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EFFECT OF STRUCTURE OF ANALOGY AND DEPTH OF ENCODING
ON LEARNING COMPUTER PROGRAMMING

Yam San CHEE
Department of Information Systems and Computer Science
National University of Singapore

Abstract

This research addresses the need for cffective
ways of teaching computer programming. It focuses on
two aspects of instruction. First, the rescarch investigates
the usc of analogy in tcaching programming. It cxtends
cxisting rescarch by investigating what constitutes a good
analogy. Sccond, the rescarch investigates the effect of
depth of encoding on programming performance.

The factors analogy and encoding were manipu-
lated in a 3 x 2 factorial design. Analogy was opcration-
alized by varying the clarity and systematicity/abstract-
ness of the analogics uscd. Encoding was opcrationalized
by varying the frequency with which deep encoding and
claboration of lcamed matcrial were invoked by the
presentation of questions on the Icarned material. The
dependent variables were score obtained on program
comprchension and program composition tasks and the
timc taken to perform the tasks. Rescarch subjects were
15- to 17-ycar-olds without prior cxposurc to computer
programming. Diffcrences in mathematics ability and age
were controlled.

The results provide empirical support for a
predictive theory of the relative goodness of competing
analogics. They provide only marginal support for depth
of encoding (as operationalized) in lcarning computer
programming cflectively. Post hoc data analysis suggests
that good analogics assist the Icarning of scmantics but
not syntax. Furthermore, the cffect of encoding was only
apparcnt in learning synlax but not scmantics.

Introduction

The traditional approach to tcaching computer
programming by emphasizing programming language
statements (Maycr, 1979; Spohrer & Soloway, 1986) has
proved unsatisfactory. Such an approach fails to assist in
the acquisition of a useful mental model of the notional
machinc underlying the programming language (Bayman
& Mayer, 1983) and 1o facilitate the transition from
programming knowledge to programming behavior (An-
derson, Farrcll & Sauers, 1984).

Explan An

Analogics arc a uscful tool for Icarning and
instruction (sec, for cxample, Norman, 1980; Rumclhart
& Norman, 1981). The validity of this claim has been
demonstrated in the domain of lcarning computer
programming (Mayer, 1975, 1976). Analogics can
provide the required mental modcel of the notional

machine. They can also facilitate the transition from
programming knowledge to behavior as novices attempt
to cxccute their mental model. Simons (1984) posits that
analogies assist lcarning by making abstract information
imaginable and concrete, by providing an existing
schema as the basis for the formation of a new schema,
and by making rclevant anchoring idcas availablce so that
ncw information can be actively integrated with prior
knowledge.

Gentner (1982) postulates the characteristics of
analogy that contribute to explanatory power. Her
postulation is based on a well-defined theory of structure-
mapping (Gentner, 1983) that distinguishes between
attributes and relations on onc hand and between first-
order relations and higher-order relations on the other.

An cxplanatory analogy may be viewed in terms
of three properties of internal structure: clarity, richness,
and systematicity/abstractness (Gentner, 1982). Clarity
refers to how base nodes are mapped onto target nodes.
A violation occurs if onc base node maps to Lwo or more
distinct target nodes or if two or more distinct base nodces
map to the same target node. Richness refers o predicate
density: that is, for a given set of nodes, the average
number of predicates per node that can be plausibly
mapped from base to target. Systematicitylabstractness
refers to the degree o which the imported predicates
belong to a mutually constraining conceptual system.
Higher-order relations that link lower-order relations are
the essence of systematicity. Highly systematic mappings
arc gencrally also abstract because they contain a greater
proportion of higher-order rclations.

The Theory of the Structure of Explanatory
Analogies is derived, in part, from distinctions drawn by
Gentner (1982) between good and bad explanatory
analogics. It states that important, regularly occurring
structural differences exist between good explanatory
analogics and wcak explanatory analogics. In panicular,l'
(1) good cxplanatory analogics posscss clarity; weak
cxplanatory analogics do not; (2) good cxplanatory
analogics arc higher in systecmaticity and abstractncss
than weak explanatory analogics; and (3) good ex-
planatory analogics are lower or equal in richness to
weak explanatory analogies.

