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ABSTRACT OF DISSERTATION 

 

Measuring Cellular Mechanics 

with Quantitative Phase Microscopy 

 

by 

 

Thang L. Nguyen 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2022 

Professor Michael Alan Teitell, Chair 

 

Quantitative phase imaging (QPI) is a label-free microscopy approach using the phase shift of light 

as it passes through transparent objects, like mammalian cells, to quantify biomass distribution and 

changes in biomass over time and space. QPI has seen immense interest and advances in hardware 

and software leading to numerous applications in biology and expansions in utility within the last 

decades. This dissertation presents a subset of those studies applied to questions of cellular biology 

and biophysics along with an overview of the QPI field as whole. The initial proportion of this 

thesis is devoted to modeling and dissecting various biomechanical properties of cellular 

mechanics including cellular viscoelasticity and work across varying cell types and biological 

perturbations using purely QPI. This is followed by an in-depth review of the field of QPI including 

the development and lineages of the various QPI approaches along with the advances in QPI made 
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in the field of cellular biology, biophysics, and diagnostics. Finally, we conclude this thesis with 

a review of the ongoing technical and biological advances made in QPI along with perspectives 

on the directions that QPI field maybe proceeding towards. Demonstrating that QPI is not only a 

robust tool in probing cellular biology and biophysics already but is also expanding its’ capabilities 

towards more applications in and interrogating fundamental questions about biology. 
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Chapter 1. Introduction 
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Quantitative phase imaging (QPI) is a label-free microscopy technique that measures cell 

properties and behaviors, through cellular biomass via the phase shift of light as it passes through 

matter, this phase shift is caused by the retardation of light as it passes through a material of 

differing refractive index1 and is described by the equation:  

𝜙𝜙 =
2𝜋𝜋
𝜆𝜆
� 𝑛𝑛(𝑧𝑧)𝑑𝑑𝑑𝑑
ℎ

𝑧𝑧=0
 

(1) 

where ϕ is the phase shift of light. n is the refractive index of the sample, h, height of the sample, 

and z is the direction of integration. This measured phase shift is directly proportional to the dry 

biomass content of the sample2. This dry mass includes all mass with different refractive index 

from a reference which is in most case water. This can be seen in the increase of refractive index 

of a protein solution with a proportional increase in protein concentration3. This relationship 

between refractive index versus mass concentration is called the specific refractive increment1, 4 

with the average specific refractive increment, α, for the contents of mammalian cells being around 

0.185 µm3/pg1, changing within ~6%5. The total cell dry mass within a given area, m, can then be 

calculated using the specific refractive increment, α, of a sample as2: 

 𝑚𝑚 =
𝜆𝜆

2𝜋𝜋𝜋𝜋
�𝜙𝜙𝜙𝜙𝜙𝜙 (2) 

where A is the area of the cell. This ability of QPI to measure quantitative biophysical features of 

the cell allows it a variety of applications and potential in biomedicine. 

 

Branches of QPI methods 

Traditional imaging detectors measure amplitude of incident light and not phase so all QPI 

methods created must address this need to recover phase shift information from light. There are 

many QPI approaches or lineages for this including interferometry6, 7, wavefront sensing8, 9, phase 
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retrieval10, 11, and digital holography12. In interferometry, phase information is generated via 

splitting of light incident on a sample into two paths a sample and a reference path before 

recombining them at a detector. The magnitude of the resulting interference images is related to 

phase shift of light passing through the sample compared to the reference via the interference 

between the light from these two paths. Examples of interferometry techniques include the 

Michelson13 (Figure 1) and Mach-Zehnder interferometer14 which are respectively a reflective and 

transmission imaging setup.  

 

FIGURE 1 Schematic of a reflective interferometer setup called the Michelson interferometer. 

Phase shift information is obtained by cellular sample via the splitting of the incident light into a 
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reference and sample path which is later recombined to generate an image of constructive and 

destructive interference. 

 

A related QPI imaging lineage is wavefront sensing which are approaches that seek to recover the 

aberrations in a wavefront caused by phase delays within a sample. Some wavefront sensing 

methods include Shack Hartmann wavefront sensing15 and Ronchi sensing16 with early wavefront 

sensing using lateral shearing interferometry16, 17. Lateral shearing wavefront imaging make use of 

incident wave that are sheared into two identical but tilted wave fronts that then interfere. These 

resulting single-direction phase gradient when paired with multiwave interferometry techniques18 

can generate 2D gradient maps needed to recapitulate QPI images. Another QPI lineage is phase 

retrieval methods which refers to non-interferometric methods that are computationally reconstruct 

the phase shift from intensity images. These phase retrieval methods can be classified as either 

iterative or deterministic19 with iterative methods using iterative computation to the phase 

problem20. One widely used iterative phase retrieval method is the Gerchberg-Saxton algorithm. 

Deterministic methods solve for phase images without iteration with a commonly used approach 

based on the transport of intensity (TIE) equation which relates phase data at the in-focus plane to 

the axial derivative of intensity distribution21.  

 

The last branch of QPI we will discuss is digital holography which captures the interference 

between a reference and the off-axis sample beam with a digital camera placed at a known distance 

in front of the image plane. The interferogram is reconstructed through diffraction theory to 

recover the complex object wavefront, which includes the phase shift and intensity modulation of 

the light. Digital holography methods are based on those of holography as established by Gabor22 
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where light from a point source when interfering with secondary waves from light scattered by an 

object can produces a negative photograph of a 3D image. All these QPI lineages have benefited 

greatly from the increasing availability of high end computing allowing for greater digital image 

acquisition and data processing allowing for convergence of QPI branches like with quadriwave 

lateral shearing interferometry which combines principles of wavefront sensing with 

interferometry and phase retrieval algorithms9. 

 

Advantages and applications of QPI 

Advantages QPI have include being label-free and containing quantitative information about phase 

in each pixel of the captured images. Paired with the specific refractive increment5, which is the 

refractive index of a material is related to its mass, of cellular mass which is around 1.8 – 2.0 x 10-

4 m3/kg 2, 3, 5, QPI can generate biomass distribution images of individual cells or clusters (Figure 

2a) at individual instances or through a time lapse set of images (Figure 2b) through its’ phase shift 

information. These time-lapsed images can be used to extract information on cellular mass over 

time (Figure 2c) 4, 23-26. Additionally, repeated QPI measurements of dry cell mass over time can 

provide dry mass accumulation or loss rates to quantify cell growth (Figure 2d)7, 27-32, or the 

decrease in mass that occurs during cell death33-38 . These type of mass accumulation 

measurements have also been paired up with a number of extracellular perturbations including 

changes in available glucose29 or introduction of small molecule inhibitors like  tunicamycin to 

induce cell stress7. Allowing for the development of  QPI-based screens for agents that may cause 

changes in cell growth rate and cytotoxicity7, 39. Furthermore QPI has also been applied to study 

other cellular properties including motion (Figure 2e), migration, and metastatic potential40.  
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FIGURE 2 QPI imaging captures information of mass accumulation and motion. QPI images 

at (a) beginning and (b) end of 3h time lapse of MCF-7 cells. Time lapsed QPI images used to to 

measure (c) dry biomass over time for MCF-7 cluster and can be used to extract (d) mass 
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accumulation rate differences when treated with a drug treatment. Motion in QPI data can also be 

captured shown via a (e) kymograph of travel by the leading edge of the cluster represented in the 

white line in (a). 

 

Due to QPI’s flexibility it has been applied to study variety cell types and applications including 

primary human melanocytes41, human pluripotent stem cells (hPSCs)42, immune cells43, and many 

others. For example, where other growth rate measurements like proliferation rates may be 

constrained due to limits on cellular replication like cells that are not proliferative like in 

hypertrophic cardiomyocytes or primary cells due to the Hayflick limit, QPI is able to work around 

this due to being a direct mass measurement as well as being to make such measurements on a 

very short time scale. This allows for mass accumulation measurements on the aforementioned 

hypertrophic cardiomyocytes and what media conditions may illicit hypertrophy (Figure 3a) as 

well as allow QPI to interrogate primary and primary cell derived samples (Figure 3b). This allows 

QPI a great advantage over the many other growth and mass measurement techniques and uniquely 

positons it to interrogate other biological questions of size, growth, and cellular mass. 
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FIGURE 3 Cellular growth applications of QPI in situations inconvenient to proliferation 

assays. (a) Measurement of mass accumulation rate for cardiomyocytes under different media 

conditions meant to induce hypertrophy (Reproduced with permission from 44, © 2018 Wolters 

Kluwer Health). (b) Determined there was no noticeable size or growth differences in primary BJ 

fibroblast derived MSC vs. those of the rho0 + cell line mitochondria (Reproduced under Creative 

Commons Attribution (CC BY) license with permission from 45, © 2020 Patananan et al.). 
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Cellular mass and mass accumulation are not the only properties measured with QPI as shown by 

QPI’s ability to quantify cellular motion as well (Figure 2e). What sets QPI apart from other 

simpler microscopy techniques like phase contrast or bright field is QPI’s ability to measure not 

only motion external or full displacement of individual cells but also the intracellular motion as 

well by detecting the fluctuation of internal mass redistribution and motion. While typical 

microscopy techniques might only be able to quantify differences in displacement by wild type 

fibroblast (Figure 4a) vs collagen knockout ones (Figure 4b), QPI is able to quantify the differences 

internal as well (Figure 4c). This difference in internal mass redistribution and motion can also be 

applied to determine physiological differences between cell types shown by internal mass 

redistribution being able to determine differences between cardiomyocytes of two different heart 

fields (Figure 4d). This demonstrates QPI’s capability to extract even more information from its’ 

already extensive information on cellular mass and mass accumulation allowing for prospectively 

extensive characterization cellular properties via different examination and manipulation of QPI 

cellular mass information. 
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FIGURE 4 QPI applications of internal redistribution and intercellular mass motion. QPI phase 

images of (a) GFP labeled wildtype and (b) collagen V knockout fibroblasts. (c) The two types of 

cells show marked differences in their internal redistribution of mass quantified as a decorrelation 

rate (Reproduced with permission from 46,© 2020 Elsevier). (d) Cardiomyocytes that comprise the 

first (FHF) and second (SHF) heart field show drastic differences in mass redistribution 

(Reproduced under Creative Commons Attribution (CC BY) license with permission from 47, © 

2021 Pezshouman et al.). 

 

Applications of QPI in biophysics 
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An emerging application of QPI is in the realm of biophysics due to QPI’s ability to measure 

intracellular mass distributions and redistributions over time revealing information on cell 

movement and intracellular transport phenomena. These measurements of the movement of mass 

between cell regions enable applications in intracellular transport, while measurements of the 

shape and structure of a cell over time enable measurements of cell mechanics. An example of 

such applications can be found in measurements of label-free diffusion coefficients of organelles 

and vesicles in neurons and cardiomyocytes48. However, there are many more properties that can 

be teased out and this thesis is devoted to further probing out these various biomechanical 

properties with QPI and examining the state of the field QPI as whole in this regard. 
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Chapter 2. Cell viscoelasticity is linked to fluctuations in cell biomass distributions 
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Introduction 

Viscoelastic properties of cells are important emerging biomarkers of disease state and 

progression1. The simplest approach to defining cell viscoelastic properties examines two 

parameters: stiffness and viscosity, which characterize the elastic and dissipative components of a 

cell’s response to stress2. The elastic response has been used as a biomarker for cancer cells3 or 

metastatic potential4, and has been related to cell migration during embryogenesis5. Cell viscosity 

has been linked to multiple  biological processes, such erythrocyte porous trafficking and 

deformability6, diffusion7, 8, and cell disease state9, 10. 

 

Most approaches to interrogate cell viscoelastic properties use induced deformations11 or probes12. 

Approaches to measure the elastic component of cell viscoelasticity include atomic force 

microscopy (AFM)13, optical laser tweezers14, magnetic tweezers15, pipette suction16, uniaxial 

stretching rheometry17, hydrodynamic stretching18, and microrheology19, 20. The viscous response 

of cells has been measured using approaches that include microrheology19, 20, electronic spin 

resonance21, fluorescent rotor protein22, AFM23, pipette suction16, and optical laser tweezers24. 

These measurements, however, can be strongly influenced by the specific region of a cell that is 

probed25, alterations of the cytoskeletal network by an applied stress26 or cell interactions with a 

probe27. All of these influences may bias measurements of cell viscoelasticity. 

 

Therefore, we developed a contact-free, non-invasive approach that accurately measures cell 

viscoelastic properties based on quantitative phase imaging (QPI), a method that we refer to as 

quantitative phase rheology (QPR). QPI28 is a microscopy technique used to measure the phase-

shift or retardation of light due to its interactions with the relative dry mass, or the non-aqueous 
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biomass, of a cell29. Using an experimentally determined cell-average specific refractive index, we 

can relate the phase shift of light to cell biomass30, 31. QPI has been used to study cell growth32, 

death33, and responses to growth inhibition by chemotherapeutics or targeted inhibitors of 

biological processes34-36. 

 

Previous studies have used what we refer to as QPR to measure membrane viscoelastic properties 

of enucleated erythrocytes, including development of an analytical model linking observed 

vibration modes to viscoelastic properties through the autocorrelation of quantitative phase data37, 

38. However, this model does not directly translate to the more complex structure of nucleated 

cells. In an application to nucleated cells, spatial and temporal autocorrelations of quantitative 

phase data from human pluripotent stem cell colonies indicated both a larger degree of spatial 

coordination and faster rate of temporal decorrelation for pluripotent cells compared to their 

differentiated progeny39. A more recent study found that spatial autocorrelations of quantitative 

phase data can be used to indicate the intracellular disorder of cells, a parameter related to cell 

stiffness in response to deformation to fluid shear40. Other work on QPR indicates that temporal 

autocorrelation of quantitative phase data relates to cellular transport properties including 

diffusion41-43, and show a correlative relation to cellular stiffness44. However, there is currently no 

QPR method to concurrently model and measure both the elastic and viscous components of cell 

viscoelasticity. 

 

In the present study, we report that the temporal autocovariance of quantitative phase data for cells at 

interphase of the cell cycle show a response similar to a mass spring damper system. The elastic and viscous 

coefficients describing this behavior correlate with viscous and elastic stiffness components of interphase 
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cells quantified by AFM measurements. We varied the cell stiffness of three different cell lines with 

cytochalasin B45, an actin polymerization inhibitor, and show a high correlation between QPR results and 

AFM viscoelasticity measurements. Finally, to validate our measurements in cells of the same genetic 

origin during a cell state transition in which stiffness plays a physiological role, we apply QPR to a cellular 

model of the epithelial to mesenchymal transition (EMT)46. These results show that QPR measures of 

stiffness and viscosity correlate with EMT state. Overall, our results suggest that label-free QPR can be 

used to indicate cell stiffness and viscosity, significantly expanding the utility of QPI for monitoring cell 

behavior. 

RESULTS 

Autocovariance of cell QPI data exhibits damped oscillations 

We used QPI to measure cellular biomass distribution over time (Fig. 1a-1c) and computed the 

autocovariance of these biomass distributions over time, Cϕϕ, to quantify changes in the 

distribution of biomass caused by the motion of cellular structures (Fig. 1d). The autocovariance 

of the quantitative phase data (Fig. 1d) is well-fit by an equation describing damped harmonic 

oscillations (R2 = 0.99). The fitting coefficients in this equation are related to an effective stiffness, 

k, and effective viscosity, μ. Assuming the spring and damper act in series, k is given by equation 

(9) (Methods) and μ can be found by dividing equation (9) by equation (5) (Methods).  
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FIGURE 1 Autocovariance of QPI biomass-density over time displays underdamped 

oscillations. (a-c) QPI of MCF-7 cell cluster at 0, 6, and 12 h of imaging. (d) Autocovariance of 

QPI data over timeshift τ fitted to a complex exponential. 

 

Automated detection and removal of cell division events in quantitative phase data 

QPR detects large changes in both effective stiffness and viscosity during mitosis (Fig. S1). These 

changes are consistent with previously measured increases in cortical tension and cell stiffness 

during cell division and mitosis47-49. However, our QPR analysis averages values obtained over a 

period of approximately 5 h, so changes in cell stiffness due to single mitotic events are not 

resolved. To measure population-level differences, we therefore restrict our analysis to interphase 

cells. 
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We filtered QPI data to automatically detect the localized increase in biomass density that occurs 

during mitosis using a kernel consisting of a sigmoid function in time50 and a disk in space. This 

kernel mimics the characteristic changes in cell phase shift that occur during mitotic cell rounding. 

When applied using an image processing filter (e.g. imfilter in Matlab), this kernel highlights 

regions of mitotic cells, without requiring any additional labels (Fig. S2 A-B). To validate this 

method of automatically detecting mitosis, we used FUCCI green fluorescence to mark mitotic 

cells (Fig. S2c). We observed >80% overlap between fluorescently labeled mitotic cells and cells 

with high values of the QPI mitosis filter, indicating robust detection of mitosis. We then calculated 

true positive versus false positive rates for detection of images that contain a division event (Fig. 

S2d). This allowed us to determine a filter threshold that gives a true positive rate of > 0.95. 

 

We then applied our label-free QPI mitotic filter to our autocovariance analysis. We calculated 

autocovariance on all possible 5 h subsets of each cell cluster dataset. Any subset that was 

determined to contain images with a mitotic event were removed from the analysis. This automatic 

filtering eliminates cells in mitosis from QPI data to enable biomass-density decorrelation rate 

measurements for interphase cells only. 

 

QPR measurements of elasticity and viscosity  

We performed QPR with filtered elimination of mitotic events for MCF-7 (Fig. 2a), HeLa (Fig. 

2b), and BT-474 (Fig. 2c) cells. These curves display significant heterogeneity as detected by the 

variable periods and amplitudes of oscillation seen in the autocovariance curves of individual 

clusters. For example, BT-474 cells displayed the highest frequency of oscillation (b = 0.46±0.07) 

and steepest exponential decay (a = 0.63±0.05) (Fig. 2c) compared to the other two cell lines, 
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whereas HeLa cells appear to have the lowest oscillation frequency and exponential decay (b = 

0.24±0.11 and a = 0.52±0.12) (Fig. 2b). These qualitative differences correspond to a predicted 

lowest effective elasticity (aka stiffness) and viscosity for HeLa cells and a highest effective 

stiffness and viscosity for BT-474 cells. The standard deviation for stiffness from repeated 

measurements of single cells and clusters was 7-10%. The population standard deviation, however, 

was significantly larger, approximately 100%., indicating significant biological heterogeneity 

within each cell population. 



24 
 

 



25 
 

FIGURE 2 Autocovariance of QPI data from individual clusters and cells indicates significant 

heterogeneity. (a) Autocovariance of MCF-7 (n=31), (b) HeLa (n=12), and (c) BT-474 (n=51) 

cells in 0 μM cytochalasin B with individual cell or cluster traces shown. 

 

To induce a change in cellular stiffness and viscosity, we used the actin polymerization inhibitor 

cytochalasin B to disrupt the cell cytoskeleton over a drug concentration range of 0-5 μM51 and 

measured effective stiffness and viscosity with QPR (Fig. 3). These data display both significant 

cell-to-cell heterogeneity as well as the expected trend of decreasing stiffness and viscosity with 

increasing cytochalasin B concentrations. This is most easily detected in the population averaged 

autocovariance signal between control (R2 = 0.99±0.01) and 5 μM (R2 = 0.99±0.01) cytochalasin 

B treated MCF-7 cells (Fig. S3a), where the decay of the autocovariance for 5 μM treated cells is 

more rapid than the control, indicating a decrease in viscoelasticity. This result is consistent with 

similar data obtained using dynamic light scattering by others for the effect of lowered 

viscoelasticity on autocovariance values52. The stiffness change detected for HeLa (Fig. S3b) and 

BT-474 (Fig. S3c) cells was less dramatic under these cytochalasin B treatment conditions. 

Therefore, there are lower differences between the control (HeLa R2 = 0.98±0.01, BT-474 R2 = 

0.98±0.01) and 5 μM perturbation autocovariance values (HeLa R2 = 0.99±0.01, BT-474 R2 = 

0.99±0.01) for these cells than for MCF-7 cells. The individual autocovariance values for both 

control and 5 μM cytochalasin B treated cells fits the damped harmonic oscillation equations well, 

as quantified by average R2 > 0.98 for all perturbations in all 3 cell types. 
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FIGURE 3 Population average QPR stiffness and viscosity values decrease with increasing 

cytochalasin B concentration.  (a) QPR stiffness and (b) QPR viscosity of MCF-7, HeLa, and BT-

474 over various 0-10 μM cytochalasin B concentration. QPR samples were collected at 0 μM 

(n=12), 1.25 μM (n=20), 2.5 μM (n=14), and 5 μM (n=25) for HeLa, at 0 μM (n=31), 1.25 μM 

(n=11), 2.5 μM (n=22), and 5 μM (n=34) for MCF-7, and at 0 μM (n=51) and 5 μM (n=31) for 

BT-474 cells. Error bars represent SD. * p < 0.05 and ** p < 0.01.  
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We then compared QPR with AFM data as AFM is a validated ‘gold-standard’ method for 

measuring cell viscoelastic properties. We obtained a strong correlation (R2 = 0.9) between fit 

parameters for stiffness from QPR data compared with AFM measured stiffness values (Fig. 4a). 

QPR viscosity data also correlated well with AFM viscosity data with an R2 of 0.89 (Fig. 4b). 

Additionally, the material relaxation time (Fig. S4) computed from QPR measurements (equation 

(10), Methods) compares well to those of AFM relaxation of deformation under constant load from 

published studies53, 54. Our measured values fall within the reported range54, 55 for MCF-7 cells 

(23.2±3.9s), whereas the other cell types BT-474 (21.8±4.1s) and HeLa (38.0±8.3s) fall within the 

anticipated magnitudes for live cells, which ranges from seconds to one minute. These data 

indicate that QPR approaches provide reproducible and accurate label-free measurements of 

stiffness and viscosity. 
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FIGURE 4 QPR predictions for stiffness and viscosity correlates with AFM data for multiple 

cell lines and drug concentrations. (a) QPR effective stiffness versus cell stiffness measured by 

AFM force curves for cells exposed to escalating doses of cytochalasin B. (b) QPR effective 

viscosity versus cell viscosity estimated with AFM by force dissipation. AFM data were collected 

at 0 μM (n=75), 1.25 μM (n=18), 2.5 μM (n=37), and 5 μM (n=133) for HeLa, at 0 μM (n=72), 

1.25 μM (n=25), 2.5 μM (n=20), and 5 μM (n=66) for MCF-7, and at 0 μM (n=12) and 5 μM 

(n=28) for BT-474 cells. QPR samples were collected at the conditions and sample numbers 

indicated in Figure 3. Error bars represent SEM. 
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QPR measurements during EMT 

We investigated whether QPR would be useful for measuring changes in effective stiffness and 

viscosity during changes in cell state. Therefore, we utilized our QPR approach for cells induced 

to undergo EMT. A shift from relatively stiff non-metastatic cancer cells to mechanically ‘softer’ 

cells with metastatic potential occurs during the EMT56, making this cell state transition an 

important model system. We induced EMT in MCF-10A cells by TGF-β1 exposure and observed 

profound morphological changes by QPI compared with control, untreated cells (Fig. 5a) that were 

consistent with previous studies57. MCF-10A cells exposed to the TGF-β receptor-inhibitor 

SB431542 also showed unique morphological features in QPI compared to untreated control and 

TGF-β1 treated cells (Fig. 5a). Reduced steady-state expression of the epithelial biomarker, E-

cadherin, and increased expression of the mesenchymal biomarker, vimentin, in TGF-β1-treated 

cells confirmed a transition to a mesenchymal state (Fig. 5b). Conversely, SB431542-treatment 

enforced an epithelial state, confirmed by unchanged E-cadherin and markedly reduced vimentin 

steady-state expression levels (Fig. 5b). Untreated cells had intermediate levels of both proteins, 

suggesting a mixed population of cells in epithelial and mesenchymal states. Measurements of cell 

biomass from QPI showed no statistically significant differences in biomass accumulation rates 

between cells in these different biophysical states (Fig. 5c). However, a clear difference in QPR 

stiffness (p-value < 0.05) (Fig. 5d) but not in viscosity (Fig. 5e), was obtained between SB431542-

treated epithelial cells relative to untreated, mixed population, and TGF-β1-treated mesenchymal 

cells (Fig. 5a). Furthermore, an increase in E-cadherin expression in TGF-β1-treated cells 

corresponded with an increased stiffness that negatively correlates with vimentin expression (Fig. 

5f). Overall, the data show that QPR stiffness could be an alternative, label-free physical biomarker 
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for distinguishing cells in an epithelial state from those in a mesenchymal state, as well as cells 

comprising a mixed heterogeneous population. 
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FIGURE 5 QPR quantifies changes in effective stiffness and viscosity during EMT. (a) 

Representative quantitative phase images of MCF-10A cells grown in control (non-treated) media, 

media supplemented with TGF-β1, and media supplemented with both TGF-β1 and SB431542. 

(b) Western blot of E-cadherin and vimentin expression in MCF-10A cells grown in untreated 

(control), TGF-β1, SB431542, or TGF-β1 + SB431542-containing media. β-actin and β-tubulin 

are loading controls, 2 independent biological replicates per sample. (c) Normalized growth rate, 

(d) QPR effective stiffness, and (e) QPR effective viscosity for MCF-10A cells grown in the listed 

conditions. (f) QPR stiffness, vimentin, and E-cadherin expression normalized to untreated cell 

values for MCF-10A cells grown in the listed conditions. Non-treated n=20, TGF-β1 n=41, and 

TGF-β1 + SB431542 n=37. Error bars are SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001. 
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DISCUSSION 

Movement of cell biomass, quantified as the autocovariance of quantitative phase imaging 

measurements, displays harmonic oscillatory motion (Fig. 2). A two-parameter viscoelastic model 

captures the oscillation and decay of this autocovariance (Fig. 1d). Fitting this model to 

experimental data enables the extraction of separate values of effective stiffness and viscosity of a 

cell (Fig. 3). Although there are previous methods to measure stiffness40 with QPI data, our 

analysis method based on temporal measurements of cell biomass motion captures both stiffness 

and viscosity components of cell rheological properties. We refer to the measurement of these and 

other40-43 rheological properties of a cell using QPI as QPR. 

 

To use our QPR measurements to distinguish between different cell types, states and conditions, 

we assume a consistent stiffness over the measurement period of approximately 5 h. This 

assumption is not applicable during mitosis in which cell stiffness changes dramatically49. We 

therefore developed an automated method to detect cell divisions for their removal from 

quantitative phase imaging data. This enables QPR to automatically process live cell QPI data and 

extract cell rheological properties. Future work could examine improvements to the spatial and 

temporal resolution of QPR required to capture the magnitude of cell viscoelastic changes during 

mitosis 

 

We observed a strong correlation between QPR measurements of cell stiffness (Fig. 4a) and 

viscosity (Fig. 4b) relative to AFM measurements. Relaxation times computed from QPR data are 

also within the same range observed previously with AFM (Fig S4)54, 55. This suggests that QPR 

measures cell viscoelasticity within a similar force and time regime as AFM measurements. 
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A physical interpretation of our results can be found in the model proposed by Qian58 for single 

particle tracking within a Kelvin-Voight material. This model gives similar predictions to the series 

spring damper (Maxwell) material model we apply, suggesting that QPR is effectively tracking 

displacements of small particles of cell biomass immersed in a Maxwell material. When we applied 

the Kelvin-Voight model to our QPR data, we obtain a moderate fit to AFM viscosity values (R2 

=0.81, Fig. S5) compared to the fit for a Maxwell model (R2 = 0.89, Fig. 4b). This indicates that a 

Maxwell material model is the more appropriate two-parameter, linear viscoelastic material model 

for interpreting QPR data. Although this two-parameter, linear model represents a simplistic view 

of cell viscoelasticity, this model nonetheless captures the essential features recorded in our data.  

 

We note that this physical interpretation of the mathematical model includes an inertia term, 

despite describing the behavior of a low Reynolds number fluid. We keep this term, which arises 

in models of underdamped systems58, to capture our observation of underdamped motion of cell 

biomass (Fig.1d and Fig. 2). This phenomenological assumption, rooted in observation, allows us 

to fit a two-parameter viscoelastic model and extract cell rheological properties from QPI data that 

correlate to AFM values. In terms of a potential physical meaning of this term, recent work 

indicates that inertia-like oscillations can occur in actively driven, viscoelastic fluids59. As the cell 

is an active material60, we speculate that the inertia-like behavior we record in our system is due 

to a similar coupling between viscoelastic material properties and active force generation from 

cytoskeletal rearrangements. This suggests the need for future modeling based on a more 

sophisticated cell material model that can better incorporate these cellular mechanics. 
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Despite the correlation between AFM and QPR measurements of stiffness and viscosity, there is a 

large difference in magnitude of these values. This difference is partially explained by differences 

in probe size. The radius of the AFM probe tip is 500 nm, whereas the effective probe for QPR is 

the material within the cytoplasm. The observed difference in magnitude of QPR stiffness relative 

to AFM stiffness is ~104, suggesting a QPR probe size of ~5 nm. This probe size is within the range 

for a complex of average sized proteins that constitute the majority of mammalian cell biomass. 

For example, in eukaryotes a ‘typical’ ~3 nm in radius61 protein has an average biomass of ~56 

kDa62. The difference in magnitude of AFM and QPR measurements can therefore be explained 

by the difference in the cross sectional area of these probes. Furthermore, we model the cell as a 

purely linear viscoelastic material; however, in general, cell rheology is dependent on length scale, 

strain rate, and magnitude of applied force which may differ between these two approaches. In 

addition, AFM measures viscosity from viscous dissipation, whereas QPR measures an effective 

frictional coefficient felt by a particle due to the viscosity of a cell. These are technically two 

different properties that are closely related through viscosity. Our QPR method is most similar to 

passive particle tracking in microrheology63, which provides a stiffness value from the expected 

relationship to passive particle motion. Microrheology measurements64 when compared to AFM 

measurements65 for mouse embryonic fibroblasts show large differences in measured magnitudes: 

14 Pa for microrheology stiffness versus 7.7 kPa for AFM stiffness. A similar order of magnitude 

difference between AFM stiffness and microrheology stiffness was also obtained for MCF10A 

breast epithelial cells as well66. 

 

Additional parameters that may affect QPR measurements include the frequency of 

measurements67 and the ratio of water content to cell volume of our samples68, 69. To interrogate 
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the effect of measurement frequency, we obtained QPR viscosity and elastic modulus data over a 

range of measurement frequencies for a single MCF-7 cell cluster and for a population ofcells (Fig. 

S6). We observed that both stiffness and viscosity values are within the standard error of the mean 

(SEM) for QPI measurements at frequencies less than 15 min per frame. However, for QPI 

measurement frequencies above ~30 min per frame, measurement accuracy and stability begins to 

deviate from the SEM. For water content effects, cells persist within a physiological range of 260-

320 mOSM/kg70, or within a range of ~60 mM for osmolality, with water losses of 10-15% or 

less71. Mechanisms72 that maintain this homeostasis are tightly controlled and regulating both 

osmolality and water content losses. These values indicate, for the physiologically-relevant cell 

culture systems employed here, minimal osmolality or water content influences on QPR 

measurements. In addition, others have shown that significant stiffness changes require large 

changes in osmolality69 of at least 150 mM or in water content to change cell volumes68. 

 

Overall, our results show the potential of a label-free and non-contact method that can measure 

cell rheological properties. As a transmitted light microscopy method, QPI is non-invasive and 

therefore minimizes the confounding effects of probes when examining biological processes in 

live cells. Because QPR builds on an existing quantitative phase imaging workflow, QPR can be 

integrated with other measurements already commonplace with quantitative phase techniques, 

such as cell biomass or biomass accumulation rate (Fig 5c). This and previous studies40-43, 73 on 

alternative approaches to QPR suggests that the use of quantitative phase imaging data to measure 

cell structure39, 40, 73 and how cell structure changes over time41-44 provides powerful methods in 

biophysical research of cell state and state transitions. 
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METHODS  

Cells and cell culture 

MCF-7 and BT-474 human invasive ductal breast adenocarcinoma cells and MCF-10A 

immortalized human breast epithelial cells were purchased from the American Type Culture 

Collection (ATCC). HeLa human cervical adenocarcinoma cells expressing fluorescence 

ubiquitination cell cycle indicator (FUCCI)74 plasmids were received from Dr. Ran Kafri 

(University of Toronto). FUCCI plasmids include mKO2-hCdt1, a monomeric fast-folding variant 

of Kusabira Orange fused to amino acids 30 – 120 of human Cdt1, and mAG-hGem, a monomeric 

version of Azami green fused to amino acids 1 – 100 of human Geminin74. MCF-7 cells were also 

transiently transfected with FUCCI mKO2-hCdt1 and mAG-hGem expression plasmids using the 

BacMam system (Fisher). We cultured MCF-7 cells in EMEM supplemented with 10% fetal 

bovine serum (FBS, Omega Scientific) and 10 mg/L human recombinant insulin (Sigma). BT-474 

cells grew in Hybri-Care Medium (ATCC) reconstituted in cell culture grade water (Fisher) with 

1.5 g/L sodium bicarbonate and 10% FBS (Omega Scientific). MCF-10A cells grew in MEGM 

Bulletkit media (Lonza) with cholera toxin (Sigma-Aldrich) at 100 ng/mL and without 

gentamycin-amphotericin B mix. HeLa cells were cultured in DMEM with 4.5 g/L glucose, L-

glutamine, and sodium pyruvate (Cellgro) along with 1% penicillin streptomycin (Cellgro), 1% Q-

max (Gibco), 1% non-essential amino acids (Gibco), and 10% FBS (Omega Scientific). We 

incubated cells with escalating doses of cytochalasin B (Sigma Aldrich) dissolved in DMSO 

solution or to 0.1% DMSO control, starting 4 h prior to experiments. 

 

Quantitative phase and fluorescence Imaging 
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QPI of MCF-7, BT-474, and HeLa cells was performed as described in Yu et al.75. Fluorescence 

images were obtained with an EM-CCD C9100 camera (Hamamatsu Photonics) and an X-Cite 

Series 120 Q (Lumen Dynamics) source. Image collection occurred every 5 min for 12 h at 14 – 

16 imaging locations containing cells plated with sufficient spacing to enable automated image 

processing and biomass segmentation. 

 

Quantitative phase image analysis 

Image processing was performed using custom MATLAB (MathWorks) scripts. Cells and cell 

clusters were identified and segmented using a local adaptive threshold based on Otsu’s method39, 

76 and particle tracking code based on Grier et al.50, 77. Compensation for translational motion was 

done by finding the maximum two-dimensional cross correlation of each cell or cell cluster image 

against the immediately prior image. Manual detection of interphase, mitotic, and cell division 

boundaries was by visual inspection of image frames containing cells whose mean phase-shift 

increased, followed by splitting into two daughter cells then a decrease in mean phase-shift. 

Automated detection of an interphase-mitotic event boundary was by pattern matching biomass 

distribution images with a mitotic filter consisting of a one-dimensional sigmoid filter in time78 

and a two-dimensional disk filter of diameter 5 pixels in space. A mitotic filter value threshold of 

0.6 A.U. for MCF-7, BT-474, and HeLa cells was chosen to maximize the true positive and 

minimize the false positive rates for entry into mitosis by validation with manual detection and 

fluorescence data. 

 

AFM 



38 
 

AFM experiments were performed on a Bioscope Resolve BioAFM using a MLCT D triangular 

probe tip at 37°C (Bruker). Spring constants of cantilever tips measured 0.03-0.08 N/m and were 

calibrated with nanoscope measurement acquisition software (Bruker). Samples were incubated in 

media containing 0.1% DMSO or escalating doses of cytochalasin B for 4 h prior to the experiment 

with an additional 30 min of system equilibration with the cantilever submerged. The cantilever 

was calibrated using Nanoscope measurement acquisition software (Bruker). We analyzed force 

curves by finding the slope of the linear region of the curve measured during cantilever retraction 

of interphase cells in order to eliminate artifacts from pushing cells against the culture plate. This 

corresponded to the region from 20% to 80% of the maximum applied force on the cell (Fig. S7). 

Viscosity measurements were extracted from force curve data by calculating the area between the 

extended and retraction force curves as performed in Rebelo et al.23 (Fig. S7, shaded region). 

 

Biomass accumulation rate calculation 

Quantitative phase biomass distribution images were summed over the projected area of each cell 

cluster to obtain the total biomass per cluster at specified time points. We calculated exponential 

biomass accumulation rates by taking the logarithm of the biomass over time data and fitting to a 

first order polynomial equation using MATLAB Polyfit (MathWorks). 

 

EMT 

One day before EMT induction, MCF-10A cells were placed in standard 6-well culture plates. 

Recombinant human TGF-β1 (Sigma-Aldrich) was added to the culture media at 5 ng/mL to 

induce EMT. Alternatively, the TGF-β receptor inhibitor SB-431542 (Sigma-Aldrich) was added 

to the culture media at 10 μM final concentration to enforce an epithelial phenotype on MCF-10A 
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cells. Cell exposure to these conditions for 7 d ensured full effects46. Cells re-plated for imaging 

or Western blot studies were cultured with no additives, 5 ng/mL TGF-β1, 10 μM SB-431532, or 

both agents together. We incubated cells with or without additives for 2 d before imaging or 

Western blot. 

