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The evolving beta coalescent

Götz Kersting∗, Jason Schweinsberg† and Anton Wakolbinger∗

February 20, 2014

Abstract

In mathematical population genetics, it is well known that one can represent the geneal-
ogy of a population by a tree, which indicates how the ancestral lines of individuals in the
population coalesce as they are traced back in time. As the population evolves over time,
the tree that represents the genealogy of the population also changes, leading to a tree-valued
stochastic process known as the evolving coalescent. Here we will consider the evolving coales-
cent for populations whose genealogy can be described by a beta coalescent, which is known
to give the genealogy of populations with very large family sizes. We show that as the size
of the population tends to infinity, the evolution of certain functionals of the beta coalescent,
such as the total number of mergers, the total branch length, and the total length of external
branches, converges to a stationary stable process. Our methods also lead to new proofs of
known asymptotic results for certain functionals of the non-evolving beta coalescent.

Keywords: beta coalescent, evolving coalescent, total branch length, total external length, number
of mergers, stable moving average processes.
AMS MSC 2010: Primary 60K35, Secondary 60F17, 60G52, 60G55, 92D15.

1 Introduction

In 1999, Pitman [14] and Sagitov [15] introduced coalescents with multiple mergers, also known
as Λ-coalescents. These processes are continuous-time Markov processes taking values in the set
of partitions of N, and as time goes forward, blocks of the partition merge together. For any finite
measure Λ on [0, 1], the Λ-coalescent is defined by the property that whenever the restriction of
the process to {1, . . . , n} has b blocks, each possible transition that involves b blocks merging into
one happens at rate

λb,k =

∫ 1

0
pk−2(1− p)b−k Λ(dp),

and these are the only transitions that occur. This means that when there are b blocks, the total
rate of all mergers is

λb =

b
∑

k=2

(

b

k

)

λb,k.

When Λ is a unit mass at zero, only two blocks ever merge at a time, and each transition that
involves two blocks merging into one happens at rate 1, so we get the celebrated Kingman’s
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coalescent [10]. When Λ is the uniform distribution on [0, 1], the Λ-coalescent is known as the
Bolthausen-Sznitman coalescent [4].

Coalescent processes arise naturally in population genetics, where they are used to model
the genealogy of populations. The genealogy of a population of size n can be modeled by a
process (Πn(r), r ≥ 0) taking its values in the set of partitions of {1, . . . , n}. The integers i and
j are in the same block of the partition Πn(r) if and only if the ith and jth individuals in the
population have the same ancestor r units back in time. Typically, Kingman’s coalescent is used
to model the genealogy of populations. However, in some circumstances, other Λ-coalescents
could describe the genealogy of a population. For example, it was shown in [17] that if the
probability of an individual having k or more offspring is proportional to k−α, where 1 < α < 2,
then the genealogy of the population is best described by the Λ-coalescent in which Λ is the
Beta(2−α,α) distribution. This process will hereafter be called the Beta(2−α,α)-coalescent, or
simply the beta coalescent. Beta coalescents are thus natural models for populations with large
family sizes, and predictions from beta coalescents were shown in [19] to fit genetic data from
some marine species.

There has been recent interest in describing not only the genealogy of a population at a
fixed time but also how the genealogy of a population changes over time. At any given time,
the genealogical structure described by the coalescent process can also be represented by a tree.
The shape of this tree changes over time, and the associated tree-valued process (Tn(t), t ∈ R) is
known as an evolving coalescent. For populations whose genealogy at a fixed time is described by
Kingman’s coalescent, the associated evolving coalescent was studied in [12, 13, 8]. The evolving
Bolthausen-Sznitman coalescent was studied in [18].

In the present paper, we study the evolving coalescent for populations whose genealogy is
given by the Beta(2−α,α)-coalescent, where 1 < α < 2. To this end we consider a time rescaling
depending on n, the scaled time being s = nα−1t. On the original time scale, merging events
occur at a rate of order nα; see formula (23) below. Therefore the number of coalescent events
in one unit of the scaled time is of order n, meaning that the rate at which a specific one of the
n lineages takes part in a merging event is of order 1. Thus, while the original time t captures
evolutionary time, the scaled time s plays the role of a generation time.

We show that as n → ∞, the distribution of certain functionals of the beta coalescent con-
verges to a stable distribution of index α. For the evolving beta coalescent, the distribution of
these functionals evaluated at times s1 < s2 < · · · < sd converges as n → ∞ to a multivariable
stable distribution of index α. Examples of functionals that fit into this framework include the
total number of merger events before all of the lineages have coalesced into a single lineage, the
total length of all branches in the tree, and the total length of all external branches in the tree.

As a typical result, which follows by combining Example 7 and Corollary 5 below, we state
the following theorem, which shows how the total branch length of the coalescent tree evolves
over time.

Theorem 1. Let Ln(t) be the total branch length of Tn(t), t ∈ R. Then for 1 < α < 1
2(1 +

√
5)

the sequence of processes

nα−1−1/α

(

Ln(n
1−αs)− α(α− 1)Γ(α)n2−α

2− α

)

, −∞ < s < ∞,

converges in finite-dimensional distributions as n → ∞ to the moving average process
∫ ∞

0
g(r) dLs−r, −∞ < s < ∞, (1)

2



where g(r) = (α− 1)(αΓ(α))
1

α−1 (r+ αΓ(α))−
2−α
α−1 and (Ls)−∞<s<∞, is a mean zero Lévy process

with L0 = 0 and Lévy measure

1

Γ(α)Γ(2− α)
u−1−α du, u > 0. (2)

The time reversal in the integrator is explained in more detail in Section 2.5. The stochastic
integral is well-defined for α < 1

2(1 +
√
5). Above this threshold, the statement fails to be true

even for the fixed value s = 0, as shown in [9]. Note that the function g(r) decreases as a power
of r, and consequently the moving average process defined in (1) is not Markovian. The exponent
−(2 − α)/(α − 1) tends to −∞ as α → 1. In the limiting case α = 1, which corresponds to
the Bolthausen-Sznitman coalescent, it is known that the evolution of the total branch length
converges to a moving average process defined as in (1), but with g(r) = e−r. In this case the
limit process is Markovian. For details, see [18].

Our approach consists of deriving asymptotic expansions for suitable functionals by means of
Poisson integrals. Thereby we rediscover some known results for functionals of the static (non-
evolving) beta coalescent, e.g. for its total length Ln and total external length ℓn. Moreover
by means of the Poisson integral representations we get hold also on their (properly scaled)
joint distributions, which are asymptotically multivariate stable. This allows us to calculate, for
example, the asymptotic distribution of ℓn/Ln (see Example 9 in Section 2.6).

We give a precise construction of the evolving beta coalescent, as well as a precise statement
of the main results and a few examples in section 2. Proofs are given in section 3.

2 Framework, main results, and examples

2.1 Construction of the evolving beta coalescent

We give here a precise construction of the evolving Λ-coalescent, which is modeled after the
Poisson process construction of the Λ-coalescent given in [14] and is similar to the construction
of the evolving Bolthausen-Sznitman coalescent in [18]. Let Λ be a finite measure on (0, 1]. We
will construct a population of fixed size n defined for all times t ∈ R whose genealogy is given by
the Λ-coalescent. Individuals in the population will be labeled 1, . . . , n.

Let Υ = Υn be a Poisson point process on R× (0, 1] × [0, 1]n with intensity measure

dt× p−2Λ(dp)× dv1 . . . dvn.

Suppose (t, p, v1, . . . , vn) is a point of Υ. If zero or one of the points v1, . . . , vn is less than p, then
no change in the population occurs at time t. However, if k ≥ 2 of these points are less than
p, so that vi1 < · · · < vik < p, then at time t, the individuals labeled i2, . . . , ik all die, and the
individual labeled i1 gives birth to k− 1 new individuals who take over the labels i2, . . . , ik. This
implies that if we are following the genealogy of the population backwards in time, the lineages
labeled i1, . . . , ik will all coalesce at time t. To see that the Λ-coalescent describes the genealogy
of this population, note that the rate of events that cause the lineages i1, . . . , ik to coalesce is

∫ 1

0
pk(1− p)n−k · p−2Λ(dp) = λn,k.

This construction is well-defined because the rate of changes in the population is bounded above
by

∫ 1

0

(

n

2

)

p2 · p−2Λ(dp) < ∞.
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Note that, since we are ordering the genealogy with respect to the vi, and not in a lookdown
manner with respect to the indices i, we do not have strong consistency in n.

