
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Multimodal event driven N-of-1 analysis of individual lifestyle and health

Permalink
https://escholarship.org/uc/item/5hn5g1dj

Author
Pandey, Vaibhav

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hn5g1dj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Multimodal event driven N-of-1 analysis of individual lifestyle and health

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Vaibhav Pandey

Dissertation Committee:
Professor Ramesh Jain, Chair

Professor Michael Carey
Professor Bin Nan

2021

© 2021 Vaibhav Pandey

DEDICATION

To my loving parents, mentors, teachers, and friends who have guided and supported me
throughout my life.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES xiii

LIST OF ALGORITHMS xiv

ACKNOWLEDGMENTS xv

VITA xvi

ABSTRACT OF THE DISSERTATION xix

1 Introduction 1
1.1 Single subject modeling . 3

1.1.1 Personal Data Collection . 3
1.1.2 N-of-1 studies and Personal Science 5

1.2 Contributions . 5
1.3 Thesis outline . 6

2 Understanding individuals: Longitudinal modeling paradigms 8
2.1 Longitudinal modeling paradigms . 10

2.1.1 Variable-centered analysis . 11
2.1.2 Person-centered analysis . 13
2.1.3 Person-specific analysis . 14
2.1.4 Equivalence of approaches . 17

2.2 N-of-1 modeling . 18
2.3 Personal Longitudinal data collection . 21
2.4 Complex Events Processing . 22
2.5 Design requirements for N-of-1 event mining framework 26

2.5.1 Data fusion . 26
2.5.2 Knowledge integration . 26
2.5.3 Pattern discovery and spurious pattern filtering 27
2.5.4 Interpretability: Causally significant patterns from observational data 27
2.5.5 Reusable individual models . 27

iii

3 Literature Review 29
3.1 Temporal Knowledge Structures . 30

3.1.1 Events . 30
3.1.2 Temporal Patterns . 31

3.2 Event Sequence Modeling and Reasoning . 36
3.2.1 Event Pattern Mining . 36
3.2.2 Situation Calculus . 43
3.2.3 Point process event sequence models 45

3.3 Event Analysis Tasks . 46
3.3.1 Summarization . 46
3.3.2 Prediction . 48
3.3.3 Anomaly detection . 48
3.3.4 Causality Analysis . 48

3.4 Event Analysis applications . 49
3.4.1 Health Applications . 49
3.4.2 Social Media . 51
3.4.3 E-commerce . 51

4 Event Mining: Concepts and System 53
4.1 Concepts and definitions . 54

4.1.1 Events and Event streams . 55
4.1.2 Event operators . 56
4.1.3 Pattern . 59
4.1.4 Groups and Aggregations . 60

4.2 Event Mining System: Functional requirements 62
4.2.1 Data Fusion . 63
4.2.2 Event Creation . 63
4.2.3 Pattern Creation . 66

4.3 System Architecture . 66

5 Knowledge Integration and Hypothesis testing 70
5.1 Events in a cybernetic system . 72
5.2 Causal relationships between events . 73

5.2.1 Event patterns as causal links between events 75
5.3 Hypothesis Specification . 76

5.3.1 Capturing knowledge as DAG . 77
5.3.2 Causal hypothesis . 79

5.4 Hypothesis testing . 81
5.4.1 do-operator . 82
5.4.2 Unit Matching and testing . 83

5.5 Use cases . 88

iv

6 Data-driven temporal event pattern discovery: Hypothesis discovery 89
6.1 Temporal Pattern discovery . 90

6.1.1 Multimodal Event clustering . 91
6.1.2 Event Episode . 93
6.1.3 Event and Pattern model . 95

6.2 Pattern Discovery Algorithms . 97
6.2.1 Pairwise Event Pattern Discovery . 98
6.2.2 Tree based episode indexing . 100
6.2.3 Frequent closed SISP extraction . 101

6.3 Analysis process . 103
6.4 Simulated data experiments . 103

6.4.1 Data generation . 104
6.4.2 Results and Discussion . 105

7 Personal Models: Exploration and Examples in Personal Health 109
7.1 Personalized Health Models . 109
7.2 Case Study I: Continuous Health Interface Event Retrieval 113

7.2.1 Knowledge driven event extraction 115
7.2.2 Methodology . 117
7.2.3 Dataset . 117
7.2.4 Interface Events . 118
7.2.5 Results . 120

7.3 Case Study II: Personalized models for understanding sleep behavior 123
7.3.1 Causal Rule-based modelling: Event Mining 124
7.3.2 Multi-Item Health Recommendations 126
7.3.3 Methodology . 128
7.3.4 Data Set . 129
7.3.5 Causal Rules and Effects from N-of-1 Experiments 129
7.3.6 Context Matching and Sleep Predictions 132

7.4 Case Study III: Optimizing training for endurance activity performance . . . 134
7.4.1 Dataset . 134
7.4.2 Experiment . 135
7.4.3 Hypothesis . 136
7.4.4 Results and Conclusion . 138

7.5 Case Study IV: Context dependent taste preference modeling 141
7.5.1 Food Event Model . 142
7.5.2 The Causal Aspect . 144
7.5.3 Experimental Design . 145
7.5.4 Results . 148

8 Conclusion 153

Bibliography 157

Appendix A Taste Space Modeling 173

v

Appendix B Event Mining System Implementation 175

vi

LIST OF FIGURES

Page

2.1 Parsimony vs Specificity for longitudinal modeling paradigms 12
2.2 A conceptual framework for N-of-1 modeling using multi-modal longitudinal

data. We can utilize the three longitudinal analysis approaches to create a
N-of-1 modeling framework capable of deriving personalized models that are
interpretable. 20

2.3 Complex Event Processing platforms allow us to model complex, event-driven
systems that are divided into several hierarchical layers. These systems help
identify event patterns, associate triggers with specific patterns and events,
and maintain the chain of causality between events. These systems describe
two types of causality between events, 1) vertical causality where events
in different layers are causally related, and 2) horizontal causality where
events in the same layer are causally related. 23

2.4 Event patterns can be used to represent vertical and horizontal causality in
event-driven systems. Vertical causality patterns can also contribute to event
abstraction and translate low-level system events to high-level user interac-
tions. Horizontal causality patterns can enhance discovery of vertical patterns
and make predictions about system behavior at the same level. Triggers can
be associated with occurrences of various events and patterns that help coor-
dinate actions with third party services. 25

3.1 Examples of Allen’s interval relationships between two interval events A and
B. First six relations can be inverted. 32

3.2 a) Horizontal Sequence database, b) Vertical Sequence database [38] 38
3.3 Outflow [199] utilizes Sankey diagram based visualization for explicitly de-

scribing event trajectories over time for the individuals in the Framingham
study. 47

4.1 Events provide a natural abstraction over data streams and segment time in
intervals with semantic meaning. Event abstraction also allows us to fuse data
from multiple sources and enhance our understanding of real-world actions. . 54

4.2 Events provide an abstraction for real world activities and event parameters
capture information from disparate multi modal data streams. These param-
eters can be structured in six different aspects. Each of these aspects can be
used to answer one of the W5H questions about the event occurrence. 55

4.3 Event operators for creating new event streams from the existing ones. . . . 58

vii

4.4 Event pattern operators to capture different temporal relationships between
the events. 60

4.5 High level overview of the event mining analysis workflow. The analyst in the
loop identify the significant or non-spurious patterns from the set of discovered
patterns. They can combine the significant patterns and their knowledge of
the domain to create a hypothesis that can then be tested using the platform. 62

4.6 Database schema used to combine data and event streams from different sources. 63
4.7 Event creation operators in the event mining platform. a) Threshold based

segmentation. Matches the values of the time series to a label using non-
overlapping ranges. Continuous intervals defined as having the same label are
stored as new events. b) SAX based segmentation. Converts the numeric time
series to symbolic series and finds frequent sub strings as motifs. These sub
strings represent possible new events. 65

4.8 A high-level view of interactions between component systems of the event
mining platform. 67

4.9 Different panels for exploratory analysis in the event mining dashboard. a)
Data selection panel, where the analyst can select events, data streams and
time range for the analysis, b) Events panel, where the analyst can visualize
the selected events and create new events, and c) Patterns panel, where the
analyst can create and visualize patterns between various event streams. . . 69

5.1 Event interactions between a dynamic system and the external environment.
These interactions determine the future state and behavior of the system.
Event mining operations can be used to articulate and test these relationships. 73

5.2 Exercise and Sleep events affect cardio-respiratory fitness. Every endurance
exercise event (such as running) puts a volumetric stress on our heart, that
reduces the maximal work capacity temporarily, but adequate amount of rest
(sleep) can lead to an improvement in maximal work capacity. However, in
absence of future exercise events, VO2 Max would asymptotically return to
its baseline value. Thus, the effect of exercise and sleep on VO2 Max can be
viewed as an impulse response that slowly goes down to zero. 75

5.3 a) Events have causal relationships among themselves, and these relationships
manifest themselves in different parameters and event occurrences. b) Pairs
of such events can be captured using event pattern operators with appropri-
ate temporal delay. c) Group and aggregation operators allow us to derive
multiple causal factors from an event pattern that represent multiple causal
pathways between the events. 77

5.4 Causal relationships between variables can be captured in a DAG structure
called Causal Graphical Model (CGM). The do-operator can be used to
find the causal effect of intervention (X) on the outcome (Y). Conceptually,
the do-operator is equivalent to removing all incoming causal links to the
intervention, that could lead to a backdoor path to the outcome. In the above
figure, we remove the link from B to X (by controlling for B) but not on C
as it is the collider node between X and Y, and blocking on it would open
another back-door path from X to Y. 81

viii

5.5 Detailed view of hypothesis testing framework. Treatment, outcome and co-
variates are derived from event operations associated with every node in the
causal graph. The parameter values are then converted to categorical labels
and the units are then matched using CEM (Coarsened Exact Matching).
For each matched set we find the validity of the encoded relationship using
Fisher’s exact test and significant relationships are added to the set of rules
that describe the model of the system. These rules can be continuously up-
dated using incoming data and provide a causal understanding of the system
(shown in the red outline). 82

6.1 Events of the same type can still have a lot of variance in terms of the ex-
perience of the events. This variance is captured by the event features and
concurrently captured multi modal data streams. Clustering on these related
parameters can help us find new event labels that lead to reduced variance in
events with the same label. This figure shows the reduction in values of event
parameters for sleep, run and walk events after clustering the events to find
clusters of events with similar experiential and informational aspects. 93

6.2 Event episodes highlighted on a timeline. This figure shows an example of
event episodes relative to sleep events and includes meals, exercise and
screen activity events. Every event in the sleep event stream has a cor-
responding event episode. Episode duration is [2, 24] hours, therefore events
from the selected event streams occurring in the specified window are included
in an event episode. 94

6.3 Semi-interval Partial Order (SIPO) patterns allow increased flexibility com-
pared to interval algebra patterns as situations requiring multiple interval
algebra patterns can be described using a single SIPO and thus can be dis-
covered at a higher support threshold and reducing the number of spurious
patterns. SIPO also have the added advantage of requiring only two types of
event relationship operator (sequential and concurrent), which can be easily
extended to incorporate the observed temporal gap distribution between the
events. 97

6.4 A sample tree model of semi-interval events leading to poor sleep events.
Every path on the tree starting from the root node represents a sequential
pattern. 97

6.5 Distribution of number of pairwise frequent event patterns discovered and
their occurrences versus induced error rates and episode duration in the syn-
thetic data. 105

6.6 Occurrences of patterns of different lengths (displayed in legend) for varying
episode duration. 106

7.1 Our lifestyle events have a large impact on our health. Our habits can either
lead us to a virtuous cycle, where positive health results are a natural outcome
of our habits and in turn help sustain those habits, or a vicious cycle, where
our lifestyle leads to a decline in health which in turn makes sustaining healthy
habits even more difficult. 110

ix

7.2 This figure shows that detecting relevant interface events is necessary to es-
timate the physiological state of an individual from their lifelog information.
Here two examples of life events are given that cause opposite outcomes in
cardiac adaptation. Both events at a crude level can be considered exercise,
but precisely extracting the interface event is critical if we are to use the lifelog
information to estimate evolving health states. 114

7.3 This figure depicts the instances during a day where the individual’s PM2.5
intake is expected to be high. This is determined by combining heart rate
zone events (HR ≥ 120 bpm) with High PM2.5 concentration events, which
in turn is determined using location stream and air pollution data. 116

7.4 This figure shows the application of AND operator to combine events. We are
trying to detect interface events where the heart rate of the individual is in
zone 4 (170-190 bpm) while they are climbing a slope on a bicycle. 116

7.5 This figure shows different interface events retrieved using user-generated
data. Different days of the year are represented as concentric circles, and
different sectors of the circle represent different times of the day. Events in
a day are represented as colored arcs on that circle. Volume and pressure
overload events are retrieved using lifestyle data and events such as heart rate
and exercise events. We can see that we can retrieve a significantly larger
number of interface events by combining events from multiple data streams.
This figure also shows the environmental interface events. High PM2.5 intake
events are recognized over one week. These are the instances where per minute
PM2.5 intake was higher than 0.7 µg. Low blood oxygen events are recog-
nized over one year, where blood oxygen saturation goes below 95%. The
highlighted sectors roughly represent the time between sunrise and sunset;
thus, we can see how different events overlap with circadian patterns. 120

7.6 This figure shows the results of a real-world query about exercise behavior.
The bar plots show the exercise frequency and exercise minutes per week over
a year. The polar plot shows all the exercise events during the day, where the
highlighted sector roughly matches the time between sunset and sunrise. Thus
we can see how likely are these events to cause any disruptions in circadian
patterns. 121

7.7 This figure shows the continuous retrieval of volume overload and hypoxia
events over the course of a year. 122

7.8 User Centered Semantic Rings with a focus on sleep. These rings show the
most relevant factors that contribute to an individuals sleep state. 124

7.9 Rule based personal model for predicting sleep outcomes. We divide the oc-
currences of the outcome events into smaller subsets based on the values of
co-occurring contextual factors. This minimizes the variance in the outcome
due to the confounding variables within each subset. Subsets that exhibit
significantly different distribution for different values of input events are con-
verted to rules and added to the model. 125

x

7.10 Live context calculation. The system updates user context every time they log
an event. We retrieve all the sub-events and parameters relevant for context
calculation (e.g., time of meal from dinner event). The retrieved contextual
information is added to the existing context, and the updated context is used
to generate a new set of recommendations. These recommendations are then
sent either to the user or to a device controlling the user’s environmental factors.127

7.11 Average Effects that each input event has on the output event when compared
to each input event’s base category. If a metric is 0 then no significant relations
were found. 131

7.12 Comparison of pre-trained model vs. online training. Online training allows
the model to adapt to user’s changing sleep behavior resulting in lower error
in predictions. 132

7.13 Progression of features for the 5 individuals over time. The features were
created using pattern-group-aggregate event operations. Each value shown in
these plots is related to an outcome event (Exercise with CRF value) and is
used in a graphical hypothesis to find the causal effect of the parameters on the
performance parameters of the outcome event. All duration features (resting
and total exercise) are measured in minutes, Elevation gain is measured in feet.139

7.14 Average causal effects of interventions on different performance parameters.
This figure is divided into 4 quadrants based on the Power HRR% zone for the
users. Each row of graphs, in a given quadrant, represents the most significant
positive (L) and negative (R) intervening factors that causally affects the
power produced in the corresponding HRR% zone. Each bar in the graph
shows the average causal effect of the intervention represented by the label of
the corresponding bar. For example, the most effective intervention for User1
is exercising between 8010 to 8340 minutes in the past 42 days. 140

7.15 Personal food computing overview and relevant proposed layers. 141
7.16 Food Event Model: It is essential to capture all the different aspects that a

food event contains in order to build powerful models. The causal aspect of a
food event is especially challenging to capture. In the bottom right and left
corners, we see prior events that cause food events to occur on the bottom left
(such as a user’s taste model), and we see what future events the food event
is responsible for affecting (such as a user’s health). 143

7.17 Causal Preferential Model Architecture: The food logging platform captures
the different aspects of the food events. We use event mining to find contextual
patterns and build a taste profile for each pattern and update the preferential
subsection of the personal food model. 145

7.18 Dataset Summary: This figure displays a summary of our events dataset. This
includes the frequency distribution for the different events that are present in
the events log for the five people in our dataset. The event relationships were
encoded as probabilistic transitions in a Markov-chain model. Concurrent and
past contextual events also affect the parameters of the lifestyle events. . . . 146

xi

7.19 Experimental Design: This figure illustrates how we perform hypothesis test-
ing using synthetic data. The events dataset contains the list of event types
which are to be generated such as food and activity. The events must re-
semble the real data statistically so the parameters are carefully selected and
are fed to the Markov-chain event generator engine to create the synthesized
dataset. Then we use event mining to apply our model to the dataset and
test its viability in action. 148

7.20 Variation in taste preferences with context. This figure shows how the pref-
erences for different taste aspects change with context. We can see that for
User1, the preference for sweet, bitter, and umami flavors during lunch goes
down with increase in temperature. 150

7.21 Model performance using Top-5 predictions accuracy. We can see that for
all users adding all contextual factors (Stress+Temperature) leads to a better
model than no contextual information. 151

7.22 Model accuracy vs training data volume. The context-aware model appears
to stabilize at 128 days as mentioned in Section 6.3. As expected, initially the
non-contextual model outperforms the context-aware model, but with more
training data, the context-aware model has the higher accuracy. 152

xii

LIST OF TABLES

Page

2.1 Comparison of the three longitudinal modeling approaches 16

5.1 Examples of causal event relationships captured using patterns. 76

6.1 SISPs extracted for episode duration = 120 minutes, α = 0.4 and β = 0.1. . . 107
6.2 SISPs extracted for episode duration = 250 minutes, α = 0.4 and β = 0.1. . . 108

7.1 Data streams and sources . 118
7.2 Sleep Quality Measure and Event Thresholds 130
7.3 Lifestyle Factors and Event Thresholds . 130
7.4 Event patterns and group representation of features used in experiments. . . 137

xiii

LIST OF ALGORITHMS

Page
1 Frequent pairwise conditional sequential pattern discovery 99
2 Filter episodes using frequent conditional sequential patterns 101
3 Index events in the suffix tree structure to discover frequent sequential patterns102
4 Recursive depth-first traversal of the event tree model to obtain frequent patterns102

xiv

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Ramesh Jain, for being a great mentor, teacher,
and friend. He has been the single greatest source of inspiration and motivation during my
time as a graduate student. We spent many hours discussing my research, future prospects,
and well-being, especially during the pandemic. His research inputs played a vital role in
helping me write this dissertation, and every discussion with him left me with renewed
motivation for doing meaningful work. His positive approach towards life and research has
helped me gain a new perspective about myself and my place in the world. I am eternally
grateful to have worked with him and hope to continue doing so in the future.

I would like to thank my committee members, Prof. Michael J Carey and Prof. Bin Nan.
Mike is a fantastic thinker and systems researcher. His insights about formulating my re-
search and dissertation were crucial and have helped me communicate my work effectively.
Bin’s insights and questions about the interplay between population, sub-population, and
individual models added a new dimension to my research and have also given me a direction
for my future research endeavors.

I would like to thank my colleagues and lab mates Nitish Nag, Dhruv Upadhyay, Ali Rostami,
Hyungik Oh, and Preston Putzel for stimulating research discussion and support throughout
my Ph.D. I would especially like to thank Nitish and Dhruv for their support and collabora-
tion. Nitish has been a great friend. I truly cherish our conversations over countless meals,
coffees, bike rides, and rock-climbing sessions (while I was desperately clinging for my life).
Our discussions about understanding individuals and their behavior were a great help while
formulating my dissertation. Dhruv made crucial contributions to the development of the
event mining platform, and I am grateful to have worked with him on multiple projects.

Lastly, I would like to thank my parents for their love, support, and unwavering faith in
me. They gave me the strength to believe in myself and strive to achieve my dreams. I
would also like to thank my brother, sister, brother-in-law, sister-in-law, nephew, and niece
for being in my life whenever I needed their support. Their constant presence gave me the
determination to push through the pandemic and complete this dissertation.

xv

VITA

Vaibhav Pandey

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine (UCI) Irvine, CA

Master of Science in Computer Science 2019
University of California, Irvine (UCI) Irvine, CA

Bachelor of Technology in Computer Science and Technology (H) 2013
Indian Institute of Technology Kharagpur (IIT KGP) Kharagpur, India

RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2021
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2019
University of California, Irvine Irvine, California

xvi

PUBLICATIONS

Event Mining Driven Context-Aware Personal Food
Preference Modeling

2020

Vaibhav Pandey, Ali Rostami, Nitish Nag, Ramesh Jain
6th International Workshop on Multimedia Assisted Dietary Management, ICPR 2020,
Milan, Italy

Personal Food Model 2020
Ali Rostami, Vaibhav Pandey, Nitish Nag, Vesper Wang, Ramesh Jain
Proceedings of the 28th ACM International Conference on Multimedia, 2020

Personalized User Modelling for Context-Aware
Lifestyle Recommendations to Improve Sleep

2020

Vaibhav Pandey, Dhruv Upadhyay, Nitish Nag, Ramesh Jain
In Proceedings of the 1st International Workshop on Human-centric Multimedia Anal-
ysis, 2020 (pp. 13-20)

Personalized User Modelling for Sleep Insight 2020
Dhruv Upadhyay, Vaibhav Pandet, Nitish Nag, Ramesh Jain
Proceedings of the 28th ACM International Conference on Multimedia, 2020

Continuous Health Interface Event Retrieval 2020
Vaibhav Pandey, Nitish Nag, Ramesh Jain
Proceedings of the 2020 International Conference on Multimedia Retrieval (ICMR 2020)

Atmosome: The Personal Atmospheric Exposome 2020
Hari Bhimaraju, Nitish Nag, Vaibhav Pandey, Ramesh Jain
medRxiv 2020

Respiration rate and volume measurements using wear-
able strain sensors

2019

Michael Chu, Thao Nguyen, Vaibhav Pandey, Yongxiao Zhou, Hoang N Pham, Ronen
Bar-Yoseph, Shlomit Radom-Aizik, Ramesh Jain, Dan M Cooper, Michelle Khine
NPJ digital medicine 2019

Cross-modal health state estimation 2018
Nitish Nag, Vaibhav Pandey, Preston Putzel, Hari Bhimaraju, Srikanth Krishnan,
Ramesh Jain
Proceedings of the 26th ACM international conference on Multimedia 2018

xvii

Ubiquitous event mining to enhance personal health 2018
Vaibhav Pandey, Nitish Nag, Ramesh Jain
Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers

Endogenous and Exogenous Multi-Modal Layers in
Context Aware Recommendation Systems for Health

2018

Nitish Nag, Vaibhav Pandey, Ramesh Jain
arXiv preprint arXiv:1808.06468

Live personalized nutrition recommendation engine 2017
Nitish Nag, Vaibhav Pandey, Ramesh Jain
Proceedings of the 2nd International Workshop on Multimedia for Personal Health and
Health Care, 2017

Pocket dietitian: Automated healthy dish recommen-
dations by location

2017

Nitish Nag, Vaibhav Pandey, Abhisaar Sharma, Jonathan Lam, Runyi Wang, Ramesh
Jain
International Conference on Image Analysis and Processing 2017, 444-452

Health multimedia: Lifestyle recommendations based
on diverse observations

2017

Nitish Nag, Vaibhav Pandey, Ramesh Jain
Proceedings of the 2017 ACM International Conference on Multimedia Retrieval

Cybernetic Health 2017
Nitish Nag, Vaibhav Pandey, Hyungik Oh, Ramesh Jain
arXiv preprint arXiv:1705.08514

SOFTWARE

Interactive Event Mining Dashboard https://theeventminer.com

Web-based platform that enables exploratory analysis of events and data stream using
event mining operations.

xviii

https://theeventminer.com

ABSTRACT OF THE DISSERTATION

Multimodal event driven N-of-1 analysis of individual lifestyle and health

By

Vaibhav Pandey

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Ramesh Jain, Chair

Population-based models are prevalent in different aspects of our lives. Decision-making in

clinical health relies heavily upon the insights generated from population-based models such

as recommended blood pressure and blood glucose values. These models and insights are

easy to understand, but they do not necessarily capture the variance at an individual level.

These are also likely to suffer from bias due to the participants’ selection strategy (selection

bias) or statistical limitations of the models used. Therefore, population-based models are

not precise enough to make predictions at an individual level and highlight the need for

personalized models for individual decision-making. N-of-1 analysis and modeling strategies

are gaining popularity for addressing this problem. This modeling paradigm views every

individual as a unique system and reduces variance at an individual level.

Multimodal data generated by individuals and systems can be utilized to enable such anal-

ysis. Different wearable and IoT devices and smartphone applications capture data about

individual lifestyles and health as daily life events and associated data streams. These event

streams and data streams create a lifelog for the user that captures their habits and behav-

iors in the form of frequent event patterns.

In this work, we propose an interactive event analysis system that leverages the multimodal

events and data streams from varied sources and enables analysts to perform N-of-1 analysis

for individuals. The system is based on an event patterns language [65] to represent temporal

xix

event relationships and extends the language to allow the creation of aggregate features from

event patterns. The proposed system has three major components that allow the analysts

to perform N-of-1 analysis:

1. Event creation modules define new complex events from multimodal data using pre-

defined event combination operators and motif discovery from data streams. Different

event visualizations enable the analysts to explore the event space and identify event

combinations for further analysis.

2. A hypothesis testing module allows the analyst to encode domain knowledge and per-

sonal beliefs in the form of a directed acyclic graph where every edge in the graph

captures a causal relationship between the parameters (represented by the nodes).

These relationships can then be tested using an implementation of the do-operator

and estimate the effect of an intervention on the observed outcome.

3. A data-driven frequent event sequence detection module allows the analysts to discover

frequent sequences of events and the time delays between the events leading up to an

outcome event of interest. These frequent sequences describe the commonly observed

events associated with the outcome and may represent a causal link between the events,

which may be tested empirically or experimentally.

xx

Chapter 1

Introduction

Knowing yourself is the beginning of

all wisdom

Aristotle

The theoretical and scientific study of any phenomenon, system or situation revolves around

a model, which is an abstract representation of the entity of interest and mimics its relevant

aspects. For example, a geological map, a road map and a population density map represent

different aspects of geographical entities such as cities, states and countries. Researchers in

different scientific fields attempt to create models of agent behavior in different domains.

There are models of cell behavior in different ecosystems, behavior of rational agents in

different economic situations, etc. In this work, we are primarily discussing mathematical

models, i.e. models that use the language of mathematics to describe different entities.

Models in different scientific disciplines can originate from the scientific knowledge and the-

ories of the concerned domain (knowledge-driven models) or from a collection of empirical

data about the entity in different situations (data-driven models). The former category of

models derive from the existing knowledge and different assumptions in the concerned do-

1

main. Majority of such models clearly articulate the causal links between different properties

and entities and are judged based on their capability to predict the system behavior. If a sit-

uation is observed where the model fails to describe the outcome, the underlying assumptions

need to be questioned and modified until we arrive at a better model. However, knowledge-

driven models rely on strict assumptions and ideal conditions that need not hold true in all

situations. Therefore, these models may not be appropriate for highly complex systems such

as human behavior and social sciences, where the behavior of the system depends on a large

number of factors.

On the other hand, data-driven models attempt to replicate the behavior of the system by

leveraging the data generated by the system. Advances in measurement and data collection

approaches have led to a data revolution and are one of the main reasons for the rising pop-

ularity of data-driven modeling. Data-driven methods are particularly suited for domains

where a large amount of data is being generated, Large scale collection of data from different

systems have helped the evolution of artificial intelligence and machine learning methods

and these developments have in turn improved the way experts in different domains tackle

commonly observed problems. However, large scale data-driven models are difficult to in-

terpret and are treated as “black-box” models of the underlying data generating system.

This can lead to unexpected and often undesired outcomes due to unidentified biases in the

collected data or the modelling strategy. Therefore, it is essential to take into account both

data-driven and theory-driven approaches when designing solutions in different scientific do-

mains. Most of the scientific community have realised this opportunity and made significant

advances in combining the two approaches to address prevalent research challenges.

In this work, we propose a system to that enables data-driven modeling of a individual’s be-

havior and health using a high level event pattern language. At the same time, the platform

also allows the analyst or a domain expert to utilize their theoretical understanding of the

domain to guide the modeling process. The models derived from the methodology are easily

interpretable and enhance our understanding of the individual. However, it should be noted

2

that the proposed approach can be generalized to model any system that generates multi

modal timestamped data.

1.1 Single subject modeling

The widespread adoption of commercially available sensors in form of wearable devices, IoT

devices and smartphones have led to a drastic increase in the amount of personal lifestyle

and well-being data generated by individuals. Numerous applications have been developed

that utilize the multi-modal data streams to understand specific aspects of user behavior.

However, different human activities are intricately linked with each other and studying them

in isolation is only going to provide a limited understanding of the underlying processes.

The first step in addressing this issue is to create a unified log of user activities and data

streams.

1.1.1 Personal Data Collection

Lifelogs

Aggregating and recognizing events in our daily lives is a popular problem in the multi-

media community. This problem has been termed“Lifelogging”, which is explained as ”a

phenomenon whereby people can digitally record their own daily lives in varying amounts of

detail, for a variety of purposes”[49]. Lifelogging is the first step towards recognizing various

daily activities and how they define user’s behavior. Lifelogging applications collect a variety

of data streams about an individual, which has the potential to offer unique insights into

human behavior. There are many visual lifelogging applications and projects which aim to

3

understand the user’s life and activities by using the images taken by a wearable camera

(E.g., GoPro) over a long period and the data collected could be used to identify events and

daily activities happening in user’s life for varied purposes[192][33][29][191].

The daily activity recognition could be further enhanced by merging the visual log with other

multi-sensory data that can be collected using smartphones, wearable devices, and different

IoT systems [9]. Some applications attempt to accomplish this task without using the visual

logs to make the logging process more unobtrusive[135].

A complete lifelog of individual activities represents a personal chronicle of their lives, or a

Personicle[135]. It requires a cross modal understanding of daily life events for efficient and

precise recognition of human activities.

Quantified Self

Rapidly rising popularity of commercially available sensors and data-driven modeling ap-

proaches have influence many individuals to collect lifestyle, well-being and health data

about themselves. This has to led to a movement called quantified self, comprising largely

of self-motivated individuals who are sensitive towards their health and collect data about

their daily lives and health outcomes.

Objective Self

Objective Self [63] takes the concept of quantified self beyond just collecting data and an-

alyzing individual data. It aims to create an objective representation of an individual’s

day-today lives using the multimodal lifelogs. This representation of an individual can be

used to understand and predict their behavior in different contexts, and can also be used

for different applications such as food recommendation or medical diagnoses. Identifying the

daily life activities (in the form of Personicle) is only the first step towards this goal. We need

4

to enrich the personicle with relevant event properties (such as, location, other participants

in the event, effects of the event) which may not be readily apparent from personicle alone.

1.1.2 N-of-1 studies and Personal Science

Many scientific disciplines such as psychology employ single subject studies also known as

N-of-1 studies to understand individual behavior and identify best interventions for every

individual independently. N-of-1 methods can be used to study highly idiosyncratic phe-

nomena in a clinical setting. These studies involve randomized allocation of treatment to

same individual on multiple occasions.

Personal Science[198], on the other hand, refers to a theoretical frameworks to facilitate

analysis of self-tracked quantified self data. The problems being addressed in personal sci-

ence are typically not addressed in medicine and are highly individualized in nature. The

analyses are typically done by individuals themselves and tend to be not as rigorous as

typical N-of-1 analyses.

1.2 Contributions

This dissertation addresses the problem of N-of-1 analysis using continuous multi-modal data

and event streams. We present a domain independent event analysis framework capable of

utilizing temporal data from disparate multi-modal sources. The system enables an analyst

to utilize their knowledge of the domain and combine it with longitudinal multi-modal data

to develop models capable of explaining system behavior. The major contributions of the

system are:

1. Events as an abstract representation of real-world activities in the system. This allows

5

us to associate data from different sources to enrich events and add further dimensions

to the events derived from single sources.

2. Event combination and creation operators that allow analysts to utilize their under-

standing of the domain to create new complex events that capture detailed activities

in the system that are otherwise unlikely to be recognized from a single data source.

3. Designing a framework around a high-level event pattern language that enables the

analysts to explore the longitudinal data. They can accomplish this by looking for

associations and correlations in form of temporal event patterns, and discover unknown

patterns using a novel semi-interval temporal pattern detection algorithm.

4. A proposed interactive approach for refining event patterns indexed in a tree-based

event model. The analyst can interact with the tree model and filter anomalous events

or event episodes that lead to spurious patterns.

5. Designed and developed a causal analysis framework based on the discussed event pat-

tern language. The framework allows the analyst to encode their beliefs and knowledge

of the domain in form of a Directed Acyclic Graph (DAG) and derive the required pa-

rameters from the event database using the event patterns and aggregate operations.

This forms describes the analyst’s hypothesis and can then be tested using Pearl’s

Causal Graphical Modeling framework[143].

1.3 Thesis outline

Chapter 2 discusses the various existing longitudinal data analysis and modeling paradigms

employed in different scientific domains. We discuss each paradigm’s assumptions, advan-

tages, and disadvantages and how they can be combined in a single conceptual framework

to create personalized individual models. Chapter 3 explores the related works in sequential

6

and temporal event pattern modeling and their applications in various domains. Chapter 4

describes the event mining concepts and definitions. We utilize an event pattern language

[65] to model event relationships and extend the patterns with groups and aggregate opera-

tions. We discuss different event mining operations and system architecture for exploratory

event mining analysis. Chapter 5 describes a causal analysis framework that allows analysts

to test their beliefs about causal relationships between events. The known causal relation-

ships can be encoded in the form of a DAG that also includes the relationship being tested.

The variables in the hypothesis are described in the form of event mining expressions and

can be computed using the events in the database. We can apply Causal Graphical Modeling

principles on the data set and the causal structure to replicate the do-operator[145]. Chapter

6 describes a novel tree-based event episode indexing methodology that captures frequent

temporal semi-interval event patterns as different branches of the tree. The tree model is

used to find frequent semi-interval patterns, and the proposed algorithm is evaluated using

a simulated data set with controllable error rates. Chapter 7 discusses the applications of

different aspects of the proposed platform for studying problems in personal health and for

deriving an explainable rule-based personal model. We demonstrate how we can use the

event creation operators to extract events described in health and biomedical literature that

have a causal impact on the user’s health. We utilize the proposed causal analysis approach

to understand a user’s sleeping behavior in different situations and identify the effect of var-

ious environmental and behavioral factors on sleep quality metrics. We also investigate the

impact of varying endurance training metrics derived from cycling events on performance.

Lastly, we also demonstrate the use of event pattern language to find a user’s taste prefer-

ences for food items in different environmental and behavioral contexts. We leverage a novel

taste space definition and estimation method, which is discussed further in the appendix.

Chapter 8 concludes this dissertation and discusses the possible improvements and future

works that allow the N-of-1 modeling paradigm to be used for generalized personal modeling.

7

Chapter 2

Understanding individuals:

Longitudinal modeling paradigms

Observing and collecting data about a system’s behavior is essential for understanding and

predicting its behavior. We need to either observe the system under varying conditions or

have prior knowledge about the system’s behavior to make any predictions. Longitudinal

modeling has been employed for studying the degree and direction of changes in dynamic

systems in multiple scientific domains. Therefore, it is crucial to understand different longi-

tudinal modeling paradigms and identify those valid for the research question under consid-

eration.

Longitudinal studies are commonly observational and employ continuous or repeated mea-

surements about the individual (system) over a long period. These types of studies are

prevalent in medicine, psychology, and behavioral analysis and are particularly useful for

evaluating the relationship between risk factors and the development of disease and the out-

comes of treatment over different lengths of time. Similarly, because data is collected for

given individuals within a predefined group, appropriate statistical methods may be em-

ployed to analyze change over time for the group as whole or particular individuals. Thus

8

longitudinal studies are very well suited for studying long-term phenomena and the effect of

time on variables.

There are different types of longitudinal studies, each designed for a specific research goal.

For example, 1) Panel Studies, where data is collected from the same random sample of

individuals periodically, can be helpful to track the progression of individuals in the study

and identify the changing sensitivity of individuals to particular stimuli, and 2) Retrospective

studies where participants recall their past behavior and data at the time of data collection.

Many longitudinal studies have led to seminal developments and discoveries in different

scientific domains. Framingham Heart Study [102, 12] is one of the most well-known lon-

gitudinal studies and has led to a large number of discoveries about risk factors such as

aging, smoking, diabetes, and hypertension for different cardiovascular diseases[115, 42, 17].