 

Western blot 

MCF-10A cells were harvested and lysed in 2 mL of ice cold sample buffer containing 7 mL of 

0.5 Tris-HCl (Sigma-Aldrich), 3 mL glycerol (Sigma-Aldrich), and 1 g of sodium dodecyl sulfate 

(SDS) (Sigma-Aldrich) mixed with 1.2 mg of bromophenol blue (Sigma-Aldrich). 30 ug of protein 

lysates with 3 μL β-mercaptoethanol (Sigma-Aldrich) were loaded on a 10% polyacrylamide gel 

(Sigma-Aldrich), electrophoresed, and then transferred to a nitrocellulose membrane (Fisher). 

Membranes were incubated overnight with primary antibodies against β-actin (Sigma-Aldrich, 

A2066), E-cadherin (Cell Signaling Technology, 14472s), β-tubulin (R&D Systems, MAB1195), 

or vimentin (Cell Signaling Technology, 5741s). This was followed by incubation for 2 h with a 

secondary antibody solution containing Li-Cor TBS blocking solution (Li-Cor) and either IRDye 

800CW goat anti-rabbit (Li-Cor, 926-32211) and IRDye 680RD donkey anti-mouse (Li-Cor, 926-

68072) or IRDye 800CW goat anti-mouse (Li-Cor, 926-68070) or IRDye 680RD donkey anti-

rabbit (Li-Cor, 926-32214) antibodies and then imaging on a Li-Cor Odyssey FC (Li-Cor). Protein 

abundance was normalized to either β-tubulin or β-actin for quantification of western blot data. 

 

Statistical analysis 

Statistical analyses were performed using two-tailed Student’s t-test with unequal variances and 

sample size (Welch’s t-test).  
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Autocovariance calculation from quantitative phase data 

To measure the similarity of quantitative phase data over time we used an unbiased estimate of 

autocovariance79 of the phase-shift signal, which is an autocorrelation of the mean subtracted data. 

We normalized the temporal autocovariance to the number of data points used in each 

autocovariance window, referenced to the end of the time shift window (t0), and defined as: 
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where x and y are position after removing rigid translational motion of the cell cluster, t0 is the 

initial time or time of the first position in the time window, ϕ is phase shift, N is the number of 

data points used to calculate the signal, w is the number of images, Δt is time between 

measurements, and τ is time shift. The autocovariance was then averaged over a cell or cell cluster 

area as: 
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where A is the area of a cell or cell cluster in pixels. We also took the average of the autocovariance 

through time for all times corresponding to interphase cells, 
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where n is the number of different end time points. 

 

Predicted autocovariance of cell biomass distributions 
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Using biomass as a tracer for displacement and translating this equation into autocovariance space 

yields:  
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If we assume the observed damped oscillations are due to a series, harmonic a and b can be written 

as: 
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where k is the effective spring constant of the cell felt by the particle over the measurement period, 

μ is the effective damping coefficient from the viscous forces of the cell felt by the particle, and

m  is the average biomass of particles in our system. Assuming that the system is ergodic,  

   (7) 

the autocovariance equation then reduces to: 

 
, ,

( ) exp(( )( ))
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This means that effective stiffness can be described as: 

 2 2k a b
m

= +   (9) 

and the effective viscosity can be found from dividing equation (9) by equation (5). Relaxation 

time trelax was calculated as: 
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where Δt is the time interval between measurements. 
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SUPPLEMENTARY DERIVATION 

 

 

Summary: 

We provide a derivation for how quantitative phase rheology (QPR) generates effective cell 

stiffness and viscosity using the autovariance of quantitative phase imaging (QPI) data. To do this, 

we establish a basic definition of the autovariance function and a basic equation that extracts 

stiffness and viscosity from dry mass, or non-aqueous biomass, displacement. We combine this 

definition and equation with QPI data to extract stiffness and viscosity regimes from the 

autovariance function. 
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Autocovariance 

To measure the similarity of quantitative phase data over time we used an unbiased estimate of 

autocovariance1 of the phase-shift signal, which is an autocorrelation of the mean subtracted data. 

We normalized the temporal autocovariance to the number of data points used in each 

autocovariance window, referenced to the end of the time shift window (t0), and defined as: 
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Where x and y are positions after removing rigid translational motion of a cell cluster, t0 is the 

time, ϕ is phase-shift, N is the number of data points used to calculate the signal, w is the number 

of images, Δt is time between measurements, and τ is time lag. The autocovariance was then 

averaged over a cell or cell cluster area as: 

 0 0,
all ,  in 

1( , ) ( , , , )
x y

x y A
C t C x y t

A
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where A is the area of a cell or cell cluster in imaging pixels. We also took the average of the 

autocovariance through time for all times corresponding to cells in interphase of the cell cycle, 

 
0
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1( ) ( , )
x y t x y

t
C C t
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where n is the number of different end time points. 

 

Two-parameter 

We treat the cellular structures imaged by quantitative phase as particles immersed in a Maxwell 

liquid (Fig. 1A). Therefore, these structures feel the effect of a spring damper system in series 

described as the following system of equations: 
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2

2
2 ( )totd X dXm f t

dt dt
µ= − +   (S14) 

 2
1
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µ=   (S15) 

 1 2totX X X= +   (S16) 

where k is the long term effective spring constant of the cell felt by a particle, μ is the effective 

damping coefficient from the viscous forces of the cell felt by a particle, f(t) is the applied impulse 

force, X1 is the elastic displacement, X2 is the viscous displacement, Xtot is the total displacement 

of the biomass, and m  is the average biomass of particles in the system. We observe long 

timescales that are much greater than the average relaxation times of a cell (Fig. S3), so the long 

timescale effects dominate and the active force can be considered as applied nearly 

instantaneously. Rearranging equation (S4) in terms of only the elastic displacement X1 or only 

the viscous displacement X2 yields the following differential equations: 

 
2

1 1
12

k md X dXm kX
dt dtµ

= − −   (S17) 
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Assuming that the total displacement Xtot contributes to the majority of biomass rearrangement and 

oscillation, we integrate eq (S8) over time, add it to eq (S7), and rearrange this equation of a 

damper spring system in series to obtain an inhomogeneous ordinary differential equation (ODE) 

for the total displacement: 
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where c1 could be seen as a buildup of stress from past deformation or a memory function. Solving 

for the general solution of equation (S9) gives a homogenous component and a particular solution 

by the method of undetermined coefficients: 
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where Xtot,0 is the initial displacement and Xtot,rest is the long term resting displacement of our 

system. Because the relaxation timescale (Fig. S3) is over an order of magnitude lower than the 

period of measurement, the active force can be modeled as an instantaneous displacement 

represented as a delta function, δ, at some time, tj, not equal to zero. Solution of this spring damper 

system without this active force yields: 
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With each individual impulse the displacement from the active force can be modeled as: 
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where tj is the time of each impulse displacement. Assuming a linear viscoelastic material, the total 

displacement in time can be represented as the superposition of the various impulse displacements 

from the active forces, which then simplifies to: 
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where T is the period of observation. We then establish the relationship between biomass and 

displacement of biomass by: 

   (S25) 

where M is biomass as a function of position x and time t, and v is velocity as a function of x and 

t. We assume that the main contribution to the partial derivative of biomass with time is due to 

growth and since our measurement occurs over a short time interval, growth is negligible, 

therefore: 

  . (S26) 

We further assume that the cell velocity, v, and biomass, M, fields are isotropic with no dependence 

on direction. Averaging over θ in polar coordinates yields: 
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Assuming that this change in biomass over radial distance is small compared to the total biomass 

over a radial distance r we obtain: 
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Averaging over a radial distance and assuming that velocity, v, radial position, r, and biomass, M, 

do not correlate over the radial distance because the system is isotropic we obtain: 
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Assuming this system is ergodic, the local spatial average of biomass is equal to the temporal 

average biomass, which is constant with respect to time, and therefore the average biomass over 

radial distance term is only a function of r, which we call κ(r): 

 ,
( )( )( ) r

M trr
r r

θγκ ≡ ≈   (S30) 

where γ(r) is the local spatial average of the biomass, which is constant over time and is therefore 

only a function of radial position: 
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Since κ is independent of time, we can integrate and obtain: 
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Thus, the ratio of biomass over initial biomass is equivalent to the displacement over initial 

displacement: 
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The biomass for a particular area is directly proportional to the phase-shift2-5: 

   (S34) 

where ϕ is phase-shift, and α is the specific refractive index, which is determined experimentally. 

Therefore, phase-shift data, ϕ, obtained via QPI can be used to obtain information about the 

displacement of cell biomass over time. 

 

Predicted autocovariance of cell biomass distributions 
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Using biomass as a tracer for displacement and translating this equation into autocovariance space 

yields:  
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where a and b are described in terms of coefficients as: 
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where w, τ, ϕ, and Δt are the same as in eq (S12), the average autocovariance function is the same 

as in eq (S3), and a and b are the coefficients described in eq (S26) and (S27). Assuming that the 

system is ergodic:  

   (S38) 

   (S39) 

where  

  . (S40) 

The autocovariance equation then reduces to: 
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This means that the fitting parameter, a, describes the effective damping particles encounter within 

the cell, whereas the effective stiffness is described as: 

 2 2k a b
m

= + . (S42) 

Relaxation time, τrelax, was calculated as: 

 1
2relax t

a
τ = ∆   (S43) 

where Δt is the time interval between measurements. 
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SUPPLEMENTARY FIGURES 
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FIGURE S1 Cell division induces large mass fluctuations affecting QPR stiffness and viscosity 

measurements. (a, c, e, g) QPI of MCF-7 colonies before each mitosis plotted as 4 decorrelation 

rate peaks in (i). (b, c, f, h) QPI of MCF-7 colonies after each mitosis corresponding to the period 

after each trough in (i). (i) Time course of QPR stiffness measurement for MCF-7 cell colony in 

(a-h) with 4 cell divisions during 24 h of QPI. (j) Time course of QPR viscosity measurement for 

MCF-7 cell colony in (a-h) with 4 cell divisions over 24 h of QPI. 
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FIGURE S2 Assessment of cell division by fluorescence and QPI to remove mitotic events. (a) 

QPI of MCF-7 cells. (b) Filtered image of the same MCF-7 cells in (b) used to identify mitosis 

and cell division. The filter kernel consists of a sigmoid function in time and a disk in space to 

mimic and highlight round cells with a large phase shift in mitosis. (c) Simultaneous fluorescence 

image of MCF-7 cells in (b and c) expressing FUCCI fluorescence ubiquitination cell cycle 

indicator plasmids mKO2-hCdt1 and mAG-hGem. (d) ROC curves for detecting MCF-7 mitosis 
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and cell division events using the computational filter versus fluorescence in 0 and 10 μM 

concentrations of cytochalasin B. 

 

FIGURE S3 The average autocovariance of compliant (aka softer) cells decays more rapidly  

than for stiffer cells. (a) Individual and population averaged autocovariance curves for all 0 (R2 = 

0.99±0.01) and 5 μM (R2 = 0.99±0.01) cytochalasin B treated MCF-7 cells analyzed. (b) Individual 

and population averaged autocovariance curves for 0 (R2 = 0.98±0.01) and 5 μM (R2 = 0.99±0.01) 
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cytochalasin B treated HeLa, and (c) 0 (R2 = 0.98±0.01) and 5 μM (R2 = 0.99±0.01) cytochalasin 

B treated BT-474 cells. Error bars represent SEM. 

 

 

 

FIGURE S4 Interphase relaxation time calculated from QPR measurements are similar for 

multiple cell types and drug concentrations. Cells exposed to a range of cytochalasin B doses 

mainly display similar relaxation times despite changes in stiffness and viscosity. QPR samples 

were collected at 0 μM (n=12), 1.25 μM (n=20), 2.5 μM (n=14), and 5 μM (n=25) for HeLa, at 0 

μM (n=31), 1.25 μM (n=11), 2.5 μM (n=22), and 5 μM (n=34) for MCF-7, and at 0 μM (n=51) 

and 5 μM (n=31) for BT-474 cells. Error bars represent SEM.  
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FIGURE S5 QPR predictions for viscosity using a Kelvin-Voight model show reduced 

correlation with AFM data relative to a Maxwell material model (Fig. 4b, R2 = 0.89). QPR samples 

were collected at 0 μM (n=12), 1.25 μM (n=20), 2.5 μM (n=14), and 5 μM (n=25) for HeLa, at 0 

μM (n=31), 1.25 μM (n=11), 2.5 μM (n=22), and 5 μM (n=34) for MCF-7, and at 0 μM (n=51) 

and 5 μM (n=31) for BT-474 cells. Error bars represent SEM.  
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FIGURE S6 Effective viscoelastic modulus of MCF-7 cells at different measurement 

frequencies remains constant at an imaging rate under 15 minutes per frame. (a) Effective stiffness 

divided by effective stiffness at 5 minutes per frame for a range of QPI measurement frequencies. 

(b) Effective viscosity divided by effective viscosity at 5 minutes per frame for a range of QPI 

measurement frequencies. Blue represents the population average for analysis of MCF7 cells. A 

select MCF7 cluster was imaged at higher frequency and is shown in red. Error bars represent 

SEM. 
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FIGURE S7 Representative AFM stiffness and viscosity measured using best fit of the retraction 

force curve and area difference between retraction and extend force curve. Data used for effective 

stiffness from AFM consists of the force data between 20% and 80% of maximum force signal, 

while viscosity measurements used data over 1 μm distance from contact with cell. 
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SUPPLEMENTARY UNPROCESSED WESTERN BLOTS 

 

Western blot 1: Unprocessed immunoblot for E-cadherin (green) and β-actin (red) corresponding 

to Figure 5B. 
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Western blot 2: Unprocessed immunoblot for vimentin (green) and β-tubulin (red) corresponding 

to Figure 5B. 
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Chapter 3. Quantifying biomechanical work in proliferating cancer cells 
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Introduction 

Cell energetics is important because of links to metabolism 1, maintenance of membrane 

potential 2, transport 3, and biosynthesis 4. Despite its importance to the cell, it still remains 

insufficiently understood how energy is allocated into motion and mechanical processes versus 

biosynthesis and growth. The shuffling of energy via motion and mass production through the 

different spatial regime is of particular interest as cell lines have varying rates of motion and 

biosynthesis and thus may dissipate 5 or transfer motion into larger length scales 6 at different rates. 

 

Common methods to study cellular energetics measure chemical potential energy as ATP level 

quantified with a luciferase assay 7 or fluorescence 8, or measure metabolic rate, for example, by 

measuring cellular oxygen consumption 9 or lactic acid production 10. Viscous dissipation of 

energy which occurs due to cell deformation during cell spreading has been studied using a 

combination of fluorescence microscopy with comparison to a simplified computational model of 

the cell 11. This study suggests that model of the cell as a viscous material can capture the 

dissipation of mechanical energy which occurs during changes in cell morphology. However, 

application of this method to study is limited by the need to create a suitable computational model 

and by the introduction of fluorescent labels that may affect cell behavior 12. 

 

One solution is to use quantitative phase imaging (QPI) to measure time-dependent biomass 

distributions in cell clusters and compare these measurements to model predictions for the scaling 

of mass distribution fluctuations with spatial frequency. QPI is an imaging modality that quantifies 

the phase shift of light as it passes through and interacts with cell biomass 13. Using an appropriate 

cellular average for the linear relationship between density and refractive index, the phase shift of 
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light throughout the cell then becomes proportional to its biomass 14, 15  resulting in an image of 

the cell dry mass distribution 16. Previous biological applications of QPI include the measurement 

of cell growth 17 and death 18, membrane mechanical properties 19, cluster-scale mass motion 16, 

and bulk diffusion and advection within cells 20. 

 

To address the need for non-invasive quantification of mechanical energy usage we assume that 

the majority of mechanical energy is dissipated at low length scales due to the highly viscous 

environment inside a cell 11. We then extract the dissipation energy, or energy lost from motion in 

a viscous environment, from QPI data through a kinematic energy conservation analysis. We also 

examine how the energetic makeup of ATP production by cellular respiration and glycolysis from 

various cell lines alters the amount of energy spent in motion versus biosynthesis and the relative 

energetic efficiency of cell motion in cell clusters of varying size. 

 

Results 

Derivation of cellular work from QPI 

Quantitative phase imaging can capture both the biochemical aspect of cellular work as 

quantified via net biomass accumulation (Fig. 1A) as well as the biomechanical portion captured 

in cellular motion (Fig. 1B). Values of net biomass accumulation grants information on the 

magnitude of biosynthesis processes between different cell lines (Fig. 1A) while cellular motion 

(Fig. 1B) gives us an idea on how much line might be focusing on motion. However, to compare 

how cells allocate their work to either biosynthesis or motion we must first have to develop a 

model to compare the two on the same magnitude. 
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We do this by first assuming that our change in energy is directly related to cellular biomass 

changes. Total energy of cell we assume is either stored biological represented as mass density 

(ρ*) times the enthalpy per unit of biomass (h) or kinetically as ½ ρ*v2. To track this change in 

cellular energy we use a quantitative phase microscopy setup as depicted here (Fig. 1C). Assuming 

spatial isotropy, an isothermal system, and low influence of intracellular pressure gradients, the 

conservation of energy within a cell cluster in 2-dimensions is described by the following equation: 

 
*2

* * * * * * * *
* ( ( ))

2
D vh f v v kh

Dt
ρ + = ρ ⋅ +∇ τ + ρ





  (44) 

where ρ*, h, v*, ƒ*, τ*, k, t*, and ∇* represent the biomass density, enthalpy per mass, velocity, 

body forces, shear stress, localized mass accumulation rate, time, and spatial gradient respectively. 

We then assume that viscous forces dominate inertial forces and that the chemical potential energy 

dominates over kinetic energy within a cell. Therefore when we nondimensionalize Eq (1) we 

obtain: 

 ( ) ( )02ρ 2  motora LTv f v v v kT
t

ρρχ ρ χ ρ
µ

∂ + ⋅∇ = ⋅ + ∇ ∇⊗ − ∂ 



 

  (45) 

Where χ is the ratio of a Reynolds number over an Eckert number. Dividing through by chi gives 

an equation (Fig. 1D) that relates the mass density (Fig. 1E), change in mass density (Fig. 1F), and 

advection of mass (Fig. 1G) directly to the energy dissipation of the cell. With a spatial Fourier 

transform our nondimensionalized energy conservation (Fig. 1D) becomes a quadratic equation 

with the second order term corresponding to energy dissipation. 

 ( ) ( ) ( ) ( )( )
2

20 22{ ρ } { }motora LTF v G q F f v kT q q
t

ωρρ η
µχ χ

 ∂
+ ⋅∇ = = ⋅ − + ∂  



    (46) 

The fitting terms in our model which can be grouped together as either the terms that relate the 

PSD (power spectral density) of mass distribution to the PSD of mass change which we call 
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coefficient of mass change (α) and parameter fitting the quadratic which we call the dissipation 

(β): 

 ( ) ( ) 2G q q qα η β= +   (47) 

  When this model is fitted to single cluster data like for a MCF-7 cluster (Fig. 1H) we obtain 

a very strong fitting (R^2 > 0.9) for this cluster with the population averaged fit of the entire cell 

line (Fig. 1I) having a similarly strong modeling (R^2 = 0.91). A reason why population fitting 

maybe preferred can be seen in clusters of other cell lines that are not as well modeled (R^2 < 0.5) 

by our derivation (Sup Fig. 1A). However, when we aggregate and average over many single 

cluster data together for a population averaged fit, our fitting better match the data the more we 

aggregate (Sup Fig. 1B-E) with the population sample having strongest fit (R^2 > 0.9) and having 

the most consistent parameters from fitting (Sup Fig. 1H). This held true for the various other cell 

lines we imaged including other breast cancer cell line like BT-474 (Fig. 2A), an embryonic kidney 

line HEK-293 (Fig. 2B), and an osteosarcoma line 143-BTK (Fig. 2C) along with its’ various 

mitochondria mutant lines (Fig. 2D-F). With the strongest population averaged fit for the model 

being the BT-474 (Fig. 2A) with a R^2 of 0.96 and even the worse fitting cell line being 143 rho0 

line (Fig. 2E) showing a relatively acceptable fitting (R^2 = 0.68).  
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FIGURE 1 Quantitative phase imaging captures both biochemical and biomechanical 

information allowing a model of cellular work. QPI captures information on biosynthesis measured 

as the exponential constant of the mass accumulation rate (a) and motion measured as root mean 

square displacement (b) for wide variety of cell types (BT474, MCF7, HEK293, and 143BTK) 

and mitochondrial mutants of the 143 line (MeLas, delta cytochrome B, rho0). This data from 

captured from any (c) QPI setup could be used to model cellular work outlined from a (d) work 

balance equation. This derivation requires QPI information on (e) mass distribution, (f) mass 

change, and (g) advection of mass. The resulting fit in Fourier space for (h) a single MCF-7 and 

for an (i) entire population describes over 90% of the data. 
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FIGURE 2 Model of cellular work consistent across different cellular lines and mitochondrial 

mutants. By using the Fourier transform of the mass distribution and mass change QPI data for 

various different cell line like (a) HEK-293, (b) BT-474, (c) 143-BTK, and different mitochondrial 
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mutants like (d) 143 delta cytochrome B, (e) 143 rho0, and (f) 143 MeLas we obtain various good 

(R^2 > 0.65) population fit to our model. 

 

Correlation of QPI and metabolic properties 

 We validated the fitting terms in our model by correlating the various terms to other QPI 

properties along with cellular energetics properties (Fig. 3). The energetic properties were the rate 

of glycolysis and cellular respiration measured as either extra cellular acidification rate (ECAR) 

(Sup Fig. 2a) or oxygen consumption rate (OCR) (Sup Fig. 2b) along with a general net ATP 

production quantity calculated from the combination of using both measurements 21. We found as 

expected that there was strong correlation between ECAR and ATP production normalized per pg 

with normalized growth (R = 0.83, R= 0.91), explained by glutamate production via glycolysis 

being a driver behind protein synthesis 22, 23, and motion (R = 0.60, R = 0.64) across all cell lines 

implying more energetically active cells spent more energy both in motion and biosynthesis. Some 

expected negative correlation we observed were between OCR and ECAR (R = -0.86) as well as 

the negative correlation between mean single cell mass and normalized mass accumulation (R= -

0.80). Correlation of our fitting terms showed that there was a strong correlation between 

magnitude of dissipation (β) with RMSD (R= 0.96), mass fluctuations (R= 0.86), and normalized 

growth (R= 0.82). Similarly, there was a strong correlation between single cluster coefficient of 

mass change (alpha) to the various mass fluctuations properties of RMSD (R= 0.52), mass 

fluctuations (R= 0.82), and normalized growth (R= 0.46). Showing that there was a strong overlap 

between our properties of dissipation and coefficient of mass change and disambiguation of terms 

were needed. 



79 
 

 

FIGURE 3 Correlation of experimental fitting parameters to traditional QPI and metabolic 

measurements. Correlation plot of the various traditional QPI parameters of mass accumulation, 

motion, and mass on both single cell and cluster scale along with metabolic information of cellular 

respiration (OCR), glycolysis (ECAR), and calculated ATP production generated from OCR and 

ECAR compared to novel QPI cellular work fitting parameters on both the cell cluster and 

population level. 

 

Validation of QPI cellular work properties 

In order to dissect the functional difference between the two terms of dissipation and 

coefficient of mass change we first examined the foundation of our dissipation term. This 
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dissipation term is supposed to be the energy dissipation via motion (Fig. 4A) and should therefore 

change if there was more mass motion or specifically more uncoordinated mass motion. We 

therefore modulated both amount of mass motion along with the cellular coordination of motion 

by examining the epithelial to meschenymal transition system in MCF-10A breast cancer cells 

where well-coordinated in the epithelial state (Fig. 4B) should expend less energy through motion 

than meschenymal cells (Fig. 4C) that are less coordinated. We find that while there was no 

significant difference in mass change coefficient (Fig. 4D) between the two states there was a 

significant difference (p < 0.05) in their dissipation (Fig. 4E). Another experimental setup were 

we increased the mass fluctuations but did not induce the same discoordination in motion but 

instead had net change mass accumulation was in a MCF-7 cytochalasin B treated system. Here 

we observed a significant change in coefficient of mass change (p < 0.05) (Fig. 4F) but not in 

dissipation (Fig. 4G) showing that there are different underlying mechanisms behind our two 

terms. Although there is still a strong correlation (R^2 = 0.71) between our dissipation term and 

cellular mass motion across the different cell lines (Fig. 4H) which makes sense since our 

dissipation is supposedly the energy dissipation via motion. 
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FIGURE 4 Dissipation and coefficient of mass change are effected by different perturbations. 

(a) Dissipation of energy term from cellular work derivation can be distinguished from mass 

change coefficient via changing cell state as seen in the QPI images (b) MCF-10A transition with 

(c) tgf-beta treatment. Resulting in a nonsignificant change in (d) mass change coefficient but 

significant change in (e) dissipation. This is in contrast to the significant change in (f) mass change 

coefficient and not significant change in (g) dissipation from MCF-7 cell treatment with 

cytoskeletal disrupting agent cytochalasin B. Validating the theory that the dissipation term is the 

dissipation of energy via motion further evidenced in (h) the plot of population average dissipation 

vs average normalized mass change. 

 

 We next moved on to examining the mass change coefficient which in our derivation is 

comprised of two components biosynthesis and active transport (Fig. 5A). We attempted to isolate 

the active transport component via addition of the mass change coefficient (α) with the 

biosynthesis term (kT) obtaining (α+kT) which should be a measure of the active transport. We 

checked our assumption plotting the active transport component (α+kT) to the motion across all 

our different cell lines and conditions (Fig. 5B) and an exceptional strong correlation (R^2 > 0.9) 

between the two matching our theory. We then examined what portion of the biosynthesis term 

(kT) vs the active transport term (α+kT) comprised the majority of the cellular work in our various 

cell lines by dividing each net total work from both term (Fig. 5C). We found across the board that 

all the different cell lines spent at least 55% of their total work on motion with HEK293 line 

spending the most at nearly 80%. Cell lines that spent the most on biosynthesis were two of the 

mitochondrial mutants of the 143 lines spent nearly 42-43% of the work on building mass which 

was significantly higher than their parent line, which we would expect due to increased 
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glycolysis23. Another expected trend was seen in the transduced tgf-beta MCF-10A lines spending 

seemingly more of their work on motion compared to the epithelial line. All this shows that we 

were able to make comparisons of cellular work from biosynthesis and motion from our derivation. 

 

FIGURE 5 Separation and quantification of cellular work for biosynthesis and motion. (a) 

Mass change coefficient term is described by a biosynthesis and transport portion. (b) Transport 

portion of the mass change coefficient term is strongly related to motion across all cell lines. Once 

separated we compared the (c) percentage of cellular work being used for transport or biosynthesis 

across the cell lines HEK-293, BT-474, 143-BTK, MCF-10 A, different mitochondrial mutants 

143 delta cytochrome B, 143 rho0, 143 MeLas, and tgf-beta treated MCF-10A. 

 

Discussion 
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 Many of our assumptions made to simplify the derivation like viscous forces dominating 

over inertial forces or that the chemical potential energy dominates over kinetic energy within a 

cell can be validated by literature on the of fluid dynamics within a cell, as seen viscous forces 

being dominate24, or be can be seen in models of cytoskeletal networks for chemical potential 

energy being king25. Other assumptions like the spatial isotropy of mass can be seen as the reason 

why the population average fitting better matched the model (Fig. 2) than single cluster (Sup Fig. 

1) given that any single cluster would be anisotropic given that individual cells have polarity26 and 

can have preference for motion given an orientation27. This anisotropy of single cluster could be 

drowned out by the averaging over many clusters over an entire population which would start to 

approach our spatial isotropic assumption seen in our data resulting in better fits (Sup Fig. 1). This 

averaging over many clusters over many different points in time could also be the reason why 

other assumptions like intrinsic viscosity and enthalpy per unit mass become valid since they start 

to approach the average viscosity and enthalpy per unit mass of the cell line. Although removing 

certain assumptions may result in a better fit it would also result in a much more complicated 

model than our relative simplistic model that we have right now which already fits majority of our 

population experimental data (Fig. 1) and allows us to extract information on dissipation and work 

being done by the cell via the coefficient of mass change. 

 

 The one notable cell line that did not fit our model (Fig. 2) as well as the others was the 

143 rho0 mutant line. It fitted the worst out of all cell line and conditions to our model which may 

be due to its’ mitochondria deficiency when compared to the other lines. Even the other 

mitochondria mutants that did not have working mitochondria still had more mitoDNA intact than 

the 143 rho0 which may play some part in signaling the cell’s physiological energetic response. 



85 
 

Or it could also be because that mutant line tended to also not like to aggregate resulting in the 

same breakdown of the model due to being more single cell as we outlined above. 

 

 The correlation of various QPI and metabolic parameters to our two new parameters of 

dissipation and coefficient of mass change (Fig. 3) results in certain relationships that we expect 

from theory. The strong connection between dissipation and coefficient of mass change with the 

different units of mass fluctuations and motion was to be expected given that both of the model 

terms were somewhat connected to motion. The interlinking between mass fluctuation and mass 

accumulation could also be explained given the need of cells to traffic more mass around as it 

underwent more biosynthesis. The relationship between metabolic properties of glycolysis with 

biosynthesis is well explained via glutamate production via glycolysis being a driver behind 

protein synthesis (ref) and served as check that we could indeed identify known biological 

relationship with QPI. 

 

 An explanation on why there was a significant change in mass change coefficient for 

cytochalasin B treatment but not dissipation for the MCF-7 cell line (Fig. 4) can be seen in the 

dual effect on structure and biosynthesis by cytochalasin B. The cytochalasin B treatment had 

significant detrimental effect on mass accumulation while as increasing the mass fluctuation in the 

cells due to disrupting the cytoskeletal network and lowering resistance to motion there. This 

decreases in biosynthesis and increase in fluctuations leads directly to the increases in mass change 

coefficient as described in our model while the negligible change in dissipation could be due to 

the loss of resistance to motion from the structural changes from cytochalasin B (ref). This is in 

direct contrast to the tgf-beta treatment of MCF-10A which saw no significant change in mass 
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accumulation but increases in mass motion and movement disorder resulting in the significant 

change in dissipation while not coefficient of mass change (Fig. 4). 

 

 The final breakdown of how cells spend their energy or cellular work (Fig. 5) showed that 

majority of work was spent in motion. It also showed that increasing glycolytic processes enough 

to significantly shift the percentage of work being used in biosynthesis as seen in the 143 mutant 

mitochondrial lines compared to the parent line. It was also possible that biological transition like 

EMT could induce a shift in cellular work in the opposite direction with the meschenymal tgf-beta 

treated cells using more cellular work on motion than the normal epithelial MCF-10A which can 

be explained in the biological shifting of priorities attributed to EMT28. Overall our derivation 

allows a simple process to use QPI data to compare and contrast the cellular work in terms of 

biochemical and biomechanical processes. 

 

Methods 

Cells and cell culture 

MCF-7 and BT-474 human invasive ductal breast adenocarcinoma, HEK293 human embryo 

kidney, 143-BTK osteosarcoma, and MCF-10A immortalized human breast epithelial cells were 

purchased from the American Type Culture Collection (ATCC). 143 rho0 cells were generated 

from 143-BTK parent using DDC treatment and checked using uridine selection. 143-BTK MeLas 

mutant and 143BTK delta cytochrome B mutant were generated via method described by 

Patananan et al.29 . MCF-7 cells were cultured in EMEM supplemented with 10% fetal bovine 

serum (FBS, Omega Scientific) and 10 mg/L human recombinant insulin (Sigma). BT-474 cells 

were grown in Hybri-Care Medium (ATCC) reconstituted in cell culture grade water (Fisher) with 
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1.5 g/L sodium bicarbonate and 10% FBS (Omega Scientific). MCF-10A cells grew in MEGM 

Bulletkit media (Lonza) with cholera toxin (Sigma-Aldrich) at 100 ng/mL and without 

gentamycin-amphotericin B mix. HEK293 were cultured in DMEM with 4.5 g/L glucose, L-

glutamine, and sodium pyruvate (Cellgro) along with 1% penicillin streptomycin (Cellgro), 1% Q-

max (Gibco), 1% non-essential amino acids (Gibco), and 10% FBS (Omega Scientific). 143-BTK 

parent, 143-BTK MeLas mutant, 143BTK delta cytochrome B mutant, and 143 rho0 cells were 

grown in the same media supplemented with 0.05 mg/mL uridine. We incubated cells with 

escalating doses of cytochalasin B (Sigma Aldrich) dissolved in DMSO solution or to 0.1% DMSO 

control, starting 4 h prior to experiments. 

 

Quantitative phase imaging 

Imaging of all cell lines were performed as described in Nguyen et al.30. Images were collected 

once every 10 min for 48 h over 20 – 30 imaging locations with sufficient spacing between cells 

to enable automated image processing and segmentation. 

 

Quantitative phase image analysis 

Image processing was performed using custom MATLAB (MathWorks) scripts. Cells and cell 

clusters were identified and segmented using a local adaptive threshold based on Otsu’s method31, 

32 and particle tracking code based on Grier et al.33, 34. Compensation for translational motion was 

done by finding the maximum two-dimensional cross correlation of each cell or cell cluster image 

against the immediately prior image.  

 

Biomass accumulation rate calculation 
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Quantitative phase biomass distribution images were summed over the projected area of each cell 

cluster to obtain the total biomass per cluster at specified time points. We calculated exponential 

biomass accumulation rates by taking the logarithm of the biomass over time data and fitting to a 

first order polynomial equation using MATLAB Polyfit (MathWorks). 

 

EMT 

MCF-10A cells were placed in standard 6-well culture plates and applied with recombinant human 

TGF-β1 (Sigma-Aldrich) to the culture media at 5 ng/mL one day after to induce EMT. 

Alternatively, the TGF-β receptor inhibitor SB-431542 (Sigma-Aldrich) was added to the culture 

media at 10 μM final concentration to enforce an epithelial phenotype on MCF-10A cells. Cell 

exposure to these conditions for 7 d ensured full effects35. Cells re-plated for imaging were cultured 

with no additives, 5 ng/mL TGF-β1, 10 μM SB-431532, or both agents together. We incubated 

cells with or without additives for 2 d before imaging. 

 

Statistical analysis 

Statistical analyses used two-tailed Student’s t-test with unequal variances and sample size 

(Welch’s t-test).  

 

 

Mitochondrial Oxygen Consumption (OCR) and Extracellular Acidification Rate (ECAR) 

Measurements 

OCR and ECAR was measured using a Seahorse XF96 Extracellular Flux Analyzer (Agilent). For 

all cell lines, 1 – 2 x105 cells per well were seeded onto 2 different V3 96-well plate (Agilent, Cat. 
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# 101085-004) and grown overnight before analysis. A mitochondrial stress test quantified OCR 

at basal respiration and after the sequential addition of mitochondrial inhibitors oligomycin, 

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and rotenone, while a glycolytic 

stress quantified ECAR before addition of glucose, after addition, with the addition of 

mitochondrial inhibitors oligomycin, and when added with 2-deoxyglucose. 

 

RNA Extraction 

All samples were grown in biological triplicates and technical duplicates to 70-80% confluence 

and purified using the RNeasy Mini Kit (Qiagen, Cat. # 74104) and RNase-free DNase (Qiagen, 

Cat. # 79254) following the manufacturer’s protocols. All samples showed a A260/280 ratio > 

1.99 (Nanodrop; Thermo Scientific). Prior to library preparation, quality control of the RNA was 

performed using the Advanced Analytical Technologies Fragment Analyzer (Advanced 

Analytical, Inc.) and analyzed using PROSize 2.0.0.51 software. RNA Quality Numbers (RQNs) 

were computed per sample between 8.1 and 10, indicating intact total RNA per sample prior to 

library preparation. 

 

RNA-Seq Library Preparation 

Strand-specific ribosomal RNA (rRNA) depleted RNA-Seq libraries were prepared from 1 µg of 

total RNA using the KAPA Stranded RNA-Seq Kit with Ribo-Erase (Kapa Biosystems, Roche). 

Briefly, rRNA was depleted from total RNA samples, the remaining RNA was heat fragmented, 

and strand-specific cDNA was synthesized using a first strand random priming and second strand 

dUTP incorporation approach. Fragments were then A-tailed, adapters were ligated, and libraries 

were amplified using high-fidelity PCR. All libraries were prepared in technical duplicates per 
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sample (n = 60 samples, 120 libraries total), and resulting raw sequencing reads merged for 

downstream alignment and analysis. Libraries were paired-end sequenced at 2x150 bp on an 

Illumina NovaSeq 6000.  

