent KEGG metabolic pathways analyvzed. Higher MSVA enrichment scores indicate elevated
pathway enrichment relative to all samples. lower MSVA enrichment scores indicate reduced pathway enrichment
relative to all samples. Samples annotation is by cell fate (top row) and by mtDNA transfer condition (second row).
Clone mumber for BJ p0+PBMC1 and BJ p0+HEK293T SIMR cells are indicated by a number in the transfer
condition row.

(F) Euclidean distance similarity matrix of whole metabolite profiles across all sample comparisons. Heatmap values
indicate the Euclidean distance between the two indicated samples (n= 34).
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Figure S3. SIMR Fibroblast Transcriptome Homeostasis Reset by Cell Fate Transitions, Related to Figure 5.
(A) Number of DEGs for BJ p0+HEK293T cells compared to native BJ cells at fibroblast, iPSC, and MSC fates.
(B) Reactome pathway database overrepresentation analyses (ORA) of BI p0~PBMC1, BJ p0+~HEK293T, and BJ p0
compared to native BJ fibroblasts.
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(C) Reactome pathway database ORA of BJ p0+PBMC1. BJ p0+HEEK293T. and BJ p0 compared to native BJ
1PSCs.
(D) Reactome pathway database ORA of B] p0+PBMC1. BJ p0+HEK293T, and BJ p0 compared to native BJ
MSCs.
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Figure S4. SIMR Cell Pathway Analysis Through Fate Transition, Related to Figure 5.

(A) Heatmap of gene set variation analysis (GSVA) showing enrichments for transcripts that encode metabolic
pathways between averaged clones. Rows indicate independent KEGG metabolic pathways analyzed (HSA01100).
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(B) Means of individual GSVA scores averaged for all 18 sample and clone fates and conditions (n= 6 for BT
samples: n=2 for each SIMR clone) for enrichments of oxidative phosphorylation and glycolysis-gluconeogenesis
encoding pathway genes.

(C) Immunoblots of ETC complex proteins for native BT and BT p0 control cells with BT p0+PBMC]1 and BJ
pHHEE293T SIMR cells at fibroblast, iPSC. and MSC fates.
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Figure S5. Mitochondrial-Associated Transcriptional Changes, Related to Figure 5.
(A) Hierarchical clustering of MitoCarta 2.0 database genes from native BJ, BT p0. and BJ p0+HEE293T cells at
fibroblast, iPSC, and MSC fates.
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(B) Normalized, batch adjusted read counts shown as box-and-whisker Tukey plots for 13 MitoCarta annotated
mtDNA-encoded genes for native BJ. BJ pl), and BJ p0+HEE293T cells at the fibroblast. iPSC, and MSC fates.

Statistical significance was by Welch’'s T test.
(C) MitoXplorer categorized DEGs for BT p0+HEE293T compared to native BJ cells at the fibroblast, iPSC, and

MSC fates divided into the 38 mitochondrial processes.
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Patananan, et. al. 2020
(Submitted - Cell Reports)

Supplementary Table S1:
ddC induced mutations
Related to Figures 2 and S1

Table of Contents

1. ddC Fibroblast Mutational Report
2. Provenance

3. Variant Summary

4. Non-synonymous SNV Mutations
5. Mutational Signatures

6. Chromosomal breaks

7. Copy number and heterozygosity

1. ddC Fibroblast Mutational Report

The following samples were sequenced to >30x average coverage. Data quality was within standard
parameters for all samples. The following "contrast" was created to find novel variations in the treated
sample vs. the control:

control treated

Cell line BJ BJ 5uM DDC

Since there was no clonal selection after treatment, it's extremely important to note the limit of detection for
all of our assays. For whole genome sequencing, that's typically 15%. So if there was a variant of interest
here, it would have to be present in at least 15% of the population before we could report anything.

2. Provenance

All treated cell lines shared 100% of markers with control, indicating that all samples were
properly matched.

3. Variant Summary

Variant Type BJ Count
Intergenic 8931
Intron 5134
NonCoding 835
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Missense 22
Silent 10

Variant locations and sums were within close to each other.
Median allele fraction of variants ranged from 0.15 - 0.17 for the contrast.

4. Non-synonymous SNV

Mutations
Single nucleotide variations were not abundant.

non- .
mutation

contrast synonymous

. rate

mutations
BJ 5uM DDC
26 0.6/MB

vs. BJ

5. Mutational Signatures

SNVs are associated with a "mutational signature" denoting the mutational context around a
particular transition or transversion.

There was little difference between the various contrasts on total number of variants.

For each variant, we measure the VAF (variant allele fraction). For all samples, these were
mostly uniformly distributed in (0.0, 0.3), with a small number near 1.0 (likely artifacts).

BJ vs BJ 5uM DDC mutational signatures

. % of Associated Common
Signature # SNVs Total Caused by with tumor types
Transcriptiona
. | strand bias
Signature 5 2,230 42  Unknown for T>C All
mutations
Weak strand Breast,
Signature 8 873 16 Unknown bias for C>A  Medulloblastom
mutations a
Activity of
. AID during
Signature 9 854 16 DNA repair by somatic CLL, B-Cell

polymerase eta Lymphoma

hypermutation
]
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Signature 18 471 9 Unknown Neuroblastoma

Strong

transcriptional
Signature 16 200 4  Unknown strand bias for Liver

>C

mutations

6. Chromosomal breaks
No chromosomal breaks were detected in any of the samples.

7. Copy number and heterozygosity
No changes in copy number were observed.
There are some low confidence calls for loss of heterozygosity:

Est. (Major Size
. ’
Contrast  Population Minor)#  (Mb) Cytoband(s) State
Prevalence
21pll.2 -
o -
BJ 38% (2,0) 20.88 219213 CN-LOH
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Patananan, et. al. 2020 (Submitted - Cell Reports)
Supplementary Table S2:
SIMR cell lines generated
Related to Figures 3 and S1

Mitochondrial
Recipient

Mitochondrial
Donor

Generate
engineered
fibroblast?

Reprogram into
iPSC?

Reprogramming
strategy

143BTK- p0

143BTK- p0

143BTK- p0

143BTK- p0

L929 p0

BJ p0 fibroblast

BJ p0 fibroblast

none
HEK293dsRE
D

Cybrid with
MELAS-
mutation
(CL3); Gift
from Mondira
Kundu (Saint
Jude Children's
Research
Hospital)
Control cybrid
without
MELAS
mutaiton
(CL9); Gift
from Mondira
Kundu (Saint
Jude Children's
Research
Hospital)

Mitochondria
from different
mouse tissue

None
(phosphate
buffer saline
control)

HEK293dsRE
D

No

No

Yes
303

N/A

N/A

N/A

N/A

N/A

No

Yes

N/A

N/A

N/A

N/A

N/A

N/A
StemRNA-NM
Reprogramming
kit; ReproRNA™-
OKSGM



BJ p0 fibroblast

BJ p0 fibroblast

BJ pO fibroblast

BJ pO fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

LP298 (PBMC)

LP351 (PBMC)
Cybrid with
MELAS-
mutation
(CL3); Gift
from Mondira
Kundu (Saint
Jude Children's
Research
Hospital)
Control cybrid
without
MELAS
mutaiton
(CL9); Gift
from Mondira
Kundu (Saint
Jude Children's
Research
Hospital)

None
(phosphate
buffer saline
control)

NDF (ATCC
PCS-201-010)

HEK293dsREd
Cybrid with
MELAS-
mutation
(CL3); Gift
from Mondira
Kundu (Saint
Jude Children's

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes
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N/A

Yes

No

Yes

Yes

StemRNA-NM
Reprogramming
kit; ReproRNAT™-
OKSGM

StemRNA-NM
Reprogramming
kit; ReproRNAT™-
OKSGM

StemRNA-NM
Reprogramming
kit; ReproRNAT™-
OKSGM

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit



NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

NDF p0
fibroblast

Research
Hospital)

Control cybrid
without
MELAS
mutaiton
(CL9); Gift
from Mondira
Kundu (Saint
Jude Children's
Research
Hospital)

Alternative
cybrid line with
MELAS
mutation
Heteroplasmic
mixture of
isolated
mitochondria
derived from
CL3 and CL9
MERREF; Gift
from Carlos
Moraes
(University of
Miami);
A8344G
subsitution

A cytochrome
B 3.0 cybrid;
Gift from
Carlos Moraes
(University of
Miami);
Leigh
syndrome
primary
fibroblast;
Coriell
Repository
GM13411;

Yes

Yes

Yes

Yes

Yes

Yes
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Yes

No

No

No

No

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

Lenti;
CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit



NDF p0
fibroblast

NDF p0
fibroblast

T8993G
substitution

Primary
MELAS
fibroblast
Kearns Sayre
Syndrome;
Coriell
Repository
GMO06225;
Common
deletion

Yes

Yes

306

No

No

CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit

CytoTune™-iPS
2.0 Sendai
Reprogramming
Kit



Patananan, et. al. 2020 (Submitted - Cell Reports)

Supplementary Table S3:

Metabolomics Principal Components Analysis (PCA) and Pathway Analysis
Related to STAR Methods (Metabolomics Data Analysis) and Figure S2

Accession Information:
To Be Added

Table of Contents:
Section I: Metadata for all metabolite samples processed (n = 54 total)

Section II: Euclidean distance similarity mapping values across samples. (n = 54 total)
Section III: Protein content-normalized metabolite abundance amounts for 154 metabolites
identified across samples. Samples where the metabolite was not identified are set to zero for
PCA.

Section [V: Metabolite pathway sets identified as significantly enriched across one or more
sample conditions (using an F statistic adjusted P value threshold of 0.05)

Section V: List of metabolites (KEGG COMPOUND ID) associated with each metabolic
pathway for GSVA analysis.

Condition Code:

BJ

BJ rho null (BJp0)

BJ HEK (BJpO+HEK293T)
BJ LP351 (BJp0+PBMC1)

Section I: Metadata for all metabolite samples processed (n = 54 total)

Condition_Exp Condition Fate Transfer = Condition Fate
Fibroblas

bj fibroblast Expl BJ t None BJ Fibroblast
Fibroblas

bj fibroblast Exp2 BJ t None BJ Fibroblast
Fibroblas

bj fibroblast Exp3 BJ t None BJ Fibroblast

bj ipsc_Expl BJ iPSC iPSC None BJ iPSC iPSC

bj ipsc_Exp2 BJ iPSC iPSC None BJ iPSC iPSC

bj ipsc_Exp3 BJ iPSC iPSC None BJ iPSC iPSC

bj MSC_Expl BJ MSC MSC None BJ MSC MSC

bj MSC_Exp2 BJ MSC MSC None BJ MSC MSC

bj MSC_Exp3 BJ MSC MSC None BJ MSC MSC
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bj rho 0 + hek mitos
fibroblasts Expl

bj rho 0 + hek mitos
fibroblasts Exp2

bj rho 0 + hek mitos
fibroblasts Exp3

bj rho 0 + hek mitos iPSC
clonel Expl

bj rho 0 + hek mitos iPSC
clonel Exp2

bj rho 0 + hek mitos iPSC
clonel Exp3

bj rho 0 + hek mitos iPSC
clone2 Expl

bj rho 0 + hek mitos iPSC
clone2 Exp2

bj rho 0 + hek mitos iPSC
clone2 Exp3

bj rho 0 + hek mitos iPSC
clone4 Expl

bj rho 0 + hek mitos iPSC
clone4 Exp2

bj rho 0 + hek mitos iPSC
clone4 Exp3

bj rho 0 + hek mitos msc
clonel Expl

bj rho 0 + hek mitos msc
clonel Exp2

bj rho 0 + hek mitos msc
clonel Exp3

bj rho 0 + hek mitos msc
clone2 Expl

bj rho 0 + hek mitos msc
clone2 Exp2

bj rho 0 + hek mitos msc
clone2 Exp3

bj rho 0 + hek mitos msc
clone4 Expl

bj rho 0 + hek mitos msc
clone4 Exp2

bj rho 0 + hek mitos msc
clone4 Exp3

bj rho 0 + LP351 mitos
fibroblast Expl

bj rho 0 + LP351 mitos
fibroblast Exp2

BJ HEK
Fibroblast

BJ HEK
Fibroblast

BJ HEK
Fibroblast

BJ HEK IPSC
Clone 1

BJ HEK IPSC
Clone 1

BJ HEK IPSC
Clone 1

BJ HEK IPSC
Clone 2

BJ HEK IPSC
Clone 2

BJ HEK IPSC
Clone 2

BJ HEK IPSC
Clone 4

BJ HEK IPSC
Clone 4

BJ HEK IPSC
Clone 4

BJ HEK MSC
Clone 1

BJ HEK MSC
Clone 1

BJ HEK MSC
Clone 1

BJ HEK MSC
Clone 2

BJ HEK MSC
Clone 2

BJ HEK MSC
Clone 2

BJ HEK MSC
Clone 4

BJ HEK MSC
Clone 4

BJ HEK MSC
Clone 4

BJ LP351
Fibroblast

BJ LP351
Fibroblast

Fibroblas
;ibroblas
;ibroblas
t

iPSC
iPSC
iPSC
iPSC
iPSC
iPSC
iPSC
iPSC
iPSC
MSC
MSC
MSC
MSC
MSC
MSC
MSC
MSC
MSC
Fibroblas
t

Fibroblas
t
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HEK
Transfer
HEK
Transfer
HEK
Transfer
HEK
Transfer 1
HEK
Transfer 1
HEK
Transfer 1
HEK
Transfer 2
HEK
Transfer 2
HEK
Transfer 2
HEK
Transfer 4
HEK
Transfer 4
HEK
Transfer 4
HEK
Transfer 1
HEK
Transfer 1
HEK
Transfer 1
HEK
Transfer 2
HEK
Transfer 2
HEK
Transfer 2
HEK
Transfer 4
HEK
Transfer 4
HEK
Transfer 4
LP351
Transfer
LP351
Transfer

BJ HEK Fibroblast
Fibroblast

BJ HEK Fibroblast
Fibroblast

BJ HEK Fibroblast
Fibroblast

BJ HEK IPSC Clone
1 iPSC

BJ HEK IPSC Clone
1 iPSC

BJ HEK IPSC Clone
1 iPSC

BJ HEK IPSC Clone
2 iPSC

BJ HEK IPSC Clone
2 iPSC

BJ HEK IPSC Clone
2 iPSC

BJ HEK IPSC Clone
4 iPSC

BJ HEK IPSC Clone
4 iPSC

BJ HEK IPSC Clone
4 iPSC

BJ HEK MSC Clone
1 MSC

BJ HEK MSC Clone
1 MSC

BJ HEK MSC Clone
1 MSC

BJ HEK MSC Clone
2 MSC

BJ HEK MSC Clone
2 MSC

BJ HEK MSC Clone
2 MSC

BJ HEK MSC Clone
4 MSC

BJ HEK MSC Clone
4 MSC

BJ HEK MSC Clone
4 MSC

BJ LP351 Fibroblast
Fibroblast

BJ LP351 Fibroblast
Fibroblast



bj rho 0 + LP351 mitos
fibroblast Exp3

bj rho 0 + LP351 mitos
1PSC clone 1 _Expl

bj rho 0 + LP351 mitos
1PSC clone 1 _Exp2

bj rho 0 + LP351 mitos
iPSC clone 1_Exp3

bj tho 0 + LP351 mitos
iPSC clone 11_Expl

bj rho 0 + LP351 mitos
1PSC clone 11_Exp2

bj tho 0 + LP351 mitos
iPSC clone 11_Exp3

bj tho 0 + LP351 mitos
iPSC clone 2__Expl

bj tho 0 + LP351 mitos
iPSC clone 2_Exp2

bj tho 0 + LP351 mitos
iPSC clone 2_Exp3

bj tho 0 + LP351 mitos msc
clone 1 Expl

bj tho 0 + LP351 mitos msc
clone 1 _Exp2

bj tho 0 + LP351 mitos msc
clone 1_Exp3

bj rho 0 + LP351 mitos msc
clone 11_Expl

bj tho 0 + LP351 mitos msc
clone 11 _Exp2

bj rho 0 + LP351 mitos msc
clone 11_Exp3

bj rho 0 + LP351 mitos msc
clone 2_Expl

bj rho 0 + LP351 mitos msc
clone 2 _Exp2

bj rho 0 + LP351 mitos msc
clone 2__Exp3

bj tho 0 fibroblast Expl

BJ LP351
Fibroblast
BJ LP351
IPSC Clone 1
BJ LP351
IPSC Clone 1
BJ LP351
IPSC Clone 1

BJ LP351
IPSC Clone 11

BJ LP351
IPSC Clone 11

BJ LP351
IPSC Clone 11
BJ LP351
IPSC Clone 2
BJ LP351
IPSC Clone 2
BJ LP351
IPSC Clone 2
BJ LP351
MSC Clone 1
BJ LP351
MSC Clone 1
BJ LP351
MSC Clone 1

BJ LP351
MSC Clone 11

BJ LP351
MSC Clone 11

BJ LP351
MSC Clone 11
BJ LP351
MSC Clone 2
BJ LP351
MSC Clone 2
BJ LP351
MSC Clone 2
BJ Rho Null
Fibroblast

Fibroblas
t

1PSC

1PSC

1PSC

iPSC

1PSC

iPSC

iPSC

iPSC

iPSC

MSC

MSC

MSC

MSC

MSC

MSC
MSC
MSC
MSC

Fibroblas
t
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LP351
Transfer
LP351
Transfer 1
LP351
Transfer 1
LP351
Transfer 1
LP351
Transfer
11

LP351
Transfer
11

LP351
Transfer
11

LP351
Transfer 2
LP351
Transfer 2
LP351
Transfer 2
LP351
Transfer 1
LP351
Transfer 1
LP351
Transfer 1
LP351
Transfer
11

LP351
Transfer
11

LP351
Transfer
11

LP351
Transfer 2
LP351
Transfer 2
LP351
Transfer 2

Rho Null

BJ LP351 Fibroblast

Fibroblast

BJ LP351 IPSC
Clone 1 iPSC
BJ LP351 IPSC
Clone 1 iPSC
BJ LP351 IPSC
Clone 1 iPSC

BJ LP351 IPSC
Clone 11 iPSC

BJ LP351 IPSC
Clone 11 iPSC

BJ LP351 IPSC
Clone 11 iPSC
BJ LP351 IPSC
Clone 2 iPSC
BJ LP351 IPSC
Clone 2 iPSC
BJ LP351 IPSC
Clone 2 iPSC
BJ LP351 MSC
Clone 1 MSC
BJ LP351 MSC
Clone 1 MSC
BJ LP351 MSC
Clone 1 MSC

BJ LP351 MSC
Clone 11 MSC

BJ LP351 MSC
Clone 11 MSC

BJ LP351 MSC
Clone 11 MSC
BJ LP351 MSC
Clone 2 MSC
BJ LP351 MSC
Clone 2 MSC
BJ LP351 MSC
Clone 2 MSC
BJ Rho Null

Fibroblast Fibroblast



BJ Rho Null Fibroblas BJ Rho Null

bj tho 0 fibroblast Exp2 Fibroblast t Rho Null Fibroblast Fibroblast
BJ Rho Null Fibroblas BJ Rho Null
bj tho 0 fibroblast Exp3 Fibroblast t Rho Null Fibroblast Fibroblast

Section II: Euclidean distance similarity mapping values across samples. (n = 54 total)

bj bj bj bj bj bj
bj rho0 rho0 rho0 rho0 rho0 rho0
bj bj bj bj bj bj rho0 + + + + + +
bjrho rho0 rho0 rho0 rho0 rho0 rho0 + LP35s LP3S LP35S LP35 LP35 LP35S
0+ +hek +hek +hek +hek +hek +hek LP35 1 1 1 1 1 1
hek mitos  mitos mitos mitos mitos mitos 1 mitos mitos mitos mitos mitos mitos bj

mitos iPSC iPSC iPSC msc msc msc mitos iPSC iPSC iPSC msc msc msc rho 0
fibrob  clone clone clone clone clone clone fibro clone clone clone clone clone clone fibro
lasts 1 2 4 1 2 4 blast 1 11 2 1 11 2 blast
11218 34361 29275 19321 23949 24836 22399 14709 25454 24853 25204 21248 19528 20028 16351
4932  331.6 6969 4419 4995 2204  675.1 602.3 3749 4355 2409  383.1 751.3 268.3 937
34333 40747 31309 17379 77151 84834 12863 34581 35907 57808 47544 10667 13702 13159 39246
209.6 3389 5129 1432 39.97 84.94 1494 4622 6546  36.57 82.09 059.3 412 180.1 005.6
24436 33046 24298 11240 70953 83547 68350 24455 10907 10078 99464 41808 23975 32698 29283
329.8 083.7 2105 414.1 78.98 38.9 89.06 3193 688.9  654.5 58.73 20.79  00.93 69.33 528.9
31060 27846 22781 29556 30338 26505 64228 31688 30816 31108 26666 24110 24531 77421
0 9715 027.3 1942  967.7 518 9447 9839  782.8 4624 197.5 926.1 040.2  328.5 73.78

31060 10452 26333 35229 34152 29477 28736 38803 36000 36576 33113 31108 30833 32584
971.5 0 117 7776 7258 710.8 4183 0398 3059 160.8 9204 477.8 0457 727.1 3129
27846 10452 19054 25875 24625 20265 25320 29617 26813 27223 24245 22457 22053 30908
027.3 117 0 2332 1732 5141 2071 0239 6948 2317 4252 6163 0472 9252 1925
22781 26333 19054 12979 12996 96023 23333 14541 12430 13282 10344 96653 93163 26828
1942 7776 2332 0 9206 6857 1034 85l.1 127.8 030 9758 0852 11.14 7491 8669
29556 35229 25875 12979 26663 60237 29452 66573 51246 48683 40831 72635 63723 34470
967.7 7258 1732 920.6 0 7386 0993 8179 7636 9576 39.07 4439 3738 1647 5074
30338 34152 24625 12996 26663 58232 30100 76143 52619 51667 52252 80720 71941 35198
518 7108 5141 6857  73.86 0 78.66 836.8 9095 60.15 14.4 39.7 4652  86.89  058.1
26505 29477 20265 96023 60237 58232 25941 11307 88546 90659 49725 54458 40277 31286
9447 4183  207.1 10.34 0993  78.66 0 8242 7113 6391 7621 67.14 4393 30.12 5353
64228 28736 25320 23333 29452 30100 25941 32154 31098 31258 26813 24039 24355 11192
98.39 039.8 0239 851.1 8179 836.8 824.2 0 1756 7328 0753 062 9912 3378 9149
31688 38803 29617 14541 66573 76143 11307 32154 35274 29268 87204 11585 11100 36475
782.8 3059 6948 1278 7636 9095 7113  175.6 0 68.1 32.07 4987 2813 8688 7033
30816 36000 26813 12430 51246 52619 88546 31098 35274 15889 71597 10162 94160 35548
4624  160.8  231.7 030 9576  60.15 6391 7328 68.1 0 5714 3782 0713 3148 852
31108 36576 27223 13282 48683 51667 90659 31258 29268 15889 73140 10231 95596 35951
197.5 9204 4252 9758  39.07 144 7621 0753 32.07 57.14 0 7756 3435 91.53 6525
26666 33113 24245 10344 40831 52252 49725 26813 87204 71597 73140 37262 32179 31469
926.1 4778 6163 0852  44.39 39.7  67.14 062 4987 3782 77.56 0 4041 15.83 837
24110 31108 22457 96653 72635 80720 54458 24039 11585 10162 10231 37262 17840 28894
0402 0457 0472 11.14 3738 4652 4393 9912 2813 0713 3435 4041 0 7215 90L.6
24531 30833 22053 93163 63723 71941 40277 24355 11100 94160 95596 32179 17840 29314
3285 727.1 9252 7491 1647 86.89 30.12 337.8 8688 3148 91.53 1583 7215 0 951
77421 32584 30908 26828 34470 35198 31286 11192 36475 35548 35951 31469 28894 29314
73.78 3129 1925 8669 5074 058.1 5353 9149 7033 852 6525 837 901.6 951 0

Section II1: Protein content-normalized metabolite abundance amounts for 154 metabolites
identified across samples. Samples where the metabolite was not identified are set to zero
for PCA.
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13BPG
2-Aminobutyrate
2-HG
3-Hydroxy-3-
methylglutarate
3PG
SM-thioadenosine
6P-gluconate

A

a-KG
Ac-carnitine
Ac-choline
Acetyl-CoA
Aconitate
Adenine

ADP

ADP/ATP

Ala

AMP
AMP/ATP

Arg

Arg-Succ

Asn

Asp

ATP

C
Carbamoyl-Asp
Carbamoyl-P
Carnitine

(0]))
CDP-choline
CDP-EtA
Cholesterol sulfate
Choline

Cit

Citrulline

CMP

CoA

Creatine

bj fibroblast Expl bj fibroblast Exp2 bj fibroblast Exp3

9176.144184
4128.129589
27478.87339

12923.52802
17468.17677
249227.5419
21515.75119
3746.621922
37516.62163
5086002.319
371101.8904
2668.286015

52637.7177
1155.969991
121692.7217
0.269161839
1032478.258
43102.36867
0.095334484
1187951.769
2802.097381
365239.5502
2019413.705
452117.2919
28474.84839
430.5184167
491.5775736
1757892.775
8692.182791

931.294132
1068.176277
5221.701032
303609.9361
3014872.403
47370.40826

1657.21834
1379.634553
3754773.863

311

11700.87272
11091.731
26991.90197

14746.17585
19539.86949
233207.5542
24062.42841
44769.98783
36627.44972
6079936.983
433863.5794
3255.861408
72842.03114
464.9802245
133624.5741
0.231662892
1917438.175
30422.86394
0.052743657
1382977.299
2624.624211
376744.6922
2127602.421
576806.1209
31375.91244
1306.546709
807.6006776
2406271.465
8566.361528
294.8437002
1223.01544
6492.181233
492059.1157
3894972.4
55177.10956
1389.752465
1940.383566
6295403.235

9391.573081
6761.849595
31260.18648

12370.56507
16155.92188
235287.9864
19635.77405
23198.96408
46883.17557
5506851.349
373542.9374
3312.056712
58443.67779
1860.013109
121719.3581

0.25617419
1175615.894
27096.91841
0.057028982

1188053.59
3282.600215
418948.8479
2227314.106
4751429411
34176.00169
594.5297479
2347.435903
1905888.868
9104.761054
612.1935391
1530.374052
8870.273425
274327.6426
3471953.498
49464.20378
2082.952727
1523.405068

4160678.59



Creatine/P-Creatine

Creatinine
CTP
Cystathionine
Cystine
Cytosine

dA

dAMP

dATP

dC

dCDP

dCMP

dCTP

dG

dGDP

dGTP

DHAP
Dihydroorotate
Dihydrouracil
dTMP

dTTP

dU

dUMP

F16BP

Folate

Fru

Fum

G

G3pP

GABA

GDP
GDP-Mannose
Gle

GIlcN
GIcN-6P
GlcNAc-6P
GIn

Glu

GlucA
Gluconate

12.93548496
848251.242
26979.70426
90601.62199
1809.643864
4664.491613
1459.91466
0

0
3749.782913
0
136.3108457
0

0
3213.742117
392.4905231
10066.3149
469.8373332
35115.24124
64.3088462
61.71614964
5272.997027
91.30292716
107695.2033
27629.54078
219818.8523
96130.73257
9106.065675
9170.425576
10425.637
15244.48073
2747.626887
5684162.069
3391270.208
4627.927693
2587.448679
15476349.47
11569747.8
9701.375148
441310.0251

312

16.04741302
1234596.734
37536.49693
95603.9623
2337.858467
6651.401745
1363.670287
0

0
5313.766592
0

0
120.0845773
0
2525.578278
0
10356.1832
210.5717929
35632.64303
0
150.7897791
1835.429729
128.5612781
141080.6923
27346.66944
218346.8447
96281.82176
9008.865843
10408.98339
16575.91802
15320.41879
3443.664709
6030124.282
3793938.812
3700.759208
4008.223687
16117522.95
12546400.48
10918.85694
342153.4094

11.31838306
950745.1892
31051.46015
05828.10632
1476.273513
5322.135615
1343.810256
0

0
7388.325829
0
151.884048
0

0
2897.739038
800.9387498
10599.77717
757.0203292
40736.53389
0
138.6461449
6955.80865
140.7902857
119044.5242
22568.53568
228764.1483
110018.3277
11122.15318
9890.394083
14985.17261
15328.19331
1512.153846
6244393.187
2939780.518
5001.710891
3931.78205
18661339.13
12958205.19
11977.9248
486982.382



GluNAc¢

Gly

Glycerate
Glycerol
Glycerol-3P
Glyoxylate
GMP

GSH
GSH/GSSG
GSSG

GTP

Guanine

H6P

His
HMG-CoA
Hypotaurine
Hypoxanthine
IMP

Inosine
Inositol
Isobutyryl-carnitine
Isobutyryl-CoA
Lac

Leu/Ile

Lys

Mal
Malonyl-CoA
Met
Methionine sulfoxide
Mevalonate
NAD+
NADH
NADP+
NADPH
Nicotinamide
Ornithine
P-Choline
P-Creatine
P-EtA

