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The impulses, ambitions, fantasies, and desires that drive human history 

are, at least in part, encoded in the human genome. And human history has, 

in turn, selected genomes that carry these impulses, ambitions, fantasies, 

and desires. This self-fulfilling circle of logic is responsible for some of the 

most magnificent and evocative qualities in our species, but also some of 

the most reprehensible. It is far too much to ask ourselves to escape the 

orbit of this logic, but recognizing its inherent circularity, and being skeptical 

of its overreach, might protect the weak from the will of the strong, and the 

'mutant' from being annihilated by the 'normal.' 

– Siddhartha Mukherjee, The Gene: An Intimate History 
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Functional genomic and profiling approaches to characterize mammalian immunity 

Cody T. Mowery 

Abstract 

 The immune system persists in a sensitive equilibrium, necessarily avoiding overreaction 

to illegitimate threats while watchfully waiting for any bona fide harms that might come along. 

Fortunately, myriad cell extrinsic and intrinsic mechanisms have evolved to fortify this steady state. 

Amongst these regulatory forces, three distinct yet interdependent signals lie at the heart of 

immune activation. The first signal – engagement of the B or T cell receptor by cognate antigen – 

has significant diagnostic and therapeutic potential. After the emergence of SARS-CoV-2 and its 

associated clinical syndrome, COVID-19, we led a nationwide, multi-disciplinary scientific and 

clinical team to systematically benchmark numerous serological assays testing for effective “signal 

1” responsiveness to SARS-CoV-2-associated antigens. Establishing accuracy of these tests had 

significant implications on governmental policies relating to the pandemic, as well as efforts to 

employ these serology tests to understand COVID-19 seroprevalence and protective immunity. 

Next, we applied computational tools to improve the performance of these serological tests through 

combinatorial application and companion analyses. Lastly, we followed these studies of serology 

diagnostics (corresponding to signal 1) with systematic molecular studies of costimulation: the 

second signal influencing T cell activation. This critical next step is indispensable to immune 

responsiveness, but the intricacies of regulatory factors influencing each step have yet to be 

systematically studied. Our labs have pioneered the use of functional genomic screening using 

CRISPR/Cas9 to thoroughly explore the regulatory landscape of various immunological 

phenotypes. Thus, we leveraged recent molecular advances to functionally define the cis and trans 

regulators converging on the human costimulatory locus harboring CD28, CTLA4, and ICOS at 

scale. This work uncovered gene-, cell subset-, and stimulation-specific cis-regulatory elements 

(CREs) bound by validated trans regulators to influence costimulatory gene expression. Finally, 

deep characterization of genomic architecture in the locus defined critical insulator elements 



 xi 

reinforcing CRE activation of true targets while also preventing spurious activation of flanking 

genes. Ultimately, similar demonstrations of collaborative science to study the human immune 

system whether in the form of fundamental genomic immunology or translational immune 

diagnostics will aid our collective transition to the next generation of more precise biomedicine.  
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Chapter 1: Introduction 

When I first started my graduate training in 2018, scientific fields like immunology and 

genomics were rarely featured in public discourse. This was little more than five years ago, but 

one pandemic separates then and now. After the global emergence of and wreaking havoc by 

SARS-CoV-2 – the virus that causes COVID-19 – lay discussions about “IgG” and “PCR assays” 

and “serology tests” abound. Three years and more than 6.5 million tragic deaths later1, the 

public’s relationship with science has taken a new form. Scientific innovation and advancement, 

as demonstrated by the rapid development of mRNA-based primary and booster vaccines2, can 

be largely credited with protecting the more than 670 million people who survived SARS-CoV-2 

infection1. At the same time, this shared global experience revealed just how much the scientific 

community has yet to fully understand about human (and non-human) biology. Provided its 

centrality in defending against pathogens like SARS-CoV-2, the immune system has been largely 

center stage in this discussion. 

1.1: The role of immunity in maintaining host homeostasis 

Immunology Is Where Intuition Goes to Die 

– Ed Yong, The Atlantic 

The immune system acquired inconceivable complexity as a byproduct of its evolution to 

fend off an exceedingly diverse array of physiologic threats – complexity that underlies refrains 

like Ed Yong’s above. This intricacy takes many forms, from innumerous cell types engaged in 

infinite intercellular interactions, to the tremendous number of cell receptors and secreted 

signaling proteins (all with obligatorily obscure names) that mediate these interactions. However, 

scientists – graduate students and more trained professionals, alike – are charged with 

simultaneously adding to this complexity via discovery of new immunological intricacies while also 

reducing the confusion through principled, mechanistic characterization of relevant biological 
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processes. Yet, the very best and most impactful scientific projects answer some questions while 

illuminating untold others, sustaining this cycle of unknowing and discovery in perpetuity. 

In its simplest form, the immune system is often reduced to a security force that protects 

the body from foreign organisms like viruses (like SARS-CoV-2) and bacteria3. However, there is 

growing appreciation for the immune system’s role in clearing other threats like malignant4 and 

aging5 cells as well. Regardless of the threat at hand, the immune system exerts its effects through 

the concerted and highly orchestrated effort of myriad cell types: from “innate” cells like 

macrophages and dendritic cells, to B and T cells of the “adaptive” immune system. Consider 

what happens when someone is infected with SARS-CoV-2 and goes on to develop COVID-19. 

Innate cells are first to respond, critically sopping up any competent virus and viral-associated 

antigens floating around. In parallel, innate cells release chemokine signals to recruit adaptive 

cells to come and bolster the defenses3. The intricacies of these processes are beyond the scope 

of this dissertation, other than to emphasize that we simultaneously understand a lot and 

exceedingly little. 

Of the multitude of scientific problems one can tackle in graduate school, the labyrinthine 

processes of the adaptive immune system generated the strongest gravitational force that 

ultimately drew me in. We know this subset of immunity serves myriad roles, from providing 

immunological backup to innate cells to also establishing “memory” for more rapid and robust 

response to the same pathogen in any future reencounter3, but we have yet to fully understand 

how they do so with sufficient sensitivity, specificity, and control. To this end, my graduate work 

was dedicated to better understanding the functioning and molecular regulation of the adaptive 

immune system.  

1.2: T and B cell receptor analyses to understand immune function 

         Cells interact with their environment via a multitude of cell surface receptors. Adaptive 

immune cells like B and T cells are no exception, with their aptly named B and T cell receptors 
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(or BCRs and TCRs, respectively) serving the critical role of reserving immune activation for only 

select stimuli that warrant response. The beauty of biological intricacy is on full display with BCR 

and TCR development and functioning. DNA mutations often have deleterious effects, disrupting 

gene expression in ways that can induce cellular dysfunction and/or oncogenesis, but adaptive 

immune cells are a unique exception: they intentionally rearrange their genomes to alter their 

respective receptors through a process functionally distinct from the acquisition of pathogenic 

DNA mutations (although mutations in these cells outside the BCR/TCR loci can cause B or T cell 

cancers). These self-improvement processes enhance the ability of B and T cells to target 

biological abnormalities sensitively and specifically6 (e.g., microbe-infected cells, tumor cells, 

etc.), picking up where the innate immune system left off.  

Since their discovery and molecular cloning in the 1980’s, T and B cell receptors (as well 

as the optimized and secreted form of BCRs, known as antibodies) have yielded tremendous 

scientific and therapeutic value. Efforts to better understand fundamental T and B cell receptor 

biology, as well as developing methods to engineer these receptors for greater curative potential, 

remain exciting scientific arenas I hope to explore in the future. In particular, I am motivated to 

build molecular tools to meet the growing demand for functional screening of B and T cell 

receptors as brought upon us by single cell RNA sequencing methodologies with TCR and BCR 

characterization7, of which the Ye Lab is particularly well known for. Scalable methods to 

molecularly construct BCR/TCR libraries would enable high-throughput screening to answer 

fundamental biological questions with significant potential for clinical translational impact. While 

select methods have been published to this end8,9, they are insufficient in either their throughput 

or ability to select specific receptor sets for follow up screening. Both T cell receptors and 

antibody-derived chimeric antigen receptors (CARs) have given hope to cancer patients who had 

thus far failed conventional treatments10,11, though significant work remains to both optimize and 

democratize these novel therapeutics. Thus, future work in molecular methods for immune 
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repertoire discovery, characterization, and therapeutic engineering could usher in the next 

generation of immunotherapeutics for a variety of clinical indications. 

Other opportunities besides engineered cell therapies exist to leverage immune repertoire 

characterization for clinical utility. For example, the exquisite sensitivity of antibodies to bind and 

(ideally) neutralize a specific foreign antigen can be leveraged for diagnostic assays. Thus, 

quantitative and/or qualitative serology assays that detect antigen-specific antibodies in patients’ 

blood are helpful to infer whether a patient might be protected from the specific antigenic threat 

of interest. These assays took center-stage for a period early in the COVID-19 pandemic. Prior to 

the authorization of vaccines for public use12, many hoped that prior infection with SARS-CoV-2 

would confer immunity that would enable protected citizens’ reentry into a society still largely 

plagued by the viral threat. At this time, shelter-in-place orders and workplace restrictions kept all 

but the most essential workers largely confined to our homes. Chapter 2 describes collaborative 

work I co-led to benchmark an array of blood tests rapidly developed to determine individuals’ 

antibody protection against SARS-CoV-2, a readout that many hoped would enable their safe 

return to normalcy. Whereas much of our basic science research takes decades (optimistically) 

to translate to patient care, this work had more immediate impact: it was cited by the House 

Oversight Committee in their investigation into the FDA’s handling of SARS-CoV-2 serology test 

authorization13, was directly responsible for the withdrawal of a number of underperforming tests 

from the market14, and served as a framework for the FDA’s serology testing effort moving 

forward15. We built on this work by examining combinatorial test pairs with ML-enabled analysis, 

as outlined in Chapter 3. In addition to my volunteering at the Chan-Zuckerberg BioHub’s CLIA 

lab for SARS-CoV-2 infection testing16,17, the work presented in Chapters 2 and 3 were welcomed 

opportunities to contribute to our collective, global response to this unprecedented pandemic. 

These works also serve to reaffirm the power of team science, with our projects bringing together 

groups from UCSF, Zuckerberg San Francisco General Hospital, UC Berkeley, and 

Massachusetts General Hospital to conduct the work and inform serology testing efforts moving 
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forward. Lastly, while these works were translational in nature, they are predicated on the basic 

facts of fundamental immunology: the adaptive immune system is so sensitive, so finely tuned to 

specific target antigens, that we can leverage molecular and biochemical assays to measure 

patients’ immune responsiveness to pathogenic threats.  

1.3: Functional genomic approaches to characterize immune gene regulation 

While the B and T cell receptors are critical gatekeepers to immune activation, the 

maintenance of immune homeostasis more broadly is largely governed by other factors. In T cells, 

significant regulatory activity is exerted by the CD28-family members CD28, CTLA4, and ICOS18. 

CD28 engagement by its ligands, CD80 and CD86, constitutes a co-stimulatory “signal 2” to drive 

activation alongside TCR signaling. Conversely, CTLA4 exerts a negative effect on T cell 

costimulation via increased affinity, and thus competition, for CD80 and CD86. Lastly, ICOS offers 

an orthogonal yet insufficient activating signal that influences T cell differentiation upon binding of 

its distinct ligand (ICOSL). The integration of these three signals largely dictates the functional 

outcome of TCR engagement, from reversion to an anergic state to full activation. Fascinatingly, 

these three genes are believed to have emerged through evolutionary duplication of a single 

ancestral CD28 gene19. Evolutionary pressures are constantly shaping the human genome20, 

altering the distribution of genetic variations both small and large that shape gene expression 

more broadly. Given the critical immune function of the CD28 gene family, particularly how its 

regulatory activities are wholly intertwined with TCR functioning, we wanted to systematically 

characterize how CD28, CTLA4, and ICOS are regulated. 

My fascination in gene regulation arose from the fundamentality of it, with the dogmatic 

procession of DNA deriving RNA which is translated into protein lying at the core of all of biology. 

Although there are select exceptions to this Central Dogma21 of biology (namely, retroviruses that 

convert RNA genomes to DNA ones22), the DNA genome encodes the full instruction manual for 

life. In one form, the protein encoded by one gene can alter the expression of another gene in 
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trans. These transcription factors are largely responsible for cell-specific transcriptional programs 

that shape function, stimuli response, and other cellular activities23. Interestingly, nearby DNA 

regions can alter gene expression in cis24. This enigmatic biological phenomenon has long held 

my interest, driving my curiosity how the >98% of the DNA genome that does not encode the 

instructions to make functional proteins influences the remaining <2% that does. Non-coding DNA 

regions like enhancers interact with gene target(s) via complex 3D looping of the genome within 

topologically associating domains (TADs) that are structurally confined by insulating protein 

complexes composed of CTCF and cohesin25. This multi-layered organization of gene regulation 

critically governs which enhancers interact with which genes26. Perturbation of cis and/or trans 

regulatory factors can precipitate human disease27,28, so it is important to understand the 

complexities of collaborative gene regulatory processes in order to better understand (and 

ultimately correct) the molecular bases of human disease. 

Fortunately, an expansive genomic toolkit has been developed to study these intricate 

biological processes from the ground up. Whereas parts of the genome irrelevant to a given cell’s 

function are effectively “turned OFF” via tight condensation of the DNA around structural proteins 

called histones, other genomic regions actively participating in regulation or expression of genes 

are largely devoid of histone occupancy and thus more free to function29. Methods like the assay 

for transposase-accessible chromatin using sequencing (ATAC-seq) are incredibly powerful to 

map genomic activity by systematically charting DNA accessibility30. Similarly, methods like 

chromatin immunoprecipitation with sequencing (ChIP-seq), cleavage under targets and release 

using nuclease (CUT&RUN), and newer variations thereof allow for detection and localization of 

histone modifications indicative of specific genomic features (e.g., H3K27 Acetylation marking 

enhancer elements)31. While such methods can provide rich maps of candidate regulatory 

features, they are limited in their observational nature because they (1) do not directly measure 

the functionality of genomic regions and (2) fall short of associating candidate regulatory features 
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with their gene target(s). Consequently, other methods are necessary to more resolutely identify 

regulatory elements controlling specific target genes.  

In a twist of fate, one of our most powerful tools to study the immune system – genome 

editing with CRISPR/Cas9 – was derived from one of the main sources of immunological terror: 

bacteria32. Significant investment in developing engineered CRISPR systems for more precise 

and varied forms of genome editing has generated a multitude of tools that bestow the ability to 

do large-scale genetic screens33 as well as therapeutic genetic interventions34. The Marson Lab 

has adapted these innovative genomic tools that disrupt gene expression through targeted DNA 

damage to study genetic processes directly in primary human T cells for a number of biological 

outputs35–38, including systematic examination of trans-regulatory networks influencing immune 

disease-causing genes39.  

Other CRISPR systems have been engineered to inhibit (termed CRISPR Interference, or 

CRISPRi40) or activate (termed CRISPR Activation, or CRISPRa41) transcriptional activity rather 

than knockout genes. Whereas aforementioned genomic methods like ATAC- and ChIP-seq fall 

short of identifying functional cis-regulatory elements and associating the elements with their 

target gene(s), functional genomic screens with CRISPRi/a can do just that. The Marson Lab 

previously employed these tools to discover the cis-regulatory code governing expression of 

target genes in immortalized immune cell lines42, using CRISPRa to identify regions sufficient to 

turn on gene expression. However, this work was performed before efficient protocols existed to 

deploy these CRISPR systems directly in primary T cells from patients. Recently, our lab reported 

systematic workflow optimizations that enabled CRISPRa and CRISPRi delivery into primary cells 

to study trans gene regulation43. With the newfound ability to conduct these screens, we set out 

to study systematically how the CD28 family of genes including CD28, CTLA4, and ICOS are 

genomically regulated. Chapter 4 outlines how we use CRISPRi to functionally map the cis-

regulatory elements influencing gene expression in the chr2q33.2 locus harboring our three genes 

of interest. This work builds on decades of study of gene regulation, demonstrating how our ever-
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expanding genomic tool kit can be applied directly in primary cells to study complex genetic 

phenomena, from multi-gene co-regulation to insulation of one gene from the regulator of 

another.   

1.4: Implications of Immunology on Human Health. 

The immune system is omnipresent in the body: its cells course through the vasculature, 

permeate all human tissues, and retreat via lymphatics to specialized lymphoid organs. Innate 

cells are permanently embedded in tissues; others are under constant surveillance through 

circulation; more reside in specialized immune organs to aid the development, activation, and 

mobilization of adaptive immune cells. The complexity of the integrated immune response to 

pathogenic threats may transcend human logic for now, but we will continue to employ the most 

innovative scientific tools (genomic and otherwise) to understand its most convoluted intricacies. 

Well beyond protecting from pathogens like viruses and bacteria, the immune system plays an 

integral role in defending against tumors before they can take hold; pathogenically mediating both 

localized (e.g., rheumatoid arthritis) and systemic (e.g., lupus erythematosus) autoimmunity; and 

even affecting aging. Investments into immunology are investments into human health. Thus, the 

work presented here is but a small part of advancing biomedicine through enhanced 

understanding of the immune system in its various forms. 
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2.1: Abstract 

Appropriate use and interpretation of serological tests for assessments of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure, infection and potential immunity 

require accurate data on assay performance. We conducted a head-to-head evaluation of ten 

point-of-care-style lateral flow assays (LFAs) and two laboratory-based enzyme-linked 

immunosorbent assays to detect anti-SARS-CoV-2 IgM and IgG antibodies in 5-d time intervals 

from symptom onset and studied the specificity of each assay in pre-coronavirus disease 2019 

specimens. The percent of seropositive individuals increased with time, peaking in the latest time 

interval tested (>20d after symptom onset). Test specificity ranged from 84.3% to 100.0% and 

was predominantly affected by variability in IgM results. LFA specificity could be increased by 

considering weak bands as negative, but this decreased detection of antibodies (sensitivity) in a 

subset of SARS-CoV-2 real-time PCR-positive cases. Our results underline the importance of 

seropositivity threshold determination and reader training for reliable LFA deployment. Although 

there was no standout serological assay, four tests achieved more than 80% positivity at later 

time points tested and more than 95% specificity. 

2.2: Main 

To date, hundreds of thousands of deaths have been attributed to coronavirus disease 

2019 (COVID-19)1. Millions of infections by SARS-CoV-2, the virus responsible for COVID-19, 

have been reported, although its full extent has yet to be determined owing to limited testing2. 

Government interventions to slow viral spread have disrupted daily life and economic activity for 

billions of people. Strategies to ease restraints on human mobility and interaction without 

provoking a major resurgence of transmission and mortality will depend on accurate estimates of 

population levels of infection and immunity3. Current testing for the virus largely depends on labor-

intensive molecular techniques4. Individuals with positive molecular tests represent only a small 
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fraction of all infections, given limited deployment and the brief time window when real-time (RT)–

PCR testing has the highest sensitivity5,6,7. The proportion of undocumented cases in the original 

epidemic focus was estimated to be as high as 86%8, and asymptomatic infections are suspected 

to play a substantial role in transmission9,10,11,12,13,14. 