 

RNA-Seq Pre-Processing 

All samples were each sequenced in biological triplicates and technical duplicates (n = 30 total 

samples) to account for variation in extraction and culturing. Raw sequencing reads were 

converted into fastq files and filtered for low quality reads and Illumina sequencing adapter 

contamination using bcl2fastq (Illumina). Reads were then quasi-mapped and quantified to the 

Homo sapiens GENCODE 28 (GRCh38.p12, Ensembl 92, April 2018) transcriptome using the 

alignment-free transcript level quantifier Salmon v0.9.1 36-38. A quasi-mapping index was prepared 

using parameters “salmon index -k 31 –type quasi”, and comprehensive transcript level estimates 

were calculated using parameters “salmon quant -l A –seqBias –gcBias --discardOrphansQuasi”. 

Transcript level counts were collapsed to gene level (HGNC) counts, transcripts per million 

abundances (TPM) and estimated lengths using R Bioconductor package tximport v1.6.0 39. 

 

 

Gene Set Variation Analysis (GSVA) 

GSVA on total transcripts was performed using R Bioconductor package GSVA v1.36.2 function 

gsva() with parameters ‘‘method = gsva, abs.ranking = FALSE, min.sz = 10, max.sz = 500, kcdf 

= “Poisson”’’ using a log2(TPM + 1) transformed gene expression matrix (Hanzelmann et al., 

2013) and gene sets were acquired from the KEGG Database. GSVA scores were extracted and 
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correlated with QPM and metabolic data using the R Bioconductor package function corplot() with 

parameters “type = “upper”, sig.level = 0.01, tl.cex = .75, tl.col = “black””.  

 

QPI cellular work calculations 

A diffusion rate of cellular motion was extracted from QPI data using the method described in 

Ceballos et al.40. This diffusion value was then paired with QPI mass distribution images and used 

to simulate the expected motion purely due to diffusion through numerical methods 2nd order 

Runge Kutta. A total mass change image data was calculated by using 3 consecutive QPI mass 

distribution images and finding the rate of change in mass at each pixel using a best fit line for the 

3 consecutive time points. This total mass change image data was subtracted from using the 

simulated diffusion motion to get a calculated mass motion due to advection image. All three 

images composited into new 5x5 (Sup. Fig. 2a) and were Fourier transformed in order to remove 

the effect of the frequency drop off (Sup. Fig. 2b). Frequency was then gated to the actual spatial 

frequencies of the image to remove drop off effect (Sup. Fig. 2c) was then collapsed down using 

polarity coordinates to generate fitting data for equation 4. 
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SUPPLEMENTARY DERIVATION 

Assumptions: 

1. Isothermal 

2. Spatial Isotropy 

3. Low pressure influence ∇P≈0 

4. Average enthalpy per mass is an intrinsic value (e = constant) 

5. Viscosity is an intrinsic value (μ = constant) 

6. Newtonian fluid 

7. Viscous forces dominate over inertial forces 

8. Chemical potential dominates over kinetic potential 

Conservation of Energy 

Basic equations: 

2*
* * * * * *

* ( ) (1)
2V S V S V

vD e dV Q ndS f v dV v dS ke dV
Dt

ρ + = − + ρ + Σ + ρ∫∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫∫
  

  

    

     e enthalpy per mass=  

*  v velocity=  

 Q heat=  

*  f body forces=  

* densityρ =  

 surface forceΣ =  
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Using Gauss theorem convert surface integral in (1) into volume integral 

2*
* * * * * * * *

* ( ) (2)
2V V V V V

vD e dV QdV f v dV v dV ke dV
Dt

ρ + = − ∇ + ρ + ∇ σ + ρ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫
 

    

Since all terms are expressed as volume integral over arbitrary material volume the following true 

for every point in space: 

* * *

2*
* *

*
* ** ( ) (3)

2
vD e

D
Q

t
f v v keρ σ ρ−ρ + +∇ += ∇ +
 

  

 

With Fick’s law of heat conduction 

( )*   4temperatureQ K T= ∇  

Since it is isothermal 

( )* 0  5temperatureT∇ =  

Then Q = 0 

The surface forces can be broken down into a shear and pressure component with pressure being negligible 

from assumption: 

( ) ( )* * * * * * * * * * * * *    0     6v Pv v v vσ τ τ τ∇ =∇ +∇ = +∇ = ∇      

With Plugging (4) and (6) back into (3) 

* *

2

*
*

* * *
*

** ( ) (7)
2

vD e
Dt

f v v keρ τ ρ+∇+ = +ρ
 

 
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Expand the left hand side in (7) 

( )
2**2 * *

* * * * * * *
* *     8

2 2

D vv De f v v ke
Dt Dt
ρ ρ ρ τ ρ

 
+ + = +∇ + 

 

 

   

( )
*2 * * *2

* * * *2 * * * * * * *
* *     9

2 2
v ve v v v f v v ke

t t
ρ ρρ ρ τ ρ

    ∂ ∂
+ + ∇ + + ∇ = +∇ +    ∂ ∂    

   

   

 

Nondimensionalize (9) 

* * * * *
0

1~ ; ~ ; ~ ; ~ ; ~max motor
Lv v t T f a
T L

ρ ρ≡ ∇  

( ) ( )( ) ( )
2 3 2 32

2 2 20 0 0 0 0 0  
2 2 2 2

max max max max maxe e v v v v vvv v v v v v
T t L T t L T t L
ρ ρ ρ ρ ρ ρρ ρρ η η ρ∂ ∂ ∂

+ ∇ + + ∇ + + ∇
∂ ∂ ∂













 

2

0 02 (10)max
motor max

va v f v v ke
L

µ
ρ ρ τ ρ ρ= + ∇ −





   

Divide (10) through by 
3

0

2
maxv
L

ρ
 and consolidate derivatives 

( )
2

2
2 2 2

0

22 ( ) 2  11motor

maxmax max max

a Le D D D v ev f v v kT
Dt Dt Dt v Lv v v
ρ ρ µρ ρ τ ρ

ρ
+ + = + ∇ −





  

Since viscous forces dominate over inertial forces we define our first nondimensional number: 

( )0
1 1 12maxv Lρ
ε

µ
≡   

And chemical potential dominates over kinetic potential we define our second nondimensional 

number: 
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( )
2

2 1 13
2
maxv

e
ε ≡   

 

Rewrite (11) in terms of (12) and (13) 

( )
2

2 01 1
1 1

2 2

2( ) 2  14motora LTD D D vv f v v kT
Dt Dt Dt

ρε ερ ρε ε ρ ρ τ ρ
ε µ ε

+ + = + ∇ −






  

Since we assume 1ε  and 2ε  to be small we dismiss the terms multiplied by those when considering 

O(1), however we don’t know the ratio between the two which we will define as: 

( )1

2

 15
ε

γ
ε

≡  

Consider O(1): 

( ) ( )02
ρ 2  16motora LT

v f v v kT
t

ρργ ρ τ γ ρ
µ

∂ + ∇ = + ∇ − ∂ 
  



 

 

Since we assume Newtonian fluid, the non-dimensionalized strain rate tensor becomes: 

( ) 1 (( ) ( ) ) (17)
2

n
n

Tvv vτ = ∇ ∇ ∇ ⊗ = + 
 

 

In Cartesian coordinates v∇  is the Jacobian matrix where: 

( ) (18)j
ji

i

v
v

x
∂

=
∂

∇  

In 2 dimensions the strain rate tensor would then be: 
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2
1 1 (19)
2 2

2

n n
x x x x xyx

n

n
yy y y yx x

v v v v vvv
x y x y xx x

vv v v vv v
y yx y x y y

τ

 ∂ ∂ ∂ ∂ ∂∂    ∂ +     ∂ ∂ ∂ ∂ ∂∂ ∂       = + =   ∂∂ ∂ ∂ ∂   ∂  ∂  +      ∂ ∂∂ ∂ ∂ ∂ ∂     

 

The evaluation of vτ∇  value follows by: 

2 2 ( )
1 1( )( ) ( )(20)
2 2

2 ( ) 2

y yx x x x
x y

x

yy y y yx x
x y

v vv v v v
v v

vx y x x y x
vv v v vv v

v v
x y y x y y

vτ

∂ ∂   ∂ ∂ ∂ ∂
+ + +    ∂ ∂ ∂ ∂ ∂ ∂   =    ∂ ∂ ∂ ∂∂ ∂ + + +   

∂ ∂ ∂ ∂ ∂ ∂  

=



 

Since we assume spatial isotropy we can rewrite (20) as: 

2 ( ) 2
1 1( ) ( )(21)
2 2

( ) 2 2

y yx x x x
x y x y y

y y y yx x
x y x x y

v vv v v v
v v v v v

x y x x x y
v v v vv v

v v v v v
x y y x y y

∂ ∂   ∂ ∂ ∂ ∂
+ + + +   ∂ ∂ ∂ ∂ ∂ ∂   =

   ∂ ∂ ∂ ∂∂ ∂
+ + + +   

∂ ∂ ∂ ∂ ∂ ∂   

 

The divergence of (21) this is then: 

2

2

1
2

yx x
x y y

y yx
x x y

vv v
v v v

x x y
v vv

v

xv

y v v
x y y

τ

∂ ∂ ∂
+ + ∂ ∂ ∂  =

 ∂ ∂∂
+ +

∂ 
 ∂ ∇ =
∂




 ∂


∂ ∂ ∂ 

 

 

2 2 22 2
2 2 2 2

2 2 22 2( ) ( ) 2 ( ) 2( ) 2y y y y y yx x x x x
x y x y y

v v v v v vv v v v v
v v v v v

x x x y y x y x y yx x y
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂

+ + + + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

 

2 21 1( ) ( ) ( )
2 2

T Tv v v v v v∇ ⋅ ∇ +∇ ⋅ ∇ = ∇ ⋅ ∇= +∇ ⋅ ∇  

Assuming an isotropic Newtonian fluid: 
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2 2 2 2 21 1( ) ( ) ( ) (22)
2 2

Tv v v v∇ ⋅ ∇ +∇ ⋅ ∇ = ∇ ⋅∇ = ∇  

Now Plugging (22) into (16) we get:  

( ) ( )2 202
23ρ 2  motora LT

v f v v kT
t

ρργ ρ γ ρ
µ

∂ + ∇ = + ∇ − ∂ 
 



 

 

We will Fourier transform (23) with respect to space with limits of integration for x and y being 

from 0 to L where L is the length of the viewing window: 

( )
0 0

exp( (ρ exp ))
L L

v iq dx iq dyx y
t
ργ −
∂ + ∇ − ∂

=
 ∫ ∫ 

  

0

2 20

0

2
2 e exp( )xp( )moto

L
r

L a LT
f v v dx ik qy dT iqx y

ρ
ρ γ ρ

µ
+ ∇ − − −∫ ∫






 

Where: 

( ){ } ( ) ( ){ } ( ) { } ( ), , ; ,   , ; (x, } ,F x t q t F v x t q t F f t a q tρ η ω≡ ≡ ≡  

( )202
( * ) * * 2 )  ( 24motora LT

qi a q kT
t

ρηγ ω η η ω ω ω γ η
µ

∂
+ = − ∗ −

∂
 

Dividing by γ  and move terms, and see that the convolution of ω  with itself results in the 

multiplication with its complex conjugate giving the value of its magnitude squared. 

202 2* * * )(motora LT
a kT qi q

t
ρη η ω η ω η ωω

µγ γ
∂

= − − −
∂

 

( )2202 2* * 25*motora LT
a kT qi q

ρ
η ω η ω η ω

µγ γ
− − −=  



104 
 

Taylor Approximations: 

Since we defined: ( ){ } ( ), ,F x t q tρ η≡ , Then since dρ/dt is the derivative with respect to time, it should 

have no bearing in space thus: 

( ) ( ) ( )2
, ,

  6
x t q t

F
t t

ρ η ∂ ∂  = ∂ ∂  
 

Also we know that: 

( ) ( ) ( ) ( )
Δ   0

, , ,
lim   27
t

x t x t x t t
t t

ρ ρ ρ
→

∂ − + ∆
=

∂ ∆
 

Thus if we sample ( ),x tρ  close enough in time we can approximate the derivative of it 

( ) ( ) ( ) ( ) ( ) ( )
, , , ,

,         28
Δ

x t x t t x t x t
g x t for small t

t t t
ρ ρ ρ ρ− + ∆ ∆ ∂

= ≡ ≈ ∆
∆ ∂

 

Then 

( ) ( ) ( ) ( )
, ,

  , 29
Δ

x t q t
F G q t

t t
ρ η ∆ ∂ ≡ ≈  ∂  

 

Conservation of Mass: 

( )2 3    0D D k
Dt ρ
ρ ρ ρ= ∇ +  

       D averagediffusioncoefficient for biomassρ =  

           k rateof metabolicchangeof biomass=  

Expanding the left hand side and rearranging in (31) we get: 
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( ) ( )2ρ     31v D k
t ρ
ρ ρ ρ∂
+ ∇ = ∇ +

∂




 

( )2   2ρ   3v D k
tρ
ρρ ρ ∂

∇ = ∇ + −
∂





 

With sufficiently small Δt we can Taylor approximate in time and plug equation (28) into (31): 

( )( )2ρ   ,   33v D k g x tρ ρ ρ∇ = ∇ + −


  

We know that the Laplacian can be written as: 

( )2ρ   34
x x

ρρ ∂ ∂
∇ = ∇ ∇ =

∂ ∂
  

 

With small enough Δx we can Taylor approximate (34) to: 

( ) ( ) ( ) ( )( )2
2

, 2 , ,
ρ ,   35i i i i i

i
i

x t t rx x x t
b x t

x
ρ ρ ρ+ ∆ − + − ∆

∇ ≈ ≡
∆∑  

Plugging Dρ  with the average bulk diffusion, k with the average normalized growth rate, and (35) 

into (33): 

( ) ( ) ( ) ( )( )3ρ ,   , , ,    6v D b x t k x t g x t l x tρ ρ∇ = + − ≡


  

The Fourier transform of (36): 

( ){ } ( ) { } ( ),   , ρ *   37F l r t L q t F v qiω η≡ ≈ ∇ =


  

Plugging in (29) and (37) into (25): 

( ) ( ) 2202 2, * * , (38)motora LT
G q t a kT L q t q

ρ
η ω η ω

µγ γ
= − − −  
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Rearranging terms in (38) we get: 

( ) ( ) 2202 2, , * * (39)motora LT
G q t L q t a kT q

ρ
η ω η ω

µγ γ
+ = − −  

Where the imagery portion of (39) is: 

( ) ( ) 02
Im( , , )) Im( * * )(40)motora LT

G q t L q t kT a
ρ

η η ω
µγ

+ + =  

The square of G and L would be: 

( ) ( ) 2 2 20 02 2Im( , , ) Im( * * ) 2 Im( ) Im( * * ) Im( ) (41)motor motora LT a LTG q t L q t a kT a kTρ ρ
η ω η η ω η

µγ µγ
+ = − +  

Now condense terms we get: 

( ) ( ) 2 2 2 2 2Im( , , ) Im( * * ) 2 Im( ) Im( * * ) Im( ) (42)G q t L q t a aα η ω αφ η η ω φ η+ = − +  

Substituting (40) into (42): 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2Im( , , ) Im( , , ) 2 Im( ) Im( , , ) Im( ) (43)G q t L q t G q t L q t G q t L q tφη φ η φη φ η+ = + + − + + +  

We can fit (43) to a surface to find the constant φ. 

While the real portion of (39) contains the dissipation energy term: 

( ) ( ) 222Re( , , ) Re( * * ) (44)G q t L q t a qφη α η ω ω
γ

+ + = −  

( ) ( ) 2 22 2 2 2 2 22 2Re( , , ) Re( * * ) 2 Re( * * )( ) ( ) (45)G q t L q t a a q qφη α η ω α η ω ω ω
γ γ

+ + = − −  

Rearrange the terms in (44) and we can substitute to solve for dissipation energy in (45): 
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( ) ( ) 222Re( , , ) Re( * * )(46)G q t L q t q aφη ω α η ω
γ

+ + + =  

Rewriting the body force term we get: 

2
2 2 2 2 22 2 2

2

( , )
* * (47)

L q t
a a a

q
α η ω α η ω α= =  

2
22 2 2

2

( , )
( Re( * * )) ( Im( * * )) (48)

L q t
a a a

q
α α η ω α η ω= +  

The power spectrum of the rearranged (40) gives: 

( ) ( ) 2 2 2 22 2 2 2

22 2

, , * * 2 Re( * * )( ) ( )

2Re( ) * ( Re( * * ) ) 2 Im( ) * Im( * * ) ( ) (49)

G q t L q t a a q q

a q a

α η ω α η ω β ω β ω

φη α η ω β ω φη α η ω φη

+ = − −

+ + + +
 

Now condense and rearrange terms: 

( ) ( )
2

2 2 2 2 2 2
2

2 2 2

( , )
, , 2 Re( * * )( ) ( )

2 Re( ) * ( Re( * * ) ) 2 Im( ) * Im( * * ) ( ) (50)

L q t
G q t L q t A AB a q B q

q
C A a Bq AC a C D

η ω

η η ω η η ω η

+ = − −

+ + + + +

 

Where: 

2

.

A

B
C

Cons Integration D
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SUPPLEMENTARY FIGURES 

 

 

FIGURE S1 Dissipation modeling of cellular data show increasing fit with sample size. Fittings 

of the experiential spatial frequency power spectrum of the rate of mass change of BT474 cells to 

the theoretical energetic model using an averaged power spectrum of 1 (a), 5 (b), 10 (c), 50 (d), 

and the entire sample size of cells (e). (f) Plot of dissipation coefficient (beta) derived from model 
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fitting of the spatial frequency power spectrum of the rate of mass change vs. the goodness of fit 

(R2) for averaged value of 1-240 BT-474 cells. 

 

 

FIGURE S2 Correction of zeroth frequency drop off in power spectrum analysis. (a) QPI images 

were applied with 5x5 transformation before Fourier transformed. (b) This to was correct for the 

frequency drop off seen in the spatial frequency information of QPI data. (c) Power spectrum data 

when corrected using the 5x5 transform no longer show the effect of frequency drop off.
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Chapter 4. Quantitative Phase Imaging: Recent Advances and Expanding 

  



111 
 

VOCABULARY 

Phase (of light): Property that, along with amplitude (intensity), wavelength (color), and 

polarization, defines light as an electromagnetic wave. Shifts in phase are caused by a delay in 

propagation speed, as occurs when passing through a sample of higher refractive index. 

Quantitative phase imaging (QPI): Method in which the phase shift of light as it interacts with 

matter is measured.  Returns measurements of integrated refractive index through sample thickness 

at each pixel. 

Interferometry: Method in which source light is split into a sample and reference beam, then 

recombined at or before the detector, generating interference patterns. Can be applied to acquire 

QPI data. 

Wavefront sensing: Method that measures aberrations in the wavefront of light due to the 

distribution of phase shifts within the sample, typically without the reference beam used in 

interferometry. 

Phase retrieval: A class of methods in which intensity images, often with some perturbations, e.g. 

partial defocusing, chromatic aberrations, partial illumination, plus knowledge of the optical 

transfer function are used to reconstruct the distribution of phase shifts through the sample. 

Digital holography: Method in which a hologram is captured on a digital imaging sensor. The 

resulting digital hologram can be used to reconstruct QPI data. 

Quantitative phase tomography: Method to measure the three-dimensional (3D) distribution of 

phase shifts within a sample. Returns measurements of average refractive index within each voxel. 
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INTRODUCTION 

Advances in microscopy have driven advances in biology and medicine by enabling visualization 

and a greater perspective on the machinery of life. In this review, we discuss advances in 

quantitative phase imaging (QPI), a label-free microscopy technique that measures fundamental 

cell properties and behaviors, including mass, mechanical properties, growth, and intracellular 

transport. We discuss the history of QPI, technical aspects of its applications, and emerging 

developments that will shape future applications of this technology for addressing opportunities 

and challenges in biomedicine. 

 

QPI methods measure the phase shift of light as it passes through a transparent sample. This phase 

shift is caused by light slowing down as it passes through a material with a higher refractive index 

than water1 and can be written as:  

𝜙𝜙 =
2𝜋𝜋
𝜆𝜆
� 𝑛𝑛(𝑧𝑧)𝑑𝑑𝑑𝑑
ℎ

𝑧𝑧=0
 

(1) 

where ϕ is the phase shift of light (in fractions of a wavelength) contributed by all elements in the 

sample of varying refractive index, n, through the height of the sample, h, in the z direction. This 

measured phase shift is directly proportional to the dry mass content of a biological sample2. Dry 

mass includes all mass excluding water and is therefore inclusive of biological macromolecules. 

For example, the increase of refractive index (real component) for a protein solution is proportional 

to the increase in protein concentration3. The slope of refractive index versus mass concentration 

defines this relationship and is called the specific refractive increment1, 4. The average specific 

refractive increment, α, for the typical contents of mammalian cells, including proteins, nucleic 
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acids, sugars, and lipids is ~0.185 µm3/pg1, a value that is correct to within ~6%5. The cell dry 

mass, m, can then be calculated using the specific refractive increment, α, of a sample by2: 

 𝑚𝑚 =
𝜆𝜆

2𝜋𝜋𝜋𝜋
�𝜙𝜙𝜙𝜙𝜙𝜙 (2) 

where this integral is performed over A, the area of the cell. The ability of QPI to measure 

quantitative, biophysical features of the cell, such as mass, is central to its applications and 

potential in biomedicine. 

 

Along with QPI, there are other widely used methods for leveraging the phase shift of light as it 

passes through a cell or other biological sample to generate image contrast. These include Zernike 

phase contrast microscopy6, 7 and Nomarski differential interference contrast (DIC) microscopy8. 

In phase contrast microscopy, illumination of a sample is with a limited spatial frequency range 

(background light). The refractive index distribution of non-uniform structures within cells then 

causes this background light to diffract and undergo a phase shift relative to the unperturbed 

background light. Both this diffraction and phase delay helps to generate contrast in the resulting 

image. As a result, even minute differences in refractive index translate into amplitude changes in 

the resulting image. In DIC microscopy, image contrast arises by splitting the incident light based 

on orthogonal polarization and introducing a small lateral shear of one polarization angle relative 

to the other using a Nomarski-modified Wollaston prism. Recombination of this polarized light 

after passing through the sample at a second Wollaston prism causes interference based on the 

relative phase shift between the two polarization angles. The image intensity in DIC microscopy, 

therefore, relates to the gradient of phase in the shear direction. Both phase contrast and DIC 

microscopy enable label-free measurements of cell shape and position. However, the intensity of 
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images from phase contrast and DIC imaging do not linearly relate to the corresponding phase 

unless used as the basis for a phase retrieval method9, 10. As a result, and in contrast to QPI, phase 

contrast and DIC microscopy remain qualitative phase methods. As discussed further, the 

quantitative data available with QPI enables more precise statistical and incremental studies for 

probing biological mechanisms than are available with qualitative methods. 

 

In this review, we introduce the fundamental problem of QPI and trace the development of methods 

to solve this problem (Figure 1a). With the ever-increasing availability of computational 

resources, these solutions have increasingly converged, leading to a number of key applications in 

quantitative biology and a dramatic increase in research interest in QPI (Figure 1b). Finally, we 

conclude by discussing four key ongoing areas of QPI research that we believe will have the 

greatest influence in the future. 
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FIGURE 1 QPI has undergone a steady increase in interest driven by advances in different 

fields of optics. (a) Schematic of four main QPI approaches with interferometry (green timeline), 

wavefront sensing (orange timeline), phase retrieval algorithms (light blue timeline) and 

holography methods (red timeline) indicated. These methods have improved extensively over time 

with the emergence of greater computational resources (thick black line). The improved efficiency 

of computational resources led to technical advances in QPI that include quantitative phase 

tomography (magenta timeline), in vivo QPI (dark blue timeline), multi-modal approaches (brown 
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timeline), and machine learning methods (yellow-green timeline). (b) The growth in interest and 

advances in QPI over time depicted by the number of publications on Web of Science using search 

terms “Quantitative Phase Imaging” or “Quantitative Phase Microscopy” by year. 

 

SOLVING THE FUNDAMENTAL PROBLEM OF QUANTITATIVE PHASE 

QPI techniques seek to recover the phase shift of light that passes through a sample. However, 

conventional optical detectors recover only the amplitude of incident light, so additional optics 

and/or computations are necessary to recover phase shift information. This is the fundamental 

problem that all QPI methods must solve, which has stimulated the development of multiple QPI 

techniques. Here, we discuss the development of QPI in the context of these solutions, focusing 

on the four primary approaches that have had the largest impact on modern QPI methods and 

applications: interferometry11, 12, wavefront sensing13, 14, phase retrieval15, 16, and digital 

holography17. While many of these approaches have integrated methods and concepts from 

electron, x-ray, and radio-wave techniques, here we use the term QPI to refer specifically to 

methods for phase retrieval based on visible light. We then discuss the convergence of these 

various techniques at the end of this section. 

 

Interferometry 

One method for computing phase information is interferometry. In interferometry, light incident 

on a sample is split into two paths, a sample path and a reference path, before recombining at a 

detector (Figure 2a). The amplitude of the resulting interference image relates to the phase shift 

of light passing through the sample with respect to the reference path by constructive and 

destructive interference between the light from these two paths. Interferometry was invented by 
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Albert Michelson and improved further in collaboration with Edward Morley and famously used 

for the Nobel prize winning 1887 Michelson-Morley experiment that provided evidence against 

the existence of the luminiferous aether18 (Figure 1a). Major early improvements were the 

introduction of separate sample and reference cells in the Mach-Zehnder interferometer19 and use 

of thin calcite films faced at 45º to enable micro-interferometry20. These dual path interferometers 

were followed by common-path interferometers where the reference beam and sample beam travel 

along the same path, reducing measurement sensitivity to vibration21, 22. A common-path 

interferometer microscope built by Dyson was used to image fixed biological specimens23. 

 



118 
 

FIGURE 2 Examples of the four primary QPI lineages identified in Figure 1. (a) Mach-

Zehnder interferometry uses interference between light passing through a sample and a reference 

beam to generate an interferogram that encodes phase information in image amplitude (e.g.12). An 

in-focus interferogram is then used to generate the phase image. (b) Wavefront sensing with 

quadriwave lateral shearing interferometry (QWLSI) uses a diffraction grating that captures 

gradients in phase shift as local distortions in the resulting intensity grid pattern on the camera 

sensor14. Sample images are compared to a reference wavefront image to determine the wavefront 

distortion due to the sample itself. This is numerically integrated to recover phase. (c) Differential 

phase contrast (DPC) microscopy, a deterministic phase retrieval method, images a sample using 

half-circle patterns of illumination that extend beyond the microscope objective numerical 

aperture. Light refraction through the sample then causes intensity increases (or decreases) in one 

half-circle image and decreases (or increases) in images with the opposing half-circle pattern. The 

normalized difference between these two images approximates the gradient of phase along one 

axis15. Multiple pairs of images are collected, and the phase is numerically integrated. (d) Digital 

holographic microscopy (DHM) computationally reconstructs the phase image from a slightly out-

of-focus interferogram obtained using an interferometer24. A slightly off-axis reference beam is 

used to avoid the twin image problem, where the image and its conjugate sit on top of one another. 

 

The next major advance in QPI towards biomedical applications was the calibration of a specific 

refractive increment3 using varying specimen composition25, 26 that enabled the calculation of cell 

dry mass. The earliest applications of cell dry mass measurements with interferometry mostly 

focused on regularly shaped organisms such as yeast and bacteria to simplify calculations27, 28. 

Early work on irregularly shaped cells used multiple images to find the total projected area and 
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average optical thickness, the product of which is proportional to total cell dry mass through the 

specific refractive increment29. The integration of the scanning optical microspectrograph with the 

interference microscope increased resolution30, although not to the level of modern systems31. 

Other major improvements in interferometry focused on convenience for use in biological studies. 

This includes the polarization interference microscope that replaced the partially silvered reflecting 

layers of earlier common path systems with a birefringent layer20. The Baker interference 

microscope, which was used widely on mammalian cells, is a polarizing microscope modified into 

a two beam interferometer32, 33. Additional improvements include the use of a warmed stage to 

measure live yeast34 or bacteria28, and the replacement of uneven mercury lamp illumination with 

fiber optics. Although the relationship between amplitude and phase in interferometric images is 

straightforward, the required phase reference increases the complexity and number of optical 

elements, and increases susceptibility to vibrations35 and instability of a light source36. Therefore, 

it was not until the introduction of digital cameras and image processing37, 38 that interferometry 

provided truly quantitative data for internally complex mammalian cells. 

 

Advances in a number of areas of interferometry-based QPI measurements benefit from the 

increasing use of computers. Automated image focusing has improved interference imaging 

accuracy and speed39. Single-wavelength interferometry cannot distinguish adjacent imaging 

pixels with a phase difference exceeding one quarter of a wavelength2, but substantially larger 

phase shifts can be accurately measured by digitally combining images taken at two wavelengths40. 

Errors introduced from the unevenness of a reference surface can also be digitally corrected41. 

Phase shifting interferometry, in which multiple interference images are acquired at sub-

wavelength shifts in the reference relative to the sample path length, corrects error due to external 
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disturbances36. Applications of this approach with the required temporal and spatial resolution to 

study subtle changes in the shape of cancer cells requires tight integration with computers for 

motion control and image processing31. Automated cell segmentation enables interferometry to 

measure the growth of many cells simultaneously in uniform12 or mixed populations42. Automated 

segmentation has also improved the application of phase unwrapping, or removal of phase jumps 

of one wavelength (2π radians) created due to the inherent ambiguity in interpreting interferometry 

data, thereby reducing errors in dry mass measurements43. Overall, computer control of 

interference microscopes and digital image processing of the resulting data has revolutionized this 

100+ year old method and led to a convergence with other methods, as discussed below. This also 

points towards the future of QPI, as the linkage to ever-expanding compute power enables 

increasingly sensitive approaches, and portends leveraging advances in machine learning. 

 

Wavefront sensing 

Wavefront sensing refers to approaches that seek to recover the aberrations in a wavefront caused 

by phase delays within a sample. Important wavefront sensing methods include Shack Hartmann 

wavefront sensing44 and Ronchi sensing45. Of these, the Shack-Hartmann wavefront sensor is the 

most commonly used version, with construction that uses either an array of evenly spaced holes 

or a lens microarray for improved image quality. Either of these arrays creates a pattern of focused 

light spots on the camera sensor46. Aberrations in the light wavefront causes these spots to move, 

allowing reconstruction of the total phase shift through the sample. 

 

The earliest work in wavefront sensing used lateral shearing interferometry45, 47. Lateral shearing 

wavefront imaging is similar to Nomarski DIC imaging in that the incident wave shears into two 
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identical but tilted wave fronts that then interfere. The resulting single-direction phase gradient 

from lateral shearing interference data lacks the necessary gradient information to generate a 

complete two dimensional phase-field and thus requires the use of multiwave interferometry 

techniques48 that generate more than one gradient direction. Numerical reconstruction of the 

wavefront is possible, with such methods developed in 198649. However, this method is 

computationally intensive, and was later used in practice on images captured using a three-wave 

shearing interferometer configuration50. Typical wavefront sensors lack the resolution needed for 

imaging cells. Quadriwave lateral shearing interferometry (QWLSI) uses a modified, micro-

fabricated Hartmann mask, resulting in a pattern of dark spots that measures phase gradients along 

perpendicular directions51, allowing the measurement of both intensity and phase (Figure 2b). 

Importantly, this mask enables high resolution images to support the live cell application of 

wavefront sensing in measurements of phase using QWLSI on erythrocyte cells52. 

 

Wavefront sensing has multiple advantages, such as higher sensitivity, speed and temporal 

resolution with less complex instrumentation than typical interferometry methods14. Importantly, 

wavefront sensing techniques do not require a reference arm14, and therefore are less affected by 

vibrations and other disturbances than double-path systems. Wavefront sensing typically uses 

single image acquisition, resulting in high potential temporal resolution53. However, this approach 

has a trade-off with lower spatial resolution as the light from each phase measurement spot is 

spread over many pixels of a digital camera sensor. Thus, wavefront sensing is best for imaging 

high-speed cell dynamics requiring accurate phase information, but has a downside of lower spatial 

resolution. In applications to single cell imaging, QWLSI phase images require a low degree 

polynomial fitting to flatten the image background for accurate biomass measurements54. This 
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requirement and an inherent amount of both spatial and temporal noise due to the recovery of phase 

by numerical integration can impact cell segmentation. Overall, however, this approach can 

achieve high accuracy for measurements of the dry mass of cells, even at high cell densities55. 

 

Phase retrieval algorithms  

Phase retrieval refers broadly to non-interferometric methods that computationally reconstruct the 

phase shift from a sequence of intensity images taken under varying conditions. The primary 

advantage of phase retrieval methods is that they can be performed using simpler optical systems, 

or used to enhance the performance of more complex optical systems. Phase retrieval methods can 

be classified as either iterative or deterministic56. Iterative methods use iterative computation to 

satisfy constraints in object and Fourier space between intensity images at the sample and detector 

plane to resolve the phase problem57. Iterative methods of phase retrieval were originally 

developed for electron microscopy to reconstruct the wavefront propagation between image and 

diffraction planes from the corresponding amplitude images58. The Gerchberg-Saxton (GS) 

algorithm was a widely used iterative phase retrieval method. The GS method seeks to iteratively 

approximate the source (e.g. illumination) and target (e.g. image) intensities and complex phase 

distribution from measured intensity images of the source and target. However, the GS algorithm 

typically requires a large number of iterations and can become stuck at local minima and therefore 

not converge to the real phase solution59. This was addressed by the introduction of the steepest 

gradient search59 and input-output methods60. One common implementation of iterative phase 

retrieval is in Fourier ptychography61-63. Ptychography was developed to solve the phase problem 

in electron diffraction measurements64. Fourier ptychography recovers high spatial resolution (or 

large field of view) phase information at the object plane from a series of intensity images, such 
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as at varying angles, resulting in data from which a higher spatial frequency image can be 

reconstructed65, 66. Fourier ptychography has also been used to visualize the three-dimensional 

(3D) structures from light scattering signals67 or complex transmittance functions63. 

 

Deterministic methods directly solve for phase images without iteration, enabling real time phase 

imaging. One commonly used approach is based on the transport of intensity (TIE) equation which 

relates phase data at the in-focus plane to the axial derivative of intensity distribution68. The TIE 

equation was proposed based on conservation of energy and describes the transport of energy in 

an optical field16. Differential phase contrast (DPC) microscopy, another commonly used 

deterministic imaging method, evolved from the idea of contrast enhancement by asymmetric 

illumination69. In DPC microscopy, multiple images of the specimen are obtained at different 

angles of half plane illumination to recover phase information70 (Figure 2c). In this way, DPC 

imaging is similar to Schlieren imaging in which half plane illumination is used to remove half the 

spatial frequencies from the intensity image in one direction, giving phase gradients in orthogonal 

dimensions71. The earliest work on DPC imaging used a half plane electron source in a scanning 

transmission electron microscope (STEM)72 and was later applied to imaging with visible light73 

and applied to increase contrast in images of fixed cells74. 

 

In contrast with interferometric methods, phase retrieval is typically less costly or uses more 

widely available optics, such as DIC75, phase contrast76, 77 or custom made imaging systems15. This 

is because phase retrieval algorithms eliminate the use of a reference based on knowledge, or 

approximation, of the optical transfer function of the imaging system78. Phase retrieval is also 

possible with partially coherent light sources79-81. However, the requirement of multiple images as 
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inputs for phase retrieval methods lowers the imaging temporal resolution compared to 

interference and wavefront sensing methods54. The use of iterative algorithms for phase retrieval 

also increases the overall workflow time. 

 

As a primarily computational method, phase retrieval has benefited greatly from advances in 

compute power. The practical application of phase retrieval for QPI therefore began in the 1990s 

with extensive use of computing resources82, 83. Advances in optical systems further enhanced 

phase retrieval QPI, including the use of color-multiplexing to obtain phase data from a single 

image84, lens-less phase retrieval with super-resolution reconstruction85, and volumetric 

holography using asymmetric illumination86. Looking forward, phase retrieval stands to benefit 

greatly from future advances in computation. This is especially evident in recent applications of 

machine learning, where phase retrieval is possible without an optical physics model87, 88. A 

possible limitation that needs addressing as this field moves forward is that with more computation, 

more noise tends occur. Additionally, the opaquer the method, the harder it is to track down sources 

of error, a particular concern with machine learning approaches. Overall, however, these advances, 

combined with the ability to work from data acquired with diverse sets of optics, point towards a 

larger role for phase retrieval in the future of QPI. 

 

Digital holography  

Digital holography captures the interference between a reference and off-axis sample beam with a 

digital camera placed at a known distance in front of the image plane. Reconstruction of the 

resulting interferogram uses diffraction theory to recover the complex object wavefront, including 

the phase shift and intensity modulation of light passing through the sample. Digital holography 
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emerged from the establishment of holography by Gabor89 for which he won the Nobel prize in 

197190. Gabor’s work demonstrated that light from a point source interfering with secondary waves 

from light scattered by an object produces a negative photograph of a 3D image. However, a 

conjugate image is also superimposed on the reconstructed image, resulting in ambiguity due to 

the present of this twin image. It was later shown that use of an off-axis reference beam can 

separate the real and conjugate image91 92. Marine plankton provided an early application of live 

cells imaged using holography in a chamber with close proximity to a photographic plate93. 