Similarly, the Grant Study from the Harvard Medical School [182] studied the physical and

emotional development of individuals over eight decades and found significant correlations

between lifestyle and personal factors (such as alcoholism, nature of personal and parental

relationships, and intelligence) with life outcomes (such as financial success and “life satis-

faction”).

Despite their many successes in identifying relationships between variables, these studies

have faced much criticism, especially related to selection bias[104] as the cohorts in these

experiments are limited, and the insights gained from such experiments may not be easily

generalized to populations with different genetic, social and cultural traits. Long-term longi-

tudinal studies have traditionally been costly as repeated data measures over a large sample

would require significant infrastructure and human costs. Historically, the cost factor has

forced the researchers to limit longitudinal studies to a small cohort that introduces various

biases in the study. However, advances in sensor technology, the Internet of Things, smart

devices, and internet connectivity have led to an explosion of personal data generated by

individuals. These devices capture continuous data streams about different user behaviors

in a passive manner. The passive data collection and sensing modalities can create a more

9

accurate and comprehensive record of a user’s day-to-day life. This presents a unique oppor-

tunity for researchers to conduct large-scale longitudinal studies as significant portions of the

data collection infrastructure are already in place. The cohorts for the new age longitudinal

studies can be scaled to large populations with minimal one-time investments. Therefore,

data management and computational platforms are needed to ingest and process continu-

ously generated sensor data for large populations. Ensuring data security and user privacy is

one of the most critical challenges in such systems. These platforms should also incorporate

different modeling and analysis techniques to help the analysts understand the multimodal

longitudinal data. We attempt to address this problem in this chapter by reviewing the

existing longitudinal modeling paradigms and their applications and limitations in differ-

ent domains. We propose a novel theoretical longitudinal data analysis pipeline that takes

advantage of the strengths of different approaches and produces personalized n-of-1 models

that leverage existing scientific understanding.

2.1 Longitudinal modeling paradigms

There are three major modeling strategies used for longitudinal studies. 1) Variable-centered

analysis, 2) Person-centered analysis, and 3) Person-specific analysis [56]. These three ap-

proaches differ in many aspects, ranging from data collection methods and frequency, sample

size, and computational methods. However, all these differences stem from the assumptions

about the population and the individuals.

We will examine the differences between the three methods regarding data requirements,

assumptions about the data and the models, and the utility of the models derived from the

experiments. We utilized two simple metrics to understand these differences Parsimony and

Specificity.

Parsimony refers to the complexity of a model and can be defined as the number of pa-

10

rameters needed to describe the model. The parsimony of a model is generally inversely

related to its interpretability, i.e., parsimonious models (models with fewer parameters) are

generally easier to understand for human experts. For example, parameters or weights for

different features in a linear regression model are more interpretable than the parameters of

a neural network model with multiple hidden layers.

Specificity refers to the precision of the model in describing the subjects in the study. This

metric is directly related to the robustness of the relationships captured by the model and

if the generated insights are valid for a general population. Typically, the two metrics are

inversely related, and the three longitudinal modeling approaches lie on different regions on

the axes of parsimony and specificity (shown in fig. 2.1).

We will examine the modeling strategies along these two axes while keeping in mind that none

of the approaches is the best approach. Different modeling strategies have their strengths and

weaknesses, and the ideal longitudinal model would utilize the approach (or a combination

of approaches) that best suits the research problem at hand.

2.1.1 Variable-centered analysis

Variable centered analysis is the predominant modeling approach in different scientific

domains. It helps understand the relationships between variables of interest in a population

and is appropriate for testing the hypotheses or research questions concerning the effects of

one variable on another. This paradigm views variables as the primary agents and objects

of change, while individuals are the medium in which the variables interact [85]. The data

are typically collected from multiple subjects over one or more occasions, and the number

of samples required for analysis depends on the degree of correlation and the variance in

the data collected. The sample size can vary from as low as 30 to tens of thousands, and

common correlations are identified across the sample to summarize the population with a

11

Figure 2.1: Parsimony vs Specificity for longitudinal modeling paradigms

single set of parameters.

We can illustrate the utility and the theoretical differences between the three approaches

through an example of a researcher studying sleep and job performance. A vital question

for this researcher would be, what are the emergent dimensions of sleep quality, and how are

the different dimensions of sleep quality associated with job performance? These questions

are focused on variables and relationships between them and suggest a variable-centered ap-

proach. The researcher could start by collecting data from multiple participants and using

factor analysis to identify the latent dimensions of sleep quality. Similarly, they could utilize

regression analysis to describe the sleep quality-job performance relationship for the sample

and, by extension, the population.

The main differences between the three approaches stem from the assumptions concerning

the relationship between the population and individuals. This approach assumes that the

population is homogeneous concerning the causal relationships in the members of the pop-

ulation, i.e., all members in the population have identical underlying causal mechanisms,

12

and the differences between the samples are due to differences in the values of treatment,

covariates or random noise. However, this assumption is not necessarily valid, especially

when we are studying a population of humans.

Numerous studies have successfully leveraged variable-centered analysis to identify generic

relationships between variables. However, this approach fails to capture relationships (and

variations in general relationships) valid only for specific sub-populations in the sample.

Since the entire population is summarized with a single set of parameters (for example,

regression coefficients), variations in the underlying generative causal processes in different

population segments are not adequately modeled. Therefore, the derived model is inade-

quate for explaining data from subpopulations with different traits with high accuracy. The

resultant model is easy to understand (high parsimony) but has poor accuracy in different

segments of the population (low specificity).

2.1.2 Person-centered analysis

Person centered analysis helps us understand the different categories of trajectories

present in the collected longitudinal sample. The goal of this analysis is to identify the

optimal number of sub-populations within the sample such that the associated finite set of

parameters yield an accurate summary of the population[84, 107]. Therefore, this approach

helps investigate hypotheses aimed at 1) categorizing individuals into sub-populations based

on observed variables and 2) understanding the relationships of these sub-populations with

treatment, covariates, or the outcomes [56]. In contrast to variable-centered analysis, this

approach views variables not as agents and outcomes but as properties of individuals and

the environment. These properties may have varying causal relationships for different types

of individuals (sub-populations), and the goal is to identify these subpopulations and their

progression concerning the variables of interest.

The data collection protocols for this type of analysis are similar to those used for variable-

13

centered analysis; data are collected from multiple subjects across one or more occasions.

However, smaller sample sizes that may be appropriate for variable-centered analysis can

potentially lead to convergence issues for smaller sub-groups[184].

Continuing with our previous example of studying the relationship between sleep quality

and job performance, the researcher might be interested in understanding the relationship

between the two metrics for different professions (day shift vs. night shift, white collar

vs. blue collar, etc.). Is the effect of sleep latency (one of sleep quality dimensions) on

performance different in different sub-populations? These research questions suggest the

existence of identifiable sub-populations and hence indicate that the researcher should use

a person-centered approach. The researcher could collect data from multiple participants

over multiple occasions and identify sub-populations based on a measured parameter (e.g.,

profession) or finding representative clusters from collected data (e.g., movement/sleeping

behavior patterns). They could then utilize an appropriate modeling algorithm for the re-

search problem (whether the goal is to understand the progression of sub-population or

high-level understanding between variables within the sub-population).

This approach relaxes the assumption about the homogeneity of data, as we are acknowledg-

ing the existence of fundamentally different individuals within the population and attempt to

describe these sub-populations using a separate set of parameters. Therefore, the resulting

model has better explainability (or specificity) over the population than the previous ap-

proach. However, this also means that the model is relatively more complicated and scores

lower on the parsimony scale, and may not be as easy to interpret in the context of the

domain (depending on the methods used).

2.1.3 Person-specific analysis

Person-specific analysis is usually employed to understand and investigate phenomena

that are idiosyncratic to specific individuals. Person-specific analyses are best suited to hy-

14

potheses focused on individuals, and analyses that aggregate across samples to make infer-

ences about variables or sub-populations are insufficient to address these research questions.

It can also model phenomena that change too frequently or irregularly between individuals

and cannot be captured using the previous approaches. These approaches provide the re-

searcher with multiple models that describe each of the subjects in the sample. Inferences

are meant to be specifically for the person and not the population. Person-specific analysis

adopts a holistic interactionist perspective[181, 74], which [178] describe as “an individual’s

prior behaviors, genetic makeup, and contextual risk or protective factors operate as an in-

tegrated whole; taken in isolation, they may lose their meaning and consequence for that

individual’s behavioral course.” Therefore, this approach views individuals as an integrative

and complex system and the statistical methods need to embody the same assumptions.

Data for such analyses are typically collected from a small number of participants (as small

as one) over a large number of occasions. The effect of the number of occasions on the statis-

tical analysis is similar to that of the number of participants in variable and person-centered

analyses.

A researcher or a professional in a clinical setting may want to find the emergent dimensions

of sleep quality for a specific individual. What is the relationship of these sleep quality

metrics with the individual’s job performance metrics? Since the hypotheses are specific to

an individual, person-specific analysis should be used to test the hypotheses. The researcher

could collect data from the single participant over many time points (collected once a day

spanning multiple weeks). They can identify the emergent dimensions of sleep quality using

factor analysis and correlate each of these dimensions with job performance. They can also

attempt to control confounding variables by capturing other environmental and behavioral

attributes for the subject.

Since the person-specific analysis views an individual as a distinct system encompassing their

behavioral and environmental history, it does not make any assumptions about the global

relationships between the variables in the population or the sub-population. Therefore, it

15

relaxes the population homogeneity (variable-centered analysis) and sub-population homo-

geneity assumptions (person-centered analysis). On the other hand, due to lack of assumed

generality, this analysis typically requires significantly more measurements than the variable

or person-centered analysis.

The models derived from person-specific analysis tend to have better specificity than the

other two approaches but also have the least parsimony, as each individual is described with

a separate set of parameters. Thus the existing person-specific analysis methods generate

models that best describe the individual but can be relatively difficult to interpret.

Variable-Centered Person-Centered Person-Specific

Goal Summarize the popu-
lation using a single
set of parameters

Identify similar groups
in the population.
Summarize each
group using a set of
parameters

Summarize each indi-
vidual using a set of
parameters

Data
Collection

Multiple individuals,
few occasions

Multiple individuals,
multiple occasions

Single individual,
many occasions

Strength • Identify generic
relationships valid for
the whole population

• Simple and easy to
interpret

• Identify different
subgroups having dif-
ferent causal mecha-
nisms within the sam-
ple

• Better specificity
compared to variable-
centered analysis

• Models to explain
behavior of every indi-
vidual in the study

• Better specificity
than the other two
analyses

Weakness • Not specific
enough for heteroge-
neous groups in popu-
lation

• Not specific enough
for individual-level
inferences

• Not as parsimonious
as variable-centered
analysis

• Least parsimo-
nious of the three ap-
proaches

Table 2.1: Comparison of the three longitudinal modeling approaches

16

2.1.4 Equivalence of approaches

While we have highlighted the differences between the three approaches, there are certain

conditions under which these can provide identical results. Collectively, these conditions are

known as Ergodicity. Ergodicity refers to the idea that a stochastic or a dynamic process will

eventually reach all possible states in a uniform and random fashion. Equivalently, a large

enough random sample from the process is sufficient to specify the process in its entirety.

In the context of longitudinal studies, this implies that the sample is entirely homogeneous

(all individuals are exact replications and interchangeable) and stationary (constant mean,

variance).

However, this constraint is too restrictive for most real-world situations, especially when

trying to model human health and behavior. Individuals are different due to variations

in their genetic makeup, upbringing, and environment, making any human-generated data

non-homogeneous in the population. Additionally, most individual health and behavioral

mechanisms change over time. People undergo similar developments as they age, but they

also exhibit short-term changes in many aspects due to their specific genetic and lifestyle

traits. Both of these changes violate the stationarity assumption. Therefore, it is reasonable

to assume that the three approaches are unlikely to produce identical results, and due to

the nature of the analyses, the person-specific analysis is likely to produce the most accurate

models at an individual level even though the results may be difficult to interpret[118, 3].

Thus, if our goal is to find more generic relationships, we may want to use a variable or

person-centered analysis. However, a person-specific analysis should be used if specificity

is vital to the researcher (if the goal is to use the model for a personal recommendation,

specificity/accuracy is the most crucial factor).

17

2.2 N-of-1 modeling

Clinical or biomedical research conducted on one subject or individual is often called a

single-subject, single-case or n-of-1 study [24, 171]. N-of-1 analyses consider an indi-

vidual as the sole unit of observation while studying the efficacy or side-effects of differ-

ent interventions. It builds on the underlying philosophy and statistical methods of the

person-specific analyses[90]. Multiple studies in health and psychology argue that only the

person-specific approaches provide accurate results for individuals when the data are not

ergodic[117, 178, 20]. Therefore, we need to utilize person-specific analysis to create person-

alized, explainable models with a high degree of specificity.

N-of-1 analysis has been utilized to varying degrees of success in different clinical trials and

behavioral and biomedical research[45, 75, 114] such as nutrition [80], psychology[81] and

oncology[37]. N-of-1 studies can be randomized experiments (N1RT) with well-defined meth-

ods to derive causal effects of treatments, or observational (N1OS) where we collect observa-

tional data without any randomization of treatment. Multiple causal inference frameworks

can be applied on such observational data to find possible cause-effect relationships that can

be further tested in an n-of-1 randomized trial [24].

N1OS share many traits with person-specific analysis. These provide more details with

greater accuracy about individual responses to treatments and have been used in clini-

cal practice to identify the best treatments and treatment protocol for individuals [114].

However, there are many barriers (both statistical and logistical) we need to overcome to

effectively utilize n-of-1 analysis [82] for modeling individual behavior and health. There are

multiple guidelines published by researchers in different scientific domains[4, 173, 189] as well

as by the United States Department of Health and Human services agency for Healthcare

Research that discuss these challenges and potential solutions in detail. We will discuss some

of those challenges briefly.

18

• Auto-correlation: N-of-1 data is inherently in the form of a time series. Time series

data generated from stochastic processes tend to have repeated patterns, and the future

values generated by the process depend on the past values. This temporal relationship

between data is unique to longitudinal data sets, and statistical methods commonly

employed in randomized trials fail to account for it. This can introduce a bias in our

estimate of the treatment effect. Any inference method applied for n-of-1 analysis

needs to adjust for the auto-correlation when estimating the treatment effect.

• Carry-over effect: The impact of many interventions (especially in health and be-

havioral sciences) may have a lasting impact. Thus, it is very likely that the lingering

effects of a treatment or intervention may be observed for some time event after it

has been removed and influence the data being collected. Researchers conducting any

n-of-1 study need to consider this carry-over while analyzing the data and interpreting

the results. Multiple methods remove this effect either by analytical means or using

the design of the study.

• Slow effect onset: This refers to the situations when the effect of a treatment may

not be apparent immediately[31]. Slow-onset is not as well studied as other analytical

challenges in n-of-1 trials. The current best approaches to handle the slow onset effect

originate not from data but the understanding of the domain. Slow-onset and carry-

over effects highlight the necessity of modeling temporal relationships between events

in an n-of-1 trial.

• Data collection: Ecological Momentary Assessments (EMAs), surveys, and clinical

measurements have been the traditional data collection tools for research studies. How-

ever, these are not the best data collection tools for n-of-1 studies as the data needs

to be collected repeatedly, and these tools place the burden of data collection on the

user. Thus, user adherence is likely to be affected negatively. This issue can be largely

solved by multi-modal sensors and IoT devices and will be discussed next.

19

Figure 2.2: A conceptual framework for N-of-1 modeling using multi-modal longitudinal
data. We can utilize the three longitudinal analysis approaches to create a N-of-1 modeling
framework capable of deriving personalized models that are interpretable.

Various statistical methods have been employed by researchers to perform n-of-1 analy-

sis, though there is no consensus among researchers as to what is the best approach. Re-

searchers from psychology and health have used t-tests (paired and unpaired), Cohen’s d,

cross-correlation analysis, regression analysis, and simulation modeling analysis.

Vieira et al. [186] explore the use of dynamic modeling for n-of-1 analysis. This method

allows researchers to use multivariate regression models for longitudinal analysis by includ-

ing lagged variables as features in the model. Daza et al. [24] explore the application of

Neyman-Rubin-Holland counterfactual framework on self-tracked n-of-1 observational data.

The approaches discussed in this section are most closely aligned with person-specific analy-

sis as the goal is to understand and describe a person’s behavior with the highest accuracy.

However, these studies typically require more data points than conventional multi-candidate

trials due to temporal associations in the data. Therefore, we need to augment the person-

specific models with variable or person-centered models. This will reduce the size of data

required for the model and help prune some idiosyncratic but spurious correlations that can

be explained by more generic relationships captured by the population-based models.

20

2.3 Personal Longitudinal data collection

Multimodal longitudinal data captures different facets of an individual’s behavior over time.

Consumer-grade wearable devices and smartphones accurately capture lifestyle and health

data with minimal user participation required. Many biomedical and behavioral researchers

have successfully leveraged this data in their experiments and gained unique insights into

user behavior. Mobile health (mHealth) applications and platforms have significantly im-

pacted cardiology, diabetes, mental health, and even infectious diseases[200, 158] research,

diagnostics, and clinical practice. The WHO has published multiple reports and guidelines

about the impact of mHealth applications and how to best leverage them for public health

issues in different parts of the world.

The success of mHealth applications has primarily been due to the advances in sensor tech-

nology, connected smart devices such as wearable devices, smart scales, and smartphone

applications such as Rescuetime, MyFitnessPal, and SleepCycle. The widespread adoption

of these devices has led to an era of unprecedented human data generation. These devices

and applications allow individuals to keep track of their behavior and habits. They collect

continuous streams of data generated by human activities. GPS and locations services cap-

ture our location stream; accelerometers can capture our movement streams and patterns;

microphones and light sensors can collect continuous data about our surroundings in the

form of light and ambient noise. These human activities are represented by events that can

appear as repeated signals or motifs in the data stream. Classification and retrieval tech-

niques are commonly utilized to identify such events.

Kahneman et al. recognized 23 different categories of life events commonly observed in

individuals and described them in their work on the daily reconstruction method[71]. A

significant body of computational research addresses segmenting an individual’s day into life

events using multimodal signals and multimedia cues. Initial attempts to create a continu-

ous log of an individual’s life used visual and auditory information as the primary data[30].

21

Latest research efforts in this direction also leverage other multimodal signals as well as user

input in the form of prompted EMAs[135] in an attempt to recognize the life events. The

goal of segmenting a user’s day is to attach semantic significance to each observed event and

keep a log of user activities. This enhances our understanding of user’s habits beyond just

a quantified log and obtains an objective understanding of their lives[64].

The data streams attempt to capture information about events in our daily lives; however,

every data stream can only capture a facet of human life. Westerman et al[197] and Xie et

al[205] identify six aspects of multimedia events. Each aspect answers one of the W5H (what,

where, when, who, why, and how) questions about the event. Structuring event-related in-

formation in this fashion allows us to reason on them and answer most queries related to

events and event patterns. The multi-faceted event model allows us to attach multiple se-

mantic values to the same event and lays the foundation of the event mining research. The

event patterns, when complete, represent an individual’s habits and are correlated with their

situation. The goal of n-of-1 multimedia event mining is to arrive at a set of event patterns

that describe the person’s behavior and provide a model of the individual that applications

can use in different domains such as health, finance, travel, etc.

2.4 Complex Events Processing

Complex Events Processing (CEP)[97] provides a mechanism for processing events and rec-

ognizing patterns in an event-driven system. Such platforms have utility in different domains

ranging from financial services, distributed enterprises to health care, where the cyber-

physical systems have a hierarchical structure. CEP platforms are capable of ingesting and

processing events originating at different layers of operation. For example, in a distributed

enterprise system, several network-level events (e.g., sending and receiving packets) consti-

tute an application (API) level event (e.g., API calls). Several API level events constitute

22

Figure 2.3: Complex Event Processing platforms allow us to model complex, event-driven
systems that are divided into several hierarchical layers. These systems help identify event
patterns, associate triggers with specific patterns and events, and maintain the chain of
causality between events. These systems describe two types of causality between events, 1)
vertical causality where events in different layers are causally related, and 2) horizontal
causality where events in the same layer are causally related.

23

a business layer event (e.g., placing an order). Similar layered structure can also be seen

in human and biological systems where layers can consist of chemical events representing

essential biological reactions to behavioral events representing an individual’s actions in the

world (fig. 2.3). The event patterns represent an abstraction of the known data generating

processes in the system, and additional statistical and data mining operators can be defined

to discover and verify new patterns to be added to the model.

These platforms require an event pattern language suitable for the application domain to

define event patterns and complex events as a function of simpler (lower hierarchy) events.

These patterns also describe causal relationships between the events defined in different lay-

ers of the system, also referred to as vertical causality[96]. For example, in an online

marketplace, placing an order is a user-level event that consists of several application-level

events such as checking the availability of the product, checking the shipping status for the

user’s location, communicating with the financial services’ server for payment, and notifying

the user of the placed order and shipment details. Thus, the user-level event (placing an

order) is described as a pattern of various application-level events, and if any of the con-

stituent events for the pattern are missing, the user-level event does not occur. This concept

also helps with event-aggregation and abstraction as it allows us to group recurring patterns

of events as a new and meaningful event.

On the other hand, causal relationships between events in the same operational layer rep-

resent horizontal causality. Horizontal causality enhances our understanding of a single

layer in the system and allows us to predict the system’s behavior. Horizontal causality

can also be represented using event patterns; however, these patterns may not necessarily

represent an event abstraction. Various statistical methods can be employed to find candi-

date event patterns that may represent horizontal causal relationships. Events that signify

related activities can happen at different times and appear in the event logs separated by

many unrelated events. This is especially the case when the lower layer events are being

generated due to a higher-layer event, but the vertical causal relationship is still unknown.

24

Figure 2.4: Event patterns can be used to represent vertical and horizontal causality in
event-driven systems. Vertical causality patterns can also contribute to event abstraction and
translate low-level system events to high-level user interactions. Horizontal causality patterns
can enhance discovery of vertical patterns and make predictions about system behavior at
the same level. Triggers can be associated with occurrences of various events and patterns
that help coordinate actions with third party services.

Thus, finding horizontal causality between such events may also help us discover new event

abstractions.

The event patterns capturing vertical and horizontal causal relationships provide an easy-to-

understand model of the underlying processes. The patterns also help keep track of the chain

of causality among event occurrences by populating the causal aspect of an event with events

that match the corresponding patterns. The causal aspect thus enhances our understanding

of the system by describing allowing us to find the relevant causes for an outcome.

CEP platforms can also be helpful for external applications that depend on the context of

the system. Different triggers and operations can be tied to occurrences of both low and

high-level events and patterns. For instance, a third-party sleep management system may

generate a bed-time notification using lifestyle events patterns that capture horizontal rela-

tionships between work hours, meals, and sleep events. The required routine may be initiated

by a trigger associated with the pattern. Therefore, the CEP paradigm satisfies many of

the design requirements for the N-of-1 event mining systems and lays the computational

25

foundations for such a framework.

2.5 Design requirements for N-of-1 event mining frame-

work

We have identified a set of requirements for an N-of-1 event mining framework for building

personalized models based on the commonly used computational paradigms, nature of data,

and the goals and use cases of such models.

2.5.1 Data fusion

Different modalities of data capture different aspects of the behavior of any system and

are especially valuable when studying the behavior of individuals and biological systems.

Therefore, any system that aims to model and understand individual behavior must ingest

multi-modal data from disparate sources. Events provide a uniformly structured abstraction

over such data, and hence a CEP platform is naturally able to reason with multi-modal data

provided we have robust and comprehensive event detection mechanisms in place.

2.5.2 Knowledge integration

As we discussed in this chapter, variable-centered models are not accurate enough for

individual-level inference. However, this does not mean that we cannot utilize the results

and insights from such models. These models usually capture relationships and dependen-

cies between variables that are true for the general population. Using these relationships for

person-specific analysis would improve the interpretability of the models and help remove

26

spurious correlations that these causal relationships can explain. Therefore, any individual-

level modeling system would benefit from providing a mechanism for including knowledge

and insights from external sources.

2.5.3 Pattern discovery and spurious pattern filtering

Data-driven pattern discovery is necessary for discovering common behavioral or operational

patterns for any system. We can utilize well-known pattern discovery and unsupervised

clustering algorithms for identifying such patterns. However, many such patterns are likely

to represent spurious correlations, and therefore it is vital to have a mechanism in place to

identify and filter such patterns. This can be done by keeping an expert in the loop or using

external knowledge sources to verify the causal significance of such patterns.

2.5.4 Interpretability: Causally significant patterns from observa-

tional data

Interpretability is a very desirable trait in models representing dynamic systems. A model is a

representation of a system and should enhance our understanding of the same. Therefore, the

model derived from data must provide accurate predictions and capture causal relationships

present in the system. Thus, the N-of-1 event mining platform should be capable of verifying

the causal validity of derived patterns.

2.5.5 Reusable individual models

The derived models should be an abstract representation of the individual behavior and,

thus, be application independent. Therefore, any external services that can benefit from an

27

understanding of the user’s behavior should be able to use the models. However, ensuring

user privacy is a critical factor here, and more research is needed to identify secure and

privacy-preserving protocols for such model sharing.

28

Chapter 3

Literature Review

Event sequence data are found across a wide variety of fields and applications. Applications

in domains as diverse as distributed systems, advertising, online marketplaces, and healthcare

generate discrete data over time intervals and are arranged in sequence based on the entity

associated with the data. For example, most websites record user activity in the form of

events representing user interaction; network logs capture a timestamped sequence of events

that describe network activity at different layers. Similarly, electronic health records and

different wearable and IoT devices capture events about individuals’ health over time.

The ubiquity of events is due to the ease of capturing data and the generality and flexibility of

modeling with it. Events allow us to easily incorporate data from varied sources, modalities,

and semantics, thus allowing us to understand the behavior of any system from multiple

facets and address problems at different scales. However, the utility of this data can also be

challenged by significant heterogeneity in events, event properties, sequences, and the goal

of analyses. The events could be high-dimensional or low-dimensional, and the data could

be temporally sparse or dense. Similarly, the goal of events analyses is as diverse as their

real-world applications. Analysts could find the parameter variations in the same event type

or patterns of past events that impact future event occurrences. They might want to find

29

event patterns that describe system behavior or anomalous patterns and their causes.

The diversity of data and challenges events and event sequence analysis have led to a broad

range of research efforts that aim to solve one or more aspects of the problem. We will

discuss different types of event sequence analysis problems and how different representations

address these problems. We will also discuss various visual analytics systems that utilize

event sequences and patterns for causal and associational analysis of temporal data.

3.1 Temporal Knowledge Structures

Different systems and underlying processes generate heterogeneous event streams captured

in different forms appropriate for the analysis. The events are typically stored in a unified

events database and represent a log of the system activity. These logs can be leveraged to

understand aspects of system behavior and identify critical situations. Researchers in various

domains have addressed this problem and have derived entities that structure the insights

and knowledge gained from analyzing the event sequences.

3.1.1 Events

Point events

Temporal Point Events represent instantaneous activity in a system and are represented as

a timestamp and an event label, (e, t). Some examples of such events are network logs of

timestamped API requests, fall detection using accelerometer signal, accident or collision

detected from surveillance camera videos or social media posts generated by users.

30

Interval events

Interval events represent activities spanning over a continuous time interval and are rep-

resented by a beginning and end timestamp. Examples of such events are, running events

captured using wearable devices, social events marked on a calendar, etc. Computational sys-

tems represent these events as a tuple of start and end time and the event label, [e, (t+, t−)].

Semi interval events

Semi interval events are capable of representing both point and interval events in the same

representation scheme. Every instance in the events database represents either a point

event, [e, t], or one end of an interval event, [e+/e−, t]. Thus, semi-interval events allow us to

reason with point and interval events in the same framework and offer more flexibility when

describing temporal patterns, which will be discussed in the next sections.

We will utilize one of the above-described event representations when discussing event pat-

terns and sequential analyses algorithms and methodologies.

3.1.2 Temporal Patterns

Temporal patterns capture the relationship between events in the system. Earlier works

in defining patterns included operators that considered the relative order of events. Allen

et al.[11] laid the foundations of describing complex relationships between temporal inter-

vals using 13 operators describing different possible configurations of two intervals(fig. 3.1).

Freksa et al. [43] described similar relationships for interval end-points or semi-intervals. A

large volume of pattern mining research utilizes these relations to represent event relation-

ships.

Patterns are labeled as significant based on significance measures relevant to the analysis.

31

Figure 3.1: Examples of Allen’s interval relationships between two interval events A and B.
First six relations can be inverted.

Most commonly used significance measures are Support, Confidence and Lift. Support is the

most commonly used significance measure for discovering frequent patterns.

Support for a pattern p in a sequence database S can be defined as the proportion of se-

quences where the pattern appears.

Support(p) =
{|s|s ∈ S ∧ p @ s|}

|S|

Confidence of a rule captures how often a rule is true. For a rule of the form X −→ Y , the

confidence can be defined as

Confidence(X −→ Y) =
Support(X ∪ Y)

Support(∪)

However, these are typically used to capture frequent patterns or rules and a variety of

significance measures are needed to capture different types of patterns such as anomalous

patterns or surprising patterns[109][204].

32

Sequential Patterns

Sequential patterns and pattern mining algorithms were first introduced by Agrawal and

Srikant [8] for discovering frequent subsequences as patterns from a sequence database. Util-

ity of these patterns can be illustrated using the transactions data generated from an online

marketplace, where each transaction consists of items purchased and the timestamp of the

purchase. Such patterns can describe customers buying a dining table and chairs in one

transaction, also purchase curtains in a subsequent transaction. Sequential Pattern Mining

mainly focuses on finding patterns across multiple transactions in sequential order. Similar

sequential patterns can also be found in other situations, such as web usage data describ-

ing a person’s browsing behavior and genome sequence data encoding the elements of DNA

sequence. We can now define some concepts related to sequences and sequential patterns.

Let I be a set of items or symbols I = {i1, i2,, im}.

An itemset X is a set of items such that X ⊆ I. The notation |X| = k denotes the cardinality

of X, ie the number of items in X. Length of an itemset (k), X, is defined by its cardinality.

A sequence is an ordered list of itemsets s =< I1, I2, ..., In > such that Ik ⊆ I,∀1 ≤ k ≤ n.

A sequence database (SDB) is a list of sequences SDB =< s1, s2, ..., sp >. A sequence

sa =< A1, A2, .., An > is a sub-sequence of sb =< B1, B2, ..., Bm > if and only if there exist

integers 1 ≤ i1 ≤ i2 ≤ i3 ≤ ≤ in ≤ m such that A1 ⊆ Bi1 , A2 ⊆ Bi2 ,, An ⊆ Bin .

Sequential patterns mining aims to find interesting subsequences in a sequence database (as

defined by one of the pattern interestingness measures).

Fully dependent Patterns or d-Patterns

Fully dependent Patterns or d-Patterns [89, 88]refer to patterns that have low support but

high specificity. Such patterns could be predictive of rare events but cannot be discovered

using traditional mining algorithms as the patterns are infrequent. However, these patterns

33

could also be of great value to researchers trying to understand a system’s behavior. Such

patterns may also predict undesirable situations like node failure in a distributed system

or a power grid service disruption. Setting a low support threshold may allow us to find

such patterns but will also result in a large number of spurious patterns which hold no

significance for the system. The rare event patterns may also be difficult to mine due to

noisy data collection or human errors. Therefore, to avoid these issues [89] use hypothesis

testing for dependency test instead of a minimum support threshold.

Periodic Patterns

Different systems and entities exhibit periodic behavioral patterns. Individual behavior

follows diurnal, weekly, monthly, and annual patterns; agricultural activities are closely

associated with seasonal patterns. Such periodic patterns reveal not only the repetitive

behavior of the system but may also be indicative of external or environmental influences

on the system. This also allows the analyst to find anomalous events or patterns due to

deviation from the expected periodic pattern and predict the system’s behavior.

However, many issues need to be considered for discovering periodic patterns [100]. Ma et al.

discuss these issues and propose an algorithm for discovering partial patterns (p-patterns) in

a temporal point events database. They divide the task into 2-steps 1) finding the possible

periods p for every event type using Chi-square tests, and 2) find all event patterns with

period p and minimum support w.

Mutually Dependent Pattern

Mutually dependent pattern or m-Patterns represent event patterns that are strongly corre-

lated. These differ from d-patterns as the dependence between events is symmetric in case

of m-patterns but can be uni-directional for d-patterns. Mining m-patterns using a mini-

34

mum support threshold has the same drawbacks as d-patterns and thus need to be mined

separately.

We can define dependency between events E1 and E2 in a sequence of events S as:

PS(E1|E2) =
support(E1

⋃
E2)

support(E2)

Mutually dependent events can be defined[88, 99] as

Definition 3.1. Given a sequence S and the minimum dependence threshold minp and E

be the events from S. If any two events E1 ⊆ E and E2 ⊆ E are significantly mutually

dependent with respect to S iff PS(E1|E2) ≥ minp and PS(E2|E1) ≥ minp.

If any two events E1 ⊆ E and E2 ⊆ E are significantly mutually dependent with respect to

S then E is referred to as an m-pattern.

T-Patterns

In real-world systems, events can trigger subsequent events in near future and causal attribu-

tion can only be determined by mining pattern with an associated temporal constraint. T-

patterns attempt to describe behavior using temporally constrained binary patterns. These

patterns describe a sequence of events that occur within a specified time interval, for exam-

ple, E1
T1−→ E2

T2−→ E3. We can search for these patterns recursively and define larger and

more complex patterns as a combination of repeated pairwise patterns. Magnusson et al.

[101] describe an algorithm for mining these patterns and time intervals, and use these as

the basis for their event exploration software THEME.

T-patterns can represent sequential relationships between events constrained by a temporal

constraint however they are lacking when it comes to describing concurrent event relation-

ships such as “Driving while it’s Raining”.

35

3.2 Event Sequence Modeling and Reasoning

Various approaches have been proposed for reasoning with event sequences and modeling

different situations using events. Most of the approaches adopt a symbolic representation of

events and use event patterns and temporal interval algebra to describe event relationships.

However, multiple approaches adopt a numeric approach to modeling event relationships,

especially for determining causal relationships between temporal event sequences. We will

discuss some of the approaches in this section and evaluate their strengths and weaknesses.

3.2.1 Event Pattern Mining

Frequent Pattern Mining

Pattern mining consists of discovering significant and unexpected patterns in a database.

The interest in these techniques originates from their ability to discover patterns hidden

in large databases that are easily interpretable by humans, thus making them useful for

understanding the data and decision-making. Agrawal and Srikanth [8] laid the foundations

of the field in their seminal paper describing Apriori algorithm designed to discover frequent

itemsets, i.e., items frequently appearing together, in a database of customer transactions.

For example, we can use the Apriori algorithms to find that the itemset {eggs, bread,milk}

frequently appears in the database of transactions for a grocery store.

Although pattern mining has numerous applications in different domains, several pattern

mining techniques such as frequent itemset mining[52, 146, 210] and association rule mining

[7] do not account for the sequential nature of data. Thus, we need to explore algorithms

that can discover frequent patterns in the data while also capturing the sequential order of

the items or events.

36

Sequential Pattern Mining

Sequential Pattern Mining is the task of finding all the frequent sub-sequences in a sequence

database. A sequence s is said to be a frequent sequence or significant pattern if and only if

support(s) ≥ minsup for a threshold support minsup set by the user[38]. Sequential Pattern

Mining is essentially an enumeration problem where we want to generate all sequences with

support greater than minsup. The naive approach to solve this problem would be to find

the support of all possible sub-sequences in the database and output only those meeting the

support requirement. However, this approach is inefficient as a sequence containing k items

can have 2k − 1 distinct sub-sequences.

Numerous algorithms have been designed to efficiently explore the search space of sub-

sequences, they utilize two basic operations s-extensions and i-extensions. These operations

are used to k + 1-length sequences from a k-length sequence.

• s-extensions : A sequence sb is an s-extension of sa =< I1, I2, ..., Ih > with an item x,

if sb =< I1, I2, ..., Ih, {x} >.

• i-extensions : A sequence sb is an i-extension of sa =< I1, I2, ..., Ih > with an item x, if

sb =< I1, I2, ..., Ih
⋃
{x} >.

The search algorithms explore the patterns in a breadth first or a depth first manner while

pruning the sub-sequences with insufficient support due to the anti-monotonicity or down-

ward closure property of sequential patterns. This property states that if sa is a sub-sequence

of sb then support(sa) ≥ support(sb). Thus, if we see a sub-sequence that does not satisfy

the support requirement, we need not explore any sequences generated from it.