Widely available, reliable antibody detection assays would enable more accurate 

estimates of SARS-CoV-2 prevalence and incidence. On February 4, 2020, the Secretary of the 

US Department of Health and Human Services issued an emergency use authorization (EUA) for 

the diagnosis of SARS-CoV-215, allowing nucleic acid detection and immunoassay tests to be 

offered based on manufacturer-reported data without formal US Food and Drug Administration 

(FDA) clearance16. In response, dozens of companies began to market laboratory-based 

immunoassays and point-of-care (POC) tests. Rigorous, comparative performance data are 

crucial to inform clinical care and public health responses. 

We conducted a head-to-head comparison of serology tests available to our group in early 

April, comprising ten immunochromatographic LFAs and two enzyme-linked immunosorbent 

assays (ELISAs) (for details, see Supplementary Table 2.1). Specimens were obtained from 

patients with SARS-CoV-2 that was confirmed by RT–PCR, contemporaneous patients with other 

respiratory pathogen testing and/or without SARS-CoV-2 by RT–PCR and blood donor specimens 

collected before 2019. We included analyses of performance by time from symptom onset and 

disease severity. Our goal was to provide well-controlled performance data to help guide the use 

of serology in the response to COVID-19. 

2.3: Results 

Study Population 
This study included 128 plasma or serum specimens from 79 individuals who tested 

positive for SARS-CoV-2 and who were diagnosed in the University of California, San Francisco 

(UCSF) hospital system and Zuckerberg San Francisco General (ZSFG) Hospital. Patients 
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ranged from 22 to over 90 years of age (Table 2.1). Most patients were Hispanic/Latinx (68%), 

reflecting the ZSFG patient population and demographics of the epidemic in San Francisco17,18. 

Most presented with cough (91%) and fever (86%). Chronic medical conditions, such as 

hypertension, type 2 diabetes mellitus, obesity and chronic kidney disease, were frequent. Of the 

79 individuals, 18% were not admitted, 46% were inpatients without intensive care unit (ICU) care 

and 37% required ICU care. There were no reported deaths at the time of chart review. 

Test Performance 
Because we lacked a gold standard against which to benchmark the 12 tests in our study, 

we assessed the positive percent agreement (positivity) compared with the RT–PCR assay. The 

percentage of specimens testing positive rose with increasing time from symptom onset (Table 

2.2 and Fig 2.1a), reaching the highest levels in the 16–20-d and >20-d time intervals. The highest 

detection rate was achieved by combining IgM and IgG results (Fig 2.1b). However, 95% 

confidence intervals (CIs) for later time intervals showed substantial overlap with those for earlier 

intervals (Fig 2.1b). Four assays (Bioperfectus, Premier, Wondfo and in-house ELISA) achieved 

more than 80% positivity in the later two time intervals (16–20 d and >20 d) while maintaining 

more than 95% specificity. Some tests were not performed on a subset of specimens owing to 

exhausted sample material, which might have affected reported percent positivity; the sample 

size tested is reflected in 95% CIs. IgM detection was less consistent than IgG for nearly all 

assays. Kappa agreement statistic ranged from 0.95 to 0.99 for IgG and from 0.81 to 1.00 for IgM 

for standardized intensity score (Supplementary Table 2.2 and Supplementary Fig 2.2). Details 

on establishing intensity score values and reader training are available in the 

‘Immunochromatographic LFAs’ section within Methods. Although mean band intensities varied 

among different assays, the approximate rate of sample positivity was generally consistent (Fig 

2.2). For ELISA tests, a normalized value of sample optical density at 450 nm (OD450) divided 

by calculated cutoff (signal-to-cutoff (S/CO)) was used to capture quantitative data about antibody 

levels for each specimen. S/CO values provide a quantitative value comparable between plates. 
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Our ability to perform end-point dilutions was limited by specimen and assay availability. 

We observed a trend toward higher percent positivity by LFA for patients admitted to the 

ICU compared to those having milder disease, but the specimen numbers per time interval were 

low, limiting statistical power (Supplementary Fig 2.3). 

Test specificity in 108 pre-COVID-19 blood donor plasma samples ranged from 84.3% to 

100.0%, with 39 samples demonstrating false-positive results by at least one LFA (Table 2.2 and 

Fig 2.2b). Of the false-positive results, 61.5% (24/39) had a weak intensity score of 1. Intensity 

scores of 2–3 were seen in 30.8% (12/39), and scores of 4–6 were seen in 7.7% (3/39). 

We evaluated the tradeoff between percent positivity in samples from RT–PCR-positive 

individuals and specificity as a function of LFA reader score. RT–PCR measures the presence of 

viral nucleotides. Individuals with RT–PCR-proven SARS-CoV-2 infection are expected to 

seroconvert and develop anti-SARS-CoV-2 antibodies, although frequency and kinetics of 

seroconversion can vary5,6,19,20,21,22. We, therefore, assessed percent positivity at various time 

intervals after onset of symptoms. Changing the positive LFA threshold from 1 to 2 decreased the 

mean overall percent positivity across tests from 67.2% (range, 57.9–75.4%) to 57.8% (range, 

44.7–65.6%) and increased the average specificity from 94.2% (range, 84.3–100.0%) to 98.1% 

(range, 94.4–100.0%) (Fig 2.3). 

An independent study at Massachusetts General Hospital (MGH) compared three LFAs, 

of which BioMedomics was also assessed in the current study (Supplementary Table 2.3). 

Although study design and methods differed between sites, precluding direct comparison of 

results (see ‘Study design’ in Methods), test validation efforts at another site provided additional 

useful data. Overall, both studies showed a trend for increased detection of SARS-CoV-2-specific 

antibodies with increased time from symptom onset. However, the MGH study displayed 

increased specificity with lower percent positivity at early time points after symptom onset. MGH 

positivity thresholds were set higher to prioritize test specificity (Fig 2.3b,c). 

A set of specimens collected during the COVID-19 outbreak that had negative SARS-CoV-
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2 RT–PCR testing and/or alternative respiratory pathogen testing demonstrated higher numbers 

of positive results compared to the pre-COVID-19 sample set (Fig 2.2c). Five specimens had 

positive results by more than three tests, all with respiratory symptoms and concurrent negative 

or un-performed SARS-CoV-2 RT–PCR testing (Fig 2.2c, arrows). One patient was positive on 

eight different tests, including the in-house ELISA. In this limited panel, no consistent pattern of 

cross-reactivity was identified with non-SARS-CoV-2 respiratory viruses, including two strains of 

seasonal coronavirus (one coronavirus OC43 and three coronavirus HKU1). 

Agreement among results of LFAs with those of IgG and IgM Epitope ELISAs ranged from 

75.7% to 85.6%, whereas agreement with the in-house ELISA ranged from 83.5% to 94.8% (Fig 

2.4a). LFA band intensity scores showed a direct correlation with ELISA S/CO values (Fig 2.4b). 

2.4: Discussion 

This study describes test performance for 12 COVID-19 serology assays on a panel of 

128 samples from 79 individuals with RT–PCR-confirmed SARS-CoV-2 infection and 108 pre-

COVID-19 specimens. In April 2020, when we performed this analysis, there was no assay with 

sufficient performance data for use as a proven reference standard; only three serological assays 

had an FDA EUA23; and anti-SARS-CoV-2 IgM and IgG kinetics were poorly understood. We, 

therefore, chose a specimen set covering the first several weeks after illness onset in patients 

with SARS-CoV-2 proven by RT–PCR to avoid the potential bias of assuming superiority of one 

assay over the others. To date, no single assay or combination of assays has been accepted as 

a gold standard comparator for antibody testing. Additionally, we surveyed 51 specimens from 

individuals who were tested for other respiratory viral pathogens and/or had negative molecular 

testing for SARS-CoV-2 to evaluate potential cross-reactivity or infections detected only by 

serology. Our data are also available on a dedicated website (https://covidtestingproject.org). We 

hope these data will inform the use of serology by the medical and public health communities and 
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provide feedback to test developers about areas of success and necessary improvement. 

 We focused on comparisons of percent positivity by time interval, rather than reporting the 

‘sensitivity’ of each assay, both because of the lack of a gold standard to test against and our 

expectation that percent positivity would rise with increasing time after symptom 

onset5,6,19,20,21,22,24,25. Percent positivity above 80% was not reached until at least 2 weeks into 

clinical illness; diagnosis early in the course of illness remains dependent on viral detection 

methods. Our data are consistent with growing evidence that IgM and IgG tend to rise around the 

same time in COVID-195,19. The assays showed a trend to higher positive rates within time 

intervals for more severe disease, but this finding should be interpreted with caution, owing to the 

limited data from ambulatory cases. Most samples more than 20 d after symptom onset had 

detectable anti-SARS-CoV-2 antibodies, suggesting good to excellent sensitivity for all evaluated 

tests in hospitalized patients three or more weeks into their disease course. Additional studies 

assessing frozen versus fresh specimens and matrix effects between serum versus plasma will 

be useful in understanding potential limitations of our current test performance evaluations. 

Looking forward, well-powered studies testing ambulatory or asymptomatic individuals, including 

LFA performance with fresh capillary blood, will be essential to guide appropriate use of serology. 

 Our data demonstrate specificity of more than 95% for most tests evaluated and more 

than 99% for two LFAs (Wondfo and Sure Biotech) and the in-house ELISA (adapted from Amanat 

et al., 2020)26. We observed moderate to strong positive bands in several pre-COVID-19 blood 

donor specimens, some of them positive by multiple assays, suggesting the possibility of non-

specific binding of plasma proteins, non-specific antibodies (potentially including auto-antibodies) 

or cross-reactivity with antibodies against other viruses. Three of the pre-COVID-19 specimens 

(2.8%) were scored positive by more than three assays. Intriguingly, the fraction of positive tests 

was higher in a set of recent specimens obtained during the COVID-19 outbreak from individuals 

undergoing respiratory infection workup, many with negative SARS-CoV-2 RT–PCR. Five of 

these (9.8%) had positive results by more than three assays, without relation to a specific viral 
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pathogen, suggesting non-specific reactivity and/or missed COVID-19 diagnosis. Recent reports 

demonstrate that RT–PCR from nasopharyngeal swabs might yield false-negative results in over 

20% of cases5,27, and co-infection with other respiratory pathogens might be significantly higher 

than previously anticipated28. One specimen was positive by 8 of 12 assays, including the in-

house ELISA. The patient was over 90 years old and presented with altered mental status, fever 

and ground glass opacities on chest radiological imaging. SARS-CoV-2 RT–PCR was negative, 

and ancillary laboratory testing suggested a urinary tract infection. This case could represent 

COVID-19 not detected by RT–PCR, reinforcing the importance of caution in interpreting negative 

molecular results as ruling out the infection. Appropriate algorithms for serology testing, including 

confirmatory or reflexive testing, have yet to be determined. These algorithms will be affected by 

test performance characteristics and prevalence of disease, as well as pre-test probability of 

infection. 

 Importantly, we still do not know the extent to which positive results by serology reflect a 

protective immune response, nor how long such protection might last29. Neutralization assays 

measure the ability of blood-derived samples to prevent viral (most commonly pseudovirus) 

infection of cultured cells in vitro30,31. Although these assays provide information on the functional 

capabilities of an individual’s antibodies, their correlation with total IgG antibodies to serological 

test antigens (primarily spike and nucleocapsid proteins) is not well established. Additionally, most 

antibody neutralization assays are research laboratory based with limited test performance data 

and inter-lab standardization measures. Antibody neutralization assays should be harmonized 

across laboratories to establish the extent to which conventional serology assays correlate with 

neutralization. Further studies are needed to assess the relationships among positive serological 

testing, in vitro viral neutralization results and clinical protection from future SARS-CoV-2 infection 

and transmission. Epidemiological data and results from convalescent plasma treatment trials 

should help guide clinical and public health policies for use of serological testing. 

 High specificity testing is crucial in low-prevalence settings. One approach to increase 
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specificity would employ confirmatory testing with an independent assay (perhaps recognizing a 

distinct epitope or antigen). Our comparison of UCSF and MGH data suggests that reclassifying 

faint bands as ‘negative’ or ‘inconclusive’ can change test performance characteristics by 

increasing specificity, albeit at the expense of sensitivity. However, the subjectivity of calling faint 

bands by individual readers might be difficult to standardize without specific control materials, 

operator training and/or objective methods of analyzing LFAs. In the clinical setting, these 

parameters and protocols should be independently assessed and validated by clinical laboratories 

for operation under the Clinical Laboratory Improvement Amendments32. 

 Objective methods to standardize LFA reading, such as digital image analysis, are 

potentially attractive. Image analysis tools can be benchtop or mobile (for example, smartphone 

applications). However, introduction of a separate device for reading LFAs will require specific 

validation. Variables, including lighting, camera quality, image compression and quantification 

algorithms, must all be assessed rigorously to ensure accuracy and precision. 

 A consensus has emerged that serological testing provides an essential tool in the 

pandemic response, but inadequate data on test performance characteristics in some early 

surveys and important gaps in immunological knowledge have impeded agreement on 

appropriate implementation strategies33,34. Our study highlights the need for rigorous assay 

validation using standardized sample sets with: 1) known positives from individuals with a range 

of clinical presentations at multiple time points after onset of symptoms; 2) pre-COVID-19 

outbreak samples for specificity; and 3) samples from individuals with other viral and inflammatory 

illnesses as cross-reactivity controls. Coordinated efforts to ensure widespread availability of 

validated sample sets would facilitate data-driven decisions on the use of serology. The updated 

guidance released by the FDA in early May 202035 and the initiative recently launched by the FDA 

and the US National Cancer Institute/National Institutes of Health36 to systematize data generation 

for EUAs are substantive steps toward this goal and will help build the essential evidence base to 

guide serological testing during the COVID-19 pandemic. 
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2.5: Methods 

Ethical approvals 
This study was approved by institutional review boards at the UCSF/ZSFG and MGH. 

Study design 
The study population included individuals with symptomatic infection and positive SARS-

CoV-2 RT–PCR testing of nasopharyngeal or oropharyngeal swabs who had remnant serum and 

plasma specimens in clinical laboratories serving the UCSF and ZSFG medical center networks. 

All samples were obtained from venous blood draws, with serum being collected in either 

uncoated or serum separator tubes and plasma from lithium heparin tubes depending on other 

ancillary testing orders. All samples were drawn in an outpatient or hospital setting, professionally 

couriered to the clinical laboratory and acquisitioned for routine testing within the clinical 

laboratory within the same day. Samples were stored at 4˚C and aliquoted for freezing at −20 °C 

within 1 week of the initial blood draw. Serum and plasma were used interchangeably. All but one 

assay (Epitope ELISA) noted that either specimen type could be used. We included multiple 

specimens per individual but no more than one sample per time interval (1–5, 6–10, 11–15, 16–

20 and >20 d after symptom onset). If an individual had more than one specimen for a given time 

interval, only the later specimen was included. For specificity, we included 108 pre-COVID-19 

plasma specimens from eligible blood donors collected before July 201837. We assessed 

detection of SARS-CoV-2 antibodies in 51 specimens from 2020: 49 with test results for detection 

of other respiratory viruses (BioFire FilmArray, BioFire Diagnostics) and 31 with negative results 

by SARS-CoV-2 RT–PCR. For these specimens, the median days from symptom onset was four 

with a range of 0–107 d, the latter end of the range owing to unresolving respiratory viral infection 

in the setting of HIV infection. 

We based minimum sample size calculations on expected binomial exact 95% confidence 

limits. A total of 287 samples were included in the final analysis, including 128 from 79 individuals 
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who tested positive for SARS-CoV-2 by RT–PCR. Some specimens were exhausted during the 

analysis and were not included in all tests. Data obtained from serial specimens that did not 

conform to our study design were excluded. 

Clinical data were extracted from electronic health records and entered in a Health 

Insurance Portability and Accountability Act-secure REDCap database hosted by UCSF. Data 

included demographic information, major comorbidities, patient-reported symptom onset date, 

symptoms and indicators of severity. 

Independent data from testing efforts at MGH, with slight deviations in methods, are 

included as Supplementary Data (Supplementary Fig 2.3). Briefly, 48 heat-inactivated 

serum/plasma samples from 44 individuals who tested positive for SARS-CoV-2 by RT–PCR were 

included. For specificity, the MGH study included 60 heat-inactivated pre-COVID-19 samples from 

30 asymptomatic adults and 30 individuals admitted with febrile and/or respiratory illness with a 

confirmed pathogen. 

Sample preparation 
Samples from UCSF and ZSFG were assigned a random well position in one of four 96-

well plates. Samples were thawed at 37 °C, and up to 200 µl was transferred to the assigned well 

without heat inactivation. Samples were then sub-aliquoted (12.5 µl) to replica plates for testing. 

Replica plates were stored at −20 °C until needed and then thawed for 10 min at room temperature 

and briefly centrifuged before testing. All sample handling followed UCSF biosafety committee-

approved practices. 

For the MGH study, samples were heat inactivated at 56 °C for 60 min, aliquoted and 

stored at 4 °C and −20 °C. Samples stored at 4 °C were used within 7 d. Frozen aliquots were 

stored until needed with only a single freeze-thaw cycle for any sample. All samples were brought 

to room temperature and briefly centrifuged before adding the recommended volume to the LFA 

cartridge. 
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Immunochromatographic LFAs 
Ten LFAs were evaluated (Supplementary Table 2.1). At the time of testing, cartridges 

were labeled by randomized sample location (plate and well). The appropriate sample volume 

was transferred from the plate to the indicated sample port, followed by provided diluent, following 

manufacturer instructions. The lateral flow cartridges were incubated for the recommended time 

at room temperature before readings. Each cartridge was assigned an integer score (0 for 

negative, 1–6 for positive) for test line intensity by two independent readers blinded to specimen 

status and to each other’s scores (Supplementary Fig 2.1). Readers were trained to score 

intensity from images representative of each value from a previous LFA test performance 

evaluation37. Test line scoring was performed for research purposes to capture semi-quantitative 

data about the LFA readout and reproducibility of subjective interpretation, considering that these 

are the major analytical factors that affect test performance. These tests are prescribed to be 

interpreted qualitatively, and test performance characteristics in this report are derived from 

qualitative scoring of any interpreted band color. For some cartridges (DeepBlue, UCP and 

Bioperfectus), the positive control indicator failed to appear after addition of diluent in a significant 

fraction of tests. For these tests, two further drops of diluent were added to successfully recover 

control indicators in all affected tests. These results were included in analyses. During testing, 

two plates were transposed 180°, and assays were run in the opposite order from the wells 

documented on cartridges. These data were corrected, and accuracy was confirmed by empty 

well position and verification of a subset of results. 