The theory is used as the basis for distinguishing
between the explanatory power of altcmative analogics
in this research. For achicvement in both program
comprehension and program composition, lcaming with
an analogy that possesses the structural propertics of
good cxplanatory analogy is cxpected to result in a better



lcarning outcome than lcaming with an analogy that
posscsscs the structural propertics of weak explanatory
analogy.

Depth of Encoding

Leaming outcomes depend not only on the quality
of instruction but also on the cfficacy of cognitive
processing during the lcamning phasc. Good leaming
outcomes arc associated with depth of encoding (Craik &
Lockhart, 1972). Greater depth implics a grecater degree
of semantic or cognitive analysis on the part of the
student, resulting in superior understanding, recall, and
retention of material learned. The initial encoding of
lcamed malcrial can pass through further claboration
whereby more associations arc formed between newly
acquired knowledge and prior knowledge. The establish-
ment of these associations leads to better integration of
ncw knowledge with old knowledge and improved
understanding of learned material. '

Depth of encoding also results in better recall
because of a more persistent memory trace (Craik &
Lockhart, 1972), with deeper levels of encoding associ-
ated with morc claborate, strongcer, and more lasting
traces. In addition, retention is a function of depth of en-
coding, as well as other factors such as the amount of
attention devoted to a sumulus and the time available for
processing the stimulus.

Bascd on the forcgoing, the quality of students'
lcaming when acquiring knowledge related to a new and
unfamiliar domain should be significantly affected by the
depth of encoding they achieve during lcarning. Decper
cncoding should be facilitated by presenting instructional
material in rclatively short segments followed by ques-
tions on the material just Icarned. The presentation of
questions forces students to try o actively understand the
instructional material so that they can answer the qucs-
tions corrccy. Conscequently, deep encoding and
claboration receive active support. The presentation of
questions in short scgments also eascs the burden of
lcaming because a lighter cognitive load is placed upon
memory.

Where students complete their study of the entire
instruction sct before attempting questions on the
materials lcarned, depth of encoding is less well sup-
ported. The absence of questions that evoke deeper
processing of instructional matcrial during Icarning
results in more superficial processing and, conscquently,
in poorer understanding, poorer rctention, and poorer
recall ability. Furthermore, when students are required o
answer questions only at the end of the instruction sct,
the cognitive load on memory is very great because
students have to draw their answers from across the
entire instruction sct.

Thus, deep encoding is expected to result in better
understanding, retention, and recall of learned material,

and hence in supcrior programming task performance
compared to shallow encoding that occurs when the
entire instruction set is studicd before questions on the
instruction sct arc attcmpted.

Hypotheses Tested

The rescarch hypotheses are based on four
theoretical constructs: (1) explanatory power of analogy,
(2) depth of encoding, (3) quality of program comprechen-
sion, and (4) quality of program composition.
Hypothesis 1 The quality of program comprchension
when Icarning with a good analogy is
better than the quality of program com-
prchension when learning with a weak
analogy or without an analogy.
The quality of program comprehension
when lcarning with a weak analogy is
better than or equal to the quality of
program comprchension when leamning
without an analogy.
The quality of program comprchension
when lcamning with deep encoding is
better than the quality of program com-
prchension when learning with shallow
encoding.
The differences in quality of program
comprchension when Icarning with a
good analogy, a weak analogy, and
without an analogy will be greater
when learning with shallow encoding
than when Icarning with deep encod-
ing; that is, there will be an interaction
effect between the cxplanatory power
of analogy and the depth of encoding.
The quality of program composition
when lcarning with a good analogy is
betier than the quality of program
composition when learning with a
wcak analogy or without an analogy.
The quality of program composition
when lcamning with a weak analogy is
beltter than or cqual to the quality of
program composition when learning
without an analogy.

Hypothesis 3

Iypothesis 4

Hypothesis 5

Hypothesis 6

In general, the above hypotheses follow from the
preceding discussion. In Hypothesis 4, an analogy is
postulated to pesscss an integrating function in addition
to the functions of concrelizing, structurizing, and active
assimilation. Hypotheses 5 and 6 are similar to Hypothe-
scs 1 and 2 and arc based on the expectation that mastery
of syntax and secmantics is an esscntial component of
program coding ability.