AprioriAll and GSP are the first sequential pattern mining algorithms proposed by Agrawal

and Srikanth [8, 177]. These algorithms adopt a breadth-first search approach for generating

new candidate patterns and a horizontal database representation for the sequence database

(fig. 3.2 a)).

37

Figure 3.2: a) Horizontal Sequence database, b) Vertical Sequence database [38]

The GSP algorithm calculates the support for a sequence in a two step process:

1. For every candidate sequence sa of length k, GSP checks if all its sub-sequences of

length k − 1 are also frequent. Due to the downward-closure property of patterns, if

any of the sub-sequences have support less than minsup, then sa will have support less

than minsup. This step prunes a large number of infrequent patterns.

2. GSP will scan the database to calculate the support for sa. If sa is frequent then it is

added to the output.

Despite its success in finding frequent sequential patterns, GSP has several important limi-

tations:

• Repeatedly scans the database for calculating the support.

• May generate candidate patterns that do not exist in the database.

• Candidate patterns need to be stored in-memory for breadth-first exploration.

38

Numerous improvements to these algorithms have been proposed that target one or more

of the above mentioned limitations. SPADE [211] utilizes a depth-first search approach to

avoid some of the shortcomings of GSP. It utilizes a vertical database instead of a horizontal

one, which allows us to directly find a pattern’s support as the number of distinct identifiers

in the IDList (fig. 3.2 b)). Additionally, we can find the IDList of a pattern sa, obtained

by extending (s-extension or i-extension) patterns sb with item x, by joining the IDList of

pattern sb with that of item x.

Different algorithms such as SPADE [211], Spam[15], CM-Spam, and CM-Spade [39]utilize

the above properties to generate frequent sequential patterns by scanning the database only

once. These also allow us to generate the patterns without keeping all the patterns in

memory and outperform the breadth-first search approach. Spam [15] utilizes a bit vector

representation of the IDLists, that allows for efficient storage and matching while joining

the IDLists as they tend to be very big in dense databases. It has been shown that the

algorithms using the bit vector representation are more than an order of magnitude faster

than the vertical pattern mining algorithms[15][13].

CM-Span and CM-Spade algorithms introduced the concept of co-occurrence pruning to re-

duce the number of infrequent candidate patterns generated[39]. They scan the database

to create a Co-Occurrence Map (CMAP) that stores all frequent 2-sequences. For every

candidate pattern sa, if the last two items of sa are not in the CMAP, we can safely ignore

sa without building its IDList.

Another well-known class of sequential pattern mining algorithms is the pattern-growth al-

gorithms. These algorithms adopt a depth-first approach but do not generate candidate

patterns that do not appear in the database. This is done by recursively scanning the

database to find larger patterns; however, this can lead to multiple costly scans. These

methods have adopted the concept of projected database to avoid multiple full database

scans. The projected database of a pattern is the set of sequences where the pattern appears

with all the items and itemsets appearing before the first occurrence of the pattern being

39

removed [147]. PrefixSpan[147] is the most popular pattern-growth algorithm for sequential

pattern mining. The first step in the algorithm is to determine the set of single item patterns

that satisfy the support threshold, this set of patterns is then used to seed the depth-first

exploration of newer patterns and added to the output set. The algorithm then scans the

projected database of the most frequent pattern p in the output set and finds a larger pattern

of length |p| + 1 that starts with p and computes its projected database and support. The

algorithm thus recursively searches for larger patterns and adds frequent patterns to the

output set.

Many variations or extensions of sequential pattern mining have also been proposed for

related applications where sequential pattern mining may not be appropriate. One funda-

mental limitation of the above algorithms is that they are likely to return a large number of

patterns meeting the support threshold. Many approaches have been proposed to discover

a concise representation of sequential patterns. Closed sequential patterns are the set of

patterns not included in any other patterns with the same support. These can be defined

as:

CS = {sa|sa ∈ FS ∧ @sb ∈ FS|sa @ sb ∧ sup(sa) = sup(sb)}

where FS is the set of all sequential patterns. Discovering closed sequential patterns reduces

the size of the output set, and all interesting itemset and sequential relationships are still

preserved. Bide[194] and CloSpan[209] are some of the first proposed solutions for closed

sequential pattern mining and adopt a pattern-growth approach extending the PrefixSpan

algorithm.

Maximal Sequential Patterns are the set of sequential patterns not contained in any other

sequential patterns. These can be defined as:

MS = {sa|sa ∈ FS ∧ @sb|sa @ sb}

40

The number of maximal patterns is never more than the number of closed patterns (MS ⊆

CS ⊆ FS) and in practice can be one or two orders of magnitude less than all sequential

patterns. However, maximal sequential patterns are not lossless as they do not preserve the

support information for all the sub-maximal patterns. Several algorithms have been proposed

for maximal sequential pattern mining that include breadth-first(AprioriAdjust), depth-

first(VMSP [40]), pattern-growth(MaxSP[41]) and approximation approaches (DIMASP[46]).

Sequential pattern mining focuses solely on positive correlations between items and itemsets;

however, negative correlations are more interesting in some applications. This problem

is addressed by negative sequential patterns. A negative sequential pattern is a pattern

containing the negation or absence of at least one item. This task is more challenging as

including the absence of items drastically increases the search space. Negative-GSP [217]

and PNSP[57]extend the GSP algorithm for mining negative patterns.

Periodic Pattern Mining

Periodic pattern mining refers to discovering patterns that appear frequently and regular

periodic intervals. The periodicity of the pattern is measured by the time elapsed between

two consecutive occurrences of the patterns, also called the period length. Periodic patterns

can be further divided into Fully or Partially periodic patterns and Perfect or imperfect

patterns[2]. In fully periodic patterns, all the symbols in the patterns sequence are periodic

with the same period, while in partially periodic patterns, only a subset of symbols is periodic.

Ma et al. [100] proposed an algorithm for finding all partially periodic patterns by first

discovering frequent periods observed in sequences and then finding frequent associations or

sequences for each period. Ozden et al. [136] define perfect periodic patterns as a pattern

X that appears after every p in the sequence S. They proposed an algorithm to find cyclic

association rules that appear in every cycle for the entire sequence.

41

Temporal Pattern Mining

Temporal Pattern mining has been employed in varied fields such as medical informatics [98],

spatiotemporal data[130], and multimedia streams. Most of the temporal pattern mining re-

search utilizes point or interval or both representations of temporal events. Allen’s temporal

logic is commonly used to describe complex relationships between event intervals [11]. Differ-

ent event intervals are related by one of the temporal relations, and different algorithms have

been designed to mine patterns among these events. Villafane et al. [187] proposed a graph

mining method to discover temporal patterns. However, their approach was constrained to

only two Allen relationships: ‘contains’ and ‘during’. Kam and Fu [72] propose a hierarchical

representation and algorithm for discovering temporal patterns. However, hierarchical repre-

sentation suffers from two major drawbacks: 1) the same event relationship can be mapped

to different patterns, 2) the same pattern can represent different event relationships. Hopp-

ner et al. [55] propose an unambiguous representation of, called representation matrix, that

exhaustively lists all pairwise relationships between events in a pattern. TPrefixSpan [202]

employs a projected database similar to PrefixSpan algorithm to discover frequent temporal

patterns. However, extending the temporal patterns is more complicated than extending

sequential patterns and more computationally expensive.

Moerchen et al. [116] propose a temporal pattern mining framework utilizing semi-interval

representation. They represent patterns as a partial order of semi intervals and successfully

demonstrate the flexibility of semi-interval representation for describing patterns.

Allen and Freksa relations by themselves do not capture any information about the temporal

gap and duration of the events, which could easily distinguish two or more patterns with

the same symbolic representation. Namaki et al. [129] propose GTAR (Graph Temporal

Association Rules) to extend association rules and include the temporal intervals between

events in the discovered rules.

Hybrid temporal pattern mining refers to discovering patterns in both point and interval-

42

based sequences. MILPRIT*[25, 26] is a constraint-based hybrid temporal pattern mining

method that allows users to specify pattern constraints as a regular expression. It represents

patterns as a triple (K,D, T), where K represents the actors and entities references in the

pattern, D represents the actions or events with associated timestamps, and T represents

the temporal relationships between events as defined by Allen’s relational algebra. Wu et

al. [203] argue that discovering hybrid temporal patterns cannot be reduced to interval or

point event patterns, and discovering temporal patterns cannot be reduced to discovering

sequential patterns in either point or interval representation. They propose an approach

called HTPM for mining hybrid temporal patterns from event sequences, consisting of both

point-based and interval-based events. It iteratively generates all k-patterns from all pairs

of (k− 1)-patterns. It stores all frequent sequences for quick processing; however, this leads

to considerable memory consumption.

Jalali and Jain [65] describe a temporal event mining framework and event pattern language

that allows researchers to specify event patterns with temporal operators describing the se-

quential and concurrent relationships between interval and semi-interval events. Different

types of patterns between the same pair of events can be captured by the differences in the

time delay between them, which helps distinguish these patterns from each other instead of

using Allen’s or Freksa’s relations. Including temporal gaps and intervals in the relationships

addresses the concerns raised by Wu et al. [203]. We will utilize the event pattern language

proposed by [65] in our work and design an event mining framework around it.

3.2.2 Situation Calculus

Situation calculus is a logic formalism utilized to reason about actions and changes. Mc-

Carthy [106] first proposed situation calculus, and has undergone many variations since then.

In this section we will focus on the situation calculus as proposed by [152]. Fundamental

elements of the situational calculus are:

43

• Actions that can be performed in the world. For example, move(x,y) describes an

action for a robot to move to position x, y. Actions also have some special domain

independent predicates associated with them such as Poss(a, σ), that tell us if an

action(a) is possible in a given state(σ).

• Situations are described by a sequence of actions, and can be changed by any future

actions in the world. For example, in the robot world example, do(move(x, y), σ0) rep-

resents the situation after the action move(x, y) has been performed. If in this situation

PickUp(Ball) is performed, then the situation becomes do(PickUp(ball), do(move(x, y), σ0)).

• Fluents describe the state of the world. Fluents are represented as logical predicates

whose truth values are state dependent. For example, HasBall(σ0) is true if the robot

is holding a ball in situation σ0. The example shown here is a functional fluent because

its output is a truth value dependent on the state as HasBall(σ0) evaluates to False

but HasBall(do(PickUp(ball), do(move(x, y), σ0))) is True.

Researchers need to identify the required set of actions and fluents to model the agent

behavior and state of the world accurately. In the classic example of blocks world [134], the

possible actions for an agent are:

• pickup(x): Pick up block x, provided the agent’s hand is empty, the block is on the

table, and no other block is on top of it.

• putdown(x): Put down block x, provided the agent holds the block.

• stack(x, y): Stack block x on top of y, provided the agent is holding x, y is on the

table and no other block is on top of y.

• unstack(x, y): Pick up x from on top of y, provided the agent’s hand is empty, and no

other block is on top of x.

44

Some the relational fluents required for this situation are:

• HandsEmpty: True if the agent’s hands are empty in a situation.

• Holding(x): True if the agent is holding the block x.

• clear(x): True if the block x has no other block on top.

• onTop(x, y): True if the block x is on top of y.

• onTable(x): True if the block x is directly on the table.

3.2.3 Point process event sequence models

Different parametric methods have also been utilized to represent event sequences and model

a system’s behavior. Poisson processes are commonly employed to model point events in

network applications to model random point processes. However, Poisson processes assume

that the number of occurrences (or events) in disjoint intervals are independent of each

other, also known as the memorylessness property. This is not necessarily true for situations

where current and future events also depend on past events (e.g., sleep for individuals, traffic

congestion, movement patterns, and social media events such as posts and retweets).

Hawkes Processes [53] are suitable for such cases where we are trying to model a self-exciting

process[153]. The conditional intensity function λ(t|Ht) for the process can be defined as:

λ(t|Ht) = λ0(t) +
∑
i:t>Ti

φ(t− Ti)

where Ti < t are the timestamps of events up to the current time t, λ0(t) : R → R+ is the base

intensity function describing the events triggered by external sources and φ(t−Ti) : R → R+

is the memory kernel that modulates the effect that past events have on intensity at the

current time. Hawkes process and its variants have been used to address different event

45

sequence problems such as clustering [208] and learning granger causality [207]. Zhang et

al.[214] utilize a neural point process to identify granger causality between asynchronous,

interdependent, multi-type event sequences. They argue that commonly used point-process

models have very strong parametric assumptions that may not generalize well.

3.3 Event Analysis Tasks

Event sequence analysis methods can be used to perform different operations on a sequence

database. Systems designed for helping analysts model situations using event-based data

utilize different visualizations to represent event patterns. Different visual event and pattern

representations are designed to address specific event analysis tasks. We will list some of

the analysis tasks and briefly discuss what computational techniques and visualizations are

commonly used to address the goals of the analysis.

3.3.1 Summarization

Event sequence summarization helps analysts uncover major progression patterns and fea-

tured groupings of sequence entities. The fundamental goal is to provide a quick overview

of the entire sequence database. Sequential pattern mining, progression analysis, and se-

quence clustering have been used in different works to generate summaries of event sequence

databases.

Explicit summarization refers to using visualizations to display all event sequences aggre-

gated into one interface. Event timelines reveal temporal information among sequences such

as distribution of events in varying time granularities [151][193], and Sankey-based visual-

izations can reveal the progression of events over time [199]. However, the visual interface

for explicit summarization can become quite large and messy for large event sequences and

46

Figure 3.3: Outflow [199] utilizes Sankey diagram based visualization for explicitly describing
event trajectories over time for the individuals in the Framingham study.

databases. Inexplicit summarization leverages data mining techniques for discovering infor-

mative patterns among event sequences. The analysis can be driven by user queries to extract

relevant event sequences. These techniques provide a rich and interpretable query language

that analysts can use to define sequence extraction logic[35][79]. Many applications utilize

sequential mining and frequent mining algorithms to summarize multivariate symbolic tem-

poral sequences[1][94][93]. Clustering is also very frequently used to find sequence-wide sim-

ilarities and sequence groupings. Temporal event sequence clustering typically uses sequence

characteristics such as event types and sequence attributes. Clustering of spatio-temporal

events have been explored in many works[58][154][190].

47

3.3.2 Prediction

Prediction requires analyzing the observed event sequences to foresee the subsequent events

in the sequence and are typically used for making predictions and recommendations to help

users achieve specific goals. Event predictions can play a vital role in decision-making in

many domains. Deep learning applications have been utilized to predict the risk that a

patient may be diagnosed with a disease in the future [48][67]. Recurrent Neural Networks

are frequently used for prediction tasks; however, interpretability remains a primary challenge

for the deep learning approaches.

3.3.3 Anomaly detection

Anomaly detection for event sequences attempts to identify rare cases and occurrences that

deviate from most sequence progressions. Anomaly detection can be divided into two major

categories 1) Anomalous event detection, 2) Anomalous patterns detection.

Anomalous events can be identified in the context of sequence based on the expected event

progressions[21][36][121][133] and multimodal events can also utilize event parameters to

identify anomalous event occurrences. Anomalous frequent patterns are frequent patterns

that describe unexpected behavior or pattern of events [77][140][175]. These methods have

been employed to identify anomalous learning patterns in MOOCs and anomalous traffic

patterns.

3.3.4 Causality Analysis

Timestamped event sequences can carry a great deal of information about the underlying

causal mechanisms. Many methods have been developed to find the mutual causation of

events, including graphical modeling, Hawkes-process-based, and deep learning approaches.

48

Graphical causal methods such as Peter & Clark (PC) and Functional Causal Models (FCM)

are well-known causal discovery methods[143][176]. TiMINO [149] and VAR-LiNGAM [59]

extend the FCM equations with time lags of causal relationships and PCMCI[161] and

tsFCI[34] utilize conditional independence testing in the time-lagged correlation analysis.

Various approaches have been developed around Hawkes processes (discussed in the previous

section). The self and mutual-excitation properties of the Hawkes process have prompted

studies that attempt to recover the causal structure between the events. Eichler et al. [32],

and Xu et al. [207] apply Granger causality to Hawkes processes using a least-squares esti-

mation of the impact function. Jin et al.[66] have also developed a visual causal discovery

framework around a Granger causality analysis algorithm based on Hawkes processes.

Recent causal discovery methods attempt to leverage deep neural networks to capture com-

plex event dependencies. Zhang et al. [214] utilize neural point processes based on RNN[112]

in place of Hawkes process for causal discovery. Nauta et al. [131] employ an attention-based

convolutional neural network to model causal relationships and delays in temporal data.

3.4 Event Analysis applications

Applications in different domains utilize event sequence data for understanding the user’s

behavior and needs. We will review some examples of such applications in domains like

health informatics, Social media, and E-commerce.

3.4.1 Health Applications

Electronic health records (EHR) and electronic medical records (EMR) are frequently used

for analyzing patient visits and disease progressions. These can be represented as event

sequences, and the details of the records can be stored as event parameters. Each event

49

can represent a medical event such as a lab test, a diagnosis or treatment, and a sequence

would thus capture an individual’s medical history. The combination of ample medical events

sequence data and domain knowledge have enabled physicians and medical researchers to

derive new knowledge, compare the efficacy of different treatments, and identify personalized

treatment protocols. We will discuss the use of event sequence analysis for three major

medical and health informatics tasks.

1. Cohort Analysis is used to discover the relationships between specific disease risks

and the patient attributes that define the cohorts. The cohorts can be defined based

on specific medical events, patient attributes (eg. age, gender), and individual event

sequences’ patterns. Cohort summarization techniques are used by systems such as

CAVA[215] and Chronodes[62] to visually summarize the informative patterns within

a cohort and discover the common exposure factors for disease.

Cohort comparison is used to discover the differences between two cohorts of patients to

find exposure factors for disease. COQUITO[79], PARAMO[70] and CoCo[103] utilize

a combination of event sequence clustering and visual representation of patient cohorts

to determine if the constructed cohorts carry exposure events for the disease.

2. Prognosis Analysis predicts the probability of a patient being diagnosed with certain

diseases in the future using their medical history. Various applications utilize deep

learning methods for prognosis analysis, [78][83] utilize RNNs to predict the future

state of patients. RetainVis [83] enables analysts to modify the event sequences to

observe how the future risks are affected. CarePre [67] also predicts the risk of patients

being diagnosed with specific diseases and also identifies the most effective treatments

based on their medical history.

3. Outcome Analysis studies the results of different medical progressions or interventions

such as disease progression and treatment progression. Systems such as Outflow [199]

and Frequence[148] utilize explicit sequence summarization using a Sankey diagram to

50

discover the outcomes of different procedures.

3.4.2 Social Media

Social Media platforms such as Twitter and Instagram also record user activities as event

sequences. Each sequence consists of temporally ordered events representing users’ interac-

tions with the platform, such as posting or commenting. These sequences can be utilized

to identify different types of user behaviors on such online forums. Two major types of

behaviors exhibited by users are Collective behaviors and Egocentric behaviors.

Collective behaviors are activities conducted by a temporary and unstructured group of peo-

ple. These include processes like information spread and human mobility. [185] describe

the graph-based structure utilized by Google+ to understand the reposting behavior and

capture the paths taken by different popular posts. Zhao et al. [216] propose a method to

understand the rumor-spreading process on Twitter using a timeline visualization. Spatio-

temporal event sequences from social media platforms like FourSquare have been used to

discover user mobility patterns in different locations and have been used to optimize adver-

tising strategies[86][148].

Egocentric behaviors are activities conducted or influenced by an individual. An egocentric

perspective allows us to find detailed behavioral patterns and changes in user behaviors in

response to significant public events and life events[163]. Saha et al. augment social media

events with multimodal lifestyle data in their works to understand user behavior in situated

communities such as college campuses and work places[165, 164, 162].

3.4.3 E-commerce

Similar to social media platforms, e-commerce websites also record a user’s interactions with

the platform as event sequences. Sequential events data have been leveraged to understand

51

user requirements and behavior, leading to improved advertising efficiency and personalized

user experiences. Zgraggen et al. [213] propose a method for finding frequent patterns

of clickstream data using a regular expression-based query language and discover frequent

visiting traces. Different works explore sequential pattern mining coupled with innovative

interfaces such as funnel-based visualisation[93] and tree-based visualization[92] to facilitate

the discovery of prominent browsing patterns.

52

Chapter 4

Event Mining: Concepts and System

Events are the computational representation of the real-world activities of a system. They

provide a dynamic temporal structure for the timestamped data instead of the static struc-

ture provided by daily, weekly or monthly calendars or time windows. Additionally, the

intervals derived from events are semantically meaningful and make it easier for analysts to

identify data relevant to their goals. Events can be recognized from different data sources

and thus provide an inherently interpretable and more robust abstraction over possibly noisy

data streams. Various temporal event processing and reasoning frameworks have been pro-

posed that utilize the event sequences to get a better understanding of the system state

or situation (fig. 4.2). Multimedia events have been the subject of study for many works

and have been utilized to aggregate heterogeneous data from different sources and associate

them with the corresponding events. Westermann and Jain [197] propose a multimedia event

model with six different data aspects of an event. Each event answers a specific category of

questions related to the event and thus leverages multi-modal data for cross-modal retrieval

and analysis. This structure also enables the researchers to seamlessly integrate the lat-

est developments in sensor technology and newer modalities in their computational pipeline

without disrupting the existing models and patterns.

53

Figure 4.1: Events provide a natural abstraction over data streams and segment time in
intervals with semantic meaning. Event abstraction also allows us to fuse data from multiple
sources and enhance our understanding of real-world actions.

Using events for studying the behavior of a system or individuals is likely to result in models

and patterns that can easily be interpreted in the context of the domain. Thus, any insights

or recommendations generated from such systems would be in the form of easily actionable

events.

In this chapter, we describe the temporal events and concepts as defined by [65] in their work

on event mining for explanatory modeling. We extend the event pattern language proposed

in [65] with group and aggregate operations that can be used for descriptive modeling of data

and will be utilized in the later chapters of this dissertation. We also describe the high-level

architecture of the novel n-of-1 observational modeling platform proposed in this work.

4.1 Concepts and definitions

We will introduce some concepts and definitions about events and patterns utilized in the

rest of the paper. These lay the foundation for the event pattern language we use for pattern

54

Figure 4.2: Events provide an abstraction for real world activities and event parameters
capture information from disparate multi modal data streams. These parameters can be
structured in six different aspects. Each of these aspects can be used to answer one of the
W5H questions about the event occurrence.

specification, pattern discovery and hypothesis specification.

4.1.1 Events and Event streams

Events are computational objects that represent real-world activity in a system. These

events can either be instantaneous (point event) or over some time (interval event). In some

cases, we might have semi-interval events where we only know when an interval event starts

or ends. We use the semi-interval event representation [10] to represent all three types of

events in our work.

Each event also has a set of associated properties that describe the event.

Definition 4.1 (Event). An event can be defined as:

ei = (E,P, [e+i , e
−
i])

55

where E represents the class of events (the activity represented by the event, ei), e+i represents

the timestamp of the beginning of the event, e−i is the timestamp of the end of event, and P

represents the set of properties associated with events of class E. For point events, e+i = e−i ,

and for semi-intervals we only know one the event end points.

Event streams are ordered collections of events that share some semantic significance.

For example, all running, cycling and swimming events can be grouped together to create

exercise event stream. We can define temporal order as follows :

e1 ≺ e2 ⇒ (e+1 < e+2) ∨ ((e+1 = e+2) ∧ (e−1 < e−2))

Definition 4.2 (Event Streams). An event stream is a set of temporally ordered and non-

overlapping events.

ESi = {e1, e2, e3, ..}

where (ei ≺ ej) ∧ (e−i < e+j) ∧ (ei.T = ej.T)∀i < j.

4.1.2 Event operators

Event operators are used for creating new events or event streams from existing ones. There

are two main categories of event operations 1) combination, and 2) filter.

Event combination operators can be used to combine two or more time intervals (rep-

resenting events) to create a new event. These operators utilize a combination of interval

union, intersection, and complement operations to define the event combination logic. Figure

4.3 depict how two interval events can be combined using AND and OR operations. Addi-

tionally, the NOT operator can be used to find the inverse of event intervals and utilized as

56

any other event.

Definition 4.3 (Event Combination). Event combination operators combine one or more

event streams to derive a new event stream. The event combinations can be specified as

a logical expression using event streams as operands, and AND(∧), OR(∨) and NOT(¬)

operators.

We will define the logical operators below.

1. AND(∧): Finds the intersection of intervals in the operand event streams. This

operator returns only the intersection of the events that overlap with each other.

ESout = ES1 ∧ ES2

ESout = {e1,i ∩ e2,j|∀e1,i ∈ ES1, e2,j ∈ ES2, e1,i ∩ e2,j 6= ∅}

2. OR(∨): Combines all the events from two event streams in the result. In case of

overlapping intervals, union of the intervals is returned.

ESout = ES1 ∨ ES2

ESout = {e1,i ∪ e2,j|∀e1,i ∈ ES1, e2,j ∈ ES2, e1,i ∩ e2,j 6= ∅}
⋃

{e1,i|∀e1,i ∈ ES1, e2,j ∈ ES2, e1,i ∩ e2,j = ∅}
⋃

{e2,j|∀e1,i ∈ ES1, e2,j ∈ ES2, e1,i ∩ e2,j = ∅}

3. NOT(¬): Returns the complement of all the intervals in the operand event stream.

This is a unary operator and is typically used in combination with one of the other

two operators.

ES1 = {(e+i , e−i)|∀ei ∈ ES1}

ES2 = ¬ES1 = {(e−i , e+i+1)|∀ei ∈ ES1}

Event filter operation can be used to select only events from an event stream that satisfy

a set of conditions. These conditions consist of constraints on different event parameters,

including event start and end time and event name.

57

Figure 4.3: Event operators for creating new event streams from the existing ones.

Definition 4.4 (Event filter). Event filter operations apply a set of constraints, Φ, on event

parameters and result in a new event stream with events that satisfy the constraints.

ES2 = σ(ES1,Φ)

ES2 = {ei|∀ei ∈ ES1,Φ(ei) = True}

The constraints for event filter operations can be as simple as equating values or more fuzzy

matching using similarity scores between parameters. The constraint filter can help curate

the events data set for any analysis and redefining events based on similar parameter values.

Different event operations can be used in a single expression to define new complex event

streams as a function of existing events. For example, if we want to find intervals where a

person is running, their heart rate is in the aerobic zone (140-160 bpm), and they are not

in their home city (Irvine). As the problem suggests, we need running event stream (ESrun)

and heart rate event stream (EShr) for creating the new event stream.

58

We can define the new event stream (ESAerobicRun) as:

ESAerobicRun = σ(ESrun,Φ := location! = “Irvine”)∧σ(EShr,Φ := event = “Aerobic”)

Thus, the event operations help us derive new and more complex events relevant to the

analysis and can be used in subsequent patterns and aggregation analyses.

4.1.3 Pattern

Patterns allow us to specify tuples of events that are related to each other via a temporal

constraint. The interval representation of the events allows us to utilize Allen’s interval

operations[10] for describing temporal relationships between different events.

Definition 4.5 (Patterns). A pattern is a relation between two event streams that is defined

by a temporal constraint C. Thus, a pattern P between event streams ES1 and ES2 defined

by temporal constrain C can be represented as:

P = {(e1,i, e2,j)∀e1,i ∈ ES1 ∧ e2,j ∈ ES2 ∧ (e1,iCe2,j)}

where (e1,iCe2,j) represents that the pair of events, e1,i and e2,j, satisfy the temporal constraint

C.

We utilize three event pattern operations (temporal constraints) described in [65] that cap-

ture possible interval relationships.

1. Concurrent operation: Identify pairs of events that overlap.

PConc. := ES1 ⊥ ES2

59

Figure 4.4: Event pattern operators to capture different temporal relationships between the
events.

PConc. = [(e1,i, e2,j)∀i, j, e1,i ∩ e2,j 6= φ]

2. Sequential operation: Identify pairs of events that occur in the specified sequence.

PSeq. := ES1∆ES2

PSeq. = [(e1,i, e2,j)∀i, j, e+1,i < e+2,j]

3. Conditional Sequential operation: Identify pairs of events that occur in the specified

sequence and within the specified time interval.

PCond.Seq. := ES1∆[t1,t2]ES2

PCond.Seq. = [(e1,i, e2,j)∀i, j, e+1,i + t1 ≤ e+2,j < e+1,i + t2]

4.1.4 Groups and Aggregations

Groups are helpful when the nature of the relationship between events is not one-to-one.

This can also be viewed as an event having a carry-over effect, as discussed in section 2.2.

This is a prevalent situation in the context of health applications and biological systems. For

example, a person’s aggregated sleeping behavior in the past week would affect their current

mood, not just their most recent sleep. Groups allow us to capture the aggregated nature

60

of these relationships. Groups are created from a pattern and define a set of events of one

event stream related to a specific event of the second event stream.

Definition 4.6 (Group). Consider a pattern, P , such that

P = {(e1,i, e2,j)∀e1,i ∈ ES1 ∧ e2,j ∈ ES2 ∧ e1,iCe2,j}

where C is the temporal constraint relating two events.

We can define a group, G, as follows

G = P.groupBy(ES1)

G = {(e1,i, {e2,j∀j, (e1,i, e2,j) ∈ P})∀i, e1,i ∈ ES1}

Every element in the group relates an event from ES1 to a set of events from ES2. The

events from ES1 are called the indexing events, as these are used to index the events from

ES2. We can also use ES2 as indexing events, mapping all the associated events from ES1

to an events in ES2. Thus, groups can map any outcome event to all the events that are

causally related to it.

Definition 4.7 (Aggregates). An aggregate over a Group G can be defined by a function F ,

that takes as input a set of events E, and maps it to a vector V ∈ Rn. An aggregate, A, is

A = G.apply(F)

A = {(e1,i,F(E))∀(e1,i, E) ∈ G}

Thus, applying an aggregate results into one vector, V , associated with each indexing event

in the group.

We can apply any generic functions on the related set of events in a Group to calculate

61

Figure 4.5: High level overview of the event mining analysis workflow. The analyst in the
loop identify the significant or non-spurious patterns from the set of discovered patterns.
They can combine the significant patterns and their knowledge of the domain to create a
hypothesis that can then be tested using the platform.

summary statistics relevant to our experiments. These functions include (but are not limited

to) finding the average/sum of an event parameter, the average time of day for associated

events, etc. This allows us to find the relevant factors from the related events in the past

and will be utilized to define causal hypotheses and design experiments.

4.2 Event Mining System: Functional requirements

The Event-based knowledge discovery and modeling paradigm we employ is interactive and

relies on a human-in-the-loop to ensure that spurious patterns and event relations are not

used in the model. We have used the operators described above to design an event mining

framework that can be used for n-of-1 modeling of individuals. We will discuss different

components of the system in the subsequent sections and describe the system architecture.

62

Figure 4.6: Database schema used to combine data and event streams from different sources.

4.2.1 Data Fusion

The event mining platform is capable of ingesting data from different sources using a unified

event schema. The events are stored in a PostgreSQL table as it allows to keep structured

event fields (name, type, start and end time) as well as unstructured parameters in a JSON

field in a unified schema (fig. 4.6).

However, each data stream is stored in a separate table, though if multiple sources are

measuring the same data stream, they are stored in the same table and can later be chosen

or aggregated as required by the analysis.

4.2.2 Event Creation

Events form the fundamental unit of analysis and are the primary actors on the individual

in the event mining analysis. Events representing user activities such as sleep, exercise, and

63

meals could originate directly from data sources such as sensors, smartphone applications,

and IoT devices. However, these life activity events may not be sufficient to capture low-level

activities or details such as variations in heart rate or intensity levels during any physical

activity. A prominent example of such events is different sleep stages that can be identified

using EEG signals but are lost if we only capture the sleep event. However, the subjective

outcome of sleep quality and restfulness depends on the sleep-stage events. Therefore, event

creation operations allow us to create new relevant events for the analysis and enhance the

existing events by associating new information.

The event mining system presented in this work has three primary operations (fig. 4.7) for

creating new events:

1. Threshold based segmentation: This operator utilizes a set of non-overlapping

thresholds to be applied over a data stream. Each threshold range has an associated

label that represents the event name. Continuous intervals with a duration greater

than a minimum duration (e.g., 5 seconds) are stored as a new event.

2. Motif-based segmentation: This operator relies on motif discovery algorithms such

as Symbolic Aggregate approXimation or SAX[91]. Motif discovery algorithms at-

tempt to find repeatedly observed patterns and variations in time series data. The

user can use the operator to find such patterns and identify patterns corresponding to

real-world events.

3. Event combination operators: As discussed in the previous section, event com-

bination operators can also be used to create new events. These operations can find

event occurrences that are a direct combination of existing events and can be used in

the models and patterns instead of the parent life events.

The newly created events also follow the same schema as other events and are stored in a

table that holds temporary results.

64

Figure 4.7: Event creation operators in the event mining platform. a) Threshold based
segmentation. Matches the values of the time series to a label using non-overlapping ranges.
Continuous intervals defined as having the same label are stored as new events. b) SAX
based segmentation. Converts the numeric time series to symbolic series and finds frequent
sub strings as motifs. These sub strings represent possible new events.

65

4.2.3 Pattern Creation

Events from a system may have a causal impact on other events, which changes the frequency

of event occurrence and their parameters. For example, weather-related events like rainfall

or storms are likely to affect exercise behavior. These effects are commonly observed as

changes in event occurrences or parameter value distributions. We can use temporal event

patterns, event creation, and filter operations to find such relationships. We utilize the

operators discussed in the previous section to define different patterns from event streams.

The patterns are stored in a PostgreSQL table, and the schema is described in fig. 4.6.

This relational representation of patterns allows us to easily implement aggregation and

group operators using SQL queries. We will use these operations when defining and testing

hypotheses that relate aggregated event parameters to certain outcomes.

4.3 System Architecture

This section describes the overall system architecture and implementation details for different

system components. Figure 4.8 shows a high-level view of the different components of the

system and their interactions with each other. We have implemented a subset of the event

pattern language in a web-based platform that allows an analyst to explore the events data

set interactively. The dashboard can be accessed at https://theeventminer.com and is

discussed in detail in Appendix B. There are six main components of the system:

1. Data fusion layer: This module is responsible for parsing the data from different

sources and storing it in the unified database. Currently, we have implemented the

parsers for popular lifestyle data platforms such as Apple HealthKit and Strava so

that the users can connect their accounts with the event mining platform using OAuth

verification. Analysts can also upload CSV (comma-separated values) files with headers

66

https://theeventminer.com

Figure 4.8: A high-level view of interactions between component systems of the event mining
platform.

matching the event and data stream schema.

2. Database: A PostgreSQL database instance is used as the permanent event and

data stream and pattern storage for the platform. PostgreSQL allows us to use the

structured format of an event’s time model for event and pattern operations while

storing varying event parameters using a JSON field. We can also store the source for

different events and data points, allowing us to use data streams and events based on

the expected accuracy of the sources.

3. Data Access layer: Event stream, data stream, and pattern classes are implemented

on top of the unified data store. This module interacts with the database and provides

access to the required events, data streams, and patterns. Event and pattern operations

access the data through these modules and write the results to the database. This

layer also interacts with the User Interface (UI) and displays a selection of events to

the analyst.

4. Event operations: Event operators create new event streams from existing events

and data streams. These operations utilize the event creation operations discussed

above and create an event stream object.

67

5. Pattern operations: Pattern operations are used to create new patterns from existing

patterns and event streams. Pattern class from the data access layer is used to com-

municate with the database to read and write pattern occurrences and communicates

with the UI layer to display and visually compare different pattern frequencies.

6. User Interface (UI): The UI layer allows the analyst to interact with the events,

create new events and patterns, and examine and select patterns that are significant

for the analysis. An events analysis session begins with a data selection panel, where

the user can select the events, data streams, and the time range for the analysis. The

selected events are displayed on a timeline and a polar plot to examine the individual’s

event patterns relative to the circadian rhythm. The interface also provides panels for

event and pattern operations for creating new event streams and patterns. Different

panels of the dashboard are depicted in figure 4.9

The event mining platform described in this chapter allows an analyst to perform exploratory

analysis on the events set and initial analysis for finding causally significant event patterns.

We will utilize the pattern, group and aggregate formulation while defining and testing

hypothesis that encode the analyst’s beliefs about the system or individual.

68

Figure 4.9: Different panels for exploratory analysis in the event mining dashboard. a) Data
selection panel, where the analyst can select events, data streams and time range for the
analysis, b) Events panel, where the analyst can visualize the selected events and create new
events, and c) Patterns panel, where the analyst can create and visualize patterns between
various event streams.