ELISAs 
Epitope Diagnostics assays were carried out according to manufacturer instructions with 

minor deviations, including the mixed use of plasma and serum specimens (instead of serum 

only), use of frozen specimens (versus same day), blanking all specimens and controls instead 

of using raw OD450 values and performing samples in singlicate for three of four 96-well plates 

(instead of duplicate). Plate 4 was run in duplicate owing to availability of samples and assay 
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wells. For IgM detection, 100 µl of control samples or 10 µl of patient serum and 100 µl of sample 

diluent were added to indicated wells. Plates were incubated for 30 min at 37 °C and manually 

washed five times in provided Wash Buffer. Each well received 100 µl of horseradish peroxidase 

(HRP)-labeled COVID-19 antigen, was incubated for 30 min at 37 °C and was manually washed 

five times in provided Wash Buffer. Each well then received 100 µl of colorimetric substrate, was 

incubated for 20 min and then received 100 µl of Stop Solution. The OD450 was measured using 

a Synergy H1 Microplate Reader (BioTek Instruments) within 10 min of adding Stop Solution. 

Positive cutoff for IgM detection was calculated as described in the Epitope Diagnostics protocol: 

IgM positive cutoff = 1.1 × ((average of negative control readings) + 0.10). Values less than or 

equal to the positive cutoff were interpreted as negative. For IgG detection, 1 µl of serum was 

diluted 1:100 in Sample Diluent and loaded into designated wells. Plates were incubated for 30 

min at room temperature and manually washed five times in provided Wash Buffer. Each well 

received 100 µl of provided HRP-labeled COVID-19 Tracer Antibody; plates were incubated for 

30 min at room temperature and manually washed five times in provided Wash Buffer. Then, each 

well received 100 µl of Substrate, was incubated for 20 min and then received 100 µl of Stop 

Solution. The absorbance at OD450 was measured using a Synergy H1 Microplate Reader 

(BioTek Instruments) within 10 min of adding Stop Solution. Positive cutoffs for IgG detection 

were calculated as described in the Epitope Diagnostics protocol: IgG positive cutoff = 1.1 × 

((average of negative control readings) + 0.18). Values less than or equal to the positive cutoff 

were interpreted as negative. 

An in-house receptor binding domain (RBD)-based ELISA was performed with minor 

deviations from a published protocol (Amanat et al.26, Krammer Lab, Mount Sinai School of 

Medicine). SARS-CoV-2 RBD protein was produced using the published construct (NR-52306, 

BEI Resources) by Aashish Manglik (UCSF). Next, 96-well plates (3855, Thermo Fisher Scientific) 

were coated with 2 µg ml−1 RBD protein and stored at 4 °C for up to 5 d before use. Specimen 

aliquots (12 µl) were diluted 1:5 in 1× phosphate-buffered saline (PBS) (10010-023, Gibco), mixed 
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and heat inactivated at 56 °C for 1 h. RBD-treated plates were washed three times with PBS-

Tween (PBST, BP337-500, Fisher Bioreagents) using a 405 TS Microplate Washer (BioTek 

Instruments) and blocked with PBST-Milk (3% wt/vol, AB10109-01000, AmericanBio) for 1 h at 

20 °C. Samples were further diluted 1:10 (1:50 final) in PBST-Milk (1% wt/vol), and 100 µl was 

transferred to the blocked ELISA plates in duplicate plates. Samples were incubated for 2 h at 

20 °C and washed three times with PBST. The peroxidase AffiniPure Goat Anti-human IgG 

(F(ab′)20-specific) secondary antibody (109-035-097, lot 146576, Jackson ImmunoResearch) 

used in this study binds the IgG light chain and has some reactivity for other isotypes (IgM and 

IgA). This secondary antibody was diluted 1:750 in PBST-Milk (1% wt/vol), 50 µl was added to 

each sample well and samples were incubated for 1 h at 20 °C. Plates were subsequently washed 

three times with PBST. We dispensed 100 µl of 1× SigmaFast OPD Solution (P9187, Sigma-

Aldrich) to each sample well and incubated plates for 10 min at room temperature. We added 

50 µl of 3M HCl (A144-212, Fisher Chemical) to stop the reaction and immediately read the optical 

density at 490 nm (OD490) using a Synergy H1 Microplate Reader (BioTek Instruments). OD490 

values were corrected for each plate by subtracting the mean value of each plate’s blank wells. 

To determine a cutoff for positive values, we calculated the mean value of negative wells for each 

plate, plus three standard deviations. 

Data analysis 
For LFA testing, the second reader’s scores were used for performance calculations, and 

the first reader’s scores were used to calculate inter-reader agreement statistics. Percent 

seropositivity among RT–PCR-confirmed cases was calculated by time interval from symptom 

onset. Specificity was based on results in pre-COVID-2019 samples. Binomial exact 95% CIs 

were calculated for all estimates. Analyses were conducted in R (3.6.3) and SAS (9.4). 
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2.6: Tables & Figures 

Table 2.1: Demographics and clinical characteristics of patients who tested positive for 
SARS-CoV-2 by RT–PCR 
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Table 2.2: Summary statistics for immunochromatographic LFAs and ELISAs 
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Figure 2.1: Performance data for immunochromatographic LFAs.  
a, The second reader’s score (0–6 based on band intensity) is reported for each assay, binned 
by time after patient-reported symptom onset. Biologically independent samples for each test are 
as follows: n= 126, Biomedomics; n= 126, Bioperfectus; n= 124, DecomBio; n= 128, DeepBlue; 
n= 114, Innovita; n= 127, Premier; n= 127, Sure; n= 128, UCP; n= 119, VivaChek; n= 124, 
Wondfo. The second reader’s score for pre-COVID-19 samples is also displayed (n= 107, 
Biomedomics; n= 104, Bioperfectus; n= 107, DecomBio; n= 108, DeepBlue; n= 108, Innovita; 
n= 108, Premier; n= 108, Sure; n= 107, UCP; n= 99, VivaChek; n= 106, Wondfo). For tests with 
separate IgG and IgM bands, the higher score is reported. Joint IgM/IgG signal is represented by 
a single band in Wondfo. The lower, dark gray line refers to the positivity threshold (score greater 
than or equal to 1) used in this study. The upper, light gray line refers to an alternative positivity 
threshold (score greater than or equal to 2) discussed in the text and Fig 2.3. Box spans 25th to 
75th percentiles with median indicated by the black bar; whiskers show maximum and minimum 
value within 1.5× the interquartile range from the box. b, Percent of SARS-CoV-2 RT–PCR-
positive samples testing positive by each LFA and ELISA are plotted relative to time after patient-
reported symptom onset (n= 126, Biomedomics; n= 126, Bioperfectus; n= 124, DecomBio; 
n= 128, DeepBlue; n= 114, Innovita; n= 127, Premier; n= 127, Sure; n= 128, UCP; n= 119, 
VivaChek; n= 124, Wondfo; n= 128, Epitope; n= 128, in-house). The ‘IgM or IgG’ category refers 
to positivity of either isotype. c, Specificity is plotted for each test using pre-COVID-19 negative 
control samples (n= 107, Biomedomics; n= 104, Bioperfectus; n= 107, DecomBio; n= 108, 
DeepBlue; n= 108, Innovita; n= 108, Premier; n= 108, Sure; n= 107, UCP; n= 99, VivaChek; 
n= 106, Wondfo; n= 108, Epitope; n= 108, in-house). For b and c, all nodes refer to the calculated 
percent positivity or specificity, respectively. Error bars signify 95% CIs.  
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Figure 2.2: LFA and ELISA values by serological assay.  
a, LFA scores for each of two readers (blue) and mean ELISA S/CO (purple) for each specimen 
are grouped by binned time after patient-reported symptom onset and plotted by assay. White 
cells indicate samples not run with the corresponding assay. For ELISAs, gray indicates S/CO 
less than or equal to 1. The same legend applies to b and c. The F(ab′)2 specific secondary 
antibody used in our in-house ELISA preferentially binds the IgG light chain but per the 
manufacturer has some reactivity for other isotypes (IgM and IgA). b, LFA score and ELISA S/ 
CO values are plotted for pre-COVID-19 historical control serum samples to determine assay 
specificity. c, LFA score and ELISA S/CO values are plotted for serum samples obtained from 51 
individuals after the emergence of COVID-19 (post-COVID-19), some of which received BioFire 
FilmArray (BioFire Diagnostics) and/or SARS-CoV-2 RT–PCR testing (all negative) as indicated 
(black cells) in the appropriate columns. Arrows highlight specimens from five individuals with 
moderate to strong band intensity further discussed in the text. Specimens are grouped by 
positive testing for coronavirus HKU1 (CoV HKU1), coronavirus OC43 (CoV OC43), influenza A 
virus A/H3 (FluA H3), influenza A virus A/H1 2009 (FluA H1), parainfluenza type 1 virus (PIV-1), 
parainfluenza type 4 virus (PIV-4), human metapneumovirus (HMP), adenovirus (ADNV), 
respiratory syncytial virus (RSV), human rhinovirus/enterovirus (HRE) or negative testing for 
SARS-CoV-2 and other viruses (nco-).  
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Figure 2.3: Comparison of the effect of different positivity thresholds on percent 
positivity and specificity.  
a, The percent positivity of each assay tested on serum from patients who tested positive for 
SARS-CoV-2 by RT–PCR is plotted by time after patient-reported symptom onset. Biologically 
independent samples for each test are as follows: n= 126, Biomedomics; n= 126, Bioperfectus; 
n= 124, DecomBio; n= 128, DeepBlue; n= 114, Innovita; n= 127, Premier; n= 127, Sure; n= 128, 
UCP; n= 119, VivaChek; n= 124, Wondfo. Squares indicate percent positivity using reader score 
>0 (‘Weak bands positive’) as the positivity threshold. Triangles indicate percent positivity using 
reader score >1 (‘Weak bands negative’) as the positivity threshold. ‘IgM or IgG’ signifies detection 
of either isotype. Wondfo reports a single band for IgM and IgG together, and the results are 
plotted here as both ‘IgM’ and ‘IgG’ for horizontal comparison across assays. b, Comparison of 
percent positivity at each timepoint for BioMedomics assay at either the MGH (left, n= 48) or UCSF 
(right, n= 126) study site using low (square) or high (triangle) positivity thresholds. Note that a 
weak score at MGH is not directly equivalent to a 1 at UCSF owing to differences in reader 
training. c, The specificity of all assays on historical pre-COVID-19 serum using low (square) or 
high (triangle) positivity thresholds. UCSF BioMedomics data are plotted again in the right 
subpanel column for direct comparison to MGH BioMedomics data. All nodes refer to the 
calculated percent positivity or specificity (as designated), and all error bars indicate 95% CIs.  
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Figure 2.4: Agreement of serological assays for SARS-CoV-2.  
a, Percent agreement is plotted across all assay combinations, and values signify the binomial 
regression of the two assays across all tests. Samples were labeled ‘positive’ if any antibody 
isotype was detected for each assay. b, IgM or IgG LFA scores for each assay are compared to 
S/CO from three different ELISAs for all SARS-CoV-2 RT–PCR-positive samples. Biologically 
independent samples for each test are as follows: n= 126, Biomedomics; n= 126, Bioperfectus; 
n= 124, DecomBio; n= 128, DeepBlue; n= 114, Innovita; n= 127, Premier; n= 127, Sure; n= 128, 
UCP; n= 119, VivaChek; n= 124, Wondfo. Joint IgM/IgG signal is represented by a single band in 
Wondfo, so data were plotted as IgM or IgG depending on ELISA comparison. The F(ab′)2-
specific secondary antibody used in our in-house ELISA preferentially binds the IgG light chain 
but per the manufacturer contains some reactivity for other isotypes (IgM and IgA); it is compared 
in b to IgG band intensity. For b, the box spans the 25th to 75th percentiles with median indicated 
by the black bar; whiskers show maximum and minimum value within 1.5× the interquartile range 
from the box.  
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Table S2.1: Immunoassay Kit and Manufacturer Information. Bold signifies labels used in 
text and figures. 
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Table S2.2: Reader Agreement on Immunochromatographic Lateral Flow Assays (LFAs).  
Cohen’s Kappa correlations were calculated for scores of the IgG band (left) and IgM band (right) 
of each LFA. The LFA manufactured by Wondfo has a single band for IgG and IgM detection and 
is displayed here as IgG for convenience. Positive Kappa Correlation: unweighted inter-reader 
agreement on positive (LFA score > 0) vs. negative (LFA score = 0) reads. Weighted Kappa 
Correlation: inter-reader agreement on LFA score (0-6), weighted by the square of the difference 
in reads. All correlations were calculated with the irr package version 0.84.1 in R version 3.6.1 
using RStudio. 
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Table S2.3: Assay performance on validation cohort performed at MGH using positivity 
thresholds based on concordance studies to an MGH-group in-house ELISA.  
Comparison of MGH and UCSF percent positivity at different positivity thresholds is performed in 
Supplementary Figure 2.4. Note, the one negative patient included in the >16-day timepoint was 
immunocompromised. 
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Figure S2.1: Representative images of LFA scoring.  
The intensity score is noted at the top of each image for IgG and IgM separately (unless stated 
otherwise).  
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Figure S2.2: Comparison of Reader 1 and Reader 2 LFA scores.  
The size of each point signifies the number of tests with the indicated reader 1-to-reader 2 score 
combination. The LFA manufactured by Wondfo has a single band for IgG and IgM detection and 
is displayed here as IgG for convenience.  
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Figure S2.3: LFA scores by serological assay according to highest-level clinical care 
received by the patient.  
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3.1: Abstract  

Mitigating transmission of SARS-CoV-2 has been complicated by the inaccessibility and, in some 

cases, inadequacy of testing options to detect present or past infection. Immunochromatographic 

lateral flow assays (LFAs) are a cheap and scalable modality for tracking viral transmission by 

testing for serological immunity, though systematic evaluations have revealed the low 

performance of some SARS-CoV-2 LFAs. Here, we re-analyzed existing data to present a proof-

of-principle machine learning framework that may be used to inform the pairing of LFAs to achieve 

superior classification performance while enabling tunable False Positive Rates optimized for the 

estimated seroprevalence of the population being tested. 

3.2: Main 

The SARS Coronavirus-2 (SARS-CoV-2) has emerged rapidly and precipitated the 

Coronavirus Disease 2019 (COVID-19) pandemic that continues to threaten vulnerable 

populations and disrupt daily life [5]. Although definitive evidence of antibody-mediated protective 

immunity against SARSCoV-2 infection is still needed [10, 14], promising early results from trials 

of convalescent plasma therapy [4] and animal re-infection models [2] raise hopes that antibodies 

can confer some degree of protection. Because infected individuals nearly uniformly mount 

detectable serological responses against SARS-CoV-2 [9], sensitive and specific measurement 

of anti-SARS-CoV-2 serostatus is critical for obtaining accurate estimates of natural immunity 

(prevalence), as well as infection rates (incidence). Thus, reliable serology tests may provide 

important epidemiological information to model viral spread and inform non-pharmaceutical 

interventions including physical distancing and contact tracing.  

A number of immunochromatographic lateral flow assays (LFAs) and enzyme-linked 

immunosorbence assays (ELISAs) were developed swiftly to detect antibodies against SARS-

CoV-2 antigens. Recent work by our group and others has revealed potentially inadequate 
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sensitivity and specificity of some of these LFAs [1, 6, 16], suggesting that uninformed usage of 

these tests could result in inaccurate estimates of seroprevalence or release of misleading 

information to tested individuals. Although select LFAs perform relatively well, no single LFA is 

both perfectly sensitive and specific. ELISAs tend to perform better, but they require specialized 

laboratory equipment that limit their widespread adoption. Because LFAs remain accessible and 

can be deployed in point-of-care settings, rational LFA deployment may improve diagnostic 

performance while retaining scalability and ease of use.  

Clinical testing methods incorporating multiple laboratory assays achieve superior 

performance by leveraging the unique strengths of different assays, as is standard practice for 

HIV testing [8]. Because LFAs utilize a range of antigens and chemistries, we hypothesize that 

testing with pairs of SARS-CoV-2 LFAs may classify specimen serostatus better than single LFAs. 

To test our hypothesis, we compare the performance of single LFAs with that of LFA pairs using 

a simple strategy requiring positive results from both LFAs (AND logic). Although the AND logic 

strategy is able to reduce the false positive rate (FPR), it is accompanied by a substantial 

reduction in true positive rate (TPR) (i.e., sensitivity or power), in some cases to levels below the 

performance of individual LFAs.  

To overcome the limitations of the simple AND logic strategy, we demonstrate a proof-of-

concept machine-learning classifier that combines the information of semi-quantitative readouts 

from both IgM and IgG tests to control the FPR at a targeted level while achieving higher TPRs 

than individual LFAs. Importantly, our classifier obtained the largest TPR gains when low-

performing LFAs are combined, thus significantly expanding their utility. The ability to tune the 

FPR could enable the deployment of LFA pairs across a range of prior probabilities of 

seropositivity, and facilitate sound statistical comparisons of different tests. We offer a principled 

framework that may be used to identify well-performing LFA pairs for studies of individual- and 

population-level immunity, effectively expanding the SARS-CoV-2 immunity testing options to 

increase testing scalability and distribute supply demands across multiple vendors. 
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3.3: Results  

We re-analyzed recently generated data [16] that examined the performance of SARS-

CoV-2 LFAs from 10 vendors (19 tests based on separate IgM and IgG detection for 9/10 assays) 

scored by two independent readers (Table 3.S1) using a validated semi-quantitative scoring scale 

[15] with the positivity threshold of ≥1 (Figure 3.1a-b: “IgM only” & “IgG only”). Here, we use the 

term “test” to indicate individual IgM or IgG results, and the terms “LFA” and “vendor” to reference 

the integrated result of IgM and IgG when interpreted together. 

First, we determined whether a simple LFA pairing strategy improves specimen 

classification performance as measured by the F1 score, a well-used evaluation metric in machine 

learning (see Supplemental Methods). For each LFA, we combined the IgM and IgG results, 

calling the specimen “positive” if either the IgM or IgG test result is above the positivity threshold 

(≥1) used in the source publication [16] (Figure 3.1a-b: “Single LFA”). We find that combining IgM 

and IgG results for each LFA improves the F1 score relative to IgM or IgG alone (mean: 88% vs. 

81% & 84%, respectively, Figure 3.1b) by primarily improving TPR (mean: 84% vs. 76% & 77%, 

respectively, Figure 3.S1). Subsequently, we examined all possible LFA pairs to determine 

whether requiring concordant positivity of two LFAs (AND logic) would improve sample 

classification. This strategy resulted in no improvements in F1 scores compared to single LFAs 

(mean: 88%, Figure 3.1b) but lowered the TPR (mean: 80%, Figure 3.S1). 