P-Ser

15439.62917
204781.0486
3839.910239
2070.985508
11767.25966
20071.02467
3604.902923
859822.0992
4.756664129
180761.5749
58411.25324
0
67837.46235
1350470.674
148.6409334
123975.3712
0
870.5850291
9726.439315
5457294.036
574063.4613
27.74292313
1330936.116
7098445.924
368490.8459
1262308.63
1085.738293
1778601.48
158260.1806
56793.22821
247464.1858
4307.302324
5491.10247
0
314482.0564
6485.009872
843561.097
290269.2767
1630.719807
5596.551565
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14877.91476
379589.2035
4364.786583
4450.022052
15934.93687
31682.1392
4274.08302
962515.9429
7.118226848
135218.498
76025.88167
0
67295.62692
1603061.904
170.8545756
208280.6972
0
343.1311404
7381.579705
4683577.607
636290.7061
36.21018135
1799007.21
11458445.01
556127.1393
1320189.141
1127.371105
2597620.077
175316.166
98905.73994
251385.1345
4854.544778
3482.223414
86.70529552
445896.2986
13270.25497
1026531.022
392300.1935
1450.69231
7816.4688

17094.21994
243936.9712
4152.354162
781.4446711

17626.1409
22000.77667
3461.023458
1042640.933
8.494762309
122739.2709
61222.56163
88.66682856
77618.89049
1454789.663
195.6209712
144309.6284
110.3712261
503.3889275
6698.914835
5829280.556
605426.9723
35.27345876

1369074.73
8259474.038
422404.4548
1467620.611
1159.513549
2016920.781
170955.8315
38817.48916
261986.2413
4898.691935
3100.795658
121.0744833
291377.4263
8451.593469
1022246.149
367603.6205
1291.939806
6270.488661



Palmitate
Pantothenate
PEP

Phe

Pro

Pro-OH
PRPP
Pyridoxine
RSP

Rib

S7pP

SAH

SAM
Sarcosine
Ser

Sorbitol
Succ
Succ-Semialdehyde
T

Taurine
Thr
Thymine
Trp

Tyr
Tyramine

U

UDP
UDP-Glc
UDP-GIcNAc
UDP-GlucA
UMP

Uracil

Uric Acid
UTP

Val
Xanthine

5917136.018
3445851.435
1264.633085
11979569.15
4005383.139
112921.1396
1358.502302
220250.7379
1257.131961
142.5434698
3281.25761
19138.61027
195358.4404
126135.6867
79431.56136
8348.178669
74893.17033
3597.095324
4453.30615
10031978.87
906350.0294
53445.28786
1881348.892
3295588.376
4117.461855
23422.07398
29021.9419
153255.3157
0
17223.93999
13637.8724
33261.66156
52246.76175
54191.03695
4520825.093
220778.875

6217974.752
3506865.635
1320.315145
13584529.33
6799089.918
165765.4037
1558.080328
234040.2438
1167.940166
88.11189614
3319.067889
27113.55381
161175.6934

233387.794
103540.9474
10714.18925
86280.77891
3459.379368
3678.467623
9373887.502
1468802.694
52929.86692
2309815.539

3650293.37
3951.461728
21735.27907
25548.81045
193627.7436
204093.6876
22220.36457
12295.25343
29615.95277
44009.79208
66586.51634
15567296.69
156911.7041

7603970.555
3343816.151
790.2969397
12840251.65
4699086.584
120818.388
1329.198311
246989.0089
1891.424429
0
4053.037894
17579.73451
201123.1414
174639.421
89266.46195
10536.42018
82665.03364
3856.136378
4328.167803
0
1060591.641
64545.72805
2061540.158
3637942.31
3355.619905
26842.04248
25885.214
189722.9254
103470.7199
18594.44334
8066.163599
30420.97386
44769.09187
58895.49872
8638120.491
206006.1801

Section IV: Metabolite pathway sets identified as significantly enriched across one or more

sample conditions (using an F statistic adjusted P value threshold of 0.05)
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Metabolite Set

Pyrimidine Metabolism
Fructose and Mannose
Degradation

Purine Metabolism
Phospholipid
Biosynthesis

Glycolysis
Glycerol Phosphate
Shuttle

Histidine Metabolism
Ethanol Degradation
Methionine Metabolism
Carnitine Synthesis
Galactose Metabolism

Gluconeogenesis
Pentose Phosphate
Pathway

Ketone Body
Metabolism

Lactose Synthesis

Glutamate Metabolism
Valine, Leucine and
Isoleucine Degradation

Glucose-Alanine Cycle

Aspartate Metabolism
Transfer of Acetyl
Groups into
Mitochondria

Citric Acid Cycle
Arginine and Proline
Metabolism

Malate-Aspartate Shuttle
Pyruvate Metabolism
Glutathione Metabolism

Ammonia Recycling
Beta-Alanine
Metabolism

Urea Cycle

Glycerolipid Metabolism
Glycine, Serine and
Threonine Metabolism

SampleMatrix.Conditi
onBJ

-0.51538394

0.0992071
-0.37433988

0.48986329
0.24899897

0.46217707
0.49997077
0.48991104
0.33261675

0.5682723
0.55261701

0.2902023

0.08366097

0.10552495
-0.03009259
0.42231192

-0.52972944
0.53604876
-0.08909138

0.5934011
0.63535047

0.38027877
0.7695959
0.11313918
0.7219193
0.59680642

-0.27237943
0.37903996
0.15613818

0.33170956

SampleMatrix.ConditionBJ.HEK.Fi
broblast

-0.34956396

0.46852084
-0.37170344

0.58289533
0.26098391

0.54860994
0.15637439
0.23696437
0.13857708
0.32776831
0.29101932
0.31653097

0.44945871

0.07226798
-0.08373244
0.2411559

-0.26272282
0.33611159
-0.04112353

0.22214384
0.34229721

0.08241091
0.22315709
-0.16774511
0.22932919
0.2118832

-0.01064737
0.14991337
0.0738998

0.19629219

SampleMatrix.ConditionBJ. HEK.IPSC

.Clone.1

-0.48290558

-0.12942882
-0.4317121

-0.12215524
0.10917707

0.03590357
-0.57346662
-0.54020909
-0.04284158
-0.17232526

0.10011369

0.1083967

0.36756683

-0.37867993
-0.36306761
-0.09436682

0.47516545
-0.17372736
0.24864894

-0.20078139
-0.12780337

0.23925691
-0.06485613
0.54864097
-0.64485934
-0.29424831

-0.22835947
0.07338484
0.15832478

0.02972197

Section V: List of metabolites (KEGG COMPOUND ID) associated with each metabolic
pathway for GSVA analysis.

Metabolite Pathway

Alanine Metabolism

Metabolites (KEGG
COMPOUND ID) Associated

C00026

C0004

C00022
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C00025 1

C0003
6

C0003
7

C0004
8



Amino Sugar
Metabolism

Ammonia Recycling
Arginine and Proline
Metabolism

Aspartate Metabolism
Beta-Alanine
Metabolism

Carnitine Synthesis
Citric Acid Cycle

Ethanol Degradation
Fructose and Mannose
Degradation

Galactose Metabolism
Gluconeogenesis
Glucose-Alanine Cycle
Glutamate Metabolism

Glutathione Metabolism
Glycerol Phosphate
Shuttle

Glycerolipid
Metabolism

Glycine, Serine and
Threonine Metabolism

Glycolysis

Histidine Metabolism
Ketone Body
Metabolism

Lactose Synthesis
Malate-Aspartate
Shuttle

Methionine Metabolism
Pentose Phosphate
Pathway

Phospholipid
Biosynthesis

Purine Metabolism

Pyrimidine Metabolism

C00085

C00064

C00025

C00122

C00049

C00001

C00001

C00001

C00111

C00446

C00001

C00001

C00064

C00025

C00004

C00002

C00022

C00001

C00025

C00011

C00002

C00026

C00002

C00011

C00416

C00064

C00064

C05345

C00001

C00014

C03406

C00864

C00026

C00026

C00002

C00085

C00052

C00026

C00026

C00026

C00097

C00003

C00008

C00014

C00022

C00002

C00164

C00008

C00025

C00065

C00668

C00093

C00002

C00169

316

C06023

C00026

C00169

C00049

C00099

C00047

C00022

C00020

C05345

C00029

C00022

C00022

C00025

C00037

C00093

C00258

C00258

C00002

C00008

C00010

C00446

C00049

C00097

C01172

C00154

C00008

C00099

C0032

C0002

C0007

C0032

C0126

C0003

C0028

C0001

C0035

C0010

C0000

C0002

C0001

C0066

C0011

C0059

C0059

C0000

C0002

C0002

C0005

C0003

C0229

C0019

C0011

C0002

C0264
2

C0035

C0002

C0008

C0003

C0038

C0001

C0000

C0002

C0537

C0013

C0000

C0001

C0016

C0187

C0011

C0000

C0323

C0059

C0010

C0000

C0002

C0000

C0533

C0008

C0199

C0004

C0042
9

C0035

C0001

C0006

C0009

C0222

C0000

C0000

C0000

C0011

C0066

C0003

C0004

C0000

C0141

C0066

C0000

C0006

C0000

C0001

C0000

C0010

C0000

C0010

C0534

C0011

C0014

C0010
6

C0167

C0000

C0012

C0015

C0566

C0000

C0012

C0002

C0066

C0011

C0059

C0000

C0066

C0005

C0023

C0000

C0100

C0000

C0038

C0033

C0010

C0001

C0003

C0067

C0030

C0011

C0010
5



Pyruvate Metabolism
Spermidine and
Spermine Biosynthesis
Transfer of Acetyl
Groups into
Mitochondria

Urea Cycle
Valine, Leucine and
Isoleucine Degradation

C00022

C00002

C00001

C00064

C00164

C00036

C00077

C00022

C00001

C00024

317

C00546

C00073

C00002

C00026

C00100

C0002

C0017

C0000

C0002

C0600
2

C0008

C0031

C0003

C0002

C0217
0

C0033

C0013

C0001

C0001

C0018
3

C0007

C0113

C0001

C0028

C0033
2
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Supplementary Table S4:

Transcriptomics Principal Components Analysis (PCA) and select gene
expression.

Related to Figures 5 and S3, S4, SS.

Accession Information:
GSE115871
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Condition Code:

BJ

BJ rho null (BJpO0)

BJ HEK (BJp0+HEK293T)
BJ LP351 (BJp0+PBMC1)

Section I: Metadata for all samples collected for bulk RNA-sequencing analysis (n = 60

total).
Clo Batc Conditi

File Sample ne h on Transfer Clonallnfo
b8a9e771-5¢64-4973-a459- BJ Rho Null BJ Rho Null
f2de0182d439.rsem.txt.gz Fibs 0 1 Fibs Rho Null Fibroblast
255d874b-6966-4235-b809- BJ Rho Null BJ Rho Null
d26a97fc4b52.rsem.txt.gz Fibs 0 1 Fibs Rho Null  Fibroblast
73¢987bf-fdd2-4674-a3c5- BJ Rho Null BJ Rho Null
3352c8f7e96a.rsem.txt.gz Fibs 0 1 Fibs Rho Null Fibroblast
d8e86411-8f83-44ab-a4e0-
be587a3e69a5.rsem.txt.gz BJ Fibs 0 1 Fibs BJ BJ Fibroblast
c9d94al4-38ea-4ef4-8045-
1f68b6ca36e0.rsem.txt.gz BJ Fibs 0 1 Fibs BJ BJ Fibroblast
1bd36e15-65bc-475f-9b59-
024ac2038dae.rsem.txt.gz BJ Fibs 0 1 Fibs BJ BJ Fibroblast
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HEK

lad3cd29-2eda-4a71-9¢7d- Transfer HEK HEK Transfer

deaa3ccb6abbf.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast
HEK

a9cdeb6a-0b30-4bcd-8d91- Transfer HEK HEK Transfer

73bffed920fd.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast
HEK

36659ffa-4d9d-48b6-9af7- Transfer HEK HEK Transfer

ee69add64a3l.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast
LP351

158c0cda-a7{9-4a0f-81e3- Transfer LP351 LP351 Transfer

50d946a1452f.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast
LP351

d094adc5-496¢c-45¢1-8da9- Transfer LP351 LP351 Transfer

fc61204b3ee6.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast
LP351

7ctb6123-8670-43e2-ac43- Transfer LP351 LP351 Transfer

9b9cb27de3e8.rsem.txt.gz Fibs 0 1 Fibs Transfer  Fibroblast

96¢524a0-9ec2-4af4-a291f-

e5b58171da84.rsem.txt.gz BJiPSC 0 1 iPSC BJ BJiPSC

90fe80c9-215d-4faa-9bbe-

aa52ef99actb.rsem.txt.gz BJiPSC 0 1 iPSC BJ BJiPSC

d09bdbb2-0881-4ba5-b771f-

38ela39fe29a.rsem.txt.gz BJ iPSC 0 1 iPSC BJ BJ iPSC
HEK

d0a731cc-9d22-411f-bef9- Transfer HEK HEK Transfer

c2eel207{745.rsem.txt.gz iPSC 1 1 iPSC Transfer  iPSC Clone 1
HEK

c9a75556-39¢c7-44e8-8ecl - Transfer HEK HEK Transfer

9b88bf79ce37.rsem.txt.gz iPSC 2 1 iPSC Transfer  iPSC Clone 2
HEK

¢0a67304-7019-44cf-a2¢c9- Transfer HEK HEK Transfer

d5bf91c36ea7.rsem.txt.gz iPSC 4 1 iPSC Transfer  iPSC Clone 4
LP351

a0db8844-9056-42dc-bf36- Transfer LP351 LP351 Transfer

654061617b1b.rsem.txt.gz iPSC 1 1 iPSC Transfer  iPSC Clone 1
LP351

2¢708981-49¢5-4691-95d1- Transfer LP351 LP351 Transfer

ed04676bcdc6.rsem.txt.gz iPSC 2 1 iPSC Transfer  iPSC Clone 2
LP351

0f9cb841-{f39-4b48-bfd5- Transfer LP351 LP351 Transfer

faf2bad51109.rsem.txt.gz iPSC 11 1 iPSC Transfer  iPSC Clone 11

fb4£8£80-ec69-4cac-a0c7-

2f743b3844d7.rsem.txt.gz BJIMSC 0 1 MSC BJ BJIMSC

7c463e9b-d7e7-46ad-af69-

97efd6efb93 1.rsem.txt.gz BJMSC 0 1 MSC BJ BJMSC

597999d5-2013-45a6-aa9d-

2ad0c05cc4dd.rsem.txt.gz BJMSC 0 1 MSC BJ BJMSC
HEK

7teb6877-39dc-445b-bfb5- Transfer HEK HEK Transfer

f6755851592d.rsem.txt.gz MSC 1 1 MSC Transfer ~ MSC Clone 1
HEK

49a57add-fd64-4609-937c- Transfer HEK HEK Transfer

7b8bef7ee7f4.rsem.txt.gz MSC 2 1 MSC Transfer =~ MSC Clone 2
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5245244d-170b-4258-ba53-
b6fe1398349¢.rsem.txt.gz
bec88e7e-17ac-40b8-9011-
eb9143c2ae49.rsem.txt.gz
c7432564-9710-45e¢6-b332-
3e2753ee08ed.rsem.txt.gz
52£558¢cb-1b97-4£8d-81be-
13b8a0e9732c.rsem.txt.gz
5491¢6d3-31f1-483c-b4f7-
b778e10c4272.rsem.txt.gz
cd3c684e-26fe-4eal-81df-
fffc3dff959b.rsem.txt.gz
15cd734e-a53d-4033-b103-
415614b373b4.rsem.txt.gz
0a788839-3eb4-4b27-9ad5-
f8023da97d67.rsem.txt.gz
94799a70-74de-411e-bff1-
e6cded715f0d.rsem.txt.gz
81198c14-b0ef-45ad-9042-
cb7821bb64b0.rsem.txt.gz

33cd518a-8817-4984-941a-
bbdf4c00ald7.rsem.txt.gz

5¢d6540c-abe9-4768-ac60-
d34f39047287.rsem.txt.gz

2012771c-8d8d-426e-b083-
3393e44c31df.rsem.txt.gz

HEK
Transfer
MSC

LP351 MSC

LP351 MSC

LP351 MSC
BJ Rho Null
Fibs
BJ Rho Null
Fibs
BJ Rho Null
Fibs

BJ Fibs

BJ Fibs

BJ Fibs
HEK
Transfer
Fibs
HEK
Transfer
Fibs
HEK
Transfer
Fibs

MSC

MSC

MSC

MSC

Fibs

Fibs

Fibs

Fibs

Fibs

Fibs

Fibs

Fibs

Fibs

HEK
Transfer
LP351
Transfer
LP351
Transfer
LP351
Transfer

Rho Null

Rho Null

Rho Null

BJ

BJ

BJ

HEK
Transfer

HEK
Transfer

HEK
Transfer

HEK Transfer
MSC Clone 4
LP351 Transfer
MSC Clone 1
LP351 Transfer
MSC Clone 2
LP351 Transfer
MSC Clone 11
BJ Rho Null
Fibroblast

BJ Rho Null
Fibroblast

BJ Rho Null
Fibroblast

BJ Fibroblast

BJ Fibroblast

BJ Fibroblast

HEK Transfer
Fibroblast

HEK Transfer
Fibroblast

HEK Transfer
Fibroblast

Section II: Transcript per million (TPM) normalized expression values for summarized

HGNC gene-level counts per sample.

b8a9%e¢ 255d 73¢98
771- 874b- 7bf-
5e64- 6966- fdd2-
4973- 4235- 4674-
a459- b809- a3c5-
f2de0 d26a 3352c
182d  97fc4  8f7e9
439 b52 6a
AlB 1471 1294 13.10
G 145 9188 4916
AlB
G- 4245 4.036 4.043
AS1 462 122 239
AlC 0.017 0.010 0.016
F 163 603 25

d8e86
411-
8183-
44ab-
adel-
be587
a3e69
as
16.92
9945

5.084
312
0.018
535

c9d9
4al14-
38ea-
4ef4-
8045-
1f68b
6¢ca36
el
15.47
5654

4.697
988
0.016
516

1bd3
6el5-
65bc-
4751-
9b59-
024ac
2038d
ae
15.94
5637

4.755
244
0.016
91
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1ad3
cd29-
2eda-
4a71-
9c¢7d-
deaa
3cc6a
beéf
10.93
6097

4.455
787
0.023
875

a9cd
eb6a-
0b30

4bcd
8d91

73bff
ed92
0fd
8.275
323

3.730
475
0.022
885

36659
ffa-
4d9d-
48b6-
9af7-
ee69a
ddé64a
31
12.89
7414

4.129
011
0.018
575

158¢c0
cda-
a719-
4a0f-
81e3-
50d9
46al14
52f
11.90
4079

5.029
377
0.031
768

d094
adc5-
496¢-
45c1-
8da9-
fc612
04b3
eeb
18.10
7024

4.629
368
0.046
778

7¢fb6
123-
8670-
43e2-
ac43-
9b9ch
27de3
e8
14.89
7876

5.024
89
0.036
986



A2M
A2M
-AS1
A2M
L1
A2M
L1-
AS1
A2M
L1-
AS2
A2M
P1
A3G
ALT
2
AdG
ALT
AdG
NT
AAA
S
AAC
S
AAC
SP1
AAD
AC
AAD
ACL
2
AAD
ACL
2.
AS1
AAD
ACL
3
AAD
ACL
4
AAD
ACP
1
AAD
AT
AAE
D1
AAG
AB
AAK
1
AAM
DC

0.449
387
0.011
713
0.042
829

0.055
609
0.009
694

0.008
906
3.706
751
0.068
75
11.08
221
5.909
526
0.006
947

0.010
026

0.006
997

0
1.921
118
22.06
1451
17.37
2031
3591
3007
16.11
3722

0.420
971
0.022
959
0.246
11

0.109
415

0.012
841
3.373
845
0.182
797
13.34
5913
6.030
743
0.020
813

0.007
789

0.030
79

0.009
049

0.009
006

2.520
221
18.11
4471
14.92
5478
27.09
4496
16.63
4054

0.662
334
0.018
091
0.186
717

0.028
27

0.015
822
3.383
823
0.173
168
13.71
4196
5.969
77
0.022
276
0.005
778

0.006
315

0.047
075

0.006
636

0.012
276

2.396
93
19.24
4842
15.15
0327
27.30
3868
14.99
5158

35.62
0856
0.315
249
0.104
925

0.108
53
0.031
045

0.012
193
7.052
174
0.299
675
14.98
48
8.532
159
0.023
235
0.037
684

0.021
816

0.006
198

0.083
536

3.505
138
25.15
6234
14.51
5257
23.73
2019
15.58
3793

29.02
5254
0.294
279
0.106
611

0.030
816
0.053
287

0.013
645
7.207
618
0.234
351
14.00
5754
7.406
034
0.011
472

0.016
643

0.069
212

0.001
712

0.115

0.023
901
3.126
402
26.52
2667
13.50
5598
23.52
8802
15.13
9153

27.85
8903
0.380
799
0.103
508

0.091
248
0.056
661

5.994
747
0.330
214
14.24
9459
7.517
313
0.013
699
0.007
421

0.003
008

0.002
508

0.037
002

3.611
132
28.68
7271
13.60
0643
23.52
4057
13.83
2916
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1.442
073
0.075
833
0.224
339

0.026
057
0.014
809

0.018
318
4.852
479
0.116
862
12.05
1991
7.843
647
0.022
397
0.010
28

0.009
446

0.005
937

0.010
942

0.069
528
2.066
938
31.68
9267
12.86
5706
25.44
8379
17.79
4757

1.330
456
0.061
439
0.213
274

0.147
111
0.013
247

0.008
763
3.469
518
0.128
633
12.17
9488
7.075
549
0.050
506
0.016
158

0.009
078

0.018
477

0.002
486

0.056
43
2.240
401
20.41
7975
11.49
5957
26.33
3253
13.34
7927

1.001
217
0.052
727
0.212
727

0.015
394
3.762
685
0.185
514
12.93
515
6.687
875
0.029
965
0.037
56

0.015
62
2.259
807
32.16
7744
14.54
8645
29.68
1487
19.78
6809

0.344
843
0.213
23
0.119
041

0.025
804

0.031
794

0.031
618
6.274
258
0.085
747
13.91
6387
8.030
247
0.013
673
0.013
263

0.007
597

0.154
307

0.006
547

0.003
989

0.065
019
2.349
226
37.02
5155
15.09
1883
28.69
5617
21.05
9537

0.537
272
0.271
593
0.299
965

0.072
944

0.010
916

0.025
894
2.081
367
0.085
106
13.61
8351
7.377
285
0.020
529

0.005
941

0.004
85

0.004
023

0.045
876
2.774
343
30.28
3419
14.06
1894
26.72
7988
34.80
1959

0.375
365
0.215
064
0.201
018

0.064
965

0.002
043

0.042
783
1.896
951
0.107
358
12.19
9545
9.746
318
0.038
26
0.040
987

0.009
048

0.013
313

0.005
428

0.020
267
2.377
316
42.38
9528
14.53
3363
32.04
2458
34.74
5579



AAM

AAN
AT
AAR

AAR

AAR

AAR
S2
AAR
SD1
AAR
SP1
AAS
DH
AAS
DHP
PT
AAS

AAT
BC
AAT
F

25.31
4632
0.051
799
8.445
205
12.12
9518
45.23
4477
3.490
587
9.987
44

2.744
812

13.12
9804
3.864
044
0.078
176
10.60
2794

23.74
9383
0.078
527
7.540
654
10.61
6825
39.05
4864
3.687
635
12.07
1345

3.079
19

13.40
5754
5.859
395
0.122
511
10.76
6887

23.08
0166
0.079
841
7.684
383
5.717
013
37.62
2886
3.538

14.87
0814

2.784
752

12.94
4083
6.775
301
0.116
89
10.25
3891

19.56
5049
0.072
861
8.520
969
2.498
242
46.39
7072
2.966
52
11.44
3342

3.872
972

12.16
1022
5.674
089
0.238
395
10.42
5546

18.59
5221
0.037
087
8.310
893
4.404
324
44.46
8605
2.724
064
11.43
4516

3.427
548

11.65
2108
5.769
977
0.154
331
8.861
772

17.99
5016
0.019
135
7.620
49
1.722
773
46.73
5761
2.589
291
12.38
5085

3.643
064

11.54
8747
5.423
02
0.083
399
8.705
768

19.97
1725
0.055
723
7.092
033
3.839
818
20.16
8775
2.683
927
14.40
6906

2.785
321

11.39
5028
4.583
374
0.151
926
9.773
732

15.69
6617
0.085
181
6.074
537
0.357
323
22.54
7849
2.707
084
10.73
261

2.384
999

9.711
18
6.237
094
0.161
073
9.618
051

21.26
6506
0.020
526
7.310
501
3.928
873
23.97
715
2.861
904
14.36
3246

2.787
806

13.07
0702
5.636
809
0.210
854
9.638
878

18.47
8267
0.046

7.166
396
2.371
112
21.89
7541
2.563
468
11.45
8089

2.629
74

14.01
0083
6.682
701
0.145
745
9.683
937

19.15
3806
0.058
525
9.114
483
1.338
314
27.14
8307
2.208
929
12.55
3704

2.947
115

14.02
217
4.398
393
0.150
134
8.283
59

18.79
8203
0.066
819
8.624
774
1.026
23
30.36
4171
2.073
685
13.68
6338
0.018
019
2.817
076

13.25
6166
4.189
875
0.181
106
8.129
524

Section III - MitoMiner 4.0 gene lists (subset for MitoCarta 2.0 evidence) used for nuclear-

encoded mitochondrial transcript analysis.

Ensembl
Identifier

ENSMUSGO
0000024442

ENSMUSGO
0000027637

ENSMUSGO
0000021023
ENSMUSGO
0000019797

ENSMUSGO
0000038323

ENSMUSGO
0000021290

Ent
rez
Ge
ne

668
39

673
88

661
32
678
51

734
67

702
57

HGNC
Symbol

0610009
O20Rik

1110008
F13Rik

1110008
L16Rik
1700021
FO5Rik

1700066
M21Rik

2010107
E04Rik

Full gene description

RIKEN cDNA
0610009020 gene

RIKEN cDNA
1110008F13 gene

RIKEN cDNA
1110008L16 gene
RIKEN cDNA
1700021F05 gene

RIKEN cDNA
1700066M21 gene

RIKEN cDNA
2010107E04 gene

Chrom

osome

GO
Mito Ter
Cart m
a2.0 IMPI Evid
Evid Evide ence
ence? nce? ?
Known
TRU  mitoch TRU
18 E ondrial E
Dubio
TRU us TRU
2 E gene E
Known
TRU  mitoch TRU
12 E ondrial E
Predict
ed
TRU  mitoch TRU
10 E ondrial E
Known
TRU  mitoch FAL
1 E ondrial SE
Known
TRU  mitoch TRU
12 E ondrial E
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HPA
Evid
ence

iPS
ort

TS

Mito
Fates
MTS

0.97

0.014

0.215

0.192

0.266

0.069

Mito
prot
MT

0.83
69

0.05
19

0.74

0.89
92

0.83
48

0.03

Tar

get

MT

0.90

0.09

0.38

0.60

0.70

0.04
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0000023938
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0000029695
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0000057880

ENSMUSGO
0000041797

ENSMUSGO
0000031974

ENSMUSGO
0000026198

ENSMUSGO
0000031333

ENSMUSGO
0000028973

ENSMUSGO
0000029408

694
78

696

62

224
904

725

726
50

243
996

213

393

217
830

239

224

805

309
56

268
860

217
262

561
99

741
04

113
06

746
10

563
25

2300009
AO5Rik

2310061

104Rik

2410015
M20Rik

2610507
B11Rik

2810006
K23Rik

4933405
O20Rik

8430408

G22Rik

9030617
OO03Rik

AA4671

97

Aadat

Aars2

Aass

Abat

Abca9

Abcb10

Abcb6

Abcb7

Abchb8

Abcb9

RIKEN cDNA
2300009A05 gene

RIKEN cDNA
2310061104 gene

RIKEN cDNA
2410015M20 gene

RIKEN cDNA
2610507B11 gene

RIKEN cDNA
2810006K23 gene

RIKEN cDNA
4933405020 gene

RIKEN cDNA
8430408G22 gene

RIKEN cDNA
9030617003 gene

expressed sequence
AA467197

aminoadipate
aminotransferase
alanyl-tRNA
synthetase 2,
mitochondrial

aminoadipate-
semialdehyde synthase

4-aminobutyrate
aminotransferase

ATP-binding cassette,
sub-family A (ABC1),
member 9
ATP-binding cassette,
sub-family B
(MDR/TAP), member
10

ATP-binding cassette,
sub-family B
(MDR/TAP), member
6

ATP-binding cassette,
sub-family B
(MDR/TAP), member
7

ATP-binding cassette,
sub-family B
(MDR/TAP), member
8

ATP-binding cassette,
sub-family B
(MDR/TAP), member
9

17

17

11

12

17

16

11
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TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

Known
mitoch
ondrial
Predict
ed
mitoch
ondrial
Known
mitoch
ondrial
Predict
ed
NOT
mitoch
ondrial
Known
mitoch
ondrial

Predict
ed
mitoch
ondrial
Known
mitoch
ondrial
Predict
ed
NOT
mitoch
ondrial
Known
mitoch
ondrial
Known
mitoch
ondrial
Known
mitoch
ondrial
Known
mitoch
ondrial
Predict
ed
mitoch
ondrial

Known
mitoch
ondrial

Known
mitoch
ondrial

Known
mitoch
ondrial

Known
mitoch
ondrial
Predict
ed
NOT
mitoch
ondrial

FAL
SE

TRU

TRU

FAL

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

FAL
SE

0.881

0.195

0.022

0.421

0.059

0.019

0.993

0.934

0.777

0.998

0.742

0.261

0.681

0.003

0.561

0.867

0.004

0.87
64

0.86

0.73

0.83

0.93
52

0.66
19

0.08
03

0.97

0.15

0.93

0.97
58

0.99
42

0.97

0.99
63

0.99
62

0.00
17

0.93
51

0.39

0.14
98

0.89

0.81

0.27

0.10

0.80

0.15

0.25

0.94

0.04

0.81

0.77

0.89

0.87

0.77

0.90

0.01

0.50

0.87

0.06
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0000040532

ENSMUSGO
0000036138

ENSMUSGO
0000010651

ENSMUSGO
0000036880

ENSMUSGO
0000020532

ENSMUSGO
0000042010

ENSMUSGO
0000029456

ENSMUSGO
0000090150

ENSMUSGO
0000042647

116
66  Abcdl

268
74 Abcd?

