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ABSTRACT OF THE DISSERTATION

Equilibration of Edge States in the Quantum Hall State at Filling Fraction ν = 5/2

by

Hamed Asasi

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2021
Professor Michael C. Mulligan, Chairperson

Among the most interesting approaches in building fault–tolerant quantum computation

is utilizing non–Abelian topological phases of matter. These phases of matter are capable

of storing information that is less susceptible to loss due to the interactions between the

system and its environment. Furthermore, their non–Abelian characteristics allows for

reliable performance of logical operations on the stored information. One of the leading

physical systems that can realize such non–Abelian topological phases is the quantum Hall

system at filling fraction 5/2. Since the discovery of this state, the nature of the ground state

of this system has been the subject of debate. An important development was made recently

when the thermal Hall conductance of this state was measured to be K = 2.5π2k2
BT/3h

[M. Banerjee et al., Nature 559, 205 (2018)]. Taken at face value, this result points to the

PH–Pfaffian state as the true ground state of the quantum Hall system at filling fraction

ν = 5/2. It is the consequence of the assumption that all the modes running along the edge

of this system are well–equilibrated with each other. However, as has been pointed out by

other authors, this assumption may not be completely justified. In particular, the measured
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thermal Hall conductance could also be consistent with the anti–Pfaffian state under some

experimental conditions. In this thesis, we study those conditions in detail.

To achieve this, we propose new fixed point theories that describe the low–temperature

physics of the anti–Pfaffian state. We demonstrate that these proposed theories could be

consistent with the parameters describing the experimental conditions. For each of these

fixed points, we identify the effective low–temperature edge modes and study the effect of

strong short–range Coulomb interaction and an approximate spin symmetry on the inter-

actions between them.

We derive the kinetic equations that describe the hydrodynamic transport of charge

and heat in a general quantum Hall state. This is the expansion of the previous studies and

includes the description of transport of strongly coupled edge modes. We use these kinetic

equations to describe the hydrodynamic transport of heat and charge in our proposed fixed

point theories. We estimate the values of physical parameters in our theory based on the

previous experimental studies. This enables us to make meaningful comparisons between

our theoretical predictions and the experimental measurements of thermal conductance. We

show that there exists an experimentally realistic range of parameters that the anti–Pfaffian

state is consistent with the thermal Hall conductance K = 2.5π2k2
BT/3h. We identify these

ranges of parameters and based upon them, make predictions on the electrical and thermal

Hall conductance of the anti–Pfaffian state for a range of temperatures.
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Chapter 1

Introduction

Electrons confined to two spatial dimensions, cooled down to low enough temper-

atures and subject to a strong transverse magnetic exhibit some of the most interesting and

diverse phenomena that has been observed in a condensed matter system. Known as the

quantum Hall effect, this phenomena was discovered first in 1980 by von Klitzing, Dorda and

Pepper [1], by measuring the electrical Hall resistance of high-purity MOSFET(metal-oxide-

semiconductor field-effect transistor) samples. They discovered that the Hall resistance in

these samples shows plateaus as a function of the magnetic field, such that the Hall con-

ductance is quantized to integer multiple of e2/h with a high precision. This phenomena

is know as the integer quantum Hall effect (IQHE). While the results of these experiments

were explained using the free-electron picture, the more illusive phenomena of fractional

quantum Hall (FQHE), discovered in 1982 by Tsui, Stormer and Gossard [2], required a

much more elaborate theory. In such a theory, the electron-electron interactions should

be included as a necessary ingredient for a successful explanation of this phenomena. The
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theoretical studies that followed the discovery of FQHE revealed the prospect for a vari-

ety of theoretical approaches that could be employed to explain the fractional Hall effect.

Gauge invariance was used to explain the quantized conductance [3, 4]; the role of topology

and topological field theories was identified in explaining the observed physics [5–7]; and it

was shown that the quasi-particles of these theories exhibit fractional charge and statistics

[8–10].

The first Hall plateau at a non–integral filling fraction was discovered at filling

fraction ν = 1/3 [2]. Soon, the underlying physics were explained in a pivotal work by

Laughlin [8]. More experimental studies revealed a zoo of additional Hall plateaus at frac-

tional filling fraction [11, 12]. These filling fractions shared the property that all have odd

denominators. The physics of these states were explained using the extensions of Laughlin’s

idea which include the hierarchical scheme of D. Haldane and B. Halperin [9, 10] and the

J. Jain’s concept of composite fermions [13–15].

However, Willet et al. discovered a Hall plateau at an even-denominator filling

fraction ν = 5/2 [16]. The first explanation for this state, due to Haldane and Rezayi [17],

included the role of interaction between electrons with different spins. This contrasts with

the odd-denominator hierarchical states which are spin-polarized such that the different

spins were living in different Landau levels and their interaction could be ignored. Later,

more candidates were suggested for the Hall plateau at filling fraction ν = 5/2. Among

them, the Moore-Read Pfaffian state is of particular interest [18, 19]. In contrast to the

earlier quantum Hall states, this state has non–Abelian topological order. Over the years,

several other candidates for the Hall plateau at ν = 5/2 has been suggested [20–24]. How-
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ever, despite many theoretical, numerical and experimental effort, the nature of the ground

state of this system is still debated.

Numerical studies point toward either the Moore-Read Pfaffian state [18, 25] or

its particle-hole conjugate, the anti-Pfaffian state [20, 21], as the true ground state of the

system [17, 26–29]. Both of these states host quasiparticles with non-Abelian statistics.

On the other hand, quantum point contact tunneling experiments [30–34] support either

the anti-Pfaffian state, the SU(2)2 state, or the Abelian 331 or 113 states. Observation of

upstream neutral modes [35, 36] only hints at the realization of a non-Abelian state. In

light of these conflicting results, the recent measurement of the thermal Hall conductance

in the Hall plateau at ν = 5/2 by Banerjee et al. [37] appears highly valuable. Despite this,

their result does not completely resolve the existing disagreement.

As first pointed out by Kane and Fisher [38], the thermal Hall conductance K

provides a sensitive probe of the topological order of a fractional quantum Hall (FQH) state.

In the long wavelength limit, the thermal Hall conductance is predicted to be K = c−κ0T ,

where κ0 = π2k3
B/3h and c−, the chiral central charge of the quantum Hall’s edge theory, is

the difference between the right-moving central charge cR and the left-moving one cL. The

half-integer value of c− would suggest the existence of a Majorana edge mode and a non–

Abelian topological order in the bulk. The recent measurement which finds the thermal

Hall conductance to be K = 2.5κ0T provides strong evidence for a non-Abelian quantum

Hall state. Taken at face value, this result suggests that the recently proposed topological

order, the particle-hole symmetric Pfaffian state (PH-Pfaffian) [24] which has chiral central

charge c− = 5/2, is realized.
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Since the publication of this measurement result, several groups have proposed

explanations for its apparent contradiction with the prior studies. One explanation [39]

suggests that invoking disorder and Landau Level mixing would stabilize the PH-Pfaffian

state in favor of the other candidate such as the Pfaffian and the anti-Pfaffian state. Disorder

and Landau Level mixing are inevitably present in any real sample, but they are difficult

to include in numerics. Another scenario for explaining K = 2.5κ0T is that long-range

disorder results in puddles of Pfaffian and anti-Pfaffian states, which (intuitively) contribute

(cPfaffian
− + canti−Pfaffian

− )/2 = (7/2 + 3/2)/2 to the thermal Hall conductance. The resulting

state can exhibit the thermal Hall conductance of K = 2.5κ0T in some parameter regimes

[40–42]. However, the conditions for this observation were found to be rather restrictive.

Simon [43] has proposed an alternative interpretation: The experimental measure-

ment may not directly reflect the bulk topological order; instead K = 2.5κ0T may be due to

suppressed thermal equilibration relative to charge equilibration. This partial equilibration

is believed to occur at ν = 2/3 and potentially ν = 8/3 [37, 44]. The distinction between

various candidate ν = 5/2 states, based on the thermal Hall conductance, is clear only if the

different edge channels of the quantum Hall sample are well equilibrated with each other.

If instead there’s no equilibration between edge modes, the thermal Hall conductance is

proportional to the total central charge c = cR + cL of the edge state. If the edge modes

only partially equilibrate, the thermal Hall conductance can in principle take any value

between the fully-equilibrated conductance and the non-equilibrated one.

Among the candidates for the ν = 5/2 state, the anti-Pfaffian state is plausible

to fit this picture of partial equilibration. There have been a variety of different scenarios
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proposed for partial equilibration of the anti-Pfaffian edge states. Simon [43] originally

suggested that the low velocity of the Majorana mode combined with long-range disorder

might hinder the equilibration of the Majorana mode with the rest of the edge modes.

However, it has been argued that the parameter regime required by this interpretation is

not realized experimentally [37, 45]. Partial equilibration in the anti-Pfaffian state can also

occur if the modes in the lowest Landau level do not equilibrate with modes in the first

Landau level. One possible realization was described by Ma and Feldman [46]. Another

mechanism whereby equilibration of the Majorana mode is suppressed was proposed by

Simon and Rosenow [47]. There, equilibration between edge modes was assumed to be

dominated by scattering via intermediate tunneling to Majorana zero modes localized in

the bulk, rather than charge tunneling along the edge, considered in [43, 45, 46].

In this thesis, we continue the study of the role of equilibration in anti-Pfaffian

edge-state transport. We do so by expanding the previous studies in two areas. First, we

derive the kinetic equations for the transport of charge and heat along the edge of a quantum

Hall state, starting from the low-energy field theory of the edge. This effort expands on

the prior works in several aspects: through our detailed derivations we are able to relate

the transport equations for charge and heat up to numerical coefficients. This allows us

to analyze the experimental results one the charge and heat transport, in combination. In

turn, we are better equipped to relate the edge theory of the anti-Pfaffian state to the

transport measurements and narrow down the range of parameters consistent with them.

In addition, our expressions for the kinetic equations are written for a general quantum Hall

state. Therefore, they can be readily used for almost any quantum Hall state by simply
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plugging in the microscopic theory of the edge.

Second, we pay close attention to the estimation of the non-universal parameters

that describe the edge of the anti–Pfaffian state. These parameters include the velocity of

the edge modes as well as the strength of Coulomb interaction between them. This lets

us comment on the strength of the inter-mode conductivity coefficients and interpret the

experimental results at a more granular level.

Furthermore, some of the assumptions we make in modeling the anti-Pfaffian state

differs with the previous studies. In contrast to Ref. [43, 47], we assume that electron

tunneling, induced by short-range disorder, serves to equilibrate the edge modes. Tunneling

between spin-up and spin-down edge modes of the lowest Landau level plays a prominent role

in our scenario. These tunnelings were not considered in the previous analysis (Ref. [46]) of

transport in the anti-Pfaffian state, as it was argued that weak spin-orbit coupling suppresses

such tunnelings. The effective theories we consider are driven by such spin-flip interactions.

The resulting low-energy edge states have an approximate spin symmetry in the lowest

Landau level that can serve to suppress thermal equilibration while simultaneously allowing

complete charge equilibration over a range of experimentally-relevant temperatures, in the

presence of a strong Coulomb interaction.

We start in chapter 2 by giving a brief introduction of the classical and quantum

Hall effect. In line with our work, we mostly focus on transport phenomena and the role of

edge modes in quantum Hall systems. In chapter 3, we expand on the description of edge

modes and present the field theory treatment of the edge of a quantum Hall state. This field

theory description is needed for the analysis of hydrodynamic transport. In chapter 4 we
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present the general framework that we use in order to examine transport of charge and heat

in the anti-Pfaffian state. Starting from the effective field theory of a general quantum Hall

edge state, we derive the equations that describe charge and heat transport in the ohmic

regime. In chapter 5 we discuss the edge theory of the anti-Pfaffian state. We identify

low-temperature fixed points of this theory that we argue to be relevant to experiment and

discuss two of the fixed points that are driven by spin-flip tunneling. In chapter 6 we apply

the framework presented in chapter 4 to these low-energy fixed points. We calculate the

electrical and thermal conductances for each of these theories and discuss the regime of

parameters consistent with the measured electrical G = 2.5σ0 and thermal K = 2.5κ0T

conductances. We discuss the degree to which such parameter regimes are realistic.

Throughout this thesis, we use the notation σ0 = e2

h and κ0 =
π2k2

B
3h . However, for

our calculations we use units where e = ~ = kB = 1 so that σ0 = 1
2π and κ0 = π

6 .
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Chapter 2

Quantum Hall Effect

In this chapter we give a brief introduction of the classical and quantum Hall

effect. Our focus will be the transport properties of quantum Hall states. We start in

section 2.1 by introducing the classical Hall effect. In section 2.2 we explain the integer

quantum Hall effect (IQHE) and its conduction properties. Study of IQHE would also be

useful in understanding the more complicated Hall effect in fractional fillings. In section 2.3

we introduce the fractional quantum Hall effect. This includes the discussion of Laughlin

states, hierarchical state, composite fermions and non–Abelian quantum Hall states.

2.1 Classical Hall effect

The classical Hall effect was discovered in 1879 by Edwin Hall [48]. A simple setup

to observe this effect is as follows: consider a conductor plate residing in the xy plane and

a magnetic field applied in the z direction. The classical Hall effect is the observation that

if an electrical current flows in the x direction, a transverse voltage (the Hall voltage) will

8



be produced in the y direction.

This phenomenon can be easily explained using the Drude model of electron con-

duction [49–51]. Using this model, the equation of motion of an electron (with mass m and

charge −e) in the presence of static and uniform electric field E and magnetic field B is

m
dv

dt
= −e(E + v ×B)−mv

τ
. (2.1)

The last term on the right–hand–side represents the average effect of collisions experienced

by an electron. Under stationary conditions the left–hand–side vanishes, and we easily solve

these equations to find the electrical current:

J ≡ −nev = σE (2.2)

with the conductance tensor

σ =
ne2τ/m

1 + ω2
Bτ

2

 1 −ωBτ

ωBτ 1

 . (2.3)

Here n is the electron density and ωB = |eB|/m is the cyclotron frequency of an electron.

We can invert the conductivity tensor to find the resistivity tensor

ρ = σ−1 =
1

ne2τ/m

 1 ωBτ

−ωBτ 1

 . (2.4)

Therefore the longitudinal resistivity is ρxx = ρyy = ne2τ/m, independent of the magnetic

field while the transverse resistivity

ρxy = −ρyx =
B

ne
(2.5)

is proportional to the applied magnetic field. What we can hopefully measure in the exper-

iment is the Hall resistance, defined as the Hall voltage produced in the y direction divided

9



by the applied electrical current in the x direction. If we assume the sample is rectangular

with length Ly in the y direction, we have

Rxy =
Vy
Ix

=
LyEy
LyJx

= − B
ne
. (2.6)

In the case where the charge carriers are not electrons, we need to replace −e with q, the

charge of the carriers, in the above expression. We can see that by measuring the Hall

conductance, we can determine the sign of the charge carriers.

2.2 Integer quantum Hall effect

As we saw in the previous section, based on the classical motion of electron we

expect that the Hall resistance grows linearly with the applied magnetic field. However,

von Klitzing, Dorda and Pepper [1, 52] discovered that at low temperatures (lower than few

Kelvins) and High magnetic fields (a few Teslas), the Hall resistance exhibits plateaus as

the magnetic field is varied 2.1. At these plateaus, the Hall resistance takes the values

Rxy = ρxy =
1

ν

2π~
e2

(2.7)

where ν takes integer values with a high accuracy (about one part per 109). The quantity

2π~
e2
≡ σ0 is called the quantum of resistivity. These plateaus could be explained first by

looking at the quantum mechanical dynamics of an electron in the presence of a magnetic

field. This is the problem of Landau levels.
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Figure 2.1: Experimental curves for the Hall resistance RH = ρxy and the resistivity ρxx ∼

Rx as a function of the magnetic field at a fixed carrier density (temperature T ≈ 8mK)

[52]

.

2.2.1 Landau levels

Consider an electron gas confined to a rectangular box with dimensions Lx, Ly and

Lz along the three directions, in the presence of a uniform magnetic field Bz = B along the

z direction. The Hamiltonian for this electron is

H0 =
(p− eA)2

2m
(2.8)

where the vector potential is A = (0, Bx, 0) in the Landau gauge. The energy eigenvalues

of this Hamiltonian are

En(kz) = ~ωB(n+
1

2
) +

~k2
z

2m
; n ∈ Z; kz =

2mzπ

Lz
, mz ∈ Z. (2.9)

For small enough Lz and small enough temperatures, the dynamics in the z direction freezes

out and the system becomes effectively two-dimensional. The corresponding eigenfunctions

11



in the Landau gauge are

ψn,ky(x, y) ∼ eikyyHn(x+ ky`
2
B) e−(x+ky`2B)/2`2B . (2.10)

ky is the wavevector in the y direction and is a constant of motion, Hn(x) are Hermite

polynomials and `B ≡
√
~/|eB| is called the magnetic length. For a given energy level n

and wavevector ky, the eigenfunction is wave–like in the y direction and localized around

x = −ky`2B with an approximate spread ∼ `B. ky labels the degenerate eigenfunctions at

each energy level En. To figure out the number of degenerate states at each energy, we first

note that due to the limit size of the sample in the y direction, ky is quantized as

ky =
2myπ

Ly
, my ∈ Z. (2.11)

On the other hand, the wavefunction should reside inside the sample which implies that the

center of the wavefunctions at `2Bky should satisfy

−Lx ≤ `2Bky ≤ 0→ −LxLy
2π`2B

≤ my ≤ 0. (2.12)

Therefore the degeneracy of each of the energy levels is

NΦ0 =
LxLy
2π`2B

=
AB
h/e

(2.13)

where A is the area of the two–dimensional sample. The second expression tells us that the

degeneracy is equal to the number of flux quanta (Φ0 = h/e) that penetrates the sample’s

area.

2.2.2 Conduction of filled Landau levels

Here we discuss the conduction properties of a quantum mechanical sample of

effectively two–dimensional electrons in the presence of a perpendicular magnetic field.
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There are a few methods that one can use to find the conductance; these include using the

Kubo formula and the argument from the gauge invariance [3, 4]. However, we will present

an approach that emphasizes the role of the confining potential [53].

First, consider the problem of our free electron with the Hamiltonian H0, Eq.

2.8, when we add a constant electric field along the x direction (the electrical potential is

V (x, y) = −Exx). In this case the Hamiltonian in the Landau gauge is

H =
p2
x

2m
+

(py + eBx)2

2m
+ eExx. (2.14)

The energy eigenvalues are

En,ky = ~ωB(n+
1

2
)− ~ky

Ex
B
− meE2

x

2B2
. (2.15)

Therefore the energy eigenvalues acquire dispersion and their group velocity is

vy =
1

~
∂En,ky
∂ky

= −Ex
B

=
1

B

∂V

∂x
. (2.16)

Now, consider a sample that is finite in the x direction (0 ≤ x ≤ Lx) while infinite along

the y direction. This means there exists a confining potential at the two edges. Deep inside

the sample, the potential is constant and so the group velocity is zero according to 2.16.

Assuming the potential at edges are smooth enough so that it can be approximated by a

linear potential, the modes along the edge have a finite dispersion: they move along the

y direction at the x = 0 edge (where ∂V
∂x > 0 to keep the electrons inside the sample)

while moving along the −y direction along the x = Ly edge (where ∂V
∂x < 0). These modes

are called chiral since they are uni–directional and move in opposite directions at the two

opposite edges.
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Therefore, each state at energy level n and momentum ky = 2νyπ/Ly (ny ∈ Z)

which is centered at x = −`2Bky carries the electrical current density

Jy(n, ky) = −N (n, ky)

LxLy
evy = −N (n, ky)

LxLy

e

B

∂V

∂x
|x=−`2Bky

. (2.17)

N (n, ky) is the number of electrons in the state specified by quantum numbers n and ky.

Since electron are fermions, N (n, ky) is either zero or one. To find the total current carried

by electrons, we just need to sum up the currents from all the filled states inside the sample

(0 ≤ x ≤ Lx). Assuming ν Landau levels are completely filled

Jy,total = − e
B

ν∑
n=1

∑
ny :0≤x≤Lx

N (n, ky)

LxLy

∂V

∂x
|x=−`2Bky

≈ −Lx
νe

B

eB

2π~

∫ Lx

0
dx
∂V

∂x

= ν
e2

2π~Lx
(V (Lx)− V (0)) . (2.18)

Therefore the total current is

Iy,total = LxJy,total = ν
e2

2π~
(V (Lx)− V (0)) . (2.19)

which results in the quantized Hall conductance

σxy =
Iy,total

∆xV
= ν

e2

2π~
, ν ∈ Z. (2.20)

Therefore, the free electron picture can easily explain the Hall plateaus at integer filling

fractions.

2.3 Fractional quantum Hall effect

In 1982, Tsui, Stormer and Gossard discovered an additional plateau at filling

fraction ν ≈ 1/3 [2]. The corresponding Hall resistance was measured ρxy ≈ 3h/e2. Ad-
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ditional plateaus were discovered later mostly in even–denominator filling fractions. These

observations could not be explained using the free electron theory. The reason for the failure

of the free electron picture is the macroscopic degeneracy of the ground state of the free

system. For example, at a non–integral filling fraction ν < 1 there are NΦ0 accessible states

in the lowest Landau level while there exists νNΦ0 electrons. So there are
( NΦ0
νNΦ0

)
ways to

fill the available states, and all would have the same energy (in the absence of any external

potential). This means that any amount of electron interaction is significant and their ef-

fect could not be ignored. It turns out that at certain filling fractions, the electron system

becomes gapped and behaves as an incompressible liquid. This phenomenon is known as the

fractional quantum Hall effect. There exists a variety of such states with differing levels of

complexity and sometimes different physical origins. We will introduce some of these states

which are going to be useful for later discussions in this thesis.