This decrease in TPR revealed a vulnerability of the AND logic pairing approach to 

unforeseen negative combination effects, thus motivating us to explore more sophisticated pairing 

strategies. We evaluated several machine learning classifiers (including random forest, logistic 

regression, and gradient boosting) using semi-quantitative readouts of LFA test intensities rather 

than binarized data. We found gradient boosted decision trees (implemented in XGBoost [3], see 

Supplemental Methods) worked particularly well, so we focused on this approach. Our XGBoost 

classifier integrates the IgM and IgG test results for each LFA and outputs a probability of positivity 
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for each specimen. Thus, the trade-off between TPR and FPR can be tuned by applying a different 

probability threshold in accordance with the needs of the user and the prior probability of 

seropositivity in the test population [16]. Whereas the heterogeneous FPRs reported across 

different single and AND logic-paired LFAs complicates TPR comparisons (Figure 3.S1), 

controlling the FPR at a desired significance level α using a machine-learning classifier enables 

direct TPR comparisons and, thus, identification of high-performing single and paired LFAs. 

We first assessed the overall performance (F1 score) of the XGBoost classifier at a fixed 

probability threshold of 0.5. We find that processing single LFAs with XGBoost (mean: 89%, 

Figure 3.1a-b: “Single LFA + ML”) outperforms simple single IgM or IgG tests, single LFAs, and 

AND logic LFA pairs mentioned previously. Further, combining LFAs with XGBoost further 

improves F1 scores (mean: 90%, Figure 3.1a-b: “LFA Pair + ML”). Leveraging the aforementioned 

ability to tune the FPR, we next examined the TPR performance for individual LFAs at fixed 

significance levels α = 1.5% (Figure 3.1c: diagonal, see Supplemental Methods), 3% (Figure 

3.S2a), and 4.5% (Figure 3.S2b). At α = 1.5%, we found that XGBoost roughly segregates LFAs 

from different vendors into three TPR ranges: low (< 70%, light grey bar), mid (70–80%, grey), 

and high (> 80%, dark grey). Pairing different LFAs with XGBoost (mean: 81%, Figure 3.1c: off-

diagonal) achieves higher TPRs than single vendor XGBoost classifiers (mean: 71%, Figure 3.1c: 

diagonal) at the same FPR threshold. We found that vendors that perform well individually (e.g., 

Vendors 7 & 8) perform marginally better in combination (82% combined vs. 79% & 79% 

individually). Importantly, LFAs that are lower performers alone (e.g., Vendors 2 & 3) can be 

paired to achieve significant performance gains over each individual LFA (78% combined vs. 61% 

& 61% individually) and/or confer modest gains on already mid-performing LFAs (e.g., Vendor 8: 

79% individually vs. 83% with Vendor 2 and 84% with Vendor 3). Similarly, two mid-performing 

LFAs (e.g., Vendors 5 & 8) could be paired to achieve performance in the range of single high-

performing LFAs (85% vs. 73% & 79% individually). These effects are not merely additive. For 

example, certain LFAs enhance the performance of Vendor 10 more than others despite mid-
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level performance alone; e.g., at significance level α = 1.5%, Vendor 9 (80%) performs better than 

Vendor 6 (77%) individually, but combining Vendors 6 and 10 (91%) is better than Vendors 9 and 

10 (89%). These results demonstrate a proof-of-concept implementation of a machine-learning 

classifier that can effectively identify specific LFA pairs with better classification performance 

overall and increased sensitivity at a tuned False Positive Rate. 

3.4: Discussion  

Here, we have demonstrated the utility of machine learning to enhance performance and 

inform deployment of lateral flow assays (LFAs) for anti-SARS-CoV-2 antibodies. LFAs will likely 

be integral for accurate estimation of population seroprevalence to inform public health directives, 

especially in settings where specialized equipment is unavailable [13]. We found that training an 

optimized gradient boosted decision tree algorithm on LFA pairs has higher classification 

performance (F1 score) than single LFA tests and a more naive LFA pairing strategy. Though 

LFAs for anti-SARS-CoV-2 antibody detection are likely to improve with time, our framework 

provides an alternative LFA deployment strategy until a “perfect” SARS-CoV-2 immunoassay is 

widely available. This computational approach will likely improve the performance of other 

immunoassays, including SARS-CoV-2 rapid antigen tests and serological assays for other 

conditions, though the method should be thoroughly validated on a case-by-case basis. 

In addition to its superior performance, one of the primary advantages of using a machine 

learning classifier is the ability to tune the target False Positive Rates in accordance to the 

population in which the LFAs are being deployed. Given the geographic variability of SARS-CoV-

2 prevalence [5], a more stringent FPR may be implemented in low prevalence settings where 

the pre-test probability is exceedingly low. Conversely, high prevalence populations may be more 

effectively screened by implementing a classifier that prioritizes higher TPR at the cost of 

specificity. Such threshold tuning is dependent upon the use of a (semi)quantitative LFA scoring 
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strategy [16], as categorical input data (e.g., “Positive” or “Negative”) cannot be effectively 

optimized by the classifier. Objective LFA scoring in the form of automated densitometry or an 

image processing algorithm would be ideal to provide continuous scoring data on which a 

machine learning classifier can be trained, but, in the absence of this technology, we advocate 

for use of a validated semi-continuous scoring system to be used by trained readers for optimal 

results. 

Our calculations likely underestimate True Positive Rate given the absence of a gold-

standard SARS-CoV-2 immunoassay to identify seroconverted patient specimens. As discussed 

in our previous work [16], the use of SARS-CoV-2 RT-PCR to classify positive and negative 

specimens (with the exception of historical, pre-SARS-CoV-2 negative samples) almost certainly 

includes specimens that have not yet seroconverted. Here, we enrich for seropositive specimens 

by subsetting to specimens collected 10 or more days after symptom onset [6] (see Supplemental 

Methods), but we do not have sufficient late timepoint data to more stringently select for 

seropositivity [7, 9]. 

LFA batch variability, ongoing assay development, and small sample size preclude our 

ability to nominate specific LFA combinations for real-world implementation. Rather, we propose 

here a conceptual framework by which healthcare systems and governmental organizations 

performing independent LFA evaluations can improve the performance of SARS-CoV-2 

immunoassays using machine learning. We demonstrate the approach using a popular machine 

learning classifier trained on a rather small data set. Although this small sample size limits our 

ability to explore FPRs lower than 1.5% (see Supplemental Methods), our results demonstrate 

increased TPR gains with combination testing as the targeted FPR level decreases (Figure 3.1c, 

S2). We anticipate that using a model trained on larger data should lead to improved performance 

and further aid researchers in selecting high-utility LFAs from a collection of evaluated vendors. 

Additional assay information, including the SARS-CoV-2 antigen bait and secondary antibody 

detection reagents used in each cartridge, will likely further improve performance by identifying 
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co-linearity and, thus, more effectively identify useful LFA combinations by de-prioritizing those 

unlikely to enhance one another. 

Informed combination LFA testing could help to minimize supply chain limitations by 

spreading the burden of meeting the world’s SARS-CoV-2 testing demand across multiple 

manufacturers and LFA vendors. In doing so, our work could effectively expand the number of 

acceptable SARSCoV-2 immunoassay testing options, serving as a proof of principle 

demonstrating the utility of combination LFA testing for more accurate determination of anti-

SARS-CoV-2 antibody status. 

3.5: Methods 

True Positive Rate (TPR) is reported with respect to 79 specimens collected from SARS-

CoV-2 RT-PCR-positive patients 10 days or more after patient-reported symptom onset. False 

Positive Rate (FPR) is estimated against 31 specimens from SARS-CoV-2 RT-PCR-negative 

patients and 108 specimens from pre-July 2018 historical negative controls.  

LFAs were scored using a validated 0-6 LFA scoring strategy [15], and a positivity 

threshold of ≥ 1 [16] was used for non-machine learning results (Figure 3.1a-b: “IgM only”, “IgG 

only”, “Single LFA”, and “LFA Pair”). Missing LFA scores for each vendor (0–15.3% of all 

specimens, mean: 3.4%, SD: 4.6%) from two independent readers were imputed using a k-

nearest neighbors algorithm [12], and for each sample the average of the two scores was used 

for downstream analyses. Pre-processing with imputation and score averaging does not 

significantly improve baseline TPR (p = 0.27, Mann–Whitney U test) or FPR (p = 0.60, Mann–

Whitney U test) performance metrics of tests with missing data (Table 3.S1).  

We employed balanced F-score (F1 score), a widely-used measure of classification 

performance in machine learning, to compare the performance of different experiments at 

divergent false positive rates. It is defined as 
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or the harmonic mean of precision (the fraction of true positives among all instances called as 

positive, or Positive Predictive Value) and recall (TPR, sensitivity, or power). 

We implemented an ensemble machine learning classifier using the eXtreme Gradient 

Boosting (XGBoost) package [3] with ‘gbtree’ booster and ‘binary:logistic’ objective. This method 

uses both IgM and IgG test results for each LFA and iteratively generates, evaluates, and refines 

decision trees to optimize for accurate “positive” or “negative” specimen classification. We trained 

the XGBoost classifier on 50% of data, used 3-fold cross validation to tune its hyperparameters 

(max_depth, min_child_weight, lambda, subsample, colsample_bytree), and then tested the 

trained model on the remaining 50% of data. We repeated this experiment 100 times each with 

different random splits of data into training and test sets, and computed average TPRs at fixed 

significance levels α = 1.5% (Figures 1c), 3%, and 4.5% (Figure 3.S2). Given this train-test split, 

the lowest possible non-zero FPR that could be considered when testing 50% of the 139 negative 

specimens is 1/(0.5 × 139) ≈ 0.015.  

All analyses were performed in Python using the scikit-learn library [11] (except where 

otherwise specified). 
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3.6: Figures 

 
 

Figure 3.1: Comparative performance of LFA combination strategies.  
a. Schematic describing data reported in b, including baseline performance characteristics for IgM 
(“IgM only”, n = 9) and IgG (“IgG only”, n = 9) tests for each LFA. For single (“Single LFA”, n = 10) 
and paired (“LFA Pair”, n = 45) LFAs, specimens were classified as positive if either IgM or IgG 
test was positive for each LFA. Machine learning (XGBoost) classifier receives both IgM and IgG 
test information for either single (“Single LFA + ML”, n = 10) or paired (“LFA Pair + ML”, n = 45) 
LFAs. b. Balanced Fscore (or F1 score) for each experiment outlined in A. One “IgM only” outlier 
(F1 = 0.49) is cut off for visualization purposes. The Wondfo LFA was excluded from “IgM only” 
and “IgG only” because a single band reports signal from both IgM and IgG isotypes. The vertical 
black bars indicate the range from first to third quartiles, white points indicate mean values, and 
horizontal bars indicate median values. c. Pairwise vendor (V1-V10) TPR performance for 
XGBoost classifier at α = 0.015, binned as low (light grey bar), medium (grey bar), or high (dark 
grey bar) TPR performance. The diagonal (black outline) specifies TPR results for single LFAs, 
whereas off-diagonal results reflect TPR of LFA pairs. The reported TPRs were averaged over 
100 different random splits of data into 50% training and 50% test sets (see Supplemental 
Methods).  
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Table S3.1: Comparative LFA performance. 
Comparing scores from a single reader (“Reader2”), averaged scores from two independent 
readers (“Mean”), or averaged scores from two independent readers after imputation 
(“Imputed”). 

 

  



 

 59 

 

Figure S3.1: LFA performance. 
Plotting LFA performance with respect to True (TPR) and False Positive Rates (FPR) after 
integrating IgM and IgG test results for each “Single LFA” (n = 10, black). Subsequently, an 
AND logic was applied to require concordant positivity for each “LFA Pair” (n = 45, grey) in order 
to classify a specimen as positive.   
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Figure S3.2: Pairwise LFA performance for XGBoost classifier. 
Plotted are results at significance level α = 0.03 (A) and α = 0.045 (B). The diagonal (black 
outline) specifies results for single LFAs, whereas off-diagonal results reflect TPR of LFA 
combinations. The reported TPRs were averaged over 100 different random splits of data into 
50% training and 50% test sets (see Supplemental Methods).  
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4.1: Abstract 

Cis-regulatory elements (CRE) interact with trans regulators to orchestrate gene expression, but 

how this transcriptional regulation is coordinated in multi-gene loci has not been experimentally 

defined. We sought to characterize the CREs that control dynamic expression of adjacent T cell 

costimulatory genes CD28, CTLA4, and ICOS encoding regulators of cell-mediated immunity. 

Tiling CRISPR interference (CRISPRi) screens in primary human T cells – both Conventional and 

Regulatory subsets – allowed us to uncover gene-, cell subset-, and stimulation-specific CREs. 

Integrating these data with CRISPR knockout (KO) screens and ATAC-seq characterization 

identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements 

to control costimulatory gene expression. Lastly, we discovered and extensively validated a 

critical CTCF boundary that governs the costimulatory locus, serving to reinforce CRE interaction 

with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping 

CREs and associated trans regulators directly in primary human T cell subsets, this work 

overcomes longstanding experimental limitations to decode context-dependent gene regulatory 

programs in a complex, multi-gene locus critical to immune homeostasis. 

4.2: Main 

Interactions of cis-regulatory elements (CREs) and trans regulators control how genes are 

expressed in specific cell types and in response to specific extracellular stimuli1,2. Context-

restricted transcription factors (TFs) work in concert with chromatin modifying complexes to bind 

CREs and tune the expression of target transcriptional programs3–6. However, how CREs and 

trans regulators coordinate to control gene expression in complex multi-gene loci harboring one 

or more functionally-related genes remains unknown7. While adjacent genes are commonly 

transcriptionally co-expressed8–11, many loci harbor multiple genes that exhibit divergent 

expression patterns. By organizing the genome into topologically-associating domains (TADs) 
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and subTADs, regulators of chromatin structure such as CTCF play a critical role orchestrating 

transcriptional regulation by promoting interactions between CREs and promoters of their target 

genes12–15 while insulating non-target loci from promiscuous activation16–20. Natural genetic 

variation in CREs can disrupt transcriptional regulation and confer risk for disease21, providing 

strong motivation to functionally decode CREs and trans regulators directly in disease-relevant 

primary human cell types. 

We sought to map systematically the cis-regulatory elements required for appropriate 

expression of three critical immune genes: CD28, CTLA4, and ICOS. Collectively referred to here 

as the “costimulatory genes,” this CD28 family of receptors is believed to have arisen from 

ancestral duplications of CD28 and is encoded by directly adjacent genes on human chromosome 

2q33.222,23. Since the ancestral duplications, each gene has functionally diverged24 and evolved 

distinct expression dynamics25. These receptors influence the functional outcome of T cell 

activation and thus regulate immune homeostasis more broadly26. CD28 is constitutively 

expressed, and its engagement sends a co-stimulatory signal to drive cell activation in 

coordination with T cell receptor (TCR) signaling. Conversely, CTLA4 negatively regulates T cell 

costimulation via competitive, high-affinity interactions for the same ligands as CD2827. 

Regulatory T (Treg) cells constitutively express CTLA4 at high levels and further upregulate it upon 

activation, whereas Conventional T (Tconv) cells exclusively express CTLA4 after activation. ICOS 

expression is induced in multiple activated T cell subsets and provides an orthogonal co-

stimulatory signal that influences T cell polarization and Treg function upon binding of a unique 

ligand, ICOSL28,29. The integration of these co-stimulatory and co-inhibitory signals shapes the 

functional outcomes of TCR engagement, ranging from anergy to full activation. The association 

of common genetic variants in this locus with various autoimmune conditions30,31, and the clinical 

efficacy of costimulation-modifying therapies for cancer32,33 and autoimmunity34,35, together 

underscore the major immunological significance of this gene family and motivate deeper 

understanding of how costimulation is regulated. More broadly, systematic characterization of cis 
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gene regulation in this locus could reveal how regulatory logic functions in other ancestrally-

duplicated genomic regions.  

The transcriptional programs regulating the CD28 family of costimulatory genes have not 

been functionally characterized. In recent years, chromatin immunoprecipitation (ChIP-seq) and 

Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) have been widely used to 

map cell type- and context-restricted CREs and transcription factor binding36 based on 

characteristic chromatin features, but these methods do not confirm functionality nor do they link 

CREs to their specific target genes. Consequently, it has been difficult to pinpoint and characterize 

the causal variant(s) in human 2q33.2 that alter costimulatory gene expression37–39 and confer 

autoimmune disease risk40–42. Recently, high-throughput forward genetic screens using CRISPR 

modalities have been used to functionally link perturbed trans regulatory factors and their gene 

targets43–51. Moreover, our group previously deployed CRISPR Activation (CRISPRa) in an 

immortalized human T cell line to map CREs that regulate immune gene expression52. While 

CRISPRa can systematically identify CREs whose de novo activation is sufficient to induce target 

gene expression, CRISPR Interference (CRISPRi) is uniquely suited to determining the 

essentiality of CREs for target gene expression and defining the specific cellular contexts in which 

particular CREs function53. Past studies have successfully applied this approach in cancer cell 

lines54–56, but limitations in lentiviral transduction have long precluded the application of CRISPRa 

and CRISPRi at scale in primary human T cells, until recently46. Using these CRISPR-based tools 

to dissect how CD28, CTLA4, and ICOS are dynamically regulated in primary human T cells could 

uncover insights into molecular mechanisms of immune activation and tolerance. Moreover, this 

genomic approach could simultaneously reveal how regulatory logic has evolved more broadly to 

tightly orchestrate ancestrally duplicated genes in a complex, multi-gene region.  

Here, we report the first tiling CRISPRi non-coding screens in primary human T cell 

subpopulations, tiling sgRNAs across a 1.44 Mb TAD in human chr2q33.2 to discover CREs with 

gene-, context-, and cell type-restricted activity. By assessing how each non-coding perturbation 
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affects the expression of each T cell costimulatory gene in both Treg and Tconv cells, we overcame 

the limitations of genomic methods like ChIP- and ATAC-seq to functionally link CREs and their 

gene target(s) in this complex, multi-gene locus. Complementary pooled CRISPR knockout 

screens identified trans regulators of CD28, CTLA4, and ICOS protein expression. ATAC-seq 

profiling of knockout T cells allowed us to discover specific trans regulators modifying the 

chromatin state of CREs in the target locus. These functional genomic studies also uncovered 

crosstalk between the regulation of adjacent genes and a critical role for CTCF in establishing 

genomic boundaries to coordinate the activity of multiple CREs in the locus. By functionally linking 

CREs and trans regulators, associating them with their gene targets, and uncovering how the 

locus is regulated by CTCF boundary elements, our integrative functional genomics approach 

systematically decoded the regulatory logic of a complex, disease-associated multi-gene locus. 

4.3: Results 

An efficient CRISPRi platform to map functional CREs in primary human T cell subsets 

We set out to discover systematically the CREs that regulate CD28, CTLA4, and ICOS 

expression in primary human CD4+ T cells. Expression of these genes varies between pro-

inflammatory Tconv and anti-inflammatory Treg cell populations, as well as under different 

stimulation conditions for each cell type (Figure S4.1A). We leveraged recent improvements in 

lentiviral production and delivery to primary human T cells46 to establish a robust CRISPRi-based 

workflow for mapping CREs in both Tconv and Treg cells (Figure 4.1A). An annotated TAD in human 

2q33.2 harbors the three genes of interest (Figure 4.1B, black outline)57 and contains numerous 

H3K27 acetylation peaks (Figure 4.1C) suggestive of active enhancer elements. To map the 

functional enhancers required for appropriate expression of each costimulatory gene, we 

generated a 11534 single guide RNA (sgRNA) library tiling across the region. We employed the 
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dCas9-ZIM3 CRISPRi system based on its improved performance over the original dCas9-KRAB 

system in primary human CD4+ T cells (Figure S4.1B), consistent with reports in other cell types58. 