192
99 Abcd3

274
07  Abcf2

213
012 Abhdl0

687
58  Abhdll

113
868 Acaala

235
674  Acaalb

525
38 Acaa?

107
476  Acaca

100
705  Acach

719
85  Acadl0

102
632 Acadll

Acadl2

ATP-binding cassette,
sub-family D (ALD),
member 1

ATP-binding cassette,
sub-family D (ALD),
member 2

ATP-binding cassette,
sub-family D (ALD),
member 3

ATP-binding cassette,
sub-family F
(GCN20), member 2

abhydrolase domain
containing 10

abhydrolase domain
containing 11

acetyl-Coenzyme A
acyltransferase 1A

acetyl-Coenzyme A
acyltransferase 1B
acetyl-Coenzyme A
acyltransferase 2
(mitochondrial 3-
oxoacyl-Coenzyme A
thiolase)

acetyl-Coenzyme A
carboxylase alpha

acetyl-Coenzyme A
carboxylase beta
acyl-Coenzyme A
dehydrogenase family,
member 10
acyl-Coenzyme A
dehydrogenase family,
member 11
acyl-Coenzyme A
dehydrogenase family,
member 12

15

16

18

11

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

Predict
ed
mitoch
ondrial
Predict
ed
NOT
mitoch
ondrial
Predict
ed
mitoch
ondrial
Predict
ed
mitoch
ondrial
Known
mitoch
ondrial
Known
mitoch
ondrial
Predict
ed
mitoch
ondrial

Known
mitoch
ondrial

Known
mitoch
ondrial
Known
mitoch
ondrial
Known
mitoch
ondrial

TRU

FAL

SE

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

TRU

0.092

0.939

0.799

0.452

0916

0.432

0.175

0.989

0.005

0.919

0.732

0.93
81

0.99
63

0.81
69

0.07
17

0.99

0.99
29

0.41
31

0.19
66

0.41
13

0.10
62

0.21

0.87

0.05
36

0.97
28

0.63

0.81

0.84

0.16

0.94

0.91

0.83

0.59

0.63
0.07

0.02

0.90

0.07

0.91

Section IV: Metabolic gene sets (derived from the KEGG Pathway database HSA01100)

tested using metabolism transcript GSVA.
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Section V: Significantly enriched metabolic pathways across sample conditions identified

using GSVA (using an F statistic adjusted P value threshold of 0.05).
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Section VI: Reactome pathway analaysis of the top S00 genes signficantly altered genes

between BJ parent and the BJ rho nulls and SIMR cell lines.
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Patananan, et. al. 2020 (Submitted - Cell Reports)
Supplementary Table S5:

Transcriptomics overrepresentation and global pathway analysis.
Related to Figures 5 and S3, S4, and SS5.

Accession Information:
GSE115871

Table of Contents:

Section I: List of differentially expressed genes between BJ p0 Fibroblasts (numerator) and BJ
Fibroblasts (denominator):

DEGs were calculated using an absolute log2FC > 1 and adjusted P value < 0.05 (Benjamini-
Hochberg False Discovery Rate = 0.05)

Section II: Fibroblast expression relative to BJ Fibroblast Reactome Overrepresentation Analysis
(ORA) results:

DEGs across fibroblast transfer conditions were evaluated for ORA in the Reactome database
using compareCluster() in R Bioconductor package ReactomePA.

Overrepresented pathways are calculated with a P value threshold < 0.05 and an adjusted P value
of 0.20 (BH FDR = 0.2)

Section III: iPSC expression relative to BJ iPSC Reactome Overrepresentation Analysis (ORA)
results. Results derived as above.

Section IV: MSC expression relative to MSC iPSC Fibroblast Reactome Overrepresentation
Analysis (ORA) results. Results derived as above.

Condition Code:

BJ

BJ rho null (BJpO0)

BJ HEK (BJpO+HEK293T)

BJ LP351 (BJp0+PBMC1)

Section I: List of differentially expressed genes between BJ p0 Fibroblasts (numerator) and
BJ Fibroblasts (denominator):

DEGs were calculated using an absolute 1og2FC > 1 and adjusted P value < 0.05

(Benjamini-Hochberg False Discovery Rate = (0.05)

Geometric
Mean Log2 Fold Log Fold
HGNC Expression  Change (p0 Change
Gene Across Fibroblast/BJ  Standard  Wald Test Wald test
Name Samples Fiborblast) Error Statistic P value Adjusted P value
MT-CO1 433436.171 -9.4154576  0.2384446  35.293135  7.48E-273 2.11E-268
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Section II: Fibroblast expression relative to BJ Fibroblast Reactome Overrepresentation

Analysis (ORA) results:

DEGs across fibroblast transfer conditions were evaluated for ORA in the Reactome

database using compareCluster() in R Bioconductor package ReactomePA.

Overrepresented pathways are calculated with a P value threshold < 0.05 and an adjusted

P value of 0.20 (BH FDR = 0.2)
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Appendix IV. Transcriptional, Electrophysiological, and Metabolic Characterizations of
hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBXS in

Cardiomyocyte Maturation
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Transcriptional, Electrophysiological,
and Metabolic Characterizations of
hESC-Derived First and Second Heart
Fields Demonstrate a Potential Role of
TBX5 in Cardiomyocyte Maturation

Arash Pezhouman ¥, Ngoc B. Nguyen "*¥, Alexander J. Sercel”, Thang L. Nguyen®,

Ali Daraei', Shan Sabri®, Douglas J. Chapski’, Melton Zheng', Alexander N. Patananan®,
Jason Ernst®*%2, Kathrin Piath®®*, Thomas M. Vondriska™"*"", Michael A. Teitell %2 and
Reza Ardehali +235+
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Background: Human embryonic stem cdl-derived cardiomyocytes (hESC-CMs) can be
used as a source for cell delivery to remuscularize the heart after myocardial infarction.
Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited
their application. We previously developed a double reporter hESC line to isolate first heart
field (FHF: TBX5 NKX2-57) and second heart field (SHF: TEBX5NKX2-57) CMs. Herein, we
explore the role of TBXS and its effects on underlying gene regulatory networks driving
phenotypical and functional differences between these two populations.

Methods: We used a combination of tools and techniques for rapid and unsupervised
profiing of FHF and SHF populations at the transcriptional, translational, and functional
level including single cell RNA (scBNA) and bulk BNA sequencing, atomic force and
quantitative phase microscopy, respirometry, and electrophysiclogy.

Results: Gene ontology analysis revealed three biclogical processes attributed ta TBX5
expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling.
Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display
less sarcomeric organization compared to FHFike CMs, despite prolonged in vitro
culture. Atomic force and guantitative phase microscopy showed increased celular
stifffess and decreased mass distribution over time in FHF compared to SHF
populations, respectively. Electrophysiological studies showed longer plateau in action
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potentials recorded from FHF-like CMs, consistent with their increased expression of
calcium handling genes. Interestingly, both populations showed nearly identical respiratory
profiles with the only significant functional difference being higher ATP generation-linked
oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF -like CMs display
more mature features given their enhanced sarcomenc alignment, calcium handling, and
decreased migratory characteristics. Finally, pseudcotime analyses revealed a closer
association of the FHF population to human fetal CMs along the developmental trajectory.

Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on
TBX5 expression leads to a significant impact on their downstream functional properties.
FHF CMs display more mature characteristics such as enhanced sarcomeric organization
and improved calcium handling, with closer positioning along the differentiation trajectory
to human fetal hearts. These data suggest that the FHF CMs may be a more suitable
candidate for cardiac regeneration.

Keywords: first and second heart fields, single cell RNA seq, action potential, hESC-derived cardiomyocyte,

maturity, regenerative medicine, metabolism

INTRODUCTION

Cardiovascular disease is a leading cawse of death worldwide
(Benjamin et al,, 2019). Due to the limited regenerative capacity
of the heart, ischemic events such as myocardial infarction (MI)
leads to permanent loss of CMs and replacement by scar tissue
which can eventually result in heart failure (Laflamme and Murry,
2011). Despite the current standard strategies of revascularization
to salvage myocardium, paradoxical effect of ischemia-
reperfusion precipitates further injury of viable heart muscle
(Selmer et al., 2005). Over the past 20 years, scientists have
attempted many approaches to regenerate damaged heart
tissue such as promoting the proliferation of endogenous CMs
or direct reprogramming of resident cardiac fibroblasts into CMs
(Caoet al, 2016). However, the application of these strategies has
been limited due to the low proliferative capacity of adult CMs
even upon exogenous stimulation as well as low efficiency of
direct reprogramming (Ghiroldi et al., 2017). In recent years,
pluripotent stem cell-based regenerative therapy has offered a
great promise for cardiac repair. Several studies have shown that
human embryonic stem cell-derived CMs (hESC-CMs) can
improve cardiac function and remuscularize the heart after MI
(Laflamme et al., 2007; Skelton et al,, 2016a; Skelton et al., 201 6b;
Yanamandala et al, 2017 L et al, 2018). Despite the
improvement in cardiac function, emergence of fatal
ventricular arrhythmias has limited the application of hESC-
CMs (Shiba et al, 2016). Electrophysiological studies on
transplanted hESC-CMs also provide evidence that graft-
induced arrhythmias may result from pacemaker-like activity
rather than abnormal conduction (Liu et al, 2018).

Qur group recently introduced a new approach to generate
heart field-specific CMs from differentiating hESCs which can be
used to provide insight into the emergence of fatal arrhythmias
post-transplantation (Pezhouman et al, 2021). Using a double
reporter system comprising of eady cardiac transcription factors
TBX5 and NEKX2-5, we were able to isolate first heart field (FHF)

(TBX5"/NKX2-57) and second heart field (SHF) (TBX5 /NKX2-
57) CMs while excluding pacemaker-like cells (TEX5™/NKX2-5).
Investigators have shown that within the heart, TEXS is
predominately expressed in the primitive posterior heart tube,
marking progenitors of the LV and atria, comesponding to the
FHF (Bruneau et al., 1999; Liberatore et al., 2000; Bruneau et al,,
2001; Sizarov et al, 2011; Xie et al, 2012; Spiter et al,, 2013;
Steimle et al., 2018). Our study showed that delineation of hRESC-
derived heart-field specific CMs using TBXS5 roughly mirrored
the previous in vivo models. Prior studies (Lundy et al., 2013;
Lewandowski et al, 2018) have shown that prolonged in vitro
culture of stem-cell derived CMs may lead to the maturation of
their structural and contractile properties to a more adult-like
phenotype. Interestingly, we found significant differences in
electrophysiological properties of FHF- and SHF-like CMs.
Given the persistent delay in maturation of SHF-like CMs, we
hypothesized that these intrinsic differences between FHF- and
SHF-like populations may be driven by early expression of TBX5
and its downstream effects on biological processes involved in
cardiac maturation. The mle of TBX5 in early cardiac
development and chamber-specificity is well studied; however,
its effects on later stages of development and maturation of CMs
remains unknown.

In this study, we used a stepwise approach to identify and
validate underlying biclogical processes that lead to the
phenotypical differences observed between FHF- and SHF-like
CMs. Unsupervised differential gene expression analyses revealed
four main biclogical processes including musce  cell
development, oxidation phosphorylation, response  to
wounding, and calcium handling. We next conducted relevant
biological andfor functional assays to validate these biclogical
processes, including Seahorse Assay, atomic force microscopy,
and optical mapping. We also performed psendotime analyses of
our FHF- and SHF-like CMs compared to human fetal CMs to
determine where hESC-derived CMs are positioned along the
developmental trajectory. Our study reveals that not only TBXS
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expression is important for eady cardiac development and
chamber specification, but it may also play a role in later
stages of differentiation and cardiac maturation by fine-tuning
sarcomeric organization and calcium handling.

METHODS

Differentiation of Double Reporter hESC
Line

‘We have previously generated hESC TBX5-TdToma to™ "INKX2-
5P double reporter using a HES3-NKX2-5"" line
generously provided by E. Stanley and A. Elefanty (Monash
University, Victoria, AU) (Elliott et al, 2011; Pezhouman
et al, 2021). Monolayer cardiac differentiation was achieved
using small molecule inhibitors of GSK3 and Wnt. HES3-
TBX5-TdTomato™" INKX2-5F™ cells were expanded on
Geltrex  (Gibco™, A1413202) to 70-85% confluency then
harvested as a single-cell suspension using Accutase [Gibco™,
A1110501)] and resuspended in mTeSR plus (Stem Cell™
Technologies, 05826) containing 10pM ROCK inhibitor Y-
27632 (Tocris Biosciences, 1,254). Cells were counted using a
Countess 11 Automated Cell Counter (Countess™,
AMQAX1000) and re-plated onto Geltrex coated plates at
1 % 10° cells/em® in mTeSR™ Plus containing 10 pM ROCK
inhibitor Y-27632 (day -2 of differentiation). At day -1 media was
changed to mTeSR™ Plus. At day 0 media was changed to RFMI
(Gibeo™, 11875093) containing B-27"™ supplement, minus
Insulin (Gibco™, A1895601) containing CHIR%9021 (Tocris,
4,423) (10 pM). After 24h (day 1) media was aspirated and
replaced with RPMI B27 minus Insulin until day 3. On day 3
of differentiation media aspirated and replaced with RPMI B27
minus Insulin containing 5 pM IWP2 (Tocris, 3,533). At day 5,
media was changed to RPMI B27 minus Insulin until day 7 when
media was switched to RPMI containing B-27™ supplement
(Giboo™, A3582801). Cells were maintained in this media and
changed every 3 days thereafter.

Flow Cytometry and Cell Sorting

Differentiated hESCs  were dissociated with  Accutase™
(STEMCELL Technology, 07920} for 3-5min at 37°C to form
a single cell suspension. Cells were resuspended in FACS buffer
(2% FBS, 1% BSA, 2mM EDTA) containing 10 uM ROCK
inhibitor ¥-27632 and DAPIL. Cells were sorted using a FACS-
ARIA-H (BD Biosciences) into RPMI containing B-27™
supplement (Gibco™, A3582801) with 10 pM ROCK inhibitor
¥-27632. FACS data were analyzed using Flow]o software (Tree
Star Inc.).

Bulk RNA-Sequencing

FHF (TdTomato™ /GFP), SHF (TdTomato /GFP™) cells were
FACS sorted on day 20 of differentiation. RNA of the FHF
and SHF cells was isolated using TRIZOL LS Reagent
(Invitrogen™, 10296028), RNeasy Micro Kit (Qiagen, 74004)
was used for purification. The quality of the RNA was
assessed by Agilent 2,200 Tapestation. For library preparation,
total RNA was fragmented and subjected to cDNA conversion,

adapter ligation, and amplification using KAPA Stranded RNA-
Seq Library Preparation Kit (KAPA Biosystems, KK8502)
according to the manufacturer’s instructions. The final library
was quantified uwsing Agilent 2,100 Bicanalyzer to evaluate its
integrity. The deep sequencing for 2 x 150 bp paired-end reads
was performed using lumina Novaseq 6,000. For sample
analysis, RNA-seq data was mapped to the reference genome
(GRCh38) with OLego version 1.1.5 and normalized by using
TPM (Transcripts per millions) analysis. Total number of reads
mapped to a known transcript annotation was estimated using
featureCounts version v150-p2. Expression levels for each
transcript  were determined by nomalizing the counts
retuwrned by featureCounts using custom Ped  scripts.
MNomalized expression levels for each transcript were
determined by transforming the raw expression counts to
TPM following log2 scaling. Gene Ontology (GO) enrichments
were computed using Metascape (Zhou et al, 2019). RStudio was
used to run custom R scripts to generate boxplots and heatmaps
using “heatmaply” package.

Single Cell RNA Sequencing of Human Fetal
Hearts and hESC-Derived CMs

Human fetal heart 6, 10, and 17 weeks of gestation was digested
into single cell suspension using Collagenase II (Worthington,
L500417e, 0.45mg/ml) and Pancreatin (Sigma, P3292-25G,
1 mg/ml). Day 20 FHF and SHF cells were digested into single
cell suspension using TrypLE. Single cells were captured using the
10X Genomics Chromium Single Cell v.2 platform. ¢cDNA
libraries derived from the FHF and SHF were independently
generated and sequenced on the [llumina NextSeq, generating
490 million reads of FHF-derived samples and 466 million reads
of SHF-derived libraries of which »97% passed quality control.
cDNA libraries from human fetal heart were sequenced with the
llumina NovaSeq. Digital expression matrix was generated by
de-multiplexing, barcode processing, and gene unique molecular
index counting using the Cell Ranger v3.0 pipeline and the
GRCh38 reference genome. Cells that express less than 200
genes, and genes detected in less than 3 cells were filtered out.
The Seurat 404R toolkit (Hao et al, 2021) for single cell
genomics was used to analyze sequencing results. Downstream
analysis was restricted to cells associated with at least 3,000
unique molecular identifiers (UMIs). For identification of cell
clusters in the human fetal heart (TNNT2, MYH7) (COLIAIL
DDR2), and (PECAMI, CDHS) were used to identify cardiac,
fibroblast, and endothelial cell clusters, respectively. The
FeaturePlot, BoxPlot, and ViolinPlot functions of Seurat were
used to visualize genes of interest.

Monocle Pseudotime Analysis

The Seurat object file was converted into a Cell DataSet (CDS) for
further analysis using the Monode 3 software (Trapnell et al,
2014). Cell clusters and trajectories were visualized using the
standard Monocle workflow. The first 20 PCs were used for pre-
processing (preprocessCDS5). Then, these lower-dimensional
coordinates were used to initialize a nonlinear manifold
learning algorithm implemented in Maonocle 3 called "UMAP™
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(via reduceDimension; Becht et al., 2018). This allows us to visualize
the data in two dimensions, The “cluster_cells” function was used to
identify clusters and then “leamn_graph” was used to leam the
sequence of gene expression changes of each cell to generate an
overall trajectory. To mark the root of the pseudotime, we used the
“order_cells” function to assign the starting root of pseudotime. Gene
expression  along  psendotime  were  plotted  wsing  the
“plot_genes_in_pseudotime”  function, with “color_cells by”
parameter set at “ID.”

TBX5 and NKX2-5 Binding Simulation

To test whether TBX5 and NKX2-5 preferentially bind to FHF and
SHF gene promoters, we first empirically defined gene markers for
each cell population using the FindMarkers() function in Seurat with
the following parameters: ident.1 = “TBX5+ CMs,” ident 2 = "TBX5-
CMs,” and min pct = 0.3. For this simulation, we defined FHF genes
as the marker subset with avg log?FC > 0, and SHF genes as the
subset with avg log2FC < 0. As a negative confrol, we randomly
selected 10 subsets of 150 genes (excluding FHF and SHF genes) from
the count matrix. We then downloaded fetal (E125) TBX5 and
NEX2-5 bioChIP-seq peak sets from online dataset (Akerberg et al,
2019) and determined mm9 promwoter coordinates of nurine
orthologs of the FHF, SHF, and random gene subsets. To test
whether regions of TEX5 or NKX2-5 binding significantly overlap
with our gene subsets, we used hypergeometric tests as in (Chapski
etal, 2021). Because we performed a total of 12 statistical tests during
each ranscription factor simulation (FHF, SHF, and 10 random gene
sets), we corrected the p-values using the Benjamini-Hochberg
(Benjamini and Hochberg, 1995) method in R

Immunocytochemistry

Immunocytochemical staining were performed on cells seeded
onto Geltrex coated optical tissue culture chamber (Thermo
Scientific Lab-Tek II Chamber Slide System, 154,526). Cells
were fixed in 4% paraformaldehyde (PFA) in PBS for 15 min
at RT followed by PBS washings. For staining, fixed cells were
permeabilized with 02% Triton X-100 (Fisher Bioreagents,
BP151) in PBS for 10min prior © blocking non-specific
binding with 10% normal serum in PBST (PBS with 0.1%
Tween-20 (MP Biomedicals, 11TWEEN201) for 30 min. Cells
were incubated with primary antibodies at 4'C overnight and
then stained with secondary antibodies at room temperature for
1h and mounted with VECTASHIELD Antifade Mounting
Medinm with DAPI (Vector Laboratories, H-1200). The
stained cells were imaged with a Leica TCS 5P5 microscope
using LAS X software (Leica Biosystems) or an LSM 880 with
Airyscan Confocal Microscope using ZEN software (Carl Zeiss
Microscopy). The following primary antibodies were used: Rabbit
anti-Cardiac Troponin T (Abcam, ab45932,1:400), Mouse anti-
cardiac ACTN2 (Sigma, A7811, 1:300), Rabbit anti-TOMM20
(Abcam, ab2043078, 1:1,000), Mouse anti-dsDNA (Abcam,
ab470907, 1:1,000).

OCR and ECAR Measurements

Oxygen consumption rate and extracellular acidification rate
were quantified using an Agilent Seahorse XFe96 Extracellular
Flux Analyzer. 2 = 10° cells were seeded on each well of a V3 96-

well plate (Agilent, Cat#101085-004) and cultured for 2-3 days
prior to analysis. The Agilent Seahorse mitochondrial stress test
was used to measure basal OCR and ECAR as well as OCR and
ECAR following sequential addition of the electron transport
chain  inhibitor dmgs oligomycin, carbonyl cyanide-p-
tifluoromethoxyphenylhydrazone (FCCP), and antimycin A,
Results were normalized to cell count and analysed using the
Agilent Wave 2.6.2 software package.

Quantitative Phase Microscopy and Cellular
Motion Measurements

Quantitative phase images on FHF and SHF cells were obtained
with 20 = 0.4 numerical aperture objective lens on an Axio
Observer Z1 inverted microscope with a temperature and CO2
regulated stage-top cell incubation chamber (Zeiss). Quantitative
phase data was obtained with a SID4Bio (Phasics) quadriwave
lateral shearing interferometry (QWLSI) camera (Bon et al., 200%
Zhangetal., 2013) while fluorescence images were obtained on an
EM-CCD C9100 camera (Hamamatsu Photonics). A 660 nm
centred wavelength collimated LED (Thorlabs) was used as the
trans-illumination source for QPM and an X-Cite Series 120 Q
(Lumen Dynamics) source for fluorescence imaging. Image
collection occurred every 10min for over 2d 14—20 imaging
locations containing cells plated with sufficient spacing to enable
automated image processing and biomass segmentation. All
image processing was performed using custom MATLAB
(MathWorks) scripts. Cells and clusters were identified and
segmented using a local adaptive threshold based on Otsu's
method (Otsu, 1979) with particle tracking code based on
Grier et al (Zangle et al., 2013; Nguyen et al, 2020). Net
positional displacement of cells were calculated based on the
differences in cell position in tracks in one frame compared to the
next while percent mass fluctations was calculated based on the
difference in mass distribution of cells normalized with regards to
cellular mass from one frame compared to the next.

Atomic Force Microscopy

‘We have employed a combination of atomic force microscopy
(AFM)/confocal microscopy techniques to determine the
mechanical properties of FHF and SHF cells. The
nanoindentation and data acquisition were performed using a
JPK Manowizard 4A Atomic force microscopy combined with a
Zeiss LSM 510 confocal microscope. The stage is arranged so that
we can independently control the AFM cantilever, sample, and
confocal microscope objective. Using the confocal microscope,
we verified that the cells chosen for the nanoindentation
experiment are the FHF (TBX5"*""/NKX257" or the SHF
(TBX5 ™7 /NKX2- 55577,

To do the nanoindentation experiment, a cell culture dish was
mounted on the AFM stage (temperature = 36.5°C during the
experiments) and the cantilever tip approaches the sample from a
few microns above the sample (maximum applied force = 3 nN,
indentation speed = 2 pm/s). A soft AFM probe (spring constant
k = 0.286 nN/nm, Bruker, NY, United States) with a spherical tip
of 10 pm diameter was used for this experiment. Indentation and
retraction of cantilever was plotted and processed using JPK
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analysis software. The built-in Hertz/ Sneddon model fitting tool
ofthe JPK software was used to compute Young's modulus values.
Hertz model for a spherical tip was calculated using following
equaton.

4R E .

F= ——
31—

(F = indentation force, R = radius of the cantilever tip, E
= Young’s modulus, v = poison ration (0.5 in our experiment)
and & = indentation depth). The average stiffness of five local
regions on top of the nudeus in each cell, is reported as the
stiffness of the cell.

Monolayer Optical Mapping

FACS-isolated cells were suspended in RPMI B27 supplemented
with ROCK inhibitor Y-27632 (10pM) at 20-22 x 10
(Yanamandala et al, 2017) cells/fml. Drops of 25 pl of this cell
suspension were applied to Geltrex-coated 5 mm coverslips (5
®x 10 (Ghiroldi et al, 2017) cells/coverslip). The cells were
incubated in the 25pl volume for 8-12h to facilitate cell
attachment. Once spontaneous contractions were observed,
cells were stained with voltage-sensitive dye, Di-8-ANEPPS
(Invitrogen, D3167, 40 pM) and washed with normal Tyrode
solution three times (Pezhouman et al.,, 2014; Pezhouman et al,
2015; Pezhouman et al,, 2018; Pezhouman et al., 2021 ). Qptical
AP recording were made using MiCAM -Ultima CMOS camera at
500 frames per second (fps). Spontaneously occurring APs were
recorded and APDy, and APDy, were measured using BV-Ana
(1,604) software,

Data and Software Availability
The RNA-sequencing data has been deposited in the SRA
repository with BioProject accession numbers PRINA773814.

Study Approval

The collection and use of human fetal material were carried
out following federal and local approval, including the
United States Institutional Review Board (IRE 11-002504)
to the Translational Pathology Core Laboratory of the
Department of Pathology and Laboratory Medicine at
UCLA. Cardiac tissues from human embryos were collected
with informed consent following surgical termination of
pregnancy and staged immediately by stereomicroscopy
according to the Carnegie classification. All identifiers were
removed before obtaining the samples.

Statistics

All data are represented as individual values. Due to the
nature of the experiments, randomization was not
performed, and the investigators were not blinded.
Statistical significance was determined by using student’s
t test (unpaired, two-tailed) in GraphPad Prism 8 software.
Results were significant at p < 0.05 (*), p < 0.01 (**), p < 0.001
(***), and p <« 0.0001 (****). All statistical parameters are
reported in the respective figures and figure legends. All error
bars are depicted as SEM.