Although this construction works whenever Λ({0}) = 0, we will hereafter restrict ourselves
to the case in which Λ is the Beta(2−α,α) distribution. For each t ∈ R, there will be a different
realization of the beta coalescent which describes the genealogy of the population at time t. We
denote the corresponding coalescent tree (read off from the genealogy backwards from time t) by
Tn(t) and call the process (Tn(t), t ∈ R) the evolving beta coalescent.

2.2 Two Poisson processes

The evolving beta coalescent is constructed from a Poisson process Υn on R× (0, 1]× [0, 1]n with
intensity measure

dt× 1

Γ(α)Γ(2 − α)
p−1−α(1− p)α−1 dp× dv1 . . . dvn.

In this section, we will construct two other Poisson processes, denoted by Ψn and Θn, that will
be useful for analyzing the evolving beta coalescent and the static (non-evolving) beta coalescent
back from time 0, respectively.

First, we obtain a Poisson process Υ′ on R× R
+ in two steps by discarding all but the first

two coordinates of the points of Υn, and then augmenting these points with the points of an
independent Poisson process with intensity

dt× 1

Γ(α)Γ(2 − α)
p−1−α(1− q(p)) dp,

where q(p) = 0 if p ≥ 1 and q(p) = (1− p)α−1 if 0 < p < 1. Note that Υ′ has intensity

dt× 1

Γ(α)Γ(2 − α)
p−1−α dp. (3)

From Υ′, we can then obtain a Poisson process Ψn via the mapping

(t, p) 7→ (s, u) := (nα−1t, n1−1/αp).

Υ′

t = 0 s = 0t

u
p

s

p = 1

Ψn

Figure 1: The process Υ′ contains the points (marked by •) from the first two coordinates of the
points of Υ, plus additional points (marked by ◦) that make up for the difference between the
intensities p−1−α(1− p)α−11p≤1 and p−1−α, p > 0. The point process Ψn arises from Υ′ through
the transformation (t, p) 7→ (s, u) = (nα−1t, n1−1/αp).
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That is, if (t, p) is a point of Υ′, then (nα−1t, n1−1/αp) is a point of Ψn. It is straightforward
to verify that the intensity of Ψn is also given by (3), now with (t, p) replaced by (s, u).

The reason for considering the rescaled Poisson process Ψn is that the fluctuations in the
behavior of the beta coalescent that will be important for studying the evolving coalescent are
those that happen after the coalescent has evolved for a time which is O(n1−α). Also, the largest
mergers on this time scale affect approximately a fraction O(n−1+1/α) of the blocks, in other
words a number of O(n1/α) blocks out of the n initial blocks. If (s, u) is a point of Ψn, then if
this point corresponds to a point of Υn (i.e. unless it corresponds to a point of Υ′ that does not
belong to Υn), at time n1−αs there is an event during which approximately a fraction n−1+1/αu
of the blocks merge together.

We now define another Poisson process Θn on (0, 1] × R
+ which is useful for studying the

static beta coalescent that describes the genealogy of the population at time 0. Writing

r = −s

for the reverse time, which is the coalescence time direction, we obtain Θn by first restricting
Ψn to all points (s, u) with s ≤ 0 and then applying the mapping (s, u) 7→ (x, y), t ≤ 0, to the
remaining points, where

x = m(r), y = m(r)u, (4)

for

m(r) =

(

αΓ(α)

r + αΓ(α)

)1/(α−1)

, r ≥ 0. (5)

This quantity is the asymptotic proportion of the number of blocks that have not yet coalesced
by the reverse time r; see Lemma 13 below.

Ψn|R−×R+ u

Θn

y

x 1
00

0 0r

Figure 2: The point process Θn arises from Ψn|R−×R+ through the transformation (−r, u) 7→
(x, y) = (m(r),m(r)u). Here, r = −s, and m(r) is given by formula (5).

To calculate the intensity of Θn, we invert the mapping given by (4) to get

r = αΓ(α)

(

1

xα−1
− 1

)

, u =
y

x
.
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It follows that
ds

dx
= − dr

dx
= α(α− 1)Γ(α)x−α,

du

dy
=

1

x
.

Since ds
dy = 0, the Jacobian determinant of (x, y) 7→ (s, u) is D(x, y) = α(α − 1)Γ(α)x−α−1 and

the intensity of Θn is

ν(dx, dy) =
1

Γ(α)Γ(2 − α)

(

y

x

)−1−α

D(x, y) dx dy = dx× α(α− 1)

Γ(2− α)
y−α−1 dy, (6)

which again does not depend on n.
Suppose (x, y) is a point of Θn. Because the number of blocks in a beta coalescent at time r is

approximately m(r)n, the merger corresponding to (x, y) occurs when approximately a fraction
xn blocks remain, and the number of blocks that merge is approximately n1/α−1 · yn = n1/αy.
Therefore, whereas the second coordinate of Ψn approximates the fraction of blocks lost due to
a merger, the second coordinate of Θn represents the number of blocks lost due to a merger. The
fact that the Poisson process Θn is homogeneous in time reflects the fact that the distribution
of the number of blocks lost in the first merger tends to a limit as the number of blocks at time
zero tends to infinity; see section 3.1.

2.3 Review of results on stable laws and Poisson integrals

To state and prove our main results, we will need to review some results on both univariate and
multivariate stable distributions. We will restrict ourselves to the stable distributions of index α,
where 1 < α < 2. Following the notation of [16], we write in the univariate case Z ∼ Sα(σ, β, µ)
if the characteristic function of the random variable Z is given by

E(eiθZ) = exp

(

iθµ− σα|θ|α
(

1− iβsgn(θ) tan

(

πα

2

)))

,

with location parameter µ (which equals E(Z) for 1 < α < 2), scale parameter σ > 0, and
skewness parameter β ∈ [−1, 1]. Here sgn(θ) = 1 if θ > 0, sgn(θ) = −1 if θ < 0, and sgn(0) = 0.
We only deal with the case µ = 0.

When µ = 0, β = 1, the characteristic function of Z can also be written in the Lévy-Khinchine
form

E(eiθZ) = exp

(

b

∫ ∞

0
(eiθy − 1− iθy) y−1−α dy

)

(since α > 1, we may and do avoid here the customary truncation within the integrand), where

σα =
bπ

2 sin(πα2 )Γ(α + 1)
. (7)

One can then construct Z in the following way. Consider a Poisson point process
∑

i≥1 δyi on

(0,∞) with intensity by−1−α dy, and for ε > 0 define

S(ε) :=
∑

yi≥ε

yi, Z(ε) = S(ε)− bε1−α

α− 1
.

Then the limit
Z = lim

ε↓0
Z(ε) a.s. (8)
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exists and obeys

E(Z) = E(Z(ε)) = 0, Var(Z − Z(ε)) =

∫ ε

0
y2 · by−1−α dy =

bε2−α

2− α
.

To facilitate comparisons with results in [5, 9], we note that if c > 0 and if Z has a stable
distribution such that

E(Z) = 0, P (Z > z) = z−α(1 + o(1)), P (Z < −z) = o(z−α) (9)

as z → ∞, then cZ ∼ Sα(σ, 1, 0) with σ given by (7) with b = αcα, which means

σ = c

(

π

2 sin(πα2 )Γ(α)

)1/α

. (10)

Note that the results in [5, 9] are stated with −Z in place of Z.
Next we define the notion of an α-stable random measure, following sections 3.3 and 3.12 of

[16], again only for β = 1. Let (E, E , ρ) be a measure space, and let E0 = {A ∈ E : ρ(A) < ∞}.
Then an α-stable random measure with control measure ρ is defined as a countably additive
functionM which assigns a random variable to each set A ∈ E0, satisfying the following properties:

1. If A ∈ E0, then M(A) ∼ Sα(ρ(A)
1/α, 1, 0).

2. If A1, . . . , Ak are disjoint sets in E0, then M(A1), . . . ,M(Ak) are independent.

To construct M , consider a Poisson point process Ξ on E×R
+ with intensity aρ(dx)× y−1−α dy,

where

a =
2 sin(πα2 )Γ(α+ 1)

π
. (11)

Then the second coordinates of those points of Ξ that fall in A×R
+ form a Poisson point process

on R
+ with intensity aρ(A)y−1−α dy. If one constructs M(A) just as Z is obtained in (8) with

b = aρ(A), then M = MΞ is an α-stable random measure with control measure ρ (and β = 1)
obtained from Ξ.