2.3.1 Laughlin states

The first theoretical explanation of additional plateaus at fractional filling fractions

is due to Laughlin [8]. He proposed the following wave–function for the quantum Hall state

of N electron at filling fraction ν = 1/m when m is an odd integer:

ΨLaughlin({zi}) ∼
N∏
i<j

(zi − zj)m e−
∑
i |zi|2/4`2B . (2.21)

Here zi = xi + iyi is the complex coordinate of the i-th particle. The intuition behind

this proposal can be understood as follows. Choosing the symmetric gauge for the vector

potential in 2.8 as A = (−y, x, 0)B/2, the un–normalized eigenfunctions of a single electron
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(a) (b)

Figure 2.2: Diagonal resistivity ρxx and Hall resistance ρxy in a quantum Hall setting of a

GaAs/AlGaAs heterostructure. (a) From [2]. Temperatures are specified on the plot. (b)

From [16]. Temperature is ≈ 150mK except to the high–field Hall trace at T = 85mK.

can be written as

ψn(z = x+ iy) = zn e−|z|
2/4`2B . (2.22)

This wavefunction describes a particle at angular momentum n~. For a many–particle

system where the electrons are non–interacting, the ground state of the system can be

written as the Slater–determinant state

ψ({zi}) ∼
∏
i<j

(zi − zj) e−
∑
i |zi|2/4`2B . (2.23)

In this state the relative angular momentum of any two–particles cannot be smaller than

~ due to the Pauli’s exclusion principle. Now, if we include the repulsive Coulomb inter–

electron interactions, the electrons prefer to be farther away from each other, i.e. have

larger relative angular momenta. This is exactly what the Laughlin wavefunctions in Eq.
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2.21 describe. In fact, these wavefunctions are the ground state of the toy Hamiltonian [9,

54]

H =
∞∑

m′=1

∑
i<j

vm′Pm′(ij). (2.24)

Pm′(ij) is an operator that projects onto the state in which particles i and i have relative

angular momenta m and vm′ represent the eigenvalues of the repulsive potential V (r− r′).

We can choose vm′ to construct a simple model that describes the physics of the fractional

quantum Hall effect. The Laughlin wavefunctions correspond to the choice

vm′ =


1 m′ < m

0 m′ ≥ m

. (2.25)

Therefore the Laughlin states describes a system of electrons where the relative angular

momenta of any two electron cannot be smaller than m.

On the other hand, we can also check that the Laughlin wavefunction has filling

fraction ν = 1/m. The maximum power of zi is the wavefunction 2.21 is m(N − 1). This

means each electron has the maximum angular momentum ~m(N − 1). Therefore, the Hall

droplet occupies the area 2π`2B×m(N−1), which means the electron density is ≈ (2π`2Bm)−1

in the thermodynamic limit. This corresponds to the filling fraction ν = 1/m.

In addition, the toy Hamiltonian 2.24 implies that any state where two particles

have angular momenta less than m would cost a finite amount of energy. This property

makes the Laughlin states an incompressible fluid. This is a general property of all quantum

Hall plateaus and is essential for the description of the edge modes that we will discuss in

chapter 3.
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Quasi–holes and quasi–particles

The system described by the Laughlin state 2.21 have gapped charge excitations

known as quasi–holes and quasi–particles of the FQH state. A quasi–hole at the position

ζ = η is described by the wavefunction

ψq.h.({zi}; η) ∼
N∏
i=1

(zi − η)
N∏
i<j

(zi − zj)m e−
∑
i |zi|2/4`2B . (2.26)

This quasi–hole has charge e/m. To see this, we put m quasi–holes at η. Following the

similar line of arguments as before, the electrons in this new wavefunction have maximum

angular momentum ~mN and so the droplet with N electrons occupy the area 2π`2B ×

mN , compared to 2π`2B ×m(N − 1) when no quasi–hole is present. That is, in this new

wavefunction of m quasi–holes, N electrons occupy the area of N+1 electrons. This implies

that the new system has the charge deficit of −e, or equivalently the wavefunction 2.27 has

an extra charge e/m. This is exactly the quasi–hole at η.

In addition to carrying fractional charge, the quasi–holes have fractional statistics.

The argument for such statistics is more involved and includes the calculation of Berry

phase (See [55, 56]). Following such calculations, we can check that the quasi–holes has

statistical angle π/m. This means when we switch the position of two quasi–holes, we get

an additional statistical phase eiπ/m in the wavefunction. The particles that behave as such

are called Abelian anyons [57, 58]. The name anyon signifies the fact that the wavefunction

does not return to itself when one anyon moves around another anyon, but could acquire

“any” phase; a situation that is only possible in two spatial dimensions. Abelian means

during this process, the wavefunction only acquires a phase, and does not turn into a linearly

independent wavefunction. The latter possibly describes non–Abelian anyons which we will
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discuss in section 2.3.4.

Similarly, we can define the wavefunction for a quasi–particle. In the lowest Landau

level, the conjugate operator to z is 2`2B∂z [8, 67]. Therefore, the wavefunction of the quasi–

particle is

ψq.p.({zi}; η) ∼
N∏
i=1

(2`2B∂zi − η̄)
N∏
i<j

(zi − zj)m e−
∑
i |zi|2/4`2B . (2.27)

Using similar arguments we an show that quasi–particles carry charge −e/m and statistical

angle −π/m.

2.3.2 Hierarchical states

Not all the observed plateaus could be described by the Laughlin wave–functions.

These include filling fractions with odd–denominators such as 2/3, 2/5, 5/7 as well as even–

denominator fractions such 5/2. We will postpone the discussion of the latter to section

2.3.4. One approach to explain the odd–denominator filling fractions besides the Laughlin

states is the Haldane–Halperin hierarchy [9, 10]. The idea is that the quasi–particles of

the Laughlin state can themselves form quantum Hall liquids. For instance, consider the

Laughlin state at filling fraction 1/m. The quasi–particles/quasi–holes of this state have

fractional charge q = ±e/m and statistical angles α = ±π/m. Therefore, if we want to

make a liquid state out of these quasi–particles/quasi–holes occupying coordinates ηi, the

state with the right statistics would look like

ψ({ηi}; {zi}) ∼
∏
i<j

(ηi − ηj)2p+α e−
∑
i |ηi|2/4m`2B ΨLaughlin({zi}) (2.28)

with p a positive integer. Note the m factor in the exponential is due the fact that the

quasi–particles/quasi–holes have fractional charge. The particles that are described by
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such a wave–function have certain maximum angular momentum and therefore occupy a

certain area (See section 3.1 for details). We can use this to find the filling fraction of these

quasi–particles/quasi–holes and consequently the total filling fraction. The resulting filling

fraction is

ν =
1

m± 1
2p

. (2.29)

These states form the first level of the hierarchy and include states with filling fractions

such as 2/3, 2/5, 2/7 and 6/13. We can continue and build up higher level of this hierarchy.

The filling fractions explained by this hierarchy are of the form

ν =
1

m± 1
2p1± 1

2p2±...

. (2.30)

with positive integers pi.

2.3.3 Composite fermions

There exists another approach for explaining some of the filling fractions other

than the Laughlin fractions. This approach is based on the idea of composite fermions

formulated by Jain [13, 15]. In order to understand the concept of composite fermoins,

consider again the Laughlin wavefunction:

ΨLaughlin({zi}) ∼
∏
i<j

(zi − zj)m e−
∑
i |zi|2/4`2B . (2.31)

Every particle except the one tat zi sees the point z = zi as a vortex of order m: whenever

this particle moves around zi, the wavefunction acquires a 2mπ phase. Of course, one

of these vortices is always present due the Pauli exclusion of electron. The other m − 1

vortices are due to the repulsive Coulomb interaction. Therefore, we can imagine there
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exists a bound state of an electron and m − 1 vortices at position zi. This bound state

is called the composite fermion. These quasi–particles (the general concept, not to be

confused with the quasi–particles of the Laughlin state) are useful since in this picture,

the fractional quantum Hall effect of electrons can be thought of as the integer quantum

effect of composite fermions. To see this, consider the effect of moving around a composite

fermion around a region of area A inside the sample. Composite fermion has charge −e,

so it acquires the Aharonov–Bohm phase −2πBA/Φ0 during this process. In addition,

this composite fermion would go around nA number of other composite fermions (n is the

average electron density) and so acquires an additional 2π(m− 1)nA statistical phase. So

the total acquired phase is

γ = −2π
BA
Φ0

+ 2π(m− 1)nA. (2.32)

The net effect of this process looks as if the composite fermions has acquired only the

Aharonov–Bohm phase but in a different effective magnetic field B∗ such that

γ = −2π
B∗A
Φ0

= −2π
BA
Φ0

+ 2π(m− 1)nA → B∗ = B − (m− 1)nΦ0. (2.33)

Therefore, we have N (number of electrons) composite fermions experiencing the effective

magnetic field B∗. So, they would fill effective Landau levels (called Λ-levels) with the filling

fraction

ν∗ =
Ne

|B∗|A/Φ0
. (2.34)

Now, if the composite fermions form an integer quantum Hall liquid at filling fraction ν∗ ∈ Z,

based on 2.33 the filling fraction of the electron would be

ν =
ν∗

(m− 1)ν∗ ± 1
. (2.35)
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The plus/minus sign is for positive/negative B∗, respectively. As an example, with ν∗ = 1

and B∗ > 0, we recover the Laughlin states at ν = 1/m. The set of states described by 2.35

are known as the Jain sequence, some of which have been observed experimentally.

2.3.4 Non–Abelian quantum Hall states

As we discussed in section 2.3.1, the excitations of the Laughlin states are Abelian

anyons. The same is true for the hierarchical states. However, there exists fractional

quantum Hall states that host non–Abelian anyons. The Pfaffian state [18, 19], the anti–

Pfaffian state [20, 21] the PH–Pfaffian state [24] and the SU(2)2 state [22, 23] are among

such states. All of these examples are among the possible candidates for the quantum Hall

plateau at filling fraction ν = 5/2 [16]. Since in this thesis we are interested in the transport

properties of the anti–Pfaffian state, we will focus mostly on this Hall plateau.

Before introducing the candidates for the Hall plateau at ν = 5/2, we point out that

as a zeroth–order approximation the interactions between electrons at the different Landau–

levels (called Landau–level mixing) are ignored. With this assumption, we can treat Landau

levels as independent which implies that all filling fractions ν = 2n+1/2, n ∈ Z on the same

footing. 2n comes from n filled Landau–levels for the two directions of the electron spin.

We should also point out that even without Landau–level mixing, the details of the electron

interactions could be different from one Landau–level to another.
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Moore–Read Pfaffian state

One of the proposed candidates for the observed Hall plateau at ν = 5/2 is the

Moore-Read or the Pfaffian state [18, 19]. The wavefunction of this state is

ψ({zi}) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)m e−
∑
i |zi|2/4`2B . (2.36)

The first factor represents the Pfaffian of the matrix with entries 1/(zi − zj), the Pfaffian

of an anti–symmetric matrix being the square root of its determinant. For electrons, m

should be even so that this wavefunction is anti–symmetric. Similar to section 2.3.1, we

can deduce the filling fraction by counting the power of zi. The maximum power of each zi

is m(N − 1) similar to the Laughlin states. Therefore, the filling fraction is ν = 1/m.

We can interpret the wavefunction 2.36 in terms of composite fermions. We assume

m vortices are attached to an electron. For m even, this turns electrons into composite

fermions. For m = 2, Eq. 2.33 tells us that the composite fermions don’t experience any

effective magnetic field, i.e. B∗ = 0. This could potentially mean that the composite

fermions are free and have finite dispersion. However, this is not what the wavefunction

2.36 represents. To understand this contradiction, we should look at another state at filling

fraction ν = 1/2, the Rezayi-Read state [17, 60]. The wavefunction for this state is

ψR.R.({zi}; {km}) = PLLL

det[eikm.ri ]
∏
i<j

(zi − zj)2 e−
∑
i |zi|2/4`2B

 . (2.37)

The operator PLLL projects to the lowest Landau level, km are momentum parameters and

ri is the position vector of the i-th particle. This wavefunction indeed describes composite

“free” fermions at vanishing effective magnetic field and finite momenta km. This system

has a well–defined Fermi surface that have been confirmed experimentally [14, 61, 62]. More
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precisely, it is a system of massive neutral composite fermions forming a Fermi surface that

interact via a Chern–Simons gauge field. This description of composite fermions at ν = 1/2

is known as the Halperin–Lee–Read (HLR) theory [63–65].

In light of this picture, the Pfaffian state Eq. 2.36 could be viewed as the BCS

(Bardeen–Cooper–Shrieffer) pairing of the composite fermions described by Eq. 2.37. Since

the state in Eq. 2.37 is spin–polarized, the spatial part of the wavefunction should anti–

symmetric. The Pfaffian state is the result of pairing in the px + ipy angular momentum

channel. In addition, the Pfaffian state is a topological superconductor [66]. As a result,

the edge of this state host a chiral Majorana fermion. We will discuss edge theory of the

Pfaffian state further in section 3.3.

Anti–Pfaffian state

One other consequence of ignoring the Landau–level mixing is that the particle–

hole conjugate of a state at filling fraction n + ν̃ with ν̃ < 1, n ∈ Z is a state at filling

fraction n + 1 − ν̃. The wavefunction for this state can be constructed following Ref. [59,

67]. The particle–hole conjugate of the Pfaffian state is therefore also a state at filling

fraction ν = 5/2. The wavefunction of this state is

Ψ({zi}) =

∫
[
∏
k

dηkdη̄k]
∏
i<j

(zi − zj) e−
∑
i |zi|2/4`2B

∏
i,k

(zi − ηk)
∏
k<l

(ηk − ηl) e−
∑
k |ηk|2/4`2B .

(2.38)

As pointed out in Ref. [20, 21], this state is distinct from the Pfaffian state. This can

be checked either by looking at the wavefunction 2.38 or by looking at the edge structure

under this particle–hole transformation. We will discuss the edge structure of these states
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in section 3.3. This new state for at filling fraction ν = 5/2 is called the anti-Pfaffian

state. The anti–Pfaffian state can also be viewed as a BCS instability of the Fermi surface

of composite fermions. In this case, the composite fermions pair in the px − ipy angular

momentum channel.

In the absence of interactions that break the particle–hole symmetry, the Pfaffian

state and the anti–Pfaffian state are degenerate and are equally valid candidates for the state

realized at the ν = 5/2 Hall plateau. However, in practice there always exists some Landau–

level mixing that could favor one of these states instead of the other. Numerical studies

which include the Landau–level mixing have not been conclusive in determining which of

these two states in energetically favorable [17, 26–29, 68, 69], although more recent studies

favor the anti–Pfaffian state.

PH–Pfaffian state

More recently, another state was proposed as a candidate for the Hall plateau at

ν = 5/2. This state is called the particle–hole symmetric Pfaffian state or PH-Pfaffian [24,

39]. As the name suggests, this state is invariant under the particle–hole transformation.

To understand the physics of this state, we have to look at its parent state which is a

Fermi surface of Dirac composite fermions proposed by D.T. Son [24]. This state describes

relativistic massless neutral composite fermions that interact via a statistical gauge field.

This is to be contrasted with the HLR theory of massive composite fermions interacting via

a Chern–Simons gauge field [64].

These composite fermions can form BCS pairs in a channel with even angular

momentum. This evenness is the result of the nontrivial Berry phase of the composite
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Fermi surface [24]. The PH–Pfaffian state has been described as the BCS pairing in the

zero angular momentum s channel. In section 3.3 we will discuss the edge theory of this

state.
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Chapter 3

Field Theory of Edge States in

Quantum Hall Effect

In the discussion of IQHE in section 2.2, we saw the role of edge states in the

transport of charge. As we show in this chapter and the next one, the edge modes of

fractional quantum Hall states are similarly responsible for transport. In this chapter, we

focus on the field theory of these edge modes and the role of interactions. These studies

would build the ground for studying the low–temperature transport of quantum Hall states

that we get to in the next chapter.

3.1 Current algebra and Laughlin states

As we mentioned in section 2.3.1, the states describing the quantum Hall plateaus

are incompressible. This means there can be no low–energy density excitations inside the

bulk of the quanum Hall state. The only possible excitations happen at the edge of the
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quantum Hall droplet. These take the form of changes in the shape of the boundary of

the droplet. Following [6, 70–74], in order to describe the quantum mechanics of these

boundary waves, we first write down the Hamiltonian of the edge classically, and then we

will quantize the theory.

The energy of the droplet due to the confining potential V (x, y) is

E = −e
∫ ∞
−∞

dx

∫ ∞
−∞

dy ρ(x, y)V (x, y), (3.1)

where ρ(x, y) is the two–dimensional electron density. Its value is n = ν|B|A/Φ0 inside the

droplet and zero outside the droplet (See section 2.2.1 for notations). Now, let’s assume for

simplicity that the droplet occupies the y < 0 region so that the boundary is situated at

y = 0. Also assume that the shape of the boundary wave at y = 0 is such that it can be

written as a single–valued function h(x); the density is n for y ≤ h(x) and zero for y > h(x):

ρ(x, y) = nθ(h(x)− y). (3.2)

θ(x) is the step function. Therefore, the energy is

E = −ne
∫ ∞
−∞

dx

∫ h(x)

−∞
dy V (x, y). (3.3)

The fact that the edge is at y = 0 implies that the confining potential does not change in

the x direction at y = 0. Now, assume the confining potential is smooth enough (compared

to the scale determined by h(x)) that it can be approximated with the linear potential

V (x, y) ≈ ∂V

∂y
|y=0y. (3.4)

Note that since the droplet of negatively charged liquid occupies y < 0 we should have
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∂V
∂y |y=0 < 0. Subtracting the energy of the un–distributed edge (h(x) = 0) we find

E = −ne
2

∂V

∂y
|y=0

∫ ∞
−∞

dx h(x)2. (3.5)

We can relate the slope of the potential to the velocity of edge modes according to 2.16.

We also define the one–dimensional density as ρ(x) = nh(x). Overall we find

E =
π~
ν
|vx|

∫ ∞
−∞

dx ρ(x)2. (3.6)

where vx is the velocity of the edge waves.

On the other hand, the density wave described by ρ(x, t) should also satisfy the

chiral wave equation

∂tρ(x, t) + vx∂xρ(x, t) = 0. (3.7)

Therefore, in the momentum space (k = 2nπ/L with n ∈ Z)

ρ(x) =
1√
L

∑
k

eikx ρk (3.8)

we have

E =
2π~
ν
|vx|

∑
k>0

ρ−kρk (3.9)

ρ̇k = −ivxkρk. (3.10)

To write down the energy as a Hamiltonian, we identify ρk as the coordinate. This means

its conjugate momentum is

pk = sign(vx)
2πi~
νk

ρ−k. (3.11)
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Now we can quantize this theory by requiring the commutation relation [ρk, pk′ ] = i~δkk′ .

This implies

[ρk, ρk′ ] = sign(vx)
νk

2π
δk+k′ (3.12)

This algebra is known as the U(1) Kac–Moody algebra.

The density operators ρ(x, t) represent the neutral low–energy excitations of the

edge. However, there also exists charge excitations of the edge represented by adding or

removing electrons from the edge. Let’s represent the creation operator for such electrons

as ψ†(x). We then expect

[ρ(x), ψ†(x′)] = δ(x− x′)ψ†(x). (3.13)

We can satisfy this relation by using the bosonized version of these fields (See [75–79]).

ψ†(x) =
γ√
2πa

e−iηφ(x)/ν (3.14a)

ρ(x) =
1

2π
∂xφ(x). (3.14b)

η = sign(vx) is the chirality of the edge mode, γ is a Majorana fermion operator that

ensures the correct anti–commutation of different species of fermion operators, and a is the

short–distance cutoff. The chiral bosonic fields φ(x) satisfy

[φ(x), φ(x′)] = πiην sign(x− x′). (3.15)

The fermion operators satisfy the correct anti–commutation relations

{ψ(x), ψ†(x′)} = δ(x− x′) (3.16a)

{ψ(x), ψ(x′)} = {ψ†(x), ψ†(x′)} = 0 (3.16b)
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only when 1/ν is an odd number. This means the above formalism is only valid for the

Laughlin states. As we will discuss in the next section, to accommodate for the other filling

fractions we need to consider several branches of edge modes.