69

Chapter 5

Knowledge Integration and

Hypothesis testing

Anecdotal beliefs, personal experiences, and commonly observed associations are frequently

used to make personal and policy decisions. However, such untested assumptions could lead

to unexpected errors in specific sub-populations and contexts. We attempt to include such

patterns in personalized modeling after testing them in different contextual situations.

Testing and verifying long-held and commonly observed patterns is integral to the personal-

ized modeling process. An n-of-1 modeling platform should enable users to test their beliefs

about individual behavior, health, and environment. The hypotheses can be represented as

relationships between events and event parameters in an event-driven framework. The event

relationships or hypotheses can be derived from population-based knowledge, personal and

anecdotal beliefs, and experience. Verifying the hypothesis allows us to make predictions

and inferences about the system’s behavior and state in different contexts. This is an es-

sential step towards building recommendation and navigation systems to guide the system’s

behavior.

Knowledge and insights derived from population-based experimental trials are excellent sci-

70

entific tools for determining causal links. However, the quantitative effects determined from

these experiments may not generalize very well. The same intervention can have very dif-

ferent responses across individuals due to personal attributes and is a widely recognized

phenomenon in the scientific community [171]. The inconsistency of interventions has led to

increased research in N-of-1 studies where observational or experimental data from a single

individual is utilized to identify mechanisms and interventions specifically for the person.

We use the event pattern language described in the previous chapter to identify events that

are causally related to an outcome and compute the aggregated effect of such events on the

outcome. This analysis is done at an individual level and can be viewed as an N-of-1 obser-

vational experiment. We refer to Granger’s causality [172] when identifying the causal effect

of past events on subsequent event occurrences and event parameters and utilize Causal

Graphical Modeling principles for our analysis.

We propose a novel approach to build personal health models by integrating knowledge

derived from external sources (e.g., Randomised Control Trials, personal beliefs) with multi-

modal observational data. The external knowledge sources provide us with a causal structure

of the personal model in a Directed Acyclic Graph (DAG). We personalize that model by

learning the coefficients and causal effects associated with different edges in the model using

multimodal personal data. We utilize the Causal Graphical Modeling (CGM) [143] approach

for estimating the causal effects of suspected relationships between multimodal parameters

and computationally replicate the do-operator[143] to find the causal effects in various con-

texts. The combination of context, action, and outcome values describes the rules that define

the personal model and can be updated over time using personal multimodal data.

71

5.1 Events in a cybernetic system

The goal of event mining is to understand systems that interact with their environment and

their next actions are decided by the current state of the system and the feedback received

from the environment. These interactions and the behavior of the system is monitored in

form of events. Cybernetics and control theory have long attempted to describe such systems

in a mathematical framework. The mathematical model in classic systems theory states that:

X[k + 1] = A[k]X[k] +B[k]U [k]

Y [k] = C[k]X[k] +D[k]U [k]

Where X, U, and Y are the system true state, inputs, and measured output vectors respec-

tively. A, B, C, and D are matrices that provide the appropriate transformation of these

variables at a given time k.

Events are the agents of change in such dynamic systems. Every interaction with the en-

vironment (external event) affects the underlying system state. The state of the system,

in turn, determines the next actions of the system (system generated events) which may

affect the environment as well as the system state. This is true even for human bodies and

various biological functions. A cybernetic view of the human systems and behavior allows

us to interpret different individual, social and environmental events as an input to the sys-

tem. Every event propagates a change in the system and impacts the occurrences of future

events.

We will use the relationship between cardio-respiratory fitness and endurance activities

among humans to highlight event interactions in a dynamic system and how we can utilize

event mining operations to model the behavior of such system and identify the effect of

external and system events on the system state.

72

Figure 5.1: Event interactions between a dynamic system and the external environment.
These interactions determine the future state and behavior of the system. Event mining
operations can be used to articulate and test these relationships.

5.2 Causal relationships between events

Events (such as sleep and exercises) impact health state parameters such as aerobic fitness

in human bodies. These health state changes, in turn, affect the occurrence of other events

(e.g., heart rate changes during exercise) during our daily lives. Let us consider the effects

of exercise habits on V O2 Max, an essential aspect of cardio-respiratory fitness (CRF). V O2

Max describes the volume of oxygen required by our bodies to function at maximal heart

rate capacity and is a significant predictor of long-term cardiovascular health [155]. It is also

widely accepted as a good predictor of performance in endurance sports [166, 23]. At the same

time, repeated exposure to endurance training affects our pulmonary, cardiovascular, and

neuro-muscular systems leading to improved delivery of atmospheric oxygen to mitochondria

and improved exercise performance[69]. The magnitude of fitness improvement depends on

multiple factors, notably the existing fitness levels and intensity, duration, and frequency

of endurance exercises[196]. Though there is no consensus about the ideal duration of a

training plan, some studies have observed a more remarkable improvement in V O2 Max

in the first six weeks of training. After that point, the CRF tends to stabilize, and any

improvements observed in performance are due to other factors such as exercise economy

73

and lactate threshold[150, 68].

Recovery/resting periods also play a vital role in adapting to various exercise inputs. Too

much training with little to no rest leads to overtraining[110] and does not allow the body

to recover from exercise strain. On the other hand, too much rest leads to de-training[132]

and does not have long-term health benefits. Sleep is essential to recovery between exercises

and contributes to changes in CRF. Various sleep disorders affect post-exercise recovery, and

successful interventions also lead to improvement in performance[167].

Therefore, we can infer from the above discussions that exercise events in the past six weeks

have a causal impact on a person’s current expected endurance capacity. However, the past

exercise events can affect current cardio-respiratory fitness via multiple mechanisms that we

will capture using different aggregation operations.

The impact of an event on the health state can be viewed as an impulse response that

asymptotically returns to its equilibrium state (fig. 5.2). Thus the effect of any event on our

health state (and other events) decreases over time, and the aggregated effect of the events

occurring only in a specific time window (with non-zero impulse response value) in the past

can be observed in the outcome. This natural tendency to achieve homeostasis keeps the

effects of an event bounded and allows us to apply cybernetic principles while modeling

the effects of lifestyle on health state parameters. It is possible to estimate the impulse

response function and decay rate following specific events as shown by [212] in the context

of forecasting blood-glucose response to different food items. However, this requires detailed

high-frequency sampling of data streams for every individual. Due to this constraint, we have

limited our approach to estimating the average effect of events over a larger time interval.

74

Figure 5.2: Exercise and Sleep events affect cardio-respiratory fitness. Every endurance
exercise event (such as running) puts a volumetric stress on our heart, that reduces the
maximal work capacity temporarily, but adequate amount of rest (sleep) can lead to an
improvement in maximal work capacity. However, in absence of future exercise events, VO2
Max would asymptotically return to its baseline value. Thus, the effect of exercise and sleep
on VO2 Max can be viewed as an impulse response that slowly goes down to zero.

5.2.1 Event patterns as causal links between events

As discussed in the previous section, events in the past impact current health outcomes and

events. Any causal event relationship has at least three components, 1) Cause (event), 2)

Outcome (event), 3) Temporal delay. An event pattern can represent these relationships if

the cause and outcome events or parameters of an event. For example, endurance exercises

in the last six weeks have significantly improved CRF [18]. This effect can be captured as a

temporal event pattern, P1, as:

P1 = ESExerc∆0,42daysESCRF

We can convert any known biological event relationships to event patterns, which can be

utilized for health state modeling and estimation. The bounded nature of the event impulse

response allows us to use patterns for computational efficiency as only the events in a specific

time window can have an observable effect on the outcome. Some example patterns are shown

in table 5.1.

75

Cause Outcome Temporal
Relationship

Pattern

Exercise CRF Past 42 days ESExe.∆0,42daysESCRF

Resting CRF Past 7 days ESRest.∆0,7daysESCRF

Exercise Sleep Past 7 days ESExer.∆0,7daysESSleep

Table 5.1: Examples of causal event relationships captured using patterns.

Different attributes of an event can affect the outcome event through separate mechanisms.

For example, heart rate variations during an exercise event (measured by hr zone events)

play a part in changing the physiology of our heart. At the same time, exposure to the sun

during exercise (measured using exercise start and end time) impacts melatonin production,

contributing to sleep onset and sleep efficiency. These factors, derived from the same event,

have different effects on the outcome (CRF). These effects can be derived from the pattern

that relates exercise events to CRF events (exercise events with a CRF value).

Ghrzone = P1.groupBy(ESCRF).apply(hrzoneDuration)

Gexer.T ime = P1.groupBy(ESCRF).apply(averageStartT ime)

The effect of an event attribute that has a causal effect on the outcome can be aggregated

from the events that satisfy the temporal pattern. Thus, every group-aggregation operation

represents a causal pathway from one event (exercise) to the outcome event (sleep).

5.3 Hypothesis Specification

Causal hypothesis representation should allow the expert users to incorporate their prior

beliefs and external knowledge in the experiments. We have discussed how event patterns

can be used to identify event pairs that are causally related; we will now attempt to extend

76

Figure 5.3: a) Events have causal relationships among themselves, and these relationships
manifest themselves in different parameters and event occurrences. b) Pairs of such events
can be captured using event pattern operators with appropriate temporal delay. c) Group
and aggregation operators allow us to derive multiple causal factors from an event pattern
that represent multiple causal pathways between the events.

this line of thinking using group-aggregate operations to find the aggregate causal effect of

the past events causally related to the outcome.

5.3.1 Capturing knowledge as DAG

Graphs have been used to encode relationships between entities in different domains. Knowl-

edge graphs are a commonly used data structure for encoding different types of relationships

between different entities in the system—similarly, a hypothesis of known and suspected

causal event relationships that need to be tested. These can be represented using a Directed

Acyclic Graph (DAG) structure commonly known as Causal Graphical Model.

77

Causal Graphical Models (CGM) have been used extensively in varied scientific literature

and experiments. CGMs are traditionally used to represent the causal assumptions between

variables in an experimental setting. Different parameters are represented as nodes and a

directed edge represents a causal dependence from cause to effect [143]. Missing edges be-

tween variables represent the lack of a known causal relationship between the variables. The

assumptions in the causal graph originate from external knowledge sources (e.g., scientific lit-

erature, randomized trials, personal beliefs). The CGM can estimate the causal effect of one

variable on an outcome using functional (Structural Equation Modelling) and probabilistic

(Bayesian) estimation mechanisms.

We can describe such causal relationships between events in the form of CGMs. We can

describe multiple causal pathways between events using “group-aggregate” operations, each

operation generating one parameter in the graph. Pattern operations allow us to identify

events that have a causal impact on the outcome of interest, and group-aggregate operations

allow us to find out parameters of interest from the related events. These parameters are

represented as nodes in the resulting CGM, and edges represent the causal relationships

between these parameters(fig. 5.3). Since we are computing the variables by aggregating or

selecting values from patterns, the possible causal links between the parameters are defined

by the temporal relationship between the variables i.e., variables derived from the preceding

events in a pattern can affect the parameters of the future event.

The causal graphical model thus generated can be considered a causal hypothesis. We can

choose one of the relationships to test in the graphical hypothesis and find the causal effect

of the selected parameter while applying the principles of Pearl’s do-calculus [143] to deter-

mine the confounding variable set. Figure 5.2 illustrates how we can convert known event

relationships to causal hypotheses using event patterns and group-aggregation operations.

78

5.3.2 Causal hypothesis

The specification of the hypothesis includes causal relationships between different parame-

ters described as CGM and the definitions of the parameters in the form of event mining

operations. We utilize the two components and apply the required statistical methods to

test one or more of the links specified in the CGM. This hypothesis formulation allows us

to easily include new relationships using the graphical structure and additional parameters

using the event mining operators.

Hypothesis testing is accomplished in two steps:

1. Creation of data set using event mining operators: We can compute the values for

each variable in the hypothesis using their corresponding event formulation. Due to

the nature of the group-aggregate functions, each variable value is associated with

an outcome event instance. Thus, processing all the event formulations results in a

relational data set with each row of variables corresponding to an outcome event and

can be considered a treatment unit.

2. Testing the statistical validity of relationships in the data set: We can use the graphical

structure of the hypothesis to identify the minimum set of variables that would block

all backdoor paths [144] between the intervention and the outcome node. This allows

us to simulate the do-operator and find the effect of changing the intervention variable

(or events) on the outcome.

The two-step verification process allows us to incorporate new causal relationships and enrich

the model to understand the system better and observe novel behavioral patterns. We can

also utilize the verified structure of the hypothesis to create models for predicting the state

and behavior of the system. We will now present a formal definition of the hypothesis in

terms of a DAG and event mining operations.

79

Formal hypothesis definition

The causal structure for the hypothesis is defined as a directed graph G = (E ,V) where

V is the set of vertices in the graph and E is the set of edges in the graph that represent

the causal relationships. Every node in the graph has an associated parameter(ν) defined

as a pattern-group-aggregate operation. We first need to specify the causal event link as a

pattern (Pi) and apply the aggregation operation(F) to derive the parameter(ν). Therefore,

for every causal link, ei, let :

ei = (N in
i , N

out
i) ∈ E ∧N in

i , N
out
i ∈ V

Pi := ESini CESouti

Gi := Pi.groupBy(ESouti)

N in
i .ν := Gj.apply(F)

N out
i .ν := ESouti .Param

(5.1)

As described in chapter 4, every value (νji) computed using a group-aggregation function

is associated with an event from the outcome event stream (ej ∈ ESout). Thus, values(ν)

associated with any node Ni has the structure:

Ni.ν := {(ej,F({ek}))∀ej ∈ ESout,∀ek|(ek, ej) ∈ Pi}

This property of the aggregated groups allows us to relate each node’s values with an event

in the outcome event stream. Extending this over all the nodes in the hypothesis allows

us to create a relational data set of all the parameters indexed by the outcome events and

can be used for testing the hypothesis where every row in the data set can be considered a

treatment unit.

80

Figure 5.4: Causal relationships between variables can be captured in a DAG structure
called Causal Graphical Model (CGM). The do-operator can be used to find the causal
effect of intervention (X) on the outcome (Y). Conceptually, the do-operator is equivalent to
removing all incoming causal links to the intervention, that could lead to a backdoor path to
the outcome. In the above figure, we remove the link from B to X (by controlling for B) but
not on C as it is the collider node between X and Y, and blocking on it would open another
back-door path from X to Y.

5.4 Hypothesis testing

There is a rich body of literature about CGMs and identifying minimal causal path blocking

variables from the graphical structure itself[142]. Wright et al. first championed the use

of causal path analysis [201] to answer causal queries and quantify causal effects. Pearl

et al.[143] combined the causal path analysis with Bayesian modeling and provided the re-

searchers a way to articulate causal relationships as separate entities from statistical concepts.

Assuming that we capture causal event relationships as temporal patterns and capture the

aggregated causal parameters using group operations, we can utilize the CGM principles to

identify the causal effects of aggregated event parameters on the outcome.

Figure 5.3(c) describes a hypothesis that relates different endurance training metrics (derived

from multimodal data streams collected with exercise events) with cardiovascular perfor-

mance and cardiovascular fitness. These relationships are derived from the literature in the

exercise physiology domain and tested in different clinical trials (discussed in the previous

section). However, the causal effect of any one of the parameters is unlikely to be consistent

across all individuals. Therefore, we need to perform an N-of-1 analysis to utilize observa-

tional data collected for an individual and find the causal effect of different relationships in

81

Figure 5.5: Detailed view of hypothesis testing framework. Treatment, outcome and covari-
ates are derived from event operations associated with every node in the causal graph. The
parameter values are then converted to categorical labels and the units are then matched
using CEM (Coarsened Exact Matching). For each matched set we find the validity of the
encoded relationship using Fisher’s exact test and significant relationships are added to the
set of rules that describe the model of the system. These rules can be continuously updated
using incoming data and provide a causal understanding of the system (shown in the red
outline).

our hypothesis. We can use the graph structure to find the minimal set of variables needed to

block all causal pathways except the one being tested and simulate the do-operator to find

the direct causal effect. For example, to find the causal effect of training stress (source)

on current fitness (outcome), we need to observe past fitness, as it lies on an alternate

causal pathway, in order to find the direct causal effect of the source on the outcome.

5.4.1 do-operator

As described in Pearl et al. [143], we can consider the do-operator, do(X = x), as an

intervention in the causal mechanism that sets the random variable X to value x while not

82

disturbing any of the non-descendant nodes in the causal graph. Graphically, intervening

on X can be viewed as removing all incoming edges to the node representing X as shown in

figure 5.4. It can be defined as follows:

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z)

where Z is the set of intermediary variables intercepting any indirect causal paths between

X and Y . The additional set of variables to be controlled or covariates (Z) is determined

from the causal graph using backdoor principle[142]. We can find the direct causal effect of

any intervention (do(X=x)) on the outcome (Y) as

CDE = E(Y |do(X = x), do(Z))− E(Y |do(X = x′), do(Z))

where x′ is the baseline against which the effect of an intervention is to be measured.

In addition to the causal effects, this modeling paradigm also allows us to answer queries

about counterfactual events and attribute specific outcomes to individual events or a set of

events. These queries are impossible to answer in a purely statistical model but are essential

for understanding the system’s functioning.

5.4.2 Unit Matching and testing

The do-operator provides us with a conceptual framework for identifying the causal effects of

different interventions and explains that it is essential to remove any bias due to covariates to

understand causal relationships. Randomized experiments provide an experimental avenue

for removing this bias by using an ignorable treatment assignment that is independent of the

covariates. However, this approach is not possible when using observational data to estimate

causal effects as all the events and data collection happened in the past. We attempt to

replicate the randomized treatment assignment by obtaining treatment and control groups

83

with similar covariate distributions[179]. Once we have matched control units with similar

treatment units (with respect to the covariates), we can use different techniques (e.g., t-test,

linear regression, CART, etc.) to estimate the treatment effect for each treatment unit.

The treatment effect reported in this case is the Average Treatment effect for the Treated

or ATT. The first step in this analysis is identifying the appropriate set of covariates for

matching the units. Typically, researchers tend to be liberal when choosing the covariates as

including variables that are not associated with the outcome can lead to a slight increase in

variance, but excluding a potentially important (correlated) variable can lead to a significant

increase in bias[179]. However, we should also be careful not to include any variables that the

treatment or intervention of interest may impact. Using CGM for identifying the covariate

set alleviates these concerns as we are only choosing the set of variables that remove the

causal impact from variables except the ones included in the intervention[169].

Causal analysis using matching methods can be largely divided into four steps that are

discussed below:

Distance Metric

Distance metrics define “closeness” or similarity between different units based on the covari-

ate values. We will discuss three common ways to define the distance Di,j between units i

and j.

1. Exact Matching : This method directly compares the covariate values(Z) and returns

a binary similarity score. It can be defined as :

Di,j =

0, if Zi = Zj

1, otherwise

Exact matching is the ideal distance metric in many ways[60], but it can lead to

84

many unmatched units in the case of high dimensional covariates. However, coarsened

exact matching(CEM) allows us to utilize exact matching on a more extensive range of

variables, for example, defining categories based on total exercise minutes in the last

42 days rather than using the continuous values of the variable. We have used CEM

in our experiments discussed in chapter 7 for causal effect estimation.

2. Mahalanobis distance: It can be defined as:

Di,j = (Zi − Zj)′Σ−1(Zi − Zj).

where Σ is the covariance matrix of Z in the complete control group.

Mahalanobis distance can work well with relatively few covariates, but it does not

perform well when the covariates are not normally distributed or are high dimensional.

3. Propensity score: Propensity score(ei(Zi)) for a unit i is defined as the probability of

receiving the treatment given the observed covariates, ei(Zi) = P (Ti = 1|Zi), and can

be estimated using methods like logistic regression, CART and generalized boosted

models. We can use propensity scores to match units in place of the covariate values

because the distribution of covariates is identical for both treatment and control groups

at every value of the propensity scores. If the treatment assignment is ignorable given

the covariates, then the same holds for the propensity scores. We can define the

distance between two units i and j as:

Di,j = |ei − ej|.

A variation of propensity score, known as “linear propensity score” has been found to

be very effective in reducing bias[160, 159] and can be defined as

Di,j = |logit(ei)− logit(ej)|.

85

Matching method

We can use the selected distance metric for matching similar units. The goal of the matching

is to find a set of control units that resemble the treatment units in covariate distribution and

thus allow us to simulate randomized experiments from observational data. Some commonly

used matching techniques are:

1. k:1 nearest neighbor : In this method, we match a treatment unit with k nearest treat-

ment units in terms of the distance metric selected. Nearest neighbor methods always

simulate the ATT as we attempt to find the nearest control units to every treatment

unit and may exclude control units that are not close enough to any treatment unit.

2. Subclassification and Full matching : Subclassification matching methods search for

groups of units that are similar as defined by the distance metric though the number

of groups or clusters need to be specified before matching. Full matching applies a

similar methodology; however, they select the number of groups automatically. Each

matched set of units contains at least one treatment and one control unit and can be

used to estimate both ATT and ATE (Average Treatment Effect).

3. Weighting :Propensity scores can also be included directly in estimates as inverse weights.

One commonly used weighting scheme is Inverse probability of treatment weighting and

the corresponding weight can be defined as

wi =
Ti
ei

+
1− Ti
1− ei

There are many such weighting schemes found in causal inference literature and can

be found in [179].

86

Quality of matching

Determining the quality of matching is very important for the matching analysis. Conven-

tional metrics of accuracy or model performance do not necessarily capture matching quality,

as our goal is to minimize the differences in covariate variable distributions between treat-

ment and control groups. We can compare the multidimensional histograms of all covariates

between the treatment and control groups; however, this approach might not be viable in all

problems as the histograms may be very coarse and may have numerous regions with zero

value. Additionally, different numeric and graphical methods can be used to evaluate the

similarity of distributions.

1. Numeric methods : Some commonly used numerical metrics are standardized difference

of means and ratio of variances between treatment and control groups for all covariates

or propensity scores.

2. Graphical methods : QQ (quantile-quantile) plots can be used to compare the empirical

distribution of each covariate in the treatment and control group. Plots of standardized

difference of means of variables between unmatched and matched sets can also inform

us whether matched units are closer to each other than unmatched units.

Outcome Analysis

Matching methods result in treatment and control groups with adequate covariate balance,

and we can now move on to the analysis stage. We utilize Fisher’s exact test to identify

the differences in the outcome distribution for the treatment and control units which is

interpreted as the average treatment effect for the treated (ATT). The weighted sum of

estimates for each matched set leads to the final estimates ATT.

87

5.5 Use cases

These steps result in rules that represent causally significant relationships between the aggre-

gated event features and the outcome events included in the patterns. Patterns derived from

external knowledge sources are verified using the above mentioned steps and are included for

future hypothesis tests if found to have a significant average treatment effect. These rules

describe the system behavior and are inherently interpretable. Thus, the rule-based model

enhances our understanding of the system and can help identify effective interventions and

recommendations.

The verified hypothesis can also be used as a template for models to predict system state and

behavior. The incoming links to a node included in the verified hypotheses can be viewed as

known causal factors for the parameter represented by the node and can be used as features

to train a prediction model for the parameter. We have performed several experiments to

show the utility of this modeling framework in the context of personal health and lifestyle

interactions and will be discussed in chapter 7.

88

Chapter 6

Data-driven temporal event pattern

discovery: Hypothesis discovery

Events from different sources and recognized from multimodal data streams form the history

or the lifelog of the individual. The lifelog of an individual contains a digital representation of

their actions, habits, and lives and can thus be utilized to discover their repetitive behaviors.

The data-driven discovery of frequent event patterns adds value to the N-of-1 modeling by

enabling the analyst to discover unknown event relationships idiosyncratic to the individual

and identify contextual situations determined by the events preceding the outcome of interest

that may not have a direct causal impact but affects the outcome indirectly.

The events are available to the analyst in the form of a large sequence of timestamped events.

For example, ES =< (E1, t1), (E
+
2 , t

+
2), (E3, [t

+
3 , t
−
3) > represents a sequence of 3 events with

associated temporal information. Each event can be one of the three types (point, interval,

or semi-interval event).

In this chapter, we will discuss how we can derive frequently observed patterns of events. We

propose an episode mining approach to derive frequent patterns. The episodes are defined

relative to an outcome of interest and a time range that includes the relevant events. We

89

discuss how multimodal data associated with events can reduce the variance within events of

the same type (e.g., find different sleep events). After obtaining the symbolic representation

for similar events, we can discover the frequent event patterns. We utilize semi-interval events

to describe event patterns as described by Moerchen et al. [116]. We adopt a novel tree-

based indexing of semi-interval event sequences to index commonly observed episodes and

discover frequent patterns by traversing the tree in a depth-first manner. We will evaluate

the proposed approach using a simulated dataset with controllable error rates and randomly

injected fixed event patterns.

6.1 Temporal Pattern discovery

Temporal patterns describe associations between different temporal events observed in the

system. The majority of works in sequential and temporal pattern mining have focused on

discovering frequent patterns as defined by the support of the pattern. These patterns and

corresponding sequential pattern discovery algorithms were discussed in chapter 3.

However, not all interesting patterns are likely to be frequent. For example, event patterns

containing a relatively rare event are unlikely to be frequent in the set of all event patterns.

Therefore, we adopt an outcome-dependent frequent episode discovery approach, i.e., dis-

covering patterns that lead to an outcome of interest. This makes it possible to discover

patterns leading to the outcome, and the analyst can then interact with the pattern dis-

covery operator to further refine the patterns by specifying the events they want to exclude

from the analysis.

90

6.1.1 Multimodal Event clustering

Different frequent pattern and episode mining paradigms for temporal events assume a sym-

bolic representation for temporal events. All events representing the same user activity (e.g.,

Sleep) are represented by the same symbol in such methods. However, a significant distinc-

tion between such symbolic events and real-life events is the variation among the events

representing the same activity. For example, individuals may describe their sleep events as

excellent or poor based on how rested they feel after the event. Oftentimes, the goal of the

analysis is to find patterns that lead to these variations in the outcome event. Therefore,

the analysis needs to identify different categories of the outcome event as required by the

goal of the analysis.

Multimedia and multimodal event representations are useful for addressing this problem,

as an event’s informational and experiential aspects capture the associated information for

every event. We can utilize an event’s informational and experiential parameters to redefine

the event categorization for lifestyle events (such as sleep, walking, and running).

We can define multiple ways to relabel events using the event mining operations and com-

monly employed machine learning techniques:

1. User-defined categorization: Analysts can use event filter operations (define in

chapter 4) to create new event streams from existing events that match user-defined

constraints. This operation can also relabel the events based on constraints derived

from domain knowledge or the analyst’s intuition. For example, if the analysts want

to find the differences between patterns leading to longer sleep events (sleep duration

≥ 8 hours) and shorter sleep events (sleep duration < 6 hours), they can define a new

91

event stream (ESnew sleep) as follows (Eq. 6.1):

ESlong sleep = σ(ESsleep,Φ := duration ≥ 8hrs)

ESshort sleep = σ(ESsleep,Φ := duration < 6hrs)

ESnew sleep = ESlong sleep ∨ ESshort sleep

(6.1)

2. Sub-event based categorization: Experiential information associated with an event

can be used to derive sub-events within an event in the database. These sub-events

can then be utilized to derive additional informational parameters for the events and

used as any other parameter for relabeling the events. For example, different running

events with identical duration and calories burned could drastically impact a person’s

body depending on altitude variations during the run. This aspect of the event can

be captured using an event mining operation (Eq. 6.2) to discover uphill and downhill

running sub-events and using the aggregate duration as event parameters.

ESuphill run = Run ∧ detect− climb(Altitude)

ESdownhill run = Run ∧ detect− descent(Altitude)

Ascent duration = (Run ⊥ ESuphill run).groupBy(Run).apply(Φ := sum(duration))

Descent duration = (Run ⊥ ESdownhill run).groupBy(Run).apply(Φ := sum(duration))

(6.2)

3. Event Clustering: The informational event parameters can be utilized as features

to describe a multimedia event. These features can be used to train an unsupervised

model to find prominent event clusters. This method can relabel events in a completely

data-driven manner and assumes that events with similar features have similar semantic

meaning and have similar event patterns associated with them. Figure 6.1 depicts the

clustering approach implemented on PMData dataset[180] collected for 16 individuals

92

Figure 6.1: Events of the same type can still have a lot of variance in terms of the experience
of the events. This variance is captured by the event features and concurrently captured
multi modal data streams. Clustering on these related parameters can help us find new
event labels that lead to reduced variance in events with the same label. This figure shows
the reduction in values of event parameters for sleep, run and walk events after clustering
the events to find clusters of events with similar experiential and informational aspects.

over a period of 5 months1.

6.1.2 Event Episode

Event episodes are the set of temporally ordered events that should be considered when

discovering the frequent patterns. These are defined by a time window, or episode duration,

relative to an instance of the outcome event. Event episodes include all events from relevant

event streams (as determined by the analyst) that occur in the specified episode duration

before the outcome event. All frequent patterns relevant to understanding the outcome

event occurrences are assumed to occur in the time window defined by the episode duration.

Formally, this can be defined as :

Definition 6.1 (Event Episodes). Given an outcome event stream ESout, episode duration

τ = [t1, t2] and the set of relevant event streams ESin =< ES1, ES2, ..., ESk >, an episode

1https://datasets.simula.no/pmdata/

93

https://datasets.simula.no/pmdata/

Figure 6.2: Event episodes highlighted on a timeline. This figure shows an example of event
episodes relative to sleep events and includes meals, exercise and screen activity events.
Every event in the sleep event stream has a corresponding event episode. Episode duration
is [2, 24] hours, therefore events from the selected event streams occurring in the specified
window are included in an event episode.

(ε) contains all events that are followed by an event from the outcome event stream in the

time interval, τ .

ε = {(ejout, εj)∀e
j
out ∈ ESout, εj = {ein|∀ein ∈

k⋃
i=1

ESi ∧ ein∆τe
j
out}}

where ∆τ represents the conditional sequential constraint between events.

Figure 6.2 depicts a pictorial representation of event episodes. Commonly used pattern

mining frameworks result in many spurious patterns if we lower the threshold to discover

rare or anomalous patterns. However, defining the event episodes concerning an outcome of

interest allows us to discover patterns related to a rare event using the same frequent pattern

mining framework and lower support thresholds as the number of episodes is determined by

the occurrence frequency of the outcome event.

94

6.1.3 Event and Pattern model

Once we have converted the multimedia events to their symbolic representation and created

the required episodes, we can use the episodes to index the sequential event patterns in a

tree structure where every path from the root node (the outcome event) depicts a sequential

event pattern. We will discuss the event and pattern representation used to create the event

episodes and index sequential patterns.

Event Model

As discussed in the previous sections, temporal events are usually represented as points,

intervals, or semi-interval events. Temporal point event representation is commonly used

in pattern discovery applications. However, it is insufficient to incorporate interval events

in the same framework. Different works integrate both interval and point representations

for pattern mining, or hybrid temporal pattern mining [203]. However, the interval relations

described using interval algebra are more restrictive as compared to semi-interval event

algebra and can lead to some pattern occurrences not being recognized despite matching the

desired event order[116].

We will be using the semi-interval event representation in this work. Therefore, any interval

event E spanning over time interval (ti, tj) will be represented as two tuples, (E+, ti) and

(E−, tj), where E+ and E− represent the start and finish end points of the interval event

E. Thus, the event episodes are likely to contain interval end-points, and the patterns need

to be defined as semi-interval event sequences. These sequences can be easily translated to

interval event pattern operations described earlier in this work.

95

Pattern Model

The semi-interval event representation allows us to describe different event relationships with

sequential operators, which can be extended to incorporate the temporal gap distribution

between two event pairs. A single semi-interval event pattern can incorporate patterns

described by multiple interval arrangements. Semi-interval patterns also allow us to include

partially ordered event patterns. Thus, the flexibility of the semi-interval event patterns

allows them to be discovered at a smaller support threshold as compared to the corresponding

interval event patterns (fig. 6.3). This has also been observed in experimental studies

comparing the semi-interval pattern matching with interval patterns described using Allen’s

algebra [119].

Morchen et al. [116] discuss two categories of patterns described using semi-interval events

Semi-interval Sequential Patterns (SISP) and Semi-interval Partial Order patterns (SIPO).

SISPs are sequences of itemsets or events with strict order between all semi-interval events

in the pattern. SIPOs, on the other hand, allow a partial order between itemsets or events

in the pattern which can be represented by a directed acyclic graph. The example SIPO in

figure 6.3 specifies strict orders between A+ and A−, but no order is specified between A+

and B+. We extend this representation by associating a temporal constraint with each edge

in the SIPO and SISP.

In our work, we propose an approach for discovering frequent pairwise conditional sequen-

tial semi-interval event patterns leading to the corresponding outcome event for the event

episodes. We utilize clustering methods to find common temporal delays between a pair

of events that describe frequent conditional sequential patterns between the events. The

pairwise patterns can be used to remove events belonging to infrequent patterns from the

episodes.

The filtered episodes are used for indexing events in a tree-like structure (fig. 6.4) that stores

different SISP leading to the outcome event. The root of the tree represents the outcome

96

Figure 6.3: Semi-interval Partial Order (SIPO) patterns allow increased flexibility compared
to interval algebra patterns as situations requiring multiple interval algebra patterns can be
described using a single SIPO and thus can be discovered at a higher support threshold and
reducing the number of spurious patterns. SIPO also have the added advantage of requiring
only two types of event relationship operator (sequential and concurrent), which can be easily
extended to incorporate the observed temporal gap distribution between the events.

Figure 6.4: A sample tree model of semi-interval events leading to poor sleep events. Every
path on the tree starting from the root node represents a sequential pattern.

event used as the reference for creating the episodes. Every edge in the model connects an

event to a preceding event and stores the time gap distribution observed for the event pair.

Every path originating from the root node represents a SISP originating from the outcome

event and connects to the previous event in the sequential pattern.

6.2 Pattern Discovery Algorithms

This section will discuss the algorithms used for discovering the pairwise frequent conditional

sequential event patterns and the tree-based event indexing that can be used to find larger

97

sequential patterns.

6.2.1 Pairwise Event Pattern Discovery

Pairwise frequent conditional sequential patterns capture the temporal relationship between

two events. Finding all pairwise event patterns can have O(N2) time complexity forN events,

and adding the complexity of searching for common delays between events can significantly

increase the time complexity of the problem. However, we are only concerned with patterns

that lead to the desired outcome event, which allows us to find all delay values between

event pairs in a single pass of data; we can then utilize appropriate statistical method (e.g.,

clustering, t-tests, peak finding) to find different distributions of the observed delay values.

We present an approach for discovering all pairwise conditional sequential patterns that lead

to the outcome event (described in algorithm 1). This is accomplished using a two-step

approach. The first step requires iterating through all the episodes in reverse chronological

order and store all observed delays between pairs of events (lines 4-9) in a hash map. We

then utilize a mixture-model based clustering approach to find constituent distributions for

the observed delay values and utilize the maximum, and minimum values observed for each

component of the mixture-model to find the different delay ranges (lines 10-18). Thus, for

each event pair (ein, eout) we find a set of time-intervals {τj} that define the commonly

observed delays between the two events.

The derived patterns can be used as a filter to remove non-frequent event occurrences before

indexing the episodes. This is possible due to the downward closure property of support

of patterns. This property states that for two sequential patterns ρi =< ei,1, ei,2, ..., ei,m >

and ρj =< ej,1, ej,2, ..., ej,n > and ρi is a sub-sequence of ρj i.e. ∃{k1, k2, ..., km} such that

ei,1 ⊆ ej,k1 ∧ ei,2 ⊆ ej,k2 ∧ ei,3 ⊆ ej,k3 ∧ ei,m ⊆ ej,km , then support(ρi) ≥ support(ρj).

98

Algorithm 1 Frequent pairwise conditional sequential pattern discovery

Require: episodes = {(ei, ti)|∀i, ti ≥ ti+1} . Events are in reverse chronological order
Require: MinSupport
1: delayMap := HashMap(string, list[numeric])
2: delayIntervals := HashMap(string, list[numeric])
3: outputInterval := HashMap(string, list[numeric])
4: for i, episode ∈ enumerate(episodes) do
5: eout := episode[1]
6: for ein in episode[2:] do
7: delayMap[ein].append(eout.t− ein.t)
8: end for
9: end for
10: for k in delayMap.keys() do
11: delayValues := delayMap[k]
12: delayIntervals, intervalMembership := clusterDelays(delayValues)
13: for j, range ∈ enumerate(delayIntervals) do
14: if |{mi|∀mi ∈intervalMemberships∧mi = j}| ≥MinSupport then
15: outputInterval[k].append(range)
16: end if
17: end for
18: end for
19: Output outputInterval

99

This is also true for temporal patterns, thus if any temporal pattern, ρ, contains a sub-

pattern ei∆δeout that is not a part of any frequent pairwise patterns between ei and eout then

support(ρ) < min.support. Thus, we can safely remove all occurrences of ei from episodes

that do not match one of the frequent pairwise patterns. We use this property when creating

the tree model of event episodes to reduce the number of spurious patterns in the model.