As noted in section 3.4 of [16], if f : E → R is a function such that
∫

E |f(x)|α ρ(dx) < ∞,
then one can define the integral

I(f) =

∫

E
f(x)M(dx) (12)

by approximating f with simple functions. It is shown in [16] that I(f) ∼ Sα(σf , βf , 0), where

σf =

(
∫

E
|f(x)|α ρ(dx)

)1/α

, βf =

∫

E |f(x)|αsgn(f(x)) ρ(dx)
∫

E |f(x)|α ρ(dx)
. (13)

In particular it follows for any linear combination

θ1I(f1) + · · ·+ θdI(fd) = I(θ1f1 + · · ·+ θdfd) ∼ S(σf , βf , 0)
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with f = θ1f1 + · · · + θdfd. In the case α > 1 this implies that the joint distribution of
I(f1), . . . , I(fd) is a multivariate α-stable distribution. The characteristic function is

E(ei(θ1I(f1)+···+θdI(fd)))

= exp

(

−
∫

E
|θ1f1 + · · ·+ θdfd|α(1− i sgn(θ1f1 + · · ·+ θdfd) tan(

πα
2 ))

)

dρ

= exp

(

−
∫

Sd−1

|θ · s|α(1− i sgn(θ · s) tan(πα2 ))

)

Γ(ds)

where Sd−1 ⊂ R
d is the unit sphere, θ ·s = θ1s1+ · · · θdsd, and Γ(ds) is the finite measure on Sd−1

obtained from (
∑

i fi(y)
2)α/2ρ(dy) by the transformation y 7→ (f1(y), . . . , fd(y))/(

∑

i fi(y)
2)1/2;

see section 3.2 of [16]. Here Γ is the so-called spectral measure of the α-stable random vector
(I(f1), . . . , I(fd)), which characterizes the joint distribution.

In our case E will be either R or the interval (0, 1]. Then the above Poisson integrals can also
be viewed as stochastic integrals using a Lévy process L = LΞ with mean zero, constructed from
the Poisson point process Ξ in the usual manner via compensation. Thus,

∫

E
f dM =

∫

E
f dL. (14)

2.4 An asymptotic expansion for the static case

Consider a beta coalescent back from time 0, and let Nn(r) be the number of blocks in the
partition at time r, so in particular Nn(0) = n. Let R0 = 0, and for k ≥ 1, let

Rk = Rn,k = inf{r > Rk−1 : Nn(r) 6= Nn(Rk−1)}.

Let τn = max{k : Rk < ∞}. Thus, R1 < · · · < Rτn are the times at which mergers occur, and τn
is the number of mergers before only one block remains. For 0 ≤ k ≤ τn, let

Xk = Xn,k = Nn(Rk),

and let Xk = 1 for k > τn, which means n = X0 > X1 > · · · > Xτn = 1. The process (Xk)
τn
k=0 is

called the block-counting process associated with the beta coalescent.
The result below shows that certain functionals of the block-counting process have an asymp-

totic stable law as n → ∞. For this purpose, we consider the beta coalescent, constructed from
Υn as in Section 2.1, and the α-stable random measures Mn = MΘn obtained from Poisson point
processes Ξn as described in Section 2.3, with E = (0, 1], intensity (6) and Ξn = Θn (arising from
Υn as described in Section 2.2). In view of (11) the control measure of Mn is

ρ(dx) =
π

2 sin(πα2 )Γ(α + 1)
· α(α− 1)

Γ(2− α)
dx =

π(α− 1)

2 sin(πα2 )Γ(α)Γ(2 − α)
. (15)

We denote by F the set of all differentiable functions f which for some c > 0 and 0 < ζ < 1
α

obey

|f ′(x)| ≤ cx−ζ−1 (16)

for all x ∈ (0, 1].

8



Theorem 2. Let (Xk)
τn
k=0 be the block-counting process associated with the beta coalescent, and

let f ∈ F . Then as n → ∞,

1

α− 1

∑

k<τn

f

(

Xk

n

)

= n

∫ 1

0
f(x) dx− n1/α

∫

(0,1]
f(x)Mn(dx) + oP (n

1/α), (17)

where Mn is an α-stable random measure with control measure (15).

The statement of Theorem 2 is an asymptotic version of the equation

γ
∑

k<τn

f

(

Xk

n

)

= n
∑

k<τn

f

(

Xk

n

)

Yk

n
− n1/α

∑

k<τn

f

(

Xk

n

)

Yk − γ

n1/α
, (18)

where γ = 1/(α − 1) and Yk = Xk −Xk+1, 0 ≤ k < τn. The proof consists of showing that the
sums appearing in the right-hand side of (18) may asymptotically be replaced by the integrals
∫ 1
0 f(x) dx and

∫

(0,1] f(x)Mn(dx), respectively.

Since the control measure, and hence the distribution, of Mn does not depend on n, the
asymptotic expansion (17) in Theorem 2 directly imples convergence in distribution not only for
a single f ∈ F , but also for finitely many f1, . . . , fd. To ease notation, let us define, for f ∈ F

and n ∈ N,

Jn(f) := n−1/α

(

1

α− 1

∑

k<τn

f

(

Xk

n

)

− n

∫ 1

0
f(x) dx

)

. (19)

Corollary 3. Let f, f1, . . . , fd ∈ F . Then

Jn(f) ⇒ Sα(σf ,−βf , 0)

and
(Jn(f1), . . . ,Jn(fd)) ⇒ (−I(f1), . . . ,−I(fd)),

where σf , βf are as in (13), I(f) is as in (12) with an α-stable random measure M with control
measure (15), and ⇒ denotes convergence in distribution as n → ∞.

2.5 The evolving beta coalescent

Now we transform the asymptotic expansion from Theorem 2 to the evolving coalescent. Here it
is convenient to use Lévy processes. Let

Ln = (Ln,s)−∞<s<∞ := LΨn , L′
n = (L′

n,x)0≤x≤1 := LΘn (20)

be the mean zero stable Lévy processes with Ln,0 = Ln,0 = 0 a.s. and with jumps ∆Ln,s = u and
∆L′

n,x = y for all points (s, u) from Ψn and (x, y) from Θn, respectively. For the time-reversals
we write

L̂n,r := Ln,s− , s = −r, r ≥ 0,

L̂′
n,w := L′

n,x− − Ln,1, w = 1− x , 0 < x ≤ 1.

Then the mapping from (4) translates into the following lemma.
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Lemma 4. Let f : (0, 1] → R be such that
∫ 1
0 |f(x)|α dx < ∞. Then

∫ ∞

0
f(m(r))m(r) dL̂n,r =

∫ 1

0
f(1− w) dL̂′

n,w.

Proof. The assumption on f guarantees that the integrals are well-defined. The processes
(L̂n,r)r≥0 and (L̂′

n,m(r))r≥0 are mean zero Lévy processes, and hence martingales with respect
to the filtration

Fr := σ(Ψn |[−r,0]×R+) = σ(Θn |[m(r),1]×R+) , r ≥ 0.

Consequently

Jr :=

∫ r

0
f(m(q))m(q) dL̂n,q −

∫ 1−m(r)

0
f(1− w) dL̂′

n,w , r ≥ 0,

is a local martingale. Jumps can only occur at points (r, u) in Ψn; because of (4) they vanish:

∆Jr = −f(m(r))m(r)u+ f(x)y = 0.

Thus, J is a.s. continuous. Moreover, since the underlying processes are Lévy processes without
a Brownian component, the quadratic variation of J is [J ]∞ =

∑

r≥0(∆Jr)
2 = 0 a.s. Thus

J∞ = J0 = 0 a.s.

From (20) and (14) it follows that Mn = MΘn satisfies

∫

(0,1]
f(x)Mn(dx) =

∫ 1

0
f(x) dL′

n,x = −
∫ 1

0
f(1− w) dL̂′

n,w.

Now we apply Lemma 4 to get

∫

(0,1]
f(x)Mn(dx) = −

∫ ∞

0
f(m(r))m(r) dLn,−r. (21)

Let us now proceed to consider the evolving coalescent (Tn(t), t ∈ R) described in Section 2.1.
For each s ∈ R and n ∈ N, we denote the block counting process of the coalescent tree Tn(n1−αs)

by (Xs
k)

τsn
k=0. By shifting the origin of the scaled time to the time point s and re-centering the

process L at this new time origin (which does not affect its increments), we can apply Theorem 2
together with (21) and conclude that

1

α− 1

∑

k<τsn

f

(

Xs
k

n

)

= n

∫ 1

0
f(x) dx+ n1/α

∫ ∞

0
f(m(r))m(r) dLn,s−r + oP (n

1/α).

Writing J n
f (s) for the random variable (19) with (Xk) = (X0

k) replaced by (Xs
k), we thus obtain

J n
f (s) =

∫ ∞

0
f(m(r))m(r) dLn,s−r + oP (1).

Since the distribution of the Poisson point process Ψn, and hence also that of the Lévy process
Ln = LΨn , does not depend on n, we obtain the following result for the evolving beta coalescent.