In addition to the fermion operators, there are operators e±iηiφi(x) which annihi-

late/create quasi–particle/quasi–holes of the Laughlin state at the edge. These operators

are the most basic set of operators that we can build our theory upon. One implication of

this is that the bosonic fields φ should satisfy the periodicity conditions

φ(x) ∼ φ(x) + 2nπ, n ∈ Z. (3.17)

3.1.1 Lagrangian formulation

In terms of the bosonic field φ(x), the Hamiltonian density of the edge mode of a

Laughlin state is (v = |vx| is the magnitude of the edge mode velocity)

H =
v

4πν
(∂xφ(x))2 . (3.18)

In some circumstances, it is more convenient to work with the Lagrangian formulation of

this bosonic theory. To find the conjugate momentum to φ(x), we take the derivative of

Eq. 3.15 with respect to x′:

[φ(x), ∂x′φ(x′)] = −2πiηνδ(x− x′). (3.19)

Therefore the conjugate momentum to φ(x) would be π(x) ≡ −η∂xφ(x)/2πiν. The usual

procedure for writing down the Lagrangian would tell us that the action for this theory is

L = π(x, t)∂tφ−H = − η

2πν
∂tφ∂xφ−

v

4πν
(∂xφ)2. (3.20)
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However, this is not the correct theory as it would not produce the correct equation of

motion for φ(x, t). This inconsistency is due to the non–local/self–dual nature of the field

φ(x) [80–82]. The correct Lagrangian is

L =
1

2
π(x, t)∂tφ−H =

1

4πν

(
−η∂tφ∂xφ− v(∂xφ)2

)
. (3.21)

3.2 Hierarchical states

The field theory of the edge modes in a hierarchical state is a simple generalization

of the above construction: at level N of the hierarchy, there are N droplets: each of

these droplets has a specific filling fraction and its corresponding edge mode. In the first

approximation we assume that these edges are far enough from each other so that we can

treat them as independent. Therefore, we have N bosonic fields φi(x) with filling fractions νi

and chirality ηi moving with the speed vi. Assuming B > 0, the chirality of the edge mode

is positive (negative) if the droplet is a condensate of negatively–charged quasi–particles

(positively–charged quasi–holes). Therefore, these bosonic field satisfy the commutation

relations

[φi(x), φj(x
′)] = δijπiηiνi sign(x− x′), (3.22)

and the total Hamiltonian in the absence of any extra interactions is

H =
∑
i

Hi (3.23a)

Hi =
vi

4πνi

∫
dx (∂xφi(x))2 . (3.23b)

32



The electron operator corresponding to the ith edge mode and its charge density (in units

of −e) are

ψ†i (x) =
γi√
2πa

e−iηiφi(x)/νi (3.24)

ρi(x) =
1

2π
∂xφi(x). (3.25)

with Majorana fermions satisfying {γi, γj} = 2δij . The basis represented by the fields φi

is called the “symmetric” basis. It is also possible to use a different basis for describing

the same theory. In general, the universal/topological nature of a chiral bosonic theory is

described by the combination of a K matrix and a charge vector t[5, 83]. The K matrix is

defined by

[φi(x), φj(x
′)] = πiK−1

ij sign(x− x′). (3.26)

In the symmetric basis of fields φi, the K matrix is Kij = δijηi/νi. The charge vector

represents the fact that the charge density carried by the edge mode φi is

ρi(x) =
ti
2π
∂xφi. (3.27)

In the “symmetric” basis the charge vector is ∀i : ti = 1. Therefore in the symmetric basis,

the total charge density along the edge is

ρ(x) =
∑
i

ρi(x) =
1

2π

∑
i

∂xφi. (3.28)

3.3 Non–Abelian states

Deriving the edge theory of the non–Abelian states is a more subtle problem. To

achieve this, one has to study the excitations of the ground state wavefunction when quasi–

holes are added near the edge [7, 18, 84]. Since in this thesis we are interested in QHE at
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filling fraction ν = 5/2, we only focus on the edge theory of a few of the potential candidates

for this system: the Pfaffian state, the anti–Pfaffian state and the PH–Pfaffian state.

Pfaffian state

For the Moore–Read Pfaffian state at filling fraction ν = 1/2, the spectrum of edge

excitations correspond to a bosonic field representing the charge density fluctuations of the

edge plus a Majorana fermion [7, 84]. These two edge excitation are moving in the same

direction. This means that edge theory of the Pfaffian state consists of a chiral bosonic field

φ(x) with η = 1 and ν = 1/2 and a chiral Majorana fermion ψ(x) with ν = 1. The action

for this theory is S = Sφ + Sψ with

Sφ = − 1

4πν

∫
dt

∫
dx ∂xφ [η∂tφ+ v∂xφ] , (3.29a)

Sψ =
1

4

∫
dt

∫
dx iψ(∂tψ + u∂xψ). (3.29b)

u is the velocity of the Majorana mode. The quasi–particle excitations can be created by

either charge e/2 operators eiφ or ψ eiφ, or by the charge e/4 operator σ eiφ/2. The operator

σ twists the boundary condition for the Majorana mode ψ. The anyons ψ and σ form the

Ising topological quantum field theory with fusion rules (1 is the vacuum)

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ. (3.30)

When we are concerned with the Pfaffian state at filling fraction ν = 5/2, we just need to

add the edge modes for the two filled Landau levels. Denoting these bosonic field by φ1 and

φ2 (ν1 = ν2 = η1 = η2 = 1) and the bosonic field at the half–filled second Landau level by
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φ3, the action in the absence of inter–mode interactions is

S =
3∑
i=1

Si + Sψ, (3.31a)

Si = − 1

4πνi

∫
dt

∫
dx ∂xφi [ηi∂tφi + vi∂xφi] , (3.31b)

Sψ =
1

4

∫
dt

∫
dx iψ(∂tψ + u∂xψ). (3.31c)

Anti–Pfaffian state

As we pointed out in section 2.3.4, The Pfaffian state is not particle–hole symmetric

and its particle–hole conjugate is the anti–Pfaffian state. This fact can be used to write

down the edge theory for the anti–Pfaffian state. In fact, this is the first approach that

was used in Ref. [20] to study this new state. In the Pfaffian state at ν = 1/2, the edge

states separate the vacuum (ν = 0) from the bulk at ν = 1/2. The particle–hole conjugate

of this edge is realized by putting a narrow region with ν = 1 between the vacuum and the

anti–Pfaffian bulk at ν = 1/2. In this setup, the edge modes that sit between the ν = 1

state and the ν = 1/2 state are the same modes as the ones for the Pfaffian state but now

moving in the opposite direction (upstream). In addition, there exists a ν = 1 edge mode

that sits between the vacuum and the ν = 1 state. Therefore, the edge theory of the anti–

Pfaffian state at ν = 1/2 consists of a ν3 = 1, η3 = 1 chiral boson φ3, a ν4 = 1/2, η4 = −1

chiral boson φ4 and a η = −1 chiral Majorana. Similar to the previous section, to get

the edge modes for the anti–Pfaffian state at ν = 5/2 we add the two edge modes of the

Lower Landau levels φ1 and φ2 with ν1 = ν2 = η1 = η2 = 1. Therefore, the action for

the edge of the anti–Pfaffian state at ν = 5/2 in the absence of additional interactions is
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S =
∑4

i=1 Si + Sψ with

Sφi = − 1

4πνi

∫
dt

∫
dx ∂xφi [ηi∂tφi + vi∂xφi)] , (3.32a)

Sψ =
1

4

∫
dt

∫
dx iψ(∂tψ − u∂xψ). (3.32b)

PH–Pfaffian state

The basic excitations of the PH–Pfaffian state are quasi–particle/quasi–hole of

charge ∓e/4 [24]. However, since they are half–vortex excitations, they must be created in

pairs. So, we might conclude that we cannot have edge modes with filling fraction ν = 1/4

and only an edge mode with filling fraction ν = 1/2 is possible. Also, the existence of a half–

vortex quasi–hole implies the presence of Majorana zero modes. Therefore, the PH–Pfaffian

state is non–Abelian and its edge has a chiral Majorana mode.

The chirality of these edge modes are determined by imposing the particle–hole

symmetry on the edge structure of this state and on its electrical and thermal Hall conduc-

tance [39]. The transport properties of quantum Hall states will be explained in the next

chapter. For now, we only need to know the following: for an edge theory with a set of

chiral bosons φi (with filling fraction νi and chirality ηi) and a chiral Majorana fermion ψ

(with chirality η) the electrical conductance G and the thermal conductance K are

G =
e2

h
ν =

e2

h

∣∣∣∑
i

ηiνi

∣∣∣ (3.33)

K =
π2k2

B

3h
T
∣∣∣ηcψ +

∑
i

ηici

∣∣∣. (3.34)

ci = 1 is the central charge of a bosonic mode and cψ = 1/2 is the central charge of a

Majorana mode.
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To determine the chirality of the ν = 1/2 bosonic mode ηφ and also that of the

Majorana mode ηψ, we look at the behavior of the electrical and thermal conductance

under the particle–hole transformation. Under this transformation, the chirality of all the

edge modes are reversed and an edge mode corresponding to a filled Landau level (with

ν = η = c = 1) is added. Therefore, under the particle–hole transformation

G =
e2

h
.
∣∣∣1
2
ηφ

∣∣∣→G′ = e2

h

∣∣∣1− 1

2
ηφ

∣∣∣ (3.35a)

K =
π2k2

B

3h
T
∣∣∣ηψ 1

2
+ ηφ

∣∣∣→K ′ = π2k2
B

3h
T
∣∣∣1− ηψ 1

2
− ηφ

∣∣∣. (3.35b)

Particle–hole symmetry of the PH–Pfaffian state implies G = G′ and K = K ′. Based

on the above expressions we can deduce that ηφ = 1 and ηψ = −1. Calling the ν = 1/2

bosonic mode φ3 and including the edge modes from the lower filled Landau–levels φ1 and φ2

(ν1 = ν2 = η1 = η2 = 1), the action for the PH–Pfaffian state at ν = 5/2 is S =
∑3

i=1 Si+Sψ

with

Sφi = − 1

4πνi

∫
dt

∫
dx ∂xφi [ηi∂tφi + vi∂xφi)] , (3.36a)

Sψ =
1

4

∫
dt

∫
dx iψ(∂tψ − u∂xψ). (3.36b)

3.4 Interactions

There are different ways that the edge modes of a quantum Hall system can in-

teract. One possibility is that an edge mode has interaction with itself. For example, we

can include higher order density–density interactions in 3.6, which might play an important

role when the confining potential is not smooth enough. This can lead to a reconstruction

of the edge where one edge mode is broken into several edge modes [85–91]. For the pur-

37



poses of this thesis, we ignore such interactions and focus on the inter–edge interactions and

their effect on the low–energy/low–momentum physics. In this section, we will only discuss

interactions in a hierarchical state. Though, these treatments can be easily generalized to

include the Jain states and non–Abelian states. In particular, we will discuss interactions

in the edge theory of the anti–Pfaffian state in chapter 5.

3.4.1 Coulomb interactions

Since the edge mode are charged, there exists Coulomb interactions between them.

We only consider the short–ranged density–density interactions with interaction potential

HCoulomb =
1

4π

∑
i 6=j

vij

∫
dx ∂xφi(x)∂xφj(x). (3.37)

The positive values vij quantify the magnitude of these Coulomb interactions. In the lan-

guage of renormalization group, these interactions are marginal relative to the fixed point

of the “free” theory given by Eq. 3.23. This can be easily checked by observing that the

bosonic fields have zero scaling dimension. Therefore, these Coulomb interactions could

affect the low–energy physics. However, it is easy to include the effects of such interaction.

First, we note that the Hamiltonian H0 +HCoulomb is a quadratic theory

H0 +HCoulomb =
1

4π

∑
ij

Vij

∫
dx ∂xφi(x)∂xφj(x) (3.38)

with velocity matrix

Vij =


vi
νi

i = j

vij i 6= j

. (3.39)
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Using a linear transformation φi = Λiαφ̃α we can easily diagonalize this theory [92]. We

should point out that this transformation is not a typical diagonalization where orthogo-

nal/unitary transformations are employed. The transformations Λ should be canonical, i.e.

preserve the structure of the commutation relations in Eq. 3.26 (although we allow for the

scaling of the bosonic fields for convenience).

To proceed, we first perform a scaling of the fields as φ ≡ √νiφ′i so that the

commutation relations for the new fields are

[φ′i(x), φ′j(x
′)] = δijπiηi sign(x− x′). (3.40)

Then we transform these fields as φ′i = Λ̃iαφ̃α and require the matrix Λ̃iα to diagonalize

H0 +HCoulomb as

H0 +HCoulomb =
1

4π

∫
dx

[∑
α

ṽα∂xφ̃α∂xφ̃α)

]
. (3.41)

This means we should have

ΛTV Λ = Ṽ (3.42)

with diagonal matrix Ṽαβ = δαβ ṽα. The requirement that the transformation Λ̃ be canonical

means

[φ̃α(x), φ̃β(x′)] = δαβπiη̃α sign(x− x′), (3.43)

or equivalently

Λ̃T ηΛ̃ = η̃ (3.44)

where ηij = δijηi, η̃αβ = δαβ η̃α. Overall, we can write the resulting action as

S0 + SCoulomb = − 1

4π

∫
dt

∫
dx

[∑
α

∂xφ̃α(η̃α∂tφ̃α + ṽα∂xφ̃α)

]
. (3.45)
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This theory in terms of the set of free chiral bosons φ̃α is a conformal field theory where

the chiral fields have zero scaling dimension.

3.4.2 Tunneling interactions

Another form of interaction along the edge of a quantum Hall state is tunneling

between the edge modes. In general electrons can tunnel between different edge modes.

Quasi–particles can also tunnel provided the region between the two modes allow the ex-

istence of such particles. At low energies, these tunnelings should always be assisted by a

disorder potential that breaks the translational symmetry of the edge [46, 93]. The rea-

son is that the different edge modes have different Fermi momenta. So a translationally

invariant edge cannot provide the momentum mismatch between the different modes. The

momentum difference is due to the magnetic flux that penetrates the area between the edge

modes. If the distance between the two edge modes is d, then the difference in their Fermi

momenta is

∆kF =
eB

~
d. (3.46)

Therefore the disorder should vary considerably at least over the length scale 1/∆kF . To

get a sense of the order of magnitude of the numbers involved, let’s take the example of

ν = 2/3 of Fig. 2.2a where B ≈ 18T . Taking d ∼ `B we get ∆kF ∼ 1/`B ≈ (6nm)−1.

Estimates based on experimental parameters (see [45]) suggest that disorder sat-

isfies this requirement. Relaxation of such an assumption, however, has interesting conse-

quences for the equilibration of edge modes, as suggested by Simon [43]. If the disorder

can indeed provide this momentum difference, then we can assume that the tunneling be-
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tween the edge modes happen in practice. In this case, for simplicity, we take the disorder

potential to be a random field ξ(x) with Gaussian distribution and correlation

ξ(x)ξ∗(x′) = Wδ(x− x′). (3.47)

W quantifies the strength of the tunnelings. Now we can write down the tunneling interac-

tion term as (h.c. stands for Hermitian conjugate)

Htunneling =

∫
dx
[
ξ(x) ei

∑
imiφi(x) +h.c.

]
. (3.48)

These interactions should conserve the total charge in the process. The operator eiηiφi

annihilates a quasi–particle of charge νi. Therefore, we should have

∑
i

ηiνimi = 0. (3.49)

The inclusion of the effect of these tunneling interactions in describing the low–energy

physics of the edge is, in general, a nontrivial problem. In order to analyze the effect

of these tunnelings, we first write the action of the theory. Including the short–ranged

Coulomb interactions and the tunnelings we have S = SF.P. + Stunneling with (F.P. stands

for fixed point)

SF.P. = − 1

4π

∫
t,x

∑
i

1

νi
∂xφi(ηi∂tφi + vi∂xφi) +

∑
i 6=j

vij∂xφi∂xφj

 , (3.50a)

Stunneling = −
∫
t,x

∑
p∈P

[
ξp(x) ei

∑
j mjφj +h.c.

]
. (3.50b)

We used the shorthand notation
∫
t,x =

∫
dt
∫

dx. As we demonstrated in the previous

section, the theory described by the action SF.P. is completely solvable and describes a set

of independent chiral bosonic field φ̃α. So, the first step in analyzing S is to consider the
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effect of Stunneling near the fixed point described by SF.P.. First, we look at the scaling

dimension of the tunneling operator O(x) = ei
∑
imiφi(x). Denoted by ∆O, it is defined by

the correlation function

〈
O(x, t)O†(x, t = 0)

〉
∼ |t|−2∆O . (3.51)

We can find its value at the fixed point theory described by SF.P. (See Appendix A). Its

value is

∆O =
1

2

∑
i,j,α

mimjΛiαΛjα. (3.52)

where the transformation φi = Λiαφ̃α diagonalizes SF.P.. Now, by a simple counting of

scaling dimensions and considering Eq. 3.47, we can find the scaling dimension of W

[W ] = 2∆− 3. (3.53)

This implies that the renormalization group (RG) equation to linear order near the SF.P.

fixed point is

− dW

d ln Λ
= (3− 2∆)W, (3.54)

with Λ being the momentum scale. Therefore, for ∆ > 3/2 the tunneling strength W is

irrelevant at low momenta/low energies, and we can treat the tunneling term Stunneling in

perturbation theory. On the other hand, when ∆ > 3/2 the tunneling strength W becomes

relevant at low energies and the theory described by SF.P. + Stunneling is no longer a good

starting point for the study of the low energy physics. For certain edge theories, there

exists emergent fixed points know as the disordered fixed points which could be written as

a simple quadratic theory of chiral bosons, similar to SF.P. [93]. These fixed point theories
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will be useful in describing the edge theory of the anti–Pfaffian state that we will describe

in chapter 5.

3.4.3 Disordered fixed point

The disordered fixed point was introduced by Kane, Fisher and Polchinski [93] in

order to analyze the low energy physics of the edge of FQHE at filling fraction ν = 2/3.

In the absence of edge reconstruction [89–91, 94], the edge of this Hall state consists of a

ν1 = 1 downstream (η1 = 1) chiral boson φ1 and a ν2 = 1/3 upstream (η2 = −1) chiral

boson φ2. Considering the most relevant tunneling term, the action for the Hall bar edge

is S = SF.P. + Stunn. with

S0 = − 1

4π

∫
t,x

[ 2∑
i=1

νi∂xφi(ηi∂tφi + vi∂xφi) + 2v12∂xφ1∂xφ2

]
, (3.55a)

Stunn. = −
∫
t,x

[
ξ(x) ei(φ1+3φ2) +h.c.

]
, ξ(x)ξ∗(x′) = Wδ(x− x′). (3.55b)

In order to identify the disordered fixed point, we write this theory in terms of the charge

mode and the neutral mode. The total charge mode is φρ =
√

3
2(φ1 +φ2) while the neutral

mode is φσ = 1√
2
(φ1 + 3φ2). In this basis, we have S = Sσ + Sρ + Sσρ with

Sρ = − 1

4π

∫
t,x

[∂xφρ(∂tφρ + vρ∂xφρ)] (3.56a)

Sσ = Sσ,0 + Stunn. (3.56b)

Sσ,0 = − 1

4π

∫
t,x

[∂xφσ(ησ∂tφσ + vσ∂xφσ] , (3.56c)

Stunn. = −
∫
t,x

[
ξ(x) ei

√
2φσ +h.c.

]
(3.56d)

Sρσ = − 1

4π
vρσ

∫
t,x

[∂xφρ∂xφσ)] (3.56e)
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where ησ = −1. When ∆, the scaling dimension of ei(φ1+3φ2), is smaller than 3/2 the edge

is driven out of the free fixed point (described by S0) to a new fixed point where vρσ = 0.

In order to see this, first note that at vρσ = 0 the neutral and charge modes are decoupled.

Also it is easy to see that ∆ = 1 (See Appendix A). As a result, the operators ∂xφσ, ei
√

2φσ

and e−i
√

2φσ all have scaling dimension one and therefore, form the generators for an su(2)1

algebra. More specifically, the current operators (a is the short–distance cutoff) [92, 95, 96]

Jx =
1

2πa
cos(
√

2φσ) (3.57a)

Jy =
1

2πa
sin(
√

2φσ) (3.57b)

Jz =
1

2π
√

2
∂xφσ (3.57c)

satisfy a su(2)1 current algebra as

[
Ja(x), Jb(x′)

]
= − i

4π
ησδ

ab∂xδ(x− x′) + iεabcJc(x)δ(x− x′). (3.58)

We can use this fact to write the action of the neutral mode Sσ in Eq. 3.56 as a free theory.

In terms of the currents 3.57, the Hamiltonian of the neutral field is

Hσ =

∫
dx

[
2πvσ

3
J2 + 2ξaJa

]
, (3.59)

with

J2 = (Jx)2 + (Jy)2 + (Jz)2 (3.60a)

ξ =
(ξ + ξ∗

2
,
ξ − ξ∗

2i
, 0
)
. (3.60b)

Now, note that the algebra Eq. 3.58 is preserved under the SO(3) gauge transformation

Ja(x) = Oab(x)J̃b(x) + ha(x), hc(x) =
1

8π
εabc(O(x)∂xO

T )ab. (3.61)
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This means the currents J̃b satisfy the same algebra as Ja. The Hamiltonian of the neutral

mode Hσ is invariant (up to inconsequential additive constants) under this gauge transfor-

mation, provided the disorder transforms as

ξa(x)→ ξ̃a(x) =

(
ξb(x) +

2πvσ
3

hb
)
Oba. (3.62)

We can require ξ̃(x) = 0 in order to eliminate the tunneling term from Hσ. This amounts

to the specific choice of Oab

O(x) = S(x, x0)O(x0), S(x, x0) ≡ Pxe
6
vσ

∫ x
x0

dx′ ξ(x′).L
. (3.63)

O(x0) is an arbitrary SO(3) rotation, Px is the path ordering operator putting operators

with larger x to the left, and La, a = x, y, z are the three generators of SO(3). After this

transformation we express the currents J̃a in terms of a new bosonic field φ̃σ, similar to

3.57. In terms of φ̃σ

Hσ =
vσ
4π

∫
dx(∂xφ̃)2. (3.64)

Therefore, the resulting action for the whole edge theory is S = Sσ + Sρ + Sσρ

with

Sρ = − 1

4π

∫
t,x

[∂xφρ(∂tφρ + vρ∂xφρ)] (3.65a)

Sσ = − 1

4π

∫
t,x

[
∂xφ̃σ(∂tφ̃σ + ησvσ∂xφ̃σ

]
(3.65b)

Sρσ = −2vρσ
4π

∫
t,x

∂xφρ

(√
2

a
Ozx cos(

√
2φ̃σ) +

√
2

a
Ozy sin(

√
2φ̃σ) +Ozz∂xφ̃σ

)
. (3.65c)

Here, we also used the following transformation in order to eliminate the term proportional

to hz(x):

φρ(x, t)→ φρ(x, t) + 2
√

2π
vρσ
vρ

∫ x

−∞
dx hz(x). (3.66)
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Sσ+Sρ describes the disordered fixed point that we promised; a free theory around

which we can analyze the effect of Sρσ and possibly other interaction terms. In order to see

the effect of Sρσ, first write (we use J̃a only as a shorthand here)

Sρσ = − 1

2π

∫
t,x
∂xφρ(ξσ.J̃(x)), ξaσ ≡ 2π

√
2vρσO

za(x). (3.67)

Since ξ(x) is a quenched (time–independent) random field, so is the field ξaσ(x). The auto–

correlation of this field decays on the length scale ∼ v2
σ/W . We can see this by looking at

the solution Eq. 3.63 and considering 3.47. This decay of auto–correlation of ξσ(x) renders

Sρσ irrelevant on length scales larger than v2
σ/W . Assuming v2

σ/W is small enough, for

simplicity we take ξaσ to have Gaussian correlation ξaσ(x)ξbσ(x′) = δabWσδ(x − x′) where

Wσ ≈ 8π2v2
ρσv

2
σ/W . Dimensional analysis shows that the scaling dimension of the coupling

Wσ is 1 so that the interaction term Sρσ is irrelevant at low energies, about the disordered

fixed point.