We performed CRISPRi tiling screens in primary human Tconv and Treg cells to identify 

stimulus-responsive and cell type-specific CREs that control CD28, CTLA4, and ICOS 

expression. We isolated donor-matched primary Tconv and Treg cells, lentivirally transduced dCas9-

ZIM3 and the sgRNA library, and collected samples at the time of peak expression for each gene 

without or with re-stimulation (Figure S4.1A). By comparing sgRNA abundances in cells with low 

and high target protein expression isolated by fluorescence-activated cell sorting (FACS) (Figure 

4.1D, right; Figure S4.1C-D), we identified CRISPRi responsive elements (CiREs) as candidate 

CREs controlling target gene expression in each cell type (Figure 4.1D). We observed high donor 

correlation for sgRNAs significantly associated with positive (R=0.76, p=1.2x10-9) and negative 

(R=0.69, p < 2.2x10-16) CRISPRi effects on candidate regulatory elements (Figure S4.1E). 

Despite CRISPRi targeting across the entire published TAD, most CiREs were concentrated in 

the individual gene bodies and CD28-CTLA4-ICOS intergenic region residing within a high contact 

frequency subdomain (Figure 4.1B, dashed). Within this region, CRISPRi signals were generally 

strongest near each transcriptional start site (TSS) (Figure S4.1F) and throughout the first introns 

of target genes, consistent with expected distributions of regulatory elements59. We identified 

additional CiREs both down- (Figure S4.2A) and upstream (Figure 4.2A,C, S2B) of each gene. 

These data demonstrate, for the first time, that large-scale CRISPRi tiling screens can be 

performed in primary human Tconv and Treg cell subpopulations to associate non-coding DNA 

elements directly with their cis gene targets. 

 

Tiling CRISPRi screens associate context-specific CiREs and their gene targets 

We focused on the regions harboring the majority of CiREs to identify cell type-specific 

and context-restricted effects. In contrast to CD28 and ICOS, expression of CTLA4 is known to 

be markedly more context-dependent. Thus, we sought to identify CREs responsible for 
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stimulation-dependent CTLA4 upregulation in both Tconv and Treg cells, as well as those underlying 

constitutive CTLA4 expression specifically in Treg cells. We examined the annotated “CTLA4 

Regulatory Region” harboring the majority of CRISPRi-responsive elements influencing CTLA4 

expression (Figure 4.1D). Outside of the gene body, restimulated Tconv cell expression of CTLA4 

was most sensitive to CRISPRi targeting at a candidate enhancer element ~40kb upstream of the 

CTLA4 TSS (labeled “Stim-Responsive”), with a few other intervening regions exhibiting smaller 

regulatory effects (Figure 4.2A-B). Regulatory T cells assayed under the same conditions were 

partially sensitive to this Stim-Responsive CiRE but displayed greater reliance on another 

candidate enhancer 5 kb downstream (labeled “Treg-Dominant”) (Figure 4.2C-D). Interestingly, 

constitutive CTLA4 expression in resting Treg cells was unresponsive to the Stim-Responsive 

element but exquisitely sensitive to this Treg-Dominant CiRE, demonstrating the existence of 

neighboring enhancer elements that underlie cell- and context-restricted expression of CTLA4. 

Comparatively, CD28 and ICOS CRISPRi sensitivities varied little between Tconv and Treg cells 

(Figure S4.2A-B). Of note, we discovered that ICOS expression was subtly sensitive to the Stim-

Responsive and Treg-Dominant CiREs in a cell type-specific manner despite the intervening 

CTLA4 gene body (Figure S4.2C). This finding suggests that “nearest gene” assumptions of 

enhancer-promoter association fail to capture the full breadth of cis regulation of gene 

expression56. Importantly, although the region upstream of CTLA4 is a published Treg super-

enhancer41 (Figure 4.2C, bottom), we found that much of this region was insensitive to CRISPRi 

under the conditions assayed. Thus, the context-dependent functional effects we measured 

throughout this region could not be readily inferred based on H3K27ac ChIP-seq and ATAC-seq 

alone. We demonstrate that CRISPRi screening can uniquely identify complex, context-restricted 

CREs that regulate the expression of target genes of interest in specific cell types and activation 

contexts.  

We next explored how this functional map of CiRE elements controlling CTLA4 expression 

could help prioritize human genetic variants conferring risk to T cell-mediated autoimmune 
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conditions like rheumatoid arthritis60,61. The biological relevance of CTLA4 regulation in 

rheumatoid arthritis is further underscored by clinical efficacy of CTLA4-Ig for this disease62. We 

annotated CiREs across the CTLA4 locus by analyzing data from neighboring sgRNAs (Figure 

S4.2D-E, see Methods). Interestingly, the known CTLA4 eQTL and index SNP most strongly 

associated with rheumatoid arthritis risk, rs3087243 (Figure 4.2E-F, triangle), resides outside of 

these CiRE regions. In contrast, different variants were found in one or both of the “Stim-

Responsive” and “Treg-Dominant” CiREs 30-40kb away from the CTLA4 TSS. Both rs12990970 

in the Treg-Dominant CiRE and rs13030124 in the Stim-Responsive CiRE are in LD with 

rs3087243 (R2=0.7416 & 0.7316, respectively) and are themselves significantly associated with 

rheumatoid arthritis risk (Figure 4.2E) and CTLA4 expression (Figure 4.2F). Additionally, one 

variant in LD with rs3087243 (rs11571316, R2=0.951) is harbored within a CiRE embedded in the 

CTLA4 promoter region and Treg super-enhancer. Thus, we show that CRISPRi functional 

screening can prioritize candidate causal variants within a haplotype that may not be identifiable 

from human genetic and chromatin-mapping data alone. 

 

CRISPR KO screens with ATAC-seq validation localize trans regulatory effects to CiREs 

A longstanding challenge has been to identify specific trans regulators controlling a given 

CRE. In order to first characterize the transcriptional regulatory control of CD28, CTLA4, and 

ICOS in Tconv cells more thoroughly, we performed CRISPR knockout (KO) screens to examine 

CD28 and ICOS regulation in resting and restimulated primary human Tconv cells, respectively 

(Figure S4.3A). Integrating these data with published results for CTLA447, we identified factors 

significantly regulating (Adjusted P-value < 0.05) individual, pairs of, or all three costimulatory 

genes (Figure S4.3B). Reassuringly, we noted concordant effects of genes acting in the same 

biological pathway, including critical transcription factors like IRF4 and RelA positively regulating 

stimulation-responsive CTLA4 and ICOS expression63,64 (Figure S4.3B-C). Publicly available bulk 

RNA sequencing of cells with arrayed trans regulator KO served to validate the regulatory effects 
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revealed by the pooled CRISPR screens (Figure S4.3C)47. Taken together, these observations 

confirmed that our systematic CRISPR KO screens successfully identified trans regulators 

influencing costimulatory gene expression.  

We next aimed to link trans regulators with the specific CiREs they influence. To this end, 

we assessed changes in Stim-Responsive CiRE accessibility by ATAC-seq following CRISPR KO 

of individual trans regulators47 (Figure 4.3A-C). IRF4 is a stimulation-responsive transcription 

factor that critically regulates T cell function and survival64. We found that IRF4 directly bound the 

Stim-Responsive CiRE and promoted its chromatin accessibility in bulk human CD4+ T cells 

(Figure 4.3B, D), consistent with the transcription factor’s well-characterized immunological role 

and positive effect on CTLA4 expression (Figure S4.3B,C). The study also suggested more novel 

regulators. Notably, ZNF217 negatively influences all three costimulatory genes (Figure S4.3B-

D), and ATAC-seq profiling revealed that ZNF217 KO increased accessibility at the Stim-

Responsive CiRE (Figure 4.3B, D). This suggests that this factor exerts a negative effect on 

CTLA4 expression in Tconv cells by normally repressing this enhancer element. ZNF217 has been 

studied in the context of cancer65 and is known to associate with various protein complexes to 

either promote or inhibit target gene expression66, but its regulatory effects on immune-related 

genes have not been thoroughly characterized47. Here, we found that ZNF217 KO increased 

accessibility at many other putative CREs in the costimulatory locus (Figure S4.4A-B, S5A). 

Interestingly, ZNF217 also regulated the expression of a number of trans factors acting on the 

costimulatory genes, including IRF4 (Figure S4.5B). These findings indicate a regulatory circuit 

whereby ZNF217 inhibits CTLA4 at least in part through its effects on IRF4 (Figure 4.3E). More 

broadly, ZNF217 KO resulted in immune transcriptional program dysregulation as well (Figure 

S4.5C). Thus, we demonstrate that integrative CRISPR screens and genomic analyses robustly 

characterize complex gene regulatory relationships influencing costimulatory gene expression by 

systematically mapping functional non-coding regulatory elements influencing target genes, 
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identifying trans regulators influencing those same genes, and leveraging perturbational ATAC-

Seq to associate trans and cis effects.  

 
CRISPR tiling and KO screens revealed regulatory crosstalk of CD28, CTLA4, and ICOS 

The sensitivity of all three costimulatory genes to shared trans regulators like ZNF217 led 

us to explore other mechanisms of coordinated regulation acting in the locus. To our surprise, we 

observed that CRISPRi targeted to each TSS positively influenced the expression of the adjacent 

costimulatory gene(s) (Figure 4.4A). CRISPRi tiling across the CD28 transcriptional start site 

decreased CD28 expression as expected, but also increased CTLA4 in Tconv cells and had no 

effect on ICOS. Similarly, targeting the ICOS TSS subtly enhanced CTLA4 expression in Tconv 

cells, though CD28 remained unchanged. Lastly, CRISPRi-mediated inhibition of the CTLA4 TSS 

positively affected the expression of both adjacent genes. CRISPRi targeting at the CTLA4 TSS 

with multiple individual sgRNAs confirmed positive effects on CD28 and ICOS expression relative 

to non-targeting controls (Figure 4.4B, left). This effect on neighboring genes was not due to loss 

of the CTLA4 gene product, as CRISPR knockout of CTLA4 had negligible effects on CD28 and 

ICOS expression (Figure 4.4B, right). Importantly, we did not find evidence of promoter homology 

between adjacent genes, which suggests these effects are not simply due to promiscuous off-

target sgRNA binding to homologous sequences. Of note, we found that adjacent (CD28-CTLA4 

and CTLA4-ICOS) but not non-adjacent (CD28-ICOS) gene pairs are subject to significant co-

regulation by shared trans regulators (Figure S4.6). Thus, we discovered that shared sets of trans 

regulators coordinately influence adjacent costimulatory gene expression while the neighboring 

genes themselves interact in cis. In addition to the sharing of Stim-Responsive and Treg-Dominant 

CiRE sensitivity by CTLA4 and ICOS (Figure S4.2C), these findings establish additional 

regulatory interplay between adjacent costimulatory genes. Moreover, our data reveal an 

underexplored level of complexity in human gene regulation, providing evidence of complex 

modes of cis and trans crosstalk shaping the expression of individual genes in a multi-gene locus. 
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CRISPRi-sensitive CTCF boundaries direct preferential enhancer-promoter looping 

Evidence of crosstalk between neighboring genes raised the question of how cis-

regulatory elements are ultimately linked specifically to their target genes. Given CTCF’s role in 

functionally compartmentalizing the linear genome by establishing TADs and subTADs15, we 

explored how CTCF and three-dimensional chromatin organization might regulate costimulatory 

gene expression. We examined CTCF ChIA-PET data67 to determine how the human 2q33.2 

locus is structurally organized in primary human CD4+ T cells. Chromatin Interaction Analysis with 

Paired-End-Tag sequencing (ChIA-PET) revealed chromatin looping between CD28-CTLA4 and 

CTLA4-ICOS, but not between CD28-ICOS promoters and gene bodies (Figure 4.5A), consistent 

with the selective regulatory crosstalk between adjacent genes we observed. This suggests that 

CTCF binding might establish locus architecture that permits adjacent, but not non-adjacent, gene 

interactions. 

Next, we aligned the ChIA-PET data with functional CiRE maps from our CRISPRi 

experiments. The “peaks” of CTCF-mediated 3D genomic contacts co-localized with three CiREs 

exhibiting small yet discordant effects on adjacent genes (Figure 4.5A, dashed outlines). These 

CTCF-associated CiREs reside in accessible chromatin (Figure 4.5A) marked by H3K4me1 and 

minimal H3K4me3 but not H3K27ac (Figure S4.7A), consistent with the epigenomic profile of 

poised enhancer elements. Motif mapping at the dominant peak labeled “CTCF-2” revealed a 

cluster of CTCF binding sites with one dominant antisense motif (M1+M2) in a highly conserved 

region surrounded by several weaker and evolutionarily non-conserved motifs (Figure S4.7B). 

This motif cluster is flanked by Alu SINE and LINE-2 retrotransposable elements, which are 

postulated to be involved in the evolution of transcriptional regulation via species-specific CTCF 

insulator expansion68. Arrayed validation of CRISPRi targeting this region recapitulated the gene 

expression changes observed in the pooled tiling screens (Figure S4.7C), further supporting that 
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the CTCF-2 boundary might serve a critical role governing genomic topography in the 

costimulatory locus. 

The CTCF-2 boundary region lies between CD28 and CTLA4, which encode activating 

and inhibitory costimulatory receptors, respectively. We next tested whether this CTCF site serves 

as a boundary to control CD28 and CTLA4 expression by modulating CRE activity in the locus. 

We used paired Cas9 RNPs to excise the CTCF-2 region (Figure S4.7B, bottom) or a control 

region near AAVS1 in primary human Tconv cells. Then, we used CRISPRa to compare CD28 and 

CTLA4 induction between non-targeting control (NTC) sgRNAs and sgRNAs targeting the Stim-

Responsive CiRE (Figure 4.5B). So long as the CTCF-2 boundary was intact, Stim-Responsive 

CiRE activation with CRISPRa only modestly altered CD28 (Figure 4.5C, “Intact Boundary”) with 

more robust induction of CTLA4 (Figure 4.5D, “Intact Boundary”). However, in the setting of 

CTCF-2 boundary excision, CRISPRa targeting of the Stim-Responsive CiRE was less effective 

at inducing CTLA4 and concomitantly increased aberrant CD28 activation (Figure 4.5C-D, 

“ΔCTCF-2”). These data strongly suggest that the CTCF-2 boundary masks CD28 from spurious 

activation, and that disruption of this critical boundary element effectively re-appropriates Stim-

Responsive CiRE activity to CD28. Importantly, the study also uncovers an under-appreciated 

role of the CTCF boundary element in reinforcing proper CTLA4 regulation by its stimulation-

responsive enhancer.  

We next sought to more finely characterize how the CTCF-2 boundary governs three-

dimensional chromatin conformation in the costimulatory locus. To that end, we used CRISPRi to 

interfere with the CTCF-2 site which falls at a boundary separating two chromatin subdomains 

(Figure 4.5E). Then, we performed 4C-Seq in primary Tconv cells with or without CTCF-2 boundary 

perturbation (Figure 4.5E, S7D). Anchoring the 4C-seq assay on the Stim-Responsive CiRE, we 

found that CTCF-2 boundary perturbation permitted more frequent interactions between the non-

coding element and CD28 (Figure 4.5F, S7E) at the expense of contacts with CTLA4 (Figure 

4.5G, S7F). Interestingly, CTCF-2 excision also disrupted interactions with ICOS (Figure 4.5H, 
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S7G), which shares sensitivity to the Stim-Responsive CiRE with CTLA4 (Figure S4.2C). Thus, 

by mapping the reorganized genomic topology after CTCF-2 perturbation using 4C-seq, we 

discovered a boundary domain that reinforces CRE prioritization of stimulation-responsive genes 

(CTLA4, ICOS), of which CTLA4 encodes an inhibitory costimulatory receptor, while 

simultaneously limiting effects on expression of a neighboring activating costimulatory receptor 

(CD28). 

Overall, our tiling CRISPRi and trans KO screens revealed a critical regulatory role of 

CTCF boundary sites in establishing enhancer looping to preferential gene targets. More broadly, 

our data reaffirm that gene regulation in complex multi-gene loci is susceptible to neighborhood 

effects, and that higher-level genomic organization plays a critical role in restricting enhancer 

activity to bona fide targets. Taken together, we systematically mapped gene-, cell type-, and 

context-specific enhancer elements that regulate costimulatory gene expression under the 

coordination of trans regulators and CTCF boundary elements.  

4.4: Discussion 

Recent advances in deploying CRISPR technologies at scale in primary human T cells 

enabled us to develop an integrative functional genomics approach to discover, validate, and 

functionally disentangle cis and trans components of complex regulatory circuits key for immune 

homeostasis. Systematic perturbations of coding and non-coding sequences represent a 

considerable step beyond genomic profiling approaches like ChIP- and ATAC-seq, which have 

been instrumental in informing our current understanding of immune cell gene regulatory networks 

but fail to associate CREs with their gene target(s). Although the CiREs we mapped generally 

overlapped with chromatin profiles indicative of regulatory elements, only a subset of accessible 

chromatin regions was critical for target gene regulation as demonstrated by CRISPRi sensitivity. 

As a notable example, most of the well-characterized H3K27ac super-enhancer upstream of 
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CTLA4 in Treg cells appeared relatively unresponsive to CRISPRi in the specific stimulation 

contexts we tested. Although the possibility exists that our assay was not sufficiently sensitive to 

identify all CREs influencing target gene expression – especially if there is regulatory redundancy 

– we did uncover non-redundant CRISPRi-responsive sites within the broader super-enhancer 

that did not necessarily reflect the strongest ATAC-seq or H3K27ac ChIP signals. Many have 

called for experimental annotation of super-enhancer elements69, and our functional validation of 

regulatory element activity reinforces the importance of experimentally annotating non-coding 

regions, particularly in complex loci of significant physiologic importance. Furthermore, CRISPRi 

revealed CREs shared by CTLA4 and ICOS – an insight lost with common CRE inference from 

ChIP-seq and ATAC-seq. Future work can use our approach to understand how different CREs 

operate in specific contexts. The ability to locate critical non-coding sites and functionally connect 

them directly to target gene(s) in particular cellular contexts moves us beyond conclusions that 

can be reached with observational chromatin profiling and will transform our understanding of 

how CREs operate in complex genomic loci. 

Common genetic variation influencing traits and complex disease risk overwhelmingly 

occurs at non-coding regions of the genome70, which remain poorly functionally annotated. 