The use of digital cameras94,95 and numerical reconstruction96 has greatly improved the 

accessibility of holography. Since the 1970s, holography has been used extensively for cell 

imaging97. Later, digital holography was introduced for 3D imaging enabling visualization of 

specimens with highly fluctuating phase profiles such as pollen98. Initial applications of 

holography to quantitative phase measurements were restricted to measuring the refractive index 

distribution of inorganic materials99,. The broader application of digital holography to QPI was 

enabled by the development of efficient computational reconstruction of holograms in the early 

2000s100 as well as developments in the field of electron microscopy101. This lead to digital 

holographic microscopy (DHM) of live neuron cells in culture with high phase accuracy24. 

Improved computational resources sped up the hologram reconstruction process for applications 

such as mapping the refractive index of cells102, 103. Even Schlieren images were generated from 

holography of patterns in inorganic materials104, which were later used to measure optical 

thickness105.  

 

DHM has been implemented in multiple hardware configurations106. Of these, the Mach Zehnder 

interferometer19 is the most widely used (Figure 2d), although this approach has the same 
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disadvantages of other double-path interferometers discussed previously. Traditionally, DHM 

requires spatially and temporally coherent laser light, leading to speckle noise. However, a number 

of white light and incoherent DHM alternatives are available, including spatial light interference 

microscopy (SLIM), a combination of digital holography and Zernike’s phase contrast 

microscopy107. By processing a hologram of the 3D specimen wavefront, DHM also allows 

computational refocusing. However, this process can lead to errors in phase measurements, unless 

the proper refocusing plane is selected for repeatable measurements.  

 

Evaluation and standardization of QPI methods 

Each lineage of QPI methods has advantages and disadvantages compared to each other, which 

have diminished in magnitude over time from technological advances and verified 

standardizations. Briefly summarizing the four QPI lineages described above, interferometry is 

accurate but sensitive to reference arm noise; wavefront sensing has good temporal resolution and 

no reference arm, but has low spatial resolution; phase retrieval provides a large field of view and 

higher spatial resolution, but has low temporal resolution; and DHM has high temporal resolution, 

but is susceptible to noise from a reference arm.  

 

A number of technical improvements address key limitations of these four QPI lineage approaches. 

For example, adapting DPC microscopy to work with multicolor illumination instead of separately 

imaging individual illumination patterns108-111 achieved temporal resolution as high as 100 frames 

per second (fps)112. A high speed interferometry method using a diffraction grating generated a 

temporal resolution of 104 fps111. Recent developments in DHM systems enabled removal of a 

reference arm, for instance by using a self-referencing module113. It was shown that holography 
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could mathematically retrieve phase using single intensity images through an illumination control 

without a reference114. The use of coherent and partially coherent illumination can also help to 

reduce noise in QPI. Coherent illumination, such as from a laser, while useful for generating 

interference, has a disadvantage of being sensitive to noise from system optics, especially speckle 

noise115. Use of partially coherent illumination, such as from an LED or lamp, can eliminate these 

artifacts, at the cost of a moderate increase in difficulty aligning the optical system. Sub-Rayleigh 

resolution has been achieved by adjusting the illumination source116. Mach Zehnder interferometry 

has been adapted for biosensing within microchannels, increasing sensitivity108, 109.  

 

Another approach to generate improvements in QPI is to combine principles from different QPI 

lineages. For example, interferometry using a diffraction grating in a Mach Zehnder system can 

eliminate the need for a reference arm and increase phase sensitivity, by reducing measurement 

noise110. The use of iterative phase retrieval algorithms on single-shot holographs also enables the 

3D reconstruction of QPI images without needing a reference standard57. The same iterative phase 

retrieval has also been successfully applied to transport of intensity algorithms using holographic 

microscopy117. The transport of intensity equation can be used to capture 3D QPI images at the 

diffraction limit using an electrically tunable microlens array, similar to that used in wavefront 

sensing, thereby significantly increasing temporal resolution118. 

 

Polystyrene beads are a widely used phase calibration standard for many QPI methods119, 120 and 

have been used with DHM121, QWLSI14, and DPC122 techniques. However, there is variability in 

the refractive index of polystyrene123, and typically large refractive index differences between 

polystyrene beads relative to cell culture media, combined with sharp ‘imaging edges’ of these 
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round beads, can lead to phase unwrapping artifacts that are not usually encountered with live cell 

samples. Potential phase unwrapping artifacts using polystyrene bead calibration standards can be 

mitigated by, for example, mounting the beads within material with a closer refractive index120, 124. 

However, this approach also moves the calibration data range further from actual cell imaging 

conditions, which could impact experimental accuracy. Red blood cells have also been used as a 

phase calibration standard in the development of QPI methods because of their ready availability 

and fairly uniform shape and size12, 125. Typically, non-diseased RBCs show a population dry mass 

variation of ~15%126. However, as a biological sample, this can be more challenging to work with 

than an inanimate calibration standard. A number of studies have used USAF resolution test targets 

that are readily available because of their wide use in calibrating imaging systems119, 127. However, 

these standards are typically used for calibrating intensity images and are made of thin metal films, 

meaning that they do not function as pure phase objects. A phase specific calibration standard for 

QPI was developed and used in a comparison with atomic force microscopy (AFM), which showed 

that QPI has nanometer sensitivity over a wide range of spatial frequencies62. A 3D phase 

“phantom” that captures subcellular features of cells for calibration in 3D QPI methods has also 

been demonstrated128, with further development and characterization of widely accessible 

standards an area that needs further attention to support continued advances in QPI. 

 

QPI systems and image quality are defined by parameters including spatial and temporal 

resolution, phase measurement sensitivity, and signal-to-noise ratio (SNR). The SNR in QPI is 

measured as the signal over the standard deviation of the measured signal129. Noise in QPI 

measurements can be reduced, increasing the SNR, by increasing the number of measurements. 

This is especially important when using coherent illumination54. Analytic software packages for 
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assessing QPI measurements is another key system consideration. Some QPI approaches have 

available commercial analytic packages from Wyko Corporation, Phasics Corporation, Phase 

Holographic Imaging PHI, Inc. and other vendors, whereas additional analytical packages are 

custom-coded in MATLAB or Python. Table 1 summarizes the category of QPI hardware, key 

benefits, reported performance and available software of example methods from the four lineages 

of QPI discussed in this review. 

 

Table 1. Example methods, key benefits, performance and software for different QPI lineages. 

Lineage Example methods Key 
improvements 

Resolution Accuracy SNR Software 

Interferometry Mach Zehnder 
interferometer, Baker 
interferometer 

No reference 
arm 

100 fps119, 
250 fps130 

2%130, 
0.5%131 

 Wyko Vision 
software31, 132 

Wavefront 
sensing 

Lateral shearing 
interferometry, 
QWLSI 

Increased 
spatial 
resolution 

104 fps111 2% (1 nm 
sensitivity)14 

<8133 Phasics14, 
MATLAB134 

Phase retrieval 
algorithms 

Iterative algorithms: 
Defocus methods (GS 
algorithm, Hybrid 
input-output 
algorithm, others), 
Fourier 
ptychographic 
microscopy.   
Deterministic 
methods: TIE, DPC 

Increased 
temporal 
resolution 

100 fps112  0.1-0.2135 <6136, 

137, 
<10013

8 
 

Python139, 
ImageJ139, 
MATLAB140, 141 

Digital 
holography 

Same as 
interferometry, 
reconstruction in 
addition 

Self-
referencing 
module113, less 
susceptible to 
noise 

100 nm142 0.3 %142 Peak 
SNR<
55143, 
SNR<
10144 

HoloStudio 
(Holomonitor, 
phi)145, Koala 
(Lyncee tech)146, 
Python17 

 

Computational convergence 

Starting in the early 2000s, QPI began to rely increasingly on digital image acquisition and data 

processing, with the field also advancing from creative method combinations that were emerging 

from multiple technical lineages. For example, SLIM combines principles of digital holography 
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with phase contrast methods107, and QWLSI combines the principles of wavefront sensing with 

interferometry and phase retrieval algorithms14. The combination of DHM with principles from 

lateral shearing interferometry addresses the twin image problem147, and this combined approach 

can reconstruct optimally sampled QPI data148. Further improvements in computation and machine 

learning are enabling approaches analogous to QWLSI using an unstructured, random phase mask. 

These exciting developments point toward the future of QPI with increasing availability of 

computational resources and algorithms, including creative applications of machine learning, 

which will further advance quantitative studies in biology and medicine. 

 

ADVANCES IN QUANTITATIVE BIOLOGY 

As QPI approaches have advanced, so too have QPI applications. One advantage of QPI is that it 

is label-free. Therefore, QPI can study cell behavior with minimal impact, a feature that has been 

leveraged in a number of applications. As summarized above, there are also a number of other 

label-free microscopy approaches, including the more widely used methods of phase contrast and 

DIC microscopy. The primary advantage of QPI over these other approaches, however, is that, in 

contrast to phase contrast or DIC microscopy, the data contained in each pixel of a QPI image is a 

quantitative measure of the phase delay of light as it passes through that portion of a sample. 

Measurement of this phase delay can utilize any of the approaches already discussed above. Once 

this phase data is captured, its analyses can provide quantitative insights into numerous biological 

systems. Here we summarize key advances in the application of QPI to quantitative biology 

studies, ranging from applications that quantify the behavior of individual cells to emerging 

opportunities in clinical diagnostics.  
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QPI applications using measurements of cell mass or growth rate 

The refractive index of a material is related to its mass through a quantity called the specific 

refractive increment5. For cells, a typical average value is 1.8 – 2.0 x 10-4 m3/kg 2, 3, 5. The phase 

shift measured by QPI is the integral of the difference in refractive index between a cell and its 

surroundings through the thickness of the cell’s projected area. The measured phase shift of a cell 

is proportional to the mass of the cell’s contents excluding water, which is the dry mass of the cell. 

This provides a quantitative measure of cell size, which can provide valuable information on cell 

viability, growth over time, replication, and function. Measuring cell volume is an alternative 

method to cell mass quantification that can be used to measure cell growth149. However, 

measurements of cell volume typically requires a simplifying assumption about cell shape (e.g. 

spherical mammalian cells, rod-shaped bacterial cells) and cell volume changes depend upon intra- 

and extracellular osmolality, which can be unrelated to internal dry mass amounts150. By contrast, 

dry mass is independent of osmolality and instead depends upon the balance of biosynthetic 

(anabolic) and degradative (catabolic) processes within a cell. In the early- to mid-1950s, several 

investigators began using QPI to measure the absolute total dry mass of live eukaryotic cells, 

including measurements of mass through the cell cycle 4, 25, 26, 34, 151 (Figure 3). Additionally, 

repeated QPI measurements of dry cell mass over time can provide dry mass accumulation or loss 

rates to quantify cell growth12, 150, 152-156 (Figure 3), or the decrease in mass that occurs during cell 

death157-162 . Below, we discuss example applications of QPI measurements of cell mass and 

growth in studies of basic biological processes, including in immunology and in the behavior of 

neurons. 
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FIGURE 3 The evolution of complexity and information content from QPI measurements of 

cell dry mass and mass distributions within living cells. Representative images and data analysis 

are shown in a time series. (a) QPI film image of Tradescantia bractea pollen grain (top) along 

with QPI pollen grain dry mass measurements (bottom, upward arrowheads are no sucrose 

estimates and downward arrowheads show measurements with a 5% sucrose solution) and volume 

(circles) during different phases of development (Adapted with permission from 151,Copyright 

1954 Company of Biologists Ltd.). (b) QPI of chicken fibroblasts with dry mass densities ranging 

from 0.01 (darkest grey) to 0.6 (white) pg/μm2(top), processed to measure spread area relative to 

total cell mass (bottom) (Adapted with permission from 163, Copyright 1995 Company of 

Biologists Ltd.). (c) QPI of human H929 multiple myeloma cells (top) showing computationally 

processed data that simultaneously captures drug responses of hundreds of single cells, shown as 

initial cell mass versus normalized changes in mass during drug treatment (bottom) (Adapted and 

dataset with permission from 12, Copyright 2011 Elsevier). (d) High resolution QPI of a human 

buccal epithelial cell (top) and an example of changes in dry mass of HeLa cells undergoing 
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apoptosis triggered by exposure to cytotoxic paclitaxel (bottom) (Adapted with permission under 

Creative Commons Attribution (CC BY) license from 159, Copyright 2017 Zuo et al.). 

 

Applications of QPI to studies of cell growth and associated biological processes 

Several example studies discussed here demonstrate the utility of QPI measurements for providing 

insight into the regulation of cell size, growth and additional fundamental biological processes. In 

studies of cell size regulation, QPI measurements during fibroblast cell spreading revealed that the 

spread area is actively regulated by an undefined mechanism that adjusts the total area of spreading 

proportionally to the total cell mass163. Separately, dry mass quantification using SLIM during the 

cell cycle showed that osteosarcoma cells exhibit a mass-dependent growth that was best 

approximated by an exponential rather than a linear model of cell growth152. More precise QPI 

measurements of cell mass revealed oscillations in growth rate that were previously unappreciated, 

suggesting that a pure exponential model of cell growth is insufficient to explain the regulation of 

mammalian cell growth164.  

 

The impact of extracellular perturbations on cell size and growth have also been interrogated by 

QPI. For example, changes in available glucose154, or the addition of small molecule inhibitors 

such as tunicamycin to induce cell stress12, led to reproducible, QPI-quantifiable changes in cell 

dry mass and growth rate as indicators of cellular responses. These study results led to the use of 

QPI as a label-free method for screening different stimulants or inhibitors. Examples include QPI-

based screens for agents that cause changes in cell growth rate and cytotoxicity12, 165. QPI has also 

been applied to study the influence of mechanical properties of the extracellular matrix on growth 

rate, migration, and metastatic potential of melanoma cells166. Long-term SLIM studies of cell 
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growth in epithelial and fibroblast co-cultures examined the influence of cell clusters on 

neighboring cells, with a few clusters, termed ‘influencer clusters’, showing a strong correlation 

between growth rate and distance, with potential implications for organogenesis and cancer cell 

metastasis166. 

 

QPI has also been applied to study the impact of genetic mutations on cell growth. For example, 

QPI was used to track the growth and division of primary human melanocytes for 30 days in 

culture167. This study found that proliferative arrest associated with oncogene expression, 

previously thought to be caused by G0 cell cycle phase senescence, was instead identified as a 

reversible and conditional mitotic arrest, an observation subsequently validated using clinical 

specimens. QPI was also used to confirm the impact of transcription factor YAP expression in 

HEK293 cells as a potential coordinating mechanism between cell and tissue size168.Finally, QPI 

also has demonstrated utility for assessing whether different cell states, and transitions between 

cell states, alters the absolute dry mass or dry mass accumulation or loss rates of cells. One study 

quantified cell dry mass partitioning between daughter cells during and following cytokinesis and 

showed that mass asymmetry present at the time of cleavage furrow formation persisted through 

cytokinesis11. Addition of cytoskeleton-disrupting agents with differing mechanisms of action, 

including latrunculin A, blebbistatin, nocadozole, and cytochalasin B increased the number of 

daughter cell pairs exhibiting asymmetric dry mass partitioning. This suggested an absence of an 

active mass partitioning mechanism after cleavage furrow positioning and the requirement for 

mass adjustments by dynamic changes in cell growth rate, and/or cell cycle time, over the 

succeeding cell cycle. The lineage non-directed differentiation of human pluripotent stem cells 

(hPSCs)169 was also interrogated using QPI measurements of absolute dry mass and changes in 
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growth and mass redistribution rates prior to and following the induction of differentiation. Study 

findings included that hPSCs grow at a consistent, exponential rate independent of colony size, 

with coordinated intra-colony mass movement ceasing with the onset of differentiation. In 

contrast, growth and proliferation rates decreased by only ~15% during early differentiation 

despite global changes in gene expression and energy metabolism, suggesting that the regulation 

of mass and proliferation are independent of pluripotency during early differentiation. 

 

Applications of QPI to studies of immune cell behavior 

Another example area of impact is the application of QPI measurements to gain insight into the 

functions of cells of the mammalian immune system. At the cellular level, the adaptive immune 

response requires rapid, massive cell growth to support the generation of both effector and long-

lived memory cells. QPI, therefore, is well suited to studying the regulation and features of this 

process. For example, QPI measures of dry mass changes in a binary cytotoxic T lymphocyte 

(CTL) – cognate cancer- cell killing assay were illuminating. Study results revealed that the cancer 

cell mass decreased 20-60% over 1-4 h during a successful CTL attack, with a 4-fold increase in 

CTL mass accumulation rate at the start of killing and a 2-3 fold increase in CTL absolute mass 

relative to the mass of unresponsive T cells42. These results provide a kinetic, quantitative 

assessment of CTL activation in tumor cell killing and, potentially, a relatively rapid way to 

identify specific, activated patient-derived T cells for applications in cancer immunotherapy. 

Furthermore, QPI measurements of reconstituting donor T cells following hematopoietic stem cell 

transplantation showed mass changes correlated with immune reconstitution within the first few 

weeks post-transplant, a finding which could guide the withdrawal of immunosuppressive drugs 

and reduce the likelihood of graft-versus-host disease or cancer relapse170. 
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In studies of B lymphocytes, QPI measurements also uncovered rapid mass accumulation and cell 

proliferation within the first 24 h of B cell activation accompanied by sustained AMP-kinase 

activation in the absence of energetic stress, an unexpected result because AMP-kinase activity 

strongly opposes anabolism and constrains mass accumulation in most biological contexts171. QPI 

was also used to measure variability in naïve B cell size and partitioning of mass between daughter 

cells during B cell expansion, providing support for an in silico model suggesting that intrinsic 

biological noise plays a key role in determining the extent of B cell proliferation, which ultimately 

determines which cells contribute to an immune response172. 

 

Applications of QPI to measure neuron behavior 

Neuron growth and behavior is another impactful area for QPI applications. Many studies would 

benefit from imaging with a label-free method that avoids phototoxicity and photobleaching from 

long duration fluorescence imaging. As an example enablement, label-free QPI separately 

quantified neuronal body (soma) and projection (neurite) masses, which showed that most mass 

accumulation during a 5 d in vitro neuronal differentiation protocol goes towards the production 

of new neurite connections rather than strengthening of existing connections173. The process of 

neuronal branching has also been quantified using QPI plus machine learning as an alternative to 

fluorescent staining174. The high sensitivity of QPI has been leveraged to track the transport of 

individual vesicles within neuronal processes175. QPI has also been applied to measure long term 

(~1 min) responses of neurons to stimulation related to transmembrane ion fluxes176 as well as 

short term (~0.1 ms)164 fluctuations in neuron shape during neuronal spikes111. 
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Applications of QPI in biophysics and biomechanics studies 

In addition to measuring total cell mass, QPI can also measure the distribution of dry mass within 

cells. Measurements of intracellular mass distributions and redistributions over time can also 

reveal cell movement and intracellular transport phenomena. These two features of QPI data 

collection and analysis are foundational for applications in cell biophysics and biomechanics. In 

particular, measurements of the movement of mass between cell regions is enabling for 

applications in intracellular transport, whereas measurements of the shape and structure of a cell 

and how it changes over time is enabling for measurements of cell mechanics. 

 

Applications of QPI in measuring the physical structure of a cell 

Another biophysical application of QPI is to measure the structural features of individual cells and 

use this information to inform physical models. A recent study showed that the morphological 

differences in retinal nuclei of mice correspond to a pattern of nuclear architecture common to 

other nocturnal mammals177. Specifically, adult mouse retinal cells showed a spatially organized 

nuclear refractive index pattern, which contrasted with a more dispersed refractive index pattern 

uncovered in diurnal pig or immature mouse retinal cells. Simulations of light transmission found 

that the refractive index pattern in mouse retinal cells more effectively focused light and reduced 

scattering, suggesting a potential role in enhancing nocturnal vision. This result generated much 

discussion on the role of refractive index patterns in the nucleus. The appearance of a large phase 

shift through cell nuclei supports a physical model of a reduced nuclear refractive index178, which 

has been validated in other studies reporting a lower refractive index in nuclei than in the 

cytoplasm179-182. These results were further supported by 3D QPI results that also showed a lower 

nuclear refractive index outside of the nucleolus183, 184. 
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Applications of QPI in studies of intracellular transport 

Intra- and inter-cellular transport of biomaterials are required for cell growth and function, with 

patterns of transport providing information on cell behavior, disease states, and cellular responses 

to changing environmental conditions. Two relatively common, non-QPI methods for studying 

cellular transport employ fluorescent labels typically attached to biomolecules, or to introduced 

particles, coupled with live cell imaging185, 186, and label-free techniques, such as DIC 

microscopy187. Imaging of fluorescently tagged markers provides a high degree of specificity, and 

can be quite sensitive, but suffers the disadvantages of photobleaching, limiting transport study 

times, phototoxicity, which can induce cell stress and modify cell behavior, and autofluorescence, 

which excitation or emission filters may not completely remove188. These imaging limitations are 

irrelevant for QPI, although there is a loss of biomolecule specificity and sensitivity187. As 

discussed previously, QPI, unlike DIC and phase-contrast imaging, also quantifies the dry mass of 

cells and some tracked intra- and inter-cellular components, such as lipid droplets, revealing that 

lipid trafficking motion ranges from subdiffusive to active transport189. As a label-free method that 

provides additional quantitative data on cell behavior, QPI is a good option to consider for 

measurements of intracellular transport. 

 

Imaging interferometry coupled to finite element analysis measured the intracellular transport of 

dry mass in fibroblasts at low resolution and showed that the kinetic energy of intracellular motility 

can be several hundred times greater than the kinetic energy of cellular translocation across a 

surface190. Recent improvements in image processing speed and methods are helping to increase 

the scope of intracellular transport studies available to QPI platform methods. For example, SLIM 
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measured the label-free diffusion of organelles and vesicles in hippocampal neurons and 

cardiomyocytes using a Laplace operator, with extended transport study time enabling extraction 

of diffusion coefficients175. SLIM also revealed the 3D time series movement of dry mass in 

neurons. Results were analyzed using dispersion-relation phase spectroscopy, a method to measure 

the spatiotemporal decay of the autocorrelation signal of phase175, and revealed differences 

between transport in neuronal bodies and neurites, and also between longitudinal and transverse 

trafficking orientations191. Additional SLIM platform studies were inconsistent with purely passive 

diffusion and suggested advective transport of cargo within neuronal dendrites, also using the 

dispersion-relation phase spectroscopy analytic technique175. A holo-tomographic version of QPI 

combined with epifluorescence examined mitochondrial network and lipid droplet dynamics inside 

HeLa endocervical carcinoma cells. Features uncovered included the shape and dry mass dynamics 

of lipid droplets, endocytic structures, and a multi-organelle spinning phenomenon whose 

underlying mechanism remains undefined 192. 

 

An alternative to QPI tracking of individual particles is phase correlation imaging. This method 

measures the temporal decorrelation time of QPI collected data based on fluctuations of cell 

refractive index as an indicator of intracellular mass transport. A549 lung carcinoma cells were 

imaged using SLIM and treated with an actin polymerization inhibitor, cytochalasin-D, which 

showed only small local effects, but also uncovered a distribution of correlation times that is 

qualitatively different for quiescent and senescent cells, without cell labeling, providing a creative 

method for identifying quiescent versus senescent cells within a cell population193. Another 

application of phase correlation imaging revealed that intracellular mass transport rates were 

significantly different for osteoblast cells with different levels of migratory capacity194. Studies of 
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aggressive, highly metastatic HeLa cells using SLIM and dispersion-relation phase spectroscopy 

revealed that mass transport in the cytoplasm was mainly active (ballistic, directed), compared to 

the nucleus which showed active and passive (diffusive) components, with faster mass transport 

in the cytoplasm than the nucleus195.  

 

Applications of QPI to cell migration assays 

QPI provides a label-free alternative method to DIC or phase contrast microscopy for conventional 

cell motility or wound healing assays. An advantage of QPI in this application is that it additionally 

captures quantitative information on other cell features. For example, a commercially-available 

digital holographic cytometry version of QPI was equipped with semi-automated image 

acquisition, segmentation, and analysis software. Measurements of melanoma cell motility and 

metastatic potential were highly accurate in a comparison with field-standard measures of wound 

healing, transwell migration, and invasion assays, with the added benefits of identifying rare 

hypermotile metastatic cells and an ability to distinguish motility from cell division associated cell 

displacement196. Measurements of cell mass and morphology with the same system could similarly 

track kinetic epithelial-to-mesenchymal cell transitions in heterogeneous cultures197. Finally, 

optical diffraction tomography, a three-dimensional, label-free QPI-based imaging method, was 

used to study and quantify the dynamics of NIH3T3 cell migration in a wound healing assay, 

revealing single cell resolution of subcellular structure behavior and transport that underlies the 

mechanisms involved in gap closure and closure rate, with potential implications for 

pharmaceuticals development or re-purposing198. 

 

Applications of QPI for measuring biophysical cell properties 
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QPI can measure the distribution of mass within a cell, including the mass due to structural 

elements such as the cytoskeleton, and how this distribution changes over time. It is, therefore, 

possible to extract information about the biophysical properties of single cells193-195, such as 

effective cell stiffness and cell viscosity, from QPI data. These viscoelastic properties, in turn, 

underlie cell structure, movement, and function and have increasingly served as biomarkers for 

diseases199, cell states200, and biological transitions201. A standard method for measuring cell 

viscous and elastic properties is to examine stiffness and elastic, dissipative responses to an applied 

stress. Numerous physically interactive methods have evolved to make such measurements, 

including by cell deformation using an AFM202, 203, or by using external and intracellular introduced 

probes, as in particle tracking microrheology203-205. The use of probes206 and applied stress207, 

however, can affect cell behavior and impact measurements of cell viscoelasticity. Thus, the use 

of non-interactive techniques, such as those based on QPI, could circumvent or at least minimize 

these potential confounding influences. 

 

QPI measurements of viscoelasticity divide into two main categories: (1) static measurements 

based on the spatial distribution and structure of mass within cells, including the cell cytoskeleton, 

and (2) dynamic measurements of changing cell mass distributions based on the temporal 

redistribution of mass. Early QPI dynamic measurements of viscoelasticity utilized sustained and 

rhythmic, temporal actuation and relaxation of magnetic beads as a form of spherical indenter, to 

induce local, transmitted stress on fibroblasts and observe the resulting mass redistribution and 

cell stiffening over time31. Actuated magnetic beads and QPI measurements also probed different 

cell types with and without cytoskeletal disruptions207 (Figure 4a), whereas an optical stretching 

method was also applied in conjunction with DHM to examine differentiating marrow precursor 
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cells for changes in subcellular structure and refractive index208. A key disadvantage in these 

studies, however, is that they required the use of non-native probes. By contrast, probe-

independent, noncontact studies of RBCs used QPI to measure fluctuations in cell shape, coupled 

to a mechanical model of the relatively simple discoid structure of RBCs. This method was then 

used to quantify changes in RBC membrane shear, area, and bending moduli during transitions 

from discoid to abnormal echinocyte and spherical shapes, with potential implications for 

circulation and oxygen delivery to tissues209 (Figure 4b). However, this method requires a 

mechanical model, which in this case is limited to enucleated RBCs. More recent noncontact 

studies linked static QPI measurements of mass distribution in nucleated cells to spatial disorder 

strength, a measure of mass organization within cells including the cytoskeleton (Figures 4c), to 

HT-29 colon cancer cell shear stiffness210 and the elastic moduli of two breast cancer cell lines 

(MCF-7 and BT-474 cells) 211. Dynamic QPI measurements of mass redistribution rates for MCF-

7, BT-474, and HeLa cells quantified both cell stiffness and elastic moduli during growth (Figure 

4d) and during an epithelial-to-mesenchymal cell state transition212. Combined, these and future 

studies suggest a powerful and emerging opportunity for QPI to quantify cellular biophysical and 

biomechanical properties that traditional biochemical, molecular, and cell biology measurements 

alone cannot provide.  
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FIGURE 4 QPI biomechanics measurement evolution. (a) Early QPI biomechanical analyses 

required physical perturbations, such as actuation of a magnetic bead indenter on NIH3T3 

fibroblasts (top) or HeLa carcinoma cells to extract Young’s modulus (E; bottom) (Adapted with 

permission from 207, Copyright 2008 IOP Publishing Ltd.). (b) Detailed mechanical modeling from 

contactless measurements of biomechanical properties of red blood cells (RBCs; top left) using 

natural fluctuations in phase caused by membrane motion (top right) captures mechanical property 

variations (bottom) for populations of normal (DC), speculated (EC), and spherical (SC) shaped 

RBCs (Adapted with permission from 209, Copyright 2010 National Academy of Sciences, U.S.A.). 

Scale bar = 1.5 μm. (c)QPI phase (top-middle) of  more complex cells HT-29 wild-type and shRNA 

(top left), HT-29 with CSK shRNA-mediated knock down (top middle), A431 epidermoid 

carcinoma control (top right) and cytochalasin D treated A431 (middle left) cells, and A549 lung 

adenocarcinoma cells (middle right) used to compute a mean phase disorder strength, related to 

intracellular cytoskeletal structure and independent measurements of shear stiffness (bottom) 
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(Adapted with permission from 210, Copyright 2017 Elsevier). (d) Time lapse QPI data (top) 

showing the redistribution of mass within single cells and cell clusters, which provides both 

resistance to deformation and decay terms. These terms were validated by comparisons with AFM 

measurements of stiffness (bottom left) and viscosity (bottom right) for MCF-7 and BT-474 breast 

carcinoma cells, and for HeLa endocervical carcinoma cells, treated with different concentrations 

of cytochalasin B (Adapted with permission under Creative Commons Attribution (CC BY) 

license from  212, Copyright 2020 Nguyen et al.). 

 

Emerging QPI applications in preclinical and clinical studies 

There are a growing number of potential applications for QPI in clinical studies, with current 

studies mainly at the technology development, applications and validation stages. There are at least 

two major directions under development for QPI aiming towards clinical applications (Figure 5), 

which are (1) measurements of cell dry mass changes in response to therapeutic agents (Figure 

5c) and (2) measurements of cell morphologies and disease states (Figures 5a, 5d). These 

applications leverage QPI for quantitative and label-free measurements of individual cells and cell 

clusters. 

 

QPI biomass applications in screening and drug therapy 

Changes in dry cell mass detected by QPI has been used to measure single tumor cell sensitivity 

to cancer therapeutics213. The range of applications shown includes evaluating mitotic inhibitors 

with different mechanisms of action214, examining the rate and extent of cancer cell escape and re-

growth following senescence induction215, and uncovering the response heterogeneity of a mixed 

sensitive and resistant cancer cell population to specific drug treatment53. Because QPI can track 
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the kinetics of dry mass growth responses of individual cells or clusters of cells within large 

populations of cells over time, heterogeneous cell responses to therapeutics are readily identified. 

For example, rare drug resistant diffuse large B cell lymphoma (DLBCL) cells within a population 

of DLBCL cells sensitive to a PI3-kinase inhibitor, idelalisib, were identifiable by continued mass 

accumulation and could, in concept, be isolated and recovered for further studies53, 213, 216 Pre-

clinical dry mass accumulation rate studies using patient derived xenografts predicted drug 

sensitivity for triple negative breast cancers, providing a potential QPI application for drug 

selection in the emerging area of personalized oncology217, 218 (Figure 5c). A separate drug 

screening in breast cancer study applied QPI to capture drug sensitivity that was consistent with 

findings from current standard approaches, as well as multiple additional physiologically relevant 

parameters that characterized cell responses to therapy219. As discussed above, QPI measured 

viscoelasticity can differentiate between epithelial and mesenchymal states212, a state transition 

that is a cardinal feature of cancer cell metastasis, and phase correlation imaging discriminated 

between quiescent and senescent cells, with potential implications for drug resistance and tumor 

reemergence193. 

 

QPI morphological applications in diagnostics 

Anatomic pathologists have long used changes in cellular morphology and tissue architecture to 

diagnose disease, as changes in morphology represent changes in cell state and function as, for 

example, plasma membrane blebs can indicate dynamic cytoskeleton-regulated cell protrusions in 

apoptosis, cytokinesis, and cell movement220. Accordingly, diagnostic applications of QPI focus 

on cell state to provide a diagnostic tool with early attempts using features from QPI images to 

screen for cancerous tissue221. QPI tissue spatial correlation, a measure of refractive index map 
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correlation length that may represent nanoscale cell morphology in fixed tissue samples, provided 

a biomarker that distinguished between malignant and benign breast cancer biopsy samples222. 

When combined with dry mass measurements, QPI identified and classified different kinetic states 

for a population of melanoma cells in culture223. In applications with RBCs, morphology studies 

using QPI identified Plasmodium falciparum infection of RBCs224 and suggested the possibility 

that QPI measurements of cell membrane dynamics could identify additional pathologies that 

cause or accompany other human diseases223, 224 (Figure 5a). QPI using white light interferograms 

with red, green and blue wavelengths separated electronically helped determine morphological 

features of RBCs225, as did using DHM with data clustering and discriminant analysis226. “Real 

time” QPI measurements of blood samples have been demonstrated, utilizing parallel computing 

strategies to calculate diagnostically relevant cell parameters without storing phase images, 

allowing for smaller electronic storage and data transmission requirements, which could benefit 

remote diagnoses of RBC diseases227. QPI has also been used to measure morphology changes in 

HTori thyroid cells during treatment with plasma from a nanosecond dielectric barrier discharge228, 

changes in macrophages from chemically induced apoptosis and dynamic phagocytosis162, and for 

sperm selection for bovine in vitro fertilization229. SLIM and tissue spatial correlation analysis was 

used to assess breast cancer fixed tissue microarrays and showed a 94% sensitivity and 85% 

specificity for cancer detection230 (Figure 5d), independent of tissue staining quality.  
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FIGURE 5 Progress towards QPI clinical applications as a screening and selection tool for 

treatments, and as a diagnostic tool to identify healthy versus diseased states. (a) Specific QPI 

features can be used to identify disease or changes from a healthy or control state. For example, 

QPI measured differences in RBC membrane fluctuations at 37°C and 41°C in vitro can distinguish 

between healthy and ring, trophozoite, or schizont diseased states with P. falciparum parasitic 

infection (Adapted with permission from 224, Copyright 2008 National Academy of Sciences, 

U.S.A.). (b) Once QPI features of interest are identified, validation is sought with an independent, 

orthogonal method, if available. For example, shown here is an area under the curve (AUC) or 

receiver operating characteristic (ROC) plot of the true positive (sensitivity) versus false positive 

(specificity) rate determining malignance from hematoxylin and eosin counter-stained tissue 

biopsy. This previously validated method is used to validate QPI determined malignant state for 
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breast tissue biopsies (Adapted with permission under Creative Commons Attribution (CC BY) 

license from230, Copyright 2018 Majeed et al.). (c) Validation of a QPI measured feature in a 

specific context can broaden its utility. For example, validation of QPI measured changes in 

growth rate was successfully applied to identify effective treatments from a pool of candidate 

agents against carboplatin-resistant, patient-derived xenograft HCI09 breast carcinoma cells 

(Adapted with permission under Creative Commons Attribution (CC BY) license from 218, 

Copyright 2019 Murray et al.). (d) Example of QPI as a diagnostic tool, with spatial light 

interference microscopy (SLIM; middle and right columns) identification of benign (top row) 

versus malignant (bottom row) glandular tissue, validated by pathological classification of 

hematoxylin and eosin stained biopsy material  (left column) (Adapted with permission under 

Creative Commons Attribution (CC BY) license from 230. Copyright 2018 Majeed et al.). 

 

ONGOING DEVELOPMENTS 

Quantitative phase tomography 

The transition from generating two-dimensional (2D) quantitative phase images to tomographic 

images that capture the 3D structure of specimens is an ongoing development in QPI. While 3D 

imaging is fairly common with fluorescent biomarkers using confocal or widefield microscopy 

and digital image processing reconstruction231, the use of fluorescence tags has disadvantages that 

include photobleaching and phototoxicity with increased imaging time232. Imaging based on the 

inherent contrast provided by natural variation in refractive index eliminates these label-related 

problems. Tomography refers to the stacking of 2D planes or images acquired at multiple imaging 

angles to reconstruct 3D structures of specimens called tomographs. Although the principle of 

interferometric tomography was proposed in the 1960s233 and experimentally demonstrated in the 
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1980s234, tomographic image reconstruction was too computationally intensive to be routinely 

used for QPI until decades later235. Reconstruction of quantitative phase tomography from 

scattering images of polystyrene beads using Mach-Zehnder interferometry236, and then 

polystyrene foam from DHM images was demonstrated237, followed by measurements of the 3D 

refractive index and the absorbance profile of optical fibers using phase retrieval and tomographic 

reconstruction238(Figure 6a).  