Therefore, for the edge theory of FQHE at ν = 2/3 we have a line of fixed points

when ∆ > 3/2 described by S0 and a fixed point at ∆ = 1 described by Sσ + Sρ. An RG

analysis around ∆ = 3/2 [93] suggests that the ∆ = 1 point is the attractive fixed point for

all ∆ < 3/2.

This analysis can be generalized to all the states in the Jain series with filling

fractions ν = n/(pn + 1) [92] (p is an even integer. See section 2.3.3). In this case, the

edge theory possesses an emergent SU(n) symmetry. We can readily see this for the simple

case of p = 0 i.e. the integer QHE at ν = n. In this case we have n chiral bosons with

∀i : ηi = νi = 1. The most relevant tunnelings are of the form Oij = ei(φi−φj). The total

charge mode along the edge is φρ = (
∑

i φi)/
√
ν while we can define the n−1 neutral modes
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as

φσm =
∑
j

Dm
jjφj , (3.68)

where Dm for m = 1, ..., n − 1 are the diagonal generators of the su(n) algebra. The

diagonal entries of Dm starting from the top are m ones, then one −m and the rest zero.

Now, the neutral density operators ∂xφσm form the n − 1 mutually commuting generators

of the current algebra su(n)1 (its Cartan sub–algebra). Then, the n(n− 1) raising/lowering

operators are defined as

i 6= j : J ij ∼ ei(φi−φj) . (3.69)

Overall, the density operators and the raising/lowering operators constitute the n2−1 gen-

erators of the su(n)1 current algebra. This emergent symmetry can be used to eliminate the

tunneling terms ei(φi−φj) from the action. Therefore, we find a quadratic theory describing

the disordered fixed point at which the scaling dimension of the tunneling operators are

∆Oij = 1.
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Chapter 4

Transport in quantum Hall states

In this chapter, we derive the kinetic equations that describe the low–temperature

dc transport of charge and heat along the edge of a quantum Hall state. Ultimately, we

are interested in setting up a machinery that allows us to find the two–terminal electrical

and thermal conductance of a quantum Hall state. However, these methods can be readily

used to study other transport phenomena in quantum Hall states. These might include

finding the multi–terminal Hall conductance [92, 97] or investigations of equilibration in

more complex geometries [98–100].

An example of a setup that we are interested in is shown in Fig. 4.1. It represents

a quantum Hall bar at filling fraction ν = 2/3 and two contacts that are used to measure

the two–terminal Hall electrical and thermal Hall conductance. The left and right edges of

the Hall bar are coupled to leads held at chemical potentials µL and µR and temperatures

TL and TR, respectively. The two edge modes carry charge and heat along the edge and

result in a net charge and heat current from one contact to the other. These net currents
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depend on the edge structure of the Hall bar (i.e. the filling fraction of the edge modes, their

chiralities and their central charges) as well as on the interactions between the modes that

equilibrate charge and heat. The universal conductance values that are usually measured

in quantum Hall states are the result of effective equilibration of the edge modes. The

universal value of the electrical conductance of a quantum Hall plateau at filling fraction ν

is G = νe2/h while the universal value of the thermal conductance is K = c
π2k2

B
3h T where c

is the chiral central charge of the edge theory. In this chapter, we will discuss these values

and the conditions under which such values are measured.

In section 4.1 we consider the simplest situation when no equilibration occurs

between the edge modes. Then in section 4.2 we present a phenomenological description of

equilibration and what we expect to happen when the edge modes equilibrate. In section

4.3, we study how the microscopic interactions between the modes drive the equilibration

of charge and heat and then derive the kinetic equations describing the hydrodynamic

transport of charge and heat. Our derivation is the generalization of the previous studies

[92, 101–104] to multiple number of edge modes. Also, we will discuss how the equilibration

of charge and heat are related and we highlight the dependence of the kinetic equations on

the low–temperature fixed point of the edge theory. In section 4.6, we will apply these results

to transport in the quantum Hall plateau at filling fraction ν = 5/2 and discuss electrical

and thermal conductance in some candidate states for this Hall plateau. The detailed

application the kinetic equations to the anti–Pfaffian edge theory will be the subject of

chapter 6.

Throughout this chapter we use the system of units where e = ~ = kB = 1 unless
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explicitly mentioned otherwise.

µL

TL

µR

TR

ν = 2
3 quantum Hall bar

ν2 = 1/3 mode

ν1 = 1 mode

Figure 4.1: Schematic geometry for the measurement of two–terminal Hall conductance of

quantum Hall state at filling fraction ν = 2/3. The two counter–propagating modes ( red

and green directed lines) of the edge theory of ν = 2/3 QHE are shown (See section 3.4.3).

The wiggly lines represent tunnelings from the contacts to the edge modes along left and

right line junctions.

4.1 Transport without equilibration

4.1.1 Charge transport

As we discussed in 3.1, the charge density fluctuations along the edge of a quan-

tum Hall state are described by chiral bosonic modes φ that carry charge density n(x) =

1
2π∂xφ(x). Indeed, starting from the Lagrangian Eq. 3.21 we can view the charge conserva-

tion as the result of the shift symmetry (c is a constant)

L(φ(x) + c) = L(φ(x)) (4.1)
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and the Noether’s theorem. Applying Neother’s theorem to the Lagrangian of Eq. 3.21 we

find the conservation law

∂tn(x, t) + ∂xI(x, t) = 0 (4.2)

with charge current operator

I(x) = − 1

2π
∂tφ(x). (4.3)

In the absence of any tunneling between the edge modes, the current in each mode

is separately conserved. Therefore, to find the electrical conductance we can simply add

up the contributions from the different modes. Focusing on only one edge mode, we first

calculate the charge current along the Hall bar in a setup similar to Fig. 4.1. We can do

this using the Kubo formula [103, 105]. Assume we bias the edge with electrical potential

µ(x, t). The perturbed Hamiltonian is

H =

∫
dx

[
v

4πν
∂xφ(x)2 − µ(x)

1

2π
∂xφ(x)

]
. (4.4)

Kubo formula for calculating the effect of µ(x, t) on the electrical current, to linear order is

I(x, t) ≡
〈
Î(x, t)

〉
= −i

∫
dx′
∫ t

−∞
dt′
〈

[− 1

2π
∂tφ(x, t),− 1

2π
∂xφ(x, t)]

〉
µ(x, t). (4.5)

It is most convenient to find the above correlation function using the imaginary time Mat-

subara formalism where t = −iτ and ω+ iδ → iωn (ωn = 2πn/β, n ∈ Z are the Matsubara

frequencies and β = 1/kBT ). In the frequency domain we have:

I(x, iωn) = i

∫
dx′
∫ β

0
dτ eiωnτ 〈T∂τφ(x,−iτ), ∂xφ(x,−iτ)〉µ(x, iωn). (4.6)

Using the Green functions introduced in Appendix A and after a few steps we find

I(x, iωn) =
ηωn
2πv

∫
dx′ e−ωnη(x−x′)/v θ(η(x− x′))µ(x′, iωn). (4.7)
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We can observe the chiral nature of the edge mode in this expression: for a downstream edge

mode with η = 1 (upstream edge mode with η = −1), the current at point x only depends

on the applied voltage in the region x′ < x (x′ > x). In order to apply this expression to

the two–terminal geometry, consider the voltage

µ(x′, iωn) =



µL x′ < 0

µR x′ > L

0 0 < x′ < L.

(4.8)

We find 
η = 1 : I(x, iωn) = ν

2πµL e−ωnx/v

η = −1 : I(x, iωn) = − ν
2πµR eωn(x−L)/v

. (4.9)

Now, an issue comes up when we want to find the DC current (iωn = 0) far away from the

contacts at x′ < 0, x′ > L. We have to take two limits: iωn → 0 and x → ∞ for η = 1

((L − x) → ∞ for η = −1). The order of taking these two limits would change the final

result. This issue has been discussed before [38, 77, 106]. The resolution is that one should

take the limit iωn → 0 first, in order the get the correct result for the Hall conductance.

Doing so we find

I(x, iωn = 0) =


ν
2πµL η = 1

− ν
2πµR η = −1

. (4.10)

Therefore in a two–terminal setup (Fig. 4.1) a downstream (upstream) edge mode carries

the electrical currents ν
2πµL (− ν

2πµR) along the top edge and the current ν
2πµR (− ν

2πµL)

along the bottom edge. Note that we take the clockwise direction to be positive. Therefore,
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the total current transported from the left contact to the right contact is

Itotal =
ν

2π
(µL − µR) (4.11)

irrespective of the chirality. This merely represents the fact that negative charges move

from lower potentials to higher potentials. The two–terminal conductance of a single edge

mode with filling fraction ν and chirality η is

Gsingle mode =
(µL − µR)

Itotal
=

ν

2π
. (4.12)

If the quantum Hall bar consists of N non–interacting edge modes with filling

fraction νi and chiralities ηi, the two–terminal electrical conductance is the sum of the

contributions from each mode:

G =
∑
i

Gi =
1

2π

N∑
i=1

νi. (4.13)

Unless all the edge modes propagate in the same direction, this is not a result that is

observed in the measurements of electrical conductance. Instead the experiments measure

the conductance

G =
1

2π
ν =

1

2π
|
N∑
i=1

ηiνi|. (4.14)

In order to explain the experiments we need to include the effects of the interactions between

edge modes and their effect on the equilibration.

4.1.2 Heat transport

Heat or thermal currents are also conserved due to the time translation symmetry

of the edge theory (Lagrangian Eq. 3.21 for a chiral boson and Eq. 3.29b for a Majorana
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mode). Using Noether’s theorem we can identify the heat/energy densityH and heat current

JQ which satisfy the conservation equation

∂tH(x, t) + ∂xJ
Q(x, t) = 0. (4.15)

For a single bosonic edge mode with filling fraction ν and chirality η

H(x) =
v

4πν
(∂xφ(x))2 , (4.16)

JQ(x) =
η

4πν
(∂tφ(x))2 , (4.17)

while for a Majorana fermion of chirality η

H(x) =
iηu

4
ψ(x)∂xψ(x), (4.18)

JQ(x) = − iηu
4
ψ(x)∂tψ(x). (4.19)

The edge modes carry heat only if they are at finite temperature. Temperature

is not exactly an external field that we can simply add its contribution by adding a term

to the Hamiltonian. Therefore, it is not immediately obvious how one can use the Kubo

formula for calculating the heat current. However, as was suggested by Luttinger, one can

indeed treat the temperature as an external field that couples to the stress–energy tensor

[105, 107, 108]. This basically renders a temperature field as equivalent to a gravitational

field.

Although, it is possible to use the Kubo formula for finding the heat current, we

can use a simpler approach when dealing with quantum Hall states, following Ref. [38]. A

chiral edge mode with velocity v and chirality η at momentum k carries the energy Ek = ηvk

(~ = 1). Also, in thermal equilibrium at temperature T the number of bosons at energy
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Ek is given by the Bose–Einstein distribution for the chiral bosons and by the Fermi–Dirac

distribution for the Majorana fermions. Therefore, we can simply add the expectation value

of the energy for each momentum to get the total energy. For a chiral boson in a system of

size L we have (See Eq. A.6. We use the units where kB = ~ = 1)

〈Hφ〉 =
∑
ηk>0

ηvk
〈
b†kbk

〉
=

L

2π

∫
ηk>0

dk
ηvk

eηvk/T −1
=
Lπ

6v

T 2

2
, (4.20)

While for a Majorana fermion

〈Hψ〉 =
∑
ηk>0

ηvk
〈
ψ†kψk

〉
=

L

2π

∫
ηk>0

dk
ηvk

eηvk/T +1
=
Lπ

12v

T 2

2
. (4.21)

Therefore, we can write the energy density generally as

H = c
π

6v

T 2

2
, (4.22)

where c is the central charge of the edge mode: c = 1 for bosons and c = 1/2 for Majorana

fermions. For chiral modes, the energy current is related to the energy density simply as

JQ = ηvH = ηc
π

6

T 2

2
. (4.23)

We define the coefficient κ0 = π/6. In SI units it is κ0 = π2k2
B/3h.

Now, assuming there are no interactions between the edge modes, we can find the

total heat current carried in a two–terminal setup. Similar to the previous section, we find

the total current carried by N edge modes

JQtotal =
κ0

2
(

N∑
i=1

ci)
(
T 2
L − T 2

R

)
. (4.24)

Therefore, for small temperature differences (|TR − TL| � TL/R), the thermal Hall conduc-

tance is

K =
TL − TR
JQtotal

= κ0T̄ (

N∑
i=1

ci), (4.25)
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with the average temperature T̄ = (TL + TR)/2. Experimental measurements of thermal

Hall conductance are a relatively new achievement [37, 44]. The results that has been

gathered so far contradict the above expression for K. Kane and Fisher [38] predicted that

the thermal conductance is indeed quantized but with the value

K =
TL − TR
JQtotal

= κ0T̄
∣∣∣ N∑
i=1

ηici

∣∣∣. (4.26)

This is the result when the edge modes are fully equilibrated with each other. Indeed,

for the quantum Hall states for which the ground state is well known, the experimental

measurements are very close to the fully equilibrated prediction. On the other hand, there

are quantum Hall plateaus for which there is not a unanimous agreement on what ground

state is realized in experimental conditions. The most notable of such states is the quantum

Hall system at filling fraction ν = 5/2. We will discuss the transport characteristics of some

candidates for this state in section 4.6.

4.2 Equilibration: phenomenology

When we add tunneling between the edge modes, the charge and energy on any

individual edge is no longer conserved, and we need to modify the conservation equations

4.2 and 4.15. To start with a simple setup, consider two bosonic edge modes φ1 and φ2

that interact only through an impurity at x = x0 along the edge. First, we look at charge

equilibration. The impurity at x0 drives a tunneling current Itunneling from mode φ1 to

mode φ2. At the phenomenological level, we can write the DC (static) tunneling term using
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the Ohm’s law as

Itunneling = G (µ2(x0)− µ1(x0)) , (4.27)

where µi is the electrical potential of edge mode φi and G > 0 is the conductance of the

impurity and its value depends on the strength of tunnelings at x = x0. The conservation

of total charge current along the edge implies

I1(x0 + δx)− I1(x0 − δx) = −I2(x0 + δx) + I1(x0 − δx) = Itunneling, (4.28)

where δx represents a small distance along the edge. Combined with 4.27

∆I1(x0) ≡ I1(x0 + δx)− I1(x0 − δx) = G (µ2(x0)− µ1(x0)) (4.29a)

∆I2(x0) ≡ I2(x0 + δx)− I2(x0 − δx) = −G (µ2(x0)− µ1(x0)) . (4.29b)

In addition, assuming local equilibrium we can use the result of section 4.1.1 and relate the

local charge current Ii(x) to the local potential µi(x) as:

Ii(x) =
ηiνi
2π

µi(x). (4.30)

Using this, we can solve Eq. 4.29 to find the outgoing currents Ii(x0 + δx) in terms of the

incoming currents Ii(x0 − δx):I1(x0 + δx)

I2(x0 + δx)

 =
G

σ0

1− η1

ν1

η2

ν2

η1

ν1
1− η2

ν2


I1(x0 − δx)

I2(x0 − δx)

 . (4.31)

If instead of a single impurity there exists tunnelings across all the edge, we can

write down a similar set of equations but in the differential form

∂xI1(x) = g (µ2(x)− µ1(x)) (4.32a)

∂xI2(x) = −g (µ2(x)− µ1(x)) , (4.32b)
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where now g > 0 represents conductance coefficient per unit length. Note that these

equations are the modification of conservation law Eq. 4.2: the conservation law of an

independent edge mode φi, in frequency space (Fourier transform of time) is

−iωni(x, ω) + ∂xIi(x, ω) = 0. (4.33)

So, in the DC limit ω = 0 we should have ∂xIi(x, ω = 0) = 0.

Along with Eq. 4.30 we can solve the kinetic equations 4.32 along the edge of the

quantum Hall bar in order to find the total current carried along the edge. We will explain

the calculation in more details in section 4.5.

In a two–terminal setup similar to Fig. 4.1, when the two edge modes are co–

propagating, they are populated at the same contact, and so they always have the same

voltage. This means no effective current is transferred between them. In this case, we can

just use the results of section 4.1 to find

G =
1

2π
(ν1 + ν2). (4.34)

On the other hand, when the modes are counter–propagating (η1η2 = −1) they are bi-

ased differently at the two terminals and therefore they exchange charge according to Eq.

4.32. By solving this equation we find the two–terminal electrical conductance (ν1 6= ν2 is

assumed)

G =
ν1 + ν2 e−g̃L

ν1 − ν2 e−g̃L
(ν1 − ν2)

2π
, g̃ =

ν1 − ν2

ν2ν1
g. (4.35)

L is the length of the top and bottom edge in the setup of Fig. 4.1. When gL is very small,

the tunneling is not effective in equilibrating the edge modes, and we recover the result of
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the previous section

G =
ν1 + ν2

2π
. (4.36)

In the other limit where gL� 1 the equilibration is effective, and we find

G =
|ν1 − ν2|

2π
, (4.37)

a result that agrees with the experimental measurement of conductance in Hall plateaus [2,

16].

A similar discussion can be used for the heat transport: tunneling between the

edge modes transfers heat current between them. On average there will be a net heat

current jQtunneling between the modes provided they are at different temperatures. Looking

at the example of two edge modes, the heat current jQtunneling due to an impurity–induced

tunneling at x0 is related to the temperature difference, to linear order, as

jQtunneling(x0) = GQ
(
T 2

2 (x0)− T 2
1 (x0)

2

)
. (4.38)

The positive heat conductance coefficient GQ depends on the strength of the tunneling and

could potentially depend on the temperature as well. This phenomenological expression is

known as the Newton’s law or Fourier’s law of cooling. In the continuum limit of many

impurities we get

∂xJ
Q
1 (x) = gQ

(
T 2

2 (x0)− T 2
1 (x0)

2

)
(4.39)

∂xJ
Q
2 (x) = −gQ

(
T 2

2 (x0)− T 2
1 (x0)

2

)
. (4.40)

Assuming local equilibrium, heat currents JQi (x) and local temperatures Ti(x) are related

as Eq. 4.23. We can use this to solve equations 4.39. For two co–propagating modes with
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central charges c1 and c2 we find in a two–terminal setup we find

K = (c1 + c2)κ0T. (4.41)

On the other hand, for two counter–propagating we find

K =
c1 + c2 e−g̃

QL

c1 − c2 e−g̃QL
(c1 − c2)

2π
, g̃Q =

c1 − c2

c2c1
g. (4.42)

For ineffective equilibration g̃QL � 1 we have K = (c1 + c2)κ0T while for effective equili-

bration g̃QL� 1 have K = |c1 − c2|κ0T

The kinetic equations that we discuss in this chapter are the derivation of the

equations such as Eq. 4.32 and Eq. 4.39 starting from the low–energy field theory of a

quantum Hall edge described in chapter 3.

4.3 Kinetic equations

In this section, we derive the kinetic equations for a hierarchical FQH state. The

field theory for the edge of such states were described in section 3.2. We include the short–

ranged Coulomb interaction and the tunneling interactions between the different edge modes

and discuss their effect on the equilibration along the edge.

Consider a hierarchical quantum Hall state with edge modes at filling fractions νi

for i = 1, . . . , N . The action for the chiral boson edge modes φi is Sedge = S0 + Stunneling

where

S0 = − 1

4π

∫
t,x

∑
i

1

νi
∂xφi(ηi∂tφi + vi∂xφi) +

∑
i 6=j

vij∂xφi∂xφj

 , (4.43a)

Stunneling = −
∫
t,x

∑
p∈P

[
ξp(x) ei

∑N
j m

(p)
j φj +h.c.