Method

Design The factors analogy and encoding were
manipulated in a 3 x 2 factorial design. Analogy com-
prised three levels: (1)  good analogy, (2) weak
analogy, and (3) no analogy (a control condition).
Encoding compriscd two levels: (1) deep, and

(2) shallow. The experiment was conducted in two
phascs: a program comprehension phase followed by a
program composition phase. Two dcpendent variables
were used in each phase. The dependcent variablces in the
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program comprehension phase were (a) program
comprchension score, and (b) timc taken to answer
comprchension questions. The dependent variables in the
program composition phase were (a)  program composi-
tion score, and (b) time taken to answer composition
questions. Both the program comprchension and program
composition scores arc performance metrics obtained by
applying a predetermined scoring templaic 1o subjects’
responses. The experimental design incorporated two
covariates: mathematics ability and age.

Subjects Subjects were school students between the
ages of 15 and 17 ycars. They werc unexposed to
computer programming. Nincty valid subjects' responses
were obtained; 60 were boys and 30 were girls. They
were assigned randomly 1o treatment conditions.

Maierigls

Treatment Materials. The trcatment materials com-
prised three sets of instruction on programming in
BASIC: (1) the good analogy sct, (2) the weak
analogy sct, and (3) the no analogy sct. In the good
analogy sct, the instructional matcrials were woven
around an analogy that dcalt with a master processor and
his threc assistants — the assigner, the reader, and the
printer — working together in a room to perform the
operations of a notional computcr. Data were input cither
through an input slot or via data cards that came through
an input window on an input wall. Data were output via
an output window on an output wall. Window boxcs in
the room stored the values of variables whose names
were written on the boxes. In the weak analogy sct, the
undcrlying analogy was similar but less claboratc. There
was only one window through which both input and
output were handled. In addition, the names of the three
assistants were gencralized to "assistant," "messenger,"
and "helper” in order to facilitate the onc-to many and
many-to-one object mappings in thc wcak analogy.
Finally, the no analogy sct prescnted the instructional
malerial without reference to any analogy.

The instructional matcrials covered the program
statements LET, PRINT, END, REM, INPUT, DATA,
READ, GO TO, and IF/THEN. Looping constructs werc
taught using the IF/THEN and GO TO statcments.

The exact length of the instructional materials was
controlled. To compensate for the additional text required
to present the analogy matcrial, filler text (which pre-
sented a brief history of computers) was added to the
weak analogy and no analogy malcrials so that the word
count for each set of instructional matcrials was identical.

The good and weak analogy trcatment materials
instantiated the Theory of the Structure of Explanatory
Analogies. The instructional materials contained the base
of the analogy (good or weak) woven into the instruction
on BASIC.

A sample of the good and weak analogics,
depicted in propositional nectwork form, is shown at the
end of this paper. Networks 1 and 9 depict those portions
of the base of the good analogy and weak analogy
respectively that deal with the organization of the

computer. The corresponding targets of the good and
weak analogies are depicted in Networks 5 and 13.

Object mappings between base and target may be
infcrred dirccty by the positions the object nodes occupy
in two-dimensional space. In the weak analogy nctworks,
however, this method docs not apply if an object partici-
patcs in a one-10-many or many-to-onc¢ mapping. In such
instances, the object mapping is specifically shown using
a striped arrow.

Relation mappings from base to target are inferred
via the identical positions that the relations occupy in the
two-dimensional space of the propositional networks.
Exceptions to this rule again occur in the weak analogy
nctworks, and they occur when object nodes do not map
one-to-one from base to target. Unlike object nodes,
however, relations that map across always do so with the
same name. First-order relations are depicted by normal
arrows; higher-order relations are depicted by heavy
arrows. Higher-order relations constrain lower-order
relations in accordance with structure-mapping theory.