 

Whereas 2D QPI measures the integral of ∆n, the refractive index of the sample relative to the 

surrounding media through the thickness of the sample in each imaging pixel, Quantitative phase 

tomography maps ∆n within each voxel. Advances in tomography have focused on increased 

precision and accuracy of 3D refractive index mapping using DHM assisted tomography239 

(Figure 6b). Tomography has also been developed from phase shifting interferometry240, and 

light-emitting diode (LED) array microscopy, which forms the basis of DPC phase 

reconstruction63, 241. LED array systems are capable of an impressive 0.25 s acquisition time, made 

possible with optimized sample illumination242 (Figure 6c). Another method for acquiring 

tomographic images for use in image reconstruction is by acquisition of holographic phase images 

at a series of angular projections using illumination with a rotating fiber optic, resulting in a 1 Hz 

imaging rate243. Intensity diffraction tomography using annular LED illumination has improved 

imaging speed, and achieved diffraction limited resolution244. 
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FIGURE 6 Progress in QPI tomography from applications with static optical fibers to 

multicellular organisms. (a) QPI tomography analysis of cross-sections of optical fibers (top). A 

common feature of QPI tomography is recovery of the 3D refractive index distribution, rather than 

the integrated refractive index through the sample thickness, as in 2D QPI. This is shown by the 

refractive index distribution measured as a line profile through the sample (bottom) (Reproduced 

from 238, Copyright 2000 Elsevier). (b) QPI tomography of single cell protozoan, Hyalosphenia 

papilio, with refractive index reconstructions shown as different 2D slices (Adapted from 

239,©2006 The Optical Society). (c) Multiplexed intensity diffraction tomography of multicellular 

Caenorhabditis elegans embryos. Shown are in-focus refractive index (top row) and depth-coded 

projections of volumetric reconstruction (bottom row). Red and orange arrows indicate 

developmental stages of the embryos. Individual developing tissues, the buccal cavity (white box), 

intestine (blue box), and native bacteria (blue arrow), are visible (Reproduced with permission 

from 242, ©2019 The Optical Society). 
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A promising application of tomographic QPI to measure subcellular structures is the interrogation 

of biomolecular condensates, which are membrane-less organelles or organelle subdomains that 

have been implicated in a wide range of cell behaviors including bone metastasis 245 and 

autophagy246. The process of phase separation has been studied with 3D QPI with identification 

confirmed by fluorescence247. Future applications of QPI tomography can be combined with other 

QPI data analysis methods to reveal the essential biological mechanism(s) behind these structures. 

Another promising application of QPI tomography is the measurement of mass within 

multicellular specimens, such as whole animals240 (see in vivo section, below), or 3D organoids 

that are often used as in vitro models of development or disease248. 245-247Gradient light interference 

microscopy (GLIM) developed by combining aspects of DHM, DIC microscopy and low 

coherence interferometry enables 3D imaging of samples ranging from single cells to intact 

embryos for measurements of internal structures and their evolution in time249. Optical projection 

tomography uses DHM and analyzes movies of flowing samples to acquire images at multiple 

angles, resulting in reduced imaging time and a non-invasive solution for phase measurements of 

RBC aggregation250, an offshoot of which is called limited-angle holographic tomography. White 

light diffraction tomography performed by deconvolution of QPI stacks generates high-resolution 

QPI data of intracellular structures183. Quantitative oblique back-illumination microscopy (qOBM) 

enables tomography of a wide range of samples, from thick highly scattering248 to opaque251 

samples, by using multiple scattering paths generated within the sample to create an effective light 

source deep within the sample despite illuminating the sample in epi-mode. Overall, these selected 

example applications and approaches in quantitative phase tomography show that the ability to 

view and quantify sample features in 3D is very powerful. Since quantitative phase tomography is 

another QPI approach that relies heavily on computation for generating and processing 3D data, 
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this area will continue to benefit from ongoing advances in computing power and analytic 

software. 

 

QPI in tissues and in vivo  

There are ongoing efforts to apply QPI to tissue slices and the in vivo environment to limit the 

confounding effects of studying cell behavior in vitro (Figure 7). However, there exists several 

roadblocks to fully realizing this goal, including light scattering of thick samples, phase 

unwrapping errors due to long optical path lengths through thick tissues, and the small size of 

microscopes needed for imaging inside living organisms. One approach is to continue modifying 

techniques that have already been adapted for in vivo imaging for phase retrieval. A key example 

of this approach is the use of optical coherence tomography (OCT). OCT is a low-coherence 

interferometry method that leverages low temporal coherence to exclude scattered light outside a 

tissue slice of interest, coupled with backscattering of light, to image cross-sectional areas of 

tissues in situ252, 253.  An early approach added phase retrieval to OCT to enable QPI of human 

cheek cells(Figure 7a)254 and isolated chicken cardiomyocytes255. Phase sensitive OCT has also 

been extended into in vivo imaging of the human retina256 and its’ associated motion257. However, 

despite great improvements in phase stability, there is a still often a need for either manual or 

automatic phase unwrapping to correct for phase errors with this emerging technique. 

 

Another adaptive approach is to use QPI methods developed in an in vitro setting to address issues 

of light scattering in thick samples and phase unwrapping and then translate them for in vivo 

imaging through miniaturization. This has led to attempts to miniaturize certain platforms, such as 

diffraction phase microscopy (DPM), into an endoscope (i.e., eDPM)258, or to making a fiber optics 
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based qOBM system259. Demonstrations of these techniques have so far been limited to ex vivo 

imaging. The eDPM system has been used to measure stained white blood cells258 and a similar 

holographic endoscope method was applied to mouse esophageal tumor samples260, whereas the 

fiber optics qOBM imaging system has examined gliosarcoma cells from excised and formalin-

fixed rat brain tissue(Figure 7c)259. The most definitive application of in vivo QPI has been DHM 

imaging of red blood cells in micro capillaries within the mesentery of live mice (Figure 7b)261. 

By using 2D holograms from different angles, Sung et al. was able to reconstruct a 3D tomogram 

via optical diffraction tomography 262. Overall, work so far in this area points toward a bright future 

of applying various in vitro quantitative phase approaches to studies of mass regulation, 

biophysics, and the building of diagnostics based on QPI measurements of cells in vivo. 

 

FIGURE 7 Progression of in vivo QPI approaches. (a) Sample preparation for an in vivo 

technique called spectral-domain optical coherence phase microscopy (SD-OCPM; top) which 

generated optical path difference maps for human epithelial check cells (bottom) (Adapted from 
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254,© 2005 The Optical Society). (b) Diagram of live mouse heating stage setup for in vivo QPI 

(top). Representative QPI data from a  live mouse mesentery showing mouse microvasculature 

represented as optical phase delay maps reconstructed from holograms (bottom) (Adapted with 

permission under Creative Commons Attribution (CC BY) license from 261, Copyright 2016 Kim 

et al.). Scale bar = 10 μm. (c) Schematic of a fiber-based quantitative oblique back-illumination 

microscopy (qOBM) platform for imaging tumor tissue in excised rat brain (top), thereby 

generating QPI images from deconvolution of intensity images (bottom) (Adapted from 259, © 

2021 The Optical Society.). Scale bar = 50 μm. 

 

Multimodality approaches 

A key advantage of QPI is that it is label-free and captures data on all components that contribute 

to cell mass. However, a related limitation is that QPI data is not specific for any individual 

component of the cell. Therefore, a number of approaches and studies have combined QPI with 

other imaging modalities to learn more about cell structure and behavior (Figure 8). Two of the 

most promising connections are the combination of QPI with fluorescence detection through the 

tagging of specific molecules, and the combination of QPI with vibrational spectroscopy, for label-

free measurements of chemical compositions within the cell. 

 

Early combinations of fluorescence detection methods with QPI approaches263 to interrogate RBCs 

measured physical and optical thickness264, resolved substructures within cells265, and identified 

and characterized the mass distribution of subcellular components263, 266 (Figure 8). These initial 

approaches demonstrated QPI identification and measurement of different subcellular components 

within a cell that were manipulated to fluoresce. Fluorescence combined with QPI has also been 
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used to segregate different populations of cells in a mixed culture experiment53, track the behavior 

of rare subpopulations of primary human cells ex vivo167, or to determine different cell states212 

concurrently with mass accumulation and mass density measurements from niche cell populations. 

Dual fluorescence plus QPI combinations have also enabled biomechanical interrogations of cell 

responses to optical tweezers267 and dual traction force and growth measurements268. The 

combination of SLIM and an epifluorescence traction stress imaging method, Hilbert phase 

dynamometry269, was used to study mesenchymal stem cell growth and differentiation into 

osteocytes and adipocytes. Results showed that during osteogenesis and adipogenesis, greater 

force is exerted by these cell types on their growth substrates than by mesenchymal stem cells, 

which develop the least force and show the lowest growth rate268. 

 

FIGURE 8 Examples of the opportunities available from coupling QPI with additional imaging 

modalities. (a) QPI of kidney cells paired with fluorescence detection enables the identification 

and quantification of dry mass changes, represented by phase shifts, within subcellular regions 

(right), such as the nucleus, identified by Hoechst staining (bottom left) (Reproduced with 

permission from 263, © 2006 The Optical Society). (b) Enhanced fast image acquisition of dual 3D 

fluorescence (top right) and refractive index measurements from tomographic QPI (top left). This 

accelerated approach provides the necessary capture speed in image scanning to reconstruct 3D 
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tomograms of A549 cells for both fluorescence (bottom right) and QPI (bottom left) measurements 

from z-step data (Adapted with permission from 270, © 2017 The Optical Society). (c) Molecular 

vibrational spectroscopy paired with QPI of COS7 cells (top left) examined for molecular 

signatures, such as CH2 (top center) and peptide bending (top left), corresponding to subcellular 

phase shifts within the nucleus (orange), cytoplasm (blue), relative to empty space control (grey) 

(bottom) (Reproduced with permission from 271, © 2020 The Optical Society). 

 

In general, combined 3D QPI/ 3D fluorescence techniques can differentiate subcellular 

components while rendering a map of cell refractive index272 and identifying the refractive index 

of subcellular regions273. Combined 3D fluorescence detection and refractive index tomography 

on cells with fluorescently labelled nuclei, mitochondria and actin enabled registration of the 

refractive index profile with the labeled subcellular components274. Optical diffraction tomography 

has also been used in combination with 2D fluorescence to validate measurements of lipid 

content272. Moving towards the acquisition of functional data from 3D structure, studies using 

combinations of refractive index tomography with fluorescence sub-diffraction microscopy enable 

concurrent studies of cell biophysical properties and biochemical functions265, 270. Further 

advances include high-speed correlative 3D QPI/3D fluorescence techniques270, which have 

evolved to enable 200 Hz imaging of 4D maps of cell structures275. With the addition of machine 

learning, more advances are possible due to the vast amount of morphological and molecular data 

collected by dual fluorescence QPI combination modalities, thereby enabling more complex 

analyses. 
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Another multimodal approach of interest is the combination of QPI with molecular vibrational 

spectroscopy to measure chemical composition (Figure 8c). Extracting chemical composition 

from QPI alone has been attempted as quantitative phase spectroscopy (QPS), but with limited 

success. QPS uses phase measurements over a range of wavelengths to estimate the component 

distributions in samples. This approach has been applied to measure hemoglobin276 or BSA277 

concentrations in solution, and has been applied to measure healthy277 and diseased278 RBCs. This 

approach has also been extended to 3D tomography279. However, using this approach to decipher 

more complex cellular contents is limited by the relatively small variation in phase delay of 

biomolecules in visible light. Molecular vibrational spectroscopy techniques generate vibrational 

spectra of molecules measured from their linear absorption and inelastic light scattering280. These 

vibrational spectra are dependent on the chemical structure and environmental interactions of the 

molecules and thus can provide information on the chemical composition of materials. Raman 

spectroscopy, which is a type of vibrational spectroscopy, relies upon the inelastic scattering of 

photons to determine the vibrational modes of molecules, allowing for the detailed identification 

of chemical composition. However, use of scattering spectroscopy methods may generate an issue 

with limited signal in applications with live cells. To overcome this limitation typically requires 

either high illumination power, which induces phototoxicity, or metal probes for surface enhanced 

Raman, which can foul in solution environments. Nonetheless, label-free identification of 

chemical compositions within cells is an ideal complement to the less specific biomass information 

obtained with QPI.  

 

Dual modality QPI plus molecular vibrational spectroscopy has been applied with a mid-infrared 

light source to characterize specific molecular contents with cellular mass distributions271. Raman 
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spectroscopy has been applied to characterize both the morphological dry mass and chemical 

composition within cells281. Combined Raman QPI approaches have also examined dry mass, mass 

density, and protein and lipid composition under ultraviolet radiation282, and with the help of 

machine learning classified normal and cancerous tissues283. Combined, QPI with molecular 

vibrational spectroscopy enables the examination of chemical composition and biomass kinetics 

(Figure 8c), to further dissect core biological mechanisms and processes. 

Brillouin microscopy is a noninvasive, label-free microscopy method to measure viscoelastic 

properties of cells and tissues284 that has also been combined with QPI. Brillouin microscopy uses 

inelastic scattering to determine the viscoelasticity of heterogeneous materials of known density 

and refractive index. Brillouin microscopy was combined with optical coherence tomography to 

study biomechanical properties in tissues, including stiffness, elasticity and structural changes in 

embryos285, 286. Brillouin microscopy has also been combined with optical diffraction tomography 

and fluorescence microscopy to measure the refractive index, density and elasticity of specific 

fluorescently labelled structures inside cells287. 

 

As a label-free method based on brightfield microscopy, QPI can be added to other microscope 

imaging modalities beyond fluorescence and vibrational imaging methods. For example, 

quantitative label-free imaging with phase and polarization (QLIPP), a combination of defocused 

QPI and polarization microscopy, can measure volumetric phase, retardance and orientation, 

which is useful for studying structures in cells and tissue slices288. There is, therefore, a broad 

potential future for multimodality work in biological and potential clinical applications of QPI. 

 

Machine learning 
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Machine learning has propelled many recent advances in QPI, such as improving phase 

reconstruction for QPI images, improving segmentation and tracking for processing QPI data, and 

improving data labeling and classification (Figure 9). In terms of pre-processing, machine learning 

can help improve the reliability of phase reconstruction algorithms. Most work applying machine 

learning to QPI uses convolution neural network (CNN) variants, such as U-Net289. CNN is well 

suited for phase recovery as it considers multiple pixels in the process of data condensation, unlike 

perceptron models that use individual pixel input290. For example, in the area of phase retrieval, 

machine learning has been used to reconstruct TIE results with a single intensity image, and can 

eliminate errors arising at the boundaries of images during TIE reconstructions as well as the 

impact of noise87. Machine learning can also benefit wavefront sensing290, 291. For example, a 

diffuser can be used to generate random speckles that then work as a wavefront sensor, when 

combined with a neural network trained on phase objects292. Phase unwrapping is often an issue 

in interferometric methods43, and a one-step correction for phase unwrapping errors has therefore 

been introduced using machine learning methods293. Holographic image reconstruction has also 

been performed from single intensity images using machine learning, with validation on pap 

smears and human tissue samples88. 

 

Machine learning is also helpful in QPI data post-processing steps. Here, CNNs are the most 

widely used approaches as well. Machine learning networks have been designed to segment 

microscope images294, and process cell tracking data, counting, and characterization295. Machine 

learning algorithms on unlabeled QPI images can compute or false-colorize staining patterns 

created by computer labelling of different organelles and components within cells. For example, 

machine learning can be used to identify lipid droplets in unlabeled QPI images296. A related 
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machine learning approach, called PhaseStain, was developed for label-free staining of QPI 

images297. This method has been extended for real-time staining and classification of sperm 

cells298, identification of cells from subcellular components299, and generation of pseudo-

fluorescence images from label-free QPI data297, 300. The change in dry mass of subcellular 

structures has been measured over time using phase imaging with computational specificity 

(PICS), which segments QPI data with machine learning approaches301. 

 

One especially promising application of machine learning methods for QPI studies is in the 

classification and identification of cells and tissues. Classification schemes using machine learning 

algorithms can help reduce the time and labor involved in traditional pathology, while the label-

free nature of QPI simplifies data collection. Statistical classification from QPI data was 

demonstrated using basic feature recognition algorithms for the classification of 

microorganisms302, 303. Similar classification schemes were later improved using machine learning 

approaches304, 305. Machine learning has since been used with QPI data for classifying specific cell 

death pathways306; categorizing the health and quality of human spermatozoa for in vitro 

fertilization307 308; screening red blood cells for hematologic disorders309, 310 including sickle cell 

disease311 and malaria312; and identifying and classifying microorganisms313. In cancer studies, 

machine learning has been applied to QPI data for scoring cancer cells as epithelial or 

mesenchymal in origin314, phenotypic profiling of cancer and non-cancer cell lines315, as a 

diagnostic tool in pancreatic cancer316, and to quantify dynamic responses of melanoma cells to 

therapy223 (Figure 9d,e). Machine learning with QPI in combination with data from additional 

techniques helps increase the accuracy of classification, as it increases the number of data inputs 

into selected classification methods. For example, QPI, fluorescence, and Raman spectroscopy 
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have been combined as inputs into a machine learning algorithm to detect macrophage 

activation317. Raman imaging and QPI combined with machine learning has also been applied to 

recognize stages of B cell acute lymphoblastic leukemia318. Overall, machine learning is poised to 

play an ever-increasing role in both the generation and interpretation of QPI data, and has already 

touched upon nearly every major application of QPI. 

 

FIGURE 9 Machine learning has been applied to all three stages of a typical QPI processing 

and analysis pipeline: 1. computation of phase data, 2. labeling of phase images, and 3. feature-

based cell classification. (a) Phase image reconstruction from a single over-focus or under-focus 

image using deep learning and transport of intensity (TIE) algorithm. The error of phase 

calculation using the combined deep learning TIE method is under 0.06 π for the 'Network+' 

learning-based method using one over-focus image and the 'Network-' method using an under-

focus image when compared to the ground truth calculated from three images using TIE 

(Reproduced with permission from 87, Copyright 2020 Elsevier). (b) PhaseStain is a digital staining 
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method developed using deep learning on holographic microscopy images, to perform virtual 

staining of tissues from label-free QPI images. The stained images produced are similar to 

histological staining observed under a brightfield microscope. (c) A zoomed-in view comparing 

the liver tissue section stained using PhaseStain and Masson's trichrome staining (Reproduced with 

permission under Creative Commons Attribution (CC BY) license from 297, Copyright 2019 

Rivenson et al.). (d, e) Machine learning to classify cell states during the epithelial-to-

mesenchymal transition (EMT). M-phase, pro-apoptotic, and growth-arrested cell states occurring 

during EMT can be distinguished from untreated control cells using machine learning, utilizing 

cell features identified from QPI (Reproduced with permission under Creative Commons 

Attribution (CC BY) license from 223, Copyright 2017 Hejna et al.). 

 

CONCLUSIONS AND PERSPECTIVE 

QPI is an approach with a long history. However, the last two decades have seen great leaps in 

both the abilities and applications of QPI. The rapid recent development of QPI is from impressive 

advances in image processing capabilities enabled by digitalization and increasing computational 

power (Figure 1a). This development and application of computational tools has substantially 

increased the utility and power of QPI in its application to biomedicine and permitted the 

development and commercialization of prebuilt and user-friendly QPI platforms. Consequently, 

recent years have witnessed a surging interest in QPI, coupled to a dramatic increase in QPI 

enabled publications and discoveries (Figure 1b). This marked expansion of QPI applications is 

also being fueled by leveraging machine learning approaches and is increasingly impacting areas 

that are beginning to include disease diagnoses and measurements of biological state transitions. 

While exciting, this recent and rapid adoption of QPI platforms and associated published studies 
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has also highlighted the dearth of standardization tools and practices beyond the adaptation of 

polystyrene beads124 as phase standards. Developing and circulating such tools will be critical for 

reproducible studies and validation of future QPI-based diagnostics and other applications.   

Current areas of QPI utility include studies of cell size and its regulation, cellular diagnostics and 

screens, and biomechanics and biophysics. One key strength of QPI approaches includes label-

free classification of key cellular behaviors such as programmed cell death pathways, 

differentiation, cell cycle progression, and immunological responses. Assessing these behaviors in 

the context of changes in biomass density, morphology, transport, and viscoelastic properties 

provides a deeper understanding of adaptations during cell or organismal life. A second key 

strength is the ability to study single cells or individual cell clusters over long periods of time. As 

techniques in single cell profiling continue development with increasing reports on molecularly 

distinct subpopulations of cells, QPI provides a platform for assessing distinct phenotypes and 

behaviors within these heterogeneous populations. Further development of multimodal approaches 

will be critical for merging the observations made using single cell molecular profiling with QPI 

single cell phenotyping. 

 

Finally, although there have been a large number of studies pointing towards clinical utility of 

QPI, this approach is ready for more robust validation and testing with clinical samples. As a label-

free approach that can quantify multiple physiologically relevant parameters describing the 

behavior of living cells, QPI is well positioned to work with clinical samples. QPI therefore has 

the potential to enable a wide range of clinical applications in functional and diagnostic medicine, 

both as an addition to current approaches that rely on staining and as an independent ex vivo 
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approach. Further work is therefore needed to build on the demonstrated capabilities of QPI to 

translate this technology to clinical utility and ultimately to improve the standard of patient care. 
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Chapter 5. Conclusion 
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The works presented in this thesis are just two ways to approach modeling biomechanical 

properties with QPI. The first study looked at using mass redistribution as measured with QPI via 

autocorrelation and modeling with a simple viscoelastic mechanical model to generate information 

on stiffness and viscosity for a variety of cell lines along with molecular perturbations and 

biological transition. The second study examined how information extracted from QPI could be 

used to quantify the amount of work cells were used for mass accumulation versus that of motion 

through a series of mechanical derivations. Finally, this thesis presented a comprehensive review 

of the QPI with respect with to its’ usage in biomedicine. 

 

FUTURE DIRECTIONS 

Expansion on the preexisting work in this thesis can be found applying various QPR models of 

viscoelasticity to interrogate other biological questions. An example would be applying these QPR 

techniques to measure the changes in viscoelasticity during differentiation or immune responses, 

it also be explored how chemical or biological perturbations on viscoelasticity during such 

scenarios may affect the outcome or survival of certain cells as they differentiate or are targeted 

by an immune response. Other biological relevant question would be how mtDNA damage or 

mutantation may facilitate cascading signals that modulate cellular viscoelasticity. The same 

approach could be applied to the studies on cellular work, where there is a great deal of interest on 

how cells undergoing different germ lineage differentiation end up partitioning their energy usage 

in terms of mass accumulation vs. motion as well as during other biological transitions. 

 

Besides further perturbation of these established biomechanical properties or exploration of other 

ways to dissect out more information from QPI data, there are four broad directions that QPI is 
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expanding towards. This thesis had already extensively examined them in the previous section but 

to summarize they are quantitative phase tomography, QPI in tissues and in vivo, multimodality 

approaches, and machine learning. Each approach expands the limits of QPI either by unlocking 

more questions to which QPI can be applied or the amount of information QPI could generate. 

 

A simple advancement of QPI is the application into 3D structures through quantitative phase 

tomography which makes use of the already extensive possibilities of QPI with the added effect 

of extra axis in space. Where 2D QPI measured the integral of the refractive index of the sample 

through the thickness of the sample at each imaging pixel, quantitative phase tomography does 

same but within each voxel. These QPI tomography are developed from phase shifting 

interferometry1, and light-emitting diode (LED) array microscopy2, 3. This transition into 3D 

allows QPI to probe mass within multicellular specimens, such as whole animals1 or 3D organoids 

which are  in vitro models of development or disease4 expanding the range of biological questions  

QPI can tackle. 

 

On topic of animal models is the efforts to apply QPI to tissue slices and the in vivo environment 

due confounding effects of studying cell behavior in vitro. The approaches to this is to either 

modify techniques of in vivo imaging for phase retrieval like with optical coherence tomography5 

or use in vitro QPI and translate for the in vivo setting through miniaturization. An example would 

be moving the QPI diffraction phase microscopy system into an endoscope6. This would allow for 

more invasive studies in living organism instead of being confined to structures closer to the 

regions close to the surface of the skin7.  
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Another approach is to simply combine QPI with other imaging or measurement modality in QPI 

multimodality approaches. The most widely used multimodality QPI approach is QPI with 

fluorescence detection8, while more obscure ones are QPI molecular vibrational spectroscopy 

approaches9 including QPI Raman10 and Brillouin11, 12. This allows QPI to probe and dissect more 

information from the data collected by using the second imaging modality in order to segment or 

parse out structure, cellular state, or even chemical composition enabling QPI to answer even more 

mechanistically intensive questions. 

 

Incorporation of machine learning into QPI is another promising approach with studies already 

using them to ease image processing13 and post-processing14 steps for QPI. A popular approach to 

machine learning with QPI is to use the algorithm for classification using QPI15, 16. With the 

increasing numbers of biomechanical properties that can be measured with QPI including QPR 

viscoelasticity and cellular work, machine learning algorithm be better positioned to identify and 

classify cells in even more ambiguous cases. A novel approach for QPI machine learning can be 

using machine learning algorithm to fish for properties that are pertinent in identifying differences 

between cell types or state and then modeling what biological relevance such properties would 

have. 
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CONCLUSIONS 

The studies covered in this dissertation show the ability of QPI to tease apart biophysical properties 

of the cell through examination of cellular biomass and its’ associated properties. These studies 

demonstrate that even through a multitude of biological processes and transition QPI still retains 

its’ ability to dissect and model cellular properties through their relation to biomass regardless of 

cellular state or process. How cells and other biological samples produce and consume biomass is 

integral to biology and thus QPI with its’ ability to interrogate this property and the vast interaction 

underpinning is integral to answering questions in biology.  
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Appendix I. 3D Printed Electromagnet Compatible QPM System 
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Cellular viscoelasticity is an important property that can serve as biomarkers of disease1 and is 

usually defined via two parameters stiffness and viscosity characterizing either the elastic or 

dissipative components of a cell’s response to stress2. The elastic component has been widely used 

as a biomarker for cancer cells3, metastatic potential4, and cell migratory pattern5. The viscosity 

portion has been linked to multiple  biological processes, including diffusion6, 7, and cell disease 

state8, 9. 

 

Components that contribute most to cellular viscosity in mammalian cells are the various cellular 

cytoskeletal components from the lipid bilayer to the actin cortex. These components include 

things like microfilaments, microtubules, motor proteins, and various other structures. These 

structures are implicated in a host of different processes from adhesion10 to differentiation11. 

Although there are approaches to measuring cell viscoelastic properties including induced 

deformations12 or probes13. There are concerns on how these mechanical forces propagate 

throughout the cell14 or cell interactions with a probe15.  

 

There has been great interest using a contact-free, non-invasive approach that can accurately 

measures cell viscoelastic properties, one of which is based on quantitative phase imaging (QPI). 

QPI16 is a microscopy technique that measures the phase-shift of light due to its interactions with 

the non-aqueous biomass of a cell17, through experimentally determined cell-average specific 

refractive index, we can relate the phase shift of light to cell biomass18, 19. QPI has traditionally 

been used to study cell growth20, death21, and responses to chemotherapeutics or targeted 

inhibitors22-24. 
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Previous work25 by Reed et al. has shown that that it entirely possible to such mass information 

from the various organelle components of the cell as displacement probes. With the use of force 

perturbation via magnetic breads on the QPI, Reed et al. was also able to show how localized stress 

affected the mass distribution and rearrangement. Here we show a modified version of the device 

introduced by Reed et al. fabricated using an electromagnet and 3D printed materials allowing for 

ease of fabrication and more control of the force generated via the magnetic beads. 

 

Results 

The device is a modified version of the one by Reed at al. (Fig. 1a) which makes use of an 

electromagnet instead of a magnet with a stepper motor. The body of the device was fabricated 

through 3D printing with ABS materials from a CAD file designed (Fig. 1b) through Solidworks. 

In order to accommodate the electromagnet, the body of the device (Fig. 1c) that sits below the 

cell sample is hollow so an electromagnet can be set within and sealed with a round coverslip. The 

3D printed body is hollow due to the method of fabrication and so a heat conductive epoxy resin 

is used to fill up the hollow regions. A heat conductive base is then used to seal the bottom of the 

device with a hole to allow wiring to connect the electromagnet to a control device. 
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FIGURE 1 Schematic and example of electromagnet QPI setup. (a) A schematic using the base 

of the device fabricated by Reed et al. showing the substitution of an electromagnetic (Modified 

with permission from 25, © 2008 American Chemical Society). (b) CAD design of the body of the 

device generated via Solidworks. (c) Picture of a fully 3D printed and assembled device. 

 

The device was then tested with nickel microspheres on cantilevers and imaged on a Michelson 

interferometer showing the change in displacement due to the magnet turned off (Fig. 1a) and on 

(Fig. 1b). The system was then setup for live cell experiments using MCF-7 cells with intensity 

images for the cell bread setup (Fig. 1c) and QPI phase shift images taken of the cells (Fig. 1d). 

Demonstrating the system was cell compatible and had a functioning electromagnet for activing 

the microsphere for probing capabilities. 
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FIGURE 2 QPI images and data captured from electromagnet QPI setup. Distance distribution 

images of magnetic beads on cantilever (a) before and (b) activation of electromagnet. (c) Intensity 

and (d) phase images of MCF-7 cells with nickel microspheres. 
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Appendix II. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury 
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Table S1, Related to Figure 1. Bulk RNA-seq of injured and uninjured 
hearts at various time points after ischemic cardiac injury. 
gene remote injured logFC PValue padj 
Eci1 212.485 10.5747 -4.3262 2.3E-13 1.9E-09 
Hopx 137.718 4.90668 -4.8158 4E-13 1.9E-09 
Coq10a 85.4086 5.20377 -4.0414 5E-13 1.9E-09 
Sord 65.3544 4.87722 -3.7407 7.6E-13 2.1E-09 
C3ar1 3.16885 33.7355 3.41109 1.2E-12 2.1E-09 
Pxmp2 48.7392 1.54707 -4.9802 1.3E-12 2.1E-09 
Pla2g5 14.1208 0.32171 -5.4446 1.7E-12 2.1E-09 
Lilrb4a 7.45589 76.312 3.35256 2E-12 2.1E-09 
Efnb3 22.12 0.28632 -6.262 2.4E-12 2.1E-09 
Epha4 15.8721 1.31671 -3.5891 2.8E-12 2.1E-09 
Arhgap20 5.69792 0.42001 -3.7712 2.8E-12 2.1E-09 
Plin5 62.3632 1.83697 -5.1019 2.9E-12 2.1E-09 
Slc16a3 0.73492 13.9908 4.2392 3.6E-12 2.1E-09 
Nnt 96.8762 7.29169 -3.736 3.6E-12 2.1E-09 
Uqcr11 544.224 63.4257 -3.1005 4.3E-12 2.1E-09 
Ndufa12 133.209 18.2867 -2.8636 4.4E-12 2.1E-09 
Tcap 796.169 26.3537 -4.9385 4.5E-12 2.1E-09 
Ndufa5 339.506 30.495 -3.4807 4.7E-12 2.1E-09 
Tcirg1 3.28181 28.4011 3.11918 5.1E-12 2.1E-09 
Hadh 132.494 8.68993 -3.937 5.1E-12 2.1E-09 
Tecr 116.96 14.8088 -2.9837 5.1E-12 2.1E-09 
Mgst3 194.348 13.8882 -3.8161 5.7E-12 2.1E-09 
0610009O20Rik 62.4813 10.4165 -2.5847 5.7E-12 2.1E-09 
Gcdh 30.6936 4.00038 -2.9401 5.7E-12 2.1E-09 
Ech1 614.676 31.1068 -4.2992 6E-12 2.1E-09 
Fitm1 97.0067 2.6166 -5.2313 6E-12 2.1E-09 
Adamts4 1.02968 20.3908 4.31557 6.2E-12 2.1E-09 
Tcea3 70.8157 5.2562 -3.7522 6.3E-12 2.1E-09 
Ndufs3 88.0693 11.3406 -2.9583 6.8E-12 2.1E-09 
Pink1 232.258 17.5277 -3.7189 7E-12 2.1E-09 
Gstk1 48.4676 3.10138 -3.9818 7.2E-12 2.1E-09 
Mylk4 12.0123 0.20432 -5.8988 7.5E-12 2.1E-09 
Csf2ra 2.28256 26.4183 3.53019 7.7E-12 2.1E-09 
Itgb3 0.83645 9.88875 3.56389 7.8E-12 2.1E-09 
Abhd18 10.1543 0.78878 -3.6927 8.1E-12 2.1E-09 
Hsdl2 126.304 10.8197 -3.552 8.1E-12 2.1E-09 
Ppa2 10.5046 1.75347 -2.5824 8.4E-12 2.1E-09 
 Dnajc28 19.6975 1.25348 -3.9743 8.4E-12 2.1E-09 
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Table S2, Related to Figure 4. Correlation of Col5a1 with ECM genes and 
Col5a1 and ECM genes with traits following isoproterenol infusion. 
probe gene Col5a1_bicor Iso Col5a1 pvalue adj 
ILMN_1234774 2010005H15Rik 0.294440677 0.004171698 
ILMN_2683656 2300002M23Rik 0.023567252 0.822577053 
ILMN_2639818 Acan -0.019844226 0.850248691 
ILMN_2645654 Acan 0.180855727 0.082765999 
ILMN_3161887 Adamts15 0.032593912 0.756442651 
ILMN_1227398 Agt -0.169998965 0.103287676 
ILMN_1243738 Abl1 -0.078599441 0.453921288 
ILMN_2675551 Abl1 -0.040132175 0.702505671 
ILMN_2742730 Abl1 -0.267783645 0.009457366 
ILMN_2796842 Abl1 0.10410819 0.320658177 
ILMN_1240933 Ambn -0.200332189 0.054182927 
ILMN_1226183 Antxr1 0.60274776 1.63E-10 
ILMN_1229643 Antxr1 0.591077748 4.45E-10 
ILMN_2759144 Col2a1 -0.084161864 0.422509566 
ILMN_2759142 Col2a1 0.035669596 0.734277633 
ILMN_2606039 Col11a1 -0.040706995 0.698448722 
ILMN_1217703 Col11a1 -0.141365222 0.176491302 
ILMN_2776931 Col11a1 -0.05249345 0.617267558 
ILMN_2623644 Colec10 -0.202631179 0.051422863 
ILMN_2862538 Col12a1 0.533157083 3.76E-08 
ILMN_2706693 Col9a1 -0.098325727 0.348414406 
ILMN_2939882 Col9a1 -0.083046934 0.428703354 
ILMN_2706692 Col9a1 0.066444358 0.526864347 
ILMN_1256550 Clec14a 0.093987331 0.370194975 
ILMN_2683958 Col3a1 0.593583534 3.60E-10 
ILMN_1258629 Col3a1 0.627965127 1.61E-11 
ILMN_2884751 Cer1 0.134958447 0.197120262 
ILMN_2865074 Col11a2 -0.236260663 0.022608851 
ILMN_2711663 Colec12 0.185145159 0.07561398 
ILMN_2613636 Col4a3bp -0.172712496 0.097819328 
ILMN_1245536 Col4a3bp -0.1955361 0.060332789 
ILMN_2902575 Col4a3bp 0.011120238 0.915746943 
ILMN_1257219 Colec12 0.104403433 0.31928022 
ILMN_2595260 Creb3l1 0.292162225 0.004487587 
ILMN_2591027 Col14a1 0.813262976 4.07E-23 
ILMN_1248099 Col16a1 0.811726321 5.70E-23 
ILMN_1257585 Ddr1 -0.329677718 0.001250875 
ILMN_2713898 Ddr1 -0.027380759 0.794456434 
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Table S3, Related to Key resources. Primer sequences for qPCR 

Mouse Col1a1 primer Forward: GAAACCCGAGGTATGCTTGA 

Mouse Col1a1 primer Reverse: GGGTCCCTCGACTCCTACAT 

Mouse Col2a1 primer Forward: GGGAATGTCCTCTGCGATGAC 

Mouse Col2a1 primer Reverse: GAAGGGGATCTCGGGGTTG 

Mouse Col3a1 primer Forward: GCACAGCAGTCCAACGTAGA 

Mouse Col3a1 primer Reverse: TCTCCAAATGGGATCTCTGG 

Mouse Col4a1 primer Forward: CTGGCACAAAAGGGACGAG 

Mouse Col4a1 primer Reverse: ACGTGGCCGAGAATTTCACC 

Mouse Col5a1 primer Forward: TTCCAGGCCAAACGGTACAT 

Mouse Col5a1 primer Reverse: TGAGACACTGTTACAACGATTCCT 

Mouse Col5a2 primer Forward: TTGGAAACCTTCTCCATGTCAGA 

Mouse Col5a2 primer Reverse: TCCCCAGTGGGTGTTATAGGA 

Mouse Col5a3 primer Forward: CGGGGTACTCCTGGTCCTAC 

Mouse Col5a3 primer Reverse: GCATCCCTACTTCCCCCTTG 

Mouse Col6a1 primer Forward: TGGCTCACCTGAGCTCCTAT 

Mouse Col6a1 primer Reverse: ACGGATAGGTTAGGGGCAGT 

Mouse Col7a1 primer Forward: GCCCAGAGATAGAGTGACCTG 

Mouse Col7a1 primer Reverse: CGCACTTCTCGAAAGTTGCTG 

Mouse Col8a1 primer Forward: ACTCTGTCAGACTCATTCAGGC 

Mouse Col8a1 primer Reverse: CAAAGGCATGTGAGGGACTTG 

Mouse Col9a1 primer Forward: CGACCGACCAGCACATCAA 

Mouse Col9a1 primer Reverse: AGGGGGACCCTTAATGCCT 
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Mouse Col10a1 primer Forward: TTCTGCTGCTAATGTTCTTGACC 

Mouse Col10a1 primer Reverse: GGGATGAAGTATTGTGTCTTGGG 

Mouse Col11a1 primer Forward: ACAAAACCCCTCGATAGAAGTGA 

Mouse Col11a1 primer Reverse: CTCAGGTGCATACTCATCAATGT 

Mouse Col12a1 primer Forward: AAGTTGACCCACCTTCCGAC 

Mouse Col12a1 primer Reverse: GGTCCACTGTTATTCTGTAACCC 

Mouse Col13a1 primer Forward: GGAGCACCTGGACTAGACG 

Mouse Col13a1 primer Reverse: GCCTTGGACTGGTAAGCCAT 

Mouse Col14a1 primer Forward: TTTGGCGGCTGCTTGTTTC 

Mouse Col14a1 primer Reverse: CGCTTTTGTTGCAGTGTTCTG 

Mouse Col15a1 primer Forward: CCCAGGGAAGAATGGAGAAGT 

Mouse Col15a1 primer Reverse: CCAGAGCCTTCAATCTCAAATCC 

Mouse Col16a1 primer Forward: GAGAGCGAGGATACACTGGC 

Mouse Col16a1 primer Reverse: CTGGCCTTGAAATCCCTGG 

Mouse Col17a1 primer Forward: GAAAGGAGACAAAGGTGACCA 

Mouse Col17a1 primer Reverse: CGGCTTGATGGCAATACTTC 

Mouse Col18a1 primer Forward: GGGGAAAGGATTCTTGCCTATG 

Mouse Col18a1 primer Reverse: GAAGGAACAGAGAGTAAACCGTG 

Mouse Col19a1 primer Forward: GGCTCTTGGAAATTGTGGACC 

Mouse Col19a1 primer Reverse: AGCACACTTCCCAACTTGAAA 

Mouse Col20a1 primer Forward: AGCCGACTCATTTGCCAAAAA 

Mouse Col20a1 primer Reverse: GGGTGGGTATAAGGCTGGAG 

Mouse Col22a1 primer Forward: GGGGAACCTGGATACGCTAAA 
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Mouse Col22a1 primer Reverse: CAAAGTACGCACACTGGGAG 

Mouse Col23a1 primer Forward: CCCCATCTGAGTGCATCTGTC 

Mouse Col23a1 primer Reverse: CTTGCCGTCCAGACCTAGAG 

Mouse Col24a1 primer Forward: TTCACTGTCTAAACACCCCAAGG 

Mouse Col24a1 primer Reverse: CCATCCTGAATCTTGCAGTCAT 

Mouse Col25a1 primer Forward: TTCCATCCGCTGTCTGACAC 

Mouse Col25a1 primer Reverse: CCTGGCCGTTCTTATTTTAGCC 

Mouse Col26a1 primer Forward: GCCATCACACGGTGACAAG 

Mouse Col26a1 primer Reverse: GAGTCCTGTAACTCACGAGGT 

Mouse Col27a1 primer Forward: CCTTCCCGTAGGGACTCCAT 

Mouse Col27a1 primer Reverse: GGCACAGTAATTGTGAGCGAC 

Mouse Col28a1 primer Forward: AGCAGCGGGTCAAGTCTCT 

Mouse Col28a1 primer Reverse: ACGCCATCTTTACGCCCTTC 

Mouse Acta2 primer Forward: CCTTCGTGACTACTGCCGAG 

Mouse Acta2 primer Reverse: ATAGGTGGTTTCGTGGATGC 

Mouse Postn primer Forward: CGAATCATTACAGACACACCTGC 

Mouse Postn primer Reverse: ACGGCCTTCTCTTGATCGTC 

Mouse Pai1 primer Forward: CCGATGGGCTCGAGTATGAC 

Mouse Pai1 primer Reverse: TTCTCAAAGGGTGCAGCGAT 

Mouse Myh11 primer Forward: AAGCTGCGGCTAGAGGTCA 

Mouse Myh11 primer Reverse: CCCTCCCTTTGATGGCTGAG 

Mouse Des primer Forward: GTGGATGCAGCCACTCTAGC 

Mouse Des primer Reverse: TTAGCCGCGATGGTCTCATAC 
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Mouse Cnn2 primer Forward: AGGAAGCAGAACTCCGAAGC 

Mouse Cnn2 primer Reverse: CCAGTTCTGCATAGAGCGGT 

Mouse Gapdh primer Forward: ACAACTTTGGCATTGTGGAA 

Mouse Gapdh primer Reverse: GATGCAGGGATGATGTTCTG 
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Appendix III. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian 
Cells of Desired Genetic Combinations and Fates 
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Patananan, et. al. 2020 
(Submitted - Cell Reports) 
Supplementary Table S1: 
ddC induced mutations 
Related to Figures 2 and S1 
 
Table of Contents 
1. ddC Fibroblast Mutational Report 
2. Provenance 
3. Variant Summary 
4. Non-synonymous SNV Mutations 
5. Mutational Signatures 
6. Chromosomal breaks 
7. Copy number and heterozygosity 
 
1. ddC Fibroblast Mutational Report    

The following  samples were sequenced to >30x average coverage. Data quality was within standard 
parameters for all samples. The following "contrast" was created to find novel variations in the treated 
sample vs. the control: 

        
  control treated      

Cell line BJ BJ 5uM DDC 
     

        

Since there was no clonal selection after treatment, it's extremely important to note the limit of detection for 
all of our assays. For whole genome sequencing, that's typically 15%. So if there was a variant of interest 
here, it would have to be present in at least 15% of the population before we could report anything. 