]
. (4.43b)
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To recap from the previous chapter, vij parameterizes the short–ranged Coulomb interaction

coupling the edge–mode charge densities 1
2π∂xφi; the velocities vi are non–negative;

∫
t,x =∫

dtdx; P is the set of charge–conserving processes that tunnel νjm
(p)
j electrons/bosons

between the edge channels; and ξp is a Gaussian random field with statistical average

ξp(x)ξ∗p′(x
′) = δpp′Wpδ(x − x′). To study the transport properties of Sedge it is convenient

to diagonalize S0 using the transformation φi = Λiαφ̃α (summation over repeated indices

are implied):

S0 = − 1

4π

∫
t,x

[∑
α

∂xφ̃α(η̃α∂tφ̃α − ṽα∂xφ̃α)

]
. (4.44)

This transformation is of the form Λiα =
√
νiΛ̃iα where Λ̃iα satisfies Λ̃T ηΛ̃ = η̃ (ηij = δijηi,

η̃αβ = δαβ η̃α). Throughout the rest of this thesis, we will use Latin indices i, j for the

fractional modes and Greek indices α, β, γ for the bosonic modes that diagonalize the action.

The action S0 describes a set of non–interacting edge modes φ̃α. Therefore, trans-

port in the absence of any tunneling between the modes can be treated similar to section

4.1. This will result in the same result as the non–interacting edge: electrical conductance

is given by Eq. 4.13 while the thermal conductance is given by Eq. 4.25. Therefore, it is

necessary to include the tunneling interactions Stunneling in order to explain the universal

transport results Eq. 4.14 and 4.26.

To understand the effect of the tunnelings, we first need to check whether they

change the low–energy physics or not. In other words, we need to check whether the

tunneling strengths Wp are relevant. The leading order renormalization group equation for

Wp is

− dWp

d ln Λ
= (3− 2∆p)Wp (4.45)
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with ∆p the scaling dimension of the tunneling operator Op = ei
∑
j m

(p)
j φj = ei

∑
j,αm

(p)
j Λjαφ̃α

(See Eq. 3.52). When all tunneling operators appearing in Stunneling are irrelevant, ∆p >
3
2 ,

the fixed point action is S0. At zero temperature, the currents Ĩα = − 1
2π∂tφ̃α and J̃α(x) =

ηα
4π (∂tφ̃α)2 (no sum over α) associated to each mode are separately conserved. In particular,

the static components of these currents satisfy for each α,

∂xĨα(x, ω = 0) = 0, (4.46)

∂xJ̃α(x, ω = 0) = 0. (4.47)

At low temperatures, the irrelevant terms in Stunneling perturbatively correct these conser-

vation equations to allow equilibration between the different edge channels.

On the other hand, If any of the tunneling operators in Stunneling is relevant,

∆p ≤ 3
2 , we have to determine the resulting low–energy fixed point in order to derive the

appropriate transport equations. In some cases, those tunneling terms could drive the edge

towards a disordered fixed point (See section 3.4.3). These situations should be treated

on the case by case basis. However, through the study of the disordered fixed point of

the FQHE at filling fraction ν = 2 (section 4.4) and the anti–Pfaffian state at ν = 5/2

(chapter 6), we find that there exists a similar set of conserved charge and heat currents,

and we can treat the leading irrelevant terms (with respect to the corresponding disordered

fixed point) perturbatively. The difference compared to a clean fixed point lies in the set

of processes that drive inter–mode equilibration and the details of the expressions of the

kinetic equations.

In the rest of this section, we derive the kinetic equations for charge and heat.

Although we demonstrate the concepts using the clean fixed point theory S0, similar dis-
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cussions can be made about the disordered fixed points.

4.3.1 Charge transport

We calculate how the conservation equation 4.2 changes when we include the

tunneling interactions Stunneling. Clearly, the charge is no longer conserved when charge

density and charge current are defined as

ñα =
1

2π
∂xφ̃α, Ĩα = − 1

2π
∂tφ̃α. (4.48)

Instead we take ñα to have the above form, but define Ĩα such that the conservation law

Eq. 4.2 is valid. This means we define Ĩα by

−∂xĨα(x, t) ≡ ∂tñα(x, t). (4.49)

To understand the physics of equilibration, we first consider the discretization of

Stunneling: instead of the continuous disorder fields ξp(x) we assume there exists a series of

impurities at discrete positions xn = n∆x, n ∈ Z [101]. So, the tunneling Hamiltonian is

Htunneling =

∫
t

∑
n

∑
p∈P

[
ξp(xn) ei

∑N
j m

(p)
j φj(xn) +h.c.

]
. (4.50)

Also, the Hamiltonian term corresponding to S0 of Eq. 4.44 is

H0 =
1

4π

∫
x

[∑
α

ṽα(∂xφ̃α)2

]
. (4.51)

As we discussed in section 4.2, at a point xn along the edge there exists a net tunneling

current between the modes only when the modes have different chemical potentials at xn.

Let’s denote by µ̃α(x) the local chemical potential of the mode φ̃α. Since the charge current

Ĩα(x) changes along the edge due to tunneling, so does the chemical potential µ̃α(x). We
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relate these two quantities as follows: assume we know Ĩα(x) and µ̃α(x) at x = x0 − dx for

all α (dx is an infinitesimal distance). For example x0 − dx could be in the contact regions

which we know their chemical potentials. We use can use this to find the tunneling current

between all the modes at x0 (described below), and consequently Ĩα(x0 + dx). Then, we

assume the mode φ̃α comes to local equilibrium before the next tunneling at x = x1 − dx.

This implies we can use an expression similar to Eq. 4.10 and write

Ĩα(x1 − dx) =
1

2π
η̃αµ̃α(x1 − dx). (4.52)

Therefore, we know the chemical potentials during the tunneling at x1 and so we can find the

tunneling current. We can continue this process for all n’s and find the charge currents Ĩα(x)

along the edge. This is the setup and the assumptions that we have in mind whenever we

write down the kinetic equations. In practice, including the variation in chemical potential

is done as follows: add the bias term

Hµ = − 1

2π

∫
dx

∑
α

µ̃α∂xφ̃α (4.53)

to the Hamiltonian. Assuming µ̃α is constant on the scale ∆x, we find the tunneling currents

at all points xn along the edge. This result depends on µ̃α. Then we relate the currents

and the chemical potentials as Eq. 4.52 and solve the for Ĩα(x).

Now, in order to actually find the tunneling currents, we continue from Eq. 4.49

and use the Heisenberg’s equation of motion for ñα to write

−∂xĨα(x, t) = ∂tñα(x, t) =− i[H0 +Htunneling, ñα(x, t)]

=− η̃αṽα∂xñα(x, t)− i[Htunneling, ñα(x, t)]. (4.54)
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The first term represents the propagation of the density wave ñα(x, t) along the edge while

the second term represents change in charge density due to tunneling. Since the current Ĩα

varies along the edge, so does ñα and so the first term in the above equation is non–zero.

However, we are interested in DC transport. In this case, assuming the second term is small

enough, the change in Ĩα is also small. And since Ĩα and ñα are related as

Ĩα(x) = η̃αṽαñα(x) (4.55)

between the impurities, the change in ñα is also small, and we can drop the first term in

the first order approximation.

At the end, we are interested in the expectation value of the tunneling currents.

Taking all the above into account, we need to find

−∂x
〈
Ĩα(x, t)

〉
ρH0

= −i 〈[Htunneling, ñα(x, t)]〉ρH0
, (4.56)

where ρH0 means the expectation value is taken in the thermal ensemble ρH0 ∼ e−H0/T at

temperature T . In practice, we find these expectation values using the Keldysh technique

[109–112] to first order approximation in Wp. The details of the derivations are carried out

in Appendix C.1. In the ohmic regime µ̃α � T we find (See Eq. (C.16)):

∂x

〈
Ĩα(x)

〉
= −σ0η̃α

∑
p∈P

gp(∑
i

m
(p)
i Λiα)

∑
j

η̃βm
(p)
j Λjβµ̃β(x)

 , gp ∝WpT
2∆p−2.

(4.57)

Following Eq. 4.52 we have
〈
Ĩα(x)

〉
= η̃ασ0µ̃α(x). These equations are more transparent

physically in the original basis where Ii = ΛiαĨα and µ̃α = µiΛiα:

∂x 〈Ii(x)〉 = −η̃iνi
∑
p∈P

gpm
(p)
i

(∑


m
(p)
j 〈Ij(x)〉

)
(4.58)
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or in matrix form (dropping expectation value signs),

∂xI = GeI, (4.59a)

Geij = −ηiνi
∑
p∈P

gpm
(p)
i m

(p)
j . (4.59b)

These equations constitute the kinetic equations for dc charge transport about the S0 fixed

point. Equilibration of charge is parameterized by the charge matrix Geij .

4.3.2 Heat transport

Following a similar process, we can find the heat tunneling currents between the

different edge modes. The conservation of heat implies

−∂xJ̃Qα (x, t) = ∂tHα(x, t) = −i[H,Hα(x, t)], (4.60)

where the energy density is

Hα(x) =
ṽα
4π

(∂xφ̃α)2. (4.61)

Since we are interested in these tunneling currents to linear order, we can ignore the variation

of chemical potential along the edge. Therefore, we use the HamiltonianH = H0+Htunneling.

Assuming small variations in J̃Qα (x) along the edge we can ignore [H0,Hα(x, t)] in Eq. 4.60

(See the discussion after Eq. 4.54). Taking the expectation value

−∂x
〈
J̃Qα (x, t)

〉
ρH0

= −i 〈[Htunneling,Hα(x, t)]〉ρH0
. (4.62)

Here, we find the expectation values in the ensemble ρH0 ∼ e−
∑
αHα/Tα where Tα represents

the local temperature of mode φ̃α and Hα =
∫

dx Hα(x). We find these expectation values
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using the Keldysh technique. The details are relegated to Appendix C.2. To linear order in

(Tα − Tβ)/Tα, we find

∂x

〈
J̃α(x)

〉
= κ0

∑
β 6=α

gQαβ
T 2
β (x)− T 2

α(x)

2
, gQαβ =

∑
p∈P

gp
12d

(p)
α d

(p)
β

1 + 2∆p
. (4.63)

The constants d
(p)
α = 1

2(
∑

im
(p)
i Λiα)2. Similar to charge transport, the set of processes P

and conductivity coefficients gQαβ depend on the low–temperature fixed point of the theory.

Assuming local equilibrium we express the local currents J̃α(x) in terms of local tempera-

tures Tα(x) as (c̃α is the central charge of mode α—See Eq. 4.23)

〈
J̃α(x)

〉
=

1

2
κ0η̃αc̃αT

2
α(x). (4.64)

The resulting kinetic equations take the form (again dropping the expectation value signs):

∂xJ̃ = GQJ̃ , (4.65a)

GQαβ =
η̃β
c̃β

(gQαβ − δαβ
∑
γ

gQαγ). (4.65b)

Similar to the charge kinetic equations, equilibration of heat is controlled by GQαβ.

4.4 Edge–state transport at ν = 2

We now illustrate kinetic equations by looking at the case of QHE at ν = 2. The

reason that for choosing this state is two–fold: first, it is an example of a state where

the low–energy theory is a disordered fixed point. Therefore, we can demonstrate that

the kinetic equations can be written using a similar procedure as the clean fixed points

described in section 4.3. Second, it allows us to offer an alternative explanation for the
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large equilibration lengths reported in [98, 100]. This explanation will be relevant to our

study of the anti–Pfaffian edge–state theory and its transport in chapters 5 and 6.

Consider the action for the edge modes of the integer quantum Hall state at ν = 2.

Ignoring possible edge reconstruction, S = S0 + Stunneling:

S0 = − 1

4π

∫
t,x

[ 2∑
i=1

∂xφi(∂tφi + vi∂xφi) + 2v12∂xφ1∂xφ2

]
, (4.66a)

Stunneling = −
∫
t,x

[
ξ12(x) ei(φ1−φ2) +h.c.

]
, ξ12(x)ξ∗12(x′) = W12δ(x− x′). (4.66b)

Here, the most relevant tunneling term transfers a spin–up electron of the first edge channel

φ1 into a spin–down electron of the second edge channel φ2. Because ei(φ1−φ2) has scaling

dimension ∆12 = 1 (for any value of v12) and is therefore relevant, it drives the system to

an IR disordered fixed point (See section 3.4.3 for the discussion of disordered fixed points

and also Appendix B ). To identify this disordered fixed point, we first write the action S in

terms of the total charge mode φρ12 = 1√
2
(φ1 + φ2) and the spin mode φσ12 = 1√

2
(φ1 − φ2).

Then we use a gauge transformation similar to section 3.4.3 to eliminate the disordered

tunneling term. We can then write the action as S = S∆12=1 + Sint [92] with:

S∆12=1 = − 1

4π

∫
t,x

[∂xφρ12(∂tφρ12 + vρ12∂xφρ12)]− 1

4π

∫
t,x

[
∂xφ̃σ12(∂tφ̃σ12 + vσ12∂xφ̃σ12

]
,

(4.67a)

Sint = −2vσ12,ρ12

4π

∫
t,x

∂xφρ12

(√
2

a
Ozx cos(

√
2φ̃σ12) +

√
2

a
Ozy sin(

√
2φ̃σ12) +Ozz∂xφ̃σ12

)
,

(4.67b)

where φ̃σ12 is the gauge–transformed spin mode and

vρ12 =
v1 + v2

2
+ v12, vσ12 =

v1 + v2

2
− v12, vσ12,ρ12 =

v1 − v2

2
. (4.68)
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S∆12=1 describes the disordered fixed point about which Sint is irrelevant. The modes φρ12

and φ̃σ12 constitute the low–energy modes of this theory that we can use as the starting

point for writing down the kinetic equations. In particular, the conservation law for the

total charge density nρ12 = ∂xφρ/2π and the transformed spin density ñσ12 = ∂xφ̃σ12/2π is

−∂xIρ12 = ∂tnρ12 (4.69)

−∂xĨσ12 = ∂tñσ12 . (4.70)

Since the total charge is always conserved ∂xIρ12(x, ω = 0) = 0. On the other hand, the

interaction term Hint (corresponding to Sint) causes the spin current to decay along the

edge. We treat the effect of Hint similar to section 4.3.1 and write

−∂xĨσ12 = ∂tñσ12 = −i[Hint, ñσ12 ]. (4.71)

We find the expectation value of this expression in Appendix C.1.2. In the Ohmic regime

(Ĩσ12/σ0 � T ) we find (See Eq. C.29)

∂x

〈
Ĩσ12

〉
= −g

〈
Ĩσ12

〉
, g =

2v2
σ12,ρ12

T 2

3v2
ρ12
W12

. (4.72)

This simply represents the exponential decay of the spin current along the edge with equi-

libration length `eq = 1/g. In the linear regime we find it more convenient to express the

kinetic equation for Iρ12 and Ĩσ12 in terms of a basis similar to the original fractional modes.

We define the “slow” fractional basis as

I ′1 =
1√
2

(Iρ + Ĩσ) (4.73a)

I ′2 =
1√
2

(Iρ − Ĩσ). (4.73b)
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In this basis the kinetic equation is

∂x

I ′1(x)

I ′2(x)

 = Ge

I ′1(x)

I ′2(x)

 , with Ge = −g

 1 −1

−1 1

 . (4.74)

To write down the kinetic equation for the energy transport, define energy currents

as

∂xJ
Q
ρ12

= −∂tHρ12 , ∂xJ
Q
σ̃12

= −∂tHσ̃12 , (4.75)

where the energy densities are

Hρ12 =
1

4π
vρ12(∂xφρ12)2, Hσ̃12 =

1

4π
vσ12(∂xφ̃σ12)2. (4.76)

Heat currents JQρ12 and JQσ̃12
are conserved in the S∆12=1 theory, while they would decay if

the interaction Sint is included. Using Eq. C.39 and Eq. 4.23 we find

∂x

J
Q
ρ12

JQσ̃12

 = GQ

J
Q
ρ12

JQσ̃12

 , with GQ = −12

5
g

 1 −1

−1 1

 . (4.77)

Therefore, the equilibration length for heat is `Qeq = 5/12g, which is in the same order of

magnitude as the charge equilibration length.

4.4.1 Large equilibration length

Based on the expressions in Eq. 4.68 the conductivity coefficient is

g =
2T 2

3W12

(
v1 − v2

v1 + v2 + 2v12

)2

. (4.78)

Therefore, if |v1 − v2| � |v1 + v2 + 2v12|, g ≈ 0 and charge equilibration is weak. We can

write vi = v
(0)
i + w and v12 = w, where v

(0)
i > 0 parameterizes the edge confining potential
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and w > 0 is the magnitude of the short–ranged Coulomb interaction (see the discussion

following Eq. (5.5)). The above inequality translates to |v(0)
1 −v

(0)
2 | � |v

(0)
1 +v

(0)
2 +4w|. There

are two reasons why this inequality might be satisfied. (1) Based on the measurements of

the velocities of the charge φρ12 and neutral φσ12 modes [113, 114], we infer that v
(0)
i � w.

(2) If there exists approximate degeneracy between the spin–up and spin–down modes we

have v
(0)
1 ≈ v(0)

2 .

We can estimate |v(0)
1 − v

(0)
2 | using a simple model of the confining potential V (x).

Assume a potential of the form V (x) = Ax2 which is slowly varying on the scale of the

magnetic length. Then the velocity of mode φi in the absence of the short–ranged Coulomb

potential is (See Eq. 2.16)

v
(0)
i =

1

B
∂xV (x)|Ei+V (x)=EF =

√
2A(EF − Ei)

B
(4.79)

where B is the magnetic field, EF is the bulk Fermi energy, and Ei is the energy of the

Landau level corresponding to mode φi, deep within the bulk of the sample and away

from any defect. When EF sits in the middle of Landau levels EF − Ei ∼ ~ωc. From an

experimental study of equilibration between Landau level edge modes [98], we infer that

the Zeeman gap ∆EZ = E2 − E1 is much smaller than the cylotron gap ~ωc by about an

order of magnitude. Therefore, for the difference in velocities we can write

v
(0)
1 − v

(0)
2

(v
(0)
1 + v

(0)
2 )/2

≈ E2 − E1

2(EF − (E1 + E2)/2)
≈ ∆EZ

~ωc
(4.80)

and so |v(0)
1 − v

(0)
2 | is also much smaller than the typical (average) velocity (v

(0)
1 + v

(0)
2 )/2.

To summarize, these estimates show that the conductivity coefficient g between

the spin–up and spin–down modes can be small even in the strong tunneling (large W12)

regime.
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4.5 Electrical and thermal Hall conductance

The kinetic equations for the transport of charge Eq. 4.59 and heat 4.65 are linear

differential equations that we can easily solve, provided we specify the appropriate boundary

conditions. These boundary conditions are determined by the geometry of the transport

measurement and more specifically by how each edge mode is biased at the different contacts.

In this thesis, we are mostly interested in the two–terminal conductance measurements

following the results carried out by Banerjee et al. [37, 44]. The setup is similar to Fig. 4.1.

So, we need to determine the charge/heat current of an edge mode just as it

exits a contact region. Of course, this depends on how the edge modes interact with the

contacts which is hard to answer in general. Kane and Fisher [103] as well as Chamon and

Fradkin [97] analyzed the problem of equilibration of change between the edge modes and the

contacts, when the edge modes are themselves non–interacting or weakly interacting. The

summary of these studies is as follows: the measurement of the electrical Hall conductance

of a state at filling fraction ν results in the universal value G = νe2/h only if the contacts

are assumed ideal. In this case, an ideal contact means a contact that effectively equilibrates

an edge mode with its own chemical potential. Specifically, a mode bosonic mode φ carries

the charge current I = ηνσ0µc upon leaving the contact with chemical potential µc. These

studies Ref. [97, 103] also discuss the conditions under which the assumption of ideal

contacts are valid.

To our knowledge, there hasn’t been a generalization of these results that look at

either the equilibration of strongly–interacting modes (e.g. disordered fixed points) with

contacts or the heat equilibration of edge modes with contacts. These are indeed the cases
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that we are interested in. So, inspired by the studies mentioned above, we make similar

assumptions about the equilibration of charge and heat in the contact regions. These

assumptions are partly justified by the fact that they produce the correct results for the

electrical and thermal conductance.

Throughout our studies, we assume the contact c in Fig. 4.1 (c ∈ {L,R}) is “ideal”

in the following sense:

• A weakly interacting fractional mode φi carries charge current Ii = ηiνiσ0µc upon

leaving the c ∈ {L,R} contact region (this is the assumption justified in Ref. [97,

103])

• When a fractional edge mode φi is strongly interacting with other modes and is driven

to a disordered fixed point, we use the weakly interacting slow mode basis φ′′i similar

to Eq. 4.73. We then assume this edge mode carries charge current I ′i = ηiνiσ0µc

upon leaving the c ∈ {L,R} contact region.

• The mode φ̃α (refer to (4.44)) carries heat current J̃Qα = ηαcακ0
T 2
c
2 upon leaving

contact c.

Given these assumptions, we use the following procedure to calculate the elec-

trical and thermal conductances of the edge modes. In order to solve for the electrical

conductance, we first solve the linear differential equations in (4.59). Taking In to be

the eigenvectors of the matrix Ge with eigenvalue gn, the general solution to the charge

transport equations is

I(x) =
∑
n

anIn egnx (4.81)
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for arbitrary coefficients an. We then impose the above “ideal contact” boundary conditions

to determine the an for the top/bottom edges of the Hall bar. We use a similar procedure

to solve the heat transport equations (4.65). From these solutions we find the total charge

and heat currents moving along the top/bottom edge of the Hall bar:

Itotal, top/bottom =
∑
i

Ii(x), (4.82a)

JQtotal, top/bottom =
∑
α

J̃Qα (x), (4.82b)

where x is restricted to either the top/bottom edge of the Hall bar. In the case where some

modes are strongly mixed (for example the edge modes of the ν = 2 quantum Hall state

near the ∆12 = 1 fixed point, as described in section 4.4) we use the slow modes’ basis to

write

Itotal, top/bottom =
∑

i/∈strongly mixed

Ii(x) +
∑

i∈strongly mixed

I ′i(x). (4.83)

Note that this expression still represents the total charge current, since the gauge trans-

formations that eliminate the strong–disorder tunnelings (See appendix B) only rotate the

neutral currents.

