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Abstract

Motivation: Single-cell RNA sequencing technologies facilitate the characterization of transcriptomic landscapes in di-
verse species, tissues and cell types with unprecedented molecular resolution. In order to better understand animal devel-
opment, physiology, and pathology, unsupervised clustering analysis is often used to identify relevant cell populations.
Although considerable progress has been made in terms of clustering algorithms in recent years, it remains challenging to
evaluate the quality of the inferred single-cell clusters, which can greatly impact downstream analysis and interpretation.
Results: We propose a bioinformatics tool named Phitest to analyze the homogeneity of single-cell populations.
Phitest is able to distinguish between homogeneous and heterogeneous cell populations, providing an objective
and automatic method to optimize the performance of single-cell clustering analysis.

Availability and implementation: The PhitestR package is freely available on both Github (https:/github.com/
Vivianstats/PhitestR) and the Comprehensive R Archive Network (CRAN). There is no new genomic data associated

with this article. Published data used in the analysis are described in detail in the Supplementary Data.

Contact: vivian.li@rutgers.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) experiments enable gene
expression measurement at a single-cell resolution, and provide an
opportunity to characterize the molecular signatures of diverse cell
types, states and structures (Haque et al., 2017; Li, 2019). Because
of these advantages, scRNA-seq technologies have been widely used
in various biological disciplines, including developmental biology,
neurology, immunology and cancer research.

In order to provide detailed catalogs of cells found in a sample
and to enable convenient comparison in downstream analysis, un-
supervised clustering is often used to group cells with similar tran-
scriptome profiles into the same cluster (Duo et al., 2018; Sheng and
Li, 2021). To date, more than 20 clustering methods have been
developed for scRNA-seq data to address challenges caused by high
dimensionality, high sparsity, and technical noises. However, the
evaluation and interpretation of cell clusters have been hampered by
the scarcity of methods to analyze the heterogeneity of single-cell
populations. The resolution of the inferred clusters often depends on
clustering algorithms and software parameters. The inferred clusters
may group cells of distinct cell types into one heterogeneous popula-
tion or partition a homogeneous cell population into several distinct
groups. If not being carefully evaluated, these errors will be propa-
gated to downstream analyses including cell type annotation and
differential expression analysis.

©The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

In this article, we propose a new method named Phitest to ana-
lyze the heterogeneity of single-cell populations, providing an ob-
jective and automatic method to evaluate the performance of
clustering and quality of cell clusters. To the best of our knowledge,
the only existing method available for a similar purpose is ROGUE,
which calculates an entropy-based score (between 0 and 1) to quan-
tify the purity of cell clusters (Liu ez al., 2020). In contrast, Phitest
uses the Negative Binomial (NB) distribution to model unique mo-
lecular identifier (UMI) counts from scRNA-seq experiments. It then
evaluates the homogeneity of a single-cell population based on the
dispersion of the genes, and calculates a P value to guide decisions.

2 Materials and methods

As demonstrated in multiple studies (Sun ez al., 2021; Svensson,
2020; Townes et al., 2019), the UMI counts of a gene in single cells
sequenced in the same experiment can be characterized using an NB
model. We use X,,»,,, to denote a UMI count matrix with # genes
and m cells. Then, the NB model assumes that

XifNNB(:ui!d)i)? i:17"'=n;j:17"'7m? (1)

where y; is the mean and ¢; is the dispersion of gene i. The variance
of gene i depends on its mean through a quadratic function:

1+ it
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Fig. 1. Evaluation of the Phitest method. (A) Estimated gene-wise frequency of zero count using common or gene-specific dispersion parameters. (B) —Log10(P value of
Phitest) for the homogeneous (blue) and heterogeneous (red) datasets. (C) (1 — ROGUE score) for the homogeneous (blue) and heterogeneous (red) datasets. (D) ARI of Seurat-

inferred clusters using resolution parameters selected by Phitest, ROGUE or default setting

If the single cells in this count matrix come from a homogeneous
population, then we expect a common dispersion parameter for all
genes (¢; = ¢.,i =1,...,n), since the genes are subject to similar
sampling process and technical variation during sequencing. To esti-
mate this common dispersion ¢, we first calculate the sample mean
and variance of each gene, denoted as X; and s?, respectively. Then,
a linear regression model (s? = %; + ¢ X?) is fitted to obtain ¢, as
the estimated coefficient, using genes whose mean and variance are
below the 99th percentiles, respectively (Supplementary Fig. S1). In
contrast, if the single cells come from a mixture of biologically dif-
ferent cell populations, then each gene is subject to different bio-
logical variation in addition to technical variation. Therefore, a
common dispersion parameter would not be sufficient to character-
ize gene expression distribution. Phitest fits an NB distribution for
each gene to estimate the gene-specific dispersion parameters. The
estimated dispersion and mean of gene i are denoted as ¢; and ;,
respectively.