2.   Provenance 
All treated cell lines shared 100% of markers with control, indicating that all samples were 
properly matched. 
3.  Variant Summary 

  
Variant Type BJ Count 
Intergenic 8931 
Intron 5134 
NonCoding 835 
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Missense 22 
Silent 10 

  
Variant locations and sums were within close to each other. 
Median allele fraction of variants ranged from 0.15 - 0.17 for the contrast. 
 
4. Non-synonymous SNV 
Mutations 
Single nucleotide variations were not abundant. 
   

contrast 
non-

synonymous 
mutations 

mutation 
rate 

BJ 5uM DDC 
vs. BJ 26 0.6/MB 

 

5.  Mutational Signatures   
SNVs are associated with a "mutational signature" denoting the mutational context around a 
particular transition or transversion. 
There was little difference between the various contrasts on total number of variants. 
For each variant, we measure the VAF (variant allele fraction). For all samples, these were 
mostly uniformly distributed in (0.0, 0.3), with a small number near 1.0 (likely artifacts). 
      
BJ vs BJ 5uM DDC mutational signatures   

Signature # SNVs % of 
Total Caused by Associated 

with 
Common 
tumor types 

Signature 5 2,230 42 Unknown 

Transcriptiona
l strand bias 
for T>C 
mutations 

All 

Signature 8 873 16 Unknown 
Weak strand 
bias for C>A 
mutations 

Breast, 
Medulloblastom
a 

Signature 9 854 16 DNA repair by 
polymerase eta 

Activity of 
AID during 
somatic 
hypermutation
s 

CLL, B-Cell 
Lymphoma 
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Signature 18 471 9 Unknown  Neuroblastoma 

Signature 16 200 4 Unknown 

Strong 
transcriptional 
strand bias for 
T>C 
mutations 

Liver 

 

6. Chromosomal breaks 
No chromosomal breaks were detected in any of the samples. 

 

7. Copy number and heterozygosity  
No changes in copy number were observed.   
There are some low confidence calls for loss of heterozygosity:  
      

Contrast 
Est. 
Population 
Prevalence 

(Major, 
Minor) # 

Size 
(Mb) Cytoband(s) State 

BJ 38% (2, 0) 20.88 21p11.2 - 
21q21.3 CN-LOH 
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Patananan, et. al. 2020 (Submitted - Cell Reports)  
Supplementary Table S2:    

SIMR cell lines generated    

Related to Figures 3 and S1   
     
     

Mitochondrial 
Recipient 

Mitochondrial 
Donor 

Generate 
engineered 
fibroblast? 

Reprogram into 
iPSC? 

Reprogramming 
strategy 

143BTK- ⍴0 none No N/A N/A 

143BTK- ⍴0 
HEK293dsRE
D Yes N/A N/A 

143BTK- ⍴0 

Cybrid with 
MELAS-
mutation 
(CL3); Gift 
from Mondira 
Kundu (Saint 
Jude Children's 
Research 
Hospital) Yes N/A N/A 

143BTK- ⍴0 

Control cybrid 
without 
MELAS 
mutaiton 
(CL9);  Gift 
from Mondira 
Kundu (Saint 
Jude Children's 
Research 
Hospital) B N/A N/A 

         

L929 ⍴0 

Mitochondria 
from different 
mouse tissue Yes N/A N/A 

         

BJ ⍴0 fibroblast 

None 
(phosphate 
buffer saline 
control) No No N/A 

BJ ⍴0 fibroblast 
HEK293dsRE
D Yes Yes 

StemRNA-NM 
Reprogramming 
kit; ReproRNA™-
OKSGM 
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BJ ⍴0 fibroblast LP298 (PBMC) Yes N/A   

BJ ⍴0 fibroblast LP351 (PBMC) Yes Yes 

StemRNA-NM 
Reprogramming 
kit; ReproRNA™-
OKSGM 

BJ ⍴0 fibroblast 

Cybrid with 
MELAS-
mutation 
(CL3); Gift 
from Mondira 
Kundu (Saint 
Jude Children's 
Research 
Hospital) Yes No 

StemRNA-NM 
Reprogramming 
kit; ReproRNA™-
OKSGM 

BJ ⍴0 fibroblast 

Control cybrid 
without 
MELAS 
mutaiton 
(CL9); Gift 
from Mondira 
Kundu (Saint 
Jude Children's 
Research 
Hospital) Yes No 

StemRNA-NM 
Reprogramming 
kit; ReproRNA™-
OKSGM 

          

NDF ⍴0 
fibroblast 

None 
(phosphate 
buffer saline 
control) No No   

NDF ⍴0 
fibroblast 

NDF (ATCC 
PCS-201-010) Yes Yes 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast HEK293dsREd Yes Yes 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

Cybrid with 
MELAS-
mutation 
(CL3); Gift 
from Mondira 
Kundu (Saint 
Jude Children's Yes No 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 
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Research 
Hospital) 

NDF ⍴0 
fibroblast 

Control cybrid 
without 
MELAS 
mutaiton 
(CL9); Gift 
from Mondira 
Kundu (Saint 
Jude Children's 
Research 
Hospital) Yes Yes 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

Alternative 
cybrid line with 
MELAS 
mutation Yes No 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

 Heteroplasmic 
mixture of 
isolated 
mitochondria 
derived from 
CL3 and CL9 Yes 

Yes, but no 
detrimental mutation 

detected 

Lenti; 
CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

MERRF; Gift 
from Carlos 
Moraes 
(University of 
Miami); 
A8344G 
subsitution  Yes No 

CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

∆ cytochrome 
B 3.0 cybrid; 
Gift from 
Carlos Moraes 
(University of 
Miami);  Yes No 

CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

Leigh 
syndrome 
primary 
fibroblast; 
Coriell 
Repository 
GM13411; Yes No 

CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 
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T8993G 
substitution   

NDF ⍴0 
fibroblast 

Primary 
MELAS 
fibroblast Yes No 

CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 

NDF ⍴0 
fibroblast 

Kearns Sayre 
Syndrome; 
Coriell 
Repository 
GM06225; 
Common 
deletion  Yes No 

CytoTune™-iPS 
2.0 Sendai 
Reprogramming 
Kit 
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Patananan, et. al. 2020 (Submitted - Cell Reports) 
Supplementary Table S3: 
Metabolomics Principal Components Analysis (PCA) and Pathway Analysis 
Related to STAR Methods (Metabolomics Data Analysis) and Figure S2 
 
Accession Information: 
To Be Added 
 
Table of Contents: 
Section I: Metadata for all metabolite samples processed (n = 54 total) 
Section II: Euclidean distance similarity mapping values across samples. (n = 54 total) 
Section III: Protein content-normalized metabolite abundance amounts for 154 metabolites 
identified across samples. Samples where the metabolite was not identified are set to zero for 
PCA.  
Section IV: Metabolite pathway sets identified as significantly enriched across one or more 
sample conditions (using an F statistic adjusted P value threshold of 0.05) 
Section V: List of metabolites (KEGG COMPOUND ID) associated with each metabolic 
pathway for GSVA analysis.  
 
Condition Code: 
BJ 
BJ rho null (BJ⍴0) 
BJ HEK (BJ⍴0+HEK293T) 
BJ LP351 (BJ⍴0+PBMC1) 

 

Section I: Metadata for all metabolite samples processed (n = 54 total) 

Condition_Exp Condition Fate Transfer Condition Fate 

bj fibroblast_Exp1 BJ 
Fibroblas
t None BJ Fibroblast 

bj fibroblast_Exp2 BJ 
Fibroblas
t None BJ Fibroblast 

bj fibroblast_Exp3 BJ 
Fibroblas
t None BJ Fibroblast 

bj ipsc_Exp1 BJ iPSC iPSC None BJ iPSC iPSC 
bj ipsc_Exp2 BJ iPSC iPSC None BJ iPSC iPSC 
bj ipsc_Exp3 BJ iPSC iPSC None BJ iPSC iPSC 
bj MSC_Exp1 BJ MSC MSC None BJ MSC MSC 
bj MSC_Exp2 BJ MSC MSC None BJ MSC MSC 
bj MSC_Exp3 BJ MSC MSC None BJ MSC MSC 
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bj rho 0 + hek mitos 
fibroblasts_Exp1 

BJ HEK 
Fibroblast 

Fibroblas
t 

HEK 
Transfer 

BJ HEK Fibroblast 
Fibroblast 

bj rho 0 + hek mitos 
fibroblasts_Exp2 

BJ HEK 
Fibroblast 

Fibroblas
t 

HEK 
Transfer 

BJ HEK Fibroblast 
Fibroblast 

bj rho 0 + hek mitos 
fibroblasts_Exp3 

BJ HEK 
Fibroblast 

Fibroblas
t 

HEK 
Transfer 

BJ HEK Fibroblast 
Fibroblast 

bj rho 0 + hek mitos iPSC 
clone1_Exp1 

BJ HEK IPSC 
Clone 1 iPSC 

HEK 
Transfer 1 

BJ HEK IPSC Clone 
1 iPSC 

bj rho 0 + hek mitos iPSC 
clone1_Exp2 

BJ HEK IPSC 
Clone 1 iPSC 

HEK 
Transfer 1 

BJ HEK IPSC Clone 
1 iPSC 

bj rho 0 + hek mitos iPSC 
clone1_Exp3 

BJ HEK IPSC 
Clone 1 iPSC 

HEK 
Transfer 1 

BJ HEK IPSC Clone 
1 iPSC 

bj rho 0 + hek mitos iPSC 
clone2_Exp1 

BJ HEK IPSC 
Clone 2 iPSC 

HEK 
Transfer 2 

BJ HEK IPSC Clone 
2 iPSC 

bj rho 0 + hek mitos iPSC 
clone2_Exp2 

BJ HEK IPSC 
Clone 2 iPSC 

HEK 
Transfer 2 

BJ HEK IPSC Clone 
2 iPSC 

bj rho 0 + hek mitos iPSC 
clone2_Exp3 

BJ HEK IPSC 
Clone 2 iPSC 

HEK 
Transfer 2 

BJ HEK IPSC Clone 
2 iPSC 

bj rho 0 + hek mitos iPSC 
clone4_Exp1 

BJ HEK IPSC 
Clone 4 iPSC 

HEK 
Transfer 4 

BJ HEK IPSC Clone 
4 iPSC 

bj rho 0 + hek mitos iPSC 
clone4_Exp2 

BJ HEK IPSC 
Clone 4 iPSC 

HEK 
Transfer 4 

BJ HEK IPSC Clone 
4 iPSC 

bj rho 0 + hek mitos iPSC 
clone4_Exp3 

BJ HEK IPSC 
Clone 4 iPSC 

HEK 
Transfer 4 

BJ HEK IPSC Clone 
4 iPSC 

bj rho 0 + hek mitos msc 
clone1_Exp1 

BJ HEK MSC 
Clone 1 MSC 

HEK 
Transfer 1 

BJ HEK MSC Clone 
1 MSC 

bj rho 0 + hek mitos msc 
clone1_Exp2 

BJ HEK MSC 
Clone 1 MSC 

HEK 
Transfer 1 

BJ HEK MSC Clone 
1 MSC 

bj rho 0 + hek mitos msc 
clone1_Exp3 

BJ HEK MSC 
Clone 1 MSC 

HEK 
Transfer 1 

BJ HEK MSC Clone 
1 MSC 

bj rho 0 + hek mitos msc 
clone2_Exp1 

BJ HEK MSC 
Clone 2 MSC 

HEK 
Transfer 2 

BJ HEK MSC Clone 
2 MSC 

bj rho 0 + hek mitos msc 
clone2_Exp2 

BJ HEK MSC 
Clone 2 MSC 

HEK 
Transfer 2 

BJ HEK MSC Clone 
2 MSC 

bj rho 0 + hek mitos msc 
clone2_Exp3 

BJ HEK MSC 
Clone 2 MSC 

HEK 
Transfer 2 

BJ HEK MSC Clone 
2 MSC 

bj rho 0 + hek mitos msc 
clone4_Exp1 

BJ HEK MSC 
Clone 4 MSC 

HEK 
Transfer 4 

BJ HEK MSC Clone 
4 MSC 

bj rho 0 + hek mitos msc 
clone4_Exp2 

BJ HEK MSC 
Clone 4 MSC 

HEK 
Transfer 4 

BJ HEK MSC Clone 
4 MSC 

bj rho 0 + hek mitos msc 
clone4_Exp3 

BJ HEK MSC 
Clone 4 MSC 

HEK 
Transfer 4 

BJ HEK MSC Clone 
4 MSC 

bj rho 0 + LP351 mitos 
fibroblast_Exp1 

BJ LP351 
Fibroblast 

Fibroblas
t 

LP351 
Transfer 

BJ LP351 Fibroblast 
Fibroblast 

bj rho 0 + LP351 mitos 
fibroblast_Exp2 

BJ LP351 
Fibroblast 

Fibroblas
t 

LP351 
Transfer 

BJ LP351 Fibroblast 
Fibroblast 
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bj rho 0 + LP351 mitos 
fibroblast_Exp3 

BJ LP351 
Fibroblast 

Fibroblas
t 

LP351 
Transfer 

BJ LP351 Fibroblast 
Fibroblast 

bj rho 0 + LP351 mitos 
iPSC clone 1_Exp1 

BJ LP351 
IPSC Clone 1 iPSC 

LP351 
Transfer 1 

BJ LP351 IPSC 
Clone 1 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 1_Exp2 

BJ LP351 
IPSC Clone 1 iPSC 

LP351 
Transfer 1 

BJ LP351 IPSC 
Clone 1 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 1_Exp3 

BJ LP351 
IPSC Clone 1 iPSC 

LP351 
Transfer 1 

BJ LP351 IPSC 
Clone 1 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 11_Exp1 

BJ LP351 
IPSC Clone 11 iPSC 

LP351 
Transfer 
11 

BJ LP351 IPSC 
Clone 11 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 11_Exp2 

BJ LP351 
IPSC Clone 11 iPSC 

LP351 
Transfer 
11 

BJ LP351 IPSC 
Clone 11 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 11_Exp3 

BJ LP351 
IPSC Clone 11 iPSC 

LP351 
Transfer 
11 

BJ LP351 IPSC 
Clone 11 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 2_Exp1 

BJ LP351 
IPSC Clone 2 iPSC 

LP351 
Transfer 2 

BJ LP351 IPSC 
Clone 2 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 2_Exp2 

BJ LP351 
IPSC Clone 2 iPSC 

LP351 
Transfer 2 

BJ LP351 IPSC 
Clone 2 iPSC 

bj rho 0 + LP351 mitos 
iPSC clone 2_Exp3 

BJ LP351 
IPSC Clone 2 iPSC 

LP351 
Transfer 2 

BJ LP351 IPSC 
Clone 2 iPSC 

bj rho 0 + LP351 mitos msc 
clone 1_Exp1 

BJ LP351 
MSC Clone 1 MSC 

LP351 
Transfer 1 

BJ LP351 MSC 
Clone 1 MSC 

bj rho 0 + LP351 mitos msc 
clone 1_Exp2 

BJ LP351 
MSC Clone 1 MSC 

LP351 
Transfer 1 

BJ LP351 MSC 
Clone 1 MSC 

bj rho 0 + LP351 mitos msc 
clone 1_Exp3 

BJ LP351 
MSC Clone 1 MSC 

LP351 
Transfer 1 

BJ LP351 MSC 
Clone 1 MSC 

bj rho 0 + LP351 mitos msc 
clone 11_Exp1 

BJ LP351 
MSC Clone 11 MSC 

LP351 
Transfer 
11 

BJ LP351 MSC 
Clone 11 MSC 

bj rho 0 + LP351 mitos msc 
clone 11_Exp2 

BJ LP351 
MSC Clone 11 MSC 

LP351 
Transfer 
11 

BJ LP351 MSC 
Clone 11 MSC 

bj rho 0 + LP351 mitos msc 
clone 11_Exp3 

BJ LP351 
MSC Clone 11 MSC 

LP351 
Transfer 
11 

BJ LP351 MSC 
Clone 11 MSC 

bj rho 0 + LP351 mitos msc 
clone 2_Exp1 

BJ LP351 
MSC Clone 2 MSC 

LP351 
Transfer 2 

BJ LP351 MSC 
Clone 2 MSC 

bj rho 0 + LP351 mitos msc 
clone 2_Exp2 

BJ LP351 
MSC Clone 2 MSC 

LP351 
Transfer 2 

BJ LP351 MSC 
Clone 2 MSC 

bj rho 0 + LP351 mitos msc 
clone 2_Exp3 

BJ LP351 
MSC Clone 2 MSC 

LP351 
Transfer 2 

BJ LP351 MSC 
Clone 2 MSC 

bj rho 0 fibroblast_Exp1 
BJ Rho Null 
Fibroblast 

Fibroblas
t Rho Null 

BJ Rho Null 
Fibroblast Fibroblast 
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bj rho 0 fibroblast_Exp2 
BJ Rho Null 
Fibroblast 

Fibroblas
t Rho Null 

BJ Rho Null 
Fibroblast Fibroblast 

bj rho 0 fibroblast_Exp3 
BJ Rho Null 
Fibroblast 

Fibroblas
t Rho Null 

BJ Rho Null 
Fibroblast Fibroblast 

 
Section II: Euclidean distance similarity mapping values across samples. (n = 54 total) 
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Section III: Protein content-normalized metabolite abundance amounts for 154 metabolites 
identified across samples. Samples where the metabolite was not identified are set to zero 
for PCA. 
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 bj fibroblast_Exp1 bj fibroblast_Exp2 bj fibroblast_Exp3 
13BPG 9176.144184 11700.87272 9391.573081 
2-Aminobutyrate 4128.129589 11091.731 6761.849595 
2-HG 27478.87339 26991.90197 31260.18648 
3-Hydroxy-3-
methylglutarate 12923.52802 14746.17585 12370.56507 
3PG 17468.17677 19539.86949 16155.92188 
5M-thioadenosine 249227.5419 233207.5542 235287.9864 
6P-gluconate 21515.75119 24062.42841 19635.77405 
A 3746.621922 44769.98783 23198.96408 
a-KG 37516.62163 36627.44972 46883.17557 
Ac-carnitine 5086002.319 6079936.983 5506851.349 
Ac-choline 371101.8904 433863.5794 373542.9374 
Acetyl-CoA 2668.286015 3255.861408 3312.056712 
Aconitate 52637.7177 72842.03114 58443.67779 
Adenine 1155.969991 464.9802245 1860.013109 
ADP 121692.7217 133624.5741 121719.3581 
ADP/ATP 0.269161839 0.231662892 0.25617419 
Ala 1032478.258 1917438.175 1175615.894 
AMP 43102.36867 30422.86394 27096.91841 
AMP/ATP 0.095334484 0.052743657 0.057028982 
Arg 1187951.769 1382977.299 1188053.59 
Arg-Succ 2802.097381 2624.624211 3282.600215 
Asn 365239.5502 376744.6922 418948.8479 
Asp 2019413.705 2127602.421 2227314.106 
ATP 452117.2919 576806.1209 475142.9411 
C 28474.84839 31375.91244 34176.00169 
Carbamoyl-Asp 430.5184167 1306.546709 594.5297479 
Carbamoyl-P 491.5775736 807.6006776 2347.435903 
Carnitine 1757892.775 2406271.465 1905888.868 
CDP 8692.182791 8566.361528 9104.761054 
CDP-choline 931.294132 294.8437002 612.1935391 
CDP-EtA 1068.176277 1223.01544 1530.374052 
Cholesterol sulfate 5221.701032 6492.181233 8870.273425 
Choline 303609.9361 492059.1157 274327.6426 
Cit 3014872.403 3894972.4 3471953.498 
Citrulline 47370.40826 55177.10956 49464.20378 
CMP 1657.21834 1389.752465 2082.952727 
CoA 1379.634553 1940.383566 1523.405068 
Creatine 3754773.863 6295403.235 4160678.59 
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Creatine/P-Creatine 12.93548496 16.04741302 11.31838306 
Creatinine 848251.242 1234596.734 950745.1892 
CTP 26979.70426 37536.49693 31051.46015 
Cystathionine 90601.62199 95603.9623 95828.10632 
Cystine 1809.643864 2337.858467 1476.273513 
Cytosine 4664.491613 6651.401745 5322.135615 
dA 1459.91466 1363.670287 1343.810256 
dAMP 0 0 0 
dATP 0 0 0 
dC 3749.782913 5313.766592 7388.325829 
dCDP 0 0 0 
dCMP 136.3108457 0 151.884048 
dCTP 0 120.0845773 0 
dG 0 0 0 
dGDP 3213.742117 2525.578278 2897.739038 
dGTP 392.4905231 0 800.9387498 
DHAP 10066.3149 10356.1832 10599.77717 
Dihydroorotate 469.8373332 210.5717929 757.0203292 
Dihydrouracil 35115.24124 35632.64303 40736.53389 
dTMP 64.3088462 0 0 
dTTP 61.71614964 150.7897791 138.6461449 
dU 5272.997027 1835.429729 6955.80865 
dUMP 91.30292716 128.5612781 140.7902857 
F16BP 107695.2033 141080.6923 119044.5242 
Folate 27629.54078 27346.66944 22568.53568 
Fru 219818.8523 218346.8447 228764.1483 
Fum 96130.73257 96281.82176 110018.3277 
G 9106.065675 9008.865843 11122.15318 
G3P 9170.425576 10408.98339 9890.394083 
GABA 10425.637 16575.91802 14985.17261 
GDP 15244.48073 15320.41879 15328.19331 
GDP-Mannose 2747.626887 3443.664709 1512.153846 
Glc 5684162.069 6030124.282 6244393.187 
GlcN 3391270.208 3793938.812 2939780.518 
GlcN-6P 4627.927693 3700.759208 5001.710891 
GlcNAc-6P 2587.448679 4008.223687 3931.78205 
Gln 15476349.47 16117522.95 18661339.13 
Glu 11569747.8 12546400.48 12958205.19 
GlucA 9701.375148 10918.85694 11977.9248 
Gluconate 441310.0251 342153.4094 486982.382 
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GluNAc 15439.62917 14877.91476 17094.21994 
Gly 204781.0486 379589.2035 243936.9712 
Glycerate 3839.910239 4364.786583 4152.354162 
Glycerol 2070.985508 4450.022052 781.4446711 
Glycerol-3P 11767.25966 15934.93687 17626.1409 
Glyoxylate 20071.02467 31682.1392 22000.77667 
GMP 3604.902923 4274.08302 3461.023458 
GSH 859822.0992 962515.9429 1042640.933 
GSH/GSSG 4.756664129 7.118226848 8.494762309 
GSSG 180761.5749 135218.498 122739.2709 
GTP 58411.25324 76025.88167 61222.56163 
Guanine 0 0 88.66682856 
H6P 67837.46235 67295.62692 77618.89049 
His 1350470.674 1603061.904 1454789.663 
HMG-CoA 148.6409334 170.8545756 195.6209712 
Hypotaurine 123975.3712 208280.6972 144309.6284 
Hypoxanthine 0 0 110.3712261 
IMP 870.5850291 343.1311404 503.3889275 
Inosine 9726.439315 7381.579705 6698.914835 
Inositol 5457294.036 4683577.607 5829280.556 
Isobutyryl-carnitine 574063.4613 636290.7061 605426.9723 
Isobutyryl-CoA 27.74292313 36.21018135 35.27345876 
Lac 1330936.116 1799007.21 1369074.73 
Leu/Ile 7098445.924 11458445.01 8259474.038 
Lys 368490.8459 556127.1393 422404.4548 
Mal 1262308.63 1320189.141 1467620.611 
Malonyl-CoA 1085.738293 1127.371105 1159.513549 
Met 1778601.48 2597620.077 2016920.781 
Methionine sulfoxide 158260.1806 175316.166 170955.8315 
Mevalonate 56793.22821 98905.73994 38817.48916 
NAD+ 247464.1858 251385.1345 261986.2413 
NADH 4307.302324 4854.544778 4898.691935 
NADP+ 5491.10247 3482.223414 3100.795658 
NADPH 0 86.70529552 121.0744833 
Nicotinamide 314482.0564 445896.2986 291377.4263 
Ornithine 6485.009872 13270.25497 8451.593469 
P-Choline 843561.097 1026531.022 1022246.149 
P-Creatine 290269.2767 392300.1935 367603.6205 
P-EtA 1630.719807 1450.69231 1291.939806 
P-Ser 5596.551565 7816.4688 6270.488661 
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Palmitate 5917136.018 6217974.752 7603970.555 
Pantothenate 3445851.435 3506865.635 3343816.151 
PEP 1264.633085 1320.315145 790.2969397 
Phe 11979569.15 13584529.33 12840251.65 
Pro 4005383.139 6799089.918 4699086.584 
Pro-OH 112921.1396 165765.4037 120818.388 
PRPP 1358.502302 1558.080328 1329.198311 
Pyridoxine 220250.7379 234040.2438 246989.0089 
R5P 1257.131961 1167.940166 1891.424429 
Rib 142.5434698 88.11189614 0 
S7P 3281.25761 3319.067889 4053.037894 
SAH 19138.61027 27113.55381 17579.73451 
SAM 195358.4404 161175.6934 201123.1414 
Sarcosine 126135.6867 233387.794 174639.421 
Ser 79431.56136 103540.9474 89266.46195 
Sorbitol 8348.178669 10714.18925 10536.42018 
Succ 74893.17033 86280.77891 82665.03364 
Succ-Semialdehyde 3597.095324 3459.379368 3856.136378 
T 4453.30615 3678.467623 4328.167803 
Taurine 10031978.87 9373887.502 0 
Thr 906350.0294 1468802.694 1060591.641 
Thymine 53445.28786 52929.86692 64545.72805 
Trp 1881348.892 2309815.539 2061540.158 
Tyr 3295588.376 3650293.37 3637942.31 
Tyramine 4117.461855 3951.461728 3355.619905 
U 23422.07398 21735.27907 26842.04248 
UDP 29021.9419 25548.81045 25885.214 
UDP-Glc 153255.3157 193627.7436 189722.9254 
UDP-GlcNAc 0 204093.6876 103470.7199 
UDP-GlucA 17223.93999 22220.36457 18594.44334 
UMP 13637.8724 12295.25343 8066.163599 
Uracil 33261.66156 29615.95277 30420.97386 
Uric Acid 52246.76175 44009.79208 44769.09187 
UTP 54191.03695 66586.51634 58895.49872 
Val 4520825.093 15567296.69 8638120.491 
Xanthine 220778.875 156911.7041 206006.1801 

 

Section IV: Metabolite pathway sets identified as significantly enriched across one or more 
sample conditions (using an F statistic adjusted P value threshold of 0.05) 
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Metabolite Set 
SampleMatrix.Conditi
onBJ 

SampleMatrix.ConditionBJ.HEK.Fi
broblast 

SampleMatrix.ConditionBJ.HEK.IPSC
.Clone.1 

Pyrimidine Metabolism -0.51538394 -0.34956396 -0.48290558 
Fructose and Mannose 
Degradation 0.0992071 0.46852084 -0.12942882 

Purine Metabolism -0.37433988 -0.37170344 -0.4317121 
Phospholipid 
Biosynthesis 0.48986329 0.58289533 -0.12215524 

Glycolysis 0.24899897 0.26098391 0.10917707 
Glycerol Phosphate 
Shuttle 0.46217707 0.54860994 0.03590357 

Histidine Metabolism 0.49997077 0.15637439 -0.57346662 

Ethanol Degradation 0.48991104 0.23696437 -0.54020909 

Methionine Metabolism 0.33261675 0.13857708 -0.04284158 

Carnitine Synthesis 0.5682723 0.32776831 -0.17232526 

Galactose Metabolism 0.55261701 0.29101932 0.10011369 

Gluconeogenesis 0.2902023 0.31653097 0.1083967 
Pentose Phosphate 
Pathway 0.08366097 0.44945871 0.36756683 
Ketone Body 
Metabolism 0.10552495 0.07226798 -0.37867993 

Lactose Synthesis -0.03009259 -0.08373244 -0.36306761 

Glutamate Metabolism 0.42231192 0.2411559 -0.09436682 
Valine, Leucine and 
Isoleucine Degradation -0.52972944 -0.26272282 0.47516545 

Glucose-Alanine Cycle 0.53604876 0.33611159 -0.17372736 

Aspartate Metabolism -0.08909138 -0.04112353 0.24864894 
Transfer of Acetyl 
Groups into 
Mitochondria 0.5934011 0.22214384 -0.20078139 

Citric Acid Cycle 0.63535047 0.34229721 -0.12780337 
Arginine and Proline 
Metabolism 0.38027877 0.08241091 0.23925691 

Malate-Aspartate Shuttle 0.7695959 0.22315709 -0.06485613 

Pyruvate Metabolism 0.11313918 -0.16774511 0.54864097 

Glutathione Metabolism 0.7219193 0.22932919 -0.64485934 

Ammonia Recycling 0.59680642 0.2118832 -0.29424831 
Beta-Alanine 
Metabolism -0.27237943 -0.01064737 -0.22835947 

Urea Cycle 0.37903996 0.14991337 0.07338484 

Glycerolipid Metabolism 0.15613818 0.0738998 0.15832478 
Glycine, Serine and 
Threonine Metabolism 0.33170956 0.19629219 0.02972197 

 

Section V: List of metabolites (KEGG COMPOUND ID) associated with each metabolic 
pathway for GSVA analysis. 

Metabolite Pathway 
Metabolites (KEGG 
COMPOUND ID) Associated      

Alanine Metabolism C00026 C00022 C00025 
C0004
1 

C0003
6 

C0003
7 

C0004
8 
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Amino Sugar 
Metabolism C00085 C05345 C06023 

C0032
9 

C0035
2 

C0035
7 

C0167
4 

Ammonia Recycling C00064 C00001 C00026 
C0002
2 

C0002
5 

C0001
4 

C0000
2 

Arginine and Proline 
Metabolism C00025 C00014 C00169 

C0007
7 

C0008
6 

C0006
2 

C0012
2 

Aspartate Metabolism C00122 C03406 C00049 
C0032
7 

C0003
6 

C0009
9 

C0015
2 

Beta-Alanine 
Metabolism C00049 C00864 C00099 

C0126
2 

C0038
6 

C0222
9 

C0566
5 

Carnitine Synthesis C00001 C00026 C00047 
C0003
7 

C0001
1 

C0000
7 

C0000
4 

Citric Acid Cycle C00001 C00026 C00022 
C0028
8 

C0000
2 

C0000
8 

C0012
2 

Ethanol Degradation C00001 C00002 C00020 
C0001
0 

C0002
4 

C0000
7 

C0002
7 

Fructose and Mannose 
Degradation C00111 C00085 C05345 

C0035
4 

C0537
8 

C0011
8 

C0066
1 

Galactose Metabolism C00446 C00052 C00029 
C0010
3 

C0013
7 

C0066
8 

C0011
6 

Gluconeogenesis C00001 C00026 C00022 
C0000
2 

C0000
8 

C0003
6 

C0059
7 

Glucose-Alanine Cycle C00001 C00026 C00022 
C0002
5 

C0001
4 

C0004
1 

C0000
4 

Glutamate Metabolism C00064 C00026 C00025 
C0001
4 

C0016
9 

C0000
3 

C0066
9 

Glutathione Metabolism C00025 C00097 C00037 
C0066
9 

C0187
9 

C0141
9 

C0005
1 

Glycerol Phosphate 
Shuttle C00004 C00003 C00093 

C0011
1 

C0011
8 

C0066
1 

C0023
6 

Glycerolipid 
Metabolism C00002 C00008 C00258 

C0059
7 

C0000
4 

C0000
3 

C0000
6 

Glycine, Serine and 
Threonine Metabolism C00022 C00014 C00258 

C0059
7 

C0323
2 

C0006
5 

C0100
5 

Glycolysis C00001 C00022 C00002 
C0000
8 

C0059
7 

C0000
4 

C0000
3 

Histidine Metabolism C00025 C00002 C00008 
C0002
0 

C0010
1 

C0001
1 

C0038
6 

Ketone Body 
Metabolism C00011 C00164 C00010 

C0002
4 

C0000
4 

C0000
3 

C0033
2 

Lactose Synthesis C00002 C00008 C00446 
C0005
2 

C0002
9 

C0010
3 

C0010
5 

Malate-Aspartate 
Shuttle C00026 C00025 C00049 

C0003
6 

C0000
4 

C0000
3 

C0001
8 

Methionine Metabolism C00002 C00065 C00097 
C0229
1 

C0533
0 

C0010
1 

C0003
7 

Pentose Phosphate 
Pathway C00011 C00668 C01172 

C0019
8 

C0008
5 

C0534
5 

C0067
2 

Phospholipid 
Biosynthesis C00416 C00093 C00154 

C0011
1 

C0199
6 

C0011
4 

C0030
7 

Purine Metabolism C00064 C00002 C00008 
C0002
0 

C0004
4 

C0014
4 

C0011
7 

Pyrimidine Metabolism C00064 C00169 C00099 
C0264
2 

C0042
9 

C0010
6 

C0010
5 
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Pyruvate Metabolism C00022 C00036 C00546 
C0002
4 

C0008
3 

C0033
2 

C0007
4 

Spermidine and 
Spermine Biosynthesis C00002 C00077 C00073 

C0017
0 

C0031
5 

C0013
4 

C0113
7 

Transfer of Acetyl 
Groups into 
Mitochondria C00001 C00022 C00002 

C0000
8 

C0003
6 

C0001
1 

C0001
0 

Urea Cycle C00064 C00001 C00026 
C0002
2 

C0002
5 

C0001
4 

C0028
8 

Valine, Leucine and 
Isoleucine Degradation C00164 C00024 C00100 

C0600
2 

C0217
0 

C0018
3 

C0033
2 
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Patananan, et. al. 2020 (Submitted - Cell Reports) 
Supplementary Table S4: 
Transcriptomics Principal Components Analysis (PCA) and select gene 
expression.  
Related to Figures 5 and S3, S4, S5.  
 