The operationalization of the Theory of the
Structure of Explanatory Analogics can be summarized
as follows. First, the good analogy possesscs clarity
because all object mappings from base to target are onc-
to-onc; the weak analogy does not possess clarity
because it contains two one-to-three and three onc-to-two
mappings. Sccond, the richness (predicate density) of the
good analogy is 2.00, and the richness of the weak
analogy is 1.85. From a practical vicwpoint, richness
may be regarded as cqual; the closeness of the richness
mcasurcs is not surprising given that both the good and
weak analogics aim (o explain the operations of the
notional computer. Third, the good analogy posscsscs
higher systcmaticity/abstractness than the weak analogy
because 1 third-order relation, 9 sccond-order relations,
and 78 first-order relations were mapped to the target in
the good analogy comparcd with no third-order relations,
6 sccond-order rclations, and 57 first-order rclations
being mapped across in the weak analogy.

Test Materials. The test materials comprised two scts
of questions. The first sct was designed to test program
comprchension. It was divided into cight parts: (1) Ele-
ments of the BASIC language; (2) The replacement
statement LET; (3) The PRINT statcment; (4) Re-
vicw: LET, PRINT, and END; (5) The INPUT statement;
(6) Thc DATA and READ statcments; (7) The
unconditional transfer statement GO TO; and (8) The .
decision statement IF/THEN.

The second set of questions was designed to test
program composition. The set comprised seven questions
in increasing order of difficulty and covered the full
range of BASIC statements prescnted.

Procedure  The study was condugted in two sessions.
Session 1 (the program comprehension phasc) com-
menced at 10:00 a.m. On average, the session lasted 2
1/2 hours. Session 2 (the program composition phase)
commenced after a lunch break of about one hour. The
session lasted 1 1/2 hours on avcrage.



The encoding factor (decp versus shallow) was
opcrationalized by administering the instructional
matcrials and test questions differently in Session 1. In
the deep encoding condition, subjects alternated between
reading instructional matcrial on BASIC and answering
questions on the material just rcad. In the shallow
encoding condition, subjects rcad the entire sct of
instructional materials. They then answered cach sct of
questions in the same order as subjects in the deep
encoding condition.

Aflter subjects had been instructed on how the
experiment would be conducted, the experiment proper
commenced. Subjects were told to begin reading the
instructional materials placed before them. As they
completed the rcading, cach raiscd their hand to indicate
to the researcher that they had done so.

If subjects were in the decp encoding condition,
they were given the first sct of printed questions 0
answcr. The rescarcher asked them to start work and
started the stopwatch. On complction of the sct of qucs-
tions, subjccts stopped the stopwatch and raised their
hand. The researcher then recorded the time taken on the
question sheet. The question sheet was then put away.
The next set of instructional matcrials was then given to
the subject. Subjects continued by alternating between
rcading instructional matcrial and answering questions
until the last sct of questions was answered.

If subjects were in the shallow encoding condi-
tion, they first rcad the entirc sct of instructional materi-
als. They then answered cach sct of,questions in the same
order and following the samc procedure as subjects in the
deep encoding condition.

Upon completing Session 1, subjects were
relcased for lunch. When they returned for Session 2,
they were instructed on the conduct of the experiment in
the program composition phase. They were then given 10
minutes 1o review the instructional materials they had
rcad in Scssion 1. The researcher then started cach
subject on the program composition task and, at thc same
time, started the stopwaltch.

When subjects completed the program composi-
tion questions, they stopped the stopwatch and raiscd
their hand. The rescarcher recorded the ume taken on the
question sheet. Subjects who completed the experimental
task werc cach paid $20.

rin Subjects' responscs Lo the program compre-
hension and program.composition questions were scored
according o a template designed by the researcher. The
scoring scheme was devised to reward the demonstration
of correct knowledge of BASIC and to maximally
discriminate between the levels of achicvement attained
by subjects. An independent check of scoring reliability
was performed.