The two–terminal charge and heat Hall conductances are then:

G =
Itotal, top + Itotal, bottom

µL − µR
, K =

JQtotal, top + JQtotal, bottom

TL − TR
. (4.84)

Depending on the degree of inter–mode equilibration along the top and bottom edges, the

two–terminal conductance takes values between the fully–equilibrated and non–equilibrated

values. We demonstrated in section 4.1 that the non–equilibrated value of electrical con-
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ductance G and thermal conductance K are

Gnon–eq = σ0

∑
i

νi, Knon–eq. = κ0T
∑
α

c̃α = κ0T
∑
i

ci. (4.85)

The fully equilibrated values can be found by analyzing the kinetic equations 4.59 and 4.65.

Focusing on the charge transport, if we sum Eq. 4.59 for all the modes, we find

∂x(
∑
i

Ii(x)) = −
∑
j

∑
p∈P

m
(p)
j Ij

(∑
i

ηiνim
(p)
i

)
= 0. (4.86)

The last equality follows since the tunneling processes conserve charge so that
∑

i ηiνim
(p)
i =

0. Therefore, the matrix Ge has at least one zero eigenvalue representing the conservation

of total current. In the absence of any other symmetries and assuming that the tunneling

processes tunnel electron between all the edge modes, all the other eigenvalues of Ge are

finite. If the coefficients gp are large enough so that gpL � 1 (L is the length of the edge)

then all the eigen–currents of the kinetic equation 4.59 decay quickly along the edge, and

we are left, practically, with a single mode representing the total charge current Itotal(x).

This current is related to the local electrical potential µ(x) as

Itotal(x) =
1

2π
(
∑
i

ηiνi)µ(x). (4.87)

Using the results of section 4.1, we can simply find the electrical Hall conductance for this

single mode:

Gfully–eq = σ0

∣∣∣∣∣∑
i

ηiνi

∣∣∣∣∣ . (4.88)

Similarly we can find the fully equilibrated value of the thermal conductance under similar

assumptions

Kfully-eq = κ0T

∣∣∣∣∣∑
α

η̃αc̃α

∣∣∣∣∣ = κ0T

∣∣∣∣∣∑
i

ηici

∣∣∣∣∣ . (4.89)
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4.6 Thermal Hall conductance of QHE at ν = 5/2

It is generally agreed upon that the electrical Hall conductance takes its fully–

equilibrated value Gfully-eq = νe2/h in all the conducted experiments on quantum Hall

states. Therefore, we only look at how the different candidates for the QHE at ν = 5/2

compare from the perspective of thermal Hall measurement. Throughout the rest of our

discussions, we assume that the contacts are ideal in the sense defined in the previous

section. In table 4.1 we list some of the candidates for the QHE at ν = 5/2 along with

their central charge, Kfully-eq and Knon-eq. In section 3.3, we discussed the edge theory of

the Pfaffian state, anti–Pfaffian state and the PH–Pfaffian state. See Ref. [22, 33] for the

discussion of K = 8 state, 331 state, SU(2)2 state and their particle–hole conjugates. Also

downstream central charge =
∑
i:ηi=1

ci (4.90a)

upstream central charge =
∑

i:ηi=−1

ci. (4.90b)

If we assume that heat is fully equilibrated along the edge, the only valid candidate

is the PH–Pfaffian state with Kfully-eq = 5
2κ0T . On the other hand, if heat is partially

equilibrated, in principle, any of the candidates where

Kfully-eq . 2.5κ0T . Knon-eq (4.91)

could agree with the experimental result K ≈ 2.5κ0T . This includes the bottom four states

in table 4.1. The reason why the partial equilibration in the anti–Pfaffian state has been

the center of focus [43, 45–47, 115] is two–fold: first, the anti–Pfaffian state is a strong

candidate based on several numerical simulations [27–29]. Second, as we demonstrate in
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candidates downstream central charge upstream central charge Kfully-eq/κ0T Knon-eq/κ0T

SU(2)2 9/2 0 9/2 9/2

331 state 4 0 4 4

Pfaffian 7/2 0 7/2 7/2

K = 8 state 3 0 3 3

PH–Pfaffian 3 1/2 5/2 7/2

Anti–K = 8 state 3 1 2 4

Anti–Pfaffian 3 3/2 3/2 9/2

Anti–331 state 3 2 1 5

Anti–SU(2)2 3 5/2 1/2 11/2

Table 4.1: Thermal Hall conductance for some of the candidates for the QHE at ν = 5/2.

Depending on the degree of heat equilibration along the edge the thermal conductance K

of a state takes values in Kfully–eq ≤ K ≤ Knon–eq.

the next two chapters, partial equilibration in the anti–Pfaffian state could be explained

based on the physical characteristics of the edge. In particular, strong short–range Coulomb

interaction and an approximate spin symmetry play crucial roles in explaining this partial

equilibration. This is in contrast to the other states (anti–SU(2)2 state, anti–331 state and

anti–K = 8 state) where we don’t have any physical arguments for the partial equilibrated

of heat.
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Chapter 5

Theory of anti–Pfaffian edge states

at ν = 5/2

In section 3.3 we introduced the edge theory of the anti–Pfaffian state. In this

chapter we study the edge theory of this state in details borrowing the methods introduced

in chapter 3. We consider the interactions between the modes and identify the possible

low–energy theories of this state. In sections 5.2 and 5.3 we describe two of the fixed point

theories that we suspect can explain the thermal conductance measurements of Banerjee et

al. [37].

5.1 Setup and assumptions

In the absence of edge reconstruction, the anti–Pfaffian state at ν = 5/2 hosts a

total of five edge modes (Fig. 5.1) [20, 21](section 3.3). The lowest Landau level contributes

(1) a spin–up integer mode and (2) a spin–down integer mode, both moving downstream.
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From the first Landau level we have (3) a downstream spin–up integer mode, (4) an upstream

spin–up ν = 1
2 bosonic mode, and an upstream Majorana mode ψ.

1 : η = 1 , ν = 1 , c = 1 , s =↑
2 : η = 1 , ν = 1 , c = 1 , s =↓

3 : η = 1 , ν = 1 , c = 1 , s =↑
4 : η = −1, ν = 1/2 , c = 1 , s =↑
ψ : η = −1, ν = 0 , c = 1/2 , s =↑

Figure 5.1: Edge modes of the anti–Pfaffian state at ν = 5/2 in the absence of edge

reconstruction: ηi = ±1 denotes the chirality of the edge mode; νi is the charge carried by

the edge mode; ci is the central charge of the edge mode; and si is the spin of the Landau

level associated to a particular edge mode. Subscripts labeling the different edge modes are

suppressed in the figure.

Similar to section 3.4.3 we assume the quenched disorder along the edge is effective

in tunneling electrons. With these considerations, the low–energy effective theory for the

anti–Pfaffian edge state at ν = 5/2 takes the form S =
∑4

i=1 Si +Sψ +
∑

i 6=j Sij +Stunneling

[20, 21]:

Si = − 1

4πνi

∫
t,x

[∂xφi(ηi∂tφi + vi∂xφi)] , (5.1a)

Sψ =
1

4

∫
t,x

iψ(∂tψ − u∂xψ), (5.1b)

∑
i 6=j

Sij = −
∑
i 6=j

vij
4π

∫
t,x

∂xφi∂xφj , (5.1c)

Stunneling = −
∫
t,x

∑
p∈P

[
ξp(x) ei

∑
j m

(p)
j φj ψm

(p)
ψ + h.c.

]
. (5.1d)

Similar to before, P is the set of charge–conserving processes defined by the integers

(m
(p)
j ,m

(p)
ψ ) that tunnel electrons between the edge modes, and ξp is a Gaussian random

79



field with statistical average ξp(x)ξ∗p′(x
′) = δpp′Wpδ(x− x′).

Unless the Coulomb interaction between edge modes of the different Landau levels

can be ignored, it’s not obvious what tunneling operators are most relevant. In principle,

multi–electron tunneling operators can be more relevant than those that only involve a

single–electron tunneling process. However, the largeness of the Landau gap compared to

the electrochemical potential difference between the edge modes, present in the experiments

[37, 116], and the large equilibration lengths reported for modes in different Landau levels

[98, 117] suggest that tunneling between edge channels belonging to different Landau levels

is generally suppressed.

Experiments also report a large equilibration length between spin–up and spin–

down modes [100, 117]. This has been attributed to suppressed tunneling between these

modes due to weak spin–orbit coupling. This is the assumption made in Ref. [46]; we relax

this assumption in this paper. Following the analysis in Section 4.4, where we provided an

alternative explanation for the large equilibration length between spin–up and spin–down

integer modes, we assume strong tunneling between spin–up and spin–down electrons of the

lowest Landau level. Therefore, the most relevant tunnelings to include in Stunneling are

Stunneling,12 = −
∫
t,x

[
ξ12(x) ei(φ1−φ2) +h.c.

]
, (5.2a)

Stunneling,34ψ = −
∫
t,x

[
ξ34(x) ei(φ3+2φ4) ψ + h.c.

]
. (5.2b)

If the Coulomb interaction between edge modes of different Landau levels is ignored

the term Stunneling,12 is always relevant; Stunneling,34ψ is relevant if the Coulomb interaction

between edge modes of the first Landau level interaction is sufficiently strong. If the modes

in the lowest Landau level are decoupled from the modes in the first Landau level (and
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if equilibration of the first Landau level edge modes occurs via Stunneling,34ψ), the low–

temperature thermal Hall conductance is the sum of the contributions from the lowest

Landau level and the first Landau level K = KLLL +K1LL = 5
2κ0T .

However, we aren’t aware of any reason that the Coulomb interaction between the

Landau levels is suppressed. Consequently, either of the two tunneling terms in 5.2 can be

relevant or irrelevant, depending on the specific nature of the Coulomb interaction, i.e., the

values of the vij in Eq. (5.1c); even strong Coulomb repulsion between all the modes doesn’t

uniquely specify an IR fixed point. We identify four possible IR fixed points:

1. W12 = 0 and W34 = 0 while ∆12 >
3
2 and ∆34 >

3
2

2. W12 = 0 (∆12 >
3
2) and ∆34 = 1

3. ∆12 = 1 and W34 = 0 (∆34 >
3
2)

4. ∆12 = 1 and ∆34 = 1.

Above, ∆12 and ∆34 are the scaling dimensions of ei(φ1−φ2) and ei(φ3+2φ4) ψ. The second

case was analyzed in [46], where it was argued that K = 2.5κ0T requires fine–tuning. The

first case is similar to the second one in this regard so we won’t discuss it. In this paper, we

investigate the third and the fourth low–temperature fixed points. In chapter 6, we describe

the conditions under which K = 2.5κ0T is consistent with either of these fixed points.

5.2 ∆12 = 1,W34 = 0 disordered fixed point

In order to study this fixed point we change variables to charge φρ12 = 1√
2
(φ1 +φ2)

and spin φσ12 = 1√
2
(φ1 − φ2) modes [92]. For vij such that there is no coupling between
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∂xφσ12 and ∂xφ4 the theory has an emergent SO(3) symmetry [92, 93, 95] that acts on

the φσ12 sector. In Appendix B we show how this symmetry can be used to eliminate

Stunneling,12, after which an SO(3) transformed spin mode φ̃12 is introduced. The resulting

action becomes S = S∆12=1 + Sint where

S∆12=1 = Sρ12 + Sσ12 + S3 + S4 + Sψ +
∑

i 6=j∈{ρ12,3,4}

Sij , (5.3a)

Sρ12 = − 1

4π

∫
t,x

[∂xφρ12(∂tφρ12 + vρ12∂xφρ12)] , (5.3b)

Sσ12 = − 1

4π

∫
t,x

[
∂xφ̃σ12(∂tφ̃σ12 + vσ12∂xφ̃σ12

]
, (5.3c)

and

Sint =
∑

i∈{3,4,ρ12}

Sσ12,i + Stunneling,34ψ, (5.4a)

Sσ12,i = −2vσ12,i

4π

∫
t,x

∂xφi

(√
2

a
Ozx cos(

√
2φ̃σ12) +

√
2

a
Ozy sin(

√
2φ̃σ12) +Ozz∂xφ̃σ12

)
.

(5.4b)

Oab(x) are matrix elements of the SO(3) rotation that we employed in order to eliminate

the ξ12(x) tunneling term. The Sij and vij with i, j ∈ {ρ12, σ12, 3, 4} obtain from the Sij and

vij with i, j ∈ {1, 2, 3, 4} after the above field redefinition. S∆12=1 describes the ∆12 = 1

fixed point at which the terms in Sint vanish: vσ12,ρ12 = vσ12,3 = vσ12,4 = W34 = 0. The

density–density interactions in Sσ12,i are irrelevant near the ∆12 = 1 fixed point. We assume

Stunneling,34ψ is irrelevant at this fixed point, i.e. ∆34 >
3
2 , so that S∆12=1 describes the low

energy behavior of the anti–Pfaffian edge. When Stunneling,34ψ is relevant, the low–energy

theory might be described by one of the other fixed points in 5.1. In section 6.4 we discuss

the domain of validity of describing the low–temperature physics using perturbation theory

around the fixed point action 5.3a.

82



In order to analyze the finite–temperature transport in the vicinity of the ∆12 = 1

fixed point, the terms in Sint must be included. Consequently, we need to make a choice

for the short–ranged Coulomb interaction vij and diagonalize S∆12=1. The choice of the

Coulomb interaction is non–universal.

Denote by SB =
∑

i Si +
∑

i 6=j Sij , the quadratic part of (5.1) that describes the

chiral bosons, and write it as

SB = − 1

4π

∫
t,x

∑
i

ηi
νi
∂xφi∂tφi +

∑
i,j

Vij∂xφi∂xφj

 . (5.5)

We model the “velocity matrix” Vij following [118]. In the absence of a short–ranged

Coulomb interaction, the action for the bosonic modes is

S0,B = − 1

4π

∑
i

∫
t,x

1

νi

[
∂xφi(ηi∂tφi + v

(0)
i ∂xφi)

]
. (5.6)

Thus, v
(0)
i is the velocity of φi when the Coulomb interaction is ignored. We include the

short–ranged Coulomb interaction via the ansatz,

SCoulomb = −πw
∫
t,x

ntot(x)2 = − w

4π

∫
t,x

(
∑
i

∂xφi)
2, (5.7)

where ntot = 1
2π

∑
i ∂xφi is the total charge density and w is the strength of the Coulomb

interaction. The Hamiltonian for the bosonic modes is

HB = H0,B +HCoulomb =
1

4π

∫
dx
∑
ij

Vij∂xφi∂xφj , (5.8)

where the “velocity matrix” is

Vij =


1
νi
v

(0)
i + w i = j,

w i 6= j.

(5.9)
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First consider the limit v
(0)
i = 0 for all i at which the total Hamiltonian is given by the

Coulomb term only. Here, the action is diagonalized using a charge–neutral basis. One such

basis choice, that is consistent with our earlier treatment of the relevant ei(φ1−φ2) term, is

φρ

φσ1

φσ2

φσ3


=



√
2
5

√
2
5

√
2
5

√
2
5

1√
2
− 1√

2
0 0

1√
6

1√
6
− 2√

6
0

1√
15

1√
15

1√
15

6√
15





φ1

φ2

φ3

φ4


. (5.10)

Notice that φσ1 = φσ12 . When v
(0)
i = 0, the velocity of the charge mode φρ is νw (ν = 5

2),

while the velocities of the neutral modes φσα are zero. This three–fold degeneracy in the

velocity matrix exists because there is freedom in choosing the neutral basis given by φσi =

Λσijφσ̃j where Λσ is an arbitrary SO(2, 1) rotation.

Experiments [113, 114] suggest the velocity of the charge mode is generally about

an order of magnitude larger than the velocity of a neutral mode. This was predicted earlier

in [119]. Thus, we assume small, but finite v
(0)
i � w. The modes that diagonalize S∆12=1

when v
(0)
i 6= 0 are not exactly the charge and neutral basis in Eq. (5.10). We denote the

diagonal modes as φr, φσ12 , φs2 , φs3 ; in the small v
(0)
i limit, the φr mode is “close” to the

total charge mode while φs2 and φs3 are “almost neutral” modes. Based on (4.79), we

expect all the v
(0)
i as well as the Majorana velocity u, to have the same order of magnitude,

which we denote by v(0). Therefore, to leading order in v(0)/w, the velocities for the modes

φr, φσ12 , φs2 , φs3 are

vr = νw +O(v(0)), vβ = O(v(0)) for β = σ12, s2, s3. (5.11)

The density–density interactions between the φσ12 mode and the other modes (the
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first term in (5.4a)) become irrelevant on scales larger than v2
σ12
/W12. In Section 6 we

include the effects of such interactions on charge and heat transport near the ∆12 = 1 fixed

point. The couplings for these interactions, vσ12,r, vσ12,s2 , and vσ12,s3 , vanish in the limit

where there’s a degeneracy between the up and down spin electrons in the lowest Landau

level. To see this, consider a general SO(3, 1) transformation Λiα from the fractional modes

φi, i = 1, 2, 3, 4 to some new modes φα with α = σ12, 2̃, 3̃, 4̃, such that one of the modes is

the spin mode φσ12 . From the definition of the spin mode we see that

φ1 =
1√
2
φσ12 +

∑
α6=σ12

Λ1αφα (5.12a)

φ2 = − 1√
2
φσ12 +

∑
α 6=σ12

Λ2αφα (5.12b)

with Λ1α = Λ2α for α 6= σ12 while Λ3,σ12 = Λ4,σ12 = 0. The velocity matrix tranforms as

vαβ =
∑

ij VijΛiαΛjβ. So for vσ12,α we have

β 6= σ12 : vσ12,β =
∑
ij

VijΛiσ12Λjβ (5.13)

=V11Λ1,σ12Λ1,β + V22Λ2,σ12Λ2,β + V12 (Λ1,σ12Λ2,β + Λ2,σ12Λ1,β)

+
∑
j 6=1,2

V1j(Λ1,σ12Λj,β + Λj,σ12Λ1,β) + V2j(Λ2,σ12Λj,β + Λj,σ12Λ2,β)

+
∑
i,j 6=1,2

VijΛi,σ12Λj,β.

Using (5.12) we get

β 6= σ12 : vσ12,β =
1√
2

Λ1,β(V11 − V22) +
1√
2

∑
j 6=1,2

Λj,β(V1j − V2j) (5.14)

which vanishes when V11 = V22 and V1i = V2i, i = 3, 4, i.e., when there exists symmetry

between the spin–up and spin–down modes. Note that this result is independent of our

specific modeling of the velocity matrix.
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5.3 ∆12 = ∆34 = 1 disordered fixed point

Here, in addition to the field redefinition of the edge modes arising from the lowest

Landau level considered in the previous section, we introduce the charge φρ34 =
√

2(φ3 +φ4)

and neutral φσ34 = φ3 + 2φ4 fields [20, 21]. We also define the Majorana vector ψT =

(ψ1, ψ2, ψ3) with Majorana fermions ψ1 = eiφσ34 + e−iφσ34 , ψ2 = i(eiφσ34 − e−iφσ34 ), ψ3 = ψ.

In terms of these fields the action is

S =
∑

i∈{σ12,ρ12,ρ34}

Si +
∑

i 6=j∈{σ12,ρ12,σ34,ρ34}

Sij + Sneutral, (5.15a)

Sρ34 = − 1

4π

∫
t,x

∂xφρ34(∂tφρ34 + vρ34∂xφρ34), (5.15b)

Sneutral = Ssym + Sanis, (5.15c)

Ssym. =
1

4

∫
t,x

iψT (∂tψ − v∂xψ −
ξ34.L

2
ψ), ξ34 =

(ξ34 + ξ∗34

2
,
ξ34 − ξ∗34

2i
, 0
)
, (5.15d)

Sanis. = −1

4

∫
t,x

iψT δv∂xψ, (5.15e)

Sij = −2vij
4π

∫
t,x

∂xφi∂xφj , (5.15f)

where the average velocity v ≡ 2vσ34+u
3 and the anisotropic velocity matrix δv ≡ diag(vσ34−

v, vσ34−v, u−v). L = (Lx, Ly, Lz) is the vector composed of the three generators of SO(3).

Ssym has an SO(3) gauge symmetry ψ(x, t) = O(x)ψ̃(x, t) provided the disorder vector also

transforms as

ξ̃a34 =
1

2
εabc

(
OT (ξ34.L)O

)bc
+ vεabc(OT∂xO)bc. (5.16)
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However under this transformation, the term ψ̃T (OT δv∂xO)ψ̃ shows up in Sanis. In order

to get rid of such a term we instead require ξ34 to transform as

ξ̃a34 =
1

2
εabc

(
OT (ξ34.L)O

)bc
+ εabc(OT v∂xO)bc, (5.17)

with velocity matrix v = diag(vσ34 , vσ34 , u). Requiring ξ̃34 = 0, the transformed action

becomes S = S∆12=∆34=1 + Sint where

S∆12=∆34=1 =
∑

i∈{σ12,ρ12,ρ34}

Si + Sneutral sym + Sρ12,ρ34 , (5.18a)

Sneutral sym =
1

4

∫
t,x

iψ̃T (∂tψ̃ − v∂xψ̃), (5.18b)

Sρ12,ρ34 = −vρ12,ρ34

8π

∫
t,x

∂xφρ12∂xφρ34 , (5.18c)

and

Sint =
∑

i∈{ρ12,ρ34}

(Sσ34,i + Sσ12,i) + Sσ12,σ34 + Sneutral int, (5.19a)

Sneutral int = −
∫
t,x

iψ̃T δ̃v∂xψ̃, (5.19b)

Sσ34,i = −vi.σ34

8π

∫
t,x

∂xφσ34

(
iψ̃TLz(x)ψ̃

)
, (5.19c)

Sσ12,σ34 = −2vσ12,σ34

4π

∫
t,x

(
iψ̃TLz(x)ψ̃

)
(5.19d)

×

(√
2

a
Ozx cos(

√
2φ̃σ12) +

√
2

a
Ozy sin(

√
2φ̃σ12) +Ozz∂xφ̃σ12

)
,

with δ̃v(x) ≡ OT (x)δvO(x) and Lz(x) ≡ OT (x)LzO(x). The ∆12 = ∆34 = 1 fixed point is

described by S∆12=∆34=1 about which the terms in Sσ34,i and Sσ34,i are irrelevant. Here, the

auto–correlation of elements of matrices Lz(x) and δ̃v(x) decay on length scales ∼ v2/W34.