Accession Information: 
GSE115871 
 
Table of Contents: 
Section I: Metadata for all samples collected for bulk RNA-sequencing analysis (n = 60 total).  
Section II: Transcript per million (TPM) normalized expression values for summarized HGNC 
gene-level counts per sample.  
Section III - MitoMiner 4.0 gene lists (subset for MitoCarta 2.0 evidence) used for nuclear-
encoded mitochondrial transcript analysis.  
Section IV: Metabolic gene sets (derived from the KEGG Pathway database HSA01100) tested 
using metabolism transcript GSVA.  
Section V: Significantly enriched metabolic pathways across sample conditions identified using 
GSVA (using an F statistic adjusted P value threshold of 0.05). 
Section VI: Reactome pathway analaysis of the top 500 genes signficantly altered genes between 
BJ parent and the BJ rho nulls and SIMR cell lines. 
 
 
Condition Code: 
BJ 
BJ rho null (BJ⍴0) 
BJ HEK (BJ⍴0+HEK293T) 
BJ LP351 (BJ⍴0+PBMC1) 
 
Section I: Metadata for all samples collected for bulk RNA-sequencing analysis (n = 60 

total).  

File Sample 
Clo
ne 

Batc
h 

Conditi
on Transfer ClonalInfo 

b8a9e771-5e64-4973-a459-
f2de0182d439.rsem.txt.gz 

BJ Rho Null 
Fibs 0 1 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

255d874b-6966-4235-b809-
d26a97fc4b52.rsem.txt.gz 

BJ Rho Null 
Fibs 0 1 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

73c987bf-fdd2-4674-a3c5-
3352c8f7e96a.rsem.txt.gz 

BJ Rho Null 
Fibs 0 1 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

d8e86411-8f83-44ab-a4e0-
be587a3e69a5.rsem.txt.gz BJ Fibs  0 1 Fibs BJ BJ Fibroblast 
c9d94a14-38ea-4ef4-8045-
1f68b6ca36e0.rsem.txt.gz BJ Fibs 0 1 Fibs BJ BJ Fibroblast 
1bd36e15-65bc-475f-9b59-
024ac2038dae.rsem.txt.gz BJ Fibs 0 1 Fibs BJ BJ Fibroblast 
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1ad3cd29-2eda-4a71-9c7d-
deaa3cc6ab6f.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 1 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

a9cdeb6a-0b30-4bcd-8d91-
73bffed920fd.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 1 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

36659ffa-4d9d-48b6-9af7-
ee69add64a31.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 1 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

158c0cda-a7f9-4a0f-81e3-
50d946a1452f.rsem.txt.gz 

LP351 
Transfer 
Fibs  0 1 Fibs 

LP351 
Transfer 

LP351 Transfer 
Fibroblast 

d094adc5-496c-45c1-8da9-
fc61204b3ee6.rsem.txt.gz 

LP351 
Transfer 
Fibs 0 1 Fibs 

LP351 
Transfer 

LP351 Transfer 
Fibroblast 

7cfb6f23-8670-43e2-ac43-
9b9cb27de3e8.rsem.txt.gz 

LP351 
Transfer 
Fibs 0 1 Fibs 

LP351 
Transfer 

LP351 Transfer 
Fibroblast 

96c524a0-9ec2-4af4-a29f-
e5b58171da84.rsem.txt.gz BJ iPSC 0 1 iPSC BJ BJ iPSC 
90fe80c9-2f5d-4faa-9b6e-
aa52ef99acfb.rsem.txt.gz BJ iPSC 0 1 iPSC BJ BJ iPSC 
d09bdbb2-0881-4ba5-b77f-
38e1a39fe29a.rsem.txt.gz BJ iPSC 0 1 iPSC BJ BJ iPSC 

d0a731cc-9d22-411f-bef9-
c2ee1207f745.rsem.txt.gz 

HEK 
Transfer 
iPSC 1 1 iPSC 

HEK 
Transfer 

HEK Transfer 
iPSC Clone 1 

c9a75556-39c7-44e8-8ec1-
9b88bf79ce37.rsem.txt.gz 

HEK 
Transfer 
iPSC 2 1 iPSC 

HEK 
Transfer 

HEK Transfer 
iPSC Clone 2 

e0a67304-7019-44cf-a2c9-
d5bf91c36ea7.rsem.txt.gz 

HEK 
Transfer 
iPSC 4 1 iPSC 

HEK 
Transfer 

HEK Transfer 
iPSC Clone 4 

a0db8844-9056-42dc-bf36-
654061617b1b.rsem.txt.gz 

LP351 
Transfer 
iPSC 1 1 iPSC 

LP351 
Transfer 

LP351 Transfer 
iPSC Clone 1 

2c708981-49e5-4691-95d1-
ed04676bcdc6.rsem.txt.gz 

LP351 
Transfer 
iPSC 2 1 iPSC 

LP351 
Transfer 

LP351 Transfer 
iPSC Clone 2 

0f9cb841-ff39-4b48-bfd5-
faf2bad51109.rsem.txt.gz 

LP351 
Transfer 
iPSC 11 1 iPSC 

LP351 
Transfer 

LP351 Transfer 
iPSC Clone 11 

fb4f8f80-ec69-4cae-a0c7-
2f743b3844d7.rsem.txt.gz BJ MSC 0 1 MSC BJ BJ MSC 
7c463e9b-d7e7-46ad-af69-
97efd6efb931.rsem.txt.gz BJ MSC 0 1 MSC BJ BJ MSC 
597999d5-2013-45a6-aa9d-
2ad0c05cc4dd.rsem.txt.gz BJ MSC 0 1 MSC BJ BJ MSC 

7feb6877-39dc-445b-bfb5-
f6755851592d.rsem.txt.gz 

HEK 
Transfer 
MSC 1 1 MSC 

HEK 
Transfer 

HEK Transfer 
MSC Clone 1 

49a57add-fd64-4609-937c-
7b8bef7ee7f4.rsem.txt.gz 

HEK 
Transfer 
MSC 2 1 MSC 

HEK 
Transfer 

HEK Transfer 
MSC Clone 2 
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5245244d-170b-4258-ba53-
b6fe1398349e.rsem.txt.gz 

HEK 
Transfer 
MSC 4 1 MSC 

HEK 
Transfer 

HEK Transfer 
MSC Clone 4 

bec88e7e-17ac-40b8-901f-
eb9143c2ae49.rsem.txt.gz LP351 MSC 1 1 MSC 

LP351 
Transfer 

LP351 Transfer 
MSC Clone 1 

c7432564-97f0-45e6-b332-
3e2753ee08ed.rsem.txt.gz LP351 MSC 2 1 MSC 

LP351 
Transfer 

LP351 Transfer 
MSC Clone 2 

52f558cb-1b97-4f8d-81be-
13b8a0e9732c.rsem.txt.gz LP351 MSC 11 1 MSC 

LP351 
Transfer 

LP351 Transfer 
MSC Clone 11 

5491c6d3-31f1-483c-b4f7-
b778e10c4272.rsem.txt.gz 

BJ Rho Null 
Fibs 0 2 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

cd3c684e-26fe-4ea8-81df-
fffc3dff959b.rsem.txt.gz 

BJ Rho Null 
Fibs 0 2 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

15cd734e-a53d-4033-b103-
415614b373b4.rsem.txt.gz 

BJ Rho Null 
Fibs 0 2 Fibs Rho Null 

BJ Rho Null 
Fibroblast 

0a788839-3eb4-4b27-9ad5-
f8b23da97d67.rsem.txt.gz BJ Fibs  0 2 Fibs BJ BJ Fibroblast 
94799a70-74de-411e-bff1-
e6c4ed715f0d.rsem.txt.gz BJ Fibs 0 2 Fibs BJ BJ Fibroblast 
81198c14-b0ef-45ad-9042-
cb7821bb64b0.rsem.txt.gz BJ Fibs 0 2 Fibs BJ BJ Fibroblast 

33cd518a-88f7-4984-941a-
bbdf4c00a1d7.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 2 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

5cd6540c-abe9-4768-ac60-
d34f39047287.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 2 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

2012771c-8d8d-426e-b083-
3393e44c31df.rsem.txt.gz 

HEK 
Transfer 
Fibs 0 2 Fibs 

HEK 
Transfer 

HEK Transfer 
Fibroblast 

 

Section II: Transcript per million (TPM) normalized expression values for summarized 

HGNC gene-level counts per sample. 

 

b8a9e
771-
5e64-
4973-
a459-
f2de0
182d
439 

255d
874b-
6966-
4235-
b809-
d26a
97fc4
b52 

73c98
7bf-
fdd2-
4674-
a3c5-
3352c
8f7e9
6a 

d8e86
411-
8f83-
44ab-
a4e0-
be587
a3e69
a5 

c9d9
4a14-
38ea-
4ef4-
8045-
1f68b
6ca36
e0 

1bd3
6e15-
65bc-
475f-
9b59-
024ac
2038d
ae 

1ad3
cd29-
2eda-
4a71-
9c7d-
deaa
3cc6a
b6f 

a9cd
eb6a-
0b30
-
4bcd
-
8d91
-
73bff
ed92
0fd 

36659
ffa-
4d9d-
48b6-
9af7-
ee69a
dd64a
31 

158c0
cda-
a7f9-
4a0f-
81e3-
50d9
46a14
52f 

d094
adc5-
496c-
45c1-
8da9-
fc612
04b3
ee6 

7cfb6
f23-
8670-
43e2-
ac43-
9b9cb
27de3
e8 

A1B
G 

14.71
145 

12.94
9188 

13.10
4916 

16.92
9945 

15.47
5654 

15.94
5637 

10.93
6097 

8.275
323 

12.89
7414 

11.90
4079 

18.10
7024 

14.89
7876 

A1B
G-
AS1 

4.245
462 

4.036
122 

4.043
239 

5.084
312 

4.697
988 

4.755
244 

4.455
787 

3.730
475 

4.129
011 

5.029
377 

4.629
368 

5.024
89 

A1C
F 

0.017
163 

0.010
603 

0.016
25 

0.018
535 

0.016
516 

0.016
91 

0.023
875 

0.022
885 

0.018
575 

0.031
768 

0.046
778 

0.036
986 
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A2M 
0.449

387 
0.420

971 
0.662

334 
35.62
0856 

29.02
5254 

27.85
8903 

1.442
073 

1.330
456 

1.001
217 

0.344
843 

0.537
272 

0.375
365 

A2M
-AS1 

0.011
713 

0.022
959 

0.018
091 

0.315
249 

0.294
279 

0.380
799 

0.075
833 

0.061
439 

0.052
727 

0.213
23 

0.271
593 

0.215
064 

A2M
L1 

0.042
829 

0.246
11 

0.186
717 

0.104
925 

0.106
611 

0.103
508 

0.224
339 

0.213
274 

0.212
727 

0.119
041 

0.299
965 

0.201
018 

A2M
L1-
AS1 0 0 0 0 0 0 0 0 0 

0.025
804 

0.072
944 

0.064
965 

A2M
L1-
AS2 

0.055
609 

0.109
415 

0.028
27 

0.108
53 

0.030
816 

0.091
248 

0.026
057 

0.147
111 0 0 0 0 

A2M
P1 

0.009
694 0 0 

0.031
045 

0.053
287 

0.056
661 

0.014
809 

0.013
247 0 

0.031
794 

0.010
916 

0.002
043 

A3G
ALT
2 

0.008
906 

0.012
841 

0.015
822 

0.012
193 

0.013
645 0 

0.018
318 

0.008
763 

0.015
394 

0.031
618 

0.025
894 

0.042
783 

A4G
ALT 

3.706
751 

3.373
845 

3.383
823 

7.052
174 

7.207
618 

5.994
747 

4.852
479 

3.469
518 

3.762
685 

6.274
258 

2.081
367 

1.896
951 

A4G
NT 

0.068
75 

0.182
797 

0.173
168 

0.299
675 

0.234
351 

0.330
214 

0.116
862 

0.128
633 

0.185
514 

0.085
747 

0.085
106 

0.107
358 

AAA
S 

11.08
221 

13.34
5913 

13.71
4196 

14.98
48 

14.00
5754 

14.24
9459 

12.05
1991 

12.17
9488 

12.93
515 

13.91
6387 

13.61
8351 

12.19
9545 

AAC
S 

5.909
526 

6.030
743 

5.969
77 

8.532
159 

7.406
034 

7.517
313 

7.843
647 

7.075
549 

6.687
875 

8.030
247 

7.377
285 

9.746
318 

AAC
SP1 

0.006
947 

0.020
813 

0.022
276 

0.023
235 

0.011
472 

0.013
699 

0.022
397 

0.050
506 

0.029
965 

0.013
673 

0.020
529 

0.038
26 

AAD
AC 0 0 

0.005
778 

0.037
684 0 

0.007
421 

0.010
28 

0.016
158 

0.037
56 

0.013
263 0 

0.040
987 

AAD
ACL
2 

0.010
026 

0.007
789 

0.006
315 

0.021
816 

0.016
643 

0.003
008 

0.009
446 

0.009
078 0 

0.007
597 

0.005
941 

0.009
048 

AAD
ACL
2-
AS1 0 

0.030
79 

0.047
075 0 

0.069
212 0 0 

0.018
477 0 

0.154
307 0 0 

AAD
ACL
3 0 

0.009
049 

0.006
636 

0.006
198 

0.001
712 

0.002
508 

0.005
937 

0.002
486 0 

0.006
547 

0.004
85 

0.013
313 

AAD
ACL
4 

0.006
997 

0.009
006 

0.012
276 

0.083
536 0.115 

0.037
002 

0.010
942 0 0 

0.003
989 

0.004
023 

0.005
428 

AAD
ACP
1 0 0 0 0 

0.023
901 0 

0.069
528 

0.056
43 

0.015
62 

0.065
019 

0.045
876 

0.020
267 

AAD
AT 

1.921
118 

2.520
221 

2.396
93 

3.505
138 

3.126
402 

3.611
132 

2.066
938 

2.240
401 

2.259
807 

2.349
226 

2.774
343 

2.377
316 

AAE
D1 

22.06
1451 

18.11
4471 

19.24
4842 

25.15
6234 

26.52
2667 

28.68
7271 

31.68
9267 

20.41
7975 

32.16
7744 

37.02
5155 

30.28
3419 

42.38
9528 

AAG
AB 

17.37
2031 

14.92
5478 

15.15
0327 

14.51
5257 

13.50
5598 

13.60
0643 

12.86
5706 

11.49
5957 

14.54
8645 

15.09
1883 

14.06
1894 

14.53
3363 

AAK
1 

35.91
3007 

27.09
4496 

27.30
3868 

23.73
2019 

23.52
8802 

23.52
4057 

25.44
8379 

26.33
3253 

29.68
1487 

28.69
5617 

26.72
7988 

32.04
2458 

AAM
DC 

16.11
3722 

16.63
4054 

14.99
5158 

15.58
3793 

15.13
9153 

13.83
2916 

17.79
4757 

13.34
7927 

19.78
6809 

21.05
9537 

34.80
1959 

34.74
5579 
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AAM
P 

25.31
4632 

23.74
9383 

23.08
0166 

19.56
5049 

18.59
5221 

17.99
5016 

19.97
1725 

15.69
6617 

21.26
6506 

18.47
8267 

19.15
3806 

18.79
8203 

AAN
AT 

0.051
799 

0.078
527 

0.079
841 

0.072
861 

0.037
087 

0.019
135 

0.055
723 

0.085
181 

0.020
526 

0.046
2 

0.058
525 

0.066
819 

AAR
2 

8.445
205 

7.540
654 

7.684
383 

8.520
969 

8.310
893 

7.620
49 

7.092
033 

6.074
537 

7.310
501 

7.166
396 

9.114
483 

8.624
774 

AAR
D 

12.12
9518 

10.61
6825 

5.717
013 

2.498
242 

4.404
324 

1.722
773 

3.839
818 

0.357
323 

3.928
873 

2.371
112 

1.338
314 

1.026
23 

AAR
S 

45.23
4477 

39.05
4864 

37.62
2886 

46.39
7072 

44.46
8605 

46.73
5761 

20.16
8775 

22.54
7849 

23.97
715 

21.89
7541 

27.14
8307 

30.36
4171 

AAR
S2 

3.490
587 

3.687
635 

3.538
7 

2.966
52 

2.724
064 

2.589
291 

2.683
927 

2.707
084 

2.861
904 

2.563
468 

2.208
929 

2.073
685 

AAR
SD1 

9.987
44 

12.07
1345 

14.87
0814 

11.44
3342 

11.43
4516 

12.38
5085 

14.40
6906 

10.73
261 

14.36
3246 

11.45
8089 

12.55
3704 

13.68
6338 

AAR
SP1 0 0 0 0 0 0 0 0 0 0 0 

0.018
019 

AAS
DH 

2.744
812 

3.079
19 

2.784
752 

3.872
972 

3.427
548 

3.643
064 

2.785
321 

2.384
999 

2.787
806 

2.629
74 

2.947
115 

2.817
076 

AAS
DHP
PT 

13.12
9804 

13.40
5754 

12.94
4083 

12.16
1022 

11.65
2108 

11.54
8747 

11.39
5028 

9.711
18 

13.07
0702 

14.01
0083 

14.02
217 

13.25
6166 

AAS
S 

3.864
044 

5.859
395 

6.775
301 

5.674
089 

5.769
977 

5.423
02 

4.583
374 

6.237
094 

5.636
809 

6.682
701 

4.398
393 

4.189
875 

AAT
BC 

0.078
176 

0.122
511 

0.116
89 

0.238
395 

0.154
331 

0.083
399 

0.151
926 

0.161
073 

0.210
854 

0.145
745 

0.150
134 

0.181
106 

AAT
F 

10.60
2794 

10.76
6887 

10.25
3891 

10.42
5546 

8.861
772 

8.705
768 

9.773
732 

9.618
051 

9.638
878 

9.683
937 

8.283
59 

8.129
524 

 

Section III - MitoMiner 4.0 gene lists (subset for MitoCarta 2.0 evidence) used for nuclear-

encoded mitochondrial transcript analysis. 

Ensembl 
Identifier 

Ent
rez 
Ge
ne 

HGNC 
Symbol Full gene description 

Chrom
osome 

Mito
Cart
a 2.0 
Evid
ence?  

IMPI 
Evide
nce? 

GO 
Ter
m 
Evid
ence
? 

HPA 
Evid
ence
? 

iPS
ort 
M
TS 

Mito
Fates 
MTS 

Mito
prot 
MT
S 

Tar
get
P 
MT
S 

ENSMUSG0
0000024442 

668
39 

0610009
O20Rik 

RIKEN cDNA 
0610009O20 gene 18 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.97 

0.83
69 

0.90
6 

ENSMUSG0
0000027637 

673
88 

1110008
F13Rik 

RIKEN cDNA 
1110008F13 gene 2 

TRU
E 

Dubio
us 
gene 

TRU
E  0 0.014 

0.05
19 

0.09
9 

ENSMUSG0
0000021023 

661
32 

1110008
L16Rik 

RIKEN cDNA 
1110008L16 gene 12 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.215 

0.74
46 

0.38
5 

ENSMUSG0
0000019797 

678
51 

1700021
F05Rik 

RIKEN cDNA 
1700021F05 gene 10 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  1 0.192 

0.89
92 

0.60
1 

ENSMUSG0
0000038323 

734
67 

1700066
M21Rik 

RIKEN cDNA 
1700066M21 gene 1 

TRU
E 

Known 
mitoch
ondrial 

FAL
SE  0 0.266 

0.83
48 

0.70
6 

ENSMUSG0
0000021290 

702
57 

2010107
E04Rik 

RIKEN cDNA 
2010107E04 gene 12 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.069 

0.03
77 

0.04
9 
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ENSMUSG0
0000032403 

694
78 

2300009
A05Rik 

RIKEN cDNA 
2300009A05 gene 9 

TRU
E 

Known 
mitoch
ondrial 

FAL
SE  1 0.881 

0.87
64 

0.89
3 

ENSMUSG0
0000050705 

696
62 

2310061
I04Rik 

RIKEN cDNA 
2310061I04 gene 17 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  1 0.195 

0.86
6 

0.81
6 

ENSMUSG0
0000049760 

224
904 

2410015
M20Rik 

RIKEN cDNA 
2410015M20 gene 17 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.022 

0.73
99 

0.27
7 

ENSMUSG0
0000010277 

725
03 

2610507
B11Rik 

RIKEN cDNA 
2610507B11 gene 11 

TRU
E 

Predict
ed 
NOT 
mitoch
ondrial 

FAL
SE  0 0 0.83 

0.10
2 

ENSMUSG0
0000047635 

726
50 

2810006
K23Rik 

RIKEN cDNA 
2810006K23 gene 5 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.421 

0.93
52 

0.80
6 

ENSMUSG0
0000084234 

243
996 

4933405
O20Rik 

RIKEN cDNA 
4933405O20 gene 7 

TRU
E  

TRU
E  0 0.059 

0.66
19 

0.15
3 

ENSMUSG0
0000048489 

213
393 

8430408
G22Rik 

RIKEN cDNA 
8430408G22 gene 6 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  0 0.019 

0.08
03 

0.25
2 

ENSMUSG0
0000021185 

217
830 

9030617
O03Rik 

RIKEN cDNA 
9030617O03 gene 12 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.993 

0.97
76 

0.94
2 

ENSMUSG0
0000033213  

AA4671
97 

expressed sequence 
AA467197 2 

TRU
E 

Predict
ed 
NOT 
mitoch
ondrial 

TRU
E  0 0 

0.15
77 

0.04
9 

ENSMUSG0
0000057228 

239
23 Aadat 

aminoadipate 
aminotransferase 8 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.934 

0.93
9 0.81 

ENSMUSG0
0000023938 

224
805 Aars2 

alanyl-tRNA 
synthetase 2, 
mitochondrial 17 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.777 

0.97
58 

0.77
1 

ENSMUSG0
0000029695 

309
56 Aass 

aminoadipate-
semialdehyde synthase 6 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.998 

0.99
42 

0.89
4 

ENSMUSG0
0000057880 

268
860 Abat 

4-aminobutyrate 
aminotransferase 16 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.742 

0.97
54 

0.87
7 

ENSMUSG0
0000041797 

217
262 Abca9 

ATP-binding cassette, 
sub-family A (ABC1), 
member 9 11 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  0 0.261 

0.99
63 

0.77
8 

ENSMUSG0
0000031974 

561
99 Abcb10 

ATP-binding cassette, 
sub-family B 
(MDR/TAP), member 
10 8 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.681 

0.99
62 

0.90
7 

ENSMUSG0
0000026198 

741
04 Abcb6 

ATP-binding cassette, 
sub-family B 
(MDR/TAP), member 
6 1 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.003 

0.00
17 

0.01
8 

ENSMUSG0
0000031333 

113
06 Abcb7 

ATP-binding cassette, 
sub-family B 
(MDR/TAP), member 
7 X 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.561 

0.93
51 

0.50
3 

ENSMUSG0
0000028973 

746
10 Abcb8 

ATP-binding cassette, 
sub-family B 
(MDR/TAP), member 
8 5 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.867 

0.39
3 0.87 

ENSMUSG0
0000029408 

563
25 Abcb9 

ATP-binding cassette, 
sub-family B 
(MDR/TAP), member 
9 5 

TRU
E 

Predict
ed 
NOT 
mitoch
ondrial 

FAL
SE  0 0.004 

0.14
98 

0.06
3 
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ENSMUSG0
0000031378 

116
66 Abcd1 

ATP-binding cassette, 
sub-family D (ALD), 
member 1 X 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  1 0.092 

0.93
81 

0.63
1 

ENSMUSG0
0000055782 

268
74 Abcd2 

ATP-binding cassette, 
sub-family D (ALD), 
member 2 15 

TRU
E 

Predict
ed 
NOT 
mitoch
ondrial 

FAL
SE  0 0.939 

0.99
63 

0.81
5 

ENSMUSG0
0000028127 

192
99 Abcd3 

ATP-binding cassette, 
sub-family D (ALD), 
member 3 3 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  0 0.799 

0.81
69 

0.84
1 

ENSMUSG0
0000028953 

274
07 Abcf2 

ATP-binding cassette, 
sub-family F 
(GCN20), member 2 5 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  0 0 

0.07
17 

0.16
7 

ENSMUSG0
0000033157 

213
012 Abhd10 

abhydrolase domain 
containing 10 16 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.452 

0.99
71 

0.94
3 

ENSMUSG0
0000040532 

687
58 Abhd11 

abhydrolase domain 
containing 11 5 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.916 

0.99
29 

0.91
3 

ENSMUSG0
0000036138 

113
868 Acaa1a 

acetyl-Coenzyme A 
acyltransferase 1A 9 

TRU
E 

Predict
ed 
mitoch
ondrial 

TRU
E  0 0.432 

0.41
31 

0.83
4 

ENSMUSG0
0000010651 

235
674 Acaa1b 

acetyl-Coenzyme A 
acyltransferase 1B 9 

TRU
E  

TRU
E  0 0.175 

0.19
66 

0.59
4 

ENSMUSG0
0000036880 

525
38 Acaa2 

acetyl-Coenzyme A 
acyltransferase 2 
(mitochondrial 3-
oxoacyl-Coenzyme A 
thiolase) 18 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.989 

0.41
13 0.63 

ENSMUSG0
0000020532 

107
476 Acaca 

acetyl-Coenzyme A 
carboxylase alpha 11 

TRU
E  

TRU
E  0 0 

0.10
62 

0.07
5 

ENSMUSG0
0000042010 

100
705 Acacb 

acetyl-Coenzyme A 
carboxylase beta 5 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0.005 

0.21
9 

0.02
5 

ENSMUSG0
0000029456 

719
85 Acad10 

acyl-Coenzyme A 
dehydrogenase family, 
member 10 5 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  1 0.919 

0.87
4 

0.90
4 

ENSMUSG0
0000090150 

102
632 Acad11 

acyl-Coenzyme A 
dehydrogenase family, 
member 11 9 

TRU
E 

Known 
mitoch
ondrial 

TRU
E  0 0 

0.05
36 0.07 

ENSMUSG0
0000042647  Acad12 

acyl-Coenzyme A 
dehydrogenase family, 
member 12 5 

TRU
E  

TRU
E  1 0.732 

0.97
28 

0.91
9 

 

Section IV: Metabolic gene sets (derived from the KEGG Pathway database HSA01100) 

tested using metabolism transcript GSVA.  

KEGG 
Metab
olism 
Pathwa
y Gene 
Sets 

KEGG 
Metabolis
m URL 

Met
abol
ism 
Gen
es                       

KEGG
_GLY
COLY

http://www.
broadinstitu
te.org/gsea/

A
C
S

G
C
K 

P
G

P
G

P
D

P
D
H

P
D
H

P
G

T
P

A
C
S

F
B

A
D
H

H
K
2 

A
D
H

H
K
1 

H
K
3 

A
D

P
G
A

A
D

P
G
A

A
D
H

A
L
D

A
L
D

L
D
H
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SIS_G
LUCO
NEOG
ENESI
S 

msigdb/car
ds/KEGG_
GLYCOLY
SIS_GLUC
ONEOGEN
ESIS 

S
2 

K
2 

K
1 

H
B 

A
1 

A
2 

M
2 

I
1 

S
1 

P
1 

1
B 

1
C 

H
4 

M
2 

H
5 

M
1 

1
A 

O
C 

H
7
A
1 

A
L
6
B 

KEGG
_CITR
ATE_
CYCL
E_TC
A_CY
CLE 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
CITRATE_
CYCLE_T
CA_CYCL
E 

I
D
H
3
B 

D
L
S
T 

P
C
K
2 

C
S 

P
D
H
B 

P
C
K
1 

P
D
H
A
1 

L
O
C
6
4
2
5
0
2 

P
D
H
A
2 

L
O
C
2
8
3
3
9
8 

F
H 

S
D
H
D 

O
G
D
H 

S
D
H
B 

I
D
H
3
A 

S
D
H
C 

I
D
H
2 

I
D
H
1 

A
C
O
1 

A
C
L
Y 

M
D
H
2 

D
L
D 

M
D
H
1 

D
L
A
T 

KEGG
_PENT
OSE_P
HOSP
HATE
_PAT
HWAY 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
PENTOSE_
PHOSPHA
TE_PATH
WAY 

R
P
E 

R
P
I
A 

P
G
M
2 

P
G
L
S 

P
R
P
S
2 

F
B
P
2 

P
F
K
M 

P
F
K
L 

T
A
L
D
O
1 

T
K
T 

F
B
P
1 

T
K
T
L
2 

P
G
D 

R
B
K
S 

A
L
D
O
A 

A
L
D
O
C 

A
L
D
O
B 

H
6
P
D 

L
O
C
7
2
9
0
2
0 

P
R
P
S
1
L
1 

P
R
P
S
1 

D
E
R
A 

G
6
P
D 

P
G
M
1 

KEGG
_PENT
OSE_A
ND_G
LUCU
RONA
TE_IN
TERC
ONVE
RSION
S 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
PENTOSE_
AND_GLU
CURONAT
E_INTERC
ONVERSI
ONS 

U
G
T
1
A
1
0 

U
G
T
1
A
8 

R
P
E 

U
G
T
1
A
7 

U
G
T
1
A
6 

U
G
T
2
B
2
8 

U
G
T
1
A
5 

C
R
Y
L
1 

U
G
D
H 

U
G
T
2
A
1 

G
U
S
B 

U
G
T
1
A
9 

D
C
X
R 

L
O
C
7
2
9
0
2
0 

D
H
D
H 

U
G
T
2
B
1
1 

U
G
P
2 

X
Y
L
B 

U
G
T
2
B
1
0 

A
K
R
1
B
1 

U
G
T
2
B
7 

U
G
T
2
B
4 

U
G
T
2
A
3 

U
G
T
1
A
4 

KEGG
_FRU
CTOS
E_AN
D_MA
NNOS
E_ME
TABO
LISM 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
FRUCTOS
E_AND_M
ANNOSE_
METABOL
ISM 

M
P
I 

P
M
M
2 

P
M
M
1 

F
B
P
2 

P
F
K
M 

G
M
D
S 

P
F
K
F
B
4 

P
F
K
L 

M
T
M
R
6 

T
P
I
1 

P
H
P
T
1 

P
F
K
F
B
3 

F
U
K 

P
F
K
F
B
2 

M
T
M
R
1 

P
F
K
F
B
1 

A
K
R
1
B
1
0 

F
P
G
T 

K
H
K 

F
B
P
1 

M
T
M
R
2 

H
K
2 

H
K
3 

H
K
1 

KEGG
_GAL
ACTO
SE_M
ETAB
OLIS
M 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
GALACTO
SE_META
BOLISM 

G
C
K 

G
A
L
K
1 

G
L
B
1 

G
A
L
E 

B
4
G
A
L
T
1 

P
G
M
2 

L
A
L
B
A 

P
F
K
M 

P
F
K
L 

M
G
A
M 

H
K
2 

H
K
1 

H
K
3 

G
A
L
T 

G
6
P
C
2 

G
L
A 

G
A
N
C 

L
C
T 

G
A
L
K
2 

G
6
P
C 

U
G
P
2 

P
G
M
1 

A
K
R
1
B
1 

B
4
G
A
L
T
2 

KEGG
_ASC

http://www.
broadinstitu

U
G

U
G

U
G

U
G

A
L

U
G

A
L

U
G

M
I

U
G

U
G

A
L

A
L

U
G

A
L

U
G

U
G

U
G

U
G

U
G

U
G

U
G

U
G

U
G
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ORBA
TE_A
ND_A
LDAR
ATE_
META
BOLIS
M 

te.org/gsea/
msigdb/car
ds/KEGG_
ASCORBA
TE_AND_
ALDARAT
E_METAB
OLISM 

T
1
A
1
0 

T
1
A
8 

T
1
A
7 

T
1
A
6 

D
H
1
B
1 

T
2
B
2
8 

D
H
2 

T
1
A
5 

O
X 

D
H 

T
2
A
1 

D
H
9
A
1 

D
H
3
A
2 

T
1
A
9 

D
H
7
A
1 

T
2
B
1
1 

T
2
B
1
0 

T
2
B
7 

T
2
B
4 

T
2
A
3 

T
1
A
4 

T
1
A
1 

T
2
B
1
7 

T
1
A
3 

KEGG
_FATT
Y_ACI
D_ME
TABO
LISM 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
FATTY_A
CID_MET
ABOLISM 

C
P
T
1
A 

C
P
T
1
C 

A
C
A
D
S 

A
L
D
H
1
B
1 

A
C
A
D
S
B 

A
C
A
D
L 

A
L
D
H
2 

A
C
A
D
M 

C
Y
P
4
A
1
1 

A
C
A
T
2 

A
C
A
D
V
L 

A
C
A
T
1 

A
C
A
A
2 

H
A
D
H 

H
A
D
H
B 

H
A
D
H
A 

C
Y
P
4
A
2
2 

A
D
H
7 

A
D
H
6 

A
C
S
L
6 

A
D
H
1
B 

A
D
H
1
C 

A
D
H
4 

E
C
H
S
1 

KEGG
_STER
OID_B
IOSYN
THESI
S 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
STEROID_
BIOSYNT
HESIS 

S
O
A
T
1 

L
S
S 

S
Q
L
E 

E
B
P 

C
Y
P
5
1
A
1 

D
H
C
R
7 

C
Y
P
2
7
B
1 

D
H
C
R
2
4 

H
S
D
1
7
B
7 

M
S
M
O
1 

F
D
F
T
1 

S
C
5
D
L 

L
I
P
A 

C
E
L 

T
M
7
S
F
2 

N
S
D
H
L 

S
O
A
T
2        

KEGG
_PRIM
ARY_
BILE_
ACID_
BIOSY
NTHE
SIS 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
PRIMARY
_BILE_AC
ID_BIOSY
NTHESIS 

C
Y
P
4
6
A
1 

S
L
C
2
7
A
5 

B
A
A
T 

C
Y
P
7
B
1 

A
K
R
1
C
4 

H
S
D
1
7
B
4 

S
C
P
2 

A
K
R
1
D
1 

A
C
O
X
2 

H
S
D
3
B
7 

C
Y
P
2
7
A
1 

A
M
A
C
R 

C
Y
P
7
A
1 

C
Y
P
8
B
1 

C
Y
P
3
9
A
1 

C
H
2
5
H         

KEGG
_STER
OID_H
ORMO
NE_BI
OSYN
THESI
S 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
STEROID_
HORMON
E_BIOSYN
THESIS 

S
R
D
5
A
3 

A
K
R
1
C
4 

C
Y
P
3
A
5 

H
S
D
3
B
2 

U
G
T
2
B
2
8 

H
S
D
3
B
1 

C
O
M
T 

S
U
L
T
2
B
1 

C
Y
P
3
A
4 

C
Y
P
7
A
1 

C
Y
P
1
1
A
1 

A
K
R
1
C
3 

H
S
D
1
1
B
2 

S
U
L
T
1
E
1 

H
S
D
1
1
B
1 

H
S
D
1
7
B
2 

H
S
D
1
7
B
3 

C
Y
P
2
1
A
2 

H
S
D
1
7
B
1 

C
Y
P
1
9
A
1 

C
Y
P
1
7
A
1 

C
Y
P
1
1
B
2 

C
Y
P
1
1
B
1 

H
S
D
1
7
B
6 

KEGG
_OXID
ATIVE
_PHOS
PHOR
YLATI
ON 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
OXIDATIV
E_PHOSP
HORYLAT
ION 

A
T
P
6
V
1
G
1 

U
Q
C
R
1
0 

N
D
U
F
A
5 

N
D
U
F
A
4 

C
O
X
6
C
P
3 

P
P
A
2 

A
T
P
5
J
2 

N
D
U
F
S
7 

C
Y
T
B 

A
T
P
6
V
0
A
1 

A
T
P
6
V
1
G
2 

A
T
P
6
V
0
B 

A
T
P
5
O 

C
O
X
2 

C
O
X
1 

A
T
P
6
A
P
1 

C
O
X
8
C 

C
O
X
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N
T
7 

S
T
3
G
A
L
2 

B
4
G
A
L
T
3 

S
T
3
G
A
L
1 

B
4
G
A
L
T
2 

B
4
G
A
L
T
4 

C
H
S
T
4 

S
T
3
G
A
L
3 

F
U
T
8 

C
H
S
T
6          

KEGG
_GLY
COSA
MINO
GLYC
AN_BI
OSYN
THESI
S_HEP
ARAN
_SULF
ATE 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
GLYCOSA
MINOGLY
CAN_BIOS
YNTHESIS
_HEPARA
N_SULFA
TE 

H
S
3
S
T
5 

E
X
T
2 

E
X
T
1 

N
D
S
T
3 

X
Y
L
T
1 

X
Y
L
T
2 

B
3
G
A
T
1 

N
D
S
T
1 

G
L
C
E 

H
S
3
S
T
3
B
1 

H
S
2
S
T
1 

H
S
6
S
T
2 

B
3
G
A
T
3 

H
S
3
S
T
1 

B
3
G
A
L
T
6 

H
S
3
S
T
2 

H
S
6
S
T
1 

H
S
3
S
T
3
A
1 

N
D
S
T
2 

N
D
S
T
4 

H
S
6
S
T
3 

B
4
G
A
L
T
7 

B
3
G
A
T
2 

E
X
T
L
1 

KEGG
_GLY
CERO
LIPID
_MET
ABOLI
SM 

http://www.
broadinstitu
te.org/gsea/
msigdb/car
ds/KEGG_
GLYCERO
LIPID_ME
TABOLIS
M 

M
B
O
A
T
2 

G
P
A
M 

L
I
P
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D
G
K
Z 

D
G
K
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D
G
K
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G
K
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M
B
O
A
T
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D
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T
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G
L
A 
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L
D
H
7
A
1 
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G
K 

D
A
K 

A
G
P
A
T
3 

A
W
A
T
2 

A
G
P
A
T
4 

A
K
R
1
B
1 

P
N
L
I
P
R
P
2 

P
N
L
I
P
R
P
1 

P
N
L
I
P 

D
G
A
T
1 

G
L
Y
C
T
K 

 

 

Section V: Significantly enriched metabolic pathways across sample conditions identified 

using GSVA (using an F statistic adjusted P value threshold of 0.05). 