Systematic perturbations of disease-associated regions will thus be crucial to prioritize causal risk 

variants and functionally link them to target genes that depend on these elements. The lack of 

conservation of enhancer elements across species71, which may be perturbed by these non-

coding genetic variants, underscores the importance of performing functional experiments directly 

in human cells as opposed to model organisms. Numerous publications have associated the 

human polymorphism rs3087243 with altered CTLA4 expression37–39 and autoimmunity risk30,31, 

but our screens pointed to other genetic variants in strong linkage disequilibrium with this lead 

SNP that may individually or cooperatively mediate the expression effects by altering the activity 

of validated CRISPRi Responsive Elements. Importantly, we performed the CRISPRi screens 

under select stimulation conditions chosen for maximum expression of each target gene, so other 
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context-specific enhancer elements could nominate different risk variants in other stimulation 

contexts. Nonetheless, while we focused primarily on rheumatoid arthritis, our dataset can be 

used to characterize additional genetic associations residing throughout the 2q33.2 locus, such 

as Graves’ disease and Type I Diabetes72,73. We not only link new candidate variants to their 

target genes, but we also discover upstream transcription factors that regulate the chromatin state 

of the elements that harbor these genetic variants. Taken together, we use the power of functional 

genomics to decipher gene regulatory networks contributing to disease risk. 

The gene products encoded in the CD28/CTLA4/ICOS locus tune a delicate costimulatory 

balance and are under tight regulation. Our perturbation data revealed complex and previously 

unappreciated circuits controlling expression levels of these receptors, including by ZNF217 and 

IRF4 acting on a CTLA4-associated enhancer element. Moreover, we demonstrate how 

systematic genomic studies like this one can characterize how local genomic architecture governs 

cis-regulatory element and trans regulator interactions to control expression of specific target 

genes, especially in complex loci where multiple key target genes neighbor critical enhancer 

elements. Our CRISPRi tiling data and functional 4C-Seq validation showed how CTCF 

boundaries prioritize enhancer activity to primary gene targets, and how boundary disruption gives 

rise to promiscuous gene regulation in the costimulatory locus. In a locus encoding a critical 

negative regulatory gene (CTLA4) flanked by two activating receptors, coordination of enhancer 

activity to the appropriate target at the appropriate time is of utmost importance: aberrant cellular 

activation leads to deleterious immune hyperreactivity, whereas activation blockade impedes 

immune defense from pathogenic threat. Topologically-associating domains (TADs) and 

subTADs function to this end, segregating the genome and organizing regulatory processes, but 

they do so incompletely74. Despite intervening CTCF boundary elements of varying strength, the 

CRISPRi screens identified gene crosstalk where adjacent costimulatory gene TSS’s were 

mutually sensitive to one another. Consistent with previous studies attributing similar instances of 

gene crosstalk to shared enhancers54,75, we identified Stim-Responsive enhancer sharing 
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between CTLA4 and ICOS (Figure S4.2C), with CD28 sensitivity to the same element blunted by 

the CTCF-2 boundary. The neighboring costimulatory genes also could be mutually sensitive due 

to transcriptional interference76–82 or local competition for trans regulators shared by adjacent 

genes (Figure 4.5A), and additional experimentation will be needed to explore these possibilities. 

Nonetheless, our systematic investigation of GRNs expands on decades of genomic studies of 

the regulation of multi-gene loci, especially in model systems, and reveals reciprocal regulatory 

effects between adjacent genes in a locus of central importance for human immunology.  

The CD28/CTLA4/ICOS locus is essential for immune regulation and human health. This 

is evidenced by strong genetic associations with immune dysregulation and the emergence of 

effective costimulatory modulation treatments for autoimmunity34,35 and malignancies83. Here, we 

define coding and non-coding elements that shape the expression of these genes in human T 

cells. These studies serve as a roadmap for future efforts to define disease-associated functional 

gene regulatory networks in the relevant primary human cell types. Looking forward, knowledge 

of specific transcription factors, enhancers, and boundary elements that regulate target gene 

expression in varying immune cell contexts will enable design of complex synthetic circuits to 

program the expression of immune regulatory products in cellular immunotherapies. 
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4.5: Methods 

Isolation and culture of human T cells 
Peripheral Blood Mononuclear Cell-enriched leukapheresis products (leukopaks) were 

sourced from healthy donors following informed and written consent (Stemcell Technologies). 

CD4+CD127lowCD25+ Regulatory T cells and CD4+CD25- Conventional T cells were isolated from 

leukopaks using EasySep magnetic selection following the manufacturer’s recommended 

protocol (Stemcell Technologies #18063). Regulatory T cell samples were further enriched for 

purity either before (validation) or after (screen) experimentation as indicated for each experiment 

below. Conventional T cells used in screens were frozen in Bambanker Cell Freezing Medium at 

50e6 cells/ml (Bulldog Bio #BB01) and stored in liquid nitrogen immediately following isolation. 

Regulatory T cells used in screens, and all cells used in arrayed validations, were used 

immediately after isolation without freezing. Frozen cells were rapidly thawed in a 37°C water 

bath. All cells were cultured in Complete X-VIVO [cX-VIVO: X-VIVO 15 (Lonza Bioscience #04-

418Q) supplemented with 5% FCS (R&D Systems, lot #M19187), 55uM 2-mercaptoethanol 

(Fisher Scientific #21985023), and 4mM N-Acetyl L-Cysteine (VWR #0108)]. Regulatory T cells 

were activated by CTS Dynabeads Treg Xpander (Thermo Fisher #46000D, 1:1 cell:bead ratio) 

and maintained at 1e6 cells/mL in cX-VIVO supplemented with recombinant human IL-2 

(Amerisource Bergen #10101641) as indicated for each experiment below. Conventional T cell 

cultures were activated by CTS Dynabeads CD3/CD28 (Thermo Fisher #40203D, 1:1 cell:bead 

ratio) and maintained at 1e6 cells/mL in cX-VIVO supplemented with recombinant human IL-2 as 
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indicated for each experiment below. Bulk CD4+ T cells used in Figure S4.1B were isolated from 

a leukopak from a single human donor using EasySep magnetic selection following the 

manufacturer’s recommended protocol (Stemcell Technologies #17952) and otherwise handled 

the same as Conventional T cells.  

Trans regulator screens were conducted as previously described47. Primary human 

CD4+CD25- T cells were isolated using EasySep magnetic selection following the manufacturer’s 

recommended protocol for isolating the responder fraction (Stemcell Technologies #18063). Cells 

were cultured at 1e6 cells/mL in Complete RPMI [cRPMI: RPMI (Sigma #R0883) supplemented 

with 10% FCS (R&D Systems lot #M19187), 100U/mL Pen-Strep (Fisher Scientific #15140122), 

2mM L-Glutamine (Fisher Scientific #25030081), 10mM HEPES (Sigma #H0887), 1X MEM Non-

essential Amino Acids (Fisher Scientific #11140050), 1mM Sodium Pyruvate (Fisher Scientific 

#11360070), and 50U/mL IL-2 (Amerisource Bergen #10101641)]. Cells were activated with 

Immunocult Human CD3/CD28/CD2 T Cell Activator (STEMCELL #10970) at 6.25uL per 1e6 

cells and maintained at 1e6 cells/mL in cRPMI.  

Lentivirus Production 
High-titer lentivirus was generated as previously described46. Lenti-X HEK293T cells 

(Takara Bio #632180) were maintained in complete DMEM [cDMEM: GlutaMAX™ (Fisher 

Scientific #10566024) supplemented with 10% FCS (R&D Systems lot #M19187), 100U/ml Pen-

Strep (Fisher Scientific #15140122), 1mM Sodium Pyruvate (Fisher Scientific #11360070), 1x 

MEM Non-Essential Amino Acids (Fisher Scientific #11140050) and 10mM HEPES solution 

(Sigma #H0887). Cells were kept at a confluency of <60%. Prior to transfection, Lenti-X cells were 

seeded in Complete Opti-MEM [cOpti-MEM: Opti-MEM Reduced Serum Medium with 

GlutaMAX™ Supplement (Gibco #31985088) supplemented with 5% FCS (R&D Systems, lot 

#M19187), 1mM Sodium Pyruvate (Fisher Scientific #11360070), 1x MEM Non-Essential Amino 

Acids (Fisher Scientific #11140050)] overnight to achieve confluency between 85% and 95% at 

the time of transfection. The day after plating, Lenti-X cells were transfected with desired plasmid, 
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2nd generation lentiviral packaging plasmid psPAX2, and transfer plasmid pMD2.G using 

Lipofectamine 3000 Transfection Reagent (Fisher Scientific #L3000075) following the 

manufacturer’s recommended protocol. After 6 hours, the transfection medium was replaced with 

cOPTI-MEM supplemented with 1.15x ViralBoost (Alstem Bio #VB100). Lentiviral supernatants 

were harvested at 24 and 48 hours after transfection and spun at 500xG 5 minutes 4°C to remove 

packaging cell debris. The cleared supernatants were mixed with ⅓ volume Lenti-X-Concentrator 

(Takara Bio #631232), incubated 24-96 hours at 4°C, and then centrifuged at 1500xG, 45 

minutes, 4°C to pellet lentiviral particles. Lentiviral pellets were resuspended with 1/100th 

(screens) or 1/10th (validations) volume cX-VIVO, aliquoted, and frozen at -80°C until use. 

Lentiviral aliquots were thawed in ambient air at room temperature and gently resuspended prior 

to use. Concentrated lentivirus was titered in a 2x dilution series to identify doses for dCas9-ZIM3 

saturation and 50% transduction efficiency of sgRNA libraries. 

Plasmids 
CRISPRi single guide RNA (sgRNA) libraries were designed and cloned as previously 

described52. The hg38 coordinates of the region harboring CD28, CTLA4, and ICOS were 

chr2:202527032-203967032.  Given the general conservation of TADs between different cell 

types85 and due to the unavailability of HiC data in primary T cells at the time of sgRNA library 

design, this region was derived from a topologically-associating domain (extended by 20kb 

bilaterally) originally defined in GM12878 cells57. The TAD tiling library (11534 sgRNAs) contains 

every 20bp protospacer flanked by a 5’-NGG protospacer adjacent motif (PAM) within the defined 

region, excluding only sequences (1) containing BstXI or BlpI restriction sites used for cloning 

and/or (2) >1 perfectly matching site across the genome. Protospacers flanked by adaptor 

sequences were synthesized by Agilent Technologies and cloned into the pCRISPRia-v2 lentiviral 

vector (Addgene #84832) as previously described 86. 
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To generate the lentiviral vector delivering dCas9-ZIM3, we first amplified the ZIM3 KRAB 

domain conjugated to dCas9 from pLX303-ZIM3-KRAB-dCas9 (Addgene #154472) via PCR with 

primers 5’-GAGCTGTACAAGATTAACGGATCCGGCGCAACAAACTTCTCTCTGCTGAAACAA 

GCCGGAGATGTCGAAGAGAATCCTGGACCGATGAACAATTCCCAGGGAAGAGT and 5’-

CTGATCAGCGGGTTTAAACACGTACTGCTAGAGATTTTCCAC. The lentiviral backbone Lenti-

SFFV-mCherry-dCas9-VP64 46 was digested with PmeI (NEB #R0560) and BamHI (NEB 

#R3136). The dCas9-ZIM3 insert was cloned into the linearized Lenti-SFFV-mCherry backbone 

using NEBuilder HiFi DNA Assembly Master Mix (NEB #E2621) following the manufacturer’s 

recommended protocol. 

For arrayed CRISPRi validation experiments, four or more sgRNA sequences targeting 

the feature of interest were ordered as Ultramers (IDT) with flanking sequences: 5’-

AAGTATCCCTTGGAGAACCACCTTGTTGG-[sgRNA]-

GTTTAAGAGCTAAGCTGGAAACAGCATAGCAAGTT. Non-targeting control sgRNAs were 

chosen at random from the Human CRISPR Inhibition Pooled Library (Dolcetto) (Addgene 

#1000000114). Diluted Ultramers (0.2uM) were cloned into Blpl- (NEB #R0585) BstXI-digested 

(NEB #R0113) pCRISPRia-v2 lentiviral vector (Addgene #84832) using NEBuilder HiFi DNA 

Assembly Master Mix (NEB #E2621) and transformed into STBL3 chemically-competent cells 

(QB3 MacroLab). Cultures were grown overnight in the presence of Ampicillin (Fisher Scientific 

#J66972-AC). Mini (Zymo Research #D4037) and/or maxi (Zymo Research #D4203) plasmid 

DNA preps were used for lentivirus production. 

For arrayed CRISPRa experiments, sgRNAs were ordered as sense (5’-CACCG[sgRNA]) 

and antisense (5’-AAAC[sgRNA]C) oligonucleotides (IDT). 200pmol of sense and antisense 

oligos for each sgRNA were mixed in 1x CutSmart buffer (NEB), heated to 95°C and slowly cooled 

to 25°C for annealing. Annealed oligos were diluted 1/150, cloned into the pXPR_502 lentiviral 

vector (Addgene #96923) using BsmBI-v2 Golden Gate Assembly Kit (NEB #E1602L) as 

previously described 46, and transformed into STBL3 chemically-competent cells (QB3 



 

 86 

MacroLab). Cultures were grown overnight in the presence of Ampicillin (Fisher Scientific 

#J66972-AC). Mini (Zymo Research #D4037) and/or maxi (Zymo Research #D4203) plasmid 

DNA preps were used for lentivirus production.  

CRISPRi Screens 
Primary human T cells from two donors were activated as described above. Tconv cells 

were activated and maintained in 300U/mL rhIL-2. Treg cells were activated in 300U/mL rhIL-2 and 

subsequently maintained in 200U/ml rhIL-2. One day after activation, T cells were transduced 

with saturating doses (1.5-3.5% v/v) of concentrated dCas9-ZIM3 lentivirus. Two days after 

activation, T cells were transduced with 1% v/v (~50% transduction efficiency) sgRNA library virus 

for >100x cell:sgRNA coverage. Three days after activation, cell cultures were split to 1e6 cells/mL 

with fresh cX-VIVO supplemented with rhIL-2 and puromycin (2ug/mL final, Fisher Scientific 

#A1113803). Puromycin selection was confirmed by (1) untransduced T cell killing and (2) 

sgRNA-BFP enrichment relative to unselected T cell cultures as measured by flow cytometry 

(Thermo Fisher Attune). Cells were maintained ~1e6 cells/mL every 2 days with fresh cX-VIVO 

supplemented with rhIL-2. Eight days after activation, a fraction of T cells from each donor were 

restimulated for 24 hours with 1uL/mL Cell Activation Cocktail without Brefeldin A (Biolegend 

#423302) for ICOS staining. Eighteen hours later, a fraction of T cells from each donor were 

restimulated for 6 hours with 1ul/mL Cell Activation Cocktail without Brefeldin A for CTLA4 

staining. At the end of the restimulation period, samples were harvested for fluorescence-

activated cell sorting (FACS). Cells for ICOS (24 hours restimulation), CTLA4 (6 hours 

restimulation for both cell types and 0 hours restimulation for Treg cells only), and CD28 (0 hours 

restimulation) were spun down at 500xG, 10 minutes, 4°C. After spinning, cells were washed in 

50mL cold EasySep buffer (PBS, 2% FCS, 2mM EDTA), applied to a magnet for removing 

Dynabeads, and transferred to a new tube. All samples were stained for 30 minutes at 4°C with 

Ghost Dye Red 780 (Tonbo #13-0865), and antibodies for ICOS (Biolegend #313510) and CD28 

(Biolegend #302912) were included in the appropriate samples. After surface staining, cells were 
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washed twice in cold EasySep buffer and fixed with the FOXP3 Fix/Perm Buffer Set (Biolegend 

#421403) at room temperature for 30 minutes. After fixation, cells were spun at 750xG, 10 

minutes, 4°C. ICOS and CD28 samples were resuspended at 40e6 cells/mL in cold EasySep 

buffer and stored at 4°C until FACS. Samples for Total CTLA4 staining were washed and 

permeabilized in FOXP3 Perm/Wash Buffer (Biolegend #421403) at room temperature for 15 

minutes, spun, and stained with anti-CTLA4 antibody (Biolegend #349908) in 1x FOXP3 

Perm/Wash Buffer at room temperature for 30 minutes. Cells were washed twice in cold EasySep 

buffer and resuspended at 40e6 cells/mL in cold EasySep buffer and stored at 4°C until FACS. 

For Treg cell screens, all samples were carried through permeabilization and stained with HELIOS 

(Biolegend #137216) and FOXP3 (Biolegend #320112) antibodies. 

After fluorescent compensation with single-stained control samples, the highest and 

lowest 20% expression bins for each target (CD28, CTLA4, ICOS) were sorted into cold EasySep 

buffer at the Parnassus Flow Cytometry Core Facility (PFCC) and/or Gladstone Flow Cytometry 

Core using Aria II, Aria III, and Aria Fusion (BD Biosciences) cell sorters. We recovered and 

processed libraries for >200-fold cells:sgRNA coverage for all samples except Donor 1 Treg cells, 

ICOS screen (>140-fold cells:sgRNA coverage). Sorted samples were pelleted and resuspended 

in ChIP Lysis Buffer (400ul per 5e6 cells) for library prep as previously described46. Sequencing 

libraries were generated as previously described (Broad Institute “Protocol PCR of sgRNAs from 

gDNA for Illumina sequencing”) with minor changes. Up to 3.75ug genomic DNA was loaded into 

each 50uL PCR reaction with 0.25uM p5 forward primer (5’-

AATGATACGGCGACCACCGAGATCTGCACAAAAGGAAACTCACCCT) and 0.25uM unique p7 

reverse primer (5’-CAAGCAGAAGACGGCATACGAGAT[NNNNNNNN]GTGACTGGAGTTCAGA 

CGTGTGCTCTTCCGATCTCGACTCGGTGCCACTTTTTC). PCR reactions were run with the 

following parameters: 95°C 1’, [95°C 30”, 60°C 30”, 72°C 30”] x 28, 72°C 10’, 4°C hold. PCR 

reactions were purified as previously described87 (Zymo Research #D4033) and eluted in 12ul 

per 1e6 cell genomic DNA inputted. One sample (Donor 2 Tconv cells, ICOS screen) was re-
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indexed before sequencing. Pooled libraries were sequenced with a custom sequencing primer 

(5’-GTGTGTTTTGAGACTATAAGTATCCCTTGGAGAACCACCTTGTTG) on an Illumina 

NextSeq500 instrument targeting >200-fold read:sgRNA coverage per sample. 