6.2.2 Tree based episode indexing

As discussed in the previous section, filtering the episodes using frequent pairwise patterns

leads to reduced noise in the episodes, and the variations in the episodes are caused only

due to frequent patterns. Therefore, we can use the filtered event episodes to discover larger

frequent patterns (algorithm 2). We present an algorithm for indexing all filtered episodes

in a tree structure (described in algorithm 3), which can then be utilized to find frequent

temporal patterns of semi-interval events.

The root node represents an empty episode, and the subsequent events in the episode are

processed in reverse chronological order. Events in an episode are added to the tree in a

depth-first manner, and a new node is added when the episode branches from or extends

previously observed episodes (lines 3-10). Every node in the tree stores the episode identifier

and the timestamp for every event matched to the node and links to the subsequent nodes

representing the next events in different episodes (lines 8-10). The timestamp information

is utilized to find the corresponding delay values in the tree between neighboring nodes

(representing consecutive events in the episodes). The distribution of delay values between a

node and its parent node is associated with the node and describes the temporal relationship

between the events. The nodes also contain the number of occurrences of the sequential

pattern starting from it and leading to the outcome event corresponding to its support in

100

Algorithm 2 Filter episodes using frequent conditional sequential patterns

Require: episodes = {(ei, ti)|∀i, ti ≥ ti+1}
Require: eventPairs = {(ein, τ)|supp(ein∆τeout) ≥MinSupport} . Frequent event pairs

from algorithm 1
1: filteredSequence := list[list[events]]
2: for i, episode ∈ enumerate(episodes) do
3: filteredEpisode := list[events]
4: eout := episode[1]
5: filteredEpisode.append(eout)
6: for ein in episode[2:] do
7: delay := eout.t− ein.t
8: for τ ∈ eventPairs[ein] do
9: if τ [0] ≤ delay ≤ τ [1] then
10: filteredEpisode.append(ein)
11: break
12: end if
13: end for
14: end for
15: filteredSequence.append(filteredEpisode)
16: end for
17: Output filteredEpisode

the episode database.

Thus, the tree model stores all observed episodes that lead to the outcome of interest and

can be used to discover different types of patterns (closed or maximal). Every path from a

root node describes a SISP that leads to the outcome event. We can take advantage of this

property to identify closed patterns from the tree model. Additionally, the occurrence count

associated with each node allows us to calculate the support value for the pattern and can

be used to identify frequent patterns.

6.2.3 Frequent closed SISP extraction

We extract frequent closed SISPs from the tree model using a recursive depth-first traversal

algorithm (algorithm 4). A depth-first traversal of the tree explores all sequential episodes

available in the tree to extract sequential closed patterns from the tree. We incrementally

101

Algorithm 3 Index events in the suffix tree structure to discover frequent sequential patterns

Require: filteredEpisodes = {(ei, ti)|∀i, ti ≥ ti+1} . filtered episodes from algorithm 2
1: TreeModel := HashMap(string,EventTreeNode)
2: for i, episode ∈ enumerate(filteredEpisodes) do
3: eout := filteredEpisodes[1]
4: curNode := TreeModel[eout]
5: curNode.addTimeStamp(i, eout.t)
6: curNode.incrementCount()
7: for ein in filteredEpisodes[2:] do
8: curNode := curNode.next[ein]
9: curNode.incrementCount()
10: curNode.addTimeStamp(i, ein.t)
11: end for
12: end for
13: Output TreeModel

Algorithm 4 Recursive depth-first traversal of the event tree model to obtain frequent
patterns

Require: EventNode . Node from tree model of episodes from Algorithm 3
Require: Min.Support
Require: AllPatterns . Contains all frequent closed SISP upon completion
Require: CurrentPattern

if EventNode.support < Min.Support then
if CurrentPattern.size > 0 then

AllPatterns.add(CurrentPattern)
end if

else
CurrentPattern.push(EventNode.delayRange)
CurrentPattern.push(EventNode.event)
if EventNode.next.size 6= 1 ∨ then

AllPatterns.add(CurrentPattern)
end if
for n ∈ EventTree.next do

AllPatterns := RecursiveTraverse(n, Min.Support, AllPatterns, CurrentPattern)
end for

end if
Output AllPatterns

102

add events and delays to the pattern until we observe a drop in support, at which point the

currently explored pattern is added to the set of all patterns. The patterns are extended until

we have exhausted the current branch of the tree or the support drops below Min.Support.

However, it should be noted that the patterns extracted in this manner do not include

all possible closed sequential patterns from the tree, and further research is required for

extracting the complete set of closed SISP from the tree model.

6.3 Analysis process

The approach described in this chapter can be utilized to power an interactive frequent SISP

discovery framework. The analyst can interact with a visual representation of the tree model

and identify the events or nodes of the tree that represent spurious patterns. This allows

the analyst to refine the patterns until they arrive at a suitable model of the event sequences

preceding the outcome event. Since every node stores the episode identifiers and time stamps

for every associated event, re-indexing the tree can be accomplished by removing the events

represented by the deleted node from their respective episodes and adding the concerned

episodes to the tree model.

The tree indexing algorithm (algorithm 3) has a run time complexity of O(N). Therefore,

the interactive re-indexing of the tree is feasible and can allow the analysts to explore event

patterns on the go.

6.4 Simulated data experiments

We tested the utility of the pattern discovery algorithm described in this chapter for dis-

covering frequent patterns in event sequences using a simulated data set. We also utilize

the PMData data set[180] for discovering frequent SISP that lead to different types of sleep

103

events, categorized using a clustering approach.

We utilized a simulated data set to understand the approach’s efficacy in discovering pat-

terns of different lengths in the presence of random noise. The noise here refers to randomly

generated events that do not represent any of the frequent event patterns.

6.4.1 Data generation

The simulated data consists of a single sequence of semi-interval events controlled by a set

of user-defined parameters. The number of distinct events in the sequence is defined by ne.

There can be 2ne distinct symbols in the event sequence representing the beginning and end

point of every interval event. The total number of events in the sequence are determined by

the parameter N . The algorithm randomly generates an event after an interval defined by

parameter δ, called the minimum interval. The probability of random event generation is

determined by parameter α where 0 < α < 1. Higher values of alpha imply a greater density

of randomly generated events or noise.

We can inject fixed sequences of semi-interval events in the data set. The frequency of fixed

sequence generation is controlled by parameter β where 0 < β < 1. Whenever random

event generation is triggered (determined by α), the algorithm will generate one of the fixed

sequences with a probability β. The fixed sequence to be generated is chosen randomly from

a set of fixed sequences. In our experiments, injected two sequential patterns:

S1 := E+
1 ∆25E

+
2 ∆10E

−
2 ∆15E

−
1 ∆5E

+
5 ∆20E

−
5

S2 := E+
3 ∆26E

+
1 ∆15E

−
1 ∆10E

−
3 ∆19E

+
4 ∆10E

+
7 ∆15E

−
4 ∆18E

−
7 ∆10E

+
5 ∆70E

−
5

We varied the noise in the data using the parameter α and compared the number of pairwise

patterns and SISPs discovered at different noise levels and for different values of episode

duration. Values of β, ne, N and δ are set to 0.1, 10, 100000 and 5 respectively. All time

104

Figure 6.5: Distribution of number of pairwise frequent event patterns discovered and their
occurrences versus induced error rates and episode duration in the synthetic data.

intervals and delays are measured in minutes.

6.4.2 Results and Discussion

Figure 6.5 shows the number of distinct pairwise patterns and their aggregated occurrences

for different values of episode duration and at different error rates (α). Every line in the

plots represents the number of patterns and pattern occurrences at different error rates. We

can see in the figure that for smaller values of the episode duration, the error rate does not

significantly impact the number of patterns and pattern occurrences. This shows that for

smaller episode duration, the significant pairwise patterns are extracted with high precision.

However, for larger episode duration (> 170 minutes), greater error rates lead to a greater

number of spurious (non-injected) patterns and consequently a larger number of pattern

occurrences. Based on this insight, we expect the number of spurious SISPs to increase

with increasing episode duration, though it is necessary to increase the episode duration for

extracting longer patterns.

Figure 6.6 depicts the occurrences of patterns of different length for different episode dura-

tion. We observe occurrences of larger patterns only for longer episodes. Especially, patterns

originating from S2 are only observed for episode duration > 100 minutes. This matches our

105

Figure 6.6: Occurrences of patterns of different lengths (displayed in legend) for varying
episode duration.

expectation as injected temporal delays in S2 are relatively larger than in S1. We can see

an example of extracted patterns for support threshold Min.Support = 0.05 and episode

duration 120 and 250 minutes in tables 6.1 and 6.2 respectively. As expected, the longer

episode duration allows us to capture longer patterns but, at the same time, also reduces

the precision of the extracted patterns.

106

Pattern Significant Occurrences

E−5 True 16776

E+
5 ∆[18,76]E

−
5 True 8202

E−1 ∆[2,10]E
+
5 ∆[18,76]E

−
5 True 4026

E−2 ∆[13,20]E
−
1 ∆[2,10]E

+
5 ∆[18,76]E

−
5 True 4000

E+
2 ∆[8,15]E

−
2 ∆[13,20]E

−
1 ∆[2,10]E

+
5 ∆[18,76]E

−
5 True 3844

E+
1 ∆[23,30]E

+
2 ∆[8,15]E

−
2 ∆[13,20]E

−
1 ∆[2,10]E

+
5 ∆[18,76]E

−
5 True 3164

Table 6.1: SISPs extracted for episode duration = 120 minutes, α = 0.4 and β = 0.1.

107

P
at

te
rn

S
ig

n
ifi

ca
n
t

O
cc

u
rr

en
ce

s

E
− 5

T
ru

e
16

77
6

E
+ 5

∆
[1
8
,7
6
]E
− 5

T
ru

e
81

06

E
+ 6

∆
[0
,3
3
]E
− 5

F
al

se
92

2

E
+ 0

∆
[0
,6
8
]E
− 5

F
al

se
12

94

E
+ 1

∆
[0
,4
8
]E
− 5

F
al

se
18

08

E
+ 9

∆
[0
,9
1
]E
− 5

F
al

se
10

71

E
+ 8

∆
[0
,2
9
]E
− 5

F
al

se
97

3

E
− 2

∆
[0
,5
0
]E
− 5

F
al

se
10

70

E
− 2

∆
[0
,5
0
]E
− 5

F
al

se
10

70

E
− 1

∆
[5
,3
0
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
40

37

E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
40

12

E
+ 2

∆
[1
,1
9
]E
− 2

∆
[0
,5
0
]E
− 5

F
al

se
95

9

E
− 2

∆
[1
3
,2
0
]E
− 1

∆
[5
,3
0
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
38

32

E
− 4

∆
[1
6
,2
3
]E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
39

99

E
+ 2

∆
[8
,1
5
]E
− 2

∆
[1
3
,2
0
]E
− 1

∆
[5
,3
0
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
34

43

E
+ 7

∆
[1
3
,2
0
]E
− 4

∆
[1
6
,2
3
]E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
39

94

E
+ 1

∆
[2
3
,3
0
]E

+ 2
∆

[8
,1
5
]E
− 2

∆
[1
3
,2
0
]E
− 1

∆
[5
,3
0
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
25

07

E
+ 4

∆
[8
,1
5
]E

+ 7
∆

[1
3
,2
0
]E
− 4

∆
[1
6
,2
3
]E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
39

85

E
− 3

∆
[1
7
,2
4
]E

+ 4
∆

[8
,1
5
]E

+ 7
∆

[1
3
,2
0
]E
− 4

∆
[1
6
,2
3
]E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
39

70

E
+ 3

∆
[2
4
,3
1
]E

+ 1
∆

[1
3
,2
0
]E
− 1

∆
[8
,1
5
]E
− 3

∆
[1
7
,2
4
]E

+ 4
∆

[8
,1
5
]E

+ 7
∆

[1
3
,2
0
]E
− 4

∆
[1
6
,2
3
]E
− 7

∆
[6
,5
4
]E

+ 5
∆

[1
8
,7
6
]E
− 5

T
ru

e
33

39

T
ab

le
6.

2:
S
IS

P
s

ex
tr

ac
te

d
fo

r
ep

is
o
d
e

d
u
ra

ti
on

=
25

0
m

in
u
te

s,
α

=
0.

4
an

d
β

=
0.

1.

108

Chapter 7

Personal Models: Exploration and

Examples in Personal Health

This chapter will discuss salient traits of personal health, behavioral models derived using

the proposed N-of-1 approach, and how these can be utilized in a cybernetic framework to

provide continuous health navigation. We have demonstrated the efficacy of our proposed

N-of-1 analysis approach in various publications studying the effects of different lifestyle and

environmental factors on aspects of individual health and behavior such as sleep quality,

cardio-respiratory fitness, and endurance activity performance. We also demonstrate how

we can utilize contextual information to create a model of users’ preferences in different

situations and provide context-aware food recommendations.

7.1 Personalized Health Models

Our health is the sum of our genetics, lifestyle, and environmental exposures. Different

activities and experiences continuously impact different aspects of our health, but we rarely

109

Figure 7.1: Our lifestyle events have a large impact on our health. Our habits can either
lead us to a virtuous cycle, where positive health results are a natural outcome of our habits
and in turn help sustain those habits, or a vicious cycle, where our lifestyle leads to a decline
in health which in turn makes sustaining healthy habits even more difficult.

recognize such changes unless we start showing symptoms of a disease. The symptomatic

stage indicates significant disease progression, and it might already be too late for an effective

intervention (especially for chronic diseases such as type-II diabetes and hypertension). Thus,

we need to monitor our health continuously in order to manage it effectively over time.

Continuous monitoring and estimation of health is a difficult task for the existing healthcare

paradigm as the conventional methods of observing health parameters (e.g., blood tests and

X-rays) require large apparatus and significant expertise. On the other hand, the widespread

adoption of wearable and smart devices has empowered individuals to collect rich multimodal

data about their lifestyles and health. This data can be utilized to identify different lifestyle

110

activities and events[135] as well as different health parameters[128]. Our lives are segmented

into various events such as sleeping, eating, and working, and such events provide us a way

to reason with lifestyle and environmental information. These events affect our lives, and

health [138], and repeated behaviors can lead us to vicious or virtuous health cycles (fig.

7.1). Therefore, events are an inherently explainable and customizable abstraction while

moving from data streams to personal models, and any intervention designed in the form of

lifestyle events can be easily translated to the required user action. To leverage this data

effectively, we need to develop personal health models that capture the interplay between

these events and our health and can be used in a cybernetic framework to identify appropriate

interventions for achieving individual health goals [124].

Such a model can be used in a cybernetic health navigation framework to provide the proper

guidance at the right time for health management. Health recommendation systems provide

us a way to apply cybernetic principles to manage a person’s health [127]. Using lifestyle

interventions, we can build a navigation system that guides us through our day much in

the same way that modern navigation systems inform drivers about the most optimum path

towards their destination [125]. We need to design context-aware personal recommendation

systems that change the person’s context with every event during the day. The dynamic

context allows us to provide an optimal recommendation at every point of the day and

calibrate the recommendations as different events occur.

We have demonstrated the utility of the proposed N-of-1 modeling approach in various

studies investigating different aspects of a person’s health. We have leveraged our approach

to derive rule-based models of the person’s health and demonstrated how it could be used to

provide context-aware recommendations to improve health outcomes such as sleep quality. A

rule-based representation of the verified hypotheses results provides an easy-to-understand

model of the person’s health. Since the quantities defined in the rule-based models are

derived from user-generated events, the recommendations generated by the models can be

111

easily converted to real-life user events.

112

7.2 Case Study I: Continuous Health Interface Event

Retrieval

Wearable devices and lifelogging applications capture a large amount of data about events in

our lives; however, the data typically stay in their silos. Combining all such events and data

streams is necessary to enable multimodal applications to perform effective health estimation

and guidance. We may want to combine events or data streams from different sources to

identify more complex events with a deterministic relationship with health parameters. Such

events act as an interface between lifestyle events and biological systems; hence we are calling

them interface events. These events determine the mechanism through which lifestyle

events impact our biology, and variations in these interface events could lead to entirely

different outcomes for similar lifestyle events.

This can be observed when considering the long-term cardiac effects of different types of

physical activities. Physical activities can strain our heart muscles in two ways, cardiovascu-

lar volume overload and pressure overload. A cardiovascular volume overload is a biological

event where the heart must pump large volumes of blood through the circulatory system.

This event would cause structural changes in the heart in the form of eccentric hypertrophy,

where the left ventricular chamber volume increases. The volume overload interface event

could be caused by various exercise events such as cycling, jogging, soccer, dance, or hiking.

Other exercise events such as weight lifting, sprinting, bouldering, or even bowel constipation

would cause pressure overload in the heart. These events would cause concentric hypertro-

phy of the heart[113][27]. This is illustrated in Figure 7.2. In this case, we see that similar

lifestyle events can have a vastly different impact on our heart, and it is important that we

find the cardiovascular volume and pressure overload events if we want to find the impact of

any exercise on our heart.

113

Figure 7.2: This figure shows that detecting relevant interface events is necessary to estimate
the physiological state of an individual from their lifelog information. Here two examples of
life events are given that cause opposite outcomes in cardiac adaptation. Both events at a
crude level can be considered exercise, but precisely extracting the interface event is critical
if we are to use the lifelog information to estimate evolving health states.

114

7.2.1 Knowledge driven event extraction

A lot of the interface events have been recognized in the medical literature. For example,

PM2.5 exposure and circadian rhythm disruption are caused by different lifestyle events such

as outdoor exercises, changes in sleeping and eating habits, and screen activity and impact

the functioning of various biological systems. Similarly, the literature has well-established

links between diet and various chronic diseases such as type II diabetes, hypertension, and

ASCVD. Thus, we must utilize the existing knowledge to guide the retrieval of these interface

events from user-generated data.

The interface events can be specified as transformations and combinations of existing events

and data streams. These transformations can be as varied as applying a threshold on a

data stream (e.g., binning heart rate in different ranges) to recognizing events and actions

from a video stream (e.g., fall detection). We currently use the event patterns language

and operators described in chapter 4 to describe the interface events. Especially NOT (¬),

AND(∧) and OR(∨) operators, which can be used in conjunction with user-defined event

detection operators to describe complex events. For example, if we want to identify events

where the individual’s heart rate is above 120 bpm, and PM2.5 concentration is above 10

µg/m3 of air, then we would need first to create a PM2.5 stream using their location stream.

We could then define these exposure events using the formulation given below. Figure 7.3

shows some of the retrieved events.

ExposureEvent := (Heartrate > 120) ∧ (PM2.5 > 10)

These event operators can be combined with user-defined event recognition operators al-

lowing us to utilize more data streams and recognize more complicated events. For example,

we define a climb-detection operator for the altitude data stream. This operator detects

time intervals when the user is climbing up a slope. The detected events could be combined

with cycling events and events where the person’s heart rate is above 170 bpm to find out

115

Figure 7.3: This figure depicts the instances during a day where the individual’s PM2.5
intake is expected to be high. This is determined by combining heart rate zone events
(HR ≥ 120 bpm) with High PM2.5 concentration events, which in turn is determined using
location stream and air pollution data.

high-intensity uphill cycling events, which cause cardiovascular volume overload. The event

formulation is shown below, and some of the retrieved events are shown in figure 7.4.

UphillCycle := Cycling ∧ detect− climb(Altitude)

Figure 7.4: This figure shows the application of AND operator to combine events. We are
trying to detect interface events where the heart rate of the individual is in zone 4 (170-190
bpm) while they are climbing a slope on a bicycle.

116

7.2.2 Methodology

We obtain the definition for different such events from medical literature and identify lifestyle

events that could be utilized to retrieve those. For example, exposure to different pollutants

is a vital interface event that impacts different aspects of a person’s health. We can calculate

the pollutant exposure from the user’s continuous GPS location stream and combine it with

the EPA’s publicly available pollutant information.

Once the interface events have been defined, we can use the definition to retrieve those events

and then utilize them for further estimation or guidance.

7.2.3 Dataset

We have used lifestyle and physiological data streams collected by an individual over ten

years for our experiments. Different data streams have been collected over different periods

and vary in sampling frequency. We expect our system to be used for experiments in an N-

of-1 setting [90] for providing individualized health guidance using observational data; thus,

the evaluation of this system should be done for an individual over time.

There are two primary sources of personal data that we have utilized in our experiments:

• Detailed physiological data generated during an exercise event sampled at per second

frequency. These data streams and events are collected from Strava and can better

understand the user’s health state.

• Lifestyle data collected as events or data streams during the day. These are typically

sampled at a lower frequency. These data streams and events are collected from various

sources such as Apple HealthKit and Google timeline etc. These capture the lifestyle

events we expect to encounter during our day-to-day lives, such as sleep, meal times,

and commute.

117

Table 7.1: Data streams and sources

Data stream Sources

Heart rate Strava, Apple Health-Kit
Power Strava

Cadence Strava
Altitude Strava
Location Strava, Google Location History

Step Count Apple Health-Kit
Weight Apple Health-Kit
Stairs Apple Health-Kit

These data streams and corresponding sources are listed in table 7.1.

We have also used the pollution data captured by various environmental agencies across the

world and aggregated by EPA1. We find the monitoring station nearest to the user’s location

and use the file generated by the station at the given time to estimate the user’s exposure

to different pollutants.

7.2.4 Interface Events

We have defined interface events derived from biomedical literature using the previously

mentioned event operators and specific event-detection operators for data streams. We are

retrieving two lifestyle-based interface events and two environmental interface events, which

are described below.

• Lifestyle interface events Volume Overload events require an individual’s heart to

put a sustained effort. These can be identified from the heart rate stream (by finding

intervals of high heart rate) or by combining altitude stream (to detect climb events)

and cycling (or running or hiking) events. If these events are repeated over time, they

are likely to result in an increase in left ventricle volume (as depicted in fig. 7.2). These

1https://aqs.epa.gov/aqsweb/documents/data_api.html

118

https://aqs.epa.gov/aqsweb/documents/data_api.html

events can be represented as

V olOverload := (HR > 140) ∨ (Cycling ∧ detect− climb(Altitude))

Pressure Overload events require the heart to put in a short and intense effort, which

presents as a spike in the heart rate stream. These can also be determined by using

the power output stream collected during cycling events and identifying intervals where

power output is higher than 400W. Over time, these events lead to a reduction in left

ventricular volume. These events can be represented as

PressOverload := detect− spike(HR) ∨ (Power > 400W)

• Environmental interface events An individual’s exposome streams can be created

from their location history combined with publicly available GIS data provided by dif-

ferent government organizations. PM2.5 intake can be computed from air pollutant

data (provided by EPA) and the heart rate stream (used to estimate the breathing

rate using results from [195]). We are estimating individual tidal volume using formu-

lation given in [28]. Multiplying the estimated tidal volume and breathing rate gives

us the total air intake per minute for the individual, using which we can find their

PM2.5 intake. Prolonged PM2.5 exposure has many long-term and short-term health

effects[206].

Blood O2 level of individuals is known to decrease with altitude as air pressure de-

creases with an increase in altitude. It leads to reduced blood oxygen saturation levels,

which can be quantified by using the relationship described in [51]. Low blood oxygen

levels can lead to hypoxia, which can affect various biological functions [50].

119

Figure 7.5: This figure shows different interface events retrieved using user-generated data.
Different days of the year are represented as concentric circles, and different sectors of the
circle represent different times of the day. Events in a day are represented as colored arcs on
that circle. Volume and pressure overload events are retrieved using lifestyle data and events
such as heart rate and exercise events. We can see that we can retrieve a significantly larger
number of interface events by combining events from multiple data streams. This figure also
shows the environmental interface events. High PM2.5 intake events are recognized over one
week. These are the instances where per minute PM2.5 intake was higher than 0.7 µg. Low
blood oxygen events are recognized over one year, where blood oxygen saturation goes below
95%. The highlighted sectors roughly represent the time between sunrise and sunset; thus,
we can see how different events overlap with circadian patterns.

7.2.5 Results

RQ1: Data fusion

We can use multiple data streams from different sources to recognize different instances of

an interface event. This is evident in fig. 7.5, which depicts the occurrences of cardiovascular

volume and pressure overload events. Volume overload events are detected in two ways, 1)

We identify intervals with a sufficiently high heart rate, and 2) We identify intervals where the

person is climbing up a slope under their power (e.g., cycling). These two event definitions

are combined using an OR operator to give all occurrences of volume overload events. We

could add more methods of recognizing volume overload events using the same operator with

minimal additional effort. Similarly, pressure overload events are recognized from the heart

rate data stream (spike detection) and the power stream (high effort intervals). These events

120

Figure 7.6: This figure shows the results of a real-world query about exercise behavior.
The bar plots show the exercise frequency and exercise minutes per week over a year. The
polar plot shows all the exercise events during the day, where the highlighted sector roughly
matches the time between sunset and sunrise. Thus we can see how likely are these events
to cause any disruptions in circadian patterns.

are, by definition, short, and the same can also be seen in fig 7.5. We can also combine the

user-generated data with environmental data to generate their exposome streams. Figure

7.5 shows the occurrences of PM2.5 intake events over a week and low blood oxygen events

over a year.

RQ2: Continuous Retrieval

We are retrieving the events continuously over a year, as shown in figure 7.7. A zoomed-

in view is shown in figures 7.4 and 7.3 which highlight the combinations of events while

retrieving an interface event. We apply event detection operators on incoming data streams

and use the definition of the interface events to combine the generated events. Once we have

121

retrieved the interface events over a sufficiently long period, we can analyze their occurrences

and find useful patterns, such as the relationship of volume overload events with circadian

patterns. We can see in fig. 7.5, the density of the volume overload events is very low after

sunset, which may lead us to think that any disruptions in sleep patterns are unlikely to be

caused by these events. We can overlay a similar plot of sleep events and see the relationship

between the event streams.

Figure 7.7: This figure shows the continuous retrieval of volume overload and hypoxia events
over the course of a year.

RQ3: Real world query

The system is also helpful for answering a real-world query about a person’s life in terms of

attributes and patterns of relevant interface events. One such example is in fig. 7.6 where

we try to respond to a physician’s questions about a person’s exercise habits. Typically

a doctor would ask the person about the frequency and intensity of their exercise routine.

These answers are in figure 7.6, where we display the exercise frequency and total duration

of exercise events for every week of the year. We also show all the exercise (cycling) events

in a format that can be compared with any other lifestyle habit (e.g., sleep) to discover new

behavioral/physiological patterns.

122

7.3 Case Study II: Personalized models for understand-

ing sleep behavior

Lifestyle factors have a high impact on our health outcomes. Our eating, sleeping, and move-

ment patterns determine large parts of our short and long-term health [174, 54, 128, 123].

Keeping track of how we behave in different contextual situations and the impact these be-

havioral patterns have on our health is difficult for medical professionals and individuals.

At the same time, with the increasing prevalence of chronic diseases such as diabetes and

hypertension, understanding the effect of lifestyle on different aspects of our health becomes

a critical research challenge [87, 168]. A multitude of consumer devices such as smartwatches

and smart home systems measure aspects of our daily life as events and data streams and

control our local environment [19]. Using the data streams and events captured by these

devices, we can find recurring behavioral patterns and associated health outcomes to create

an explainable rule-based model of the person [137]. Explainability is a desired quality in

health prediction and recommendation systems as it can verify the quality of predictions and

builds user engagement and trust in the system.

The field of sleep and health recommendation systems is relatively new. Studies have ex-

plored the pitfalls of using the conventional recommendation systems for health and devised

alternatives using entity properties and relationships [95]. Context-awareness is an essential

quality for health recommendation systems [170]. Context-aware recommendation systems

(CARS) have been explored in different domains [188]. CARS have traditionally incorpo-

rated context information in collaborative filtering models in one of three ways, 1) Contextual

Pre-filtering, 2) Contextual Post-filtering, and 3) Contextual Modelling [6]. There can be dif-

ferent types of contextual information relevant to a recommendation system. These usually

fall into one of the following categories: temporal, location, individual (user characteristics),

activity (about the activity), and relational (when multiple entities are involved)[188]. We

have adopted a contextual modeling approach and incorporated the contextual information

123

Figure 7.8: User Centered Semantic Rings with a focus on sleep. These rings show the most
relevant factors that contribute to an individuals sleep state.

in the rule-based model itself. Multiple studies have explored personalized recommendation

systems for different aspects of user-health, such as diet [76]. These utilize different learning

techniques to develop personalized models for individuals but usually lack explainability, an

essential characteristic of health recommendation systems.

7.3.1 Causal Rule-based modelling: Event Mining

Creating a model of the person’s behavior and health is central to building personalized

health recommendation systems. We apply the hypothesis testing approach described in

chapter 5 to perform N-of-1 experiments on a user’s data [108] that allows us to find causal

relationships between different lifestyle events and biological outcomes. These relationships

define a rule-based explainable model of the user that can predict sleep outcomes in different

contextual situations. The process is described in figure 7.9.

Event mining allows us to discover and specify patterns between different events in a person’s

124

Figure 7.9: Rule based personal model for predicting sleep outcomes. We divide the oc-
currences of the outcome events into smaller subsets based on the values of co-occurring
contextual factors. This minimizes the variance in the outcome due to the confounding vari-
ables within each subset. Subsets that exhibit significantly different distribution for different
values of input events are converted to rules and added to the model.

life. We utilize these patterns to create hypotheses that might describe a person’s behavior.

A hypothesis needs to specify the intervention event and the associated confounding factors

that affect the relationship between the intervention and the outcome. The confounding

factors are specified using the temporal delay operator, ∆[tb, te], that relates the events

that occur within the specified time interval [tb, te]. The confounding factors are specified

as patterns P between the lifestyle events and the outcome. Thus, a hypothesis would

be specified as Ei −→
P

Eo, where we want to measure the causal effect of intervention Ei

on the outcome event Eo while controlling for the events specified by the set of patterns P .

These patterns and hypotheses can be derived from existing knowledge and human intuition,

allowing us to leverage the results of population studies performed in clinical and controlled

settings.

Combining the event mining operators with causal inference principles allows us to perform

N-of-1 experiments on the user’s longitudinal data. Thus, we can find the effect of the

125

intervention on the outcome in an unbiased manner, and if we can capture all the confounding

variables in the set of patterns, we would obtain the causal effect of the intervention on the

outcome. The results are stored as a conditional rule that uses confounding variables and

the intervention event as the predicate. The distribution of the outcome events in the subset

is used to make a prediction.

We use a set of these contextual rules to predict health outcomes. We find the most relevant

rule by matching the user’s current context with the rules and utilizing it to make the predic-

tion. A rule-based model, while lacking in complexity, offers the advantage of explainability

and online training. Every prediction and recommendation generated from this model can be

explained using the associated contextual factors, thus eliminating recommendations based

on spurious relationships. This is an essential characteristic of health models and recom-

mendation systems. As the user behavior changes over time, the model needs to adapt to

the changing user parameters and be trained using the latest observed data. We can easily

update the rules by updating the outcome variable’s distribution whenever the rule matches

the user’s current context.

7.3.2 Multi-Item Health Recommendations

The rule-based health model allows us to find the health outcomes in different contextual

situations. The user’s activities during the day (such as exercise, meals, work-related stress)

and their local environmental parameters (such as temperature, humidity, and ambient light

and sounds) determine these contextual variables. Thus, we can utilize this model in a

recommendation system setting to determine the parameters (both user behavior and envi-

ronmental variables) for optimizing a health outcome (e.g., sleep quality).

Every action taken by the user and every environmental exposure changes the user’s health

state [123], which changes the context for future actions and recommendations. We need to

126

Figure 7.10: Live context calculation. The system updates user context every time they
log an event. We retrieve all the sub-events and parameters relevant for context calculation
(e.g., time of meal from dinner event). The retrieved contextual information is added to the
existing context, and the updated context is used to generate a new set of recommendations.
These recommendations are then sent either to the user or to a device controlling the user’s
environmental factors.

retrieve the relevant events from the user’s events and data streams that impact their health

state [138]. Different contextual parameters are defined as aggregations of these events. For

example, Total Screen Time during the day is an important confounding factor for under-

standing an individual’s sleeping habits. It can be determined by aggregating the duration

of all the screen activity events (such as working, watching TV, and social media activity)

during the day. These aggregations can be performed using events-based triggers encoded

as condition-action rules. As new events appear in the person’s events log, the retrieved

events can be aggregated to change the user’s live context parameters. We can use the latest

context values to provide recommendations that would optimize the user’s health outcomes.

We match the live contextual parameters for the person with the contextual parameters

127

of the various rules present in the model. If the current context matches multiple rules,

we utilize the rule with the highest likelihood of the desired outcome. Once we have iden-

tified the rules that match the current context, we can utilize the unmatched contextual

parameters and the intervention event to find the parameters that can lead to the optimal

outcome. We can either present the recommendation to the user (if the recommendation is

an action to be taken by the user) or communicate with a smart device that controls the

user’s environmental context (e.g., smart home devices, HVAC systems, smart bulbs). The

recommendation system produces a set of actions that would maximize the likelihood of

the optimal outcome; thus, the proposed recommendation system is different from typical

recommendation systems as the recommendation consists of multiple items.

Since any event during the day can change the user’s context, the recommendations are

recomputed anytime an event changes the user’s context. This process is depicted in figure

7.10. Thus, at any point during the day, the recommendation system would provide a list of

timestamped actions to be performed by different agents (the user or an automated device)

to optimize the sleep outcomes.

7.3.3 Methodology

We ran experiments to create a personal rule-based model for optimizing a person’s sleep

quality metrics by providing lifestyle and local environmental recommendations. We utilized

data collected by one individual for more than two years using readily available consumer

applications and wearable and IoT devices. We performed two sets of experiments on the

collected dataset to create and evaluate the model. The first set of experiments find the

average causal effect of input variables on sleep quality metrics. We used Welch’s t-tests and

a p-value of 0.05 to determine statistical significance. The second set of experiments tested

the prediction accuracy for a static pre-trained model vs. an online training model.

128

7.3.4 Data Set

The data set includes exercise and lifestyle parameters for a 31-year-old male collected con-

tinuously over two years via the user’s Garmin Fenix 5 smartwatch, their smartphone, and an

IoT sensor that collected local temperature and humidity values. Sleep Cycle was primarily

used to keep track of sleep events. Apple Health Kit was used to help compile sleep quality

measures recorded by the Garmin smartwatch, daily step counts, and daily floors climbed.

The accelerometer measures of the smartwatch and the audio recordings from SleepCycle

were used to create sleep quality measures. Strava was used to keep track of exercise events.

An image-based food log recorded feeding times with phone camera metadata, and a Sensor-

Push IoT sensor was used to collect temperature and humidity during sleep events. All of

these data sources were then temporally matched to record lifestyle events throughout the

day accurately.

We used the thresholds mentioned in Table 7.2 and Table 7.3 to convert the data streams to

relevant events for the event mining analysis. We used nine lifestyle/environmental events:

Previous Night’s Sleep Quality Measures, Exercise Minutes in the Day, Interval Between Eat-

ing and Sleeping, Minutes Awake Between Sleep Events, Temperature, and Humidity when

going to bed. The possible output events are sleep quality measures (Table 7.2). We used

70% of the data to build the model and 30% of the data to test the model. The train-test

split was created based on temporal order.