RESULTS

Biological Process Analyses Reveal
Enrichment of Structural, Metabolic, and
Calcium Handling Pathways Within
FHF-Like Compared to SHF-Like CMs

We used our previously generated HES3-TBX5-TdTomato™™/
NEX2-55PW double reporter line (Pezhouman et al, 2021) to
isolate FHF (TBX5"/NKX2-5") and SHF (TBX5/NKX2-57) CMs
using a monolayer cardiac differentiation protocol (GSK3
inhibitor/Wnt inhibitor (GIWI)) (Supplementary Figures
S1A.B). Fluorescent imaging showed dusters of cells that
express both TdTomato and GFP (FHF) or solely GFP (SHF)
(Supplementary Figure S1C). Fluorescence activated cell sorting
(FACS) was used to isolate these two distinct populations using
their respective fluorescent markers (Supplementary Figure
S1D). We had previously shown that FHF-like CMs exhibit
longer action potential duration compared to SHF, suggesting
a potential role of TBXS5 expression in orchestrating downstream
signaling pathways that may lead to these functional and
phenotypic differences. Here, we use the 10X Genomics (10X
Genomics, 2020) and Seurat toolkits (Hao et al, 2021) to
transcriptionally profile FACS-isolated FHF and SHF cells to
unravel the contribution of TBX5 expression to cardiomyocyte
maturation. Afier removal of low-quality cells, we obtained 9,883
SHF and 6,413 FHF single-cell transcriptomes for downstream
analyses (Figures 1A,B). Principal component analysis revealed
that PC1 separated these 2 cell populations, with correlated genes
belonging to the structural proteins, including MYH6, TNNTZ2,
and TTN (Supplementary Figures S1E,F). Because FHF-like
CMs were selected based on expression of TBXS, we asked
whether promoters of genes preferentially expressed in FHF-
like CMs (FHF genes) have higher TBX5 occupancy compared to
that of SHF gene promaoters. To test enrichment, we downloaded
amurine TEX5 bioChIP-seq peak set from fetal (E12.5) ventricles
(Akerberg et al, 2019) and determined binding enrichment at
murine orthologs of FHF and SHF genes using hypergeometric
tests. Interestingly, both FHF and SHF genes are significantly
bound by TBX5 (corrected p-values of 971 x 107" and 2.18
% 1077 for FHF and SHF genes, respectively) (Supplementary
Figure 51G). Because both FHF- and SHF-like CMs express
NEX2-5at some point in development, we also examined a
murine NKX2-5 bioChIP-seq dataset from the same study
(Akerberg et al, 2019) and found significant enrichment of
NEKX2-5 occupancy at both promoter sets (corrected p-values
0f221% 10"** and 9.50 x 10" for FHF and SHF gene promoters,
respectively) (Supplementary Figure S1H). Notably, we did not
observe enrichment of TBXS5 and NEKX2-5at the promoters of
random gene sets (Supplementary Figures 51G,H). Taken
together, these data supggest that the FHF and SHF populations
represent myocyte-like cells that express a set of genes
preferentially bound by TEXS5 and NKX2-5.

To test the robustness of our approach in capturing pure CMs
in both populations, we examined the expression of known
cardiac cell type markers such as MYH6 and TNNTZ2
(cardiomyocyte), DDR2 and COLIAI (fibroblast), and CD31
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FIGURE 1 | Single cel RMAseq of first and sscond heart fisid hESC-denved cardomyocyiss. (A), Schematic represan tstion of inssgs commitment ofHESCa niao
candiomyocybes for single cel epture using 10X Genomics. (B), Unsupervised clustering of FHF fydlow) and SHF [grean) popuitions projeded on a two-dmensonal
LUMAP. [C), LMAF and boxpiots showing gene expression quantification for the cardisc genes (MYHE, TNINTZ), fiorobiast genss (DDAZ, COL 1A47), and endothelial
ganes (COHS, PECAMT). (D), The expression hestmap of top 20 difierentisly espressed genss in FHE and SHF. (E), DotPiot anaiyes (averagse and percant
expresson) of top 20 differan fally espressad genes in FHF and SHF popu Etions. (F), Gene Ontology analyss of the op 100 upreguisied genes enrched in Dey 20 FHF-
e OMs. IG), Gene OniDbgy andyss of e op 100 upreguiated genes erniched n Day 20 SHF CMs.

and CDH5 (endothelial). Only CM markers were expressed in
these two populations, with higher expression of MYH6 and
TNNT2in FHF cells (Figure 1C). Heatmap analyses of the top 20
differentially expressed genes in FHF- and SHF-like CMs showed
uniformity of gene expression within each population as well as
distinct gene profiles between the two populations (Figure 1D).
DotPlot analysis revealed that certain genes such as TNNTZ,
MYL4, TTN, and TNNCI have a high percent expression within
both populations (ie., percent of the cells that express the gene of
interest); however, average expression levels are higher in FHF
(i.e., average expression of gene of interest across all cells). On the
other hand, genes such as PLN, MB, and TNNI3, exhibit both

higher percent and average expression in FHF-like compared to
SHEF-like CMs (Figure 1E).

To unravel the biological processes enriched in FHF- and
SHF-like CMs, we performed gene ontology ((GO) analysis of the
top 100 upregulated genes within each population using
Metascape (Zhou et al, 2019). The top GO term categories
within the FHF population revealed three main categories:
muscle structure (muscde filament sliding, muscle cell
development, striated musde adaptation), metabolism
(oxidative phosphorylation, mitochondral ATP  synthesis
coupled proton transport), and calcium handling (regulation
of cardiac muscle contraction by calcium ion signaling)
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mass redisribution mages.

FIGURE 2 | of a force vs. indentafion [black) and refradtion {biue) curves obtained by sibmic force microscopy . The indentation data was fit using the Hertz model frad).
(right) Dat piot of FHF o = 58) and SHF (n =68) Young's Moduius calculsted from alomic forcemicroscapy. (F), (topleft) Quan fizfvephase mass distibuton mages of
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the FHF- and SHF ke CM clusters shown sbova Dot plot of FHF §n = 58] and SHF | = 88) clusters’ magniude of net mass change denved from e averages of GP1

(Figure 1F). Interestingly, while SHF -like CMs shared structural
(supramolecular fiber organization) and metabolism (aerobic
respiration) related pathways, they were also distinctively
enriched in cell migration and wound response pathways
(Figure 1G). Given that structural, metabolic, and calcium
handling categories enriched in the FHF population are
important aspects of cardiac physiology, we further focused on
the genes assigned to these pathways to better characterize the
differences between FHF and SHF populations. This investigation
would address our overall goal of determining whether TBX5
expression in cardiac cells plays a role in mediating downstream
signaling pathways leading to cardiac maturation.

Enhanced Sarcomeric Organization and
Cellular Stiffness Within FHF-Like CMs

A prominent and unique feature of cardiac muscle is i
sarcomeric strucutre. Sarcomeres give cardiac muscle their
striated appearance and are the repeating segments that make
up muscle filaments. In addition to actin and myosin, other
proteins such as a-actinin (ACTN), myomesin (MYOMI),
nebulin (NEBL), and titin (TTN) are important contributors in
forming organized sarcomeric structures that are crucial for CM
contractile function (Figunre 2A). To determine structural
differences between FHF and SHF populations, we compared
the expression level of certain structural genes extracted from the
GO pathway “GC:0030049: muscle filament sliding” from our
single cell RN A sequencing dataset. Boxplot analysis revealed that
expression of key structural-related genes such as TTN, NEEL,
MYOMI, MYH6, MYH?7, and TNNT2 are higher within the FHF
compared o SHF population (Figure 2B). Current scRNA-seq
technology may have technical biases that if not correctly
adjusted, can lead to severe type [ error in differential
expression analysis (Jia et al, 2017). To avoid this, we tested
the average expression level of sarcomeric structure-related genes
from GO:0030049 using bulk RNA sequencing (bulk RN A-seq),
which were in alignment with our scRNA-seq data (Figure 2C),
although some genes were more highly expressed in SHF
(Supplementary  Figures  S3A,B). As  gene-protein
relationships are not always directly correlated. we next
examined the structural organization of FHF and SHF
populations using immunocytochemistry. Day 20 FACS sorted
cells were replated and doubled stained with ACTN2 and TNNT2
(Figure 2D, top half). Interestingly, immunocytochemistry (ICC)
of FHF-like CMs revealed enhanced alignment and organization
of sarcomeres when compared to SHF populations. Studies have
suggested that prolonged culture of hESC-derived CMs may
promote their sarcomeric organization. To ensure that the
structural differences observed between FHF and SHF are due
to their intrinsic properties and not a time-dependent delay in the

maturation of SHF CMs, we cultured both population of CMs for
an additional 40 days. Although SHF-like CMs showed
improvement in sarcomeric organization on Day &0 compared
to Day 20, the extra time in culture did not result in similar extent
of structural organization as FHF-like CMs (Figure 2D, bottom
half). Previous studies have shown a direct correlation between
sarcomeric structure organization and cellular stiffness (Akiyama
et al., 2008). To investigate the surface rgidity of our heart field-
specific CM populations, we uwsed atomic force microscopy
(AFM), a technique that employs a nanoscale tip to measure
the tip-sample interaction force as a surrogate readout of cellular
stiffness. Measurement of FHF-(n = 46) and SHF-like CMs
{n = 51) showed a significantly higher Young's Modulus in
FHF-like compared to SHF-like CMs, ilustrating a more
cellular stiffness property of FHF-like CMs (Figure 2E).

Interestingly our GO term analysis of upregulated genes
within SHF population revealed enrichment of migratory
related pathways such as (GO:0001667: ameboidal-type cell
migration and GOD00%11: response to wounding). Boxplot
analysis revealed that expression of key genes associated with
migratory processes such as SLIT2, COL3A1, SPARC, ANAXA]L,
TUBAIA are higher within the SHF compared to FHF population
(Supplementary Figures S3CD). To investigate intrinsic
migratory characteristics of these two populations, we used
quantitative phase microscopy (QPM). Time-lapsed images of
quantitative phase data of FHF (n = 58) and SHF (n = 68) allow
for measurements of cellular mass and maotion. The identity of
these cells was tracked using integrated fluorescent microscopy
(Supplementary Figure S3E). Although there was no significant
difference in mass nor in mass accumulation between these 2 cell
types, images of mass redistribution from QPM revealed greater
internal mass redistribution for the SHF CMs over those of the
FHEF-like CMs demonstrated by the darker blue and red regions
in SHF CMs. Additionally, population average values showed that
the SHF had significandy greater (p < 0.01) internal mass motion
than cells of the FHF ( Figure 2F; Supplementary Video 51). This
greater mass movement within SHF cells indicates greater mass
muotility in line with our observations from the Young’s Modulus
data that SHF-like CMs are softer than FHF-like CMs via links
between mass fluctuations and biophysical stiffness (Nguyen
et al., 2020).

Optical Mapping Reveals Longer Phase 2
(Plateau) of Action Potentials Within
FHF-Like Compared to SHF-Like CMs

Our GO term analyses revealed calcium ion signaling as one of
the pathways enriched in FHF-like CMs. Indeed, calcium is a
critical regulator of CM function, forming a link between
electrical signals and mechanical contraction of CMs, a
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process known as excitation-contraction coupling (EC coupling).
Given their critical role in maintenance of normal cardiac
rhythm, calcium ions are tightly regulated by a sophisticated

machinery which consists of different channels [L-Type Ca
(LTCC), ryanodine receptors (RYR2), and sarco/endoplasmic
reticulum Ca2+ ATPase (SERCA)|] as well as regulators
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(phospholamban  (PLN), tradin (TRDN), and calcium
calmodulin-dependent  protein kinase 2 (CaMEI)
(Figure 3A). An action potential (AP) waveform represents
the net influence of different ions, such as Na’, Ca®", and K~
channels, of which the plateau portion of the AP reflects the Ca**
handling machinery function and coordination (Figure 3B).

To determine calcium signaling differences between FHF and
SHF populations, we compared the expression level of key
calcium machinery genes extracted from the GO term “GO:
0010882: regulation of cardiac muscle contraction by calcium
ion signaling” using our single cell RNA sequencing dataset.
Boxplot analysis revealed that expression of key genes such as
PLN, ATP2A2 (SERCA), and RYR2 (ryanodine receptor) are
higher within the FHF compared to the SHF population
(Figure 3C). These findings were confirmed in our bulk RNA-
seq dataset (Figure 3D). Expression of genes such as CALMI,
CALM2, and CALM3 (calmodulin family) were also higher in
SHF compared to FHF. Interestingly, bulk RNA-seq analysis of
those genes shows high expression in undifferentiated hESCs as
well (Supplementary Figures 53A,B).

To determine whether differences in calcium handling gene
expression led to functional changes in action potential (AP)
waveforms, particularly in the platean phase, we used an optical
mapping technique that enables the capture of electrical activity
of thousands of cells sinltaneously. FACS-isolated FHF- and
SHF-like CMs were re-plated to form monolayers which were
then optically mapped using voltage dye. FHF CMs showed
uniform AP whereas, SHF CMs formed idands of cells in
which APs propagated independently, but uniformly, in each
island (Pezhouman et al., 2021). Spontaneous APs were recorded
from FHF-like (Figure 3E, top) and SHF-like (Figure 3E,
bottom) CMs. APDy, and APDy, distributions of FHF
(n = 7776) and SHF (n = 8464) were measured and
summarized in (Supplementary Figures S3CD). APD,,
(representative of net function of Ca™ handling machinery)
and APDy, (representative of Ca’* handling and
repolarization) analyses revealed that FHF-like CMs have
significantly longer APD,, (45% increase) and APDy, (30%
increase) durations compared to SHF population. Cyde length
(representative of depolarization, repolarization, and diastolic
interval) analysis revealed longer cyde length in FHF
compared to SHF population (Figure 3F). These results
suggest the presence of a more mature calcium handling
machinery in FHF-like CMs as supported by our scRNA-seq
results and enhanced sarcomeric structure observation, further
supporting the likelihood that FHF-like CMs are more mature
than SHF CMs.

FHF- and SHF-Like CMs Share Nearly
Identical Mitochondrial Respiratory Profiles

5o far, our study identified an increase in sarcomeric organization
and cellular stiffness, a decrease in migratory properties, and
pralonged phase 2 plateau (APD,,) of FHF compared to the SHF
population. These results suggest that FHF population may
represent a more mature state of CMs when compared to SHF
cells. Another important parameter in CM maturation is the

switch from glycolytic to fatty acid metabolism, with an increase
in aerobic respiratory demand Not surprisingly, our GO term
analysis of top genes upregulated in FHF compared to SHF CMs
showed an  enrichment of GO:0006119:  oxidative
phosphorylation. Correspondingly, two independent gene
expression analyses (scRNA and bulk RNA-seq) revealed that
expression of key metabolic-related genes such as CHCHDIO,
ATP5FID, COX5A, and COX5B were higher within the FHF
compared to SHF population (Figures 4A,B).

To gain more insight into this process, we used respirometry to
measure the levels of oxidative phosphorylation in the FHF and
SHF populations. We performed a Seahorse Mitochondrial Stress
Test using a Seahorse Extracellullar Flux Analyzer to measure
functional differences in respiration between FHF and SHF
populations and found that the FHF- and SHF-like CMs show
neafly identical respiratory profiles (Figure 4C). Among the
respiratory parameters we measured with the mitochondrial
stress test, we detected a significant difference only in oxygen
consumption rate (OCR) contributed by ATP generation linked
respiration for which FHF-like CMs showed greater OCR than
SHF cells (Figure 4D). Additonally, we measured extracellular
acidification rate (ECAR) from the same mitochondrial stress test
as a proxy for glycolytic rate and found no significant differences
between the FHF- and SHF-like CMs (Supplementary Figures
S5A.B). Together, these data suggest that the FHF and SHF
lineages share a common metabolic phenotype.

Finally, we visualized mitochondrial networks in FHF and
SHF populations by confocal microscopy using antibodies against
dsDNA and TOMM20. In both cell populations, we observed
punctate mitochondral networks (white arrows) with low
nucleoid abundance. However, the FHF mitochondrial
networks showed qualitatively higher numbers of filamentous
mitochondrial (blue arrows) compared to the SHF networks
(Figures 4E,F). In conclusion, our measurements suggest that
the mitochondrial function and network morphology of FHF-
and SHF-like CMs are highly similar despite the differences we
observe in the transcription of several key membaolic genes.

Pseudotime Analysis Shows Closer
Developmental Progression of FHF
Population to Human Fetal CMs

Our findings thus far suggest that expression of TBXS5 in hESC-
derived CMs may play a role in their maturation process, as we
observed more organized sarcomeric structure and stiffness along
with enhanced calcdium ion signaling in FHF-like CMs,
characteristics previously attributed to more mature CMs
(liang et al, 2018 Guo and Pu, 2020; Karbassi et al, 2020).
Despite recent efforts, in vitro differentiation strategies do not
vield mature CMs that exhibit similar phenotypes to their adult
endogenous counterparts. To understand where our hESC-
generated CMs are positioned on the tmjectory of
cardiomyocyte  development, we compared our CM
populations with human CMs isolated from fetal hearts at
three timepoints; 6, 10, and 17 weeks of gestation. We isolated
single fetal cardiac cells (6 wks: n = 1,048, 10 wks: n = 3,779, and
17wks: n = 2,948) for scRNA-seq using the 10X Genomics
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platform (Supplementary Figure S5A). We identified the CM
cluster based on CM related genes such as TNNTZ and MYH7. To
avoid any contamination of other cells, we confirmed low or
absent expression of fibroblast (DDR2, COLIAI) and endothelial
markers (CDHS5, PECAMI) within the isolated population

(Supplementary Figure S5B). In addition, expression of key
structural, calcium handling, and metabolic genes within these
three fetal populations showed progressive increase with
gestational age, confirming the influence of these pathways in
the cardiac maturation process (Supplementary Figure 55C).
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To determine the maturity level of FHF- and SHF-like CM
populations in comparison to human fetal CMs, we integrated
these populations together into one large dataset for Monocle
trajectory analysis (Trapnell et al, 2014). Confirming our prior
analysis using Seurat, FHF- and SHF-like CMs constitute two
distinct clusters as shown by UMAP analysis (Figure 5A). We
then aligned these five populations in pseadotime to determine
the relative developmental trajectory of our hESC-derived CM
populations (Figure 5B). Not surprisingly, we found that FHF-
like CMs aligned in closer proximity to the fetal CM populations
compared to SHF CMs. Pseudotime analyses of key genes from
each pathway (structural: TNNT2, ACTN2, TNNI3, MYH7;
calcium handing: PLN, RYR2, SLC8AI, ATP2A2; metabolisn:

NDUFS7, CHCHD10, ATP5F1D, COX6A2) confimed not only
the closer alignment of FHF-like CMs to the fetal CM
populations, but also higher overall expression of these genes
compared to SHF CMs (Figures 5C-E). These findings further
emphasize the important role of TBX5 expression in regulating
the in vitro maturation process, particularly in structural and
calcium handling pathways.

DISCUSSION

Theheart is the first functional solid organ during embryogenesis.
In early embryonic development, mesodermal cells under the
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influence of secreted morphogens such as BMP4, Wnts and
Activin A form the primitive streak (Galdos et al, 2017).
Cardiac mesodermal cells migrate anterolaterally to form the
cardiac crescent that gives rse to the primitive heart tube
(Lescroart et al, 2014). These migratory cells include two
heart-field specific progenitors known as FHF and SHF
(Bruneau, 2013; Kelly et al, 2014). FHF progenitors mainly
differentiate into CMSs as they give rise to the left ventricle and
part of atria (Bruneau et al,, 1999). In contrast, SHF progenitors
participate in elongation and looping of the heart tube, and
because of their role, are highly proliferative and migratory.
As these cells enter the heart tube to form the right ventricle,
outflow tract, and atria, they differentiate into multiple cardiac
cell types, such as CMs and smooth muscle cells (Kelly et al,
2014). Previous studies investigated the transcriptional profiles of
these two populations and revealed that SHF progenitors are
marked by the expression of TBXI, FGFS, FGFI0 and SIX2
whereas FHF cells express HCN4 and TBXS5 (Huynh et al,
2007; Watanabe etal,, 2012; Spater et al, 2013; Zhou etal., 2017).

Given the limited ability of adult CMs to proliferate in
response to injury, much of effort has been focused on using
human pluripotent stem cells to generate exogenous sources of
CMs for cardiac cell-based regenerative therapy (Garbem and
Lee, 2013). Our team (Pezhouman et al,, 2021) and Zhang et al.
(2019), for the first ime, were able to isolate and characterize
heart-field specific CMs from hESC and iPSCs, respectively. This
s an important step in understanding early cardiac
developmental processes as well as safer cell-based regenerative
medicine, as prior transplantation studies used a heterogenous
CM population which led to arrythmias (Liu et al, 2018
Romagnualo et al., 2019). These prior studies focused on first
isolating different subpopulations of CMs and nodal cells based
on their expression of TBXS or NKX2-5. This is followed by
confirmation of their identify by profiling the expression of well -
established transcriptional factors within each subpopulation.
Although our previous study enabled us to separate FHF-
from SHF-like CMs, using TBX5 and NKX2-5 expression, the
role of TBX5 and its effects on underlying gene regulatory
networks driving phenotypical and functional differences
between these two populations remains unknown.

Touncover the underlying regulatory networks, we utilized
techniques that enable rapid and unsupervised profiling of
thousands of individual cells at the transcriptional,
translational, and functional level, providing a more
reliable representation of the differences between these two
populations. First, we used scRNA-seq to obtain differentially
expressed genes between FHF- and SHF-like CMs at the
transcriptional level. Gene ontology analyses yielded four
main biological processes including 1) muscle cell
development (sarcomere  structure), 2)  oxidative
phosphorylation (metabolism), 3) regulation of cardiac
muscle contraction by calcium ion signaling (Ca**
handling) and 4) response to wound healing (migration).
We then used a variety of techniques such as Quantitative
phase imaging, Seahorse assay, and Optical mapping to
correlate gene expression differences to their structural and
functional profiles.

Our structural analyses showed more mature sarcomeric
organization in FHF- compared to SHF-like CMs, even in the
presence of prolonged culture (ie., up to 60 days), suggesting that
intrinsic differences between these two populations may be the
main drivers. Although the intrinsic differences can be attributed
to many different processes, two categories that are known to
regulate structural organization of CMs are genes that are directly
involved in the formation of the sarcomeric unit (TTN, NEBL,
MYOMI, and ACTN2) as well as genes involved in the regulation
of the actin-myosin binding interactions (MYL3, MYL4, MYHS,
and MYH?). The increased expression of these genes within FHF
population can be associated with a higher degree of cellular
stiffness we observed using atomic force microscopy. Prior
studies have shown that cardiac musde lacking nebulin
(NEBL) resulted in variable lengths of thin filaments and
lower isometric tension (Robinson and Winegrad, 1977;
Robinson and Winegrad, 1979; Burgoyne et al, 2008) and that
mutations in titin (TTN) can strongly affect cardiac muscle
function due to changes in length-dependent activation of
cross-bridges (Robinson and Winegrad, 1977; Robinson and
Winegrad, 1979; Cazorla et al, 2001; Burgoyne et al., 2008;
Granzier et al, 200% Chung et al, 2013; Methawasin et al,
2014). Studies have also suggested that cardiac myofibrils are
stiffer than skeletal myofibrils because Z-bands, titin filament
networks, and other components of sarcomere structures within
cardiac myofibrils are stronger than those of skeletal muscle
(Akiyama et al, 2008). These data support owr findings of
increased expression and alignment of ACTN2 and MYOMI
in the FHF population, which forms the Z- and M-bands,
respectively (Akiyama et al., 2006). Taken together, these data
suggest that a downstream effect of TBXS expression is the
enhanced alignment and sarcomeric length regulation which
leads to increased force generation, requisite for proper
fanction of CMs from the left ventricle, primarily derived
from the FHF population.

In addition to structural genes, our GO term analyses revealed
differences in calcium signaling between the FHF and SHF
populations. The action potential is central to CM function
because it not only initiates but also regulates and coordinates
excitation-contraction coupling. The morphalogy of APs reflects
the net balance among ionic currents across the cell membrane.
Among these ionic currents, calcium (Ca™) is a critical regulator
of CM function and predominantly contributes to phase 2
(plateau) of AP morphology. Regulation of calcium current
within CMs are mediated by a multitude of voltage channels
and regulatory proteins such as LTCC, RYR2, SERCA, PLN, and
TRDN. In alignment with our findings of enhanced sarcomeric
organization, we observed higher expression of these key calcium
handling genes within the FHF compared to SHF population.

Given the key role of calcdum in excitation-contraction
coupling, it is not surprising that subtle changes in these
components can have profound consequences on AP plateau
{which can be measured by APDy,) and contraction duration of
CMs. To accurately quantify differences in AP plateau between
our FHF and SHF population, we used a high-resolution imaging
system (optical mapping) which allowed us to investigate the
electrophysiological properties of thousands of cells within a large
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population at once. Our functional studies showed prolonged
APDy, in FHF-like CMs consistent with our gene expression
analyses. The increase in APDy, can be, in par, attributed to
higher expression of PLN, which exhibits an inhibitory effect on
SERCA, leading to decreased re-uptake of intracellular calcium
and prolonging the duration of AP depolarization (Feamley et al.,
2011).

As CMs differentiate and mature in the developing embryo,
there are dramatic changes in energy sources and metabolis n.
During early cardiac development, glycolysis isa major source
of energy for CM migration, proliferation, maturation, and
contraction. As these cells mature, there is a switch from
glycolytic to oxidative metabolism to support the increase in
metabolic needs of functional CMs (Gaspar et al., 2014). This
switch enables CMs to metabolize different carbon sources
such as fatty acids, ketone bodies, and branched-chain amino
acids to maintain cardiac function despite changes in
substrate availability (Lloyd et al., 2004; Kolwicz et al,
2013). While our GO term analyses revealed potential
metabolic differences between FHF- and SHF-like CMs,
assessment of multiple aspects of oxidative phosphorylation
revealed nearly identical respiratory profiles, albeit an
increase in ATP-linked OCR within FHF-like CMs. There
are a couple potential reasons that can be attributed to these
findings. First, despite observing differences in structural
proteins and calcium handling within FHF compared to
SHF CMs, it is very likely that these two populations,
having been derived in vitro, have not surpassed a
maturation state beyond the embryonic period when
compared to their in wvive counterparts. For this reason,
both  populations are still relatively immature and
predominantly rely on glycolytic pathways. Indeed, prior
work have shown that in contrast to their fetal
counterparts, hiPSC-CMs have deficient fatty acid
oxidation (FAOQ) despite expression of appropriate genes
(Hui Zhang et al, 2020). Second, in witro cardiac
differentiation relies on specific media that is lipid-poor
and glucose-rich (RPMI-B27) which has been shown to
suppress FAQ and may prevent the metabolic switch from
glycolysis to oxidative phosphorylation (Saggerson, 2008
Lian et al,, 2012; van Weeghel et al,, 2018). Our study did
not identify a role of TBXS or its downstream mediators in
coordinating the metabolic switch of hESC-derived CMs,
although further studies are needed.

Despite uncovering differences between FHF and SHF
populations, our study is limited by the use of in vitro hESC-
derived CMs. Countless efforts to promote the maturation states
of hESC-derived CMs have been unsuccessful thus far. Studies
have shown that these cells are more similar to human embryonic
CMs rather than their adult counterparts (Snir et al,, 2003; Lien
et al, 2009). As owr study yielded differences in sarcomeric
structure and calcium  handling suggestive of increased
maturation in FHF compared to SHF CMs we turned to
human fetal heart samples and Monocle analyses to determine
the proximity of FHF- and SHF-like CMs to endogenous fetal
CMs along on the normal human cardiac development trajectory.
Not surprisingly, trajectory analyses showed that SHF CMs were

aligned earliest in pseudotime and that increased expression of
sarcomeric proteins and calcium handling within FHF-like CMs
resulted in a shifi of this population farther along the
development trajectory. As expected, these two populations
lagged behind the human fetal heart samples on the trajectory
inference, which were generally aligned accordingly to
developmental age.

The role of TBX5 expression in cardiac development and heart
field specification has been studied in detail. Here, we report
isolation of FHF- and SHF-like CMs by differentiating our double
reporter hESC line to uncover pivotal roles of TEXS and its
downstream effects on cardiac maturation. These effects include
increased expression of key sarcomeric structure genes as well as
calcium handling machinery. While metabolic differences may be
attributable to TBXS5 expression, owr study did not show
respiratory distinctions between these two populations. These
findings pave the way for further investigations into the
modulation of TBX5 expression as a potential method to
regulate in vitro cardiac maturation which can serve as
platforms for deeper understanding of the cardiac maturation
process as well as development of more effective cardiac
regenerative therapies.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

AP, NN, and RA contributed to the conception and design of the
study. AP, NN, AS, TLN, AD, MZ, and ANP performed
experiments. AP, NN, AS, TN, AD, 55 MZ, and DC
performed the statistical analysis. AP, NN, and RA, wrote the
first draft of the manuscript. AS, TN, AD, and DC, wrote sections
of the manuscript. All authors contributed to manuscript
revision, read, and approved 1580 the submitted version.