We model the short–ranged Coulomb interaction as in the previous section. Here,

the diagonal modes are φr, φσ12 , φs2 , φσ34 , where φs2 is some “almost neutral” mode. To
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leading order in v(0)/w the velocities for these modes are

vr = νw +O(v(0)), vβ = O(v(0)) for β = σ12, s2, σ34. (5.20)

Since u = O(v(0)), we can write v ≈ O(v(0)). As for the magnitude of couplings in (5.19),

we have vσ34,β = O(v(0)) for β = r, s2 while vσ12,β vanish for β = r, σ12, s2 in the spin–

degenerate limit as demonstrated in the previous section.
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Chapter 6

Transport and equilibration along

the anti–Pfaffian edge

In this section, we analyze the low–temperature transport properties of the effective

theories of the ν = 5/2 anti–Pfaffian state described in Sections 5.2 and 5.3. We will apply

charge and heat kinetic equations introduced in chapter 4 to each of these fixed points,

calculate the expressions for conductivity coefficients, and eventually solve for the electrical

and thermal Hall conductances. We estimate the parameter regime that describes the

experimental observation of κ = 2.5κ0T in order to determine the experimental relevance

of each fixed point. In Section 6.3 we examine quantum point contact tunneling in the

anti–Pfaffian state in the vicinity of these low–energy edge states. Finally, in section 6.4

we discuss the domain of edge parameters that each of discussed fixed point theories can

reasonably explain.
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6.1 ∆12 = 1 fixed point

6.1.1 Charge transport

At this fixed point, the processes that cause equilibration are the irrelevant terms

in (5.4a). Using (4.59) (see appendix C.1 for details) we write down the equations describing

charge transport resulting from such interactions. In the basis (I ′1, I
′
2, I3, I4) the matrix Ge

is

Ge = −(
∑

β=r,s2,s3

gVσ12,β
)



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


− gV34



0 0 0 0

0 0 0 0

0 0 1 2

0 0 −1 −2


(6.1)

with

β = r, s2, s3 : gVσ12,β
=

2π2v2
σ12,β

T 2

3v2
βW12

(6.2a)

gV34 =
Γ(∆34)2

Γ(2∆34)

W34

v2∆34
V34

(2πaT )2∆34−2 , vV34 = O(v(0)). (6.2b)

The velocities are defined in (5.11), and a is the short–distance cutoff [102].

The last term in Ge couples the downstream and upstream charge modes. There-

fore, largeness of gV34 (see below) is required for the proper quantization of the electrical

conductance at G = 2.5σ0. To quantify this we solve for the electrical conductance using

(6.1) and boundary conditions specified in Section 4.5. We find

G = σ0

(
2 +

2 + e−gV34
L

2(2− e−gV34
L)

)
, (6.3)

where L is the effective length on the sample’s top/bottom edge along which equilibra-

tion takes place. If the electrical conductance is measured to be G = 2.50σ0 within the
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uncertainty ∆G = 0.01σ0 we find the bound gV34L & 4.

6.1.2 Heat transport

Based on (4.65), the heat transport matrix GQ in the basis (r, φσ12 , φs2 , φs3 , ψ) is

GQ =
12gVσ12,r

5



−1 1 0 0 0

1 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


+

12gVσ12,s2

5



0 0 0 0 0

0 −1 1 0 0

0 1 −1 0 0

0 0 0 0 0

0 0 0 0 0


+

12gVσ12,s3

5



0 0 0 0 0

0 −1 0 −1 0

0 0 0 0 0

0 1 0 1 0

0 0 0 0 0



+
12gV34

1 + 2∆34



−dr(ds2 + ds3 + dψ) 0 drds2 −drds3 −2drdψ

0 0 0 0 0

drds2 0 −ds2(dr + ds3 + dψ) −ds2ds3 −2ds2dψ

drds3 0 ds2ds3 ds3(dr + ds2 + dψ) −2ds3dψ

drdψ 0 ds2dψ −ds3dψ 2dψ(dr + ds2 + ds2)


(6.4)

where dψ = 1
2 and dα = (Λ3α + 2Λ4α)2 /2. Also we have

∑
α=r,s2,s3,ψ

dα = ∆34. See C.2 for

the definition of dα. Λ is the SO(3, 1) transformation expressing the fractional modes φi in

terms of (φr, φσ12 , φs2 , φs3), i.e., the diagonal modes of S∆12=1.

This transformation depends on the velocity matrix in (5.3a). We use the velocity

matrix in Eq. (5.9) in order to estimate the dα. In the v
(0)
i /w = 0 limit, φr is the total

charge mode, and, consequently, it commutes with the neutral mode φ3 +2φ4. Therefore, in

this limit, dr = (Λ3,r + 2Λ4,r)
2 /2 = 0. For finite but small v(0)/w, we have dr = O

(
(v

(0)

w )2
)

to leading order.

In order to estimate ds2 and ds3 , we look at the spin of the operator eiφ3+2iφ4 . Gen-

erally, for a set of chiral bosons φi with commutation relation [φi(x), φj(x
′)] = πiK−1

ij sign(x−
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x′), the spin of the vertex operator ei
∑
i niφi is

h− =
1

2
niK

−1
ij nj = ∆R −∆L, (6.5)

where ∆R (∆L) is the scaling dimension of the right–moving (left–moving) part of ei
∑
i niφi .

Therefore, the spin of the tunneling operator eiφ3+2iφ4 is h− = −1
2 = ∆R −∆L. Also, we

have ∆R = dr + ds2 and ∆L = ds3 . Along with dr + ds2 + ds3 + dψ = ∆34, to leading order

in v
(0)
i /w we find

ds2 =
∆34 − 1

2
− dr =

∆34 − 1

2
−O

(
(
v(0)

w
)2

)
(6.6a)

ds3 =
∆34

2
. (6.6b)

As we mentioned in Section 5.2, we take ∆34 ≥ 3
2 so that S∆12 = 1 describes the low–

energy physics of the ∆12 = 1 fixed point. On the other hand, since gV34L is large, based

on Eq. (6.2), we don’t expect ∆34 to be very large. This is due to the fact that i) the

prefactor Γ(∆34)2/Γ(2∆34) vanishes rapidly for large ∆34 and ii) gV34 ∼ T 2(∆34−1) and so

the equilibration process corresponding to gV34 would have subleading contribution at small

temperatures, if ∆34 was large.

We can estimate ∆34 for v
(0)
i = v(0). In this case, using (5.10) we can write

H =
1

4π

∫
x
Vij∂xφi∂xφj

=
1

4π

∫
x

[
(w +

7

5
v(0))(∂xφρ)

2 + v(0)(∂xφσ1)2 (6.7)

+ v(0)(∂xφσ2)2 +
7

5
v(0)(∂xφσ3)2 − 4

√
6

5
v(0)∂xφρ∂xφσ3

]
.

Therefore, for small v(0)/w a small rotation in the (φρ, φσ3) plane would diagonalize the

Hamiltonian. So, using (5.10) we find ∆34 = 5
3 in the vanishing v(0)/w limit.
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We are interested in determining the regime for which this matrix GQ leads to a

thermal Hall conductance K = 2.5κ0T within the uncertainties of the experiment. Quan-

tization of electrical conductance G = 2.5σ0 implies that gV23 is large. Looking at the last

term in (6.4), more specifically, the (φs2 , φs3 , ψ) block, it appears that the φs2 ,φs3 and ψ

modes equilibrate with each other. For the moment, let’s assume they are completely equi-

librated; we will relax this assumption later. In this case, we can think of these modes as a

single upstream mode with central charge c = 1
2 . We call this mode s̃.

If equilibration between the first two modes in (6.4) and the s̃ mode is suppressed,

the thermal conductance theis sum of the contributions from the first two modes Kr+σ12

and from the s̃ mode Ks̃. That is K = Kr+σ12 + Ks̃ = (2 + |−0.5|)κ0T = 2.5κ0T . This

requires

gVσ12,s2
L� 1, gVσ12,s3

L� 1, gr,s̃L� 1, (6.8)

where we defined gr,s̃ = dr(∆34 − dr)gV34 . Therefore, we see that there exists a regime of

parameters where the fixed point ∆12 = 1 can be consistent with experiments. Using the

details of the experimental measurements, we can gain a more quantitative estimation of

this regime.

We use the above GQ matrix and boundary conditions given in Section 4.5 to

solve for the thermal conductance. Following our earlier discussion we will take ∆34 = 5
3 ,

and consequently ds2 = 1
3 , ds3 = 5

6 . Later, we will discuss how our results depend on these

values.

We also ignore the first term in (6.4) in the remainder. This follows from our discus-

sion in Section 4.4: we expect gσ12,rL to be suppressed both due to the strong Coulomb inter-
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action and small spin gap. Also, since gσ12,r quantifies equilibration between co-propagating

modes, its magnitude does not have much effect on the thermal conductance.

The contour plot of K(gVσ12,s2
L, gVσ12,s2

L, gr,s̃L, gV34L) along several surfaces is

given in Fig. 6.1. The thermal conductance observed in the experiments ([37]) at tempera-

tures (T ≈ 18 - 25 mK) 2.49κ0T < K < 2.57κ0T is enclosed within the white contours. The

hatched region represents the regime where the electrical conductance G = (2.50± 0.01)σ0.

We observe that not all the region observed in the experiment 2.49κ0T < K <

2.75κ0T is consistent with the electrical conductance G = (2.50±0.01)σ0: we find that when

K & 2.65κ0T , the electrical conductance deviates from G = (2.50 ± 0.01)σ0. In addition,

we can deduce some information about which point of the region 2.49κ0T < K < 2.75κ0T

we are at by examining how the thermal conductance varies as a function of temperature.

The conductivity coefficients have power law dependence on temperature as Eq.

(6.2). Therefore, the thermal conductance moves along straight lines in Fig. 6.1, as the

temperature is varied. From the experimental data, as the temperature is lowered from

T ≈ 18 - 25 mK to T ≈ 12 mK, i.e., by a factor of about 2, the thermal conductance

increases from K ≈ 2.53κ0T to K ≈ 2.75κ0T . It follows that g34 would vary by a factor of

2(2∆34−2) while gσ12,s2 and gσ12,s3 would vary by a factor of 4. We can look for lines in the

space of conductivity coefficients where such a variation occurs.

First, we look at how the thermal conductance varies along the surface gσ12,s2 =

gσ12,s3 when gr,s̃ = 0. This is demonstrated in Fig. 6.2. The red line showcases a variation of

conductivity coefficients with temperature that is consistent with the experiments: as the

temperature is lowered by a factor of ∼ 2, between the cross marks, the thermal conductance
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Figure 6.1: Contour plot of thermal conductance about the ∆12 = 1 fixed point,

K(gVσ12,s2
L, gVσ12,s3

L, gr,s̃L, gV34L)/κ0T along several surfaces. ∆34 = 5/3 for all the

sub-plots. The regions within the white contour represent the measured thermal con-

ductance K = (2.53 ± 0.04)κ0T , while the hatched regions represent the regime where

G = (2.50± 0.01)σ0.

increases from K ≈ 2.53κ0T to K ≈ 2.75κ0T . This gives us a rough estimate for the value

of the conductivity coefficients at these temperatures. Examining the red line in Fig. 6.2

for T = 18 - 25 mK, we find

gV34L ≈ 7, gσ12,s2/s3L ≈ 0.005. (6.9)
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A similar picture also shows gr,s̃L ≈ 0.005. Here, the thermal conductance does not vary

much as a function of gσ12,s2/s3 and gr,s̃ when these coefficients are small. Consequently,

the error in the estimate of gσ12,s2/s3 and gr,s̃ is large and the above estimates for gσ12,s2/s3

and gr,s̃ should be interpreted as upper bounds.

100 101
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Figure 6.2: Thermal conductance about the ∆12 = 1 fixed point on the surface gVσ12,s2
=

gVσ12,s3
and gr,s̃ = 0. ∆34 = 5/3. The red line represents a typical line along which the

thermal conductance varies as a function of temperature. This specific red line passes

through points that are consistent with measurements of thermal conductance.

Based on these estimates, we infer

gr,s̃
gV34

= (∆34 − dr)dr ∼ (
v(0)

w
)2 . 0.001. (6.10)

Since dr ∼ (v
(0)

w )2 the above bound is not unexpected for strong short-ranged Coulomb

interactions. Our numerical estimates for dr based on the velocity matrix in Eq. 5.9 and

sensible choice of v
(0)
i ’s, do satisfy this bound for v

(0)
i ’s as large as w/5.

On the other hand, the coefficients gσ12,s2 and gσ12,s3 in (6.2) are proportional to the
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square of vσ12,s2 and vσ12,s3 . As we demonstrated in Eq. (5.14), these velocity entries vanish

in the spin-degenerate limit. Therefore, it is not unexpected that the bound gσ12,s2/s3L .

0.01 is satisfied when the spin gap is small. However, we don’t have any estimate for these

conductivity coefficients based on the experimental data.

In order to find these results, we used the estimate ∆34 = 5/3. In order to see

how much our results depend on this estimate, we look at two other cases: i) ∆34 = 3/2

and ii) ∆34 = 2. For these two values, we plot K(gVσ12,s2
L, gVσ12,s2

L, gr,s̃L = 0, gV34L)

along the gVσ12,s2
= gVσ12,s3

surface in Fig. 6.3. First, we see that while the observation of

G = (2.50±0.01)σ0 is mostly consistent with 2.49κ0T ≤ K ≤ 2.75κ0T for ∆34 = 3/2, this is

not the case for ∆34 = 2: in the region 2.57κ0T ≤ K ≤ 2.75κ0T , the electrical conductance

deviates from G = (2.50 ± 0.01)σ0. In addition, while for ∆34 = 3/2 the bounds on the
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(a) ∆34 = 3/2
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(b) ∆34 = 2

Figure 6.3: Contour plot of thermal conductance about the ∆12 = 1 fixed point,

K(gVσ12,s2
L, gVσ12,s3

L, gr,s̃L, gV34L)/κ0T along the surface gVσ12,s2
= gVσ12,s2

, gr,s̃ = 0. The

hatched regions represent the regime where G = (2.50± 0.01)σ0.
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conductivity coefficients are close to the ∆34 = 5/3 case, for ∆34 = 2 we get

gV34L ≈ 10, gσ12,s2/s3L . 0.001, (6.11)

which are much stronger bounds.

We conclude that there exists a regime of parameters about the ∆12 = 1 fixed point

of the anti–Pfaffian edge state where K ≈ 2.5κ0T is observed in a range of temperatures

(T ≈ 18 - 25 mK). Our estimates demonstrate that this regime is possible for realistic

parameters only when ∆34 . 5/3.

6.2 ∆12 = ∆34 = 1 fixed point

6.2.1 Charge transport

At this fixed point, the processes that cause equilibration are the irrelevant terms

in (5.19). To find the kinetic equations involving the second Landau level modes, we first

introduce the neutral currents operators

Ja34 ≡
i

8π
ψTLaψ (6.12)

where La, a = x, y, z are the generators of SO(3). In terms of these operators we have

1
2π∂xφσ34 = Jz34. Using a similar set of calculations as in section C.1.2, we derive the kinetic

equation for the gauge-transformed density

ñσ34 ≡
1

2π
∂xφ̃σ34 ≡ J̃z34 =

i

8π
ψ̃TLzψ̃. (6.13)
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We also define the “slow modes” basis as

I ′3 =
√

2Iρ34 − Ĩσ34 (6.14a)

I ′4 = − 1√
2
Iρ34 + Ĩσ34 (6.14b)

where Iρ34 is the charge current carried by the mode φρ34 and the current neutral current

Ĩσ34 is defined by the conservation equation

∂xĨσ34 + ∂tñσ34 = 0. (6.15)

It follows that for charge equilibration in the basis (I ′1, I
′
2, I
′
3, I
′
4) we have

Ge = −(
∑

β=r,s2,σ34

gVσ12,β
)



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


− (

∑
β=r,σ12,s2

gVσ34,β
)



0 0 0 0

0 0 0 0

0 0 1 2

0 0 −1 −2


(6.16)

with

gVσ12,σ34
=

2π2v2
σ12,σ34

3(v2
σ12
W34 + v2

σ34
W12)

T 2 (6.17a)

β = r, s2 : gVσ12,β
=

2π2v2
σ12,β

3v2
βW12

T 2 (6.17b)

β = r, s2 : gVσ34,β
=

2π2v2
σ34,β

T 2

3v2
βW34

. (6.17c)

We can calculate the electrical conductance as in the previous section. The solution is

similar to Eq. (6.3) with gV34 replaced by
∑

β=r,σ12,s2
gVσ34,β

. An electrical conductance of

G = (2.50±0.01)σ0 implies
∑

β=r,σ12,s2
gVσ34,β

L & 4. Looking at Eq. (6.17) we can estimate

99



the relative magnitude of the terms in
∑

β=r,σ12,s2
gVσ34,β

. We find

gVσ34,r

gVσ34,s2

= (
vσ34,rvs2
vσ34,s2vr

)2 ∼ (
v(0)

νw
)2, (6.18a)

gVσ34,σ12

gVσ34,s2

≈ W34

W12 +W34
.(
vσ34,σ12vs2
vσ34,s2vσ12

)2 ∼ W34

W12 +W34
.(
vσ34,σ12

v(0)
)2. (6.18b)

Therefore, both gVσ34,σ12
and gVσ34,r

are much smaller than gVσ34,s2
for strong Coulomb

interactions and small spin gap, and so we have gVσ34,s2
L & 1 based on quantization of the

electrical conductance. In the above we used the estimate that vs2 , vσ12 , vσ34,r, vσ34,s2 all

have the same order of magnitude v(0). Also, based on the velocity matrix of Eq. 5.9 and

using Eq. 5.14 we should have vσ34,σ12 = 0. However, since we only take this velocity matrix

as an estimation, we allow for finite vσ34,σ12 which vanishes in the spin-symmetric limit.

6.2.2 Heat transport

At this fixed point, since there exists an SO(3) symmetry between the three Ma-

jorana modes, we take their contribution as one upstream mode with central charge c = 3
2 .

We call this mode Ψ. Therefore, in the basis (r, σ12, s2,Ψ) we have

GQ =
12

5
gVσ12,r



−1 1 0 0

1 −1 0 0

0 0 0 0

0 0 0 0


+

12

5
gVσ12,s2



0 0 0 0

0 −1 1 0

0 1 −1 0

0 0 0 0


+

12

5
gVσ12,σ34



0 0 0 0

0 −1 0 −2/3

0 0 0 0

0 1 0 2/3



+
12

5
gVσ34,r



−1 0 0 −2/3

0 0 0 0

0 0 0 0

1 0 0 2/3


+

12

5
gVσ34,s2



0 0 0 0

0 0 0 0

0 0 −1 −2/3

0 0 1 2/3


.

(6.19)
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Since gVσ34,s2
L & 1, the modes s2 and Ψ are expected to be well equilibrated.

Therefore, similar to the ∆12 = 1 fixed point, the thermal conductance K ≈ 2.5κ0T is only

possible when equilibration between the modes {r, σ12} and {s2,Ψ} is suppressed. In order

to look for such a regime, we solve the heat transport equation using the above GQ matrix,

and calculate the thermal conductance as a function of gVσ12,s2
, gVσ12,σ34

, gVσ34,r
and gVσ34,r

.

As before, we ignore the first term in GQ. Fig. 6.4 shows the contour plot of the thermal

conductance along the surface gVσ12,s2
= gVσ12,σ34

= gVσ34,r
. The region within the white

contour has 2.49κ0T < K < 2.57κ0T , while the hatched region has electrical conductance

G = (2.50± 0.01)σ0.
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Figure 6.4: Thermal conductance about the ∆12 = ∆34 = 1 fixed point, along the surface

gVσ12,s2
= gVσ12,σ34

= gVσ34,r
. The region within the white contour has 2.49κ0T < K <

2.57κ0T , while the hatched region has electrical conductance G = (2.50 ± 0.01)σ0. The

thermal conductance varies along lines parallel to the red line as the temperature is varied.

Here, unlike the ∆12 = 1 fixed point, there exists a region where 2.49κ0T < K <

2.75κ0T while the electrical conductance deviates from G = (2.50±0.01)σ0. If, the electrical
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conductance is indeed measured to be G = (2.50 ± 0.01)σ0, even at lowest temperatures

∼ 12mK, then this fixed point is not consistent with the experiments.