Results and Discussion
Progr mprchension

Figure 1 shows the mcans for program comprc-
hension score. The program comprchension data were
analyzed using ANCOVA and MANCOVA. Hypothescs

Mean Comprehension Score
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Figure 1

1 and 2 were cvaluated using planned comparisons.
Hypothesis 1 was confirmed when quality of program
comprchension was cvaluated in terms of program com-
prchension score (p = .001). It was also confirmed when
quality of program comprchension was evaluated in
terms of program comprehension score and time (p =
.003).

Similarly, Hypothcsis 2 was confirmed when
quality of program comprchension was cvaluated in
terms of program comprehension score (p = .499). The
proposition was also supported from a multivariate
viewpoint (p = .395).

Consistent support for Hypotheses 1 and 2 when
cvaluated in terms of program comprchension score as
well as program comprchension score and time confirms
that the quality of program comprehension when leaming
with a good analogy is significantly better than that
associated with lcarning with a weak analogy or without
an analogy, and the quality of program comprchension
when Icarning with a weak analogy and when Icaming
without an analogy arc not significantly diffcrent. Given
the mix of clarity, richness, and systematicity/abstract-
ness operationalized in the experiment, the theory's
prediction that these characteristics effectively define
good analogy is supported.

Hypothesis 3 was marginally supported when
cvaluated in terms of program comprchension score (p =
.055). Despite the lack of statistical significance, the
overall (weighted average) program comprehension
scores werc in the predicted direction (Deep Encoding, M
= 86.5; Shallow Encoding, M = 77.4). The marginal
significance of the univariate result may be due the task
complexity and constraincd experimental learning time
that did not allow the expected bencfit of deep encoding
on the creation and restructuring of knowledge to
matcrialize fully. A deep, semantic appreciation of the
notional computer's operations rcquires that the knowl-
edge acquired be assimilated and restructured over the
course of learning. However, restructuring is associated
with knowledge understanding but requires time to take
cffect (Norman, 1978).



Mean Composition Score

Hypothesis 4, the posited interaction between the
analogy and encoding factors, was not supported when
the quality of program comprchension was cvaluated in
terms of program comprchension scorc and also in terms
of program comprehension score and time. Thus, the
expectation that the analogy would help subjects in the
shallow cncoding condition morc than subjects in the
decep encoding condition was not confirmed. Instcad, the
data suggest that the analogy and encoding factors arc
indcpendent.

Progr mposition

Figure 2 shows the mcans for program composi-
tion score. The program composition data were analyzed
using covariance analysis. Howcver, a test of the homo-
gencity of regression assumption revealed that the
assumption was violated for the dependent variable
program composition time.
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Consequently, the program composition data were
analyzed using a covariance modcl proposed by Scarle
(1979). Covariate-adjusted observations were obtained
by rearrangement of the model equation, and the model
was cstimated using MANOVA.

Using planncd comparisons, Hypothesis 5 was
supported when cvaluated in terms of covariate-adjusted
program composition scorc (p = .014). It was also
supported when evaluated in terms of covariate-adjusted
program composition score and time (p = .044). Hy-
pothesis 6 was supported when cvaluated in terms of
covariate-adjustcd program composition score (p = .998)
and also when cvaluated in erms of covariatc-adjusted
program composition score and time (p = .613). The non-
significant result indicates equality between the weak
analogy and no analogy trcatment conditions.

The consistent program composition results show
that the Theory of the Structure of Explanatory Analogics
is also supported with respect to program composition.
Note that the analogy factor accounted for 6.6% of the
explained variance of program composition score but

accounted for 12.0% of the explained variance of
program comprechension score. A transfer of learning
from program comprehension to program composition is
thus evident. The smaller effect of type of analogy on
program composition is consistent with the expectation
that the explanatory power of analogy facilitatcs per-
formance in program composition via achievement in
program comprchension.

Post Hoc Analysis

While scoring subjects’ responscs to the program
comprechension questions, it was noticed that the variabil-
ity of scores on questions that focused on the syntactic
rules of BASIC statements was consistently smaller than
it was on questions that focused on the conceptual
understanding associated with the operations of the
notional computer. This phcnomenon suggested that it
might be fruitful to investigate the data further by
distinguishing between scores on syntax-oricnicd
questions and scorcs on semantics-oricnicd questions.
Accordingly, the program comprchension data were
subclassified into syntax scores and semantics scores and
analyzed further via a post hoc analysis.