FUNDING

This work was supported in part by grants from the Eli and
Edythe Broad Center of Regenerative Medicine and Stem Cell
Research at UCLA Postdoctoral Fellowship (AP), Department of
Defense Discovery Award (W81XWH-19-1-0244) (AP), Ruth L.
Kirschstein  Predoctoral Fellowship (HL144057) (NBEN),
California Institute for Regenerative Medicine (CIRM) (RN3-
06378) (RA), National Institute of Health ROIHL148714 (RA),
and UCLA BSCRC-Rose Hills Foundation Research Award (RA),
and the Eli and Edythe Broad Foundation Innovative Pilot Stem
Cell Research Grant (RA), Air Force Office of Scientific Research
(FA9550-15-1-0406) (MT), the Department of Defense

Fronfers in Gall and Developmenta Biobgy | www. fronfiersin .ong

Decamber 2021 | Violuma 9 | Articls 787684

357



Pezhouman ot al

TEE Role in CM Maturation

(WBIXWH2110139) (MT and RA), and the NIH
(ROIGMO73981, ROIGMI127985, and P30CAD16042) (MT).

ACKNOWLEDGMENTS

‘We would like to acknowledge Drs. Hrayr 5. Karagueuzian and
James N. Weiss for the use of their electrophysiology instruments
and consultation. We would also like to thank Drs. Adam Z. Steg
and Michael Lake from the California NanoSystems Institute
(CNSI) as well as the UCLA BSCRC Microscopy and FACS
Cores. Human fetal heart samples were generously provided by
the Translational Pathology Core Laboratory of the Department
of Pathology and Laboratory Medicine at UCLA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https:/ fwww.frontiersin.org/articles/10.3389/ feell 2021.787 684/
full#supplementary-material

Supplementary Figure 51 | Dfferertision and saation of FHE- and SHF-ke CMs
for sdANA-zan analysis. [A), Schamaic ofthe inserfon of TdTomato and =GFP nto
the TBAS [Exon 9) and MNX2-5 (Bxon) loc in previously generated HESC TBAS-
Td Tomato™ /AKX 2-5*F ™ dounia reporter Ine. (B), Schamatic of manolayer
cardac dfferanfaton proiocol. (C), Fuorsscence microscopy of FHE (TATY
GFFY) and SHF (TAT/GAPT) optimzed cardac diferanfatons, smle ber
= 100 pm. (D), Represantaive flow cylbometic analyse at Dey 20 of cardec
differentation showng the expresson of TBXE and MNKXEZ-5. (E), Top genes
asanciated with pringpal componants 1 and 2. (A, DimPot of FHF and SHF
populatons based on principel components 1 and 2. Hypergeometric Ests
show sgnificant (G), TEXE and H), NX2-5 ocoupancy & promaters of munne
[FHF and SHF gena orfwings when compared to 10 random ssts of 150 genss fia

REFERENCES

10X Genomics (2020). “Single-Library Analysis with Cell Ranger,” in 10X
CGrenomiics. Available at httpsd/support. lixgenomics.com/single-cell-
gene-expression/software/pipeines/latest/wsing/count (Accessed May
17, 2020).

Akerberg, B. N, Gu, F., VanDusen, N_J., Zhang, X, Dong, R, Li K, et al (2019). A
Reference Map of Murine Cardiac Transcription Factor Chromatin Occupancy
Identifies Diynamic and Conserved Enhancers. Nat. Commun 10 (1), 4907,
dol:10.1038/s41467-019-12812-3

Akiyama, N, Ohnuki, Y., Kunicka, Y., Saeki, Y. and Yamada, T. (200&).
Transverse Stitfness of Myofibrils of Skeletal and Cardiac Musdes Studied
by Atomic Force Microscopy. J. Physiol Sci. 56 (2), 145-151. dol:10.2170/
physiolsci RPO03205

Becht, E, Mclnnes, L., Healy, ], Dutertre, C-A, Kwok, L W. H,, and Ng, L. G.
(2018). Dimensionality Reduction for Visualizing Single-Cell Data Using
UMAP. Nat. Bistedinol dob10.1038 nbt 4314

Benjamin, E. [, Muntner, P, Alonso, A, Bittencourt, M. 5, Callaway, C. W,
Carson, AP et 4 (2019). Heart Disease and Stroke Statistics-2019 Update: A
Repart from the American Heart Assodation. Circulation 139(10), e56-e528.
dol:10.1161/CTR 0000000O00MM0652

Benjamini, Y., and Hochberg, Y. (1995). Cantrolling the False Discovery Rate:
A Practical and Powerful Appreach to Multiple Testing. J. R Stat. Soc. Ser.
B (Methedological) 57 (1), 289-300.  dei:10.1111/).2517-
6161.1995.tb02031.x

Bon, P., Maucort, G., Wattellier, B, and Monneret, . (20091, Quadriwave Lateral
Shearing Interferometry for Quantitative Phase Microscopy of Living Cells.
Opt. Express 17 (15), 13080-130%4. doi:10.1364/0e.17. 01 3080

do not inchude FHF nor SHF genes (yvads shows Joggloomected pvalud).
bioChiP-geq pesks fom murne ventrides [E12.5) were used o define regions of
TEXS or MHOE-5 occupancy in the mmE genome (Akerberg et al, 20719). Red
dashed fne crosses the y-ads at —ogy{0.05) 23 a reference pont.

Supplementary Figure 52 | Diferences in sarcomenc siructurs and o2l migraton
betwesn FHF- and SHF-lke M=, (A), Boxpiots of cadiac ssroomenc sthuctursl
genes aextracted from GO pathway *G0:0030049: muscle flament siding” with
higher average eopression in 8HF compared to FHR-ike CME. (B), Heatmap of
genes fom panal A using bulk ANA saquencing data of RESCs and FHF- and SHF-
ks CMiz at Dey 20. (C), Boxpiots of mgratory related-genss exracted fom GO
pathevay *GOO000611: regporse to wounding” with higher aversge espression in
SHF mmpared 0 FHFSe Ous. (B), Heatmap of genes fom panal G using bulk
RNA saquencing data of hESCe and FHF- and SHF-ike CM= at Day 20. (),
Quantitatve phase imagng combned wih fluorescent microscopy
identiy and trace FHF-ke (TdT*/GFF) and SHR-lke (TdT AGFF*) CMs. Scale
bar = 20 pm.

Supplementary Figure 53 | Transorpfona and functional anayses of cacum
handing machingy n FHF- and SHF-ike OMs. (A), Boxpots of caicum handing-
reiated genes extracted from GO term E0:0010882: reguistion of cardiac muscls
wontracion by calcum on signafing” wih higher avessge expresson in SHF
mmparad to FHF-fke CME. [B), Heatmap of genes from panel A using bulk
RNA ssquencing data of hESCs and FHF- and SHRSke OMs at Dey 20. (C),
APDen fiaft) and APDEO fight) histograme of APs recorded from PHF-ke ChMs =
7,776 pasta). (D), AFDy, fft) and APDED (right) histograms of APs recarded from
SHE OMiz 7 = 8 464 poeis).

Supplementary Figure 84 | Sxdracelular acidfication rale andyses in FHF- and
SHF-lke Chz. [A), Seshorss sssay messunng exracslular acidificaton rats (BECAR)
profies of FHF- and SHF-ike Oz, (B), Quantification of BEDAR parameters betwesn
[PHF- ke and BHF ke OMs.

Supplementary Figure S5 | Sngie o2l RNA sequencing andyss of human fda
s, [A), UMAP showing clusters of 6, 10, and 17 wesks human fatal Chis. (B),
LMAF showing gens expression quantfication for fe cardec genss (TNNTZ,
MYH?), fibroblast genes (DDRZ2, COLIAT), and endothefial genes (CDHS
PECAMT). [C) ‘“ioin plots of expresson of key gemes fom G0 Term
adyses relatng to saromers studure, clcum handing, and  oedative
phosphonyiation.

Bruneaw, B. G, Logan, M., Davis, N, Levi T, Tabin, C. ], Seidman, |. G, etal
(199%). Chamber-specific Cardiac Expression of Thx5 and Heart Defects in
Halt-Oram Syndrome. Dew. Biol. 211 (1), 100-108. doi:10.1006/dbio 1 999 9208

Bruneaw, B. G, Nemer, G, Schmitt, [P, Charron, F., Robitaille, I, Caron, S, et al.
(2001). A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box
Transcription Factor Thx5 in Cardiogenesis and Disease. Cell 106(6), 7T09-721.
dok10.1016/50092-8674(01) 0493-7

Bruneau, B. G. (2013) Sigmaling and Transcriptional Networks in Heart
Development and Regeneration. Cold Spring Harb Ferspect Biol 5 (3).
ab0R22. dokl0. 1101/ cshpespect aGdB292

Burgoyne, T., Muhamad, F, and Luther, P. K. (2008). Visualization of Cardiac
Muscle Thin Flaments and Measurement of Their Lengths by Electron
Tomography. Cardiovase. Res. 77 (4), 707-712. doi:1 01083 cwricmm 117

Cao, N., Huang, Y., Zheng, |, Spencer, C I, Zhang, Y., Fu, [-D., et al. (2016).
Conversion of Human Fibroblasts into Functional Cardiomyocytes by Small
Molecules. Science 352 (6290), 1216-1220. doi:10.1126/science aafl 502

Cazorla, O, Wu Y., Irving, T.C., and Grarzier, H. (2001). Titin-based Mod ulation
of Calcium Sensitivity of Active Tension in Mouse Skinned Cardiac Myocytes
Cire. Res. 88 (10), 1028-1035. doi:10.1161/hh1001 090876

Chapski, D. [.. Cabaj, M., Morselli, M., Mason, R ], Sochalim, E., Ren, S, et al
(2021). Early Adaptive (hromatin Remodeling Events Precede Pathologic
Phenotypes and Are Reinforced in the Failing Heart. | Mol Cell Cardiol
160, 73-86. dol:10.1016/]. yjmecc 202107002

Chung, C. S, Hutchinson, K R, Methawasin, M., Saripalli, C., Smith, |. E., 3rd,
Hidalgo, C. G., etal. (2013). Shorteningof the Eastic Tandem Immunoglob ulin
Segment of Titin Leads to Diastolic Dysfunction. Cirealation 128 (1), 19-28.
dot 10116 W CIRCULATIONAHA 112001268

Elliott, D. A, Braam, 5. R, Koutsis, K, Ng, E.5. J'enny, R. 'Lagerqum, E.L.,
et al. (2001). NEX2-5(eGFPiw) hESCs for Isolation of Human Cardiac

Fronfers in Gall and Developmenta Biobgy | www. fronfiersin .ong

Decamba 2021 | Violuma 9 | Articls TBTE84

358



Pezhouman ot al

TEE Role in CM Maturation

Progenitors and Cardiomyocytes. Nat Methods 8 (12), 1037-1040.
doi:10.1038/nmeth. 1740

Fearnley, C. . Roderick, H. L., and Bootman, M. D, (2011). Calclum Signaling in
Cardiac Myocytes. Cold Spring Harb Perspect Bil. 3 (11), abd4242
doi:10.1101/cshperspect a(di242

Galdes, F. X, Guo, Y., Paige, & L, VanDusen, N. [., Wu, 5. M., and Pu, W. T,
(2017). Cardiac Regeneration: Lessons from Development. Circ. Res 120 (8),
$41-95%. dot 101161 CIRCRESAHAL L 16305040

Garbern, | C., and Lee, R. T. (2013). Cardiac Stem Cell Therapy and the Promise of
Heart Regeneration Cell Stem Cell 12 (6), 689-698. doi:10.1016/
- e m2013.05.008

Gaspar, . A, Doss, M. X, Hengstler, |. G, Cademas, C, Hescheler, ], and
Sachinidis, A, (2014) Unigue Metabolic PFeatures of Stem  Cells,
Cardionyyocytes, and Their Progenitors Cie Res. 114 (8), 1346-1380.
dol:10.1161/CIRCRESAHA 113302021

Ghiroldi, A, Plocoli, M., Ciconte, G. Pappone, C., and Anastasia, L (2017).
Regenerating the Human Heart: Direct Reprogramming Strategies and Their
Current Limitations. Basic Res. Cardiol. 112 (8), 68 dok 10 1007/ 2:0395-017-
06559

Granzier, H L, Radke, M. H., Peng, [, Westermann, D, Nelson, (. L., Rost, K.,
et al (2009). Tmncation of Titin's Hastic PEVK Region Leads to
Cardiomyopathy with Diastolic Dysfunction. Cire. Res 105 (8), 557-564.
dol:10.1 161/ CIRCRESAH A 109 200064

Guao, Y., and Pu, W, T, (2020). (‘ardj.omyocrh Maturation. Circ Res. 126 (8),
1086-1106. doil0.1161/CTRCRESAHA 119315862

Hao, Y., Hao, §, Andersen-Nissen, E, Manck, W. M, Zheng, 5, Botler, A, et al
(2021} Integrated Analysis of Multimodal Single-Cell Data Cell 184 (13),
3573-3567. doil0. 1016/ cell 2021 04.048

Hul Zhang, M. G.B., Spiering, &, Divakaruni, A, Meurs, N E, Yu M. 5, Colas, A.
R. et al (2020). Lipid Availability Influences the Metsbolic Maturation of
Human Pluripotent Stem Cell-Derived Cardiomyocytes bieRxfv. doi:10.1101/
2020.03.14.991927

Huynh, T, Chen, L, Terrel, P, and Baldini, A, (2007). A Fate Map of Thxl
Expressing Cells Reveals Heterogeneity inthe Second Cardiac Field. Genesis 45
(7), 470475 dol:10.1002/dvg 20317

Jia, C, Hu, Y, Kelly, D., Kim, [, Li, M., and Zhang, N. R. (2017). Accounting for
Technical MNoise in Differential ession Analysis of Single-Cell RNA
Sequencing Data Nucleic Acids Res 45 (19), 10978- 10988, doi:10.1093/nar/
gox7s4

Jiang, Y., Park, P, Hong, 5 M., and Ban, K (2018). Maturation of
Cardiomyocytes Derived from Human Pluripotent Stem Cells: Current
Strategies and Limitations. Mel Cells 41 (7), 613-621. doi:10.14348/
molcells 2018 0143

Karbassi, E., Fenix A, Marchiano, 5., Muracka, N, Nakamura, K, Yang, X, et a.
(2020). Cardiomyocyte Maturation: Advances in Knowledge and Implications
for Regenerative Medicine. Nat. Rev. Candiol 17 (8), 341-359, doi:10.1038/
#1569-019-0331-x

Kelly, B G, Buckingham, M. E., and Moorman, A, F, (2014). Heart hields and
Cardiac Morphogenesis. Cold Spring Harb Perspect. Med 4 (10). doi:10.1101/
cshperspect. 15750

Kaolwicz, & C, Jr, Purohit, 5, and Tian, R (2013). Cardisc Metabolism and its
Interactions with Cont maction, Growth, and Survival of Cardiom yocytes. Cire
Res 113 (5), 603-616. doi:10.1161/CIRCRESAHA 113302095

Taflamme, M. A, Chen, K. Y. Naumova, A. V., Muskheli, V., Fugate, J. A, Dupras,
S K. et al. (207). Cardiomyocytes Derived from Huoman Embryonic Stem
Cells in Pro-survival Factors Enhance Function of Infarcted Rat Hearts. Nat
Biotechnol 25 (9), 1015-1024. dok 101038/ nbt 1327

Laflamme, M. A, and Murry, C. E (2011). Heart Regeneration. Nature 473 (7347,
326-335. doit 10 1038/ nature1 0147

Lescroart, F., Chabab, &, Lin, X, Rulands, 8. Paulissen, C., Rodolosse, A, et 4.
(2014). Early Lineage Restriction in Temporally Distinct Populations of Mespl
Progenitors during Mammalian Heart Development. Nat. Cell Bial. 16 (9),
829840, dok 10,1038/ ncb3024

Lewandowski, [, Rozwadowska, M., Kolanowski, T. [, Malcher, A, Zimna, A,
Rugowska, A etal (2018). The Impact of In Vitro Cell Culture Duration on the
Maturation of Human Cardiomyocytes Derived from Induced Pluripotent
Stem Cells of Myogenic Origin. Cell Tramspl 27 (7), 1047-1067.
dol:10.1177 09636897 187 X346

Lian, X, Hsiao, C., Wilson, G., Zhu, ., Hazeltine, L. B, Azarin, 5. M, et al.
(2012). Robust Cardiomyocyte Differentiation from Human Pluripotent
Stem Cells via Temporal Modulation of Canonical Wt Signaling. Proc.
Natl Acad. S U7 § A 109 (27), EI848-E1857. dol10.1073/
pnas. 12002501 0%

Liberatore, C. M., Searcy-Schrick, B D, and Yutzey, K. E. (2000). Ventricular
Expression of Thx5 Inhibits normal Heart Chamber Development. Dev. Biol
223 (1), 169-180. doi:10.1006/dbio 2000.9748

Lien, D. K., Liu, [, Su, C.W., McNerney, G. P, Tse, H-F., Abu-Khalil, A, et al.
[200%). Absence of Transverse Tubules Contributes to Mon-uniform Caf2+)
Wawfronts in Mouse and Human Em nic  Stem  Cell-Derived
Cardiomyocytes. Stemt Gl Dew. 18 (10),  1493-1500.  dot 101089/
sod 20090052

Liw, ¥.W., Chen, B, Yang, X, Fugate, | A, Kalucki, F. A Futakuchi-Tsuchida, A,
etal (2018). Human Embryonic Stem Cell-Derved Cardiomyocytes Restore
Function in Infarcted Heaits of Mon-human Primsates. Nat. Bistachnal. 36 (7),
597-605. dol:10.1038/nbr 4162

Hoyd, 5. G, Wang, P, Zeng, H., and Chatham, |. C. (2004). Impact of Low-Flow
Ischeria on Substrate Oxidation and Glycolysis in the Tsolated Perfused Rat
Heart. Am. | Physiol Haart Cérc. Physiol. 287 (1), H351-H3&. dok10.1152/
ajpheart 009832003

Lundy, 5.1, Zhu, W. Z., Regnier, M., and Laflanume, M. A. (2013). Structural and
Functional Maturation of Cardiomyocytes Derived from Human Pluripotent
Stem Cells. Steme Cells Dew. 22 (14), 1991-2002. dok 10, 108%/5cd 2012 (0490

Methawasin, M., Hotchinson, K. R, Lee, E [, Saripalli, C., Smith, . E, 3rd,
Hidalgo, C. G, et al (2014). Experimentally Increasing Titin Compliance in a
Hovel Mouse Model Attenuates the Frank-Stading Mechanism bt Has a
Beneficial Effect an Diastole. Coreulation 129 (19), 1924-1936. dok 10,1161/
CIRCULATIONAHA 113.005610

Mguyen, T. L., Polance, E. R, Patananan, A. N, Zangle, T. A, and Teitell, M. A
(2020). Cell Viscodlasticity Is Linked to Fluctuations in Cell Biomass
Distributions. $oi. Rep. 10 (1), 7403, doi:10.1038/541598-020-64259-y

Otsu, W (1979). A Threshold Selection Method from Gray-Level Histograms. [EEE
Trans Syst. Man, Cybernetics & (1), 62-66 dok 10 1 108 TSMC. 1979431006

Pezhouman, A, Cae, H, Fishbein, M. C., Belardinelll L., Weiss, . M., and
Karmaguenzian, H. S (2018) Atrial Fibrillation Initisted by Eady
Afterdepolarization-Mediated Triggered Activity during Acute Owxddative
Stress: Efficacy of Late Sodium Current Blockade | Heart Health 4 (1)
dok 1016966/ 2379-T60X 146

Pezhounsan, A, Engel [ L, Nguyen, N. B, Skelton, B [ P, Gilmaore, W. B, Qliao,
R.et al (2021). Tsolation and Characterization of hESC-Derived Heart Figld-
specific Cardiomyocytes Unravels New Insights into Their Transcriptional and
Electrophysiological Profiles. Cerdiovase. Res doi:10.1093/cvricvabl02

Pezhouman, A., Madahian, 8., Stepanyan, H., Ghukasyan, H, Qu, Z., Belardinelli
L. et al. (2014). Selective Inhibition of Late Sodium Current Suppresses
Ventricular Tachycardia and Fibrillation in Intact Rat Hearts. Heart rhythm
11 (3), 492-501. doi:10. 1016/ hrthm 2013.11.026

Pezhouman, A, Singh, M., Song, Z., Mivala, M., Eskandari, A., Cao, H.,etal (2015).
Molecular Basis of kalemia-Induced Ventricular Fibrillation. Circulation
132 (1e), 1528-1537. doi:10.1161 )CIRCULATIONAHA 115016217

Robinson, T. F, and Winegrad, S (1979). The Messurement and Dynamic
Tmplications of Thin Filament Lengths in Heart Muscde | Physinl. 286
607619, doi:10.1113/physiol 197955012640

Robinson, T. F., and Winegead, S. (1977). Variation of Thin Filament Length in
Heart Muscles Nature 267 (5606), 74-75. dok 101038/ 26707 4a0

Romagnuolo, B, Masoudpour, H., Porn-Sinchez, A, Qiang, B, Barry, [ Laskary, A,
et al (2019). Human Embryonic Stemn Cell-Derived Cardiomyocytes Regenerate the
Infarcted Pig Heart but Induce Ventricular Tachyarhythenks. Siem Cdl Rep 12 (5),
967481, dol1 01016/ stemcr 200 9.04.005

Saggerson, D (2008). Malomd-CoA, a Key Signaling Molecule in Mammalian Cells.
Ann Bew Nute. 28 253272 dob10.1146kan muey nute 28 061 807.155434

Selmer, R, Halvorsen, 5., Myhre, K. L, Wislaff, T. F., and Kristiansen, L §. {2005).
Cost-effectiveness of Primary Percutaneous Coronary
Interventionversusthrombolytic Therapy for Acute Myocardial Infarction.
Scand Cardiovase. | 39 (5), 270-285. dob 10,1080/ 1401743051 (035988

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., etal (2016).
Allogeneic Transplantation of iP5 Cell-Derived Cardiomyocytes Regenerates
Primate Hearts Nature 538 (7625), 388-391. dok 10 1038 nature1 9815

Fronfers in Gall and Developmenta Biobgy | www. fronfiersin .ong

Decamba 2021 | Violuma 9 | Articls TBTE84

359



Pezhouman ot al

TEE Role in CM Maturation

Sizarow, A, Devalla, H D, Andeson, R H., Passier, B, Christoffels, V. M., and
Moorman, A. F. (2011). Molecular Analyss of Patterning of Conduction
Tissues in the Developing Human Heart. Circ. Arhyythrm Electrophysiol 4
(4), 532-542. doi:10.1161/CTRCEP 111 963421

Skelton, R [ P, Brady, B., Ehoja, &, Sahoo, D, Engel, | Arasaratnam, D et al.
(2016). €D13 and ROR2 Permit Isclation of Highly Enriched Cardiac
Mesodermn from Differentiating Human Embryonic Stem Cells. Stem Cel.
Rep. & (1), 95- 108 dok 10 1016/ | semcr 2015.11.006

Skelton, B. |. P, Khoja, 5., Almeida, 5., Rapacchi, 5., Han, F., Engel, [, et al. (2018).
Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem
Cell-Derived Cardiac Progenitors. Stem Cells Translational Med. 5 (1), 67-74.
dol:10.5966/sctm 201 5-0077

Snir, M., Kehat, I, Gepatein, A, Coleman, R, Hskovitz-Eldor, [, Livee, E, et al.
(2003}, Assessment of the Ultrastructural and Proliferative Properties of
Human Embryonic Stemn Cell-Derived Cardiomyocytes. Ame J. Physiol
Heart Circ. Physiol 285 (6), H2355-H2363. doi:10.1152/ajpheart (00202003

Spater, D, Abramczuk, M. K., Buac, K., Zangl, L, Stachel, M. W, Clarke, [, et al.
(2013). A HCN4+ Cardiomyogenic Progenitor Derved from the First Heart
Fleld and Human Pluripotent Stem Cells Mat. Cell Biol 15 (9), 1098-1106.
dol:10.1038/nch2824.

Steimle, [. D., Rankin, 5. A., Sagle, C. E., Bekeny, [, Rydeen, A. B, Chan, 5. 5-K,
et al (2018). Ewlutionarily Conserved Thx5- Wnt2/2b Pathway Orchestrates
Cardiopulmonary Development. Proc. Natl Acad Sci 115 (45), E1D615.
doi:10.1073/pras 181 1624115

Trapnel, C., Cacchiarelli, D, Grimshy, |, Pokharel, P, Li 5, Morse, M., et al.
(2014). The Dynamics and Regulators of Cell Fate Decisions Are Revealed by
Pseudotemporal Ordering of Single Cells. Nar. Biorechnaol. 32 (4), 381-386.
dol:10.1038/nbt 2859

van Weeghel, M., Abdurrachim, D., Nederlof, B, Argmann, C. A, Houtkooper, B
H. Hagen, |, et al. (2018). Increased Cardiac Fatty Acid Oxidation in a Mouse
Meodel with Decreased Malonyl-CoA Sendtivity of CPT1E. Cardivvas. Res 114
(100, 1324-1334. doi:10.1093/cvr/cvy 089

‘Watanabe, Y., Zaffran, 5., Kureiwa, A, Higuchi, H., Ogura, T., Harvey, R P et al.
(2012}, Fibroblast Grewth Factor 10 Gene Regulation in the Second Heart Field
by Thxl, Nkx2-5, and Islet] Reveals a Genetic Switch for Down-Regulation in
the Myocardium. Proc. Natl. Acad Sa. U § A 109 (45), 18273-18280.
doi:10.1073/pras 1215360109

Xie, L, Hoffmann, A. D, Bumicks-Turek, O, Friedland-Little, | M., Zhang, K,
and Moskowitz, L P.(2012). Thx5-he dgehog Maole cular Networks Are Essential
in the Second Heart Field for Atrial Septation. Dev. Cell 23 (2], 280-291.
dol:10.1016/) deweel 201206 (06

Yamamandala, M., Zhu, W, Garry, D, [, Kamp, T. [, Hare, .M., Jun, H-w., etal
(2017). Owercoming the Roadblocks to Cardiac Cell Therapy Using Tissue
Engineering. | Am.  Coll Cardicl 70 (6). 7e6-775 dob10.1016/
Jace 2017 06.012

Zangle, T. A, Burnes, D, Mathis, C. Witte, 0. N., and Teitell, M. A, (2013).
Cruantifying Biomass Changes of Single CD#+ T Cells during Antigen Specific
Cytotoxicity. PLoS One 8 (7), e68916. dokl0. 1371/ jpumalpone (068916

Zhang, ] Z., Termglinchan, V., Shao, N. Y., Ttzhakd, [, Lin, C,Ma, N, etal (2019).
A Human iPSC Double-Reporter Systemn Enables Purification of Cardiac
Lineage Subpopulations with Distinct Function and Drug Response Profiles.
Cell Stem Cell. 24 (5), B2-811. dok 101016/ jstermn 20102015

Zhang, B, Han, P, Yang, H, Ouyang, K, Lee, D, Lin, Y-F,, et al {2013). In Vive
cardiac Reprogramming Contributes to Zebrafish Heart Regeneration. Nafure
498 (7455), 497-501. doi:10.1038/nature 1 2322

Zhou, Y., Zhow, B, Pache, L, Chang, M., Khodabakhshi, A. H., Tanaselchuk, 0.,
etal (2019). Metascape Provides a Blologist-Orlented Resource for the Analysis
of Systems-Level Datasets. Nat. Comriun. 10 (1), 1523 dok 10.1038/541467-
019-09234-6

Zhou, Z., Wang, . Guo, C, Chang, W., Zhuang, |, Zhu, P, et al (2017}
Temporally Distinct Sicd-Positive Second Heart Field Progenitors Regulate
Mammalian Heart Development and Disease. Cell Rep. 18 (4), 1019-1032.
dokb 101014/ |.celrep 201 701002

Conflict of Interest: The authors declare that the reseanch was conducted in the
absence of any commercial or financial rehtionships that could be construed as 3
potential conflict of interest.

Publisher's Mote: All cdlaims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, ar claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2020 Pezhouman, Ngupen, Sercel, Ngwen, Darael Sabr, Chapski
Zheng, Patananan, Ernst, Plath, Vondriga, Teitell and Ardehali. This is an open-
aess article distributed under the terms of the Creative Commons Atiribution
License ((0C BY). The wse, distribution or rq)mdurtfonin ol‘.ﬁer[ormu isptﬂm'rmd.
provided the origmal author(s) and the opyright owner(s) are cradited and that the
ariginal publication in this journal is cited, in accordance with ace pred acadenic
practice. No use, distribution or reprodudion is permiitted which does not comiply
with these termis.