7.3.5 Causal Rules and Effects from N-of-1 Experiments

We perform N-of-1 tests on the user’s data to find the average effects of different lifestyle

and environmental events on sleep quality parameters while controlling for other lifestyle

parameters as confounding factors. We treat one of the input event’s possible values as

the baseline and compare the distribution of the outcome variable for other values of the

129

Table 7.2: Sleep Quality Measure and Event Thresholds

Variable Classification Ranges Event Name

Sleep Latency
[0, 15]
(15, 30]
(30, ∞)

Good
Average
Poor

Awake Minutes
[0, 20]
(20, ∞)

Good
Poor

Awakenings >5 mins
[0, 1]
(1, ∞)

Good
Poor

Sleep Efficiency
[0.85, 1.00]
[0, 0.85)

Good
Poor

Table 7.3: Lifestyle Factors and Event Thresholds

Variables
Classifications
Ranges

Event Name

Exercise Minutes
Per Day

[0]
(0, 50]
(50, 150]
(150, ∞)

None
Poor
Average
Good

Exercise Minutes
Per Week

[0, 150]
(150, 300]
(300, ∞)

Poor
Average
Good

Interval Between
Eating and Sleeping

[0]
(0, 180]
(180, ∞)

Missing
Poor
Good

Minutes Awake
Between Sleep Events

[0, 900]
(900, 1020]
(1020, ∞)

LT 15 Hours
Btwn 15-17 Hours
GT 17 Hours

Starting Temperature
[0, 60]
(60, 67]
(67, ∞)

Cold
Comfortable
Warm

Starting Humidity
[0, 30]
(30, 50]
(50, 100]

Low
Ideal
High

130

Figure 7.11: Average Effects that each input event has on the output event when compared
to each input event’s base category. If a metric is 0 then no significant relations were found.

event with the baseline distribution. If changing the input event value causes a significant

change in the outcome distribution while controlling for confounding variables, the rule is

deemed significant. This gives us the causal effect of different values of an input event on the

observed outcome. We repeat this experiment while controlling for different variables and

aggregating the causal effects to find the input event’s average causal effect. If the difference

is not significant, then we merge the two distributions and use the combined distribution at

the time of contextual matching.

The results of these experiments are in Figure 7.11. Interestingly, an average temperature(60-

67 F o) seems to improve every sleep quality measure except for sleep latency. This is an

important observation as it shows that not all quality measures are correlated with each

other and that an improvement in one does not necessarily equate to an improvement in

all other sleep quality measures. Another fascinating insight is that exercise improves sleep

latency the most. On average, we can tell that exercising a lot will reduce sleep latency by

10.5 minutes, with just a small workout will help reduce sleep latency by an average of 8

minutes.

131

Figure 7.12: Comparison of pre-trained model vs. online training. Online training allows
the model to adapt to user’s changing sleep behavior resulting in lower error in predictions.

7.3.6 Context Matching and Sleep Predictions

We also want to demonstrate the contextual matching of rules and test the accuracy of the

model’s predictions, as that will determine the efficacy of any recommendations we generate.

We train a linear regression model corresponding to every rule in the model and use the data

subset that matches the rule to train the model. This model is then used to predict sleep

outcomes for situations matching with the rule.

We used two training strategies for the prediction model; 1) Pre-trained static models and

2) the warm start online training. We expect that the user’s sleep behavior would change

over time, and thus, an online learning strategy would eventually outperform the pre-trained

model.

The model’s input features are Exercise minutes during the day, Feeding Time, Time Awake,

Humidity, and Temperature while going to bed. We match the user’s context with the context

of the rules, and the most significant rule that matches the context is used to provide the

132

recommendation.

We create a set of contextual variables for each day in the dataset at the end of the day.

These values are then used to find a matching rule. If multiple matches are found, then

we used the rule with a higher statistical significance. The linear model associated with

the matched rule would then be used to predict the sleep outcome parameter. The critical

difference between the pre-trained and online models is that the online model would be

updated continuously using the data in the test set. This way, the online model has the

opportunity to adapt to the user over time. The results of the model predictions are in

figure 7.12. The results illustrate an improvement in the performance of the online model

over the pre-trained model. Eventually, we expect the online model would achieve a much

smaller MSE as it adapts to the changing sleep behavior exhibited by the user.

133

7.4 Case Study III: Optimizing training for endurance

activity performance

The effect of training and lifestyle on cardio-respiratory fitness and future endurance activity

performance has been studied extensively in exercise physiology literature. However, most

studies are conducted for a cohort of users and do not account for variations in individual

traits such as genetics, age, and past exercise behavior. Thus, the results and insights

generated from them do not generalize well for many individuals.

This study examines the effects of different parameters related to training behavior and

exercise patterns on future exercise performance for every individual in the data set. We

apply the N-of-1 hypothesis testing approach discussed in chapter 5 to test the relationships

derived from exercise physiology literature.

7.4.1 Dataset

We used the Goldencheetah2 exercise data set [105] for our experiments. The data set is pub-

licly shared on the Open Science Framework and includes different exercise activities marked

as interval events and various multimodal data streams that capture performance such as

heart rate, power output, distance, and speed. The data set was curated by contributions

from users of a popular sports analytics tool, GoldenCheetah, and contains rich longitudinal

data about activity behavior and performance for a large number of people. The complete

data set has more than 4000 participants and is updated frequently. We included the top-five

participants in our analysis based on the heart rate and power data available. We applied the

event and pattern operations on this data (as described in the previous sections) to derive

different exercise performance, training load, and fitness features.

The progression of some of these features is shown in figure 7.13. The selected users have

2https://osf.io/6hfpz/

134

https://osf.io/6hfpz/

collected and volunteered exercise data over more than eight years and provide an excellent

opportunity for longitudinal modeling of exercise behavior and performance using observa-

tional data.

7.4.2 Experiment

We applied event mining principles and hypothesis testing operations to find causal effects

of different training parameters (such as training stress and duration) on endurance training

performance and cardio-respiratory fitness.

We computed four types of parameters from this data:

1. Exercise Performance is measured by average power generated in bins of heart rate

recovery percentage (HRR%). HRR% is defined as

HRR% = 100 ∗ hr −HRrest

HRmax −HRrest

We define ten bins of HRR% (0-10%, 10-20%, etc.) and find the average power gener-

ated concurrently in HRR% bins for every ride with associated power and heart rate

data streams. Events that have the performance information as a parameter are col-

lectively referred to as ESCRF as these will be used to estimate the cardio-respiratory

fitness.

2. Training Load is captured by the volume and intensity of endurance exercises. We

have defined multiple parameters under this category such as Exercise Duration, Cog-

gan’s Training Stress Score [44], TRIMP[120], Time in heart rate zones (HRZones)

such as warmup, cardio, maximal, etc.

3. Cardio-Respiratory Fitness over an interval of time is determined by considering

the slope of the regression line in HRR% vs. Power data for rides that lie in the

135

specified period. This slope captures the expected amount of power generated for a

unit increase in HRR% and is expected to increase if a person has improved their

cardio-respiratory fitness.

4. Resting duration captures the average amount of rest the person gets over an interval

of time. We are estimating this feature as the average amount of time between two

exercise events.

All the features are defined and calculated using event pattern language and are described

in table 7.4.

7.4.3 Hypothesis

Our hypothesis aims to find the factors that contribute the most to changes in performance

(both positive and negative). The causal graph for the hypotheses is in figure 5.3.c). The

hypothesis captures the effects of three major factors:

1. Impact of training factors on fitness and current performance

2. Impact of fitness on performance

3. Impact of resting duration on fitness and performance

Our goal is to find training interventions that lead to the most impact on performance out-

comes.

We find the causal effect of a parameter by finding the difference between the distribution

of the outcome under the intervention (defined by the do-operator) vs. a baseline interven-

tion. This allows us to find the best interventions for the individual by using known causal

relationships and deriving the quantitative effects from the observational data.

136

P
at

te
rn

G
ro

u
p

F
ea

tu
re

s

P
=
E
S
E
x
e.

0
,4
2
d
a
y
s

−−
−−
−→

E
S
C
R
F

G
=
P
.g
ro
u
pB

y
(E
S
C
R
F

)

E
x
e.
D
u
ra
ti
on

=
G
.a
pp
ly

(s
u
m
,E
.d
u
ra
ti
on

)

T
S
S

=
G
.a
pp
ly

(C
O
G
G
A
N
−
T
S
S

)

T
R
I
M
P

=
G
.a
pp
ly

(T
R
I
M
P
−
f
u
n
c)

H
R
Z
on
e

=
G
.a
pp
ly

(H
R
Z
on
e
−
d
iv

)

C
a
l.
B
u
rn
ed

=
G
.a
pp
ly

(s
u
m
,c
a
lo
ri
es

)

E
le
.G
a
in

=
G
.a
pp
ly

(s
u
m
,e
le
v
a
ti
on
G
a
in
ed

)

P
=
E
S
C
R
F

′
0
,4
2
d
a
y
s

−−
−−
−→

E
S
C
R
F

G
=
P
.g
ro
u
pB

y
(E
S
C
R
F

)
F
it
n
es
s

=
G
.a
pp
ly

(f
it
n
es
sS
lo
pe

)

P
=
E
S
R
es
t.

0
,4
2
d
a
y
s

−−
−−
−→

E
S
C
R
F

G
=
P
.g
ro
u
pB

y
(E
S
C
R
F

)
A
v
g
.R
es
t.
D
u
ra
ti
on

=
G
.a
pp
ly

(a
v
er
a
g
e,
d
u
ra
ti
on

)

T
ab

le
7.

4:
E

ve
n
t

p
at

te
rn

s
an

d
gr

ou
p

re
p
re

se
n
ta

ti
on

of
fe

at
u
re

s
u
se

d
in

ex
p

er
im

en
ts

.

137

7.4.4 Results and Conclusion

The results of our experiment are shown in fig. 7.14. The figure shows the five best and

worst possible training interventions in terms of their impact on performance. We can see

from the figure that the effects of interventions vary greatly for different individuals. For

example, most effective interventions for users 1, 2, and 3 originate from training volume

(total amount of training), while for user 5 the most effective intervention is increasing

cardiovascular stress (TRIMP) during the training. This distinction makes sense because

while user 5 does have significant training volume, the intensity (determined by heart rate)

of their training is relatively low compared to other participants. The interventions with

negative impact for user 5 also support this observation. We observed that spending more

time in the ‘fitness’ heart rate zone (60-70% of maximal heart rate) lead to a negative impact

on performance in HRR% zone 6.

These experiments demonstrate the utility of events while creating longitudinal personal

models. Event and pattern operators provide a very convenient and inherently explainable

mechanism to describe causal relationships and also allow us to encode known relationships in

the personal model. However, the current methodology assumes that the temporal constraint

that captures causal relationships between events does not change with time. This is not

necessarily true and needs to be investigated further.

138

Figure 7.13: Progression of features for the 5 individuals over time. The features were created
using pattern-group-aggregate event operations. Each value shown in these plots is related
to an outcome event (Exercise with CRF value) and is used in a graphical hypothesis to find
the causal effect of the parameters on the performance parameters of the outcome event.
All duration features (resting and total exercise) are measured in minutes, Elevation gain is
measured in feet.

139

Figure 7.14: Average causal effects of interventions on different performance parameters.
This figure is divided into 4 quadrants based on the Power HRR% zone for the users. Each
row of graphs, in a given quadrant, represents the most significant positive (L) and negative
(R) intervening factors that causally affects the power produced in the corresponding HRR%
zone. Each bar in the graph shows the average causal effect of the intervention represented
by the label of the corresponding bar. For example, the most effective intervention for User1
is exercising between 8010 to 8340 minutes in the past 42 days.

140

7.5 Case Study IV: Context dependent taste prefer-

ence modeling

Food serves many functions at an individual level. It provides us with the energy and building

blocks to sustain our lives while also serving as a source of personal fulfillment and social glue.

Our taste and sensory preferences are significant causal factors behind our food decisions

and affect our health. For this reason, there is a rapidly growing need for personalized food

services that guide users towards a healthier lifestyle while also ensuring the food’s enjoyment.

With the advancement of technology, especially in the recommendation and sensing fields, it

is possible to guide users towards a healthier lifestyle by understanding their underlying taste

profile and their daily lifestyles to provide healthier recommendations that still appeal to the

user’s tastes [126]. Food is an essential part of our lives, and advancements in applications

such as food logging platforms and recipe recommendations can help us identify and improve

our eating behavior.

Figure 7.15: Personal food computing overview and relevant proposed layers.

141

At the heart of these personalized food services lies the Personal Food Model[156]. As

shown in figure 7.15, it (PFM) has two main components: 1) the biological component

and 2) the preferential component. The biological component determines how different food

items interact with our biology and health [128, 123]. In contrast, the preferential component

captures how different contextual and environmental factors impact our food preferences and,

in turn, affect our choices. There has been a lot of work done on context-aware preference

modeling and recommendations. However, the current approaches are still far from truly

personalizing these recommendations. Especially for health and food-related applications,

the contextual factors can be captured by different multi-modal devices and applications.

Typically, these applications store individual data in their silos, which do not interact with

other applications. We propose a comprehensive food event model that could provide a

mechanism for these applications to cross-utilize each other’s data. We also demonstrate

how we could utilize the data collected using such applications to create a user preference

model and how it varies with different contextual factors such as stress and temperature.

We use event mining principles to model the contextual relationships in an unsupervised

manner.

7.5.1 Food Event Model

A single food event has multiple facets captured by different applications. Some examples

are the food being eaten, the time of the day, the amount of food, the location type, the

ambiance, the person eating the food, and other people involved in that event. If we capture

sufficient contextual information about the food event, it will be possible to find what caused

it. Furthermore, collecting information about the body’s response to the food event opens

the door to understanding the biological responses to the food event. Inspired by the multi-

media event model described by Westermann and Jain [197], we propose a unified food event

model that contains all the factors defining the food event, as shown in figure 7.16. The food

142

Figure 7.16: Food Event Model: It is essential to capture all the different aspects that a
food event contains in order to build powerful models. The causal aspect of a food event is
especially challenging to capture. In the bottom right and left corners, we see prior events
that cause food events to occur on the bottom left (such as a user’s taste model), and we
see what future events the food event is responsible for affecting (such as a user’s health).

event model consists of 6 main aspects: spatial, experiential, informational, structural,

temporal and causal aspect. Each of these aspects has sub-components, as illustrated in

figure 7.16. Some of these aspects have been studied extensively and are widely captured,

such as location and time. We can capture the biological aspects in free-living conditions

thanks to the advances in Internet-of-Things (IoT) and wearable technologies such as sleep

monitoring [14]. Physiological data-streams such as Electrocardiography (ECG) and Pho-

toplethysmography (PPG) are non-invasive and low-cost techniques and enable continuous

health, and well-being data collection [122], [73]. However, some other sub-components are

challenging to collect as they are not understood very well, such as the sensory experience.

Auditory and visual information are the only exceptions and are well understood in the

multimedia field; however, no such model exists for the sense of taste and smell. The taste

information of a food event is crucial for building the preferential side of the personal food

model, but to the best of our knowledge, there is currently no method to map food items to

ingredients to taste information. We utilize a novel approach to capture information about

143

the taste experience of a dish driven by the informational aspect discussed in detail in the

appendix.

7.5.2 The Causal Aspect

Identifying an event’s cause(s) is not easy to answer, even in trivial cases. Numerous fac-

tors could affect a food event, such as physical activity, social gathering, weather, or the

time of the day. Using current methods, modeling this aspect of a food event is extremely

challenging; however, it is critical for building a Personal Model. As shown in figure 7.16,

the causal aspect has two sub-components: events that caused the food event and events

that the food event has caused. Events caused by a food event are primarily reflected in

the biological impact of food. This includes changes in heart rate variability, sleep quality,

and other effects on the body and health. On the other hand, the events that caused a food

event could be more complicated, as external factors could also influence and initiate a food

event. These include social events, environmental factors, and weather conditions. Many

environmental and biological factors have been known to affect a food event. Some biological

factors may be easier to model, for example, age and weight, which are shown to affect the

food decision-making process [183]. Psychological aspects may be more challenging to mea-

sure, like mental stress; however, many studies have shown that it can be measured using

wearable devices and even social media usage [163]. [5] brings excellent intuition on how

stress can have a strong influence on food choice. A food event also depends on environmen-

tal factors such as the weather [61]. Complex environmental causal factors are often missed,

which can bring substantial help in the context reconstruction. For example, a pandemic,

such as the COVID-19 can drastically affect the food habits of populations. [111] shows that

for geographical regions with higher numbers of daily COVID-19 cases, the historical trends

in search queries related to bars and restaurants are strongly correlated with re-openings

happening in those areas. Therefore the environmental knowledge is an essential factor in

144

the causal aspect of food. In this study, we picked two crucial causal factors: stress and

weather, to demonstrate how the context can change the user’s food preference profile and

analyze how they affect the dietary choices.

Figure 7.17: Causal Preferential Model Architecture: The food logging platform captures
the different aspects of the food events. We use event mining to find contextual patterns and
build a taste profile for each pattern and update the preferential subsection of the personal
food model.

7.5.3 Experimental Design

We present a novel food preference model that considers causal factors to estimate taste

preferences in a particular context. The food model captures the user’s preferred taste

region, which could change with context. Figure 7.17 illustrates the overall architecture of

the preferential food model. Food logger [157] collects information about the food event

and stores in the Personicle. The Personicle is a database containing different data streams

about the user over a long time in one place[135]. We apply event mining operators on the

user’s personicle [137][139] to identify contextual factors that impact food preferences. We

create event patterns relating different contextual factors with the meal events and find all

occurrences of these contextual event patterns in the event streams. This allows us to find

food items consumed in different contexts. We can then aggregate the corresponding taste

vectors to find the contextual taste preference.

We opted to utilize synthesized data for the experiments because we can use the ground

145

Figure 7.18: Dataset Summary: This figure displays a summary of our events dataset. This
includes the frequency distribution for the different events that are present in the events
log for the five people in our dataset. The event relationships were encoded as probabilistic
transitions in a Markov-chain model. Concurrent and past contextual events also affect the
parameters of the lifestyle events.

truth of contextual factors’ impact on taste to validate the model, just like in many other

works such as [16]. By using synthesized training data, the dataset size can be significantly

increased with little human labor [22]. [141] introduces a system that automatically creates

synthetic data to enable data scientists. [141] suggests that synthetic data can successfully

replace original data for data science if it meets two requirements: First, it must somewhat

resemble the original data statistically to ensure realism and keep problems engaging for

146

data scientists. Second, it must also formally and structurally resemble the original data so

that any software written on top of it can be reused.

We designed a rich event stream database, and the occurrences and parameters of these events

depend on contextual factors such as time of the day, temperature, and stress. We use the

novel US4B taste estimation method to estimate the taste-related molecules’ quantity in a

dish as the taste cue for the personal model. We showcase multiple experiments on our rich

event stream data set generated using a randomized Markov-chain-based event generator.

We created five different lifestyle profiles, which would determine the generated events for

five different people over 500 days with approximately three food events a day for a total

of 7373 food events (Figure 7.18). The lifestyle profiles consist of the parameters needed

for the Markov-chain model to generate the event streams. These parameters include the

probability distribution of each event occurrence based on the previous event, designed to

imitate a natural event stream. These events include food events that are controlled by

contextual variables such as stress and weather. Research shows that stress correlates with

eating more palatable and delicious food [5]. Even though the relationship could be both

ways, either overeating or not eating as much depending on the person. We designed the

parameters associated with the stress-related causal aspect of a food choice based on the

available findings such that if a person had a stressful day, it would impact their food

choice towards more palatable foods for some subjects and towards less appetite for others.

Accordingly, some of our synthetic subjects have a higher probability of having a stressful

day than the others to achieve a greater variety within the dataset. The causal relation of

weather context with food choice has also been studied. [61] shows that combining weather

context in food profile modeling yields better results. We also have distribution parameters

regarding the weather condition and parameters that affect each subject’s food choice based

on the weather context. We then use event mining operators to find causal relationships

between contextual factors and meal events in the generated data. The underlying causal

relationships in the synthetic data were hidden from the event mining system and the person

147

doing the analysis.

Figure 7.19: Experimental Design: This figure illustrates how we perform hypothesis testing
using synthetic data. The events dataset contains the list of event types which are to be
generated such as food and activity. The events must resemble the real data statistically
so the parameters are carefully selected and are fed to the Markov-chain event generator
engine to create the synthesized dataset. Then we use event mining to apply our model to
the dataset and test its viability in action.

7.5.4 Results

We attempted to answer three research questions (RQ) in our experiments:

1. How does the individual taste preference vector change with changes in contextual

parameters?

2. How does adding context-awareness change the predictive performance of the prefer-

ence model?

3. How much data is needed to create a stable model?

148

RQ1: Contextual variation in taste profile

Figure 7.20 shows the variation in the preferred taste profile with different contextual vari-

ables for the five individuals in our dataset. We created the individuals’ contextual taste

profile by averaging the US4B taste vectors for meals consumed in different contextual situ-

ations. Thus, every individual has nine contextual preference vectors (3 temperature levels

* 3 stress levels) for every meal (breakfast, lunch, and dinner). The contextual preference

vectors are compared against the average preference vector for the three meals in the radar

plots in fig. 7.20. We have included the radar plots for two users. We can see that user5

has an increased preference for umami flavored food for dinner when it is cool outside, but

that preference goes down with an increase in temperature, and user1’s preference for sweet,

bitter, and umami flavors during lunch goes down with an increase in temperature.

RQ2: Comparison of prediction performance

We compared the context-aware preference model’s predictive performance against the “No-

Context” preference model using Top-5 accuracy as our performance measure. We used an

80-20 train-test split while maintaining the chronological order (test set samples were from a

period after the training set) and reported the models’ performance on the test set. We used

a nearest-neighbor approach to match an individual’s preference vector with the available

food items using cosine similarity. We predicted the five most likely food items for every

meal event in the test set and compared the predictions against the meal event’s actual dish.

Figure 7.21 compares the performance of models with different levels of contextual informa-

tion. As we expected, adding contextual information leads to a better performance than the

”No-Context” model for all five individuals in our dataset.

149

Figure 7.20: Variation in taste preferences with context. This figure shows how the pref-
erences for different taste aspects change with context. We can see that for User1, the
preference for sweet, bitter, and umami flavors during lunch goes down with increase in
temperature.

RQ3: Model accuracy with training data volume

We also performed experiments to find how the model accuracy varies with the amount of

training data. We used a fixed test set containing events data for 100 days. The training

set size was varied on a logarithmic scale from 4 to 400 (with a factor of 2). We used the

top-5 accuracy metric, and the results are reported in fig. 7.22 for all users. We observe that

initially, the non-contextual model outperforms the context-aware model. This could be due

150

Figure 7.21: Model performance using Top-5 predictions accuracy. We can see that for all
users adding all contextual factors (Stress+Temperature) leads to a better model than no
contextual information.

to a lack of data in different contextual situations. The observation supports this explanation

that as the size of the training dataset increases, the context-aware model outperforms the

non-contextual model. The accuracy graph starts flattening at 128 days; thus, we would

need to collect about 100 days of events to train and use this model effectively.

151

Figure 7.22: Model accuracy vs training data volume. The context-aware model appears to
stabilize at 128 days as mentioned in Section 6.3. As expected, initially the non-contextual
model outperforms the context-aware model, but with more training data, the context-aware
model has the higher accuracy.

152

Chapter 8

Conclusion

Data is everywhere in today’s world. Every electronic device and application we use observes

an aspect of our behavior and daily lives. Governments and public agencies continuously

monitor environmental and societal factors that affect our behavior, lifestyle, and health.

Different applications and research efforts have leveraged such data to solve problems re-

lated to personal health in clinical settings. Deep Neural Networks have been utilized in

multimedia-rich fields such as radiology for diagnosing various diseases such as cancer and

Alzheimer’s. Neural networks have also contributed significantly to genetic sequencing and

AI-driven drug discovery. However, a large amount of lifestyle data being generated by indi-

viduals is not being utilized efficiently for health estimation and guidance. Nag et al. [123]

propose a framework for continuous health estimation and guidance that utilizes multimodal

lifestyle data. Such works require a system for processing the raw multimodal streams into

meaningful events representing the user and environmental activities. The system should

reason with the extracted events and identify event patterns representative of user behav-

ior. The events can also estimate the effects of various habits and activities on individual

behavior and health.

153

In this work, we attempt to address the problems of utilizing multimodal data from disparate

sources for personalized longitudinal modeling. We propose an N-of-1 modeling paradigm for

understanding user behavior and estimating the effects of user events on individual health and

behavioral attributes. Traditional modeling strategies that study phenomena at a population

or sub-population level are great tools for studying general causal relationships that hold for

populations but are not sufficiently precise for understanding and making predictions at an

individual level (Chapter 2). We have addressed several aspects of this problem, such as :

1. Multimodal data fusion in the form of multimodal events that are capable of relating

information from different sources to a real-world activity. Data from different sources

capture an aspect of the event, and thus the resulting event has more information than

events recognized from a single source (Chapter 4).

2. Knowledge Integration in the form of user-defined events as well as hypotheses. Event

creation operations allow analysts to define new complex events as a combination of

existing ones. Extracting these events in a purely data-driven manner is a challenging

task; however, analysts can easily define these events and include them in the analysis

using the event operators. Similarly, the graphical representation of a hypothesis and

the hypothesis testing operations described in chapter 5 allow analysts and expert users

to incorporate domain knowledge as event patterns in the hypothesis (Chapter 5).

3. Frequent Event Patterns discovery allows the analysts to discover co-occurring events

and discover temporal relationships between such events. The patterns are useful

because these inform the analysts about frequent user behaviors and can be abstracted

as a complex event if the co-occurrence is strong enough. These patterns may also

include unknown causal relationships between the events that can be tested either

using the hypothesis testing operation or experimentally (Chapter 6).

Different parts of the framework are evaluated in multiple published works to study events

154

and hypotheses related to personal health and behavior, such as exercise behavior, cardio-

respiratory health, and contextual dietary preferences (Chapter 7).

However, many aspects of a generalized N-of-1 modeling system have not been explored in

this work and require further research.

• Visual pattern representation: Innovative visualizations for event sequences and

event patterns data would allow analysts to explore data interactively. We have uti-

lized a linear and radial timeline visualization for events and a co-occurrence matrix

visualization for patterns in this work. However, these can easily become too large to

manage, and larger patterns cannot be displayed on a matrix; thus, we need to explore

specialized visual representations such as Sankey and tree diagrams to display event

patterns.

• Interactive hypothesis building: An interactive graph interface for specifying new

hypotheses would allow analysts and domain experts to easily incorporate their beliefs

into a hypothesis without being familiar with the background event formulations and

operators.

• Additional pattern operators: In this work, we have focused on pattern opera-

tors that capture positive event correlations; however, negative event correlations are

equally important in health and lifestyle. For example, identifying interventions that

reduce symptoms (headache, heartburn, etc.) can only be done by finding negative

event patterns.

• Data Security and Ownership: Recent technological and policy developments such

as GDPR have raised awareness among users about the value of data security and

privacy. Any application dealing with personal lifestyle and health data has to ensure

the highest standards of data security. We must explore security and database archi-

tectures that allow secure data sharing with third-party applications and enable the

155

end-users to have complete ownership and control over their data.

• Secure Model Sharing: As discussed in Chapter 2, aggregating individual models

can provide insights into generalized behavioral patterns across populations, and the

aggregated population and sub-population models can also serve as a solution to the

cold start problem commonly observed when there is a lack of individual-specific data.

156

Bibliography

[1] Peekquence: Visual Analytics for Event Sequence Data — Bum Chul Kwon, Ph.D. -
IBM Research.

[2] Periodic Pattern Mining – Algorithms and Applications — Global Journal of Computer
Science and Technology.

[3] The New Person-Specific Paradigm in Psychology on JSTOR.

[4] The Essential Guide to N-of-1 Trials in Health. Springer Netherlands, 2015.

[5] T. C. Adam and E. S. Epel. Stress, eating and the reward system. Physiology and
Behavior, 91(4):449–458, 8 2007.

[6] G. Adomavicius and A. Tuzhilin. Context-Aware Recommender Systems. In Recom-
mender Systems Handbook, pages 191–226. Springer US, Boston, MA, 2015.

[7] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules.

[8] R. Agrawal and R. Srikant. Mining sequential patterns. Proceedings - International
Conference on Data Engineering, pages 3–14, 1995.

[9] X. Alameda-Pineda, E. Ricci, and N. Sebe. Multimodal behavior analysis in the wild:
An introduction. In Multimodal Behavior Analysis in the Wild, pages 1–8. Elsevier,
2019.

[10] J. F. Allen. INTERVAL-BASED REPRESENTATION OF TEMPORAL KNOWL-
EDGE. volume 1, 1981.

[11] J. F. ALLEN and G. FERGUSON. Actions and Events in Interval Temporal Logic.
Journal of Logic and Computation, 4(5):531–579, 10 1994.

[12] C. Andersson, A. D. Johnson, E. J. Benjamin, D. Levy, and R. S. Vasan. 70-year
legacy of the Framingham Heart Study, 11 2019.

[13] S. Aseervatham, A. Osmani, and E. Viennet. BitSPADE: A lattice-based sequential
pattern mining algorithm using bitmap representation. Proceedings - IEEE Interna-
tional Conference on Data Mining, ICDM, pages 792–797, 2006.

157

[14] M. Asgari Mehrabadi, I. Azimi, F. Sarhaddi, A. Axelin, H. Niela-Vilén, S. Myllyn-
tausta, S. Stenholm, N. Dutt, P. Liljeberg, and A. M. Rahmani. Sleep Validation of
Commercially Available Smart Ring and Watch Against Medical-Grade Actigraphy in
Everyday Settings (Preprint). JMIR mHealth and uHealth, 8 2020.

[15] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential PAttern mining using a
bitmap representation. page 429, 2002.

[16] K. Barnard, V. Cardei, and B. Funt. A comparison of computational color constancy
algorithms - Part I: Methodology and experiments with synthesized data. IEEE Trans-
actions on Image Processing, 11(9):972–984, 8 2002.

[17] E. J. Benjamin, D. Levy, S. M. Vaziri, R. B. D’agostino, A. J. Belanger, and P. A. Wolf.
Independent Risk Factors for Atrial Fibrillation in a Population-Based Cohort: The
Framingham Heart Study. JAMA: The Journal of the American Medical Association,
271(11):840–844, 3 1994.

[18] H. Carte, A. M. Jones, and J. H. Doust. Effect of 6 weeks of endurance training on
the lactate minimum speed. Journal of Sports Sciences, 17(12), 1 1999.

[19] F. Casino, C. Patsakis, E. Batista, O. Postolache, A. Mart́ınez-Ballesté, and A. Solanas.
Smart Healthcare in the IoT Era: A Context-Aware Recommendation Example. In
2018 International Symposium in Sensing and Instrumentation in IoT Era, ISSI 2018.
Institute of Electrical and Electronics Engineers Inc., 11 2018.

[20] R. B. CATTELL. P-technique, a new method for analyzing the structure of personal
motivation. Transactions of the New York Academy of Sciences, 14(1):29–34, 1951.

[21] D. Chankhihort, B.-M. Lim, G.-J. Lee, S. Choi, S.-O. Kwon, S.-H. Lee, J.-T. Kang,
A. Nasridinov, and K.-H. Yoo. A Visualization Scheme with a Calendar Heat Map for
Abnormal Pattern Analysis in the Manufacturing Process 21. International Journal of
Contents, 13(2), 2017.

[22] Q. Chen, W. Qiu, Y. Zhang, L. Xie, and A. Yuille. SampleAhead: Online Classifier-
Sampler Communication for Learning from Synthesized Data. British Machine Vision
Conference 2018, BMVC 2018, 8 2018.

[23] H. R. E. Costill, DL; Thomason. Fractional utilization of the aerobic capacity during
distance running. Med Sci Sports, pages 248–252, 1973.

[24] E. J. Daza. Causal Analysis of Self-tracked Time Series Data Using a Counterfactual
Framework for N-of-1 Trials. Methods of Information in Medicine, 57(1):e10–e21, 2018.

[25] S. de Amo, W. P. Junior, and A. Giacometti. MILPRIT*: A Constraint-
Based Algorithm for Mining Temporal Relational Patterns. https://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2008100103, 4(4):42–61, 1 1.

[26] S. De Amo, W. P. Junior, A. Giacometti, and T. G. Clemente. Mining Temporal
Relational Patterns over Databases with Hybrid Time Domains.

158

[27] G. de Simone. Concentric or eccentric hypertrophy: how clinically relevant is the
difference? Hypertension (Dallas, Tex. : 1979), 43(4):714–5, 4 2004.

[28] A. H. Diacon, C. F. Koegelenberg, K. J. Klüsmann, and C. T. Bolliger. Challenges in
the estimation of tidal volume settings in critical care units [10], 10 2006.

[29] C. Dobbins, R. Rawassizadeh, and E. Momeni. Detecting physical activity within
lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing,
230:110–132, 3 2017.

[30] A. R. Doherty, A. F. Smeaton, K. Lee, and D. P. W. Ellis. Multimodal Segmentation
of Lifelog Data. Technical report.

[31] N. Duan, R. L. Kravitz, and C. H. Schmid. Single-patient (n-of-1) trials: A pragmatic
clinical decision methodology for patient-centered comparative effectiveness research.
Journal of Clinical Epidemiology, 66(8 SUPPL.8), 8 2013.

[32] M. Eichler, R. Dahlhaus, and J. Dueck. Graphical Modeling for Multivariate Hawkes
Processes with Nonparametric Link Functions. Journal of Time Series Analysis,
38(2):225–242, 5 2016.

[33] K. El Asnaoui, A. Hamid, A. Brahim, and O. Mohammed. A survey of activity
recognition in egocentric lifelogging datasets. In 2017 International Conference on
Wireless Technologies, Embedded and Intelligent Systems, WITS 2017. Institute of
Electrical and Electronics Engineers Inc., 5 2017.

[34] D. Entner and P. O. Hoyer. On Causal Discovery from Time Series Data using FCI.

[35] J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A Visual Interface for
Multivariate Temporal Data: Finding Patterns of Events across Multiple Histories.

[36] F. Fischer, J. Fuchs, P. A. Vervier, F. Mansmann, and O. Thonnard. VisTracer: A
visual analytics tool to investigate routing anomalies in traceroutes. ACM International
Conference Proceeding Series, pages 80–87, 2012.

[37] E. Fountzilas and A. M. Tsimberidou. Overview of precision oncology trials: challenges
and opportunities, 8 2018.

[38] P. Fournier-Viger, J. Chun, W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A Survey
of Sequential Pattern Mining. 1(1), 2017.

[39] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas. Fast Vertical Mining
of Sequential Patterns Using Co-occurrence Information. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 8443 LNAI(PART 1):40–52, 2014.

[40] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. VMSP: Efficient Vertical
Mining of Maximal Sequential Patterns. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
8436 LNAI:83–94, 2014.

159

[41] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng. Mining Maximal Sequential Patterns
without Candidate Maintenance.

[42] S. S. Franklin, M. G. Larson, S. A. Khan, N. D. Wong, E. P. Leip, W. B. Kannel, and
D. Levy. Does the relation of blood pressure to coronary heart disease risk change with
aging?: The Framingham Heart Study. Circulation, 103(9):1245–1249, 3 2001.

[43] C. Freksa and R. Fulton. Temporal Reasoning Based on Semi-Intervals Freksa Tem-
poral Reasoning Based on Semi-Intervals 2 TIME IS A MASK WORN BY SPACE.
Artificial Intelligence, 54:199–227, 1992.

[44] T. J. Gabbett, B. T. Hulin, P. Blanch, and R. Whiteley. High training workloads alone
do not cause sports injuries: how you get there is the real issue. British Journal of
Sports Medicine, 50(8), 4 2016.

[45] N. B. Gabler, N. Duan, S. Vohra, and R. L. Kravitz. N-of-1 trials in the medical
literature: A systematic review, 8 2011.

[46] R. A. Garćıa-Hernández, J. F. Mart́ınez-Trinidad, and J. A. Carrasco-Ochoa. A New
Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document Collec-
tion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 3878 LNCS:514–523, 2006.

[47] N. Garg, A. Sethupathy, R. Tuwani, R. Nk, S. Dokania, A. Iyer, A. Gupta, S. Agrawal,
N. Singh, S. Shukla, K. Kathuria, R. Badhwar, R. Kanji, A. Jain, A. Kaur, R. Nagpal,
and G. Bagler. FlavorDB: A database of flavor molecules. Nucleic Acids Research,
46(D1):D1210–D1216, 8 2018.

[48] S. Guo, F. Du, S. Malik, E. Koh, S. Kim, Z. Liu, D. Kim, H. Zha, and N. Cao.
Visualizing uncertainty and alternatives in event sequence predictions. Conference on
Human Factors in Computing Systems - Proceedings, page 12, 5 2019.

[49] C. Gurrin, A. F. Smeaton, and A. R. Doherty. LifeLogging: Personal big data, 2014.

[50] V. H. Haase. Hypoxia-inducible factors in the kidney, 2006.

[51] P. Hackett, R. Roach, and J. Sutton. High-altitude medicine. Wilderness medicine,
4:2–43, 1995.

[52] HanJiawei, PeiJian, and YinYiwen. Mining frequent patterns without candidate gen-
eration. ACM SIGMOD Record, 29(2):1–12, 5 2000.

[53] A. G. Hawkes. Spectra of Some Self-Exciting and Mutually Exciting Point Processes.
Biometrika, 58(1):83, 4 1971.