10



Corollary 5. For f ∈ F and s ∈ R, let Jn,s(f) be as in (19), but now evaluated at the coalescent
tree Tn(n1−αs) instead of Tn(0). Then the sequence of stationary processes (Jn,s(f))−∞<s<∞,
n ≥ 1, converges as n → ∞ in finite-dimensional distributions to the moving average process

∫ ∞

0
f(m(r))m(r) dLs−r, −∞ < s < ∞,

where m is given by (5) and and (Ls)−∞<s<∞ is a mean zero Lévy process with L0 = 0 and Lévy
measure given by (2).

To understand better how these functionals of the beta coalescent evolve over time, note
that the stable random variable

∫

(0,1] f(x)Mn(dx) from Theorem 2, which gives the limit of the

functional Jn,0(f), is a function of the Poisson process Θn, and is therefore also a function of
the Poisson process Ψn. Likewise, the stable random variable that gives the limit of Jn,s(f)
can be expressed as a function of a Poisson process Θs

n and as a function of a Poisson process
Ψs

n. The Poisson process Ψs
n can be obtained from Ψn by a simple time shift. If (−r, u) is a

point of Ψn, then (−r − s, u) is a point of Ψs
n. We obtain the Poisson process Θs

n by applying
the transformation (s − r, u) 7→ (x, y) = (m(r),m(r)u) to the points of Ψn|(−∞,s], where m(r)
is again defined by (5). See Figure 3 for an illustration of how these point process evolve as s
increases.

0 s

Ψn
u

Θ0
n Θs

n

yy

xx 11
0

0
0

0

Figure 3: The point process Θs
n arises from Ψn|(−∞,s]×R+ through the transformation (s−r, u) 7→

(x, y) = (m(r),m(r)u). As s increases above 0, the points of Θ0
n wander down to the left towards

(0, 0), and new points wander in from the right.
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2.6 Functionals of the beta coalescent

In this section, we consider three functionals of the beta coalescent: the number of collisions,
the total branch length, and the total length of external branches. We observe how Theorem 2
allows us to recover known results for the asymptotic distributions of these quantities for the
static beta coalescent. Then Corollary 5 allows us to describe how these functionals behave over
time in the evolving beta coalescent. We also obtain a new result about the ratio of the external
branch length to the total branch length, which could be of interest for biological applications.

Example 6. Consider the number τn of collisions before just a single block remains. Because

τn =
∑

k<τn

1 =
1

α− 1

∑

k<τn

(α− 1),

we can apply directly the result of Theorem 2 with f(x) = α − 1 for all x ∈ (0, 1]. We get that
for 1 < α < 2,

n−1/α(τn − (α− 1)n) ⇒ S(σ1,−1, 0), (22)

where

σ1 =

(

π(α − 1)1+α

2 sin(πα2 )Γ(α)Γ(2 − α)

)1/α

.

This agrees with the result of Lemma 4 in [5], where the limit on the right-hand side of (22) is
expressed as c1Z for −Z satisfying (9) and c1 = (α − 1)1+1/α/Γ(2 − α)1/α. This result had also
been shown in [6, 7, 11], and the equivalence between the two ways of expressing the limit can
be seen from (10).

Because we use this result in our proof of Theorem 2, we have not obtained here another
independent proof of this result. The benefit is that our approach allows us to examine the
common distribution of τn and other functionals. Also, Corollary 5 with f(x) = α − 1 allows
us to understand how the total number of collisions changes over time for the evolving beta
coalescent. In particular, we see that the limit process is a stationary stable process that can be
expressed, in a relatively simple way, as a moving average process.

Example 7. Consider next the total length Ln of all branches in the coalescent tree. This quan-
tity is of interest in Biology because the total branch length should be approximately proportional
to the number of mutations observed in a sample of n individuals. Note that

Ln =
∑

k<τn

Xk(Rk+1 −Rk).

Define also

L′
n =

∑

k<τn

Xk

λXk

, L′′
n = αΓ(α)

∑

k<τn

X1−α
k .

Lemma 2.2 in [6] implies that as m → ∞,

λm =
1

αΓ(α)
mα +O(mα−1). (23)

12



Therefore, there is a constant c > 0 such that

|L′
n − L′′

n| ≤
∑

k<τn

Xk

∣

∣

∣

∣

1

λXk

− αΓ(α)

Xα
k

∣

∣

∣

∣

≤
n
∑

m=1

m

∣

∣

∣

∣

1

λm
− αΓ(α)

mα

∣

∣

∣

∣

≤
n
∑

m=1

m · cm−1−α = O(1). (24)

Also, conditional on σ(X) = σ(X0,X1, . . . ,Xτn), the distribution of Xk(Rk+1−Rk) is exponential
with rate parameter λXk

. It follows that

E(Ln −L′
n | σ(X)) = 0 (25)

and

Var(Ln − L′
n | σ(X)) =

n−1
∑

k=0

X2
k1k<τn · 1

λ2
Xk

≤
n
∑

m=1

m2

λ2
m

= O(1 ∨ n3−2α). (26)

It now follows from (24), (25), (26), and Chebyshev’s Inequality that if 1 < α < 1
2(1 +

√
5), so

that 1 + α− α2 > 0, we have
nα−1−1/α(Ln − L′′

n) ⇒ 0.

Therefore, we may replace Ln by L′′
n in asymptotic calculations. Because

nα−1L′′
n =

1

α− 1

∑

k<τn

α(α − 1)Γ(α)

(

Xk

n

)1−α

,

when 1 < α < 1
2(1 +

√
5) we can apply Theorem 2 with f(x) = α(α − 1)Γ(α)x1−α. We get

nα−1−1/α

(

Ln − α(α− 1)Γ(α)n2−α

2− α

)

⇒ Sα(σ2,−1, 0),

where

σ2 =

(

παα(α− 1)1+αΓ(α)α−1

2 sin(πα2 )Γ(2− α)(1 + α− α2)

)1/α

,

which agrees with part (i) of Theorem 1 in [9]. It also follows from Corollary 5 that for the
evolving beta coalescent, the evolution of the total branch length, scaled as above, converges in
the sense of finite-dimensional distributions to a stationary stable process.

Example 8. Consider also the total length ℓn of all external branches in the tree. This quantity is
also of interest in Biology, as it should be approximately proportional to the number of mutations
that appear on just one individual in a sample of n individuals. It is shown in the proof of Theorem
1 in [5] that

ℓn = α(α− 1)2Γ(α)n2−α + α(2− α)Γ(α)n1−ατn + oP (n
1+1/α−α).

Therefore,

nα−1ℓn − α(α− 1)2Γ(α)n =
1

α− 1

∑

k<τn

α(α− 1)(2 − α)Γ(α) + oP (n
1/α),

so for 1 < α < 2, we can apply Theorem 2 with f(x) = α(α− 1)(2 − α)Γ(α) to get

nα−1−1/α(ℓn − α(α − 1)Γ(α)n2−α) ⇒ Sα(σ3,−1, 0),

13



where

σ3 =

(

παα(α− 1)1+α(2− α)αΓ(α)α−1

2 sin(πα2 )Γ(2− α)

)1/α

,

in agreement with Theorem 1 of [5].

Example 9. Finally, we consider the quantity ℓn/Ln, which in the biological setting should be
approximately equal to the proportion of mutations that appear on only one individual. This
ratio is potentially useful for drawing inferences about the genealogy of a population from data,
in part because the value that we expect for this ratio does not depend on the mutation rate,
which is often unknown. Indeed, it follows from results in [1] that the parameter α in the beta
coalescent can be consistently estimated by the quantity 2− ℓn/Ln.

Assume that 1 < α < 1
2 (1 +

√
5). From the discussion in Examples 7 and 8, we see that

nα−1−1/αLn =
α(α− 1)Γ(α)

2− α
n1−1/α − Z1 + oP (1),

where

Z1 =

∫ 1

0
α(α− 1)Γ(α)x1−α Mn(dx),

and likewise
nα−1−1/αℓn = α(α − 1)Γ(α)n1−1/α − Z2 + oP (1),

where

Z2 =

∫ 1

0
α(α− 1)(2 − α)Γ(α)Mn(dx).

Therefore,

ℓn
Ln

=
α(α− 1)Γ(α) − n−1+1/αZ2 + oP (n

−1+1/α)
α(α−1)Γ(α)

2−α − n−1+1/αZ1 + oP (n−1+1/α)

= (2− α) + n−1+1/α

(

(2− α)2

α(α − 1)Γ(α)
Z1 −

2− α

α(α − 1)Γ(α)
Z2

)

+ oP (n
−1+1/α)

= (2− α) + n−1+1/α

∫ 1

0
(2− α)2(x1−α − 1)Mn(dx) + oP (n

−1+1/α).