Fronfers in Gall and Developmenta Biobgy | www. fronfiersin .ong

Decamba 2021 | Violuma 9 | Articls TBTE84

360



Supplementary Figures

Supplementary Fig. 1: Differentiation and isolation of FHF and SHF CMs for scRNA seq analysis.
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Supplementary Fig. 2: Differences in sarcomeric structure and cell migration
between FHF and SHF CMs.
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Supplementary Fig. 4. Metabolism
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Appendix V. Topological Arrangement of Cardiac Fibroblasts Regulates Cellular
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Cellular Biology

Topological Arrangement of Cardiac Fibroblasts Regulates
Cellular Plasticity

Jingyi Yu.* Marcus M. Seldin.* Kai Fu,* Shen Li. Larry Lam, Ping Wang, Yijie Wang,
Dian Huang, Thang L. Nguyen, Bowen Wei, Rajan P. Kulkarni, Dino Di Carlo, Michael Teitell,
Matteo Pellegrini, Aldons J. Lusis, Arjun Deb

Rationale: Cardiac fibroblasts do not form a syncytium but reside in the interstitium hetween myocytes. This topological
relationship between fibroblasts and myocytes is maintained throughout postnatal life until an acute myocardial injury
occurs, when fibroblasts are recruited to, proliferate and aggregate in the region of myocyte necrosis. The accumulation
or aggregation of fibroblasts in the area of injury thus represents a unique event in the life cycle of the fibroblast, but little
is known about how changes in the topological arrangement of fibroblasts after cardiac injury affect fibroblast function.

Objective: The objective of the study was to investigate how changes in topological states of cardiac fibroblasts
(such as after cardiac injury) affect cellular phenotype.

Methods and Results: Using 2 and 3-dimensional (2D versus 3D) culture conditions, we show that simple
ageregation of cardiac fibroblasts is sufficient by itself to induce genome-wide changes in gene expression and
chromatin remodeling. Remarkably, gene expression changes are reversible after the transition from a 3D back
to 2D state demonstrating a topological regulation of cellular plasticity. Genes induced by fibroblast aggregation
are strongly associated and predictive of adverse cardiac outcomes and remodeling in mouse models of cardiac
hypertrophy and failure. Using solvent-based tissue clearing techniques to create optically transparent cardiac scar
tissue, we show that fibroblasts in the region of dense scar tissue express markers that are induced by fibroblasts
in the 3D conformation. Finally, using live cell interferometry, a quantitative phase microscopy technique to detect
absolute changes in single cell biomass, we demonstrate that conditioned medium collected from fibroblasts in 3D
conformation compared with that from a 2D state significantly increases cardiomyocyte cell hypertrophy.

Conclusions: Taken together, these findings demonstrate that simple topological changes in cardiac fibroblast
organization are sufficient to induce chromatin remodeling and global changes in gene expression with potential
functional consequences for the healing heart. (Circ Res. 2018;123:73-85, DOI: 10.1161/CIRCRESAHA.118.312589.)

Key Words: cell biology w fibroblasts m fibrosis m hypertrophy m interferometry

ardiac fibroblasts develop from epithelial-mesenchymal Editorial, see p 12

transition of epicardial cells during cardiac development.’
After adoption of the mesenchymal phenotype, they migrate into
the developing myocardium and as the myocardium compacts,
they get trapped between the myocyte interstitium to become res-
ident cardiac fibroblasts. This topological arrangement of fibro-
blasts and myocytes persists throughout postnatal life. However,
this spatial relationship is disrupted after acute myocardial ne-
crosis, when fibroblasts are recruited to, proliferate and aggre-
gate in the region of injury. resulting in a much higher density of

Meet the First Author, see p 3

fibroblasts in the region of necrosis.? Aggregating fibroblasts in
the region of injury are known to express gap junctions that fa-
cilitate intercellular communication between physically apposed
fibroblasts.” Tumor cells and cancer cell lines, when cultured in
3-dimensional (3D) conditions to promote aggregation exhibit
altered phenotypic features such as migration, proliferation, and
chemo resistance associated with changes in gene expression
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decision for all original research papers submitted o Circulation Research was 10069 days.
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What Is Known?

# Unlike cardiac myocytes, cardiac fibroblasts do not form a syncytium
but reside in the interstitium among myocytes.

* This topological relationship is atered after heart injury when fibro-
blasts are recruited o an aggregate at the area of injury.

* Apggregation of fibroblasts after injury thus represents a unigue event
in the life cycle of the cardiac fibroblast but whether such topalogical
rearrangement affects fibroblast funciion is not clear.

What New Information Does This Article Contribute?

» Aggregation of cardiac fibroblasts leads to global changes in gene ex-
pression and chromeatin reorganization.

# Changes in the transcriptome are reversible on aggregation, disag-
gregation, and reaggregation of cardiac fibroblasts.

+ Genes induced by fibroblast aggregation are expressed in the injured
heart and correlate with poor cardiac outcomes in mouse models of
hypertrophy and heart failure.

+ The secretome of aggregated cardiac fibroblasts can induce hypertro-
phy of cardiac myocyies.

Novelty and Significance

Cardiac fibroblasts reside in the interstitium of the heart and do
not form a syncytium. After the injury, they, however, are recruited
to agaregate in the area of injury, but the physiological signifi-
cance of fibroblast agaregation remains unknown. Here, we dem-
onstrate that simple aggregation of cardiac fibroblasts induces
widespread changes in gene expression and chromatic reorga-
nization. Such transcriptional changes are reversible when car-
diac fibroblasts are disaggregated or subsequently reaggregated.
Genes upregulated in the aggregated state are expressed in the
region of injury and correlate with indices of adverse cardiac re-
modeling in murine models of cardiac hyperirophy and failure.
Finally, we demonstrate that the secretome of apgregated cardiac
fibroblasts induces hypertrophy of cardiac myocyies. Taken to-
pether these observations demonsirate that topological changes
in the spatial organization of cardiac fibroblasts drives chromatin
reorganization, gene expression patterns and has functional con-
sequences for cardiac wound healing.

Nonstandard Abbreviations and Acronyms

Acta2 alpha-smooth muscle actin 2

ADAMTS15 metallopeptidase with thrombospondin motif 15
ATAC assay for transposase accessible chromatin
Cnn2 calponin 2

CTGF connective tissue growth factor

CTNNB1  beta-catenin

GPNMB glycoprotein nonmetastatic B

HMDP Hybrid Mouse Diversity Panel

MITF microphthalmia-associated franscription factor
MMP matric metalloproteinase

NRVM neonatal rat ventricular cardiomyocytes

PC principle component

SRF semum response factor

profiles.* However, little is known about how spatial rearrange-
ment of fibroblasts such as that occurs after acute myocardial
injury affects the cellular and genetic outputs of the fibroblast
and the cardiac wound healing response.

Methods

All data and supporting materials are within the article and in the
Online Data Supplement. In addition, RNA-seq and assay for trans-
posase accessible chromatin (ATAC-seq) data for the study are
available in National Center for Biotechnology Information’s Gene
Exprassion Omnibus and have been made publicly available through
GEO series acoession number GSEL13277 at https=fwww.nchi.nlm.
nih.gov/geofquery/ace.cgi?acc=GSE113277.

Cardiac fibroblasts were isolated from adult wild-type mice
(both male and female) as well as Colla2CreERT:R26R“==== and
TCF2IMerCreMer:R26R* ™= as described.” Isolated cardiac fibro-
blasts (<3 passages) were grown on standard polystyrene coated
tissue culture plates (2D; plates not coated with collagen or other ma-
trix proteins) or seeded onto ultra-low attachment plates (not coated
with any extracellular matrix protein), whereby they formed spheres
within 24 hours of seeding (31)). Subsequently, the cardiac fibroblasts
were again transferred back to regular tissue culture plates, on which

367

the spheres attached and fibroblasts migrated out of the spheres o
form monolayers within 4 to 5 days (3D-2D). Reseeding of the fi-
broblasts onto ultra-low attachment plates again resulted in forma-
tion of spheres within 24 hours (3D-2D-30). Fibroblasts in 21 or
3D maintained for 5 days served as temporally adjusted controls
for 3D-2D states. 3D-2D fibroblasts trypsinized and reseeded onto
2D states served as additional controls for 3D-2D-3D states. RNA-
seq and ATAC-seq were performed at each topological state of the
cardiac fibroblast and on temporally adjusted controls for each time
point. Transcripts upregulated in 3D states were correlated to clini-
cal traits across a mouse population (Hybrid Mouse Diversity Panel
[HMIP]) after isoproterenol infusion.® Cardiac fibroblasts were also
seeded onto tissue culture plates of varying stiffness (0.5 kPa. 8 kPa,
and 64 kPa elastic moduli) to determine whether 2D-3D gene expres-
sion changes were recapitulated by modulating substrate stiffness.
Optical transparency of the hearnt was performed with solvent-based
tissue clearing’ and imaging performed with a Nikon C2+ confocal
microscope. Immunofluorescent staining was performed using stan-
dard methods.* Conditioned medium was collected from 2D or 3D
cardiac fibroblasts exactly 24 hours after initial seeding. Live cell
interferometry was performed (o track changes in cell biomass of
single neonatal rat ventricular cardiomyocytes (NRVM) with 2D or
3D conditioned medium.

Results
To determine whether aggregation of cardiac fibroblasts af-
fects the cellular phenotype, we first created a scaffold-free
3D system using ultra-low attachment tissue culture dishes
where a covalently bonded hydrogel layer on the surface of
the dish prevents cell attachment.® Cardiac fibroblasts were
isolated from adult mice. and cells that had not undergone >3
passages were used for experiments. Seeding of primary adult
mouse cardiac fibroblasts onto ultra-low attachment dishes
resulted in fibroblasts aggregating together within 24 hours
to form 3D spherical clusters (Figure 1A and 1B). To con-
firm that cardiac fibroblasts alone were capable of forming
these spherical clusters, we next isolated cardiac fibroblasts
from uninjured hearts of TCF2IMerCreMer:R26R¥™= and
Colla2Cre ERT:R26R“™™ = mice. 55" We and others have
shown that the inducible Cre drivers are specific for genetic
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Figure 1. Cardiac fibroblasts exhibit dynamic changes in gene expression in different topological states. A, Schematic of how fibroblasts
were fransitioned from a 2-dimensional (20) to 3D state and then back to 2D and 3D, respectively. For each topological state, fibroblasts were
harvested for RNA-s2qg. B, Bright phase image of cardiac fibroblasts in 20 and 3D (scale bar: 50 pm). €, Pure population of genetically labeled
({tdTomato) fibroblasts isotated by flow cytometry from hearts of TCF21 MarCreMer R26R="= or Coll a2 CreERT-R26F™™ mice wers subjectad to
spherne formation (30) and spheres stained with wheat germ agglutinin (WEA), that stains cell membranes (scale bar: 20 pm). D, Candiac fibroblasts
in 2D or 30 states dissociated and subjected to image flow cytometry showing represantative image of fibroblast from 2D or 3D state (3000 cells
imaged in each group, scals bar: 10 pm) and comesponding mean diamater and swrfacs area of fibroblasts in 20 or 30 states ("P<0.001, maan=SEM,
n=3). E, Haat map demonstrating clustering of sample comelations of fibroblasts (shown by Z scores) in different topological states. F and G,
Heat map comparing (F) expression of the most upregulated 30 genes in different topological states and (G) 30 downregulated genes in different
topological states (H) gene ontology analysis showing cellular pathways most affected by genes upregulated or downregulated in 20v3D states.
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labeling of cardiac fibroblasts after tamoxifen administration.
Similar to cardiac fibroblasts from wild-type animals, geneti-
cally labeled cardiac fibroblasts within 24 hours of seeding
onto ultra-low attachment plates also formed spherical clus-
ters confirming the ability of cardiac fibroblasts to form 3D
spherical aggregates under defined conditions (Figure 1C).
Imaging Flow cytometry” demonstrated that aggregation
into a 3D state resulted in significantly smaller small cell
size (cell diameter: 22.45+0.30 um in 2D versus 18.41+0.26;
mean+SEM; P<0.001) and surface area (449.85£3.05 pm2 in
3D versus 297.97£8 um*; mean+SEM: P<0.001; Figure 1D)
suggestive of cellular remodeling as fibroblasts adopt the
3D state. To determine whether a switch from a 2D to a 3D
state changes fibroblast phenotype, we first compared global
gene expression changes by RNA-seq between cardiac fi-
broblasts cultured under standard 2D conditions on regular
tissue culture dishes and 3D conditions as mentioned above
(Figure 1A). For this purpose, cardiac fibroblasts were seeded
onto standard tissue culture plates or ultra-low attachment
plates with similar seeding density and identical cell culture
medium and cells were harvested 24 hours later for gene
expression analysis. To ask whether observed changes were
reversible, we transferred 3D cardiac fibroblasts to regular
tissue culture plates to put them back in 2D conditions (group
termed 3D-2D; Figure 1A). Spherical clusters of 3D fibro-
blasts attached to regular tissue culture plates and the fibro-
blasts migrated from spherical cluster to a monolayer within
4 to 5 days. We again determined gene expression of 3D-2D
fibroblasts (after transition from 3D to a monolayer) to deter-
mine whether the gene expression pattern reverted to that of
the 2D state (Figure 1A). Finally, cardiac fibroblasts which
had been grown under 3D conditions and then transferred to
2D conditions (3D-2D) were put back under 3D conditions
(group termed 3D-2D-3D). Sphere formation occurred with-
in 24 hours of reseeding on ultra-low attachment plates, and
RNA-seq was performed to determine whether readoption of
the 3D state was associated with gene expression signatures
flipping back to the 3D state (Figure 1A). These experiments
would thus determine whether changes in topological states
or spatial arrangement of cardiac fibroblasts are associated
with reversible and dynamic changes in gene expression.
RNA-seq was performed for all the different topological
states of the cardiac fibroblast and clustering of sample corre-
lations demonstrated a grouping of all 2D fibroblast states and
a separate grouping of 3D fibroblast states (Figure 1E). The
gene expression profile of 2D cardiac fibroblasts was like that
of the 3D-2D fibroblast group. whereas the gene expression
profile of 3D fibroblasts was like that of the 3D-2D-3D group
(Figure 1E). We observed a remarkable dynamic and revers-
ible plasticity between the 2D and 3D states (Online Table I;
Figure 1F and 1G). Out of 997 genes that were upregulated in
3D fibroblasts, expression of 996 genes reverted back when
the 3D fibroblasts were transitioned back to the 2D state (3D-
2D group) and reinduced after transition to 3D (3D-2D-3D
group: Figure 1F). Similarly, genes downregulated in 3D
state exhibited increased expression after transition to the
2D state (3D-2D group) and silencing on transitioning back
to 3D (3D-2D-3D group: Figure 1G). To adjust for potential
temporal changes in gene expression. the gene expression
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pattern of the 3D-2D group was also compared with that of
2Dy and 3D fibroblasts cultured for 5 days. A cluster analysis
demonstrated distinct clustering of 2D and 3D states (Online
Figure IA). In addition, for the 3D-2D-3D group, temporally
adjusted controls of 3D-2D cells lified and reseeded back
onto 2D instead of 3D conditions was also wsed {Online
Figure IB). Again. cluster analysis demonstrated distinct 2D
and 3D states making it unlikely that differential gene expres-
sion was simply secondary to temporal dependent changes in
gene expression of cardiac fibroblasts in culture.

We next examined whether dynamic changes in gene
expression in different topological states can be simply ex-
plained by sudden changes in substrate stiffness as the fibro-
blasts transition from a 2D adherent state to a 3D spherical
nonadherent state. To answer this question, we seeded cardiac
fibroblasts onto tissue culture plates coated with biocompat-
ible silicone controlled elastic moduli recapitulating environ-
ments similar to tissue.” We seeded cardiac fibroblasts on
tissue culture plates with stiffness of 0.8 kPa, § kPa, and 64
kPa (Online Figure IIA) and following 24 hours of seeding,
harvested the cells to compare changes in gene expression to
that of 2D and 3D topological states. Analysis of global gene
expression demonstrated a clustering of 2D states with that of
cells seeded at different substrate stiffness (0.5, 8, and 64 kPa)
and were distinct from gene expression signature of cardiac
fibroblasts in 3D states (Online Figure IIB). We specifically
examined the set of genes that displayed the highest degree
of differential expression between 2D and 3D states and ob-
served that the expression pattern of such genes was similar
between cells seeded at 0.8, 8, and 64 kPa and 2D states and
distinct from that seen in 3D states (Online Figure IIC and
I11}). Taken together. these observations suggest that topologi-
cal changes in cardiac fibroblasts drive gene expression pat-
terns and changes in substrate stiffness are unlikely to underlie
differences in gene expression between 2D and 3D states. We
next examined the pool of genes that were the most upregu-
lated (Figure 1F) or downregulated (Figure 1G) in 3D versus
2D fibroblast states. Gene ontology analysis demonstrated
that genes downregulated in the 3D state mainly comprised
cell cycle processes such as DNA replication, chromosom-
al condensation/segregation, and cytokinesis (Figure 1H).
Transcripts differentially upregulated in the 3D state involved
pathways regulating extracellular matrix metabolism/prote-
olysis, surface proteins, chemotaxis, and immune response.
(Figure 1H: Online Table IT). We next specifically examined
several genes which were highly differentially expressed be-
tween 3D versus 2D fibroblasts and that are also known to
regulate extracellular matrix such as metalloproteinases/me-
tallopeptidases, (MMP11, MMP2 [matrix metalloproteinases
11 and 2], ADAMTSIS [metallopeptidase with thrombospon-
din motif 15]), CTGF (connective tissue growth factor) and
fibroblast contractility, Acta2 (alpha-smooth muscle actin 2},
Cnn2 (calponin 2) and modulators of inflammatory response
(GPNMB [glycoprotein nonmetastatic B]). Based on RNA-
seq patterns, expression of these genes was reversible and
highly dependent on the topological state of the fibroblast
(Figure 2). For instance, MMP!1 and MMP2 were highly in-
duced after aggregation and sphere formation of fibroblasts,
but expressions declined to 2D levels when the 3D fibroblasts
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were allowed to attach and grow out as a monolayer for a
few days (Figure 2A and 2B). However, reseeding the cells
back to a 3D conformation led to rapid reinduction of MMP2/
MMP1] expression illustrating the dynamic plasticity of the
system (Figure 2A and 2B). Gene expression of Acta2, Cnn2,
ADAMTSI5, GPNMB, and CTGF, which are thought to play
a role in fibroblast contractility and regulation of inflamma-
tion and extracellular matrix. demonstrated similar patterns of
changes of gene expression dependent on the topological state
(Figure 2C through 2G).
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To determine whether such gene expression changes are
associated with changes in phenotype, we first determined
changes in cardiac fibroblast proliferation in the 3D versus
2D state. For this purpose, cardiac fibroblasts either in the 2D
or 3D state were treated with EAU for 4 hours followed by
determination of EAU uptake by flow cytometry. Consistent
with decreased expression of cell cycle genes in the 3D state,
we observed that 5.47x1.4% of cardiac fibroblasts in the
2D state were cycling (EdU uptake) versus 0.15+0.05% in
the 3D state (P<0.05; Figure 3A). Similarly, the fraction of
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Figure 3. Changes in fibroblast phenotype in 3-dimensional (3D) vs 2D topological state. A and B, Flow cytometry to determing
fraction of proliferating fibroblasts in 2D and 3D states by (A) EAU uptake (5.48=1.4% in 2D vs 0.1520.05% in 3D, mean+SEM, P<0.05,
n=3) or (B} Ki67 expression (10.14+3.0% in 2D vs 1.02+0.01% in 3D, mean+3EM, P<0.05, n=3). €, Western blotting and guantitative
densitometry of expression of alpha-smooth muscle actin and calpenin expressicn by cardiac fibroblasts in 2D or 3D states (mean+SEM,
*P<0.001, n=3). D, Estimation of total collagen content of cardiac fibroblasts in 2D or 30 state (8.40+2.8 png/06 cells in 3D vs
1.32+0.71/106 cells in 2D, mean=5EM, *P<0.05, n=3). E, Heat map demonstrating expression of mambers of the frizzled, Vangl, and
Celsr family in diffarant topological states of cardiac fibroblasts. F. Flow cytometry demonstrating Fzd1 (frizzled 1) expression in 30 vs 2D
cardiac fibroblasts (2.07+0.33% in 2D vs 5.6320.24% in 3D, mean+SEM, P<0.05, n=3).

cells expressing Ki67 (marker of proliferation) significant-
ly decreased from 10.94+3.0% of cardiac fibroblasts in the
2D state to 1.0+0.08% in the 3D state (P<0.05; Figure 3B).
Western blotting with quantitative densitometry demonstrated
that fibroblasts in the 3D state exhibit decreased expression
of contractile proteins alpha-smooth muscle actin (88£6%
decrease in 3D versus 2D:; P<0.001) and calponin (54+6%
decrease in 3D versus 2D; P<0.001: Figure 3C). consistent
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with gene expression data demonstrating decreased expres-
sion of myofibroblast proteins. Differentially expressed genes
between the 2D and 3D states included genes affecting ex-
tracellular matrix catabolism. Collagen is the most common
abundant extracellular matrix protein secreted by cardiac fi-
broblasts, and we next determined how adoption of the 3D
state affects collagen production. We measured total collagen
using the Sircoll assay in 2D and 3D fibroblasts and observed
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that the total cellular collagen content significantly decreased
from 8.40£2.8 pg/10° cells in 3D states to 1.32+0.71/10F cells
in 2D states (P<0.05; Figure 3D). Cardiac fibroblasts secrete
extracellular matrix proteins but are also known to express
matrix-degrading enzymes and can undergo dedifferentiation
as well."” These data suggest that a transition from a 2D to
a 3D state leads to a switch of cardiac fibroblast phenotype
from a matrix synthetic to a nonsynthetic dedifferentiated
state. Recent evidence suggests that aggregation of cardiac
fibroblasts in the area of myocardial injury is associated with
fibroblasts exhibiting evidence of polarization." Polarization
or alignment of cardiac fibroblasts is thought to play a critical
role in appropriate cardiac wound healing.'” We thus exam-
ined whether 3D cardiac fibroblasts exhibited any evidence
of polarization compared with 2D fibroblasts. To address this
question, we examined expression of genes that are members
of the Frizzled (Fzd), Van Gogh (Vangl in vertebrates), and
Flamingo (Celsr in vertebrates; Figure 3E). These families of
genes initially identified in Drosophila are now known to play
a critical role in planar cell polarity and cellular orientation
in epithelial and mesenchymal cells of vertebrates as well."®
‘Within this subset of genes known to regulate cellular polarity,
we observed that Fzd1 (frizzled 1) expression was significant-
ly higher in 3D compared with 2D states (Figure 3E). Fzdl is
a cell surface receptor and we performed flow cytometry to
demonstrate that Fzd] expression was significantly upregulat-
ed in 3D fibroblasts (Figure 3F) consistent with gene expres-
sion changes. Members of the frizzled family are known to be
expressed in fibroblasts in the area of injury after myocardial
injury and thought to contribute to cardiac remodeling and
have been considered as therapeutic targets for augmenting
cardiac repair."""'"® In this regard. cardiac fibroblasts in 3D
states recapitulate to a certain extent the expression of polarity
genes known to be important for wound healing in vivo. Taken
together, these observations demonstrate that aggregation and
changes in spatial arrangement of cardiac fibroblasts can drive
rapid, dynamic, and reversible expression of genes affecting
a panoply of processes regulating wound healing such as fi-
broblast proliferation. activation. collagen content. and cell
polarity.

We next investigated the mechanistic basis of such rapid
and reversible changes in gene expression. We hypothesized
that dynamic changes in chromatin structure may contribute at
least in part to the rapid changes in gene expression seen after
the transition of fibroblasts from a 2D to 3D state. Therefore,
changes in chromatin organization and DNA accessibility
{open and closed chromatin) were examined between cardiac
fibroblasts in 2D versus 3D states by performing an ATAC-
seq."” ATAC-seq enables identification of open and closed re-
gions of chromatin across the genome and provides insights
about regions of the genome that are more (open) or less ac-
cessible (closed) to transcription factors.” We observed that
there were significant changes in global chromatin organiza-
tion (Figure 4A). Approximately 23% of the genes differen-
tially upregulated in fibroblast 3D states and 18% of the genes
downregulated in fibroblast 3D state (ie, upregulated in 2D
states) underwent significant changes in chromatin accessibil-
ity (Figure 4A) with remarkable concordance with their RNA-
seq profiles. Both these values were significantly enriched over
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background levels as we observed that only 10% of all genes
had differential ATAC-seq peaks on transition from a 2D to
3D state (Figure 4A). We next examined differential ATAC-
seq peaks for specific genes such as MMP2 and CTGF that
demonstrated significant induction and silencing of gene ex-
pression respectively in the 3D state and observed significant
differences in ATAC-seq peaks in their respective genomic
loci, correlating with changes in gene expression (Figure 4B
and 4C). These observations suggest that fibroblast aggrega-
tion and changes in spatial arrangement of cardiac fibroblasts
are sufficient to induce changes in chromatin structure or or-
ganization that contributes to the global changes in genes ex-
pression between the 2D and 3D state.

Having demonstrated that changes in fibroblast aggrega-
tion and spatial arrangement are associated with concordant
changes in the epigenome and gene expression, we next inves-
tigated the functional connotations of such global changes in
gene expression for cardiac wound healing. Like humans, ge-
netically diverse strains of mice differ in the degree of fibrosis
or cardiac remodeling after pathological cardiac stressors and
offer the advantage of tissue availability and experimental ma-
nipulation. The HMDP is a collection of genetically diverse
mouse strains and allows sufficient power for genome-wide
association analysis to determine how genetic architecture im-
pacts phenotypic traits.”** A single pathological stressor can
be thus applied across all strains within the HMDP to perform
genome-wide association studies and determine how genetic
and environmental interactions contribute to global gene ex-
pression and clinical phenotypes.® In these studies, 96 strains
of mice were administered a 3-week continuous infusion of
isoproterenol via an osmotic pump.® Throughout the study,
various physiclogical characteristics including cardiac func-
tional indices (eg, ejection fraction, left ventricular internal
dimensions in end systole and diastole), metabolic parameters
and tissue weights (61 traits in all) were measured (Online
Table I1I) and the left ventricle of each mouse strain was sub-
jected to global expression arrays.*** In this study, the mice
responded dramatically to isoproterenol, as nearly every indi-
vidual showed increased left ventricular mass after treatment.
This data set enabled us to assess whether differentially ex-
pressed genes between 3D and 2D states of cardiac fibroblasts
could inform phenotypic traits known to predict outcomes or
disease severity in isoproterenol-induced cardiac hypertrophy
and failure.

Initially, we asked whether significantly upregulated tran-
scripts in all 3D fibroblast states (compared with 2D) were
correlated with heart failure traits in the HMDFE By simply
correlating individual 3D upregulated genes from our RNA-
sequencing experiment across clinical traits in the mouse pop-
ulation {Online Figure IIT), we observed striking patterns of
significance (Figure 5A). Because these patterns are difficult
to interpret on a gene-by-gene basis, we used a data reduction
method to establish vectors which represent 3D-specific gene
signatures. Principle component (PC) approaches provide a
means of data reduction whereby variation across any number
of dimensions can be aggregated into single or multiple vectors.
Similar approaches utilizing a PC to represent large gene sets
are commonly utilized in population-based studies.®** These
produce a series of vectors which represent a given pattern of
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variation, referred to as eigenvectors. Here, we applied this
approach to gene expression, where the genes identified from
the 2D versus 3D analysis were analyzed across a mouse pop-
ulation. We generated PC eigengenes which captured 14.4%
(PCI) and 6.8% (PC2) of the variation of all 3D-upregulated
transcripts within the HMDP expression arrays (Figure 5B).
It is worth mentioning that these values are fairly typical
when performing PC analysis on population-wide data (here,
we use =600 genes within =100 strains of mice), especially
given the significant variation observed in gene expression
profiles. Using these eigengenes (PC1 and PC2) as signatures
of 3D fibroblast genes, we plotted the position of each strain
against various cardiac and noncardiac clinical traits. Cardiac
fibroblasts are known to affect cardiac hypertrophy and play
a major role in adverse cardiac remodeling and dilatation of
the cardiac chambers, clinically determined by the left ven-
tricular dimensions in end systole and diastole. Consistent
with this notion, we observed highly significant positive cor-
relations between 3D fibroblast-derived gene signatures and
left ventricular dimensions in both end diastole (Figure 5C

373

and 5D) and end systole (Figure 5E and 5F) as well as car-
diac mass (Figure 5G and 5H). Notably, these 3D fibroblast
eigengene signatures did not correlate with either heart rate
(Figure 31 and 3J) or noncardiac traits such as plasma glu-
cose (Figure 5K and 5L) demonstrating specificity of these ei-
gengene signatures to cardiac remodeling traits. Collectively,
these data show that 3D fibroblast-enriched transcripts show
striking patterns of correlation with adverse cardiac indices
such as cardiac hypertrophy and chamber dilatation across the
murine population after isoproterenol infusion.