 

SampleMatrix.C
lonalInfoBJ.Fibr
oblast 

SampleMatri
x.ClonalInfo
BJ.iPSC 

SampleMatri
x.ClonalInfo
BJ.MSC 

SampleMatrix.Clon
alInfoBJ.Rho.Null.F
ibroblast 



332 
 

KEGG_GLYCOSAMINOGLY
CAN_DEGRADATION 0.405813902 -0.55531956 0.16206836 0.36951536 
KEGG_OTHER_GLYCAN_D
EGRADATION 0.474766612 -0.48280539 -0.18262391 0.60932469 
KEGG_GLYCOSPHINGOLIP
ID_BIOSYNTHESIS_GANGL
IO_SERIES 0.382309082 -0.54846351 0.44537103 0.0578382 
KEGG_GLYCINE_SERINE_
AND_THREONINE_METAB
OLISM -0.383649528 0.40109112 0.0764127 -0.26725939 
KEGG_GLYCOSAMINOGLY
CAN_BIOSYNTHESIS_CHO
NDROITIN_SULFATE -0.052699356 -0.45450794 0.27339616 0.24174442 
KEGG_CYSTEINE_AND_ME
THIONINE_METABOLISM -0.396336915 0.35707445 -0.21197381 -0.25991657 
KEGG_AMINO_SUGAR_AN
D_NUCLEOTIDE_SUGAR_M
ETABOLISM 0.000668027 -0.35955462 0.06385756 0.28983686 
KEGG_ONE_CARBON_POO
L_BY_FOLATE -0.24128595 0.44139376 -0.14850649 -0.3393163 
KEGG_VALINE_LEUCINE_
AND_ISOLEUCINE_BIOSYN
THESIS -0.468182931 0.46403657 0.10976203 -0.29216111 
KEGG_NITROGEN_METAB
OLISM -0.050971916 0.21965976 0.03857841 -0.12463341 
KEGG_TERPENOID_BACKB
ONE_BIOSYNTHESIS -0.470311707 -0.1863855 0.47007272 -0.49893796 
KEGG_BETA_ALANINE_ME
TABOLISM -0.251185103 0.36688292 -0.28747999 -0.19066366 
KEGG_N_GLYCAN_BIOSYN
THESIS -0.216661638 -0.36447541 0.12509319 0.18557465 
KEGG_ALANINE_ASPARTA
TE_AND_GLUTAMATE_ME
TABOLISM -0.01577062 0.1992658 -0.30918366 0.04677447 
KEGG_GALACTOSE_META
BOLISM 0.091774469 -0.23914495 -0.15957031 0.24175358 
KEGG_AMINOACYL_TRNA
_BIOSYNTHESIS -0.383620391 0.25067563 0.11462189 -0.06011311 
KEGG_GLYCOSAMINOGLY
CAN_BIOSYNTHESIS_KERA
TAN_SULFATE -0.205296027 -0.2550607 0.22388406 0.05485028 
KEGG_GLYCOSYLPHOSPH
ATIDYLINOSITOL_GPI_AN
CHOR_BIOSYNTHESIS -0.059839128 -0.31262592 -0.01253082 0.36172065 
KEGG_INOSITOL_PHOSPH
ATE_METABOLISM 0.262690597 -0.24778133 -0.19549115 0.21435705 

 

Section VI: Reactome pathway analaysis of the top 500 genes signficantly altered genes 

between BJ parent and the BJ rho nulls and SIMR cell lines. 
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Clust
er ID Description 

Ge
neR
atio 

Bg
Rat
io 

pv
alu
e 

p.a
dju
st 

qv
alu
e geneID 

C
o
u
nt 

1 

Upre
gulat
ed 

R-
HS
A-
16
32
00 

Respiratory 
electron 
transport, ATP 
synthesis by 
chemiosmotic 
coupling, and 
heat production 
by uncoupling 
proteins. 

12/
115 

123
/10
619 

7.6
4E
-09 

2.5
0E
-06 

2.3
2E
-06 

COX1/COX3/ND3/ND2/ND6/CYTB/ND5/ATP6/ND1/ATP
8/ND4/COX2 

1
2 

2 

Upre
gulat
ed 

R-
HS
A-
61
11
05 

Respiratory 
electron 
transport 

10/
115 

100
/10
619 

1.1
4E
-07 

1.8
7E
-05 

1.7
3E
-05 

COX1/COX3/ND3/ND2/ND6/CYTB/ND5/ND1/ND4/COX
2 

1
0 

3 

Upre
gulat
ed 

R-
HS
A-
14
28
51
7 

The citric acid 
(TCA) cycle 
and respiratory 
electron 
transport 

12/
115 

174
/10
619 

3.6
5E
-07 

3.9
8E
-05 

3.6
9E
-05 

COX1/COX3/ND3/ND2/ND6/CYTB/ND5/ATP6/ND1/ATP
8/ND4/COX2 

1
2 

4 

Upre
gulat
ed 

R-
HS
A-
67
99
19
8 

Complex I 
biogenesis 

6/1
15 

55/
106
19 

2.6
6E
-05 

0.0
01
82

2 

0.0
01
68

9 ND3/ND2/ND6/ND5/ND1/ND4 6 

5 

Upre
gulat
ed 

R-
HS
A-
46
55
42
7 

SUMOylation 
of DNA 
methylation 
proteins 

4/1
15 

17/
106
19 

2.7
9E
-05 

0.0
01
82

2 

0.0
01
68

9 PHC1/CBX2/DNMT3B/DNMT3A 4 

6 

Upre
gulat
ed 

R-
HS
A-
89
64
04
3 

Plasma 
lipoprotein 
clearance 

4/1
15 

33/
106
19 

0.0
00
41

9 

0.0
22
84

3 

0.0
21
17

8 MYLIP/PCSK9/APOC1/APOE 4 

7 

Upre
gulat
ed 

R-
HS
A-
39
28
66
4 

Ephrin 
signaling 

3/1
15 

19/
106
19 

0.0
01
05

6 

0.0
49
35

3 

0.0
45
75

5 EFNB3/EPHB4/EPHB6 3 

8 

Dow
nregu
lated 

R-
HS
A-
14
74
24
4 

Extracellular 
matrix 
organization 

18/
183 

301
/10
619 

4.2
8E
-06 

0.0
02
58

8 

0.0
02
24

1 

ADAMTS2/SCUBE3/ITGB1/TIMP2/ADAMTS1/CD44/IT
GA3/NTN4/ITGA2/LOX/LAMC1/SERPINE1/CTSK/CTSB
/FGF2/LOXL2/MMP12/CD151 

1
8 

9 

Dow
nregu
lated 

R-
HS
A-
75
20
5 

Dissolution of 
Fibrin Clot 

4/1
83 

13/
106
19 

5.4
0E
-05 

0.0
11
63

4 

0.0
10
07

7 SERPINB2/SERPINB8/PLAT/SERPINE1 4 
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1
0 

Dow
nregu
lated 

R-
HS
A-
21
09
91 

Basigin 
interactions 

5/1
83 

25/
106
19 

5.7
8E
-05 

0.0
11
63

4 

0.0
10
07

7 ITGB1/ITGA3/SLC16A3/CAV1/L1CAM 5 

1
1 

Dow
nregu
lated 

R-
HS
A-
88
74
08
1 

MET activates 
PTK2 signaling 

5/1
83 

30/
106
19 

0.0
00
14

5 

0.0
21
82

4 

0.0
18
90

3 MET/ITGB1/ITGA3/ITGA2/LAMC1 5 

1
2 

Dow
nregu
lated 

R-
HS
A-
90
06
93
4 

Signaling by 
Receptor 
Tyrosine 
Kinases 

19/
183 

458
/10
619 

0.0
00
34

3 

0.0
41
44

2 

0.0
35
89

5 

MET/ATP6V0E1/ITGB1/PDGFC/ITGA3/ITGA2/SH3GL2/
VEGFC/CAV1/PLAT/LAMC1/BDNF/FGF5/FGF2/EGFR/
ATP6V1E1/EREG/ATP6V1A/ATP6AP1 

1
9 
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Patananan, et. al. 2020 (Submitted - Cell Reports) 
Supplementary Table S5: 
Transcriptomics overrepresentation and global pathway analysis.  
Related to Figures 5 and S3, S4, and S5. 
 
Accession Information: 
GSE115871 
 
Table of Contents: 
Section I: List of differentially expressed genes between BJ ρ0 Fibroblasts (numerator) and BJ 
Fibroblasts (denominator): 
DEGs were calculated using an absolute log2FC > 1 and adjusted P value < 0.05 (Benjamini-
Hochberg False Discovery Rate = 0.05) 
Section II: Fibroblast expression relative to BJ Fibroblast Reactome Overrepresentation Analysis 
(ORA) results: 
DEGs across fibroblast transfer conditions were evaluated for ORA in the Reactome database 
using compareCluster() in R Bioconductor package ReactomePA. 
Overrepresented pathways are calculated with a P value threshold < 0.05 and an adjusted P value 
of 0.20 (BH FDR = 0.2) 
Section III: iPSC expression relative to BJ iPSC Reactome Overrepresentation Analysis (ORA) 
results. Results derived as above.  
Section IV: MSC expression relative to MSC iPSC Fibroblast Reactome Overrepresentation 
Analysis (ORA) results. Results derived as above.  
 
Condition Code: 
BJ 
BJ rho null (BJ⍴0) 
BJ HEK (BJ⍴0+HEK293T) 
BJ LP351 (BJ⍴0+PBMC1) 
 
Section I: List of differentially expressed genes between BJ ρ0 Fibroblasts (numerator) and 

BJ Fibroblasts (denominator): 

DEGs were calculated using an absolute log2FC > 1 and adjusted P value < 0.05 

(Benjamini-Hochberg False Discovery Rate = 0.05) 

HGNC 
Gene 
Name 

Geometric 
Mean 
Expression 
Across 
Samples 

Log2 Fold 
Change (p0 
Fibroblast/BJ 
Fiborblast) 

Log Fold 
Change 
Standard 
Error 

Wald Test 
Statistic 

Wald test 
P value Adjusted P value 

MT-CO1 433436.171 -9.4154576 0.2384446 
-

35.293135 7.48E-273 2.11E-268 
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MT-ND6 28408.1742 -8.5626792 
0.2373881

9 
-

31.857857 1.02E-222 1.44E-218 

MT-ND5 128222.532 -8.592825 
0.2394386

3 
-

31.710944 1.10E-220 1.03E-216 

MT-ND3 20672.2952 -8.4892744 0.2385692 
-

31.392461 2.56E-216 1.81E-212 

MT-CO3 183615.539 -8.7161804 
0.2531134

9 
-

30.485062 4.11E-204 2.32E-200 

MT-CYB 111338.345 -8.6191694 
0.2506297

1 
-

30.400104 5.48E-203 2.57E-199 

MT-ND2 91210.5298 -8.1742957 
0.2404914

8 
-

29.831808 1.51E-195 6.09E-192 

MT-ND1 118333.647 -8.5303575 
0.2705458

8 
-

27.833939 1.69E-170 5.94E-167 

MT-ND4 178539.614 -8.1383759 
0.2579176

6 
-

27.676956 1.32E-168 4.14E-165 

MT-ATP6 87007.231 -8.2457387 0.2619612 
-

27.659587 2.14E-168 6.03E-165 

MT-CO2 148722.339 -8.6924717 
0.2782259

8 
-

27.648287 2.93E-168 7.50E-165 

MT-ND4L 23790.3573 -8.6833802 
0.2783504

3 
-

27.603263 1.02E-167 2.39E-164 

MT-ATP8 25909.6871 -8.4843636 
0.2934107

5 
-

25.508144 1.60E-143 3.47E-140 

CPXM1 2397.31675 -6.8584727 
0.2487428

9 
-

23.552322 1.19E-122 2.39E-119 

MT-TY 1416.52297 -8.3629809 
0.3226287

3 
-

22.821839 2.78E-115 5.23E-112 

MT-TC 1169.04405 -7.2294925 
0.2757945

2 
-

22.587441 5.76E-113 1.01E-109 
MTATP6P
1 8287.40308 -7.3269131 

0.3031666
9 -20.86942 1.02E-96 1.68E-93 

EFNB3 665.027606 -4.6208549 0.179306 
-

20.193719 1.11E-90 1.74E-87 

MT-TP 888.527422 -8.8272843 
0.3903131

9 
-

20.053856 1.87E-89 2.77E-86 

SMO 4056.6609 -4.0263527 
0.1528967

1 
-

19.793446 3.39E-87 4.78E-84 

KBTBD11 807.536057 -5.3985847 
0.2287403

5 
-

19.229597 2.09E-82 2.81E-79 

SOX11 6574.78325 -5.4796105 
0.2329966

1 
-

19.226075 2.24E-82 2.87E-79 

MT-TE 1187.20916 -9.2803678 
0.4370425

9 
-

18.946363 4.73E-80 5.80E-77 

KISS1 1810.96797 6.55059089 
0.2952338

9 
18.800656

1 7.46E-79 8.41E-76 

PIM1 3077.83149 -3.1810617 
0.1160055

3 -18.80136 7.36E-79 8.41E-76 

SERPINF1 3957.51185 -4.3159212 
0.1813707

7 
-

18.282556 1.14E-74 1.24E-71 

EIF4E3 1151.76538 -3.4344114 
0.1368848

2 
-

17.784378 9.34E-71 9.75E-68 

NDN 1586.99448 -5.1683058 
0.2347446

6 
-

17.756766 1.53E-70 1.54E-67 
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RGMA 1904.38441 -4.4507525 
0.1977889

2 
-

17.446642 3.65E-68 3.55E-65 

FGF7 471.18189 -5.5055707 
0.2587759

2 -17.41109 6.80E-68 6.39E-65 

LTBP4 7406.45918 -4.2461128 
0.1876468

8 -17.29905 4.78E-67 4.35E-64 

MYLIP 913.506414 -4.9057969 
0.2262909

8 
-

17.260065 9.40E-67 8.28E-64 
C10orf105 211.574659 -8.0416366 0.4186688 -16.81911 1.77E-63 1.51E-60 

OLFM2 1652.49865 -4.2005636 
0.1943548

2 
-

16.467632 6.27E-61 5.20E-58 

MT-TA 464.838413 -7.7664229 
0.4136937

9 
-

16.356114 3.93E-60 3.17E-57 

VWA5A 736.053063 -3.5924924 
0.1625746

3 
-

15.946476 3.01E-57 2.36E-54 

COL5A3 2093.76657 -4.2311483 
0.2089099

8 
-

15.466701 5.82E-54 4.43E-51 

STK32B 1113.76259 -3.6755619 
0.1762794

6 
-

15.177956 4.95E-52 3.67E-49 

ARHGEF3 538.483341 -3.6845436 
0.1771629

9 
-

15.152959 7.24E-52 5.23E-49 
 

Section II: Fibroblast expression relative to BJ Fibroblast Reactome Overrepresentation 

Analysis (ORA) results: 

DEGs across fibroblast transfer conditions were evaluated for ORA in the Reactome 

database using compareCluster() in R Bioconductor package ReactomePA. 

Overrepresented pathways are calculated with a P value threshold < 0.05 and an adjusted 

P value of 0.20 (BH FDR = 0.2) 

 

Clus
ter 
ID 
(Rel
ative 
to 
BJ) 

Rea
cto
me 
ID Pathway Description 

D
E
G 
Ra
tio 

Bac
kgr
oun
d 
Ge
no
me 
Rat
io 

P 
val
ue 

Ad
jus
ted 
P 
val
ue 

Be
nj
ma
ini-
Ho
chb
erg 
Co
rre
cte
d q 
val
ue List of HGNC gene IDs 

Gene 
Hit 
Coun
t 

1 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
147
424
4 

Extracellular matrix 
organization 

20/
17
3 

301
/10
619 

8.9
9E
-08 

4.7
2E
-05 

4.1
1E-
05 

SCUBE3/NCAM1/TGFB2/COL8A1/MMP12/
SERPINE1/TLL2/MMP10/ELN/P4HA3/ITG
A6/PLOD2/MMP3/ITGA4/COL10A1/ITGA3/
ITGB5/SPP1/ITGB6/COMP 20 
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2 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
680
937
1 

Formation of the 
cornified envelope 

11/
17
3 

129
/10
619 

7.8
8E
-06 

0.0
01
06
76

2 

0.0
009
290

2 
DSP/KRT81/DSG2/DSC3/KRT14/IVL/PKP1/
KRT34/KRT5/SPRR1A/PI3 11 

3 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
216
083 

Integrin cell surface 
interactions 

9/1
73 

85/
106
19 

9.3
5E
-06 

0.0
01
06
76

2 

0.0
009
290

2 
COL8A1/ITGA6/ITGA4/COL10A1/ITGA3/I
TGB5/SPP1/ITGB6/COMP 9 

4 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
678
580
7 

Interleukin-4 and 
Interleukin-13 
signaling 

10/
17
3 

108
/10
619 

9.9
3E
-06 

0.0
01
06
76

2 

0.0
009
290

2 
CCND1/IL1A/GATA3/POMC/SAA1/MMP3/I
L13RA2/PTGS2/CD36/IL1B 10 

5 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
680
556
7 Keratinization 

14/
17
3 

214
/10
619 

1.0
2E
-05 

0.0
01
06
76

2 

0.0
009
290

2 

DSP/KRT81/DSG2/KRTAP2-
3/DSC3/KRT14/IVL/PKP1/KRT34/KRT5/KR
TAP3-1/KRTAP21-2/SPRR1A/PI3 14 

6 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
900
939
1 

Non-genomic estrogen 
signaling 

8/1
73 

77/
106
19 

3.4
1E
-05 

0.0
02
68
61

5 

0.0
023
374

2 
CCND1/HBEGF/EREG/MMP3/TGFA/EPGN/
GNAT3/GNAI1 8 

7 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
963
463
8 

Estrogen-dependent 
nuclear events 
downstream of ESR-
membrane signaling 

5/1
73 

24/
106
19 

3.5
8E
-05 

0.0
02
68
61

5 

0.0
023
374

2 CCND1/HBEGF/EREG/TGFA/EPGN 5 

8 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
179
812 

GRB2 events in EGFR 
signaling 

4/1
73 

13/
106
19 

4.3
4E
-05 

0.0
02
84
64 

0.0
024
768

7 HBEGF/EREG/TGFA/EPGN 4 

9 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
180
336 

SHC1 events in EGFR 
signaling 

4/1
73 

14/
106
19 

6.0
0E
-05 

0.0
03
49
72

6 

0.0
030
432

3 HBEGF/EREG/TGFA/EPGN 4 

10 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
182
971 EGFR downregulation 

5/1
73 

31/
106
19 

0.0
00
13
05

5 

0.0
06
54
79

7 

0.0
056
978

8 HBEGF/SH3GL2/EREG/TGFA/EPGN 5 

11 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
180
292 GAB1 signalosome 

4/1
73 

17/
106
19 

0.0
00
13
72 

0.0
06
54
79

7 

0.0
056
978

8 HBEGF/EREG/TGFA/EPGN 4 

12 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
888
590 

GABA synthesis, 
release, reuptake and 
degradation 

4/1
73 

19/
106
19 

0.0
00
21
78

1 

0.0
09
52
93

2 

0.0
082
921

8 ALDH5A1/SYT1/RIMS1/GAD1 4 

13 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
147
422
8 

Degradation of the 
extracellular matrix 

9/1
73 

140
/10
619 

0.0
00
46
28

6 

0.0
17
57
94

1 

0.0
152
971

7 
SCUBE3/COL8A1/MMP12/TLL2/MMP10/E
LN/MMP3/COL10A1/SPP1 9 

14 

LP3
51 
Upre

R-
HS
A-

PI3K events in ERBB4 
signaling 

3/1
73 

10/
106
19 

0.0
00
46

0.0
17
57

0.0
152 HBEGF/NRG1/EREG 3 
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gulat
ed 

125
034
2 

87
8 

94
1 

971
7 

15 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
351
906 

Apoptotic cleavage of 
cell adhesion  proteins 

3/1
73 

11/
106
19 

0.0
00
63
68

8 

0.0
19
21
11

7 

0.0
167
170

9 DSP/DSG2/PKP1 3 

16 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
446
107 

Type I 
hemidesmosome 
assembly 

3/1
73 

11/
106
19 

0.0
00
63
68

8 

0.0
19
21
11

7 

0.0
167
170

9 ITGA6/KRT14/KRT5 3 

17 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
147
429
0 Collagen formation 

7/1
73 

90/
106
19 

0.0
00
64
71

1 

0.0
19
21
11

7 

0.0
167
170

9 
COL8A1/TLL2/P4HA3/ITGA6/PLOD2/MMP
3/COL10A1 7 

18 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
164
371
3 

Signaling by EGFR in 
Cancer 

4/1
73 

25/
106
19 

0.0
00
65
86

7 

0.0
19
21
11

7 

0.0
167
170

9 HBEGF/EREG/TGFA/EPGN 4 

19 

LP3
51 
Upre
gulat
ed 

R-
HS
A-
752
05 

Dissolution of Fibrin 
Clot 

3/1
73 

13/
106
19 

0.0
01
07
77

3 

0.0
26
02
85 

0.0
226
493

6 SERPINB2/SERPINE1/PLAT 3 
 

 

Section III: iPSC expression relative to BJ iPSC Reactome Overrepresentation Analysis 

(ORA) results. Results derived as above.  

 

Cluste
r ID 
(Relat
ive to 
BJ) 

Reac
tome 
ID Pathway Description 

Back
grou
nd 
Geno
me 
Ratio 

P 
valu
e 

Adj
uste
d P 
valu
e 

Benj
mai
ni-
Hoc
hber
g 
Corr
ecte
d q 
valu
e 

List 
of 
HG
NC 
gen
e 
IDs Gene Hit Count 

1 

LP351 
Upreg
ulated 

R-
HSA
-
7372
8 RNA Polymerase I Promoter Opening 

18-
May 

63/1
061
9 

5.05
E-
08 

2.05
E-06 

4.31
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

2 

LP351 
Upreg
ulated 

R-
HSA
-
5334
118 DNA methylation 

18-
May 

65/1
061
9 

5.92
E-
08 

2.05
E-06 

4.31
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

3 

LP351 
Upreg
ulated 

R-
HSA
-
5625
886 

Activated PKN1 stimulates 
transcription of AR (androgen 
receptor) regulated genes KLK2 and 
KLK3 

18-
May 

67/1
061
9 

6.91
E-
08 

2.05
E-06 

4.31
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 
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4 

LP351 
Upreg
ulated 

R-
HSA
-
4273
59 

SIRT1 negatively regulates rRNA 
expression 

18-
May 

68/1
061
9 

7.45
E-
08 

2.05
E-06 

4.31
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

5 

LP351 
Upreg
ulated 

R-
HSA
-
2123
00 PRC2 methylates histones and DNA 

18-
May 

73/1
061
9 

1.07
E-
07 

2.06
E-06 

4.33
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

6 

LP351 
Upreg
ulated 

R-
HSA
-
2299
718 

Condensation of Prophase 
Chromosomes 

18-
May 

74/1
061
9 

1.14
E-
07 

2.06
E-06 

4.33
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

7 

LP351 
Upreg
ulated 

R-
HSA
-
4273
89 

ERCC6 (CSB) and EHMT2 (G9a) 
positively regulate rRNA expression 

18-
May 

76/1
061
9 

1.31
E-
07 

2.06
E-06 

4.33
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

8 

LP351 
Upreg
ulated 

R-
HSA
-
9124
46 Meiotic recombination 

18-
May 

86/1
061
9 

2.44
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

9 

LP351 
Upreg
ulated 

R-
HSA
-
2017
22 

Formation of the beta-catenin:TCF 
transactivating complex 

18-
May 

91/1
061
9 

3.25
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

10 

LP351 
Upreg
ulated 

R-
HSA
-
5250
924 

B-WICH complex positively regulates 
rRNA expression 

18-
May 

91/1
061
9 

3.25
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

11 

LP351 
Upreg
ulated 

R-
HSA
-
7377
2 RNA Polymerase I Promoter Escape 

18-
May 

91/1
061
9 

3.25
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

12 

LP351 
Upreg
ulated 

R-
HSA
-
1912
408 

Pre-NOTCH Transcription and 
Translation 

18-
May 

93/1
061
9 

3.62
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

13 

LP351 
Upreg
ulated 

R-
HSA
-
3214
815 HDACs deacetylate histones 

18-
May 

94/1
061
9 

3.82
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

14 

LP351 
Upreg
ulated 

R-
HSA
-
5625
740 RHO GTPases activate PKNs 

18-
May 

95/1
061
9 

4.03
E-
07 

3.16
E-06 

6.66
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

15 

LP351 
Upreg
ulated 

R-
HSA
-
8936
459 

RUNX1 regulates genes involved in 
megakaryocyte differentiation and 
platelet function 

18-
May 

97/1
061
9 

4.47
E-
07 

3.28
E-06 

6.90
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

16 

LP351 
Upreg
ulated 

R-
HSA
-
2559
583 Cellular Senescence 

18-
Jun 

195/
106
19 

5.49
E-
07 

3.77
E-06 

7.94
E-
07 

HIST1H3A/HIST1H4A/
HIST1H1A/HIST1H3C/
HIST1H4F/HIST1H2BB 6 

17 

LP351 
Upreg
ulated 

R-
HSA
-

Positive epigenetic regulation of rRNA 
expression 

18-
May 

106/
106
19 

6.97
E-
07 

3.84
E-06 

8.08
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 
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5250
913 

18 

LP351 
Upreg
ulated 

R-
HSA
-
5578
749 

Transcriptional regulation by small 
RNAs 

18-
May 

106/
106
19 

6.97
E-
07 

3.84
E-06 

8.08
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

19 

LP351 
Upreg
ulated 

R-
HSA
-
4274
13 

NoRC negatively regulates rRNA 
expression 

18-
May 

107/
106
19 

7.30
E-
07 

3.84
E-06 

8.08
E-
07 

HIST1H3A/HIST1H4A/
HIST1H3C/HIST1H4F/H
IST1H2BB 5 

 

 

Section IV: MSC expression relative to MSC iPSC Fibroblast Reactome 

Overrepresentation Analysis (ORA) results. Results derived as above. 

 

Cluste
r ID 
(Relati
ve to 
BJ) 

Reac
tome 
ID Pathway Description 

Back
grou
nd 
Geno
me 
Ratio 

P 
valu
e 

Adj
uste
d P 
valu
e 

Benj
main
i-
Hoc
hber
g 
Corr
ecte
d q 
valu
e 

List 
of 
HG
NC 
gene 
IDs Gene Hit Count 

1 

LP351 
Upreg
ulated 

R-
HSA-
7372
8 RNA Polymerase I Promoter Opening 

13-
Apr 

63/1
061
9 

7.73
E-07 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

2 

LP351 
Upreg
ulated 

R-
HSA-
5334
118 DNA methylation 

13-
Apr 

65/1
061
9 

8.77
E-07 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

3 

LP351 
Upreg
ulated 

R-
HSA-
5625
886 

Activated PKN1 stimulates transcription 
of AR (androgen receptor) regulated 
genes KLK2 and KLK3 

13-
Apr 

67/1
061
9 

9.92
E-07 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

4 

LP351 
Upreg
ulated 

R-
HSA-
4273
59 

SIRT1 negatively regulates rRNA 
expression 

13-
Apr 

68/1
061
9 

1.05
E-06 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

5 

LP351 
Upreg
ulated 

R-
HSA-
2123
00 PRC2 methylates histones and DNA 

13-
Apr 

73/1
061
9 

1.40
E-06 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

6 

LP351 
Upreg
ulated 

R-
HSA-
2299
718 Condensation of Prophase Chromosomes 

13-
Apr 

74/1
061
9 

1.48
E-06 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

7 

LP351 
Upreg
ulated 

R-
HSA-
4273
89 

ERCC6 (CSB) and EHMT2 (G9a) 
positively regulate rRNA expression 

13-
Apr 

76/1
061
9 

1.65
E-06 

2.59
E-05 

5.46
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

8 

LP351 
Upreg
ulated 

R-
HSA-
2559
583 Cellular Senescence 

13-
May 

195/
106
19 

2.27
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H1A/HIST1H2BB 5 
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9 

LP351 
Upreg
ulated 

R-
HSA-
9124
46 Meiotic recombination 

13-
Apr 

86/1
061
9 

2.71
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

10 

LP351 
Upreg
ulated 

R-
HSA-
2017
22 

Formation of the beta-catenin:TCF 
transactivating complex 

13-
Apr 

91/1
061
9 

3.40
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

11 

LP351 
Upreg
ulated 

R-
HSA-
5250
924 

B-WICH complex positively regulates 
rRNA expression 

13-
Apr 

91/1
061
9 

3.40
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

12 

LP351 
Upreg
ulated 

R-
HSA-
7377
2 RNA Polymerase I Promoter Escape 

13-
Apr 

91/1
061
9 

3.40
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

13 

LP351 
Upreg
ulated 

R-
HSA-
1912
408 

Pre-NOTCH Transcription and 
Translation 

13-
Apr 

93/1
061
9 

3.71
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

14 

LP351 
Upreg
ulated 

R-
HSA-
3214
815 HDACs deacetylate histones 

13-
Apr 

94/1
061
9 

3.87
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

15 

LP351 
Upreg
ulated 

R-
HSA-
5625
740 RHO GTPases activate PKNs 

13-
Apr 

95/1
061
9 

4.04
E-06 

2.96
E-05 

6.24
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

16 

LP351 
Upreg
ulated 

R-
HSA-
8936
459 

RUNX1 regulates genes involved in 
megakaryocyte differentiation and 
platelet function 

13-
Apr 

97/1
061
9 

4.39
E-06 

3.02
E-05 

6.36
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

17 

LP351 
Upreg
ulated 

R-
HSA-
5250
913 

Positive epigenetic regulation of rRNA 
expression 

13-
Apr 

106/
106
19 

6.26
E-06 

3.32
E-05 

7.00
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

18 

LP351 
Upreg
ulated 

R-
HSA-
5578
749 

Transcriptional regulation by small 
RNAs 

13-
Apr 

106/
106
19 

6.26
E-06 

3.32
E-05 

7.00
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

19 

LP351 
Upreg
ulated 

R-
HSA-
4274
13 

NoRC negatively regulates rRNA 
expression 

13-
Apr 

107/
106
19 

6.50
E-06 

3.32
E-05 

7.00
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 

20 

LP351 
Upreg
ulated 

R-
HSA-
1912
422 Pre-NOTCH Expression and Processing 

13-
Apr 

109/
106
19 

6.99
E-06 

3.32
E-05 

7.00
E-06 

HIST1H3A/HIST1H4
A/HIST1H3C/HIST1
H2BB 4 
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Appendix IV. Transcriptional, Electrophysiological, and Metabolic Characterizations of 

hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in 

Cardiomyocyte Maturation   
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Supplementary Figures 
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Appendix V. Topological Arrangement of Cardiac Fibroblasts Regulates Cellular 

Plasticity 
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Gene 3D-VS-2D 3D-2D-VS-2D 3D-2D-3D-VS-2D 
Pvalb 10.05539546 2.042812383 6.148897168 
Hmgcs2 8.176547545 0.434262448 5.246796241 
Myrip 7.569744718 -0.96456143 3.535468722 
Adamts15 7.428394976 -2.236678711 4.64226524 
Ky 7.323873113 1.430596851 2.528030866 
Ahsg 7.322443014 0.47445342 5.182554283 
Lrrc4b 7.294700622 1.428847722 2.567511644 
Ephb1 7.25185596 0.467220052 -1.277142321 
Pnoc 7.062175922 -0.002789088 6.923764703 
Syt6 7.046396418 0.562192577 5.349987257 
Nt5c1a 7.006143756 3.298641568 9.242489561 
Cacna1h 6.839489661 0.513723286 4.857629415 
Slc25a34 6.73597135 1.193512673 5.411218678 
Cilp 6.735065016 0.306014992 1.807565189 
F7 6.634679275 1.477979591 2.769187831 
Hpcal4 6.632336466 2.675310138 7.343315833 
Plin1 6.447978021 -0.964554798 -0.315347653 
5430431A17Rik 6.287056921 0.49926534 3.27757957 
Cldn2 6.173261088 -0.351960129 7.343419587 
Wfdc3 6.125032934 1.338744278 5.382560176 
Fam71a 6.038721447 4.549254793 -0.315369125 
Dct 6.029081483 1.453029962 3.342191267 
Gcgr 6.015310487 0.46471614 1.160494986 
Lrguk 5.968090507 4.237453053 5.277349871 
Pde11a 5.911226392 -0.002767998 2.883438145 
Doc2b 5.869156044 0.764404777 5.01155933 
Adamts19 5.795304104 -0.002777597 -0.315363638 
Ptgds 5.781639358 0.43945352 3.718051212 
Cml5 5.765583486 -0.002775705 0.646431671 
Aox3 5.75897692 0.086969067 3.393176203 
Ctrb1 5.6872866 2.897731618 1.433115799 
Ppp1r14c 5.623384744 -0.7608765 3.67798639 
Foxo6 5.608402688 -2.447842636 3.573409712 
Fndc5 5.587992716 -1.895141111 1.700377114 
Slc24a4 5.561138758 -0.002769128 0.646438699 
Agt 5.532807378 0.377688751 3.663862859 
Npr1 5.500166531 -0.038330512 5.324854513 
Fam163b 5.499889191 -0.002768895 3.889532941 
Syt9 5.471852004 -1.834128988 6.367115106 
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Supplementary Table 1. Expression of genes in different topological states of cardiac fibroblasts. 

Differentially expressed genes in different topological states of cardiac fibroblasts expressed as a log2 

fold change with respect to the 2D fibroblast state. The identified DEGs required a FDR value smaller 

than 0.01 and a log2 fold change larger than 1. (negative value refers to genes that are downregulated 

versus the 2D state while a positive value refers to genes that are upregulated versus the 2D state). 
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