The data for the post hoc analysis were analyzed
using ANCOVA and MANCOVA. The dependent
variables were syntax score and scmantics score. The
experimental design was identical to that used in the
main analysis.

Modecl estimation revcaled that for syntax score,
the analogy factor was significant (p = .015); the cncod-
ing factor was also significant (p = .012). For scmantics
score, however, only the analogy factor was significant
(p = .003). From a multivariate viewpoint, both the anal-
ogy factor and the encoding factor were significant (p =
.001 and p = .043 respectively).

Planned comparisons were performed to evaluate
Hypotheses 1 and 2 for syntax, semantics, and both
syntax and scmantics. For syntax, the good analogy
versus weak analogy and no analogy comparison was
marginally significant (p = .056), whilc the weak analogy
versus no analogy comparison was significant (p = .027).

For scmantics, the good analogy group was
significantly better than the weak analogy and no analogy
groups (p = .001), and the wcak analogy and no analogy
groups were not significantly different (p = .841). That
is, the comparisons were consistent with the results
obtainced for the composite program comprehension
score.

Some interesting insights are obtained from the
abovc analysis. The significance of the analogy factor on
both syntax score and semantics score and the signifi-
cancc of the encoding factor only on syntax score suggest
that the analogy treatment affects performance on both
syntax and semantics, while the encoding treatment
affects performance on syntax only.

Furthermore, it becomes clear that the marginal
significance of the encoding factor on the composite
program comprehension score (p = .055) was attributablc
to the effect of deep encoding on syntax (p = .012), not
on scmantics (p = .117). This result suggests that students



lcam the technical (rule-like) nature of syntactic knowl-
edge cffectively when such knowledge is tested shortly
after it is presented. In cffect, the quick application of
ncwly-acquired syntactic knowledge assists students in
assimilating the rulcs associated with syntax and helps to
drill them in the application of such rulcs.

By contrast, the lack of significance of the
cncoding factor on scmantics suggests that, contrary o
the intended outcome of the encoding trcatment, a decp
semantic understanding of program statements was not
achicved probably because of the limited exposure that
students were given to programming. The hypothetical
time division associatcd with complex Icaming proposcd
by Norman (1978) suggests that the bulk of knowlcdge
restructuring (and hence deep semantic understanding)
occurs during the central phase of Icarning, after sulfi-
cicnt time has becn spent on the accrction of knowledge.
Given the restricted leaming time in the experiment
(approximately four hours), the relatively small amount
of time spent on restructuring appears to be duc to the
usc of analogy rathcr than the usc of decp encoding.

Examination of the weighted average means for
syntax shows that the good analogy and no analogy
groups were more alike than different, while the weak
analogy group was unlike both (Good Analogy, M =
25.5; Weak Analogy, M = 20.6; No Analogy, M = 24.1).
This rcsult suggests that the weak analogy harmed the
acquisition of syntactic knowledge, and the good analogy
did not assist the acquisition of such knowledge. How-
cver, for scmantics, the good analogy group was distinct
from the weak analogy and no analogy groups (Good
Analogy, M = 72.6; Wcak Analogy, M = 52.0; No
Analogy, M = 54.6). Thus, the good analogy assisted the
acquisition of semantic knowledge but not syntactic
knowledge.

Research Conclusions

The Theory of the Structure of Explanatory
Analogies was empirically tested. The research supported
the theory's prediction that clarity and systcmaticity/
abstractncss arc structural characteristics of analogy that
cflectively capture the strength of its explanatory power.
Post hoc analysis further revealed that good analogy
assists the acquisition ‘of semantic programming knowl-
edge but not syntactic programming knowledge.

From the vicwpoint of experimental methodology,
the explicit operationalization and mcasurement of
systematicity and abstractness has shown that thesce
structural characteristics of analogy can be derived
objcctively and in a manncr that posscsscs cmpirical
validity. Thus, the usefulness of the syntactic perspeclive
on knowledge representation bascd on the concepts of
systematicity and abstractness has bcen demonstrated.
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