It follows that

n1−1/α

(

ℓn
Ln

− (2− α)

)

⇒ Sα(σ4, 1, 0),

where

σ4 = (2− α)2
(

π(α− 1)

2 sin(πα2 )Γ(α)Γ(2 − α)

∫ 1

0
(x1−α − 1)α dx

)1/α

.

Using the substitution y = xα−1, the integral transforms to a beta integral:

∫ 1

0
(x1−α − 1)α dx =

1

α− 1

∫ 1

0
(1− y)αy

2−α2

α−1 dy =
Γ(α+ 1)Γ(α+1−α2

α−1 )

(α− 1)Γ( α
α−1 )

.

Altogether,

σ4 = (2− α)2
(

πα

2 sin(πα2 )

Γ(α+1−α2

α−1 )

Γ(2− α)Γ( α
α−1 )

)1/α

.
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If 1
2(1 +

√
5) ≤ α < 2, then the fluctuations in Ln are of a higher order of magnitude than the

fluctuations of ℓn, so the asymptotic distribution of ℓn/Ln is determined by the asymptotics of
Ln given in Theorem 2 of [5]. In particular, when 1

2(1+
√
5) < α < 2, the asymptotic distribution

of ℓn/Ln is no longer a stable law.

3 Proofs

Let us remark in advance that for f satisfying (16) with ζ < 2 by linearity we may and will
assume the following properties: f(x) ≥ 1 for all x ∈ (0, 1], f(x) is monotonically decreasing and
x2f(x) is monotonically increasing.

Indeed, for any f satisfying the condition |f ′(x)| ≤ cx−ζ−1, x ∈ (0, 1], we may write f = f1−f2
with

f1(x) = f(x) + 3cζ−1x−ζ + d, f2(x) = 3cζ−1x−ζ + d.

Then f1 and f2 fulfil these three requirements, if we let d = 1− f(1) ∧ 0. For f2 this is obvious,
since ζ < 2. Furthermore f ′

1(x) ≤ −2cx−ζ−1. This implies that f1 is decreasing and also f1(x) ≥ 1
for all x, since f1(1) ≥ 1. Moreover d+ f(1) ≥ 0, thus f1(1) ≥ 3cζ−1 and

f1(x) = f1(1)−
∫ 1

x
f ′
1(y) dy ≥ 2cζ−1 +

∫ 1

x
2cy−ζ−1 dy = 2cζ−1x−ζ ≥ 2cx−ζ .

Taking also into account f ′
1(x) ≥ −4cx−ζ−1 we obtain

d

dx
x2f1(x) = 2xf1(x) + x2f ′

1(x) ≥ 0.

This gives the assertion.
Note also for f satisfying (16), there is a positive constant c such that

f(x) ≤ cx−ζ (27)

for all x ∈ (0, 1] and therefore
∫ 1

0
f(x)α dx < ∞.

To facilitate notation we adopt, here and throughout the rest of the paper, the convention that
c > 0 denotes a constant, only dependent on α, which may change its value from term to term.

3.1 The number of blocks for the beta coalescent

We assemble here some results about the evolution of the number of blocks for the beta coalescent.
We adopt the notation of Section 2.4, so that τn is the total number of mergers and (Xk)

τn
k=0 is

the block counting process. Let

Yk = Xk −Xk+1, k ≥ 0,

which are the numbers of blocks lost during the mergers.
Define

qi =
α

Γ(2− α)

Γ(i+ 1− α)

Γ(i+ 2)
, i ≥ 1.
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The numbers qi are the weights of a probability distribution on N (see [9]). From Stirling’s
formula

qi =
α

Γ(2− α)
i−α−1(1 + o(1)) (28)

for i → ∞. Let

γ =
∑

i≥1

iqi =
1

α− 1
, (29)

where the last equality is formula (5) in [9]. See also [3, 6] for a discussion of this probability
distribution.

It has been known since the work of Bertoin and Le Gall [3] that the distribution of the
random variables Y0, Y1, . . . is well approximated by (qi)

∞
i=1. The next result gives a bound on

the accuracy of this approximation.

Lemma 10. There is a number c < ∞ such that for j ≥ 2 and 1 ≤ i < j

∣

∣P (Y0 = i | X0 = j)− qi
∣

∣ ≤ ciqi
j

and thus
P (Y0 = i | X0 = j) ≤ (1 + c)qi.

Proof. In the proof of Lemma 3 in [9] (see there the two displayed formulas before (9)) it is shown
that there are real numbers bj such that for 1 ≤ i < j

(

1− i

j

)

qi ≤ bjP (Y0 = i | X0 = j) ≤ qi, 1− γ

j
≤ bj ≤ 1,

and so for j > γ
(

1− i

j

)

qi ≤ P (Y0 = i | X0 = j) ≤ 1

1− γ
j

qi.

This gives our claim in the case when j > 2γ. The other finitely many cases are covered too, if
we choose c sufficiently large.

The next two lemmas contain our first applications of these estimates.

Lemma 11. For n → ∞
max
k<τn

Xk

Xk+1
= OP (1).

Proof. Let a > 1 and η = (a− 1)/a. Because Yk = Xk −Xk+1,

P

(

max
k<τn

Xk

Xk+1
> a

)

= P

(

max
k<τn

Yk

Xk
> η

)

≤ E

(

∑

k<τn

1{Yk>ηXk}

)

.

From Lemma 10 and (28)

P (Y0 > ηj | X0 = j) ≤ c
∑

ηj<i<j

i−α−1 ≤ c((ηj)−α − j−α)
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and consequently, using that τn ≤ n− 1,

P

(

max
k<τn

Xk

Xk+1
> a

)

≤
n−2
∑

k=0

P (Yk > ηXk) ≤ c(η−α − 1)

n−2
∑

k=0

E(X−α
k ) ≤ c(η−α − 1)

∞
∑

j=1

1

jα
.

Since α > 1, the series is convergent. Also as a → ∞, we have η → 1, and the claim follows.

Next let us introduce the stopping times

τn(a) := min{k ≥ 0 : Xk ≤ an}, 0 < a ≤ 1.

In particular, τn(1) = 0.

Lemma 12. For n → ∞

τn(a) =
(1− a)n

γ
+ oP (n).

Proof. Let ξ ∈ (α−1, 1). Then for k < τn from Lemma 10 and (28)

P (Yk > nξ | Xk) ≤ c
∑

i>nξ

i−α−1 ≤ c(nξ)−α

and since τn ≤ n− 1

P
(

max
k<τn

Yk > nξ) ≤
∑

k<n−1

P (Yk > nξ) ≤ cn1−ξα = o(1)

or maxk<τn Yk = OP (n
ξ). Thus Xτn(a)−1 − Xτn(a) = Yτn(a)−1 = OP (n

ξ). Also by definition
Xτn(a) ≤ an < Xτn(a)−1. Since ξ < 1 this gives

n−1Xτn(a) → a

in probability.
Observe that τn − τn(a) = τXτn(a)

, and recall that it was shown in [6, 7, 11] that

τn = n/γ + oP (n).

Therefore, using the strong Markov property, we obtain

τn − τn(a) =
Xτn(a)

γ
+ oP (Xτn(a)) =

an

γ
+ oP (n),

which gives the claim.

The next lemma pertains to the evolution of the number of blocks in continuous time and
follows fairly directly from results in [2], where the number of blocks was studied for the beta
coalescent started with infinitely many blocks. Recall the definition of m(r) from (5) and let as
above Nn(r) denote the number of blocks at time r.

Lemma 13. Consider the beta coalescent started with n blocks at time zero. Let ε > 0. Suppose
h : N → (0,∞) is a function such that limn→∞ n1−αh(n) = 0. Then

lim
n→∞

P
(

(1− ε)m(r)n ≤ Nn(n
1−αr) ≤ (1 + ε)m(r)n for all r ∈ [0, h(n)]

)

= 1.
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Proof. Consider a beta coalescent started with infinitely many blocks at time zero, and let N(r) =
N∞(r) denote the number of blocks at time r. Theorem 1.1 of [2] states that

lim
r↓0

r1/(α−1)N(r) = (αΓ(α))1/(α−1) a.s. (30)

The strategy of the proof will be to bound the process (Nn(r), r ≥ 0) from above by the process
(N(r), r ≥ 0) started at time (1− δ)αΓ(α)n1−α, when there will typically be more than n blocks,
and from below by the process (N(r), r ≥ 0) started at time (1 + δ)αΓ(α)n1−α, when there will
typically be fewer than n blocks.