CRISPRi Screen Analysis 
Raw Illumina sequencing data were demultiplexed and fastqs generated using bcl2fastq 

(v2.20.0, Illumina). Short guide RNA abundances were quantified using MAGeCK (v0.5.9.4)88 with 

a reference file listing sgRNA sequences, an arbitrary ID, and the 5’ genomic position of the 

sgRNA (hg38). Unnormalized sgRNA count files for each sample were loaded into R (v4.1.2), and 

statistical testing of sgRNA effects across two donors per sample was performed with DESeq2 

(v1.34.0) using the default Wald test and Benjamini-Hochberg Procedure to correct for multiple 

hypotheses89. To highlight genetic windows of CRISPRi effects for prioritizing variants affecting 

CTLA4, we subsetted our data to all significant sgRNAs identified in any of the CTLA4 CRISPRi 

screens (Adjusted P-value < 0.05) and examined the distance between adjacent sgRNAs (Figure 

S4.2D). Using this strategy, we called CiREs based on runs of sgRNAs less than 500bp from the 

previous sgRNA, setting the peak boundaries to the genomic start positions of the first and last 

sgRNAs within the CiRE. 

CRISPR Knockout Screens and Analysis 
CRISPR knockout screens and analyses were performed in MAGeCK as previously 

described47. Unstimulated cells were used for CD28 screens, and cells restimulated for 24 hours 

with Cell Activation Cocktail without Brefeldin A (Biolegend #423302) were used for ICOS 

screens.  

Arrayed Validation 
Tconv and Treg cells were isolated from matched donors described above. Immediately after 

magnetic isolation, CD25+CD127low Treg cells were further enriched for purity using fluorescence-

activated cell sorting (Biolegend #302618; Becton Dickinson #557938). Arrayed sgRNA lentiviral 



 

 89 

supernatants were harvested from 6-well plates and concentrated to 1/10th volumes, and dCas9-

ZIM3 lentivirus was produced as with the pooled screens. T cells were activated, sequentially 

transduced with saturating dCas9-ZIM3 and sgRNA lentiviruses, subjected to puro selection, and 

assayed on day 8 or 9. 

For arrayed CRISPR KO experiments, cells were activated for 2 days before 

nucleofection. Lyophilized Edit-R crRNA (Dharmacon) were ordered for each target in an arrayed 

format. crRNAs and Edit-R CRISPR-Cas9 Synthetic tracrRNA (Dharmacon #U-002005-20) were 

resuspended to 160mM in nuclease-free duplex buffer (IDT #11-05-01-03), mixed at a 1:1 ratio 

for a 80 mM solution, and incubated at 37°C for 30 minutes. Single-stranded donor 

oligonucleotides enhancer from IDT (ssODN; 

TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGT

ACCGAGCACTATCGATACAATATGTGTCATACGGACACG) was added at a 1:1 molar ratio of 

the final Cas9-Guide complex, mixed well by pipetting, and incubated for an additional 5 minutes 

at 37°C. Cas9 protein (UCB MacroLab, 40uM) was added at a 1:1 ratio, mixed thoroughly by 

pipetting, and incubated at 37°C for 15 minutes. Prepared Cas9 ribonucleoproteins (RNPs) were 

distributed into a 96-well plate. Stimulated cells were pelleted at 90g for 10 minutes in a 25°C 

centrifuge, the supernatant removed, and resuspended at 1e6 cells per 20uL supplemented 

Buffer P3 (Lonza #V4SP-3096). Prepared cells were distributed into the plate with RNPs, mixed 

gently, and transferred to the 96-well Nucleocuvette Plate (Lonza) for nucleofection (DS-137, 

Amaxa Nucleofector 96-well Shuttle System). Cells were recovered in 80uL pre-warmed cXVIVO 

media and placed in the incubator for 10 minutes. Nucleofected cells were then distributed into 

96-well plates (Fisher #353077) at 1e6 cells/mL in cXVIVO supplemented with rhIL-2 and 

passaged every two days until analysis.  

For the CRISPRa experiment with ΔCTCF-2 excision, arrayed sgRNA lentiviral 

supernatants were harvested from 6-well plates and concentrated to 1/10th volumes. The 

pZR112_Lenti-SFFV-mCherry-2A-dCas9-VP64 (Addgene #180263) CRISPRa lentivirus was 
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produced the same as dCas9-ZIM3 lentivirus described above. Freshly isolated and unstimulated 

Treg and Tconv cells were nucleofected (Buffer P3, DS-137, Amaxa Nucleofector 96-well Shuttle 

System) with 50 pmol each of two Cas9 RNPs (100 pmol total) flanking the CTCF-2 region 

(509bp) or a control region in the AAVS1 locus (582bp). PCR analysis of the targeted regions 

revealed ~50% excision efficiency. Nucleofected cells were recovered in pre-warmed cX-VIVO 

for 30 minutes at 37°C and 5% CO2 and then transferred to flasks at 1e6 cells per mL cXVIVO 

supplemented with Dynabeads, 300U/mL rhIL-2, and 1uM M3814 (Selleckchem #S8586). 

Activated cells were sequentially transduced with saturating dCas9-VP64 and sgRNA lentiviruses 

24 and 48 hours later, respectively, subjected to puro selection 24 hours later, and assayed on 

day 9 as previously described46. 

For all validation experiments, protein expression was measured using the Attune NxT 

flow cytometer (Thermo Fisher) and analyzed in FlowJo (v10.8.1) and R (v4.1.2). The number of 

arrayed sgRNAs analyzed per donor for each experiment is indicated in the figure legend, as only 

samples with 500 or more cells remaining after QC and gating were carried through for analysis. 

Median Fluorescence Intensity (MFI) values for each sample were normalized to mean MFI 

values for donor-matched controls (Fold Change). Significance tests were performed with ggpubr 

(v0.4.0) “stat_cor” and “compare_means” functions. Adjusted P-values (Holm method) are 

reported for all mean comparisons. 

4C-Seq 
Tconv cells from two human donors (1e7 per donor) were perturbed with CRISPRi targeting 

of the CTCF-2 boundary or Non-Targeting Control as described above. Nine days after the initial 

activation, cells were restimulated for 6 hours with 1ul/mL Cell Activation Cocktail without 

Brefeldin A and then snap frozen. Cell pellets were thawed, fixed with 1% PFA, and re-pelleted. 

Cell pellets were resuspended with 500ul 4C lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 

5mM EDTA, 0.5% NP-40 (IGEPAL CA-630), 1% Triton-X100, and 1X protease inhibitors 

(ThermoFisher #1862209)). The pellet was then pipetted vigorously and incubated on ice for 10 
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minutes for cell lysis. The nuclear pellet was spun down at 750G for 5 minutes at 4°C and washed 

twice with ice cold PBS. Next, the nuclear pellet was resuspended in H2O and 1X rCutSmart buffer 

(with HindIII-HF, NEB #R3104T). 0.25% SDS and 2.5% Triton-X100 were added for denaturation 

at 37°C for one hour on a thermomixer set to 900 rpm. Genomic DNA was digested with 400UI-

600UI HindIII-HF (NEB #R3104T) overnight before heat inactivation on the second day. Digested 

genomic DNA was ligated by T4 DNA ligase system (NEB, Cat#M0202T) at room temperature 

for 4 hours. The mixture was digested by proteinase K (ThermoFisher #EO0491) and RNase 

(Roche #11119915001) to remove remaining proteins and contaminating RNA. The circled 

genomic DNA was purified by phenol-chloroform purification method. The DNA pellet was 

resuspended in TE buffer and subjected to DpnII secondary digestion overnight (200UI, NEB 

#R0543T) before heat inactivation on the second day. DNA was again ligated using the T4 DNA 

ligase system (NEB #M0202T) at room temperature for 4 hours and then pelleted with 60mM 

sodium acetate, 3ug/ml glycogen, and 70% Ethanol. 

The digested DNA then went to PCR amplification for CiRE view-point interactions. Two 

probe sets spanning the entire Stim-Responsive CiRE were tested, but only the probe covering 

the latter half of the enhancer region (which aligns with maximum CRISPRi responsiveness) 

yielded sufficiently diverse libraries and is included here. We used the view primer sequence 

CAAGCTATATGCCCAAGCTT and non-view primer sequence AATGCTCTGGGACAGTGA. 

Forward primer was designed as reading adapter+view primer, with the whole sequence as: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCAA

GCTATATGCCCAAGCTT. Reverse primer was designed as indexed non-reading adapter+non-

view primer, with the whole sequence as: 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATCT AATGCTCTGGGACAGTGA. PCR was performed on 200ng DNA using Platinum™ 

SuperFi™ DNA Polymerase system (ThermoFisher, cat#12351010) with the program [98°C 10”, 
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52°C 10”, 72°C 1’] x 30 cycles. SPRI clean-up was performed to isolate the final amplified library, 

and the final library was quantified and sequenced on a NextSeq 500 with 75 cycle kits. 

4C-Seq Analysis 
4C sequencing reads were processed and aligned to hg38 using pipe4C processing 

pipeline90, normalizing to one million reads and using a default window size of 21. The resulting 

wig files were imported in R and smoothed using spline models with a smoothing parameter of 

0.75. The gene track was plotted using R package Sushi91 for the genomic region of interest (chr2: 

203500000-203967032204100000), and smoothed wig files were plotted in the given region using 

R base plot function. The level of interaction between CD28 and CTLA4 with the viewpoint were 

quantified using pipe4C’s RDS files, where the normalized 4C signal of the captured fragments 

was extracted for the gene body of each gene (chr2:203706475-203738912 for CD28 and 

chr2:203867771-203873965 for CTLA4), log transformed, and plotted in a boxplot.  

  4C resulted in satisfactory quality parameters according to established guidelines90, where 

over 55% of the reads mapped in the viewpoint chromosome. More than 40% of the total coverage 

mapped within 1Mb of the viewpoint, and over 55% of fragments within 100Kb of the viewpoint 

were captured in any sample. 

Genomic Data Access and Processing 
HiC data57 in Figure 4.1 were accessed with the 3D Genome Browser92. HiC data for 

Figure 4.5 were extracted from the ENCODE portal84 with the identifier ENCSR421CGL. ATAC-

Seq profiles were sourced from GSE11818993 and GSE17173747. ChIP-Seq profiles of histone 

modifications were generated by the NIH Roadmap Epigenomics Mapping Consortium 

(https://egg2.wustl.edu/). Summary statistics from trans-ethnic GWAS meta-analysis for 

rheumatoid arthritis30 and single cell genetic analysis of lupus erythematosus94 were loaded into 

R (v4.1.2), lifted from hg19 to hg38 with a chain file (UCSC) using the liftOver function (rtracklayer 

v1.48.0), and linkage disequilibrium relative to the lead variant rs3087243 was calculated with 
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LDlinkR (v1.2.0). Homology of adjacent gene promoters was examined in Benchling’s alignment 

tool. RNA-seq of differentiated Tconv cells was sourced from the Database of Immune Cell 

Expression, Expression quantitative trait loci (eQTLs) and Epigenomics (DICE) project95. 

Whenever possible, care was taken to select publicly-available genomic data gathered from the 

same primary human T cell subsets under the same activation conditions assayed in the present 

study. ChIP-Seq data for STAT5B and IRF4 were sourced from GSE4311996 and GSM2810038, 

respectively. 

Trans regulator screening results for CTLA4, RNA sequencing in the setting of trans 

regulator knockout, and ATAC-seq profiles of trans regulator knockout Tconv cells were recently 

published under GSE17173747. To identify transcription factor motifs enriched in ATAC-Seq 

peaks altered by ZNF217 knockout, bed files of called ATAC-Seq peaks gaining or losing 

log2FC=|0.3| were compared to one another using the findMotifsGenome script from HOMER 

(v4.11) with `–size 350`. Gene set enrichment of differentially-expressed genes between ZNF217 

knockout and control RNA-Seq samples was performed in R (v4.1.2) with enrichR (v3.0) using 

databases KEGG_2021_Human and GO_Biological_Process_2021. Stimulation-responsive 

ATAC-seq data for Tconv (used in all figures without perturbation ATAC-seq) and Treg cells (used 

in all figures) are published under GSE11818993. 

CTCF ChIA-PET was generated by the ENCODE Project Consortium67 and processed in 

R to plot only loops (A) detected in samples from two biological replicates within 5kb and (B) 

originating and ending in the visualized region. ChIP-seq profiles of CTCF in CD4+ T cells from 

healthy control subjects were sourced from GSE16421597. Genome tracks for gene positions, 

retrotransposable elements, and 30-way PhastCons were downloaded from the UCSC Genome 

Browser. CTCF motifs were identified with FIMO using the MA0139.1 motif from JASPAR.  

Plotting of ATAC-Seq and ChIP-Seq data was performed with ggplot2 (v3.3.5) and 

pyGenomeTracks (v3.6). 
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4.6: Figures 

 