To date. our data demonstrate that cardiac fibroblasts ex-
hibit a high degree of dynamic plasticity with induction and
silencing of genes after transition from a 2D to 3D state. Genes
induced in the 3D state significantly correlated with clinical
indices of adverse ventricular remodeling. Therefore, we next
determined whether genes differentially expressed in the 3D
state were also upregulated in regions of fibroblast aggregation
in vivo at the time of wound healing. For this purpose, we per-
formed cryoinjury on hearts of Colla2Cre ERT:R26R%*=2 and
TCF2 IMerCreMer:R26R ™™ mice after tamoxifen-mediated
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Figure 5. Genes enriched in 3-dimensional (3D) fibroblast states show significant correlation with indices of adverse ventricular
maodeling in HMDP (Hybrid Mouse Diversity Panel) studies after isoproterenol infusion. A, Correlation heat map (yellow: positive and
blue: negative comelation) of top 15 differentially upregulated genes in 30V2D states vs clinical traits of left ventricular dimensions, heart
mass, plasma glucose and heart rate after infusion of isoproteranol. B, Individual gene confribution to eigengene signatures principle
component (PC1 and PC2) using transcripts enriched in 30 states. C-H, Correlation of both sigengene signatures against cardiac and
noncardiac traits with significant comelation between both sigengenes and (C and D) left ventricular internal diameter (LVID) at end
diastcle (E and F) LVID at end systole and (G and H) total heart mass with no significant correlation between either sigengens and (1 and
J} heart rate and (K and L) plasma glucose. bicor indicates bicorrelation coefficient.

labeling of cardiac fibroblasts. Tamoxifen was administered
for 10 days to label the cardiac fibroblasts and stopped 5 days
before cryoinjury. We chose cryoinjury as cryoinjury unlike
ischemic myocardial injury creates a highly well-defined
compact transmural scar on the left ventricle and the tdTo-
mato labeling of cardiac fibroblasts can easily identify regions
of compact scarring. Hearts were harvested at 7 days after

cryoinjury and immunofluorescent staining performed to de-
termine whether genes highly upregulated in 3D fibroblasts
in vitro were expressed by labeled cardiac fibroblasts or ex-
pressed in abundance in the region of fibroblast aggregation.
We observed abundant expression of MMP11 by tdTomato-
labeled cardiac fibroblasts but minimal MMP11 expression
in uninjured regions (Figure 6A through 6D). ADAMTS15, a
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secreted protein that regulates extracellular matrix, is expressed in the injured region and expressed by tdTomato-labeled fi-

in the developing heart and highly induced in the 3D fibroblast broblasts (Figure 6E through 6H). To study the expression of

state {Online Table I), was also found to be abundantly present 3D enriched transcripts in aggregating fibroblasts in regions
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Figure 6. Genes enriched in 3-dimensional (3D) fibroblasts are expressed in vivo in regions of fibroblast aggregation after
heart injury and affect cardiomyocyte hypertrophy. A-D, Immuncflucrescent staining for MMP11 (matrix metalloproteinase 11)
on uninjured and cryoinjured hearts of (A and B) TCF21MerCraMer:R26R" ™ and (C and D) Colia2CreERT:R2ZER™" ™ mice (B
and D) area of injury shown in higher magnification demonstrating tdTomato-labeled fibroblasts expressing MMP11 (arrows). E-H,
Immuncfluorescent staining for ADAMTS15 (metallopeptidase with thrombospondin metif 15) on uninjured and crycinjured hearts
of (E and F) TCF21MerCreMer:R26R™="=" and (G and H) area of injury shown in higher magnification demonstrating tdTomato-labelad
fibroblasts expressing ADAMTS15 (armows; scale bars: 20 pm). | and J, Cryoinjured heart of Colla2CreERT:R26RM ™ mouse (I)
before and (J) after optical clearing (arrowhead peoints to suture for identifying injured region, arrow points to green dye to identify
area adjacent to injury; note the wire mesh on which the heart lies is now visible through the transparent heart; red armow). K,
tdTomato fluorescence obsarved on cryoinjured Col1a2CreERT:R26R*==m== haart and (L} confocal image through an area of injury
showing intense tdTomato flucrescence (scale bar: 500 pmj). M, Immunoflucrescent staining for GPNMB iglycoprotein nonmetastatic
B) on optically cleared Col1a2CreERT:AZER™ ™ haart after injury. The entire depth of the scar was imaged with a confocal
microscope and saguential Z stack images are demonstrating the distribution of tdTomato (red), GPNME (green) and merged (yellow)
image demonstrating distribution of flucrophores across the depth of the scar (asterisk comesponds to pesition of suture). (Continued')
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medium from fibroblasts in 2D or 3D state (sach circle represents a single cardiomyocyte; number of single cardiomyocytes tracked: 103

for growth medium, 142 for 2D medium, and 231 for 30 medium).

of injury in greater detail, we subjected the harvested heart
to solvent-based tissue clearing techniques to make the heart
optically transparent.” This allows the entire 3D structure of
the scar to be visuvalized in detail without having to extrapo-
late and reconstruct a 3D structure from conventional analysis
of histological sections. We again performed cryoinjury on
Colla2CreERT:R26R“™ mice after fibroblast labeling. We
harvested the heart 7 days after cryoinjury and made them op-
tically transparent and a nonabsorbable suture (placed at the
time of injury) was used to identify an area of cryoinjury in the
heart after tissue clearing (Figure 61 through 6K). The region
of injury could be identified easily as an area with accumula-
tion of tdTomato-labeled cardiac fibroblasts (Figure 6L). On
the optically cleared heart, we performed immunostaining for
another marker GPNMB. a gene upregulated in the 3D state,
involved with immune response pathways and that strongly
correlated with adverse cardiac remodeling indices in our mu-
rine model of isoproterenol-induced heart failure. Analysis
of Z stacked confocal images taken sequentially through the
whole depth of the scar demonstrated expression of GPNMB
by tdTomato-labeled fibroblasts throughout the depth of the
scar (Figure 6M). These observations demonstrate that genes
expressed by aggregating fibroblasts in the region of injury at
least partially recapitulate the gene expression signatures of
3D fibroblasts.

Fibroblasts are known to affect cardiac hypertrophy® and
the gene expression signatures of 3D fibroblasts strongly cor-
related with clinical indices of heart mass and remodeling
across mouse strains. We next investigated whether fibroblasts
in 3D exert prohypertrophic effects on cardiomyocytes com-
pared with fibroblasts cultured in 2D. For this purpose. we
collected conditioned medium from fibroblasts grown in 3D
or 2D conditions for 24 hours. We treated neonatal rat cardio-
myocytes with 3D or 2D conditioned medium to determine
effects on cardiomyocyte hypertrophy over the next 48 hours.
Live cell interferometry, a validated version of quantitative
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phase microscopy™ is an extremely sensitive tool for deter-
mining changes in total cellular biomass. Live cell interfer-
ometry is based on the principle that light slows as it interacts
with matter. As light traverses through a cell that has greater
biomass (ie. hypertrophied). the light slows and its waveform
shifts in phase compared with light not passing through the
cell” (Figure 6N). The change in phase shift over time is di-
rectly related to the change in biomass of the cell over time,
and this quantitative phase shift has been used to precisely
and reproducibly determine the dry biomass of cells including
T cells, stem cells, cancer cells, and fibroblasts.”2 NRVM
were treated with conditioned medium as above, and each
cardiomyocyte was subjected to repeated measurements by
live cell interferometry to obtain a growth rate. We observed
that 2D} conditioned medium significantly increased the rate
of cardiomyocyte biomass accumulation compared with non-
conditioned medium (0.4 picogram/h for 2D compared with
—0.12 picogram/h for growth medium: P=0.04: Figure 60).
However, treatment with 3D conditioned medium tripled the
rate of growth versus treatment with 2D conditioned me-
dium (1.25 pg/h for 3D versus 0.4 pg/h for 2D: P=0.0001:
Figure 60). As cardiomyocytes after isolation can exhibit a
significant difference in cell size, we normalized the growth
rate of each cardiomyocyte to initial cell biomass. Again, we
observed a significant 34% increase in cell bhiomass of NRVM
after treatment with 2D conditioned medium compared
with nonconditioned growth medium (0.34% for 2D versus
—0.01% for growth medium; P=0.02; Figure 6P). However.
3D fibroblast conditioned medium significantly increased the
cell biomass accumulation rate of NRVM by a further 88%
compared with NRVM treated with 2D conditioned medium
(0.64% for 3D versus 0.34% for 2D:; P=0.002; Figure 6F).
These observations demonstrate that the secretome of fibro-
blasts in 3D is sufficient to induce cardiomyocyte hypertrophy
and are broadly consistent with the genome-wide association
data shown earlier demonstrating a high correlation between
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genes induced in the 3D state and indices of cardiac hypertro-
phy and remodeling after isoproterenol infusion. Our observa-
tions also suggest that the gene expression signatures adopted
by aggregating fibroblasts may have a direct causal effect on a
hypertrophic response after cardiac injury.

We next analyzed our RNA-seq data to obtain insight
into transcription factors or transcriptional regulators that
could be contributing to changes in gene expression between
the 2D and 3D states and affecting myocyte hypertrophy.
Genes differentially upregulated in the 3D versus 2D state
were assayed for enrichment of upstream transcriptional fac-
tors or regulators using TRRUSTv2.* This analysis queries
hundreds of published Chip-Seq and open chromatin data to
infer regulatory elements from gene expression patterns. The
3D upregulated genes were used to identify enrichment of
regulation by specific transcription factors or DNA binding
elements known to regulate expression. We observed a signifi-
cant representation of several transcription factors predicted
to regulate 3D-specific genes (Online Figure I'V) and some of
these are also known to regulate or be associated with the car-
diac hypertrophic response such as MITF (microphthalmia-
associated transcription factor), CTNNB] (beta-catenin), and
SRF (serum response factor).”™** Next, to obtain insight into
secreted factors present in 3D conditioned medium that in-
duced or contributed to myocyte hypertrophy, we filtered the
differentially upregulated genes in the 3D state for secreted
factors and observed expression of proteins known to affect
the myocyte hypertrophic response such as angiotensinogen,
pyrophosphatases affecting purinergic signaling (ENPP3
[ectonucleotide pyrophosphatase/phosphodiesterase 3]) and
members of the Wnt signaling family (Dkk3 [dickkopf-related
protein 3]; Online Table IV).

Discussion
Cardiac fibroblasts are known to be highly plastic, and our
study suggests that simple aggregation of fibroblasts may be
sufficient to induce genome-wide changes in chromatin reor-
ganization and gene expression. We show that gene expression
signatures adopted by aggregating cardiac fibroblasts at least
in part recapitulate changes in gene expression in the injured
region in vivo and that such altered genetic outputs may have
functional consequences for cardiac wound healing and re-
modeling. Cardiac fibroblasts are the principal contributors
toward deposition of extracellular matrix but are also known
to secrete metalloproteinases, and extracellular proteases that
lead to degradation of extracellular matrix.” Acute myocar-
dial injury is associated with significant upregulation in me-
talloproteinase activity®® and MMP expression significantly
increased in 3D cardiac fibroblasts mirroring such in vivo
changes. A balance between the synthetic and proteclytic phe-
notype of the fibroblasts determines extracellular matrix con-
tent or burden of scar tissue in pathological states. Augmented
matrix synthetic and matrix-degrading properties of cardiac
fibroblasts can lead to high turnover of extracellular matrix, as
seen in heart failure. Such fibroblast phenotypes with opposing
effects on matrix synthesis and degradation, as seen in our 2D
and 3D model could determine the burden of scar after acute
and chronic injury and serve as a model for obtaining further
mechanistic insight.* Although little is known about signaling
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mechanisms that regulate resolution of fibrosis, dedifferentia-
tion of contractile elements of fibroblasts with decreased ex-
pression of alpha-smooth muscle actin is thought to represent
a key event for fibrosis resolution.® In this regard, our model
of fibroblast aggregation with decreased expression of smooth
muscle actin and induction of various matrix-degrading en-
zymes demonstrates phenotypic features consistent with
myofibroblast dedifferentiation and a proteclytic rather than a
synthetic phenotype. The expression of alpha-smooth muscle
actin and other contractile proteins in fibroblasts in the injury
region allows for wound contraction in vivo, a mechanism that
enables a reduction in the area of injury. Conversely, impaired
expression of fibroblast contractile proteins or defects in fibro-
blast polarization in vivo can cause impaired wound contrac-
tion, dysregulated wound healing and lead to an expansion of
the infarcted region, a dreaded complication after myocardial
infarction. Our model that demonstrates a rapid and reversible
expression of contractile proteins in fibroblasts could serve as
a platform for investigating the molecular events that abruptly
can switch a cardiac fibroblast from a synthetic and contrac-
tile phenotype to a proteclytic and dedifferentiated phenotype.
Hypertrophy of surviving cardiac myocytes at the edges of the
injured region occurs after myocardial infarction, and the 3D
fibroblasts can serve as a platform for interrogating the para-
crine effects of cardiac fibroblasts on myocyte hypertrophy.
Given the global changes in gene expression and substantial
changes in the 3D cardiac fibroblast secretome, it is likely that
rather than a single driver, the activity of multiple transcrip-
tion factors and secreted proteins synergistically affect gene
expression changes and the myocyte hypertrophic response.
Study of cells in spheroids have been performed for cancer
cells and cells with progenitor potential. Our study suggests
that studying fibroblasts in a 3D state in contrast to the con-
ventional analysis of 2D fibroblasts may be more informative
of cellular changes in the injury region in vivo. Potentially. our
model could also be used as a tool or a primary screening sys-
tem to determine how drugs or small molecules affect changes
in expression of specific genes that are upregulated in the 3D
state or affect phenotypic transitions between matrix synthetic
(2D) and matrix-degrading (3D) states of a cardiac fibroblast.
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Supplementary Methods

Animal care and use

All experimental procedures involving animals 1n this study were approved by the Institutional Animal
Care and Use Commuttee (IACUC) of Umiversity of California at Los Angeles (UCLA). All ammals were
maintained at the UCLA vivarium according to the policies mstituted by the Amernican Association for
Accreditation of Laboratory Animal Care.

Isolation of cardiac fibroblasts

Cardiac fibroblasts were 1solated as described(1. 2). Briefly, cardiac fibroblasts were 1solated from
explanted hearts of uninjured wild type or Col1a2CreERT-R26R ™™= and

TCF21MerCreMer R26RT™® mice which previously injected with tamoxifen for 10 days. The hearts
were explanted and washed three times with 1 HBSS (GIBCO) then minced into approximately lmm®
sized pieces and digested using 12.5 ml Liberase TH (SIGMA, CAT# 5401151001) digestion buffer
[prepared by adding 5mg of liberase TH to 50ml Tyrodes buffer (136mM NaCl, 5. 4mM KC1, 0.33mM
NaH:PO4. 1.0mM MgClo. 10mM HEPES with 1. 8mg/L Glucose) to a final concentration of 0. 1ug/ml].
Two sequential digestions were performed at 37°C. The cells were collected and passed through a 40pm
strainer and plated in F12K medium (CORNING) with 1% pemcillin/streptomycin, 20% Fetal Bovine
Serum (FBS) (GIBCO) for 2 h at 37°C 1n a 5% CO2 incubator. After incubation for 2 hours, the medium
was changed to F12K medium (GIBCO) supplemented with 20% FBS. 1% penicillin/streptonyycin, 1,000
U/ml lenkemia mhibitory factor (LTF) (Millipore) and 10 ng/ml basic fibroblast growth factor (bFGF)
(Millipore). Cells were maintained under these conditions until they became confluent and used. All the
cardiac fibroblast that had not undergone more than 3 passages were used for experiments

Cardiac fibroblast 2D/3D culture

For cardiac fibroblast sphere formation, the primary outgrowth of confluent monolayer cardiac fibroblasts
from C57BL/6J, Colla?CreERT:R26R"™Te= or TCF2 1MerCreMer:R26R MM mjce were harvested
(0.25% trypsin-EDTA) and re-plated onto regular tissue culture dish (2D) (CORNING) or ulira-low
attachment dish (3D) (CORNING) (CAT# 3261) at a density of 1-1.2 x 10° cells/em”. Both 2D and 3D
cardiac fibroblasts were treated with 1dentical cell culture medium [35% IMDM, 65% F12K. 3 5% FBS,
1% pemicillin-streptomycin, 200mmoel/L L-glutamune, 20ng/ml bFGF, 25ng/'ml EGF (PEPROTECH),
1,000 U/ml LIF. 0.1mM 2-Mercaptoethanol (SIGMA)](3. 4). Under these conditions, cardiac fibroblasts
seeded onto ultra -low attachment plates formed spherical clusters within 24 hours of seeding. After 24 h.
the 3D spheres were collected and plated back onto a regular cell culture dish at 37°C 5%COa for 5 days,
with cell culture medium being changed every two days. The spherical clusters of cardiac fibroblasts
attached and fibroblasts migrated out to form a monolayer by 5 days (3D-2D). Fibroblasts in 2D or 3D
states maintained for 5 days served as controls. These cells were subsequently trypsinized and reseeded
onto ultra-low attachment plates, where they again formed spherical clusters (3D-2D-3D) within 24
hours. Cells identically trypsinized but reseeded onto 2D conditions served as controls. Cardiac
fibroblasts at different topological states were used for RNA-seq and ATAC-seq experiments. For WGS
staining, cardiac fibroblasts isolated from Col1a2CreERT:R26R'¥T™=* and TCF21MerCreMer:
R26R¥To= were fixed in 2% paraformaldehyde for 15 min at 37°C, then stained with 1:200 diluted
Wheat Germ Agglutinin Conjugates (WGA) stock solution 1.0mg/mL (Invitrogen) in HBSS for 10 min at
room temperature (5). The cells were subsequently washed twice with HBSS and then permeabilized with
0.2% Triton X-1000 for 15min Finally, the cells were mounted in slow fade gold anti-fade reagent with
DAPIT Labeled cells were imaged with a confocal microscope (PROMO C2, NIKON).
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To determune changes in gene expression of cardiac fibroblasts seeded onto substrates with varying elastic
moduli (stiffness). cardiac fibroblasts (5x10° cells) were cultured on 6-well plates with various rigidities
(0.5, 8. 64 kPa) at 37°C, 5%C0O: for 24 hours according to the manufacturer’s mstruction (Advanced
BioMatnx, CAT# 5145) (5, 6). All wells were pre-coated with type I collagen according to
manufacturer’s instructions (100pg/ml collagen Type I). Cardiac fibroblasts seeded onto regular tissue
culture dishes precoated with type I collagen and at a simlar seeding density served as controls. Cardiac
fibroblasts seeded onto ultra-low attachment plates were used to create 3D fibroblast states for analyzing
gene expression changes within the different groups. Following 24 hours of seeding, cells were harvested
for RINA-seq.

ENA-seqand ATAC-seq

RINNA was isolated from cardiac fibroblasts in different topological states, temporally adjusted controls as
well as from cardiac fibroblasts seeded onto substrates of varying elastic moduli (0.5, 8, 64 kPa). RNA
isolation was performed using PROMEGA RNA Isolation Kit (PROMEGA) and reverse transcription
using Reverse Transcription System (PROMEGA). Libranies were constructed using standard Hlumina
RNA-seq library construction protocols and were sequenced on Illunina HiSeq 3000. For analysis of
gene expression changes, we first mapped RNA-Seq reads of each sample to 1ts corresponding genonuc
coordinates (mm10 genome version) with Tophat software (default parameters)(7). Next, we quantified
the expression of each gene, 1.e. the number of reads falling into each gene, with HTSeq-count
software(8). We then performed the normalization and differential expressed genes (DEGs) analysis with
DESeq?2 software(9). The identified DEGs required a FDR value smaller than 0.01 and a log2 fold change
larger than 1. Marker set enrichment analysis (MSEA) was performed on the DESeq?2 output from RNA-
sequencing, based on normalized fold-change expression in 3D/2D (3D up-regulated) and 2D/3D (3D
down-regulated) conditions as well as for fibroblasts on substrates of varying stiffness. For pathway
analysis. genes i each condition were weighted based on their fold-change, merged mto modules based
on Gene Ontology Terms and permuted 2000 times against transcripts detected across all RNA-seq
samples to generate corresponding p-values(9. 10).

ATAC-seq was performed as descnibed previously(11) using approximately 50,000 cells/sample. Cardiac
fibroblasts harvested from all topological states (2D, 3D) were subjected to ATAC-seq. Samples were
lysed with cold lysis buffer (10 mM Tris-HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl: and 0.1% IGEPAL
CA-630). Immediately following the nuclei preparation, the pellets were re-suspended in the transposase
reaction mux (25pl 2xTD buffer, 2 5ul transposase (Ilumina) and 22 5pl nuclease-free water). The
transposition reaction was carried out for 30 mun at 37°C. Directly following transposition, the samples
were purified using a Qiagen MinFElute kat. Following purification, the libraries were amplified using
1+NEB next PCR master mix and 1.25pM of custom Nextera PCR primers 1 and 2 (Table 1), using the
following PCR conditions: 72°C for Smun; 98°C for 30 s; and thermocycling at 98°C for 10 s, 63°C for 30
s and 72°C for 1 min. Libraries were purified using a Qiagen PCR cleanup kit vielding a final library
concentration of ~30nM in 20ul to remove primer dimers. Libraries were amplified for a total of 10-12
cycles. For analysis of ATAC-seq data, we first mapped ATAC-Seq reads of each sample to 1ts
corresponding genomic coordinates with Bowtie2 software, requiring no more than two mismatches(12).
The uniquely mapped reads were then used for further analyses. We used MACS?2 software to identify the
enriched signal regions of ATAC-Seq peaks with default g-value cutoff{13). To compare the ATAC-Seq
signals between different samples. we used MACS2 bdg diff function. requiring the identified differential
regions were having a log10 likelihood of more than 5.

Expression overlay with hybrnid mouse diversity panel
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Dufferentially expressed transcnipts from 2D vs 3D spheres were used for population-based analysis
within the HMDP. We utilized gene expression arrays from left ventricle (GEO accession: GSE48760)
among HMDP strains subjected to 1soproterenol treatment. ALZET Model 1004 minipumps (Cupertino,
CA USA) were implanted intra-peritoneally to administered ISO, at a dose of 30 mg/kg body weight/day
for 21 davs. At the end of the protocol. mice were sacrificed by giving a sub-lethal dosage of inhaled
1soflurane followed by cervical dislocation. LV tissues were collected and frozen immediately mn liqud
mtrogen. Data from HMDP populations administered isoproterenol were analyzed from the following
studies(14, 15). From these amrays. all probes corresponding to the same genes were aggregated to a
single gene by strain measurement. This gene-by-strain matrix was used for further analyses. Initially,
individual differentially expressed genes were correlated with clinical traits from the corresponding
1soproterenol study. For a larger sample size and consistency. we chose to measure echocardiogram traits
following 14 days of 1soproterenol infusion. Brweight mudcorrelation values (bicor) were calculated using
pairwise strains (70-96, depending on the trait assessed) in the R package WGCNA(16). From the matrix
of gene-by-trait. brweight midcorrelation coefficients student p-values were calculated using the
corresponding sample sizes. Following mdividual gene x trait correlations, the gene -by-stramn matrix
from HMDP study was used for eigengene construction. First. the matrix was narrowed down to genes
only upregulated under 3D conditions by overlaying gene symbol of ageregated probes with the output
from DESeq? analysis on 3D fibroblast spheres. Next principal component analysis was performed on the
remaining gene set (R package, prcomp) and score contributions for components were extracted for each
strain. The score matrices for each PC and strain were then correlated against traits also using WGNCA as
described above.

Flow cytometry analysis

Cultured Cardiac fibroblasts at different topological states were dissociated using 0.253% trypsin-EDTA
solution (SIGMA), stamed in FACS buffer (0.1%BSA PBS) with APC-conjugated anti-Frizzled-1
antibody (Milteny1 Biotec Inc. cat#130-112-398) or FITC conjugated anti-Ki167 antibody (eBioscience,
cat#11-5698-82) for 30min at 4°C. After washing with FACS buffer twice, stamed cells were analyzed on
a flow cytometer. Unstained control cells were run first to establish gates followed by the cells stained
with the primary antibody conjugated to the fluorophore. For EAU analysis, EAU was added to the cell
culture medium at a final concentration of 10mM. After 4 hours incubation. the cells were dissociated
with 0.25% trypsin-EDTA solution; cells were then fixed and permeabilized with 1x Click-1T saponin-
based permeabilization and wash regent for 15min according to the manufactunng mnstruction of Click-
1T™ Plus EAU Alexa Fluor™ 488 Flow Cytometry Assay Kit (Life technologies, cat#C10632).
Subsequently Click-1T reaction cocktail was added to the cells and mcubated for an additional 30 minutes
at room temperature. After washing with1x Click+T saponin-based permeabilization and wash regent
twice, cells were analyzed on a flow cytometer.

Cell Cycle analysis using ImageStream

Cultured Cardiac fibroblasts at different topological states were dissociated as described above and fixed
with 1% PFA on ice for 20min. Cells were washed twice with PBS/2%FBS twice, and then passed
through a 70pm nylon mesh strainer. At least 1 million cells in 50l were used for flowcytometry
analyzing on the ImageStream system with bright field at 40x magnification (Ammnis). Parameters
including cell image, cell diameter, cell surface area were analyzed (n=3000 cells used for analysis) using
the IDEAS™ post-acquisition analysis software (Amms) (17, 18).

Immunoblotting analvsis
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Cultured Cardiac fibroblasts at different topological states were washed twice with 1ce-cold PBS and
harvested in RIPA Lysis and Extraction Buffer (life technologies) plus Halt Protease Inhibitor Cocktail
(Life technologies) and Hali™ Phosphatase Inhibitor Cocktail (life technologies). Pierce™ BCA Protein
Assay Kit was used for the colorimetric detection and quantitation of total protemn (Life Technologies).
Total 25ug protein was separated on 4-12% Tris-Glycine Mim Gels (Life Technologies) and transferred
onto PVDF membranes (Merck Millipore). The membranes were probed with antibodies to alpha smooth
muscle Actin (o SMA_ 1:1000) (Abcam, cat# ab5694), calponin({1:1000)( Abcam. cat# ab46794),
GAPDH(1:5000) (MilliporeSigma, cat# ABS16). Protemn signals were detected using horseradish
peroxidase (HRP)-conjugated secondary antibodies and enhanced chemiluminescence (ECL) western
blotting detection regents (Thermo Fisher Scientific. MA, USA).

Sircol assay for determuning collagen amounts

The Sircol collagen assay kit (Biocolor Ltd. Newtownabbey, UK, CAT# CLRS4000) was used to
quantify total collagen amounts in cardiac fibroblasts in 2D or 3D states according to the manufacturer’s
wnstructions. Collagen was measured only i 2D or 3D fibroblasts following harvest and collagen secreted
from the cells onto the surface of the dish was thus not measured mn this assay. In brnief. collagen was
extracted and digested overnight with 0.1 mg/ml pepsin in 5 M acetic acid. Soluble and insoluble collagen
was measured according to the manufacturer’s instructions using a standard curve of known
concentrations of purified rat tail collagen to estimate total collagen content (19, 20).

Genetic labeling of cardiac fibroblasts

Col1a2CreERT-R26R¥™® and TCF2 1MerCreMer R26R¥T°™® mice lines were obtained by crossing
Collagen1a?CreERT and TCF21MerCreMer mice with the lineage reporter R26R. 0% mice(1).
Tameoxifen (1mg) (Sigma) was injected intraperitoneally for 10 days to induce Cre-mediated
recombination in Col1a2CreERT:R26R™¥™°®® and TCF2 1 MerCreMer:R26R™*™* mice (8-10 weeks old).
Five days following cessation of tamoxifen, amimals were subjected to cardiac fibroblasts 1solation or
cardiac injury (myocardial eryoinyury). All mice were maintamed on a C37BL/6 background. For
1solation of tdTomato labeled cardiac fibroblasts, cultured cardiac fibroblasts 1solated from non-transgenic
mice were first run through the flow cytometer to establish gates. Next population of cultured cardiac
fibroblasts isolated from Col1a2CreERT-R26R¥T™=* or TCF2 1MerCreMer:R26R¥™™™ mice hearts were
run through the same gates to identify tdTomato labeled cells. All the tdTomato labeled cardiac fibroblast
were sorted and collected for further culture and assays.

Munne Cardiac Cryo-injury

Mice (both male and female). 8—10 weeks old. were subjected to sham or myocardial cryoinjury as
described(1). For cryoinjury, mice were initially anaesthetized with 3% 1soflurane, maintained at 2%
1soflurane, and intubated using a Harvard Rodent Volume-Cycled ventilator. A left thoracotomy was
performed at the level of 2nd intercostal space and cardiac cryo-injury was performed by gently pressing
a steel rod of 1mm diameter pre-cooled 1n dry ice agamst the exposed beating heart for 10 seconds.
Freezing of cardiac tissue was confirmed by the rapid discoloration of the tissue. Seven days after injury,
the hearts were harvested and processed for lustological analysis.