Choose δ > 0 sufficiently small that

(1 + δ)

(

αΓ(α)

(1 − δ)αΓ(α) + r

)1/(α−1)

≤ (1 + ε)m(r) (31)

and

(1− δ)

(

αΓ(α)

(1 + δ)αΓ(α) + r

)1/(α−1)

≥ (1− ε)m(r). (32)

For r > 0, define the event

G(r) =
{

(1− δ)(αΓ(α))1/(α−1)r−1/(α−1)n ≤ N(n1−αr) ≤ (1 + δ)(αΓ(α))1/(α−1)r−1/(α−1)n
}

.

For n ∈ N, let g(n) = (1 + δ)(αΓ(α) + h(n)). Then limn→∞ g(n)n1−α = 0, so (30) gives

lim
n→∞

P
(

G(r) occurs for all r ∈ [0, g(n)]
)

= 1 (33)

and
lim
n→∞

P
(

N((1 + δ)αΓ(α)n1−α) ≤ n ≤ N((1 − δ)αΓ(α)n1−α)
)

= 1. (34)

Therefore,

P
(

Nn(n
1−αr) > (1 + ε)m(r)n for some r ∈ [0, h(n)]

)

≤ P
(

N((1 − δ)αΓ(α)n1−α) < n
)

+ P
(

N(((1 − δ)αΓ(α) + r)n1−α) > (1 + ε)m(r)n for some r ∈ [0, h(n)]
)

,

which tends to zero as n → ∞ by (31), (33), and (34). Likewise,

P
(

Nn(n
1−αr) < (1− ε)m(r)n for some r ∈ [0, h(n)]

)

≤ P
(

N((1 + δ)αΓ(α)n1−α) > n
)

+ P
(

N(((1 + δ)αΓ(α) + r)n1−α) < (1− ε)m(r)n for some r ∈ [0, h(n)]
)

,

which tends to zero as n → ∞ by (32), (33), and (34). The result follows.

3.2 Functionals of the block counting process

We again use the notation of section 2.4, so that n = X0 > X1 > · · · > Xτn = 1 is the block-
counting process of the beta n-coalescent and Yk = Xk −Xk+1.
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Proposition 14. Let f : (0, 1] → R be a positive, decreasing, differentiable function such that

|f ′(x)| ≤ cx−ζ−1

for some c > 0. If ζ < 1, then f is integrable and

γ
∑

k<τn

f
(Xk

n

)

= n

∫ 1

0
f(x) dx+ oP (n).

If moreover ζ < 1/α, i.e. f ∈ F , then

γ
∑

k<τn

f
(Xk

n

)

= n

∫ 1

0
f(x) dx−

∑

k<τn

f
(Xk

n

)

(Yk − γ) + oP (n
1/α).

Proof. Choose ε > 0. Let 0 = a0 < a1 < · · · < am = 1 be a partition of [0, 1]. Then by the
assumptions on f

0 ≤
∑

τn(a1)≤k<τn

f

(

Xk

n

)

≤
∑

1≤j≤a1n

f

(

j

n

)

≤ n

∫ a1

0
f(x) dx ≤ ε

3n,

if only a1 is sufficiently small.
Also for i > 1 by monotonicity and Lemma 12

∑

τn(ai)≤k<τn(ai−1)

f

(

Xk

n

)

≥ f(ai)(τn(ai−1)− τn(ai)) = f(ai)
(ai − ai−1)n

γ
+ oP (n)

which implies that
∑

k<τn(a1)

f

(

Xk

n

)

≥ n

γ

∫ 1

a1

f(x) dx− ε
3n+ oP (n),

if only the partition is chosen fine enough. Combining the estimates we obtain

P

(

∑

k<τn

f

(

Xk

n

)

<
n

γ

∫ 1

0
f(x) dx− εn

)

= o(1).

In the same manner we may bound
∑

k<τn
f(Xk/n) from above such that the first claim follows.

As to the second one, from a Taylor expansion with Xk+1 ≤ X̄k ≤ Xk,

∫ Xk/n

Xk+1/n
f(x) dx = f

(Xk

n

)Yk

n
+

1

2
f ′
(X̄k

n

)(Yk

n

)2
.

Therefore Rn, given by

γ
∑

k<τn

f
(Xk

n

)

= n

∫ 1

1/n
f(x) dx−

∑

k<τn

f
(Xk

n

)

(Yk − γ) +Rn,

fulfils by assumption

|Rn| ≤
τn−1
∑

k=0

∣

∣

∣
f ′
(X̄k

n

)
∣

∣

∣

Y 2
k

n
≤ c

τn−1
∑

k=0

(Xk+1

n

)−ζ−1Y 2
k

n
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or

|Rn| ≤ cnζ
(

max
k<τn

Xk

Xk+1

)ζ+1
τn−1
∑

k=0

X−ζ−1
k Y 2

k .

Because of Lemma 10, equation (28), and the fact that α < 2, for k < τn we get

E(Y 2
k | Xk) ≤ c

∑

i<Xk

i2qi ≤ cX2−α
k

and therefore

E
(

∑

k<τn

X−ζ−1
k Y 2

k

)

≤ cE
(

∑

k<τn

X1−α−ζ
k

)

≤ c
∑

j≥1

j1−α−ζ .

Furthermore 1−α− ζ = 1
α − ζ − 1

α(α− 1)2 − 1 < −1, if only ζ is chosen sufficiently close to 1/α,
such that the right-hand series is convergent. Altogether in view of Lemma 11 we obtain

Rn = OP (n
ζ) = oP (n

1/α).

Finally, since ζ < 1/α < 1 it follows from (27) that

n

∫ 1/n

0
f(x) dx ≤ cn

( 1

n

)1−ζ
= cnζ = o(n1/α).

This gives the second assertion.

Lemma 15. Let f ∈ F . Then for any η > 0 there is an ε > 0 such that for all n ≥ 1

P
(∣

∣

∣
d+ n−1/α

∑

k<τn

f
(Xk

n

)

(Yk1{f(Xk/n)Yk≤εn1/α} − γ)
∣

∣

∣
> η

)

≤ η

with

d = d(ε) = ε1−α α

Γ(2− α)

∫ 1

0
f(x)α dx. (35)

Proof. Suppressing the dependence on n in the notation, let

Ak = {f(Xk/n)Yk ≤ εn1/α},
γ(j) = E(Y01A0 | X0 = j).

Since (Xk) is a Markov chain and τn is a stopping time, the random variables

f

(

Xk

n

)

(

Yk1Ak
− γ(Xk)

)

1{k<τn}

have zero mean and are uncorrelated. Therefore,

Var

(

∑

k<τn

f
(Xk

n

)

(Yk1Ak
− γ(Xk))

)

≤
n−1
∑

k=0

E

(

f
(Xk

n

)2
(Yk1Ak

− γ(Xk))
21{k<τn}

)

.
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From Lemma 10 and (28), we see that

E((Y01A0 − γ(X0))
2 | X0 = j) ≤ E(Y 2

0 1A0 | X0 = j) ≤ c
∑

i≤εn1/α/f(j/n)

i2qi ≤ c

(

εn1/α

f(j/n)

)2−α

.

Thus,

Var

(

∑

k<τn

f
(Xk

n

)

(Yk1Ak
− γ(Xk))

)

≤ cε2−αn2/α−1
n−1
∑

k=0

E

(

f

(

Xk

n

)α)

.

Because ζ < 1/α, we have, using (27),

n−1
∑

k=0

E

(

f

(

Xk

n

)α)

≤
n
∑

j=1

f

(

j

n

)α

≤ c
n
∑

j=1

(

j

n

)−αζ

≤ cn,

and it follows that

Var

(

n−1/α
∑

k<τn

f
(Xk

n

)

(Yk1Ak
− γ(Xk))

)

≤ cε2−α.

Thus, by Chebyshev’s Inequality, if ε is sufficiently small, then

P

(
∣

∣

∣

∣

n−1/α
∑

k<τn

f
(Xk

n

)

(Yk1Ak
− γ(Xk))

∣

∣

∣

∣

> η

)

≤ η. (36)

It remains to replace γ(Xk) by γ in this formula. From

γ(j) =
∑

i≤εn1/α/f(j/n)

iP (Y0 = i | X0 = j)

we get from Lemma 10 and (28) the estimate, uniform in n and k,
∣

∣

∣

∣

γ(j) −
∑

i≤(j−1)∧εn1/α/f(j/n)

iqi

∣

∣

∣

∣

≤ c

j

∑

i≤j−1

i2qi = O(j1−α).