[54] A. P. Hills, S. J. Street, and N. M. Byrne. Physical Activity and Health: ”What is Old
is New Again”. In Advances in Food and Nutrition Research, volume 75, pages 77–95.
Academic Press Inc., 2015.

160

[55] F. Höppner and F. Klawonn. Finding informative rules in interval sequences. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2189:125–134, 2001.

[56] M. C. Howard and M. E. Hoffman. Variable-Centered, Person-Centered, and Person-
Specific Approaches: Where Theory Meets the Method. Organizational Research Meth-
ods, 21(4):846–876, 10 2018.

[57] S. C. Hsueh, M. Y. Lin, and C. L. Chen. Mining negative sequential patterns for e-
commerce recommendations. Proceedings of the 3rd IEEE Asia-Pacific Services Com-
puting Conference, APSCC 2008, pages 1213–1218, 2008.

[58] O. Huisman and P. Forer. The complexities of everyday life : balancing practical and
realistic approaches to modelling probable presence in space - time. undefined, 2005.

[59] A. Hyvärinen, S. Shimizu, and P. O. Hoyer. Causal Modelling Combining Instanta-
neous and Lagged Effects: an Identifiable Model Based on Non-Gaussianity.

[60] K. Imai, G. King, and E. A. Stuart. Misunderstandings between experimentalists
and observationalists about causal inference. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 171(2):481–502, 4 2008.

[61] T. Ito, Y. Fukazawa, D. Zhu, and J. Ota. Modeling Weather Context Dependent Food
Choice Process. Journal of Information Processing, 26(0):386–395, 8 2018.

[62] P. J. J., ChenShang-Tse, KahngMinsuk, B. De, BasoleRahul, SharminMoushumi, and
C. Horng. Chronodes. ACM Transactions on Interactive Intelligent Systems (TiiS),
8(1), 2 2018.

[63] R. Jain and L. Jalali. Objective self. IEEE Multimedia, 21(4):100–110, 2014.

[64] R. Jain and L. Jalali. Objective self. IEEE MultiMedia, 21(4):100–110, 10 2014.

[65] L. Jalali and R. Jain. Event Mining for Explanatory Modeling. Event Mining for
Explanatory Modeling, 5 2021.

[66] Z. Jin, S. Guo, N. Chen, D. Weiskopf, D. Gotz, and N. Cao. Visual Causality Analysis
of Event Sequence Data. IEEE Transactions on Visualization and Computer Graphics,
27(2):1343–1352, 9 2020.

[67] Z. Jin, J. Yang, S. Cui, D. Gotz, J. Sun, and N. Cao. CarePre: An Intelligent Clinical
Decision Assistance System. ACM Transactions on Computing for Healthcare, 1(1):1–
20, 11 2018.

[68] A. M. Jones. A five year physiological case study of an Olympic runner. British Journal
of Sports Medicine, 32(1), 3 1998.

[69] A. M. Jones and H. Carter. The Effect of Endurance Training on Parameters of Aerobic
Fitness. Sports Medicine, 29(6):373–386, 2000.

161

[70] N. K, G. A, S. SR, S. WF, M. B, and S. J. PARAMO: a PARAllel predictive MOdeling
platform for healthcare analytic research using electronic health records. Journal of
biomedical informatics, 48:160–170, 2014.

[71] D. Kahneman, A. B. Krueger, D. A. Schkade, N. Schwarz, and A. A. Stone. A Survey
Method for Characterizing Daily Life Experience: The Day Reconstruction Method.
Science, 306(5702), 12 2004.

[72] P. S. Kam and A. W. C. Fu. Discovering temporal patterns for interval-based events.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 1874:317–326, 2000.

[73] E. Kasaeyan Naeini, S. Shahhosseini, A. Subramanian, T. Yin, A. M. Rahmani, and
N. Dutt. An Edge-Assisted and Smart System for Real-Time Pain Monitoring. In
Proceedings - 4th IEEE/ACM Conference on Connected Health: Applications, Systems
and Engineering Technologies, CHASE 2019, pages 47–52. Institute of Electrical and
Electronics Engineers Inc., 8 2019.

[74] E. K. Keenan. Seeing the forest and the trees: Using dynamic systems theory to under-
stand ”stress and coping” and ”trauma and resilience”. Journal of Human Behavior
in the Social Environment, 20(8):1038–1060, 12 2010.

[75] L. Kempf, J. C. Goldsmith, and R. Temple. Challenges of developing and conducting
clinical trials in rare disorders, 4 2018.

[76] M. A. Khan, E. Rushe, B. Smyth, and D. Coyle. Personalized, Health-Aware Recipe
Recommendation: An Ensemble Topic Modeling Based Approach. Technical report,
2019.

[77] T. Kim and C. H. Park. Anomaly pattern detection for streaming data. Expert Systems
with Applications, 149:113252, 7 2020.

[78] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of
black-box machine learning models. Conference on Human Factors in Computing
Systems - Proceedings, pages 5686–5697, 5 2016.

[79] J. Krause, A. Perer, and H. Stavropoulos. Supporting Iterative Cohort Construction
with Visual Temporal Queries. IEEE Transactions on Visualization and Computer
Graphics, 22(1):91–100, 1 2016.

[80] T. Krone, R. Boessen, S. Bijlsma, R. van Stokkum, N. D. Clabbers, and W. J. Pasman.
The possibilities of the use of N-of-1 and do-it-yourself trials in nutritional research.
PLoS ONE, 15(5):e0232680, 5 2020.

[81] I. M. Kronish, M. Hampsey, L. Falzon, B. Konrad, and K. W. Davidson. Personalized
(N-of-1) Trials for Depression: A Systematic Review. Journal of Clinical Psychophar-
macology, 38(3):218–225, 6 2018.

162

[82] D. Kwasnicka, J. Inauen, W. Nieuwenboom, J. Nurmi, A. Schneider, C. E. Short,
T. Dekkers, A. J. Williams, W. Bierbauer, A. Haukkala, F. Picariello, and F. Naughton.
Challenges and solutions for N-of-1 design studies in health psychology. Health Psy-
chology Review, 13(2):163–178, 4 2019.

[83] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun, and
J. Choo. RetainVis: Visual Analytics with Interpretable and Interactive Recurrent
Neural Networks on Electronic Medical Records. IEEE Transactions on Visualization
and Computer Graphics, 25(1):299–309, 5 2018.

[84] S. T. Lanza, B. P. Flaherty, and L. M. Collins. Latent Class and Latent Transition
Analysis. In Handbook of Psychology. John Wiley & Sons, Inc., 4 2003.

[85] B. P. Laursen and E. Hoff. Person-Centered and Variable-Centered Approaches to
Longitudinal Data. Merrill-Palmer Quarterly, 52(3), 2006.

[86] P.-M. Law, Z. Liu, S. Malik, and R. C. Basole. MAQUI: Interweaving Queries and
Pattern Mining for Recursive Event Sequence Exploration. IEEE Transactions on
Visualization and Computer Graphics, 25(1), 1 2019.

[87] D. c. Lee, A. G. Brellenthin, P. D. Thompson, X. Sui, I. M. Lee, and C. J. Lavie.
Running as a Key Lifestyle Medicine for Longevity, 6 2017.

[88] T. Li Li. EVENT MINING ALGORITHMS AND APPLICATIONS EVENT MINING
Chapman & Hall/CRC Data Mining and Knowledge Discovery Series Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series. Technical report.

[89] F. Liang, S. Ma, and J. L. Hellerstein. Discovering Fully Dependent Patterns. Pro-
ceedings, pages 511–527, 4 2002.

[90] E. O. Lillie, B. Patay, J. Diamant, B. Issell, E. J. Topol, and N. J. Schork. The n-
of-1 clinical trial: The ultimate strategy for individualizing medicine? Personalized
Medicine, 8(2):161–173, 3 2011.

[91] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic represen-
tation of time series. Data Mining and Knowledge Discovery 2007 15:2, 15(2):107–144,
4 2007.

[92] Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and A. Wilson. CoreFlow: Ex-
tracting and Visualizing Branching Patterns from Event Sequences. Computer Graph-
ics Forum, 36(3):527–538, 6 2017.

[93] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wilson. Patterns and
Sequences: Interactive Exploration of Clickstreams to Understand Common Visitor
Paths. IEEE Transactions on Visualization and Computer Graphics, 23(1):321–330, 1
2017.

[94] LiuZhicheng, KerrBernard, DontchevaMira, GroverJustin, HoffmanMatthew, and
WilsonAlan. CoreFlow. Computer Graphics Forum, 36(3):527–538, 6 2017.

163

[95] M. López-Nores, Y. Blanco-Fernández, J. J. Pazos-Arias, and A. Gil-Solla. Property-
based collaborative filtering for health-aware recommender systems. Expert Systems
with Applications, 39(8):7451–7457, 6 2012.

[96] D. Luckham. The power of events. 2002.

[97] D. C. Luckham and B. Frasca. Complex Event Processing in Distributed Systems.
Technical report, 1998.

[98] K. Ma, W. Wang, N. Yuan, and X. Chi. Study on temporal patterns of medical
emergency call. Proceedings - The 2015 10th International Conference on Intelligent
Systems and Knowledge Engineering, ISKE 2015, pages 403–407, 1 2016.

[99] S. Ma and J. Hellerstein. Mining Mutually Dependent Patterns. Proceedings 2001
IEEE International Conference on Data Mining, pages 409–409, 11 2001.

[100] S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown
periods. Proceedings - International Conference on Data Engineering, pages 205–214,
2001.

[101] M. S. Magnusson. Discovering hidden time patterns in behavior: T-patterns and their
detection. Behavior Research Methods, Instruments, and Computers, 32(1):93–110,
2000.

[102] S. S. Mahmood, D. Levy, R. S. Vasan, and T. J. Wang. The Framingham Heart Study
and the epidemiology of cardiovascular disease: A historical perspective, 3 2014.

[103] S. Malik, F. Du, M. Monroe, E. Onukwugha, C. Plaisant, and B. Shneiderman. Co-
hort Comparison of Event Sequences with Balanced Integration of Visual Analytics
and Statistics. Proceedings of the 20th International Conference on Intelligent User
Interfaces.

[104] J. E. Manson and S. S. Bassuk. Invited commentary: The framingham offspring study-
A pioneering investigation into familial aggregation of cardiovascular risk, 6 2017.

[105] Mark Liversedge. Golden Cheetah Open Dataset, 2018.

[106] J. McCarthy, P. H. R. i. a. intelligence, and u. 1981. Some philosophical problems from
the standpoint of artificial intelligence. Elsevier.

[107] A. L. Mccutcheon. Latent Class Analysis In: Latent Class Analysis. 1987.

[108] S. McDonald, F. Quinn, R. Vieira, N. O’Brien, M. White, D. W. Johnston, and F. F.
Sniehotta. The state of the art and future opportunities for using longitudinal n-of-1
methods in health behaviour research: a systematic literature overview, 10 2017.

[109] K. McGarry. A survey of interestingness measures for knowledge discovery. Knowledge
Engineering Review, 20(1):39–61, 2005.

164

[110] D. C. Mckenzie. Markers of Excessive Exercise. Canadian Journal of Applied Physiol-
ogy, 24(1), 2 1999.

[111] M. A. Mehrabadi, N. Dutt, and A. M. Rahmani. The Causality Inference of Public
Interest in Restaurants and Bars on COVID-19 Daily Cases in the US: A Google Trends
Analysis. 8 2020.

[112] H. Mei and J. Eisner. The Neural Hawkes Process: A Neurally Self-Modulating Mul-
tivariate Point Process. Advances in Neural Information Processing Systems, 2017-
December:6755–6765, 12 2016.

[113] C. Mihl, W. R. Dassen, and H. Kuipers. Cardiac remodelling: Concentric versus
eccentric hypertrophy in strength and endurance athletes, 2008.

[114] R. D. Mirza, S. Punja, S. Vohra, and G. Guyatt. The history and development of
N-of-1 trials. Journal of the Royal Society of Medicine, 110(8):330–340, 8 2017.

[115] G. F. Mitchell, S. J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg,
J. A. Vita, D. Levy, and E. J. Benjamin. Arterial stiffness and cardiovascular events:
The framingham heart study. Circulation, 121(4):505–511, 2 2010.

[116] F. Moerchen and D. Fradkin. Robust mining of time intervals with semi-interval partial
order patterns. Proceedings, pages 315–326, 2010.

[117] P. C. Molenaar and C. G. Campbell. The new person-specific paradigm in psychology.
Current Directions in Psychological Science, 18(2):112–117, 4 2009.

[118] P. C. M. Molenaar. A Manifesto on Psychology as Idiographic Science: Bringing the
Person Back Into Scientific Psychology, This Time Forever. Measurement: Interdisci-
plinary Research & Perspective, 2(4):201–218, 10 2004.

[119] F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from multi-
variate interval time series. Data Mining and Knowledge Discovery, 15(2):181–215,
2007.

[120] R. H. Morton, J. R. Fitz-Clarke, and E. W. Banister. Modeling human performance
in running. Journal of Applied Physiology, 69(3), 9 1990.

[121] C. Muelder, B. Zhu, W. Chen, S. Member, H. Zhang, and K.-L. Ma. Visual Analysis
of Cloud Computing Performance Using Behavioral Lines. IEEE TRANSACTIONS
ON VISUALIZATION AND COMPUTER GRAPHICS, 22(6), 2016.

[122] E. K. Naeini, I. Azimi, A. M. Rahmani, P. Liljeberg, and N. Dutt. A Real-time PPG
Quality Assessment Approach for Healthcare Internet-of-Things. In Procedia Computer
Science, volume 151, pages 551–558. Elsevier B.V., 8 2019.

[123] N. Nag. Health State Estimation. 3 2020.

[124] N. Nag and R. Jain. A Navigational Approach to Health: Actionable Guidance for
Improved Quality of Life. Computer, 52(4):12–20, 4 2019.

165

[125] N. Nag and R. Jain. A Navigational Approach to Health: Actionable Guidance for
Improved Quality of Life. Computer, 52(4):12–20, 4 2019.

[126] N. Nag, V. Pandey, and R. Jain. Live personalized nutrition recommendation engine.
In MMHealth 2017 - Proceedings of the 2nd International Workshop on Multimedia for
Personal Health and Health Care, co-located with MM 2017, pages 61–68. Association
for Computing Machinery, Inc, 10 2017.

[127] N. Nag, V. Pandey, H. Oh, and R. Jain. Cybernetic Health. 5 2017.

[128] N. Nag, V. Pandey, P. J. Putzel, H. Bhimaraju, S. Krishnan, and R. Jain. Cross-
modal health state estimation. In MM 2018 - Proceedings of the 2018 ACM Multimedia
Conference, pages 1993–2002. Association for Computing Machinery, Inc, 10 2018.

[129] M. H. Namaki, Y. Wu, Q. Song, P. Lin, and T. Ge. Discovering Graph Temporal
Association Rules. Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 2017.

[130] L. Nardi, M. R. E. S. P. Landforms, , and u. 2015. Spatio-temporal patterns of
channel changes in response to a major flood event: the case of the Magra River
(central–northern Italy). Wiley Online Library, 40(3):326–339, 3 2014.

[131] M. Nauta, D. Bucur, and C. Seifert. Causal Discovery with Attention-Based Convo-
lutional Neural Networks. Machine Learning and Knowledge Extraction 2019, Vol. 1,
Pages 312-340, 1(1):312–340, 1 2019.

[132] P. D. Neufer. The Effect of Detraining and Reduced Training on the Physiological
Adaptations to Aerobic Exercise Training. Sports Medicine, 8(5), 11 1989.

[133] P. H. Nguyen, C. Turkay, G. Andrienko, N. Andrienko, O. Thonnard, and J. Zouaoui.
Understanding user behaviour through action sequences: From the usual to the un-
usual. IEEE Transactions on Visualization and Computer Graphics, 25(9):2838–2852,
9 2019.

[134] N. J. Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 2014.

[135] H. Oh and R. Jain. From Multimedia Logs to Personal Chronicles. In Proceedings of
the 2017 ACM on Multimedia Conference - MM ’17, pages 881–889, New York, New
York, USA, 2017. ACM Press.

[136] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. Proceedings
- International Conference on Data Engineering, pages 412–421, 1998.

[137] V. Pandey, N. Nag, and R. Jain. Ubiquitous event mining to enhance personal health.
In UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM
International Symposium on Wearable Computers, pages 676–679, New York, New
York, USA, 2018. ACM Press.

166

[138] V. Pandey, N. Nag, and R. Jain. Continuous Health Interface Event Retrieval. In
Proceedings of the 2020 International Conference on Multimedia Retrieval, New York,
NY, USA, 6 2020. ACM.

[139] V. Pandey, D. Upadhyay, N. Nag, and R. Jain. Personalized user modelling for context-
aware lifestyle recommendations to improve sleep. In CEUR Workshop Proceedings,
volume 2684, 2020.

[140] L. X. Pang, S. Chawla, W. Liu, and Y. Zheng. On Mining Anomalous Patterns
in Road Traffic Streams. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7121
LNAI(PART 2):237–251, 12 2011.

[141] N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In Proceedings
- 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA
2016, pages 399–410. Institute of Electrical and Electronics Engineers Inc., 8 2016.

[142] J. Pearl. [Bayesian Analysis in Expert Systems]: Comment: Graphical Models, Causal-
ity and Intervention. Technical Report 3, 1993.

[143] J. Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3(0):96–146,
2009.

[144] J. Pearl. The Causal Foundations of Structural Equation Modeling. Technical report,
2012.

[145] J. Pearl. The Book of Why. Basic Books, 2018.

[146] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: Hyper-structure mining
of frequent patterns in large databases. Proceedings - IEEE International Conference
on Data Mining, ICDM, pages 441–448, 2001.

[147] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C.
Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering, 16(11):1424–1440, 11 2004.

[148] A. Perer and F. Wang. Frequence: Interactive Mining and Visualization of Temporal
Frequent Event Sequences.

[149] J. Peters, D. Janzing, and B. Schölkopf. Causal Inference on Time Series using Re-
stricted Structural Equation Models. Advances in Neural Information Processing Sys-
tems, 26, 2013.

[150] E. Pierce, A. Weltman, R. Seip, and D. Snead. Effects of Training Specificity on
the Lactate Threshold and VO ¡sub¿2¡/sub¿ Peak. International Journal of Sports
Medicine, 11(04), 8 1990.

[151] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. LifeLines: visualizing
personal histories. Conference on Human Factors in Computing Systems - Proceedings,
pages 221–227, 1996.

167

[152] R. Reiter. Knowledge in action: logical foundations for specifying and implementing
dynamical systems, volume 20. MIT Press, 2001.

[153] M.-A. Rizoiu, Y. Lee, S. Mishra, and L. Xie. A Tutorial on Hawkes Processes for
Events in Social Media. The Australian National University, 8 2017.

[154] A. C. Robinson, D. J. Peuquet, S. Pezanowski, F. A. Hardisty, and B. Swedberg.
Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-
temporal event data. Cartography and Geographic Information Science, 44(3):216–228,
5 2017.

[155] R. Ross, S. N. Blair, R. Arena, T. S. Church, J. P. Després, B. A. Franklin, W. L.
Haskell, L. A. Kaminsky, B. D. Levine, C. J. Lavie, J. Myers, J. Niebauer, R. Sallis, S. S.
Sawada, X. Sui, and U. Wisløff. Importance of Assessing Cardiorespiratory Fitness in
Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement
from the American Heart Association, volume 134. 2016.

[156] A. Rostami, V. Pandey, N. Nag, V. Wang, and R. Jain. Personal Food Model. Pro-
ceedings of the 28th ACM International Conference on Multimedia, pages 4416–4424,
8 2020.

[157] A. Rostami, B. Xu, and R. Jain. Multimedia Food Logger. In Proceedings of the 28th
ACM International Conference on Multimedia, pages 4548–4549, New York, NY, USA,
8 2020. ACM.

[158] S. P. Rowland, J. E. Fitzgerald, T. Holme, J. Powell, and A. McGregor. What is the
clinical value of mHealth for patients? npj Digital Medicine, 3(1), 12 2020.

[159] D. B. Rubin. Using Propensity Scores to Help Design Observational Studies: Applica-
tion to the Tobacco Litigation. Health Services and Outcomes Research Methodology
2001 2:3, 2(3):169–188, 2001.

[160] D. B. Rubin and N. Thomas. Matching Using Estimated Propensity Scores: Relating
Theory to Practice. Biometrics, 52(1):249, 3 1996.

[161] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science
Advances, 5(11):eaau4996, 11 2019.

[162] K. Saha, A. E. Bayraktaroglu, A. T. Campbell, N. V. Chawla, M. De Choudhury, S. K.
D’Mello, A. K. Dey, G. Gao, J. M. Gregg, K. Jagannath, G. Mark, G. J. Martinez,
S. M. Mattingly, E. Moskal, A. Sirigiri, A. Striegel, and D. W. Yoo. Social media as
a passive sensor in longitudinal studies of human behavior and wellbeing. Conference
on Human Factors in Computing Systems - Proceedings, 5 2019.

[163] K. Saha and M. De Choudhury. Modeling stress with social media around incidents
of gun violence on college campuses. Proceedings of the ACM on Human-Computer
Interaction, 1(CSCW), 11 2017.

168

[164] K. Saha, R. Mulukutla, K. Nies, P. Robles-Granda, A. Sirigiri, D. W. Yoo, P. Audia,
A. T. Campbell, N. V. Chawla, S. K. D’Mello, A. K. Dey, M. D. Reddy, K. Jiang,
Q. Liu, G. Mark, E. Moskal, A. Striegel, M. De Choudhury, V. Das Swain, J. M.
Gregg, T. Grover, S. Lin, G. J. Martinez, S. M. Mattingly, and S. Mirjafari. Imputing
Missing Social Media Data Stream in Multisensor Studies of Human Behavior. 2019
8th International Conference on Affective Computing and Intelligent Interaction, ACII
2019, 9 2019.

[165] K. Saha, J. Torous, S. K. Ernala, C. Rizuto, A. Stafford, and M. De Choudhury. A
computational study of mental health awareness campaigns on social media. Transla-
tional Behavioral Medicine, 9(6):1197–1207, 11 2019.

[166] B. Saltin and P. O. Astrand. Maximal oxygen uptake in athletes. Journal of Applied
Physiology, 23(3), 9 1967.

[167] C. Samuels. Sleep, Recovery, and Performance: The New Frontier in High-Performance
Athletics. Neurologic Clinics, 26(1), 2 2008.

[168] J. Sarris, A. O’Neil, C. E. Coulson, I. Schweitzer, and M. Berk. Lifestyle medicine for
depression, 4 2014.

[169] B. Sauer, M. A. Brookhart, J. A. Roy, and T. J. VanderWeele. Covariate Selection.
2013.

[170] H. Schäfer, S. Hors-Fraile, R. P. Karumur, A. Calero Valdez, A. Said, H. Torkamaan,
T. Ulmer, and C. Trattner. Towards Health (Aware) Recommender Systems. In
Proceedings of the 2017 International Conference on Digital Health - DH ’17, pages
157–161, New York, New York, USA, 2017. ACM Press.

[171] N. J. Schork. Personalized medicine: Time for one-person trials, 4 2015.

[172] A. Seth. Granger causality. Scholarpedia, 2(7):1667, 2007.

[173] L. Shamseer, M. Sampson, C. Bukutu, C. H. Schmid, J. Nikles, R. Tate, B. C. John-
ston, D. Zucker, W. R. Shadish, R. Kravitz, G. Guyatt, D. G. Altman, D. G. Altman,
and S. Vohra. CONSORT extension for reporting N-of-1 trials (CENT) 2015: expla-
nation and elaboration. Journal of Clinical Epidemiology, 76:18–46, 8 2016.

[174] T. Shochat. Impact of lifestyle and technology developments on sleep, 2012.

[175] R. R. Sillito and R. B. Fisher. Semi-supervised Learning for Anomalous Trajectory
Detection.

[176] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. 81, 1993.

[177] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1057 LNCS:1–17,
1996.

169

[178] S. K. Sterba and D. J. Bauer. Matching method with theory in person-oriented devel-
opmental psychopathology research. Development and Psychopathology, 22(2):239–254,
5 2010.

[179] E. A. Stuart. Matching methods for causal inference: A review and a look forward.
Statistical science : a review journal of the Institute of Mathematical Statistics, 25(1):1,
2 2010.

[180] V. Thambawita, S. Hicks, H. Borgli, S. A. Pettersen, H. K. Stensland, D. Jha, D. Jo-
hansen, H. D. Johansen, T. Kupka, T.-M. Grønli, P. M. Fredriksen, R. Eg, K. Hansen,
S. Fagernes, A. Biorn-Hansen, D. T. D. Nguyen, H. L. Hammer, R. Jain, M. Riegler,
and P. Halvorsen. PMData: A sports logging dataset. 2020.

[181] E. Thelen. Dynamic systems theory and the complexity of change, 2005.

[182] G. E. Vaillant. Triumphs of Experience. Harvard University Press, 10 2012.

[183] F. van Meer, L. Charbonnier, and P. A. M. Smeets. Food Decision-Making: Effects of
Weight Status and Age, 8 2016.

[184] A. Vargha, L. R. Bergman, and S. Takács. Performing Cluster Analysis Within a
Person-Oriented Context: Some Methods for Evaluating the Quality of Cluster Solu-
tions. Journal for Person-Oriented Research, 2(1-2):78–86, 4 2016.

[185] F. Viégas, M. Wattenberg, J. Hebert, G. Borggaard, A. Cichowlas, J. Feinberg, J. Or-
want, and C. R. Wren. Google+ Ripples: A Native Visualization of Information Flow.
Proceedings of the 22nd international conference on World Wide Web - WWW ’13.

[186] R. Vieira, S. McDonald, V. Araújo-Soares, F. F. Sniehotta, and R. Henderson. Dy-
namic modelling of n-of-1 data: powerful and flexible data analytics applied to indi-
vidualised studies. Health Psychology Review, 11(3):222–234, 7 2017.

[187] R. Villafane, K. A. Hua, D. Tran, and B. Maulik. Knowledge Discovery from Series
of Interval Events. Journal of Intelligent Information Systems 2000 15:1, 15(1):71–89,
2000.

[188] N. M. Villegas, C. Sánchez, J. Dı́az-Cely, and G. Tamura. Characterizing context-aware
recommender systems: A systematic literature review. Knowledge-Based Systems,
140:173–200, 1 2018.

[189] S. Vohra, L. Shamseer, M. Sampson, C. Bukutu, C. H. Schmid, R. Tate, J. Nikles,
D. R. Zucker, R. Kravitz, G. Guyatt, D. G. Altman, and D. Moher. CONSORT
extension for reporting N-of-1 trials (CENT) 2015 Statement. BMJ (Clinical research
ed.), 350:h1738, 5 2015.

[190] K. Vrotsou. Everyday mining: Exploring sequences in event-based data. 2010.

[191] P. Wang and A. F. Smeaton. Using visual lifelogs to automatically characterize every-
day activities. Information Sciences, 230:147–161, 5 2013.

170

[192] P. Wang, L. Sun, A. F. Smeaton, C. Gurrin, and S. Yang. Computer Vision for Lifel-
ogging: Characterizing Everyday Activities Based on Visual Semantics. In Computer
Vision For Assistive Healthcare, pages 250–282. Elsevier Inc., 1 2018.

[193] T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, B. Shneiderman, and S. Murphy.
Aligning temporal data by sentinel events: Discovering patterns in Electronic Health
Records. Conference on Human Factors in Computing Systems - Proceedings, pages
457–466, 2008.

[194] WangJianyong, HanJiawei, and LiChun. Frequent Closed Sequence Mining without
Candidate Maintenance. IEEE Transactions on Knowledge and Data Engineering,
19(8):1042–1056, 8 2007.

[195] K. Wasserman, B. J. Whipp, S. N. Koyal, and W. L. Beaver. Anaerobic threshold and
respiratory gas exchange during exercise. Journal of Applied Physiology, 35(2):236–243,
1973.

[196] H. A. Wenger and G. J. Bell. The Interactions of Intensity, Frequency and Duration of
Exercise Training in Altering Cardiorespiratory Fitness. Sports Medicine, 3(5), 1986.

[197] U. Westermann and R. Jain. Toward a common event model for multimedia applica-
tions. IEEE Multimedia, 14(1):19–29, 1 2007.

[198] G. I. Wolf and M. De Groot. A Conceptual Framework for Personal Science. Frontiers
in Computer Science, 0:21, 6 2020.

[199] K. Wongsuphasawat and D. H. Gotz. Outflow: Visualizing Patient Flow by Symptoms
and Outcome.

[200] C. S. Wood, M. R. Thomas, J. Budd, T. P. Mashamba-Thompson, K. Herbst, D. Pillay,
R. W. Peeling, A. M. Johnson, R. A. McKendry, and M. M. Stevens. Taking connected
mobile-health diagnostics of infectious diseases to the field. Nature, 566(7745), 2 2019.

[201] S. Wright. Path Coefficients and Path Regressions: Alternative or Complementary
Concepts? Technical Report 2, 1960.

[202] S. Y. Wu and Y. L. Chen. Mining nonambiguous temporal patterns for interval-based
events. IEEE Transactions on Knowledge and Data Engineering, 19(6):742–758, 6
2007.

[203] S. Y. Wu and Y. L. Chen. Discovering hybrid temporal patterns from sequences consist-
ing of point- and interval-based events. Data & Knowledge Engineering, 68(11):1309–
1330, 11 2009.

[204] T. Wu, Y. Chen, and J. Han. Re-examination of interestingness measures in pattern
mining: a unified framework. Data Mining and Knowledge Discovery, 21(3):371–397,
11 2010.

171

[205] L. Xie, H. Sundaram, and M. Campbell. Event mining in multimedia streams. Pro-
ceedings of the IEEE, 96(4):623–647, 2008.

[206] Y. F. Xing, Y. H. Xu, M. H. Shi, and Y. X. Lian. The impact of PM2.5 on the human
respiratory system, 2016.

[207] H. Xu, M. Farajtabar, and H. Zha. Learning Granger Causality for Hawkes Processes.
33rd International Conference on Machine Learning, ICML 2016, 4:2576–2588, 2 2016.

[208] H. Xu and H. Zha. A Dirichlet Mixture Model of Hawkes Processes for Event Sequence
Clustering. Advances in Neural Information Processing Systems, 30, 2017.

[209] X. Yan, J. Han, and R. Afshar. CloSpan: Mining: Closed Sequential Patterns in Large
Datasets. Proceedings, pages 166–177, 5 2003.

[210] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-
edge and Data Engineering, 12(3):372–390, 2000.

[211] M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning 2001 42:1, 42(1):31–60, 2001.

[212] D. Zeevi, T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-
Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan, J. Suez, J. A. Mahdi, E. Matot,
G. Malka, N. Kosower, M. Rein, G. Zilberman-Schapira, L. Dohnalová, M. Pevsner-
Fischer, R. Bikovsky, Z. Halpern, E. Elinav, and E. Segal. Personalized Nutrition by
Prediction of Glycemic Responses. Cell, 163(5):1079–1094, 11 2015.

[213] E. Zgraggen, E. Zgraggen, S. M. Drucker, D. Fisher, and R. Deline. (s—qu)eries:
Visual Regular Expressions for Querying and Exploring Event Sequences.

[214] W. Zhang, T. Panum, S. Jha, P. Chalasani, and D. Page. CAUSE: Learning Granger
Causality from Event Sequences using Attribution Methods, 11 2020.

[215] Z. Zhang, D. Gotz, and A. Perer. Article Iterative cohort analysis and exploration.

[216] J. Zhao, N. Cao, Z. Wen, Y. Song, Y.-R. Lin, and C. Collins. #FluxFlow: Visual
Analysis of Anomalous Information Spreading on Social Media. IEEE Transactions
on Visualization and Computer Graphics, 2013.

[217] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao. Negative-GSP: An Efficient Method for Mining
Negative Sequential Patterns.

172

Appendix A

Taste Space Modeling

A.1 Food Preference Space: Taste space

The taste of food items can be very complex. The taste sensory aspect has not been modeled

as robustly as the visual and auditory senses, which have standard models such as the RGB

color space model. In [156], the authors demonstrated how a unified and robust taste space

model is required to create a preferential personal food model. They presented the US4B

taste space, which includes six dimensions: umami, salty, sweet, sour, spicy, and bitter.

However, that work was the initial step and did not provide any actual taste dataset or

concrete approach to build such a dataset. There is currently no available method that

could approximate the US4B values of a set of dishes using available resources. We provide

a novel approach that uses the taste molecules to estimate a dish’s US4B taste space using its

ingredients. FlavorDB [47] is the only existing publicly available extensive data set on food

taste that contains the list of taste molecules associated with each food item and a list of

taste and smell attributes to each molecule. However, we could not derive the US4B values

for dish items directly from flavorDB as there are a few limitations to this data set. This

173

dataset only has the information for ingredients and lacks the information for dish items

and recipes. The dataset does not have any information about the intensity of the taste

for different molecules. As shown in figure A.1, we start by counting the taste molecules

associated with each element of the US4B taste model and create a taste vector for each

ingredient item. Then we use a recipe data set containing a list of ingredient items for each

dish and use the calculated US4B vector for ingredients in the previous step to calculate

a US4B value for each dish based on adding the taste vectors of the ingredients. The

taste values for dishes create the personal food model based on the food items in different

situations. We used this approach to create a taste profile of 60 different dishes. We picked

20 dish recipes for each meal type: breakfast, lunch, dinner. Each meal type has ten dishes

for a heavy meal option and ten for a light meal option. This data is fed to a randomized

Markov-chain event generator, described in the following section, to create a randomized

events log, including food events.

Figure A.1: Taste Space Generation: This figure illustrates our approach to map the food
items to a corresponding US4B vector in the taste space using the taste information associ-
ated with the present molecules in each ingredient.

174

Appendix B

Event Mining System Implementation

We implemented the event pattern language (described in chapter 4) in a web-based event

analysis dashboard, available at https://theeventminer.com. All users are given access to

a public database in the dashboard and should contact the author if they are interested in

using the dashboard for their analysis. In this chapter, we will discuss the user workflows

for the dashboard and describe the implementation details for different components of the

dashboard.

B.1 User Interface and Analysis workflow

The dashboard enables the analyst to explore and enrich any events data set using the event

pattern language. We provide access to different event mining operations via an easy-to-

use and understand user interface and provide a visual programming interface. The user

interface consists of four tabs, each serving a distinct purpose.

1. Data Selection Tab: The analyst needs to provide the scope of the analysis by

175

https://theeventminer.com

Figure B.1: Screenshot of the data selction tab from the EventMining Dashboard. The
analyst can select the data and event streams for the concerned individual.

providing the events and data streams required for the analysis. They also need to

provide the date range for which the analysis will be performed. The dashboard is

designed to analyze one individual’s data at a time; therefore, the analyst must select

one user from the individuals in their data set. This tab is described in figure B.1.

2. Event Visualization Tab: The analyst can explore the selected events in the events

visualization tab. This tab displays the events on a timeline and also on a tree ring

visualization. The tree ring visualization displays event occurrences relative to the

daily circadian cycle and identifies the regularity of events (such as sleep or exercise).

The analysts can interact with these figures and zoom in and out as required. Figure

B.2 shows a screenshot of this tab.

3. Event Creation Tab: This tab allows the analyst to create new events from existing

events, data streams, or patterns. The data segmentation panel allows analysts to

create events from data streams by performing simple range-based data segmentation

176

Figure B.2: Screenshot of the visualization tab from the EventMining Dashboard. This
tab displays the selected events in a timeline and a tree ring visualization and allows the
analyst to explore the event space.

operations (as described in chapter 4). The event combination panel allows analysts

to create new events using operators such as AND and OR operations. The created

events and their formulation is listed in this panel. The event filter panel allows the

analyst to create new event streams from patterns by selecting constituent events that

match a pattern. The event creation tab is shown in figure B.3.

4. Pattern Creation Tab: The analyst can create new patterns from the events in

the database. This tab supports the concurrent and conditional sequential pattern

operators. The patterns are stored in the database and can be visualized as a co-

occurrence matrix as shown in figure B.4.

177

Figure B.3: Screenshot of the event creation tab from the EventMining Dashboard. This
tab allows the analyst to create new events from data streams, existing events, and from
created patterns.

Figure B.4: Screenshot of the pattern creation tab from the EventMining Dashboard.
This tab allows the analysts to create pairwise pattern from event streams selected and
created for the analysis. The patterns are visualized in a co-occurrence matrix.