Immunofluorescent stamming and confocal microscopy

For harvesting the heart, the left ventricle was perfused with 5 ml PBS followed by 2 ml of 4%
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paraformaldehyde (PFA). The hearts were post fixed 1n 4% PFA for additional 4 h and cryvo-protected
using 25% sucrose and embedded in OCT compound (TISSUE-TEK) (1). Immunofluorescent staining
was performed on 7 mm frozen sections agamst markers that were upregulated 1n 3D spheres. Sections
were washed and blocked using 10% normal donkey serum for 1 h and then stamed with primary
antibodies against MMP11 (ABCAM, AB119284). ADAMTS15 (R&D STSTEMS. AF5149) overnight at
4°9C. After washing three times with PBS, sections were incubated 1n secondary antibodies for 1 h
followed by washing an additional three times with PBS. Finally. the sections were mounted in slow fade
gold anti-fade reagent with DAPI (LIFT TECHNOLOGIES, S36938). Labeled sections were imaged
using a PROMO C2 mverted Laser Scanning Confocal Microscope (NIKON). For each sample, eight
independent images within 100mm radtus of the cryo injured region were used for quantitative analysis.

Mouse Heart Clearing using simplified CLARITY method (SCM) and Immunofluorescence Labeling

A simplified CLARITY method was used to perform cardiac tissue clearing as described(21). Mouse
hearts were rinsed thoroughly with 1x Phosphate Buffered Saline (PBS) immediately following
harvesting to remove residual blood from cardiac chambers. The hearts were subsequently fixed in 4%
paraformaldehyde (PFA) overmight at 4°C. Following fixation, samples were rinsed with 1x PBS and then
immersed i a solution of 4% acrylamide monomer (Bio-Rad) along with 0.625% w/v of the
photomitiator 2,2 -Azobis[2-(2-imidazolin-2-y1) propane] dihydrochloride (VA-044, Wake Chemicals
USA). The tissues were then incubated overmight at 4°C. The following day, the tubes contamning the
hearts were incubated at 37°C for 3-4 hours, until the acrylamide solution became viscous. After
polymerization, the tissues were ninsed with 1x PBS and then placed into a clearing solution comprnised of
8% wiv sodium dodecyl sulfate (SDS. Sigma Aldrich) and 1.25% w/v boric acid (Fischer) (Ph3 4).
Samples were incubated at 37°C until the desired transparency was reached, usually two weeks.
Following incubation in clearing solution, the heart samples were washed with 1x PBS for one day and
then blocked with bovine serum albumun (1x PBS, 1% BSA, 0.05% Tween-20) overnight prior to
immunofluorescence applications. For immunofluorescence studies, the heart samples were incubated
with GPNMB (R&D Systems, AF2550) primary antibody at 1:100 dilution for 24 hours. Samples were
then rinsed with PBS for one day prior to the application of the appropriate Alexa 488-conjugated
secondary antibody (Cell Signaling) for 24 hours at 1:100 dilution. To amplify the endogenous tdTomato
signal when present, anti-td-Tomato primary antibody (Rockland) and appropriate Alexa 555-conjugated
secondary antibody (Cell Signaling) were applied as described above. Following immunofluorescence
labeling, the heart samples were placed in Refractive Index Matching Solution (RIMS) priof to imaging.
To make 30 mL RIMS, 40 grams of Histodenz (Sigma-Aldrich) was dissolved mn 1X PBS (Sigma) with
0.05% wiv sodium azide (Sigma) and syringe filtered through a 0.2 pm filter.

2D/3D conditioned medmm experiments on neonatal rat ventricular myocytes

NRWVMs were 1solated from P1-P3 day old Sprague-Dawley rat pups of mixed gender as descnbed
previously (22) and plated with 700ul plating medium (DMEM. supplemented with 10% FBS and 1%
penicillin/streptomycin) in a p—Shde 4 well Ph+ (Phase contrast plus) (IBIDI) coated with 0.1% gelatin
(104 cells /well). After resting overnmight in plating medium, medium was changed to 700ul serum-free
DMEM medium supplemented with 1% insulin-transfernin-selentum (ITS) (BD BIOSCIENCE) and 1%
penicillin/streptomycin. Cells were mcubated at 37°C. 5% CO,. The medium was then replaced with
conditioned medium obtained from 2D or 3D cardiac fibroblast cultures and myocyte mass measured over
the next 48 hours.

Live cell Interferometry (LCI)

Cells were imaged every 30 min for up to 48 hours at 20x magnification usmg a 0.40 numerical aperiure
objective on an Axio Observer Al mnverted microscope (Zeiss) 1n a temperature and CO?2 regulated stage-
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top cell incubation chamber. Quantitative phase microscopy (QPM) data was captured with a quadriwave
lateral shearing interferometry (QWLSI) camera (SID4BIO, Phasics)(23). Hlumination was provided by a
660nm center wavelength collimated LED (Thoerlabs). In each experiment. QPM data was collected from
32 distinct locations for automated mmage processing and biomass segmentation analysis.

Quantitative phase microscopy (QPM) image analysis

All images were processed with custom MATLAB (MathWorks) scripts. Cells were 1dentified and
segmented using a local adaptive threshold based on Otsu’s method (24) and tracked using particle
tracking code based on Grier et al (25).

Biomass accumulation rate calculation

QPM biomass data was summed over the projected area of each cell to obtain total cell bromass at each
collection time point. Biomass accumulation rates were calculated by fitting a first-order polynommal to
each biomass versus time plot using MATLAB Polyfit (Math Works). Individual cell growth tracks were
quality filtered using an upper cutoff of + 5% uncertainty (s.d. of residuals) in the calculated growth rate,
as determined by linear fitting the biomass versus time data.

Statistics

All data are presented as meant standard error of the mean (S EM.). The value of n stated in the figure
legends stands for independent biological replicates. Statistical analysis was performed using Graph Pad
(Prizm) using student’s t-test (two tailed). A P value <0.05 was considered significant and individual p
values are mentioned in the figure/figure legend.

All computational procedures were carried out using R statistical software. For analysis of the Hybrid
Mouse Diversity Panel (HMDP) and correlation of phenotypic traits with 3D upregulated genes, all
computational procedures were carried out using R statistical software. The HMDP expression arrays
were aggregated to average expression of each gene across multiple probes and used for correlation or
principal component analysis. Correlations and associated p-values were calculated with the biweight
midcorrelation, which is robust to outliers and associated pvalue (16). Principle component vectors were
assigned using the R base function “prcomp” where strain position on corresponding vectors were used
for correlation analysis also using WGCNA. Transcriptional Regulatory Relationships Unraveled by
Sentence-based Text mining (TRRUSTv2) were interrogated for literature-based transcription factor
(TF)-target iteractions which persist in mice, focused on significance (FDR < 0.1) of TFs enriched
among interactions with the set of 3D-enriched genes. Single comparisons between two groups were
performed using two-tailed Student’s f tests with 95% confidence intervals. To retnieve and overlay
annotated secreted proteins, we used the list deposited in the Universal Protein resource (UniProt) as
“secreted” localization annotations [SL-0243] for overlapping HUGO symbol 1n Mus musculus (Mouse)
[10090].
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Table 1: Oligo designs. A list of ATAC-seq oligos used for PCR.

Adl_noM3:

AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGAT
GIG

Ad21 TAAGGCGA

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG
AGATGT

Ad22 CGTACTAG

CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGG
AGATGT

Ad23_AGGCAGAA

CAAGCAGAAGACGGCATACGAGATTTCTGCCTGICTCGTGGGCTCGG
AGATGT

Ad2 4 TCCTGAGC

CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGG
AGATGT

Ad25 GGACTCCT

CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGG
AGATGT

Ad2.6 TAGGCATG

CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGG
AGATGT

Ad27 CTCTCTAC

CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTICTCGTGGGCTCG
GAGATGT

Ad2 8 CAGAGAGG

CAAGCAGAAGACGGCATACGAGATCCTCICTGGTICTCGTGGGCTCGG
AGATGT

Ad29 GCTACGCT

CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGG
AGATGT

Ad2.10_CGAGGCTG

CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGLTCGG
AGATGT

Ad211 AAGAGGCA

CAAGCAGAAGACGGCATACGAGATTGCCTCTTIGICTCGTGGGCTCGG
AGATGT

Ad212 GTAGAGGA

CAAGCAGAAGACGGCATACGAGATTCCTCTACGICTCGTGGGCTCGG
AGATGT

Ad213_GTCGTGAT

CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGG
AGATGT

Ad2 14 ACCACTGT

CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGG
AGATGT

Ad2 15 TGGATCTG

CAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGG
AGATGT

Ad216 CCGTTTGT

CAAGCAGAAGACGGCATACGAGATACAAACGGGICTCGTGGGCTCG
GAGATGT

Ad2.17_TGCTGGGT

CAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGECTCGG
AGATGT

Ad2.18_GAGGGGTT

CAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGTGGGLTCGG
AGATGT

Ad2.19_AGGTTGGG

CAAGCAGAAGACGGCATACGAGATCCCAACCTGTICTCGTGGGLTCGG
AGATGT

Ad2.20_GTGIGGIG

CAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGG
AGATGT

Ad221 TGGGTITIC

CAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGG
AGATGT

Ad2.22 TGGTCACA

CAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGG
AGATGT

Ad223 TTGACCCT

CAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGG
AGATGT

Ad224 CCACTCCT

CAAGCAGAAGACGGCATACGAGATAGGAGTGGGICTCGTGGGCTCG
GAGATGT
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Online Figure |. Dendrogram demonstrating relationship of gene expression patterns of 3D-2D and
3D0-2D-3D cardiac fibroblasts with temporally adjusted controls. (A) 30-20 cardiac fibroblasts were generat-
ed by transferring the 30 cardiac fibroblasts to 2D conditions and maintaining the cells for S days (allowing the
cells to migrate out from spheroids to a monolayer). For this purpose, additional temporally adjusted controls of
2D fibroblasts and 3D fibroblasts maintained in culture for 5 days (2D-5d; 3D-5d) and then subsequentty harvest-
ed for RNA-seq were used. RMA-seq and gene expression analysis to construct dendrograms shows clustering of
30-2D groups with 20 and 2D-5 day groups and are distinct from that of 3D or 3D-5 day groups. (B) Similary,
30-2D-3D fibroblasts were generated by transfemming 3D-20 fibroblasts to an ulira-low attachment digh and
harvesting the cells at 24 hours after initial seeding. A temporally adjusted control was generated by transferring
the 3D-2D cells to a regular fisgue culture dish and harvested 24 hours after seeding (30-2D-2D). Dendrogram
again shows clustering of the 3D-20-30 gene expression pattern with that of the 3D and distinct from the 2D or
30-2D-2D groups.
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Online Figure Il
64Kpa

Tead1

Online Figure Il. Gene expression changes following seeding of cardiac fibroblasts onto tissue culture plates with stiffness of 0.5,8
and &4kPa. (A) Cardiac fibroblasts were seeded onto conirol (regular tissue culture plate or 2D group) or plates of 0.5kPA, 8kPa and 64kPa
stiffness or ultra-low attachment plate (3D group) and cells harvested after 24 hours and RNA-seq performed. (B) Gene expression analysis
and dendrogram demonstrates that the gene expression patterns of cardiac fibroblasts under different stifiness cluster together with that of
the 2D group and are distinct from that of the 30 group. (C,D) Heat map demonstrating expression of the most highly (C) upregulated and
(D) downregulated genes between the 30 and 2D groups acrass all the groups.
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Online Figure 1l
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Online Figure lll. Heat map of all 3D upregulated genes plotted against all cardiac and non-cardiac
traits measured following infusion of isoproterenol in 96 strains of mice. Comelation heat map (yellow:
positive and blue: negative comelation) of all differentially upreguiated genes in 30/2D states versus all
cardiac and non-cardiac fraits following infusion of isopraterenol.
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Online Figure IV

TF Enrichment of 3D-specific genes
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Online Figure IV. Predicted transcriptional regulators of 3D specific genes. Genes upregulated in 3D cardiac fibroblasts were
assayed for enrichment of upstream transcriptional factors using TRRUSTVZ. Significantly represented transcripional components are
plotted with corresponding p value enrichment among 3D genes.
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Gene
Pvalb
Hmgcs?2
Myrip
Adamts15
Ky

Ahsg
Lrrc4b
Ephbl
Pnoc
Syt6
Nt5cla
Cacnalh
Slc25a34
Cilp

F7
Hpcal4
Plinl
5430431A17Rik
Cldn2
Widc3
Fam71a
Dct

Gegr
Lrguk
Pdella
Doc2b
Adamts19
Ptgds
Cml5
Aox3
Ctrbl
Ppplrldc
Foxo6
Fndc5
Slc24a4
Agt

Nprl
Fam163b
Syt9

3D-VS-2D

10.05539546
8.176547545
7.569744718
7.428394976
7.323873113
7.322443014
7.294700622
7.25185596
7.062175922
7.046396418
7.006143756
6.839489661
6.73597135
6.735065016
6.634679275
6.632336466
6.447978021
6.287056921
6.173261088
6.125032934
6.038721447
6.029081483
6.015310487
5.968090507
5.911226392
5.869156044
5.795304104
5.781639358
5.765583486
5.75897692
5.6872866
5.623384744
5.608402688
5.587992716
5.561138758
5.532807378
5.500166531
5.499889191
5.471852004

3D-2D-VS-2D
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2.042812383
0.434262448
-0.96456143
-2.236678711
1.430596851
0.47445342
1.428847722
0.467220052
-0.002789088
0.562192577
3.298641568
0.513723286
1.193512673
0.306014992
1.477979591
2.675310138
-0.964554798
0.49926534
-0.351960129
1.338744278
4.549254793
1.453029962
0.46471614
4.237453053
-0.002767998
0.764404777
-0.002777597
0.43945352
-0.002775705
0.086969067
2.897731618
-0.7608765
-2.447842636
-1.895141111
-0.002769128
0.377688751
-0.038330512
-0.002768895
-1.834128988

3D-2D-3D-VS-2D

6.148897168
5.246796241
3.535468722
4.64226524
2.528030866
5.182554283
2.567511644
-1.277142321
6.923764703
5.349987257
9.242489561
4.857629415
5411218678
1.807565189
2.769187831
7.343315833
-0.315347653
3.27757957
7.343419587
5.382560176
-0.315369125
3.342191267
1.160494986
5.277349871
2.883438145
5.01155933
-0.315363638
3.718051212
0.646431671
3.393176203
1.433115799
3.67798639
3.573409712
1.700377114
0.646438699
3.663862859
5.324854513
3.889532941
6.367115106



Supplementary Table 1. Expression of genes in different topological states of cardiac fibroblasts.
Differentially expressed genes in different topological states of cardiac fibroblasts expressed as a log2
fold change with respect to the 2D fibroblast state. The identified DEGs required a FDR value smaller
than 0.01 and a log2 fold change larger than 1. (negative value refers to genes that are downregulated

versus the 2D state while a positive value refers to genes that are upregulated versus the 2D state).
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Online Table

3D down-regulated pathways

MODULE FDR GENE LOCUS VALUE Description
G0:0006281 0.00% Pifl Pifl 28.39 DNA repair
G0:0006281 0.00% Exol Exol 17.72 DNA repair
500006281 0.00% Neil3 Neil3 15.45 DNA repair
G0:0006281 0.00% Clspn Clspn 14.42 DMNA repair
G0:0006281 0.00% Polg Polg 13.91 DNA repair
G0:0007053 0.00% Skal Skal 31.16 chromosome segregation
G0:000705% 0.00% Kif2c Kif2c 27.23 chromosome segregation
G0:0007053 0.00% Cenpf Cenpf 26.66 chromosome segregation
G0:0007053 0.00% Nek2 Nek2 22.36 chromosome segregation
G0:0007059 0.00% Cenpe Cenpe 19.4 chromosome segregation
G0:0000776 0.00% Skal Skal 31.16 kinetochore
G0:0000776 0.00% Kif2e Kif2c 27.23 kinetochore
G0:0000776 0.00% Cenpf Cenpf 26.66 kinetochore
GQ:0000776 0.00% Nek2 Nek2 22.36 kinetochore
G0:0000776 0.00% Plk1 Plk1 20.1 kinetochore
G0:0006260 0.00% Pifl Pif1 28.39 DNA replication
G0:0006260 0.00% Dsccl Dsccl 17.22 DNA replication
G0:0006260 0.00% Rrm2 Rrm2 14.56 DNA replication
G0:0006260 0.00% Polg Polg 13.91 DNA replication
G0:0006260 0.00% Ticrr Ticrr 12.63 DNA replication
G0:0005694 0.00% Skal Skal 31.16 chromosome
G0:0005694 0.00% Kif2c Kif2c 27.23 chromosome
G0:0005694 0.00% Kifd Kif4 24.66 chromosome
G0:0005694 0.00% Nek2 Nek2 22.36 chromosome
G0:0005694 0.00% Plk1 Plk1 20.1 chromosome
G0:0051301 0.00% Anin Anin 36.4 cell division
G0:0051301 0.00% Skal Skal 31.16 cell division
G0:0051301 0.00% Kif2c Kif2c 27.23 cell division
G0:0051301 0.00% Aspm Aspm 27.05 cell division
G0:0051301 0.00% Cdc20 Cdc20 26.59 cell division

3D upregulated pathways

MODULE FDR GENE LOCUS VALUE Description
G0:0009986 2.88% |Adamtslis|Adamtsls] 173.38 cell surface
G0:0009986 2.88% Cd36 cd36 19.93 cell surface
G0:0009986 2.88% Ciita Ciita 8.01 cell surface
G0:0003986 2.88% Apoe Apoe 6.74 cell surface
G0:0009986 2.88% Adgrvl | Adgrvl 6.71 cell surface
G0:0007166 2.48% Agt Agt 44,71 | cell surface receptor signaling pathway
G0:0007166 2.48% Cd36 Cd36 13.93 |cell surface receptor signaling pathway
G0:0007166 2.48% Adgrf4 Adgrfd 9.34  |cell surface receptor signaling pathway
G0:0007166 2.48% Adgrgl | Adgrgl 9.16 |cell surface receptor signaling pathway
G0:0007166 2.48% Cd22 Cd22 T cell surface receptor signaling pathway
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G0:0004950 2.19% Cerl Cecrl 5.68 chemokine receptor activity
G0:0004550 2.19% Ccr3 Ccr3d 4.67 chamokine receptor activity
G0:0004350 2.19% Ccra Ccrd 4.64 chemokine receptor activity
G0:0004950 2.19% Ackr2 Ackr2 4.34 chemokine receptor activity
G0:0004950 2.19% Cerl2 Ccrl2 3.66 chemokine receptor activity
G0:0004930 1.42% Adrala | Adrala 18.01 G-protein coupled receptor activity
G0:0004930 1.42% Ackrl Ackrl 13.01 G-protein coupled receptor activity
G0:0004930 1.42% Adgrid Adgrf4 9.34 G-protein coupled receptor activity
G0:0004930 1.42% Adgrgl | Adgrgl 9.16 G-protein coupled receptor activity
G0:0004930 1.42% Adgrvl | Adgrvl 6.71 G-protein coupled receptor activity
G0:0070098 1.36% Cclg Ccle 30.3  Jchemokine-mediated signaling pathway]
G0:0070098 1.36% Cclg Ccls 14.23  fchemokine-mediated signaling pathway
G0:0070098 1.36% Ackrl Ackrl 13.01 |[chemeckine-mediated signaling pathwayj
G0:0070058 1.36% Ccl19 Ccll13 5.62  Jchemokine-meadiated signaling pathway]
G0:0070058 1.36% Ccrl Ccrl 5.68 Jchemokine-mediated signaling pathway]
G0:0002376 1.11% C2 c2 8.87 immune system process
G0:0002376 1.11% cd7 cd7 7.01 immune system process
GO0:0002376 1.11% Cd24a Cd24a 6.4 immune system process
G0:0002376 1.11% Cdldl Ccdldl 6.23 immune system process
G0:0002376 1.11% Clecdd Clecad 5.63 immune system process
G0:0048020 0.49% Cclé Ccl6 30.3 CCR chemokine receptor binding
G0:0048020 0.49% Cclg Ccl8 14.23 CCR chemokine receptor binding
G0:0048020 0.49% Ccl19 Ccl1s 6.62 CCR chemokine receptor binding
G0:0048020 0.49% Ccl3 Ccl3 5.46 CCR chemokine recaptor binding
G0:0048020 0.49% Ccls Ccl9 4.88 CCR chemokine recaptor binding
G0:0005615 0.35% |Adamtsl5|Adamts15| 173.38 extracellular space
G0:0005615 0.35% Ahsg Ahsg 143.77 extracellular space
G0:0005615 0.35% Cilp Cilp 101.07 extracellular space
G0:0005615 0.35% Agt Agt 44,71 extracellular space
G0:0005615 0.35% Ccle Ccle 30.3 extracellular space
GO:0006955 0.35% Cclé Ccl6 30.3 immune response
G0:0006955 0.35% Cd36 Cd36 19.93 immune response
G0:0006955 0.35% Cclg Cclg 14,23 immune response
G0:0006955 0.35% Ccrl Cecrl 5.68 immune response
G0:0006955 0.35% Ccl3 Ccl3 5.46 immune response
G0:0006935 0.34% Celg Ccl6 30.3 chemotaxis

G0:0006935 0.34% Cclg Ccl8 14.23 chemotaxis

G0:0006935 0.34% Cerl Cerl 5.68 chemotaxis

G0:0006935 0.34% Ccl3 Ccl3 5.46 chemotaxis

G0:0006935 0.34% Ccl9 Ccl9 4.88 chemotaxis

G0:0005576 0.03% |Adamtsls|adamtsls| 173.38 extracellular region
G0:0005576 0.03% Ahsg Ahsg 143.77 extracellular region
G0:0005576 0.03% Cilp Cilp 101.07 extracellular region
GO:0005576 0.03% Angptl7 | Angptl7 35.5 extracellular region
G0:0005576 0.03% Ccld Ccl6 30.3 extracellular region
G0:0009897 0.01% Cd36 Cd36 19.93 external side of plasma membrane
G0:0009897 0.01% Anpep Anpep 1475 external side of plasma membrane
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G0:0009857 0.01% Abcgl Abcgl 12.08 external side of plasma membrane
G0:0009857 0.01% Cd22 Cd22 7.5 external side of plasma membrane
G0:0009857 0.01% Ace Ace 7.03 external side of plasma membrane
Online Table Il. Gene Ontology (G0) enrichment of diff y expressed genes in 30720 fibroblast states using marker

set enrichment analysis. Genes weighted by differential expression in 30 vs 2D conditions were used for pathway enrichment.
The top § genes in each module (G0 Term) are shown, as well as enrichment parameters used for marker set enrichment

analysis.
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Online Table Il

Cardiac Traits PC1 bicor PC1 pvalue PC2 bicor PC2 pvalue
LVID at end diastole 0.307153722| 0.003061476] 0.323570986| 0.00175629
LVID at end systole 0.335373707| 0.001155294 0.31977809] 0.00200237
total heart mass 0.401054007 8.15E-05| 0.382985671| 0.00017906
Heart rate -0.096279289| 0.363951754] 0.012565032| 0.90590092
left atrium mass -0.2073533374| 0.04858779] -0.194756892| 0.06432276
left atrium mass/body weight 0.234401802| 0.02532582] -0.126156765] 0.23342204
Mitral inflow E to A velocity ratio 0.206213009] 0.042080681] -0.181414515] 0.08525588
Mitral inflow E velocity 0.142027866] 0.179288492| 0.027156442| 0.79832003
right atrium mass 0.141874527| 0.17976205] -0.213481134 0.0421724
right ventricle mass 0.248416455]| 0.017580812] -0.136692434] 0.15635339
PW thickening -0.141602933| 0.180606502] -0.027406706] 0.79650139
IVS at end diastole 0.118263577] 0.264212253| 0.047024272| 0.65803569
Fractional shortening -0.117997784| 0.265294858] 0.069023215] 0.51561302
Ejection fraction -0.116547941| 0.271253062] 0.062464383| 0.51232866
VS to PW ratio at end systole 0.110277742| 0.298052867] 0.140994675] 0.18250542
Mitral inflow A to E velocity ratio -0.105389119| 0.320114602] 0.097216285| 0.35927983
Velocity of circumferential shorter]i -0.092840053| 0.381417667] 0.020914209] 0.84400568
Aortic valve ejection time -0.041190146| 0.698266367] -0.006581397] 0.95063029
right atrium mass/body weight -0.031229221| 0.7658863947] -0.162622492| 0.12352472
Relative wall thickness at end dias 0.021042494| 0.843061023] 0.004800975| 0.96397537
Non-Cardiac Traits PC1 bicor PC1 pvalue PC2 bicor PC2 pvalue
glucose 0.071762413| 0.49905418] 0.079651552] 0.45294327
liver mass 0.419959472 3.41E-05] -0.204154599| 0.05224801
body weight 0.356474817] 0.000523921 -0.217214] 0.03862046
adrenal mass/body weight 0.017261024| 0.870994403] -0.068477455] 0.5183526
lung mass 0.314333443| 0.002410094| -0.191032842| 0.06969477
lung mass/body weight 0.028022775] 0.792029117] -0.148271069| 0.16072745
free fatty acids 0.261513514] 0.012282178| -0.349471421| 0.00068532
unesterified cholesterol -0.001138736| 0.991452678] -0.215058364] 0.0406398
total cholesterol 0.058346891| 0.282752968] -0.338164028] 0.00104384
HDL 0.204694273] 0.051615441] -0.340203757] 0.00096866
trigycerides 0.157385148] 0.060737614| -0.103279085| 0.32935308
adrenal mass 0.159128625] 0.131507152| -0.101031122| 0.3406441
liver mass/body weight 0.237248848] 0.023552203| -0.168058428| 0.1113036

Online Table . Traits measured in the HMDP following infusion of isoproterencl and their correlation with principal
components based on genes upregulated in 3D fibroblasts. Individual cardiac and non-cardiac traits were plotted against
the straim position on each component axis (as illustrated in Figure 3C-L). From these comelations. bicomrelation coefficients
and comesponding p-values were calculated for each PC x trait relationship. Traits illustrated in Figure 3 are highlighted with a

grey background.
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Gene
Adamts15
Ahsg
Cilp
wifdc3
Ptgds
Ctrbl
FndcS
Agt
Angptl7
Dkk3
Fam180a
Igfbp5
Mmpll
Htra3
Penk
Emidl
Fbin7
Plind
Cclg
Mmp2
Mamdc2
Sparcll
Faml198a
Tgfbi
Fgl2
Iirn
Epor
Pik3ipl
Enpp3
Enpp2
Cc2
Col9a2
Lpl
Mfap2
Fbinl
Pamrl
Lgid
Smoc2
Seppl
Adamtsl2
cigli
Snedl
Apoe
Iglon5
Vashl
Clu

adjusted pvalue
6.26E-07
2.050E-21
4,22E-08
1.96E-25
4.14E-13
5.63E-05
2.46E-07
2.79E-16
1.16E-07
2.87E-27
4.03E-12
1.62E-28
2.03E-228
1.35E-07
0.008313927
0.005125138
8.73E-23
1.19E-06
0.000140485
3.15E-26
5.10E-38
1.66E-05
2.13E-05
2.13E-32
8.79E-09
0.009482538
0.001064303
4,01E-10
1.77E-25
7.36E-05
0.0008716
0.001275955
0.002443402
9.54E-11
0.0003263738
0.000697679
1.64E-09
3.10E-05
3.53E-19
2.79E-11
0.000605573
1.21E-05
0.001412247
4.34E-11
0.005782713
0.00605853
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Online Table IV



Dpt 0.008985791

Pla2g2e 0.000201816
Serpine2 4.13E-10
Dpp7 7.48E-19
Sscsd 1.21E-06
Cpz 0.002400706
Islr 6.52E-06
Psap 0.008066424
Matn4 2.40E-09
Cregl 0.002226995
Ephb6 1.32E-08
Matn2 1.81E-05
Fam19a5 0.000596104
Sorll 0.003374037
Sle17as 0.000125364
Ctsl 3.23E-05
Hsd17b11 4.15E-18
Sord 2.79E-06
Ifi30 0.009015165
Sdcl 0.002285504
Tcn2 0.001758118
Gnptg 0.00861747
Grn 0.004461313
Txndcl6 6.76E-07
Scpepl 3.31E-17
Mmpl9 0.002352839
Glb1l 4.94E-05

Online Table IV. Genes upregulated in 3D cardiac fibroblasts filtered for secreted factors. Genes upregulated in the 3D cardiac fibroblast
state were filtered for secreted factors by overlaying the gene symbal of 3D specific transcripts with deposited data of known secreted factors
within the Universal Protein Resource (UniProt) using the following accessions: location:"Secreted [SL-0242]" type:component AND
organism:"Mus musculus (Mouse] [10090]. The p values listed were generated from differential expression analysis of 30 vs 2D transcripts
using a 10% FDR.
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