From (28) and (29),

∑

i≤(j−1)∧εn1/α/f(j/n)

iqi = γ− α

(α− 1)Γ(2 − α)

(

εn1/α

f(j/n)

)1−α

(1 + o(1)) +O(j1−α),

where the o(1) goes to 0 with n going to infinity, uniformly in j. Putting these formulas together
we arrive at

γ(j) = γ − α

(α− 1)Γ(2 − α)
ε1−αn−1+1/αf(j/n)α−1(1 + o(1)) +O(j1−α).

It follows that

∑

k<τn

f
(Xk

n

)

γ(Xk) = γ
∑

k<τn

f
(Xk

n

)

− α+ o(1)

(α− 1)Γ(2 − α)
ε1−αn−1+1/α

∑

k<τn

f
(Xk

n

)α

+O

(

∑

k<τn

f
(Xk

n

)

X1−α
k

)

. (37)
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Now, since 1− α− ζ = 1
α − ζ − 1

α(α− 1)2 − 1 < −1, if ζ is sufficiently close to 1/α,

∑

k<τn

f
(Xk

n

)

X1−α
k ≤ cnζ

∑

k<τn

X1−α−ζ
k ≤ cnζ

∑

j≥1

j1−α−ζ = O(nζ) = o(n1/α).

Because | ddsf(s)α| = αf(s)α−1|f ′(s)| ≤ cs−ζ(α−1)s−ζ−1 = cs−αζ−1 and αζ < 1, we may estimate
the middle term in the right-hand side of (37) by applying the first statement of Proposition 14.
This implies

∑

k<τn

f
(Xk

n

)

γ(Xk) = γ
∑

k<τn

f
(Xk

n

)

− α

Γ(2− α)
ε1−αn1/α

∫ 1

0
f(s)α ds+ oP (n

1/α),

which, combined with (36), implies the result.

3.3 Proof of Theorem 2

Let f ∈ F . We also assume that f(x) is decreasing, x2f(x) is increasing and f(x) ≥ 1 for all x;
see the remark at the beginning of Section 3.

Let

Zn =

∫

(0,1]
f(x)Mn(dx). (38)

We have to show that

γ
∑

k<τn

f

(

Xk

n

)

= n

∫ 1

0
f(s) ds − n1/αZn + oP (n

1/α).

In view of Proposition 14 it suffices to show that

∑

k<τn

f

(

Xk

n

)

(Yk − γ) = n1/αZn + oP (n
1/α). (39)

Enumerate the points of Θn as (xi, yi)
∞
i=1 and for ε > 0 let

Sn(ε) =
∑

f(xi)yi>ε

f(xi)yi. (40)

First let us check that
Sn(ε)− E(Sn(ε)) → Zn

in probability as ε → 0. For this purpose note that from (6)

E(Sn(ε)) =

∫ 1

0

∫ ∞

ε/f(x)
f(x)y ν(dx, dy) = ε1−α α

Γ(2− α)

∫ 1

0
f(x)α dx, (41)

which is finite by our assumptions on f . Thus the sum in (40) has a.s. finitely many summands.
Also for η > 0

Var

(

∑

i≥1

f(xi)yi · 1{η≤yi, f(xi)yi≤ε}

)

=

∫ 1

0

∫ ε/f(x)

η
f(x)2y2 · 1{η≤ε/f(x)} ν(dx, dy).
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Letting η → 0 we obtain

Var(Zn − Sn(ε)) =

∫ 1

0

∫ ε/f(x)

0
f(x)2y2 ν(dx, dy) = ε2−αα(α − 1)

Γ(3− α)

∫ 1

0
f(x)α dx,

which goes to 0 as ε → 0.
It now follows from Chebyshev’s Inequality and the fact that E[Z] = 0 that for all η > 0 and

sufficiently small ε,
P (|Zn − (Sn(ε)− E(Sn(ε))| > η) < η.

Because E(Sn(ε)) equals the constant d in (35), it follows from Lemma 15 that for sufficiently
small ε we have

P

(
∣

∣

∣

∣

n−1/α
∑

k<τn

f

(

Xk

n

)

(Yk1{f(Xk/n)Yk≤εn1/α} − γ)− (Zn − Sn(ε))

∣

∣

∣

∣

> 2η

)

≤ 2η

for sufficiently large n. Thus, to show (39), it suffices to show that for all ε > 0 we have

P

(
∣

∣

∣

∣

n−1/α
∑

k<τn

f

(

Xk

n

)

Yk1{f(Xk/n)Yk>εn1/α} − Sn(ε)

∣

∣

∣

∣

> η

)

< η (42)

for sufficiently large n. For this, we will use the following lemmas. Again let Θn be the Poisson
point process constructed in section 2.2 from another Poisson point process Ψn. Denote the
points of Θn by (xi, yi)

∞
i=1 with xi = m(ri) and yi = m(ri)ui, where (si, ui) are the points of Ψn

and ri = −si.

Lemma 16. Let δ > 0, ε > 0. With probability tending to 1 as n → ∞, for all i such that
f(xi)yi > ε, there exists a positive integer ki such that the following hold:

(i) Rki = n1−αri, i.e. at time n1−αri there is a merger in the coalescent back from time 0.

(ii) The block size Xki = Nn(n
1−αri−) and the merger’s size Yki = Nn(n

1−αri−)−Nn(n
1−αri)

fulfil

(1− δ)xi ≤
Xki

n
≤ (1 + δ)xi, (1− δ)yi ≤

Yki

n1/α
≤ (1 + δ)yi.

Proof. The points (n1−αsi, n
−1+1/αui) are points of Υ

′. Consider those points, which in addition
fulfil f(xi)yi > ε. First we verify that the probability that some of these points do not belong
to Υn is asymptotically vanishing. The expected number of indices i with f(xi)yi > ε, that is
ui > ε/(f(m(ri))m(ri)), such that (n1−αsi, n

−1+1/αui) is not a point of Υn is
∫ ∞

0

∫ ∞

ε/(f(m(r))m(r))

1

Γ(α)Γ(2 − α)
u−1−α(1− q(n−1+1/αu)) du dr.

Note that 1− q(u) ≤ cu for all u ≥ 0. Using this bound when r ≤ nγ and the bound 1− q(u) ≤ 1
when r ≥ nγ , we see that the above expectation is at most

cn−1+1/α

∫ nγ

0

∫ ∞

ε/(f(m(r))m(r))
u−α du dr + c

∫ ∞

nγ

∫ ∞

ε/(f(m(r))m(r))
u−1−α du dr

= cn−1+1/α

∫ nγ

0

(

f(m(r))m(r)

ε

)α−1

dr + c

∫ ∞

nγ

(

f(m(r))m(r)

ε

)α

dr.
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Making the substitution x = m(r) and using (27) again, we get that this expression is bounded
above by

cn−1+1/α

∫ 1

m(nγ)
x−1f(x)α−1dx+c

∫ m(nγ)

0
f(x)αdx ≤ cn−1+1/αm(nγ)−ζ(α−1)+c

∫ m(nγ)

0
f(x)αdx,

which tends to zero as n → ∞ if γ > 0 is sufficiently small. By Markov’s Inequality, the
probability that (n1−αsi, n

−1+1/αui) is a point of Υn for all i with f(xi)yi > ε tends to 1 as
n → ∞.

Second we show that the probability that no more than one of the remaining Nn(n
1−αri−)

blocks takes part in a merging event at time n1−αri is asymptotically vanishing. We choose a
function h : N → ∞ such that limn→∞ h(n) = ∞, and h(n) = o(nα−1). The expected number of
indices i such that ri > h(n) and f(xi)yi > ε is at most

∫ ∞

h(n)

∫ ∞

ε/(f(m(r))m(r))

1

Γ(α)Γ(2 − α)
u−1−α du dr

= c

∫ ∞

h(n)

(

f(m(r))m(r)

ε

)α

dr ≤ c

∫ m(h(n))

0
f(x)α dx,

which tends to zero as n → ∞. Thus, we may assume ri ≤ h(n) for all i with f(xi)yi > ε. In

particular, because of yi > ε/f(xi) ≥ cxζi = cm(ri)
ζ ≥ cr

−ζ/(α−1)
i ≥ ch(n)−ζ/(α−1), this implies

by our assumptions on ζ and h(n) that

n1/αyi ≥ cn1/αh(n)−ζ/(α−1) → ∞. (43)

Also, because E(Sn(ε)) does not depend on n and is finite, it suffices to show that points (xi, yi)
with f(xi)yi > ε and ri ≤ h(n) lead to mergers fulfilling condition (ii) with high probability for
large n.