Figure 4.1: Tiling CRISPRi screens map gene-specific cis-regulatory elements across the 
costimulatory locus.  
A. Schematic overview of CRISPRi screening workflow. B. HiC contact plot from GM12878 
originally used to design the CRISPRi sgRNA library (see Methods), with annotated TADs (black 
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and gray bars). The TAD harboring the 2q33.2 costimulatory locus is outlined and expanded in 
panels C-D. C. H3K27 acetylation in Tconv (top) and Treg (bottom) cells across the TAD designated 
in B. D. Gene bodies throughout the locus atop CRISPRi tiling screen results for each target gene 
(rows) in Tconv (top) and Treg (bottom) cells from two human donors across the TAD designated in 
B. Each point signifies the genomic position (x) and -log10(unadjusted P-value) (y) of the sgRNA. 
Blue indicates sgRNAs significantly enriched (Adjusted P-value<0.05) in the lowest 20% of target 
protein-expressing cells, and gold indicates sgRNAs significantly enriched (Adjusted P-
value<0.05) in the highest 20% of target protein-expressing cells. FACS histograms of target 
protein expression for each screen are included in the right margin, including the gated 
populations isolated for sgRNA quantification. The window labeled “CTLA4 Regulatory Region” 
is expanded in Figure 4.2.  
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Figure 4.2: Context-restricted CTLA4 enhancers colocalize with autoimmunity risk 
variants.  
A. Genomic profiles around the CTLA4 gene body (indicated by the isoform diagram) in the 
“CTLA4 Regulatory Region” indicated in Figure 4.1D. Top: CRISPRi tiling results in Tconv cells 
restimulated for 6 hours. Middle: ATAC-Seq profiles of resting (gray) and stimulated (black) Tconv 
cells. Bottom: H3K27ac profile of Tconv cells. Beige columns highlight genomic regions with 
significant sgRNAs across all CTLA4 CRISPRi screens less than 500bp from the previous 
significant sgRNA (see Methods). For all CRISPRi tiling results, each point signifies the genomic 
position (x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs enriched in 
the lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 20th 
percentile of cells. The fill gradients indicate increasing significance of sgRNA enrichment, with 
maximum colors signifying Adjusted P-value < 0.05. B. Fold change of CTLA4 median 
fluorescence intensity in primary Tconv cells from two human donors restimulated for 6h under 
arrayed CRISPRi validation of sgRNAs targeting the Stim-Responsive CiRE (N=4 sgRNAs), Treg-
Dominant CiRE (N=4), or CTLA4 TSS (N=5 for Donor 1, N=3 for Donor 2) relative to non-targeting 
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Controls (N=7 for Donor 1, N=6 for Donor 2) for each donor. Mean values were compared to the 
Control group using the Student’s T-test with Holm correction. C. Top: CRISPRi tiling results in 
Treg cells restimulated for 6 hours. Fill gradients match those in panel A. Top Middle: CRISPRi 
tiling results in Treg cells without restimulation. Bottom Middle: ATAC-Seq profiles of resting (gray) 
and stimulated (black) Treg cells. Bottom: H3K27ac profile of Treg cells. The Treg-specific H3K27Ac 
super-enhancer annotation is approximated based on prior studies41. D. Fold change of CTLA4 
median fluorescence intensity in restimulated primary Treg cells from two human donors under 
arrayed CRISPRi validation of sgRNAs targeting the Stim-Responsive CiRE (N=4), Treg-Dominant 
CiRE (N=4), or CTLA4 TSS (N=5) relative to non-targeting Controls (N=7) for each donor. Mean 
values were compared to the Control group using the Student’s T-test with Holm correction. E. 
Genetic variants and their -log10(P-value) association with rheumatoid arthritis risk. Triangle 
indicates the lead index SNP from the study. Fill color indicates linkage disequilibrium to the lead 
SNP. Arrows point to other variants nominated by CRISPRi screens and in strong LD with the 
lead SNP. Dashed line indicates genome-wide significance threshold (p < 5x10-8). F. Genetic 
variants and their -log10(P-value) association with altered CTLA4 expression. Triangle indicates 
the lead index SNP from the study. Fill color indicates linkage disequilibrium to the lead SNP. 
Arrows point to example candidate causal SNPs prioritized by CRISPRi screens. Dashed line 
indicates genome-wide significance threshold (p < 5x10-8). For all panels: *P < 0.05, **P < 0.01, 
***P < 0.005. 
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Figure 4.3: Linking trans regulators of CTLA4 to CRISPRi-Responsive Elements via 
ATAC-Seq of perturbed cells.  
A. CRISPRi tiling results for CTLA4 in Tconv cells restimulated 6 hours (top), Treg cells restimulated 
6 hours (middle), and Treg cells without restimulation (bottom) around the CTLA4 gene body. CiRE 
regions are manually annotated.  For all CRISPRi tiling results, each point signifies the genomic 
position (x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs enriched in 
the lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 20th 
percentile of cells. The fill gradients indicate increasing significance of sgRNA enrichment, with 
maximum colors signifying Adjusted P-value < 0.05. B. Effect of trans regulator knockout on 
ATAC-Seq accessibility. Dashed outline indicates CTLA4 gene body. Blue indicates positive 
regulation (i.e. trans regulator knockout decreases peak accessibility), and gold indicates negative 
regulation. Black tile outlines indicate significant changes in peak accessibility. Colored trans 
regulator labels indicate those significantly regulating CTLA4 expression either positively (blue) 
or negatively (gold) according to either the trans regulator screens or arrayed RNA-seq validation, 
and bolded and italicized labels have concordant significant effects between the trans regulator 
screens and arrayed RNA-seq validation. Bottom: ATAC-Seq of AAVS1 KO Tconv cell control 
samples from the profiling experiment. C. Public ATAC-Seq of resting (gray) and restimulated 
(black) Treg cells from a separate experiment. D. Top: ATAC-Seq of Tconv cells with either ZNF217 
(yellow), AAVS1 control (black), or IRF4 (blue) KO. Bottom: Public IRF4 ChIP-Seq in CD4+ T 
cells. CiRE regions are manually annotated. E. Changes in CTLA4, IRF4, and ZNF217 expression 
as measured by bulk RNA-seq in the setting of ZNF217 KO in human Tconv cells47. Data supporting 
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positive regulation of IRF4 on CTLA4 are plotted in Figures S3B and S3C. Asterisks indicate FDR-
adjusted P from Limma. For all panels: *P < 0.05, **P < 0.01, ***P < 0.005, n.s. Not Significant. 
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Figure 4.4: Gene co-regulation evidenced by CRISPRi and trans KO screens.  
A. CRISPRi tiling screen results for each target gene (rows) in Tconv (top) and Treg (bottom) cells 
at the three transcriptional start sites (columns). For all CRISPRi tiling results, each point signifies 
the genomic position (x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs 
enriched in the lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 
20th percentile of cells. The fill gradients indicate increasing significance of sgRNA enrichment, 
with maximum colors signifying Adjusted P-value < 0.05. B. Target protein expression in cells 
from two human donors after CRISPRi targeting of the CTLA4 TSS (left, N=3 sgRNAs for Donor 
2 Tconv samples, N=5 sgRNAs for all other samples) or CRISPR Knockout of CTLA4 downstream 
of the TSS (right, N=1 sgRNA for Donor 1 Tconv CD28 sample, N=2 sgRNAs for all other samples). 
Plotted are Median Fluorescence Intensity values normalized to Non-Targeting (CRISPRi, N=6 
sgRNAs for Donor 2 Tconv samples, N=7 sgRNAs for all other samples) or AAVS1 (KO, N=6 
sgRNAs for all samples) controls for each target gene (fill color) in Tconv (top) and Treg (bottom) 
cells. Significance calculated with the Student’s t-test with Holm correction. For all panels: 
*P < 0.05, **P < 0.01, ***P < 0.005, n.s. Not Significant. 
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Figure 4.5: CTCF boundary sites coordinate enhancer looping to costimulatory genes.  
A. Top: CRISPRi tiling screen results for each target gene (rows) in Tconv (top) and Treg (bottom) 
cells. Gray bars indicate costimulatory gene bodies, and the Stim-Responsive and Treg-Dominant 
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CiREs are manually labeled. For all CRISPRi tiling results, each point signifies the genomic 
position (x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs enriched in 
the lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 20th 
percentile of cells. The fill gradients indicate increasing significance of sgRNA enrichment, with 
maximum colors signifying Adjusted P-value < 0.05. Middle: ATAC-Seq profiles in Tconv (top) and 
Treg (bottom) cells. Bottom: 1- (top) and 2-Dimensional (bottom) CTCF-bound genomic contacts 
identified by ChIA-PET in human CD4+ T cells filtered for contacts that (1) both originate and end 
in the target locus and (2) are shared between two donors within 5kb. Dashed outlines indicate 
CRISPRi-responsive elements colocalizing with CTCF ChIA-PET peaks. B. Schematic overview 
of conditions plotted in C and D. CRISPRa was recruited to the Stim-Responsive CTLA4 enhancer 
in the setting of an intact CTCF-2 boundary region (top) or in the setting of dual-sgRNA mediated 
excision (Figure S4.7B) of the CTCF-2 boundary region (bottom). C. Changes in CD28 Median 
Fluorescence Intensity (MFI) in the setting of Non-Targeting Control (NTC, N=3 sgRNAs, light 
color) or Stim-Responsive CiRE (N=3 sgRNAs, dark color) targeting by CRISPRa with either 
AAVS1 control region (“Intact Boundary”, left) or CTCF-2 boundary region (“ΔCTCF-2”, right) 
excision in Tconv cells from four human donors. Each sample is normalized to CRISPRa non-
targeting control MFI mean after AAVS1 control region or CTCF-2 region excision. D. Changes in 
CTLA4 MFI in the setting of Non-Targeting Control (NTC, N=3 sgRNAs, light color) or Stim-
Responsive CiRE (N=3 sgRNAs, dark color) targeting by CRISPRa after AAVS1 control region 
(“Intact Boundary”, left) or CTCF-2 boundary region (“ΔCTCF-2”, right) excision. Each sample is 
normalized to CRISPRa non-targeting control MFI mean after AAVS1 control region or CTCF-2 
region excision in Tconv cells from four human donors. For both C and D, the results of Student’s 
t-test with Holm correction comparing NTC and Stim-Responsive CiRE CRISPRa are included in 
gray, and the results of paired Student’s t-test with Holm correction comparing Stim-Responsive 
CiRE CRISPRa in Intact Boundary or ΔCTCF-2 conditions are included in black. E. 4C-seq plot 
for CTCF-2 CRISPRi Tconv cells from one donor, anchored on Stim-Responsive CiRE, plotting 
contacts in Non-Targeting Control (black) and CTCF-2 targeting (green) conditions. CRISPRi 
tiling screen results in Tconv cells are plotted, where each bar signifies the genomic position (x) 
and -log10(Adjusted P-value) (fill) of the sgRNA. Maximum colors signify Adjusted P-value < 0.05. 
HiC from intact CD4+ T cells84 is shown at the bottom. Scale bar indicates genomic region that is 
plotted. The 4C viewpoint and CTCF-2 boundary are indicated by arrowheads. Dashed box 
regions indicate CD28, CTLA4, and ICOS (left to right) gene bodies. Biological replicate data are 
included in Figure S4.7. F. Normalized 4C signal intensity between Non-Targeting Control and 
CTCF-2 CRISPRi targeting groups for the CD28 gene body. G. Normalized 4C signal intensity 
between Non-Targeting Control and CTCF-2 CRISPRi targeting groups for the CTLA4 gene body. 
H.  Normalized 4C signal intensity between Non-Targeting Control and CTCF-2 CRISPRi 
targeting groups for the ICOS gene body. For F-H, each dot represents the log-transformed 4C 
signal intensity of each captured genomic region in either the CD28, CTLA4, or ICOS gene body 
(see Methods). For all panels: *P < 0.05, **P < 0.01, ***P < 0.005, n.s. Not Significant. 
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Figure S4.1: Target protein expression and CRISPRi tiling screen preparations.  
A. Protein expression of CD28 (left), CTLA4 (middle) and ICOS (right) in Tconv (top) and Treg 
(bottom) cells after 0 hours (black), 6 hours (dark gray), or 24 hours (light gray) after restimulation. 
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B. Examination of high versus low protein bin sgRNA enrichment (log2) matched by gene target 
in bulk CD4+ T cells from one human donor. Colors indicate significant (Adjusted P-value < 0.05) 
sgRNA enrichment with the dCas9-ZIM3 (orange), dCas9-KRAB (yellow), or both (purple) 
CRISPRi systems. C. Representative FACS gating strategy for CRISPRi screens in Tconv cells. D. 
Representative FACS gating strategy for CRISPRi screens in Treg cells. E. Correlation of log2(Fold 
Change) sgRNA enrichment between high versus low protein bins matched by cell type and gene 
target for each donor. Blue sgRNAs were significantly enriched in the low bin (Adjusted P-value 
< 0.05, LFC < 0), gold sgRNAs were significantly enriched in the high bin (Adjusted P-value < 
0.05, LFC > 0), and grey sgRNAs were non-significant (Adjusted P-value > 0.05). Inset includes 
Pearson statistics for each group. F. Log2(Fold Change) sgRNA enrichment between high versus 
low protein bins for each gene target and cell type categorized by distance to the target gene 
transcriptional start site. Adjusted P-values were calculated with the ANOVA test for each target 
per cell type.  
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Figure S4.2: Tiling CRISPRi screens chart cis regulation of CD28 and ICOS expression.  
A. Genomic profiles of Tconv and Treg cells at the CD28 gene body as indicated by the isoform 
diagrams at top. Top: CRISPRi, ATAC-seq, and H3K27ac ChIP-seq profiles in Tconv cells. Bottom: 
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CRISPRi, ATAC-seq, and H3K27ac ChIP-seq profiles in Treg cells. For ATAC-Seq profiles, 
accessibility for both resting (gray) and stimulated (black) Tconv cells are plotted. Gray columns 
indicate the CD28 gene body. B. Genomic profiles of Tconv and Treg cells at the ICOS gene body 
as indicated by the isoform diagrams at top. Top: CRISPRi, ATAC-seq, and H3K27ac ChIP-seq 
profiles in Tconv cells. Bottom: CRISPRi, ATAC-seq, and H3K27ac ChIP-seq profiles in Treg cells. 
For ATAC-Seq profiles, accessibility for both resting (gray) and stimulated (black) Tconv cells are 
plotted. Gray columns indicate the CD28 gene body. C. CRISPR results for each cell type, 
restimulation condition, and target gene at the Stim-Responsive and Treg-Dominant CiREs 
described in Figure 4.2. For all CRISPRi tiling results, each point signifies the genomic position 
(x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs enriched in the 
lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 20th percentile 
of cells. The fill gradients indicate increasing significance of sgRNA enrichment, with maximum 
colors signifying Adjusted P-value < 0.05. D. Log-transformed distribution of genomic distance 
(Basepair, Bp) for each significant sgRNA (Adjusted P-value < 0.05) to the next significant sgRNA 
across all CTLA4 CRISPRi screens. Subset under 1kb (gray box with black outline) is re-plotted 
in E. E. Non-transformed (linear) representation of the subset of genomic distances plotted in D 
(gray box with black outline) thresholded on inter-sgRNA distances less than 1kb. A cutoff of 
500bp to the next significant sgRNA (dashed line) at the end of the distribution tail was used to 
identify CiREs for Figure 4.2 (beige regions) in an unbiased way.  
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Figure S4.3: Trans regulator screens identify shared and unique gene regulatory 
modules.  
A. Schematic overview of CRISPR KO screens to identify trans regulators of gene expression in 
primary human Tconv cells from two human donors. B. Trans regulators of one or more target gene 
products in the locus in primary human Tconv cells are shown. Trans regulators are grouped by the 
gene product(s) they significantly regulate (Adjusted P-value < 0.05). Blue indicates positive 
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regulators of gene expression, and gold indicates negative regulators. C. Effect on costimulatory 
genes (columns) in the setting of trans regulator perturbation (rows). Fill values indicate log2(fold 
change) enrichment from the pooled KO screen (left) or as measured by RNA-seq in the setting 
of arrayed trans regulator KO47 (right). D. Log2(High bin/Low bin) enrichment of sgRNAs targeting 
the set of trans regulators significantly regulating all three costimulatory genes. Blue bars 
represent sgRNAs associated with positive trans regulators for each costimulatory gene, gold 
bars represent sgRNAs associated with negative trans regulators, and gray bars indicate the 
background sgRNA distribution.  
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Figure S4.4: Associating trans regulators of CD28 and ICOS with CRISPRi-Responsive 
Elements via ATAC-Seq of perturbed cells.  
A. CRISPRi tiling, ATAC-Seq peak accessibility changes in the setting of trans regulator knockout, 
and reference ATAC-Seq tracks for the CD28 gene body. B. CRISPRi tiling, ATAC-Seq peak 
accessibility changes in the setting of trans regulator knockout, and reference ATAC-Seq tracks 
for the CD28 gene body. For all CRISPRi tiling results, each point signifies the genomic position 
(x) and -log10(unadjusted P-value) (y) of the sgRNA. Blue indicates sgRNAs enriched in the 
lowest 20th percentile of cells, and gold indicates sgRNAs enriched in the highest 20th percentile 
of cells. The fill gradients indicate increasing significance of sgRNA enrichment, with maximum 
colors signifying Adjusted P-value < 0.05. For tile plots measuring peak accessibility changes, 
blue indicates positive regulation (i.e. trans regulator knockout decreases peak accessibility) and 
gold indicates negative regulation. Outlined tiles indicate significant changes in peak accessibility. 
Colored trans regulator labels indicate those significantly regulating costimulatory gene 
expression either positively (blue) or negatively (gold) according to either the trans regulator 
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screens or arrayed RNA-seq validation, and bolded and italicized labels have concordant 
significant effects between the trans regulator screens and arrayed RNA-seq validation.  
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Figure S4.5: ZNF217 broadly affects gene regulatory networks acting on the 
costimulatory genes.  
A. Top: ATAC-Seq of Tconv cells with either ZNF217 (yellow) or AAVS1 control (black) knockout 
across the entire costimulatory gene region (chr2:203696475-203967032). Costimulatory gene 
bodies are indicated. Middle: Bars indicate ATAC-Seq peaks that significantly gain (gold) or lose 
(blue) accessibility with ZNF217 KO. Bottom: Bars indicate ATAC-Seq peaks that significantly 
gain (red) or lose (purple) accessibility upon T cell stimulation. B. Comparison of the effect of 
ZNF217 knockout (FDR<0.1) on trans factors that regulate each costimulatory gene (FDR<0.1). 
C. Bar plots indicate the top three KEGG and GO terms associated with sets of genes significantly 
(FDR<0.05) down- (left) or up-regulated (right) by ZNF217 knockout. Volcano plot indicates gene 
expression changes in the setting of ZNF217 KO relative to AAVS1 controls. Down- (blue) or up-
regulated (gold) genes associated with the top KEGG or GO term are colored, and the top ten 
most significantly altered genes associated with any KEGG or GO term are labeled. Dashed line 
indicates -log10(Adjusted P-value = 0.05).   
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Figure S4.6: Co-regulation of trans factors on adjacent costimulatory genes.  
Correlation of log2(fold change) of trans regulator effects on all costimulatory receptor pairs. Gray 
contour plot represents effect sizes of sgRNAs not significantly affecting the expression of any 
one target gene. Black points indicate trans regulators significantly regulating at least one 
costimulatory receptor. Insets include Pearson statistics. Lines indicate best fit from a general 
linear model. 
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Figure S4.7: Disruption of CTCF boundary between CD28 and CTLA4 alters chromatin 
looping of stim-responsive CiRE.  
A. Public H3K27ac, H3K4me1, and H3K4me3 ChIP-seq data in primary human Tconv (top) and 
Treg (bottom) cells in the region plotted in Figure 4.5A. Gray bars indicate costimulatory gene 
bodies, and the Stim-Responsive and Treg-Dominant CiREs are labeled. Dashed outlines indicate 
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CRISPRi-responsive elements colocalizing with CTCF ChIA-PET peaks. B. Zoomed view of 
region CTCF-2 region indicated in A, with track visualizations of retrotransposable elements, 
PhastCons 30-way conservation, CTCF motif scores and positions, 1D CTCF ChIA-PET, and 
CTCF ChIP-Seq. Genomic positions of sgRNAs used for CTCF Cluster excision in Figure 4.5 are 
plotted at bottom. C. Target protein expression in cells from two human donors after CRISPRi 
targeting of the CTCF-2 region (N=3 sgRNAs for all samples) outlined in A. Plotted are Median 
Fluorescence Intensity (MFI) values normalized to Non-Targeting Controls (N=6 sgRNAs for 
Donor 2 Tconv samples, N=7 sgRNAs for all other samples) in Tconv (top) and Treg (bottom) cells. 
Significance calculated with the Student’s t-test with Holm correction. For all panels: *P < 0.05, 
**P < 0.01, ***P < 0.005, n.s. Not Significant.  D. Biological replicate of Figure 4.5E. 4C-seq plot 
for CTCF-2 CRISPRi Tconv cells from one donor, anchored on Stim-Responsive CiRE, plotting 
contacts in Non-Targeting Control (black) and CTCF-2 CRISPRi targeting (green) conditions. 
CRISPRi tiling screen results in Tconv cells are plotted, where each bar signifies the genomic 
position (x) and -log10(Adjusted P-value) (fill) of the sgRNA. Maximum colors signify Adjusted P-
value < 0.05. HiC from intact CD4+ T cells84 is shown at the bottom. Scale bar indicates genomic 
region that is plotted. The 4C viewpoint and CTCF-2 boundary are indicated by arrowheads. 
Dashed box regions indicate CD28, CTLA4, and ICOS (left to right) gene bodies. E. Normalized 
4C signal intensity between Non-Targeting Control and CTCF-2 targeting CRISPRi groups for the 
CD28 gene body. F. Normalized 4C signal intensity between Non-Targeting Control and CTCF-2 
targeting CRISPRi groups for the CTLA4 gene body. G. Normalized 4C signal intensity between 
Non-Targeting Control and CTCF-2 targeting CRISPRi groups for the ICOS gene body. For E-G, 
each dot represents the log-transformed 4C signal intensity of each captured genomic region in 
either the CD28, CTLA4, or ICOS gene body (see Methods).  
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Chapter 5: Conclusion, Future Directions, and Closing Remarks 

As stated in Chapter 1, the most impactful scientific projects answer some questions but 

uncover countless others. Consequently, new methods must be developed concomitantly to meet 

the ever-expanding set of opportunities to better understand the biological world. Fortunately for 

immunologists, novel analytical methods are often pioneered first in immune cells, primarily due 

to their ready accessibility and relatively simple culture in vitro. Just as flow cytometry was 

adapted from early immunological studies to examinations of countless other cell types1, 

immunologists will likely continue to access emerging molecular and cellular analytical tools first. 

5.1: Characterizing the immune system at single cell resolution. 

Of the recent innovations, few have impacted the scientific landscape as much as droplet-

based single cell sequencing technologies. The first single cell technologies to examine RNA 

transcriptomes were reported less than a decade ago2, but they have quickly taken hold of the 

field. They have imparted unprecedented opportunity to finely characterize cellular heterogeneity 

in transcriptional3, chromatin accessibility4, mitochondrial5, and other6 forms. Moreover, these 

methods can be paired with perturbational screens (like that outlined in Chapter 4) to provide a 

richer phenotypic readout of the effects of experimental variables7. Complementarily, single cell 

analyses will be indispensable for extracting more information from natural experiments like 

population genetic variation8. I look forward to continuing contributing to efforts to employ single 

cell methods to better characterize complex biological processes9,10.  

Whereas droplet-based single cell sequencing technologies can capture the genotypic 

and/or phenotypic heterogeneity within a mixed cellular suspension, one must consider how such 

heterogeneity is distributed within tissue contexts. Understanding the different types of immune 

cells in the tumor microenvironment is one thing; characterizing how these different cells are 

distributed around or within the tumor is another thing entirely. Recently, droplet-based single cell 

methods have been complemented by emerging technologies to spatially-characterize biological 



 

 124 

processes11. There are exciting opportunities to coopt these spatial profiling methods for forward 

genetic screening, providing a more sophisticated lens into the biological effects of specific 

perturbations12.  

5.2: Meeting the expanding analytical burden 

Technological innovation and commercialization are driving down costs of next-generation 

sequencing and (spatial) single cell profiling methods, but the increasing prevalence of such data-

rich scientific approaches will significantly increase the amount of data scientists need to sift 

through for biological insights13. Fortunately, new computational abilities are conferring previously 

untold power to uncover novel scientific insights from (once prohibitively) large datasets, including 

the co-development of hardware14 and associated computing infrastructure that underlies recent 

advances in machine learning (ML) and artificial intelligence (AI). These methods are now being 

applied to a wide array of scientific arenas, from diagnostics (as shared in Chapter 3) to drug 

discovery15. In genomics16, these powerful new analytical approaches will aid our transition from 

a linear understanding of biology to a more complex, non-linear one.  

To these ends, ML methods have already made inroads in perturbational single cell screen 

analyses17. Similarly, these tools will be critical to better understand the complexities of gene 

regulation18 as tackled in Chapter 4. Importantly, these computational models are only as good 

as the training data fed into them. Thus, functional genomic studies like that in Chapter 4 will be 

important to train models for identification of cis-regulatory elements, inference of effects of 

genetic variants, and the like. Thus, functional genomics and computational biology will be 

mutually reliant on one another moving forward, each providing the other with the capacity to 

garner biological insights and ultimately inform the next generation of biomedicine.  
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