Based on the above results, Phitest infers if a single-cell popula-
tion is homogeneous by comparing the common and gene-specific
dispersion parameters. For gene i, the expected frequency of zero
count is (14 ;)" with the common dispersion and
1+ $;i;) "% with the gene-specific dispersion. Phitest then com-
pares the zero frequencies with a two-sample ¢ test. If the single cells
are homogeneous, there should not be significant difference between
the two sets of zero frequencies. If the single cells contain multiple

cell types, the common dispersion tends to under-estimate the zero
frequencies of biologically variable genes compared with the gene-
specific dispersion. Therefore, the P value from the # test can be used
to detect heterogeneous single-cell populations.

3 Results

To evaluate the performance of Phitest, we first applied it to 12
scRNA-seq datasets with gold standard information (Supplementary
Table S1). Six of the datasets (B, K562, Brainl, Brain2, HEK293
and NIH3T3) are known to contain homogeneous cell populations.
The other six datasets (Cortex1, Cortex2, PBMC1, PBMC2,
Pancreasl, Pancreas2) contain heterogeneous populations
(Supplementary Methods).

We first confirmed that the gene-specific NB models fit the UMI
counts well for both homogeneous and heterogeneous datasets
(Supplementary Fig. S2). Next, we compared the estimated zero
count frequencies based on the common or gene-specific dispersion
parameters, and observed an apparent distinction between the
homogeneous and heterogeneous datasets (Fig. 1A). In the heteroge-
neous datasets, the common dispersion under-estimates the gene-
wise frequency of zero count, compared with those based on the
gene-specific dispersion. Ordering the datasets based on P values
calculated by Phitest, we could obtain a clear separation with the six
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heterogeneous datasets having the smallest P values (Fig. 1B). We
also applied the ROGUE method (Liu ez al., 2020) to the 12 data-
sets. The heterogeneous datasets on average have smaller ROGUE
scores, but ROGUE cannot distinguish two homogeneous popula-
tions (NIH3T3 and HEK293) from the heterogeneous populations
(Fig. 1C).

We further evaluated the ability of Phitest in improving single-
cell clustering analysis, using scRNA-seq datasets of seven cancer
types with ground truth information (Supplementary Table S2 and
Supplementary Methods). To cluster the cells, we selected the most
widely used method Seurat, which has a resolution parameter to
control the number of clusters (Stuart et al., 2019). A larger reso-
lution tends to result in more clusters and the default parameter is
0.8. To investigate if Phitest can help select the optimal parameter in
unsupervised analysis, for each dataset, we applied Seurat to per-
form clustering with different resolution parameters (0.001, 0.01,
0.1, 0.4, 0.8 and 1.2), and then used Phitest to evaluate the results.
For each parameter, we used 0.05 as a threshold on Phitest’s P val-
ues to determine the homogeneity of single-cell clusters, and selected
the parameter that led to the largest number of cells in homogeneous
clusters. We also used ROGUE to assess the clusters. Since 0.82 is
the largest ROGUE score of heterogeneous datasets in Figure 1C,
we used 0.83 as a threshold to determine the homogeneity of single-
cell clusters.

We compared the adjusted Rand index (ARI) of clusters identi-
fied with the parameters selected by Phitest, ROGUE, and default
(Fig. 1D). The results show that Phitest leads to the best clustering
performance, and parameters selected by Phitest outperform the de-
fault value. For example, the bladder Cancer dataset contains six
cell types, but the default parameter leads to eight clusters, and
ROGUE finds a resolution that leads to nine clusters. In contrast,
Phitest finds a resolution that leads to accurate clustering
(Supplementary Fig. S3).

4 Conclusions

In this work, we propose a bioinformatics and statistical method
named Phitest to analyze the heterogeneity of single-cell popula-
tions. By evaluating if a reduced model with a common dispersion
parameter can sufficiently explain the observed gene counts com-
pared with a full model with gene-specific dispersion parameters,
Phitest is able to detect heterogeneous single-cell populations. In real
data applications, we suggest users to also investigate plots like

Figure 1 and Supplementary Figure S2 in addition to the P values.
We have demonstrated the accuracy of Phitest on 12 scRNA-seq
datasets (six homogeneous and six heterogeneous) with a gold
standard. In addition, we have also shown that Phitest can be used
to select the optimal parameter in single-cell clustering analysis,
leading to higher clustering accuracy than the default parameter. In
summary, the Phitest method (implemented in the PhitestR package)
will improve unsupervised analysis of scRNA-seq data by providing
an objective and automatic tool to help evaluate the quality of cell
clusters and the performance of clustering.
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