178

B.2 System Modules

The dashboard is developed primarily using a Flask backend and ReactJS front-end applica-

tion. PostgreSQL was used as the primary database due to its flexibility in handling JSON

fields in a relational schema. The front-end handles all user interaction and visualization

functionalities, while the backend handles event mining operations, data fusion, and web

request handling.

The backend has three major components 1) Flask API endpoints, 2) Event mining core

libraries, and 3) Database layer for data fusion. We will describe components 2 and 3 in

detail.

B.2.1 Data Fusion Module

As mentioned above, we utilize the PostgreSQL database to store the events and data streams

for end-users. The events are typically stored in a single table called “event stream” to create

a singular log of events for a user, while every data stream is stored in a separate time indexed

table. The schema for these tables are provided in a configuration file (metadata.json), as

shown below.

The metadata file has two main fields: 1) schema contains a JSON string representation of

different schema that can be used to create a new table. These represent the commonly used

schema for events and data stream tables. 2) Tables contains a list of tables in the system

and their corresponding schema (described in schema section). When the analyst wants to

import data to a new table, they need to specify the new table name and schema (shown

in fig. B.1) for the table. The data fusion layer utilizes this information to create the table

and adds it to the metadata file. Thus, the analysts can extend the database quickly and

include new data sources without directly interacting with the database.

179

metadata.json

{

"schema":{

"datastream_schema_real": {

"userID": "VARCHAR",

"timestamp": "TIMESTAMPTZ",

"value": "REAL",

"unit": "VARCHAR",

"source": "VARCHAR"

},

"datastream_schema_location": {

"userID": "VARCHAR",

"timestamp": "TIMESTAMPTZ",

"value": "POINT",

"unit": "VARCHAR",

"source": "VARCHAR"

},

"datastream_schema_json": {

"userID": "VARCHAR",

"timestamp": "TIMESTAMPTZ",

"value": "JSON",

"unit": "VARCHAR",

"source": "VARCHAR"

},

"datastream_schema_interval_real":{

"userID": "VARCHAR",

180

"start_time": "TIMESTAMPTZ",

"end_time": "TIMESTAMPTZ",

"timestamp": "TIMESTAMPTZ",

"value": "REAL",

"unit": "VARCHAR",

"source": "VARCHAR"

},

"event_schema": {

"userID": "VARCHAR",

"event_type": "VARCHAR",

"event_name": "VARCHAR",

"start_time": "TIMESTAMPTZ",

"end_time": "TIMESTAMPTZ",

"parameters": "JSON",

"datastreams": "JSON"

},

"simula_schema_resting_hr": {

"userID": "VARCHAR",

"timestamp": "TIMESTAMPTZ",

"value": "REAL",

"error": "REAL",

"unit": "VARCHAR",

"source": "VARCHAR"

}

},

"tables":{

"heartrate": "datastream_schema_real",

181

"power": "datastream_schema_real",

"cadence": "datastream_schema_real",

"weight": "datastream_schema_real",

"distance": "datastream_schema_real",

"speed": "datastream_schema_real",

"altitude": "datastream_schema_real",

"slope": "datastream_schema_real",

"temperature": "datastream_schema_real",

"location":"datastream_schema_location",

"pm25": "datastream_schema_real",

"stress": "datastream_schema_real",

"event_stream": "event_schema",

"lightly_active_minutes": "datastream_schema_real",

"moderately_active_minutes": "datastream_schema_real",

"very_active_minutes": "datastream_schema_real",

"resting_heart_rate": "datastream_schema_json",

"sedentary_minutes": "datastream_schema_real",

"steps": "datastream_schema_real",

"time_in_heart_rate_zones": "datastream_schema_json"

}

}

B.2.2 Core libraries

We have implemented the core event mining operations as python libraries, and these rely on

three Python classes that represent data streams, event streams, and patterns, as discussed in

chapter 4. These classes enable the analyst to perform event and pattern operations without

182

exposing the details of the event language. The Flask backend exposes these operations using

APIs utilized for analysis via the front-end application (shown in the screenshots above). We

will discuss the details of these three classes as they form the backbone of the dashboard.

Abstract Stream Class

An abstract stream class defines the basic temporal structure of both event and data streams.

It describes the interface that different event streams and data streams utilize to interact

with the database and perform operations.

Abstract Stream Class

from abc import ABC, abstractmethod

import pandas as pd

””” Contains the a b s t r a c t c l a s s Stream which i s the s u p e r c l a s s f o r

data streams and event streams ”””

class Stream (ABC) :

def i n i t (s e l f , u s e r i d , re lat ion name , conn , t ime range=None) :

s e l f . u s e r i d = u s e r i d

s e l f . r e l a t i on name = re la t ion name

s e l f . db conn = conn

Should conver t the records from the db to dataframes

s e l f . r e a d o b j = pd . DataFrame ()

183

Should s t o r e t h e s e as dataframes and conver t in the commit method

t h i s o b j e c t shou ld on ly be s e t from a s e t t e r method

s e l f . commit obj = pd . DataFrame ()

Define query in t h i s , s e l e c t w h i l e c r e a t i n g a data stream

and i n s e r t w h i l e committing the changes

s e l f . que ry ob j e c t = {}

def ge t data (s e l f) :

combined data = s e l f . r e a d o b j . append (s e l f . commit obj ,

i g no r e i n de x=True)

return combined data . s o r t v a l u e s (by=[”timestamp”])

@abstractmethod

def s t r (s e l f) :

pass

def s e t commit ob j (s e l f , data , ∗params , ∗∗kwargs) :

i f data i s None or data . shape [0]==0:

return

s e l f . commit obj = data

s e l f . commit obj [’ userID ’] = s e l f . u s e r i d

@abstractmethod

def apply trans form (s e l f , t rans form) :

184

pass

@abstractmethod

def access (s e l f , ∗∗kwargs) :

””” acces s the v a l u e s in the s p e c i f i e d time i n t e r v a l ”””

s t a r t t i m e = kwargs [’ s t a r t t i m e ’]

end time = kwargs [’ end time ’]

s e l f . que ry ob j e c t [’ t ab l e ’] = s e l f . r e l a t i on name

s e l f . que ry ob j e c t [’ f i e l d ’] = ’ timestamp ’

s e l f . que ry ob j e c t [’ operator ’] = ’ between ’

s e l f . que ry ob j e c t [’ va lue ’] = ” ’{} ’ AND ’{} ’ ” . format (

s t a r t t i m e . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”) ,

end time . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”))

s e l f . que ry ob j e c t [’ t i m e f i e l d ’] = kwargs [’ t i m e f i e l d ’]

s e l f . que ry ob j e c t [’ userID ’] = s e l f . u s e r i d

cur = s e l f . db conn . s e l e c t (s e l f . que ry ob j e c t)

r e s u l t s = cur . f e t c h a l l ()

cur . c l o s e ()

t r a n s f o r m e d r e s u l t s = l i s t (zip (∗ r e s u l t s))

del r e s u l t s

i f len (t r a n s f o r m e d r e s u l t s) == 0 :

s e l f . r e a d o b j = pd . DataFrame ({

185

’ userID ’ : [] ,

’ timestamp ’ : [] ,

’ va lue ’ : [] ,

’ un i t ’ : [] ,

’ source ’ : []

})

return

Schema i s time , va lue , unit , source add s t a r t t i m e

and end time f o r i n t e r v a l streams

i f len (t r a n s f o r m e d r e s u l t s) == 5 :

temp res = {

’ userID ’ : t r a n s f o r m e d r e s u l t s [0] ,

’ timestamp ’ : t r a n s f o r m e d r e s u l t s [1] ,

’ va lue ’ : t r a n s f o r m e d r e s u l t s [2] ,

’ un i t ’ : t r a n s f o r m e d r e s u l t s [3] ,

’ source ’ : t r a n s f o r m e d r e s u l t s [4]

}

else :

temp res = {

’ userID ’ : t r a n s f o r m e d r e s u l t s [0] ,

’ timestamp ’ : t r a n s f o r m e d r e s u l t s [3] ,

’ va lue ’ : t r a n s f o r m e d r e s u l t s [4] ,

’ un i t ’ : t r a n s f o r m e d r e s u l t s [5] ,

’ source ’ : t r a n s f o r m e d r e s u l t s [6]

}

s e l f . r e a d o b j = pd . DataFrame (temp res)

186

def commit (s e l f) :

””” Writes the v a l u e s in the i n t e r n a l s t o r a g e to the db ”””

s e l f . que ry ob j e c t = { ’ t ab l e ’ : s e l f . r e l a t ion name ,

’ num rows ’ : s e l f . commit obj . shape [0] }

for f in s e l f . commit obj . columns :

s e l f . que ry ob j e c t [f] = s e l f . commit obj [f]

try :

s e l f . db conn . i n s e r t (s e l f . que ry ob j e c t)

except Exception as e :

print (” Error whi l e commiting”)

print (e)

raise e

s e l f . que ry ob j e c t = {}

s e l f . commit obj = None

Data Stream Class

The data stream class extends the abstract stream class to incorporate datastream specific

properties. The apply transform method allows the analyst to define custom operations

to be performed (such as segmentation, SAX, etc.) on the data stream that can be used to

recognize new events.

187

Data Stream Class

import pandas as pd

import numpy as np

from datet ime import datet ime

import os

import j s on

from . ab s t rac t s t r eam import Stream

class DataStream (Stream) :

def i n i t (s e l f , u s e r i d , re lat ion name , conn , t ime range=None) :

super () . i n i t (u s e r i d , re lat ion name , conn , t ime range)

def s t r (s e l f) :

return ” {} :{} \nAccessed va lue s : \n{} \nValues to commit : \n{}”

. format (”Data stream ” , s e l f . r e l a t ion name , s e l f . r e a d o b j . head () ,

s e l f . commit obj . head ())

def access (s e l f , ∗∗kwargs) :

””” acces s the v a l u e s in the s p e c i f i e d time i n t e r v a l

arguments are s t a r t t i m e , end time ,

date t ime s t r i n g s in the format %Y−%m−%d %H:%M:%S %z ,

f o r eg 2019−07−08 11 :08 :43 −07”””

kwargs [’ t i m e f i e l d ’] = ’ timestamp ’

super () . access (∗∗ kwargs)

188

def apply trans form (s e l f , transform , ∗params , ∗∗kwargs) :

””” a p p l i e s the transform f u n c t i o n on the read data ;

parameters : re la t ion name f o r output data

(f u t u r e) type o f output stream (event / data stream) ”””

i f s e l f . r e a d o b j . shape [0] != 0 :

data = s e l f . r e a d o b j . copy (deep=True)

else :

data = s e l f . commit obj . copy (deep=True)

a s s e r t (data i s not None) and (data . shape [0] > 0) ,

”Cannot trans form an empty data stream ”

data out = trans form (data , ∗params , ∗∗kwargs)

i f kwargs . get (’ output ’ , ’ data ’) == ’ data ’ :

new stream = DataStream (s e l f . u s e r i d ,

kwargs . get (’ r e l a t i on name ’ , ’ t e s t d s ’) ,

s e l f . db conn)

else :

new stream = EventStream (s e l f . u s e r i d , s e l f . db conn ,

kwargs . get (” event type ” ,

” temp event {}” . format (s e l f . r e l a t i on name)) ,

kwargs . get (” event name” ,

” temp event {}” . format (s e l f . r e l a t i on name)) ,

189

r e la t i on name=kwargs . get (’ r e l a t i on name ’ ,

’ event stream ’))

new stream . se t commit ob j (data out ,

set name=kwargs . get (’ set name ’ , Fa l se) ,

debug=kwargs . get (’ debug ’ , Fa l se))

return new stream

Event Stream Class

The event stream class also extends the abstract stream class; however, the event stream

class has many special methods that are not required for the abstract and the datastream

class. These include metadata generation methods such as get events and get eventstream.

The class also provides a method for filtering the events by name and adding new events to

an existing event stream object.

Event Stream Class

import pandas as pd

import numpy as np

from datet ime import datet ime

import os

import j s on

from . ab s t rac t s t r eam import Stream

class EventStream (Stream) :

190

def i n i t (s e l f , u s e r i d , conn , event type=None , event name=None ,

t ime range=None , r e la t i on name=” event stream ”) :

super () . i n i t (u s e r i d , re lat ion name , conn , t ime range)

s e l f . even t type = event type

s e l f . event name = event name

def s t r (s e l f) :

return ” {} :{} , {} \nAccessed va lues : \n{} \nValues to commit : \n{}” .

format (”Event stream ” , s e l f . event type , s e l f . event name ,

s e l f . r e a d o b j . head () , s e l f . commit obj . head ())

def access (s e l f , ∗∗kwargs) :

””” acces s the v a l u e s in the s p e c i f i e d time i n t e r v a l

arguments are s t a r t t i m e , end time , date t ime o b j e c t s in the format

%Y−%m−%d %H:%M:%S %z , f o r eg 2019−07−08 11 :08 :43 −07”””

s t a r t t i m e = kwargs [’ s t a r t t i m e ’]

end time = kwargs [’ end time ’]

s e l f . que ry ob j e c t [’ t ab l e ’] = s e l f . r e l a t i on name

s e l f . que ry ob j e c t [’ f i e l d ’] = ’ s t a r t t i m e ’

s e l f . que ry ob j e c t [’ operator ’] = ’ between ’

s e l f . que ry ob j e c t [’ va lue ’] = ” ’{} ’ AND ’{} ’ {} {}” .

format (s t a r t t i m e . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”) ,

end time . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”) ,

”AND event type = ’{} ’ ” . format (s e l f . even t type)

i f s e l f . even t type i s not None else ”” ,

191

”AND event name = ’{} ’ ” . format (s e l f . event name)

i f s e l f . event name i s not None else ””)

s e l f . que ry ob j e c t [’ t i m e f i e l d ’] = ’ s t a r t t i m e ’

s e l f . que ry ob j e c t [” userID ”] = s e l f . u s e r i d

cur = s e l f . db conn . s e l e c t (s e l f . que ry ob j e c t)

r e s u l t s = cur . f e t c h a l l ()

cur . c l o s e ()

t r a n s f o r m e d r e s u l t s = l i s t (zip (∗ r e s u l t s))

del r e s u l t s

i f len (t r a n s f o r m e d r e s u l t s) == 0 :

s e l f . r e a d o b j = pd . DataFrame ({

’ userID ’ : [] ,

’ event type ’ : [] ,

’ event name ’ : [] ,

’ s t a r t t i m e ’ : [] ,

’ end time ’ : [] ,

’ parameters ’ : [] ,

’ datastreams ’ : []

})

return

temp res = {

’ userID ’ : t r a n s f o r m e d r e s u l t s [0] ,

’ event type ’ : t r a n s f o r m e d r e s u l t s [1] ,

’ event name ’ : t r a n s f o r m e d r e s u l t s [2] ,

192

’ s t a r t t i m e ’ : t r a n s f o r m e d r e s u l t s [3] ,

’ end time ’ : t r a n s f o r m e d r e s u l t s [4] ,

’ parameters ’ : t r a n s f o r m e d r e s u l t s [5] ,

’ datastreams ’ : t r a n s f o r m e d r e s u l t s [6]

}

s e l f . r e a d o b j = pd . DataFrame (temp res)

def s e t commit ob j (s e l f , data , set name = False , debug=False) :

i f data i s None or data . shape [0] == 0 :

return

data [’ userID ’] = s e l f . u s e r i d

i f debug :

print (data)

print (”Event type : {}” . format (s e l f . even t type))

print (”Event name : {}” . format (s e l f . event name))

s e l f . commit obj = data

i f s e l f . even t type i s not None :

s e l f . commit obj [’ event type ’] = s e l f . even t type

i f s e l f . event name i s not None and set name :

s e l f . commit obj [’ event name ’] = s e l f . event name

def add new eventstream (s e l f , estream) :

”””Add another events tream ’ s data to the curren t events tream ”””

a s s e r t type (estream) == type (s e l f) ,

” Object o f type EventStream requ i r ed in s t ead {} passed ”

193

. format (type (estream))

i f s e l f . r e a d o b j . shape [0] == 0 :

s e l f . r e a d o b j = estream . r e a d o b j

else :

s e l f . r e a d o b j = s e l f . r e a d o b j . append (

estream . read ob j , i g no r e i n de x=True)

i f s e l f . commit obj . shape [0] == 0 :

s e l f . commit obj = estream . commit obj

else :

s e l f . commit obj = s e l f . commit obj . append (

estream . commit obj , i gn o r e i nde x=True)

i f s e l f . even t type i s not None :

s e l f . commit obj [’ event type ’] = s e l f . even t type

i f s e l f . event name i s not None :

s e l f . commit obj [’ event name ’] = s e l f . event name

return

def apply trans form (s e l f , transform , ∗params , ∗∗kwargs) :

””” a p p l i e s the transform f u n c t i o n on the read data ;

parameters : re la t ion name f o r output data

(f u t u r e) type o f output stream (event / data stream) ”””

p r i n t (” In event a p p l y t r a n s f o r m ”)

194

i f s e l f . r e a d o b j . shape [0] != 0 :

data = s e l f . r e a d o b j . copy (deep=True)

else :

data = s e l f . commit obj . copy (deep=True)

data out = trans form (data , ∗params , ∗∗kwargs)

i f kwargs . get (’ output ’ , ’ event ’) == ’ data ’ :

new stream = DataStream (s e l f . u s e r i d ,

kwargs . get (’ r e l a t i on name ’ , ’ t e s t d s ’) ,

s e l f . db conn)

else :

new stream = EventStream (s e l f . u s e r i d ,

s e l f . db conn ,

event type=kwargs . get (” event type ” ,

” temp event {}” . format (s e l f . even t type)) ,

event name=kwargs . get (” event name” , None) ,

r e l a t i on name=kwargs . get (’ r e l a t i on name ’ ,

’ event stream ’))

new stream . se t commit ob j (data out ,

debug=kwargs . get (’ debug ’ , Fa l se))

return new stream

def commit (s e l f) :

195

s e l f . commit obj [’ parameters ’] =

s e l f . commit obj [’ parameters ’] . apply (

lambda x : j son . dumps(x))

s e l f . commit obj [’ datastreams ’] =

s e l f . commit obj [’ datastreams ’] . apply (

lambda x : j son . dumps(x))

s e l f . que ry ob j e c t = { ’ t ab l e ’ : s e l f . r e l a t ion name ,

’ num rows ’ : s e l f . commit obj . shape [0] }

for f in s e l f . commit obj . columns :

s e l f . que ry ob j e c t [f] = s e l f . commit obj [f]

try :

s e l f . db conn . i n s e r t (s e l f . que ry ob j e c t)

except Exception as e :

print (” Error whi l e commiting”)

print (e)

raise e

s e l f . que ry ob j e c t = {}

s e l f . commit obj = None

def f i l terByName (s e l f , names) :

i f s e l f . r e a d o b j . shape [0] > 0 :

196

s e l f . r e a d o b j =

s e l f . r e a d o b j . l o c [s e l f . r e a d o b j [’ event name ’] . i s i n (names)]

i f s e l f . commit obj . shape [0] > 0 :

s e l f . commit obj =

s e l f . commit obj . l o c [s e l f . commit obj [’ event name ’] . i s i n (names)]

return

def ge t data (s e l f , debug=False) :

i f debug :

print (” in ge t data ”)

print (s e l f . r e a d o b j)

print (s e l f . commit obj)

combined data = s e l f . r e a d o b j . append (

s e l f . commit obj , i gn o r e i nde x=True)

i f debug :

print (combined data)

return combined data . s o r t v a l u e s (by=[” s t a r t t i m e ”])

def g e t e v e n t s (s e l f) :

data = s e l f . g e t data ()

events = data [’ event name ’] . unique ()

return events . t o l i s t ()

def get events t ream (s e l f) :

data = s e l f . g e t data ()

return data [’ event type ’] . i l o c [0]

197

Patterns Class

The patterns class provides the functionality of defining event patterns and computing them

from the event stream class. We utilize a SQLite database to store temporary pattern

results. The patterns class is implemented separately from pattern matching algorithms as

the pattern data structure is independent of the pattern matching algorithm used. The

algorithm to be used is decided based on parameter values during run-time.

Patterns Class

import j s on

import os

from datet ime import datet ime

import sys

from path l i b import Path

p r o j l o c = str (Path (f i l e) . parent . parent . r e s o l v e ())

sys . path . append (p r o j l o c)

from pattern . u t i l s import ope ra to r s

import s q l i t e s c r i p t s . add df as sq

import s q l i t e 3 as sq3

UNARY OP = set ([’ not ’])

BINARY OP = set ([’ t empora l seq ’ , ’ s e q u e n t i a l ’ , ’ concurrent ’])

Mapping o f opera tor name to the implementation ,

#t h i s i s used in the Pattern . r u n p a t t e r n method

198

operator mapping = {

’ t empora l seq ’ : ope ra to r s . t empora l s equen t i a l ope ra to r ,

’ concurrent ’ : ope ra to r s . c o o c cu r enc e ope ra to r

}

class Pattern (object) :

”””Runs a p a t t e r n t h a t matches across 2 event streams

Assumes t h a t the event streams are in s q l i t e db ”””

def i n i t (s e l f , name , db loc , ∗params ,

db name=’ s e s s i o n d a t a . db ’ , ∗∗kwargs) :

””” opera tor = d e l a y or f o l l o w s or co−occur

params = [eventstream1 , (events tream2)]

time window = [t1 , t2] ”””

s e l f . name = name

s e l f . d b l o c = db loc

s e l f . db name = db name

s e l f . ope ra to r = kwargs . get (” operator ” , None)

i f (s e l f . ope ra to r i s not None) and

(s e l f . ope ra to r not in set (l i s t (UNARY OP) + l i s t (BINARY OP))) :

raise ValueError (” Operator should be one o f {}” .

format (UNARY OP + BINARY OP))

s e l f . e s 1 = kwargs . get (” eventstream 1 ” , None)#params [0]

199

s e l f . es1 name = s e l f . e s 1 . ge t events t ream ()

i f s e l f . e s 1 i s not None else None

s e l f . e s 2 = kwargs . get (” eventstream 2 ” , None)

s e l f . es2 name = s e l f . e s 1 . ge t events t ream ()

i f s e l f . e s 2 i s not None else None

s e l f . time window = kwargs . get (” time window” , None)

s e l f . r e s u l t s = None

def run patte rn (s e l f) :

”””

Runs the p a t t e r n s p e c i f i e d by the opera tor a long the

s p e c i f i e d events t reams

”””

print (”Running pattern {}” . format (s e l f . name))

i f s e l f . ope ra to r i s None :

print (” Unspec i f i ed operator f o r the pattern ”)

return None

patte rn op = operator mapping [s e l f . ope ra to r]

i f s e l f . ope ra to r in BINARY OP:

s e l f . r e s u l t s = patte rn op (s e l f . e s1 , s e l f . e s2 ,

time window=s e l f . time window)

e l i f s e l f . ope ra to r in UNARY OP:

200

s e l f . r e s u l t s = patte rn op (s e l f . e s1 ,

time window=s e l f . time window)

r e s u l t s would be a t a b l e o f event parameters

We would s t o r e t h i s in a s q l i t e database

sq . add to db (s e l f . name , s e l f . r e s u l t s ,

db loc=s e l f . db loc , dbname=s e l f . db name)

def s e l e c t (s e l f , ∗params) :

”””

S e l e c t event stream (s) from the r e s u l t s o f a p a t t e r n ;

Returns a d i c t i o n a r y o f e v e n t s data ;

key i s the event name passed to the f u n c t i o n

”””

i f s e l f . r e s u l t s i s None :

s e l f . r e s u l t s = sq . get f rom db (s e l f . name , s e l f . db loc ,

dbname=s e l f . db name)

i f (s e l f . r e s u l t s i s None) or (s e l f . r e s u l t s . shape [0] == 0) :

return None

columns = s e l f . r e s u l t s . columns

r e t u r n s e t = {}

for e in params :

try :

a s s e r t ”{} s t a r t t i m e ” . format (e) in columns and

201

”{} end t ime ” . format (e) in columns and

”{} event name ” . format (e) in columns and \

”{} event type ” . format (e) in columns and

”{} parameters ” . format (e) in columns and

”{} datastreams ” . format (e) in columns

except Asse r t i onErro r as e :

print (”{} not in pattern ” . format (e))

continue

temp df = s e l f . r e s u l t s [[’ userID ’ , ”{} event type ” . format (e) ,

”{} event name ” . format (e) , ”{} s t a r t t i m e ” . format (e) ,

”{} end t ime ” . format (e) , ”{} parameters ” . format (e) ,

”{} datastreams ” . format (e)]]

temp df . columns = [” userID ” , ” event type ” , ” event name” ,

” s t a r t t i m e ” , ” end time ” , ” parameters ” , ” datastreams ”]

r e t u r n s e t [e] = temp df

return r e t u r n s e t

def cooccur r ence s (s e l f , event1 , event2) :

”””

Returns a cooccurrence matrix in long form i e

(Event1 , Event2 , count)

”””

i f s e l f . r e s u l t s i s None :

try :

s e l f . r e s u l t s = sq . get f rom db (s e l f . name , s e l f . d b l o c)

202

except Exception as e :

print (” Error whi l e read ing pattern {}” . format (s e l f . name))

raise e

i f s e l f . r e s u l t s . shape [0] == 0 :

return None

g roup co l s = [”{} event name ” . format (event1) ,

”{} event name ” . format (event2)]

try :

a s s e r t a l l ([f in s e l f . r e s u l t s . columns for f in g roup co l s])

except Asse r t i onErro r :

print (”Events not found : {} , {}” . format (event1 , event2))

print (s e l f . r e s u l t s . columns)

return None

aggregated data = s e l f . r e s u l t s . groupby (g roup co l s) . s i z e ()

aggregated data = aggregated data . r e s e t i n d e x ()

aggregated data . columns = group co l s + [” count ”]

return aggregated data

203

We have implemented two pattern operators 1) Concurrent and 2) Conditional Sequential.

These operations are implemented as in-memory SQLite join queries.

Pattern Operations

import pandas as pd

import numpy as np

from datet ime import datetime , t imede l ta

import s q l i t e 3 as sq3

from s q l i t e 3 import I n t e r f a c e E r r o r

import os

import sys

import j s on

def t e m p o r a l s e q u e n t i a l o p e r a t o r (eventstream1 , eventstream2 ,

time window=None) :

””” App l i e s temporal sequence opera tor on two event streams ”””

es1 name = eventstream1 . get events t ream ()

es2 name = eventstream2 . get events t ream ()

es1 = eventstream1 . ge t data () . s o r t v a l u e s (by=’ s t a r t t i m e ’)

es2 = eventstream2 . ge t data () . s o r t v a l u e s (by=’ s t a r t t i m e ’)

i f time window i s None :

print (”No time window provided ”)

return None

es1 [’ i n t e r v a l s t a r t ’] = es1 [’ s t a r t t i m e ’] + \

204

t imede l ta (hours=f loat (time window [0]))

es1 [’ i n t e r v a l e n d ’] = es1 [’ end time ’] + \

t imede l ta (hours=f loat (time window [1]))

conver t j son to j son s t r i n g f o r s q l i t e

es1 [’ parameters ’] = es1 [’ parameters ’] . apply (lambda x : j son . dumps(x))

es2 [’ parameters ’] = es2 [’ parameters ’] . apply (lambda x : j son . dumps(x))

es1 [’ datastreams ’] = es1 [’ datastreams ’] . apply (lambda x : j son . dumps(x))

es2 [’ datastreams ’] = es2 [’ datastreams ’] . apply (lambda x : j son . dumps(x))

conver t date t ime to date t ime s t r i n g f o r s q l i t e

for f in [’ s t a r t t i m e ’ , ’ end time ’ , ’ timestamp ’ ,

’ i n t e r v a l s t a r t ’ , ’ i n t e r v a l e n d ’] :

i f f in es1 . columns :

es1 [f] = es1 [f] . apply (lambda x :

x . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”))

i f f in es2 . columns :

es2 [f] = es2 [f] . apply (lambda x :

x . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”))

conver t the d f s to in−memory s q l i t e t a b l e s ,

j o i n the t a b l e s , then read as d f

conn = sq3 . connect (’ : memory : ’)

#w r i t e the t a b l e s

try :

e s1 . t o s q l (es1 name , conn , index=False)

es2 . t o s q l (es2 name , conn , index=False)

except I n t e r f a c e E r r o r as e :

205

print (”Eventstream 1”)

print (es1 . head ())

print (es1 . dtypes)

print (”Eventstream 2”)

print (es2 . head ())

print (es2 . dtypes)

raise e

qry = ’ ’ ’

s e l e c t

{ es1 } . userID ,

{ es1 } . e v e n t t y p e { es1} e v e n t t y p e ,

{ es1 } . event name { es1} event name ,

{ es1 } . s t a r t t i m e { es1} s t a r t t i m e ,

{ es1 } . end t ime { es1} end t ime ,

{ es1 } . parameters { es1} parameters ,

{ es1 } . datas treams { es1} datastreams ,

{ es2 } . e v e n t t y p e { es2} e v e n t t y p e ,

{ es2 } . event name { es2} event name ,

{ es2 } . s t a r t t i m e { es2} s t a r t t i m e ,

{ es2 } . end t ime { es2} end t ime ,

{ es2 } . parameters { es2} parameters ,

{ es2 } . datas treams { es2} datas t reams

from

206

{ es1} j o i n { es2} on

{ es2 } . s t a r t t i m e between { es1 } . i n t e r v a l s t a r t

and { es1 } . i n t e r v a l e n d

’ ’ ’ . format (es1=es1 name , es2=es2 name)

r e s u l t d f = pd . r e a d s q l q u e r y (qry , conn)

conn . c l o s e ()

for f in r e s u l t d f . columns :

i f f . endswith (’ s t a r t t i m e ’) or f . endswith (” end time ”) or

f . endswith (” timestamp”) :

r e s u l t d f [f] = r e s u l t d f [f] . apply (lambda x :

datet ime . s t rpt ime (x , ”%Y−%m−%d %H:%M:%S %z”))

e l i f f . endswith (” parameters ”) or f . endswith (” datastreams ”) :

r e s u l t d f [f] = r e s u l t d f [f] . apply (lambda x : j son . l oads (x))

return r e s u l t d f

def co oc cu r enc e ope ra to r (eventstream1 , eventstream2 , ∗∗kwargs) :

””” App l i e s concurrency opera tor on two event streams ”””

es1 name = eventstream1 . get events t ream ()

es2 name = eventstream2 . get events t ream ()

es1 = eventstream1 . ge t data () . s o r t v a l u e s (by=’ s t a r t t i m e ’)

es2 = eventstream2 . ge t data () . s o r t v a l u e s (by=’ s t a r t t i m e ’)

conver t j son to s t r i n g f o r s q l i t e

207

es1 [’ parameters ’] = es1 [’ parameters ’] . apply (lambda x : j son . dumps(x))

es2 [’ parameters ’] = es2 [’ parameters ’] . apply (lambda x : j son . dumps(x))

es1 [’ datastreams ’] = es1 [’ datastreams ’] . apply (lambda x : j son . dumps(x))

es2 [’ datastreams ’] = es2 [’ datastreams ’] . apply (lambda x : j son . dumps(x))

conver t date t ime to s t r i n g f o r s q l i t e

for f in [’ s t a r t t i m e ’ , ’ end time ’ , ’ timestamp ’ ,

’ i n t e r v a l s t a r t ’ , ’ i n t e r v a l e n d ’] :

i f f in es1 . columns :

es1 [f] = es1 [f] . apply (

lambda x : x . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”))

i f f in es2 . columns :

es2 [f] = es2 [f] . apply (

lambda x : x . s t r f t i m e (”%Y−%m−%d %H:%M:%S %z”))

conver t the d f s to in−memory s q l i t e t a b l e s ,

j o i n the t a b l e s , then read as d f

conn = sq3 . connect (’ : memory : ’)

#w r i t e the t a b l e s

es1 . t o s q l (es1 name , conn , index=False)

es2 . t o s q l (es2 name , conn , index=False)

This query runs the opera tor us ing an in−memory s q l i t e t a b l e

qry = ’ ’ ’

s e l e c t

{ es1 } . userID ,

{ es1 } . e v e n t t y p e { es1} e v e n t t y p e ,

{ es1 } . event name { es1} event name ,

{ es1 } . s t a r t t i m e { es1} s t a r t t i m e ,

208

{ es1 } . end t ime { es1} end t ime ,

{ es1 } . parameters { es1} parameters ,

{ es1 } . datas treams { es1} datastreams ,

{ es2 } . e v e n t t y p e { es2} e v e n t t y p e ,

{ es2 } . event name { es2} event name ,

{ es2 } . s t a r t t i m e { es2} s t a r t t i m e ,

{ es2 } . end t ime { es2} end t ime ,

{ es2 } . parameters { es2} parameters ,

{ es2 } . datas treams { es2} datas t reams

from

{ es1} j o i n { es2} on

{ es2 } . s t a r t t i m e between { es1 } . s t a r t t i m e

and { es1 } . end t ime or

{ es1 } . s t a r t t i m e between { es2 } . s t a r t t i m e

and { es2 } . end t ime

’ ’ ’ . format (es1=es1 name , es2=es2 name)

r e s u l t d f = pd . r e a d s q l q u e r y (qry , conn)

conn . c l o s e ()

for f in r e s u l t d f . columns :

i f f . endswith (’ s t a r t t i m e ’) or f . endswith (” end time ”) or

f . endswith (” timestamp”) :

r e s u l t d f [f] = r e s u l t d f [f] . apply (

lambda x : datet ime . s t rpt ime (x , ”%Y−%m−%d %H:%M:%S %z”))

e l i f f . endswith (” parameters ”) or f . endswith (” datastreams ”) :

209

r e s u l t d f [f] = r e s u l t d f [f] . apply (lambda x : j son . l oads (x))

return r e s u l t d f

210

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Single subject modeling
	Personal Data Collection
	N-of-1 studies and Personal Science

	Contributions
	Thesis outline

	Understanding individuals: Longitudinal modeling paradigms
	Longitudinal modeling paradigms
	Variable-centered analysis
	Person-centered analysis
	Person-specific analysis
	Equivalence of approaches

	N-of-1 modeling
	Personal Longitudinal data collection
	Complex Events Processing
	Design requirements for N-of-1 event mining framework
	Data fusion
	Knowledge integration
	Pattern discovery and spurious pattern filtering
	Interpretability: Causally significant patterns from observational data
	Reusable individual models

	Literature Review
	Temporal Knowledge Structures
	Events
	Temporal Patterns

	Event Sequence Modeling and Reasoning
	Event Pattern Mining
	Situation Calculus
	Point process event sequence models

	Event Analysis Tasks
	Summarization
	Prediction
	Anomaly detection
	Causality Analysis

	Event Analysis applications
	Health Applications
	Social Media
	E-commerce

	Event Mining: Concepts and System
	Concepts and definitions
	Events and Event streams
	Event operators
	Pattern
	Groups and Aggregations

	Event Mining System: Functional requirements
	Data Fusion
	Event Creation
	Pattern Creation

	System Architecture

	Knowledge Integration and Hypothesis testing
	Events in a cybernetic system
	Causal relationships between events
	Event patterns as causal links between events

	Hypothesis Specification
	Capturing knowledge as DAG
	Causal hypothesis

	Hypothesis testing
	do-operator
	Unit Matching and testing

	Use cases

	Data-driven temporal event pattern discovery: Hypothesis discovery
	Temporal Pattern discovery
	Multimodal Event clustering
	Event Episode
	Event and Pattern model

	Pattern Discovery Algorithms
	Pairwise Event Pattern Discovery
	Tree based episode indexing
	Frequent closed SISP extraction

	Analysis process
	Simulated data experiments
	Data generation
	Results and Discussion

	Personal Models: Exploration and Examples in Personal Health
	Personalized Health Models
	Case Study I: Continuous Health Interface Event Retrieval
	Knowledge driven event extraction
	Methodology
	Dataset
	Interface Events
	Results

	Case Study II: Personalized models for understanding sleep behavior
	Causal Rule-based modelling: Event Mining
	Multi-Item Health Recommendations
	Methodology
	Data Set
	Causal Rules and Effects from N-of-1 Experiments
	Context Matching and Sleep Predictions

	Case Study III: Optimizing training for endurance activity performance
	Dataset
	Experiment
	Hypothesis
	Results and Conclusion

	Case Study IV: Context dependent taste preference modeling
	Food Event Model
	The Causal Aspect
	Experimental Design
	Results

	Conclusion
	Bibliography
	Appendix Taste Space Modeling
	Food Preference Space: Taste space

	Appendix Event Mining System Implementation
	User Interface and Analysis workflow
	System Modules
	Data Fusion Module
	Core libraries