At time n1−αri, the number of blocks of the beta coalescent is reduced by (Ai − 1)∨ 0, where
Ai has a binomial distribution with parameters ni = Nn(n

1−αri−) and pi = n−1+1/αui. By
Chebyshev’s Inequality, we have

P (|Ai − nipi| > θn1/αyi | ni, pi, yi) ≤
nipi(1− pi)

(θn1/αyi)2
≤ nipi

(θn1/αyi)2
. (44)

Let θ = δ/3. Lemma 13 implies that with probability tending to 1 as n → ∞, we have

(1− θ)m(ri)n ≤ Nn(n
1−αri−) ≤ (1 + θ)m(ri)n, (45)

and on this event the right-hand side of (44) is in view of (43) bounded above by

(1 + θ)m(ri)n
1/αui

(θn1/αyi)2
=

1 + θ

θ2n1/αyi
≤ c

(1 + θ)

θ2n1/α
h(n)

ζ
α−1 = o(nζ−1/α).

Due to our assumption on ζ the right-hand side tends to zero as n → ∞. Taking expectations in
(44) gives

P (|Ai − nipi| > θn1/αyi) = o(1).

Combining this bound with (45) gives

lim
n→∞

P (|Ai − n1/αyi| > 2θn1/αyi) = 0.
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Because of (43) we get

lim
n→∞

P (|(Ai − 1)− n1/αyi| > 3θn1/αyi) = 0. (46)

Thus, with probability tending to one as n → ∞, the beta coalescent must have a merger at
time n1−αri, which means n1−αri = Rki for some positive integer ki. That is, condition (i) in the
statement of the lemma holds. Now, because δ = 3θ, condition (ii) is a consequence of Lemma
13 and (46).

Lemma 17. Let δ > 0, ε > 0. With probability going to 1 as n → ∞, for all 0 ≤ k < τn with
f(Xk

n ) Yk

n1/α > ε,

(1− δ)xik ≤ Xk

n
≤ (1 + δ)xik , (1− δ)yik ≤ Yk

n1/α
≤ (1 + δ)yik , (47)

where ik is determined by Xk = Nn(n
1−αrik−) or Yk = Nn(n

1−αrik−)−Nn(n
1−αrik).

Proof. First we estimate the expectation of

Sn(ε, γ) = n−1/α
∑

k<τn

f

(

Xk

n

)

Yk1{f(Xk/n)Yk>εn1/α}1{Xk≤γn}

with 0 < γ ≤ 1. From Lemma 10 and (28)

E(Y01{f(X0/n)Y0>εn1/α} | X0 = j) ≤ c
∑

i>εn1/α/f(j/n)

iqi ≤ c

(

εn1/α

f(j/n)

)1−α

.

Consequently

E

(

f

(

Xk

n

)

Yk1{f(Xk/n)Yk>εn1/α}1{Xk≤γn}

)

≤ cε1−αn1/α−1E

(

f

(

Xk

n

)α

1{Xk≤γn}

)

and, since f is assumed to be decreasing,

E(Sn(ε, γ)) ≤ cε1−αn−1
n
∑

k=0

E

(

f

(

Xk

n

)α

1{Xk≤γn}

)

≤ cε1−αn−1
∑

1≤j≤γn

f

(

j

n

)α

≤ cε1−α

∫ γ

0
f(s)α ds.

By the assumptions on f , the integral is finite.
For γ = 1 we see that E(Sn(ε, γ)) is uniformly bounded in n. Since each positive summand

of Sn(ε, γ) is bigger than ε, it follows that the number of positive summands is stochastically
bounded. Therefore it is sufficient to verify that for any 0 ≤ k < τn with f(Xk/n)Yk > εn1/α the
two formulas (47) hold with probability going to 1, uniformly in k.

Let θ > 0. Then there is a γ > 0 such that E(Sn(ε, γ)) ≤ θε. Therefore, with probability
at least 1 − θ, we have Xk ≥ γn for all k such that f(Xk/n)Yk > εn1/α. In view of Lemma 13,
since Nn(r) is decreasing, this implies that with probability going to 1 we have (1+δ)m(rik ) ≥ γ,
which implies that rik ≤ T for some fixed constant T < ∞ and also

(1− δ)xik ≤ Xk

n
≤ (1 + δ)xik .
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Furthermore Xk ≥ γn and f(Xk/n)Yk > εn1/α imply

Yk > cn1/α

with c = ε/ supx≥γ f(x) > 0. Let nk = Nn(n
1−αrik−). Since rik ≤ T , by Lemma 13 with

probability going to 1

|nkpik − n1/αyik | = |n−1Nn(n
1−αrik−)−m(rik)|n1/αuik ≤ δ

3n
1/αyik . (48)

Thus for η = 1/(2α) and n sufficiently large

P (Yk > cn1/α, |Yk − n1/αyik | > δyikn
1/α | nk, pik , yik)

≤ P (Yk > 0, |Yk + 1− nkpik | > δ
2yikn

1/α | nk, pik , yik)1{yik>n−η}

+ P (Yk > cn1/α | nk, pik , yik)1{yik≤n−η}.

Since Yk = (Ak − 1) ∨ 0, where Ak is binomial with parameters nk and pik , it follows that

P (Yk > cn1/α, |Yk − n1/αyik | > δyikn
1/α | nk, pik , yik)

≤ P (Yk > 0, |Ak − nkpik | > δ
2yikn

1/α | nk, pik , yik)1{yik>n−η}

+ P (Ak > cn1/α | nk, pik , yik)1{yik≤n−η}.

Chebyshev’s and Markov’s inequality imply together with (48)

P (Yk > cn1/α, |Yk − n1/αyik | > δyikn
1/α | nk, pik , yik)

≤ 4

δ2
nkpik(1− pik)

(yikn
1/α)2

1{yik>n−η} +
nkpik
cn1/α

1{yik≤n−η}

≤ 8

δ2
1

yikn
1/α

1{yik>n−η} +
2yik
c

1{yik≤n−η} ≤ cn−1/(2α)

and therefore
P (Yk > cn1/α, |Yk − n1/αyik | > δyikn

1/α) → 0.

Since θ was arbitrary, this gives our assertions.

Proof of Theorem 2. We make use of the following preliminary estimate for f . Let ξ > 0. Also
let 0 < δ < 1, u,U ∈ (0, 1], and v, V ≥ 0. If U ≥ (1 − δ)u and V ≤ (1 + δ)v, then, since f(x) is
decreasing and x2f(x) is increasing,

f(U)V ≤ f((1− δ)u)(1 + δ)v ≤ (1− δ)−2(1 + δ)f(u)v ≤ (1 + ξ)f(u)v,

if δ is sufficiently small (given ξ). Together with an analogous, reversed estimate we get that if
ξ > 0, and (1− δ)u ≤ U ≤ (1 + δ)u, and (1− δ)v ≤ V ≤ (1 + δ)v, then

(1− ξ)f(u)v ≤ f(U)V ≤ (1 + ξ)f(u)v,

if δ > 0 is sufficiently small, which entails

|f(U)V − f(u)v| ≤ ξf(u)v.
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Now let ε, ξ > 0. Then by Lemmas 16 and 17 it follows that, if f(xi)yi /∈ [ε− ξ, ε+ ξ] for all
i ≥ 1, then with probability going to 1

f(xi)yi > ε ⇒ f

(

Xki

n

)

Yki

n1/α
> ε and f

(

Xk

n

)

Yk

n1/α
> ε ⇒ f(xik)yik > ε.

Thus, with Sn(ε) defined as in (40),
∣

∣

∣

∣

n−1/α
∑

k<τn

f

(

Xk

n

)

Yk1{f(Xk/n)Yk>εn1/α} − Sn(ε)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i≥1

(

f

(

Xki

n

)

Yki

n1/α
− f(xi)yi

)

1{f(xi)yi>ε}

∣

∣

∣

∣

≤ ξ
∑

i≥1

f(xi)yi1{f(xi)yi>ε} = ξSn(ε).

We end up with

P

(
∣

∣

∣

∣

n−1/α
∑

k<τn

f

(

Xk

n

)

Yk1{f(Xk/n)Yk>εn1/α} − Sn(ε)

∣

∣

∣

∣

> η

)

≤ P (ξSn(ε) > η) + P (ε− ξ ≤ f(xi)yi ≤ ε+ ξ for some i ≥ 1) + o(1)

≤ ξ

η
E(Sn(ε)) + P (ε− ξ ≤ f(xi)yi ≤ ε+ ξ for some i ≥ 1) + o(1).

Since the expectation is uniformly bounded in n by (41), the first term can be made arbitrarily
small by decreasing ξ. The same is true for the second term, thus (42) follows, and the proof is
finished.
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