We proceed to find estimates for the conductivity coefficients based on how the

thermal conductance varies with temperature. Based on Fig. 6.4 and following an analysis

similar to the ∆12 = 1 fixed point, we estimate

gVσ34,s2
L ≈ 6, gVσ12,s2

L, gVσ12,σ34
L, gVσ34,r

L . 10−3 (6.20)

for T = 18 - 25 mK. Therefore, using Eq. (6.18), we require

gVσ34,r

gVσ34,s2

∼ (
v(0)

νw
)2 . 2× 10−4, (6.21a)

gVσ34,σ12

gVσ34,s2

∼ W34

W12 +W34
.(
vσ34,σ12

v(0)
)2 . 2× 10−4, (6.21b)

gVσ12,s2

gVσ34,s2

∼ W34

W12
.(
v

(0)
1 − v

(0)
2

v(0)
)2 . 2× 10−4. (6.21c)

Generally, we expect the conductivity coefficients gσ34,r, gVσ12,s2
and gVσ12,σ34

to be much

smaller than gσ34,s2 for strong short-ranged Coulomb interaction (w � v(0)) and small spin

gap (v
(0)
1 − v

(0)
2 � v(0), vσ34,σ12 � v(0)). However, our estimates for v(0)/w (see Section 5.2)

and (v
(0)
1 − v(0)

2 )/v(0) in Eq. (4.80)) only show ratios of about 10−1. Therefore, we are not

aware of any reason why the bounds in Eq. 6.21a might be satisfied.

We conclude that the ∆12 = ∆34 = 1 fixed point of the anti–Pfaffian state is

not consistent with the transport measurements. This theory predicts that the electrical

conductance would deviate from its quantized value G = 2.5σ0 at temperatures T ≈ 12 mK,

a feature that does not appear to be observed in the experiments of Banerjee et al.[37].

Furthermore, observation of thermal conductance K ≈ 2.5κ0T requires some parameters in

this theory (v(0)/w and (v
(0)
1 − v

(0)
2 )/v(0)) to be fine–tuned; we don’t believe such a regime
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to be realistic.

6.3 Quantum point contact tunneling

Tunneling conductance at quantum point contacts (QPC) in the ohmic regime

(eV � kBT ) scales as Gtun ∼ T 2g−2. Here, g is the scaling dimension of the tunneling

operator that transfers charge across the Hall bar. Therefore, at low temperatures, charge

tunneling is dominated by the operator with the smallest scaling dimension. In the case

of the anti–Pfaffian state, due to the physical separation between the lowest and the first

Landau level edge modes, this tunneling is dominated by the tunneling of electrons/quasi–

particles belonging to the first Landau level. The most general tunneling operator is then

ei(n3φ3+n4φ4/2) χ where n3 and n4 are integers and χ = 1, ψ, σ [20, 21]. This tunneling

operator creates an excitation of charge q = (n4/4 − n3)e. The operator σ changes the

boundary condition for the Majorana mode ψ and has scaling dimension ∆σ = 1/16. In

addition, n4 is an odd integer when χ = σ.

At the ∆12 = ∆34 = 1 fixed point, the charge creation operator with the smallest

scaling dimension is σeiφ4/2 [20, 21], which creates a quasi–particle of charge e/4. A similar

operator annihilates this quasi–particle across the quantum Hall bar. So

g = 2∆(σeiφ4/2) = 2∆σ + 2∆(eiφ4/2) = 1/2 (6.22)

where we denote by ∆(O) the scaling dimension of operator O.

For the ∆12 = 1 fixed point, the scaling dimension of the operator ei(n3φ3+n4φ4/2)

depends on the velocity matrix in S∆12=1 5.3a, and therefore is non–universal. In general,

the minimum scaling dimension of a vertex operator is the absolute value of its spin, i.e.,
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∆R + ∆L ≥ |∆R −∆L|. See Eq. (6.5). Therefore, one can check that among all excitation

operators, σ eiφ4/2 has the minimum scaling dimension of 1/8. Therefore, we always have

g ≥ 1/4 for the anti–Pfaffian state.

We can get a better bound in the limit of strong short–ranged Coulomb interaction.

Using (5.10) we can write

ei(n3φ3+n4φ4/2) = e
i
√

2
5

(n3−n4/4)φρ e
−in3

√
2
3
φσ2−

i√
15

(n3+3n4/2)φσ3 . (6.23)

Similar to Eq. (6.7), in the vanishing v(0)/w limit, φρ is a diagonal mode of S∆12=1.

Therefore, in this limit:

∆(ei(n3φ3+n4φ4/2)) =∆(e
i
√

2
5

(n3−n4/4)φρ) + ∆(e
−in3

√
2
3
φσ2−

i√
15

(n3+3n4/2)φσ3 ) (6.24)

≤ 1

5
(n3 − n4/4)2 +

∣∣∣∣13n2
3 −

1

30
(n3 + 3n4/2)2

∣∣∣∣ . (6.25)

Using this inequality, we can check that the minimum scaling dimension is 3/20 for the

operator σeiφ4/2. The next smallest scaling dimension is 7/20 for the operator eiφ4 which

creates an excitation of charge e/2. Therefore, for strong Coulomb interactions we have

g ≥ 3/10 with the minimum happening for the operator σeiφ4/2. Note that this estimate is

independent of the fact that ∆12 = 1. Therefore, this bound is also valid for the clean fixed

point description of the anti–Pfaffian edge theory.

Experimental measurements of g give values g = 0.34−0.42 [30, 31], depending on

the geometry of the quantum point contact. So, the fixed points about which the tunneling

term ei(φ3+2φ4) ψ is irrelevant can be consistent with the measured tunneling exponents.

These fixed points are realized only when the short–ranged Coulomb interactions between

the Landau levels is included. This is because, if such interactions are ignored, the tunneling
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term ei(φ3+2φ4) ψ is always relevant due to the strong Coulomb interaction within the second

Landau level.

6.4 Domain of validity of descriptions at weak/strong disor-

der

Weak disorder

In section 5, we observed that the ∆12 = 1 fixed point description of the anti–

Pfaffian state is in agreement with experiments only if ∆34 ≈ 3/2. Since for ∆34 < 3/2 the

system flows to the ∆34 = 1 fixed point [93] we might wonder if treating the W34 tunneling

term perturbatively is a good description of the anti–Pfaffian edge. To answer this question

we first look at the RG equation for W34. To leading order we have

dW34

dl
= (3− 2∆34)W34. (6.26)

So, the effective strength of this tunneling term at temperature T is

W34,eff.(T ) = W34(
T

T0
)2∆34−3 (6.27)

where T0 is the cutoff temperature, and is related to the short–distance cutoff a as

T0 =
vσ

2πa
. (6.28)

Here vσ is the typical velocity of the neutral modes. The reason that we chose the neutral

velocity in defining T0 is that for strong short–ranged Coulomb interactions, tunneling terms

only couple the (“almost”) neutral modes. This can be seen from the expressions for the
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conductivity coefficients such as gV34 is Eq. 6.2. We can write gV34 as

gV34 =
Γ(∆34)2

Γ(2∆34)

W34

v2
V34

(
T

T0

)2∆34−2

(6.29)

with the above definition of T0 with vσ = vV34 ≈ v(0).

When ∆34 > 3/2 but is close to 3/2 and for finite temperatures, the W34 tunneling

term might still be strong. A rough estimate for the range of validity of perturbation in

W34 can be obtained if we require the length scale associated with the effective tunneling

strength W34,eff(T ) to be larger than the short–distance cutoff a. The length scale associated

with W34,eff. is `W34(T ) = v2
σ/W34,eff(T ). So the condition for the validity of perturbation

theory is

a� `W34(T ) =
v2
σ

W34

( vσ
2πaT

)2∆34−3
. (6.30)

Along with Eq. 6.29 we can write this condition as (ignoring numerical factors)

g−1
V34

= `eq.,V34 � LT . (6.31)

where `eq.,V34 is the charge equilibration length between the modes φ3 and φ4 (See Eq. 6.3),

and LT = vσ/2πT is the thermal length. The last inequality illustrates a more practical

check for the domain of validity of the incoherent regime.

Strong disorder

Another question is whether S∆12=1 is a good description of modes φ1 and φ2 at

low temperatures, when the tunnelings between these two modes are weak. The tunnelings

between the φ1 and φ2 modes require spin–flipping, and so they are expected to be weaker

than the corresponding spin–conserving tunnelings. Therefore even for ∆12 < 3/2 and
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at finite temperatures, the tunneling term might not drive the system all the way to the

∆12 = 1 fixed point. In order to address such concerns we first start from the RG equation

for W12 near the clean fixed point W12 = 1 (this section follows similar estimations as Ref.

[95]). Solving the RG equation, the effective tunneling strength at length scale L is

W12,eff.(L) = W12(
L

a
)3−2∆12 (6.32)

For weak W12 and small enough lengths L (high enough temperatures) such that

`W12,eff.(L) ≡ v2
σ

W12,eff.(L)
� a (6.33)

we can still treat this tunneling term in perturbation theory. However, for larger length

scales the two modes φ1 and φ2 are strongly mixed and the clean fixed point description is

no longer valid. We can obtain an estimate for the length scale Lmix where such a transition

happens by solving

`W12,eff.(Lmix) = a. (6.34)

When the velocity of the two modes φ1 and φ2 are close to each other, the mode φσ12

decouples from other modes (See section 5.2) and we have ∆12 ≈ 1. So we find

Lmix ≈
v2
σ

W12
. (6.35)

This length also serves as the short–distance cutoff for the φ̃σ12 mode (See Appendix B).

For length scales larger than Lmix, i.e. LT > Lmix, we follow the same line of arguments as

before, in order to estimate the domain of validity of perturbation theory in the disordered

density–density interactions Sσ12,i in Eq. 5.4a. We find

β = r, s2, s3 : `eq.,Vσ12,β
≡ g−1

Vσ12,β
� LT =

vσ
2πT

(6.36)

107



or

W12 �
v2
σ12,β

vσ

v2
β

T. (6.37)

As we demonstrated in section 5.2, vσ12,β goes to zero as the Zeeman gap vanishes. There-

fore, we expect this inequality to be more valid as we approach the regimes where we expect

the thermal conductance K = 2.5κ0T .
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Chapter 7

Conclusions

7.1 Results and predictions

In this thesis, we considered equilibration of charge and heat along the edge of

the anti–Pfaffian state realized in the first Landau level at ν = 5/2. We assumed that

the dominant cause of equilibration is due to short–ranged disorder that allows tunneling of

charge between the different edge modes. While tunneling between edge modes belonging to

different Landau levels is ignored in our analysis, a strong short–ranged Coulomb interaction

is assumed. Under these assumptions, we analyzed the conditions under which the edge

modes are not fully in equilibrium.

In the limit of a strong short–ranged Coulomb interaction, equilibration between

the total charge mode and the rest of the edge modes is suppressed due to the high velocity

of the charge mode relative to the neutral modes. This picture was also considered by Ma

and Feldman in [46].

In addition, in the absence of Zeeman splitting between the two modes in the lowest
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Landau level, their total spin is independently conserved. Consequently, heat equilibration

between the spin mode and other modes is suppressed. For finite Zeeman splitting, electron

tunneling between these two modes can drive the edge into the spin–symmetric fixed point

where the spin mode is conserved. At finite temperature, the irrelevant interactions present

due to the spin asymmetry can bring this spin mode to equilibrium with the other edge

modes. For small enough spin asymmetry, this equilibration processes can be slow on the

length scales of the system size.

Due to these weak equilibration processes, the thermal conductance is given by

K = Ktotal charge mode +KLLL spin mode +Kother modes, where the nature of the “other modes”

depends on the specific fixed point. Based on the quantization of electrical conductance,

we infer that the “other modes” should be in equilibrium with each other. So K = (1 + 1 +

| − 1.5|)κ0T = 2.5κ0T . This picture relies on the partial equilibration of the fixed points

∆12 = 1 and ∆12 = ∆34 = 1 studied here. For both of these fixed points, electron tunneling

between the spin–up and spin–down modes (i.e. ei(φ1−φ2)) drives the edge into a spin–

symmetric fixed point. In contrast, other fixed point theories where such electron tunnelings

are weak do not have such an emergent symmetry. However, if the spin asymmetry is

small, the spin density ∂xφσ12 is almost conserved and its equilibration with other modes is

suppressed. This situation was discussed in [46] for the ∆34 = 1 fixed point.

Therefore, suppressed equilibration of the total charge mode φρ and the spin mode

φσ12 can be realized for all the four fixed points mentioned in Ssection 5.1. The difference

is in the details of the equilibration process, e.g., the parametric dependence of the con-

ductivity coefficients and their temperature dependence. We demonstrated this for the two
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fixed points: ∆12 = 1 and ∆12 = ∆34 = 1. In light of the existing experimental data, these

two fixed point theories differ in two important ways:

• About the ∆12 = ∆34 = 1 fixed point, the electrical conductance G = (2.50± 0.01)σ0

and the thermal conductance 2.49κ0T < K < 2.75κ0T cannot be observed simulta-

neously. In contrast, these measurements can be consistent with the ∆12 = 1 fixed

point when ∆34 ≈ 3/2.

• About the ∆12 = ∆34 = 1 fixed point, the range of parameters required to have

K ≈ 2.5κ0T is not compatible with our estimate of these parameters. On the other

hand, at the ∆12 = 1 fixed point, there exists a realistic regime of parameters (as far

as our estimates permit) that results in K ≈ 2.5κ0T . This regime is possible only

when ∆34 is small enough ∆34 . 5/3.

Therefore, the ∆12 = 1 fixed point theory of the anti–Pfaffian state better describes the

recent transport measurements [37]. About this fixed point the quantum point contact

tunnelings exponents depend on the inter–mode Coulomb interactions and are, therefore,

non–universal. Nevertheless, the predictions of this fixed point appear to be consistent with

the existing experimental quantum point contact measurements. From our analysis of the

∆12 = 1 fixed point, we make the following predictions for temperatures not reported in

[37]:

• Based on Fig. 6.3, even for the lowest value of ∆34 = 3/2, the electrical conductance

would deviate from G = (2.50± 0.01)κ0T for temperatures lower than T ≈ 12mK.

• Generally at higher temperatures, equilibration between the edge modes is improved.
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Therefore, if the state observed in the experiments by Banerjee et al. [37] is indeed

the anti–Pfaffian state, the thermal Hall conductance would decrease below K ≈

2.5κ0T at higher temperatures. Using Fig. 6.2, we can estimate how much of a

temperature increase is needed in order to observe a measurable decrease from the

value K ≈ 2.5κ0T (i.e. to K ≈ 2.45κ0T ): We find the temperature has to increase

from T ≈ 18− 25 mK by at least a factor of ∼ 1.5, i.e., to T ≈ 35 mK.

7.2 Limitations and outlook

We should point out a limitation in comparing our results with the experiment: in

order to calculate the thermal conductance, we assumed the temperature difference between

the edge modes is small. Consequently, we considered the effects of bias in temperature

and voltage only to linear order. However, in the measurements carried out by Banerjee et

al.[37], the temperature difference is about the same order as the average temperature.

In addition, including higher order contributions can have interesting consequences.

It has been argued that the interplay between the electrical and the thermal transport can

generate distinct shot noise profiles along the Hall bar edge [120–123]. These noise profiles

fall into three universality classes depending on the chirality structure of the edge modes.

Specifically, it has been suggested that the universality class for the noise profile of the

anti–Pfaffian state is different from that of the Pfaffian and the PH–Pfaffian states, and so

the measurement of shot noise along the edge of the quantum Hall system at filling fraction

ν = 5/2 is another tool that can be used to distinguish between the different candidates.

We also point out that our results relied upon the assumption that the contacts are
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ideal (Section 4.5). This assumption has not been verified explicitly in the general case where

heat transfer is involved or when the edge modes are strongly interacting. And although the

assumption of ideal contacts produces results that agree with the measurements of electrical

conductance, one should always be wary of its limitations. This is particularly true when it

is applied to the problem of thermal transport and as more experimental studies of thermal

Hall conductance will be conducted in the near future.
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Appendix A

Correlation function of chiral

bosons

As we demonstrated in section 3.1 the chiral bosonic fields are related to the edge

density as

ρ(x) =
1

2π
∂xφ(x). (A.1)

The inverse relation is (L is the length of the edge and a is the short-distance cutoff)

φ(x) =
2π
√
ν√
L

∑
k>0

e−ak/2
1

ik
{eikxρk − e−ikxρ−k}. (A.2)

We can also expand φ(x) in terms of harmonic oscillator bosonic operators bk and b†k with

commutation relations

[bk, b
†
k′ ] = δkk′ . (A.3)
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To satisfy the correct commutation relation we need separate definitions for the right-moving

fields φR (η = 1) and left-moving fields φL (η = −1)

φR(x) = −i
√
ν
∑
k>0

√
2π

Lk
e−ak/2

[
eikxbk − e−ikxb†k

]
(A.4)

φL(x) = −i
√
ν
∑
k>0

√
2π

Lk
e−ak/2

[
eikxb†−k − e

−ikxb−k

]
. (A.5)

A.1 Single edge mode

The Hamiltonian of the free bosonic field Eq. 3.18 in terms of bk, b
†
k is

H =
∑
ηk>0

~ηvk(b†kbk +
1

2
). (A.6)

So the ground state |GS〉 is determined by

∀k : bk|GS〉 = 0. (A.7)

To find the equal time Green function we first write

〈
φ(x)φ(x′)

〉
=
〈
φ+(x)φ−(x′)

〉
=
〈
[φ+(x), φ−(x′)]

〉
= [φ+(x), φ−(x′)] (A.8)

where φ+/φ−(x) is the creation/annihilation part of φ(x). The last equality follows since

[φ+(x), φ−(x′)] is a just a number. Using A.2 we find (k = 2nπ/L with n ∈ Z)

〈
φ(x)φ(x′)

〉
=

2kν

L

∑
k>0

1

k
ep(−iη(x−x′)−a)

=ν

∞∑
n=1

1

n
(e−

2π
L

(a+iη(x−x′)))n

=− ν ln(1− e−
2π
L

(a+iη(x−x′)))

=− ν ln(
2π

L
(α+ iη(x− x′))). (A.9)
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The last equality is valid in the L → ∞ limit. Using this, it is easy to find the Green

function for non-equal times. Since the field φ(x, t) is chiral we have

φ(x, t) = φ(x− ηvt). (A.10)

Therefore

〈φ(x, t)φ(0, 0)〉 =− ν ln

[
2π

L
(a− i(vt− ηx))

]
. (A.11)

We can also find the correlation function at finite temperature (β = 1/kBT . See [76])

〈φ(x, t)φ(0, 0)〉 = −ν ln
[2βv

L
sin

π

βv
(α+ i(vt∓ x))

]
. (A.12)

We can also write down the time-ordered correlation function

〈Tφ(x, t)φ(0, 0)〉 = θ(t) 〈φ(x, t)φ(0, 0)〉+ θ(−t) 〈φ(0, 0)φ(x, t)〉

= −ν ln
[2βv

L
sin

π

βv
(α+ i(vt∓ x))

]
. (A.13)

and the Keldysh correlation function (T̄ denotes anti-time-ordering. See Ref. [78, 110–112])

〈
TCφ(x, t, s)φ(0, 0, s′)

〉
=

〈Tφ(x, t)φ(0, 0)〉 〈φ(0, 0)φ(x, t)〉

〈φ(x, t)φ(0, 0)〉
〈
Tφ(x, t)φ(0, 0)

〉


= −ν ln
[2βv

L
sin

π

βv
(α+ iχss′(t)(vt− ηx))

]

χss′ =

sgn(t) −1

1 − sgn(t)

 . (A.14)

s = ± denotes the forward/backward direction on the Keldysh contour.
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A.2 Several edge modes

When there are several edge modes interacting via the short-ranged Coulomb

interaction as 3.23, we can just as easily find the correlation function. We first transform

to the diagonalized fields

φi =
∑
α

Λiαφ̃α. (A.15)

So

〈φi(x, t)φj(0, 0)〉 =
∑
αβ

ΛiαΛjβ

〈
φ̃α(x, t)φ̃β(0, 0)

〉

= −
∑
αβ

ΛiαΛjα ln
[2βvβ
L

sin
π

βvα
(a+ i(vαt− ηαx))

]
. (A.16)

Vertex operators

We are looking to find the correlation function of vertex operators

〈
ei

∑
imiφi(x,t) ei

∑
im
′
iφi(0,0)

〉
(A.17)

when the field φi are interacting via the short-ranged Coulomb interaction. First note that

for bosonic operators B1 and B2 with a quadratic Hamiltonian we have

〈
eB1 eB2

〉
=
〈
eB1+B2

〉
e

1
2

[B1,B2]

= e
1
2〈B2

1+B2
2+B1B2+B2B1〉 e

1
2

[B1,B2]

= e
1
2〈B2

1+B2
2+2B1B2〉 . (A.18)
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The first equality is the result of the Baker–Campbell–Hausdorff formula and the second

equality follows if the Hamiltonian is quadratic. Therefore

〈
ei

∑
imiφi(x,t) e−i

∑
im
′
iφi(0,0)

〉
= exp

[
− 1

2

∑
i,j,α

mimjΛiαΛjα 〈φα(x, t)φα(x, t)〉

− 1

2

∑
i,j,α

m′im
′
jΛiαΛjα 〈φα(0, 0)φα(0, 0)〉

+
∑
i,j,α

mim
′
jΛiαΛjα 〈φα(x, t)φα(0, 0)〉

]

=
∏
α

(
2βvα
L sin π

βvα
a
) 1

2

∑
i,j,α(mimj+m

′
im
′
j)ΛiαΛjα

(
2βvα
L sin π

βvα
(a+ i(ṽαt− ηαx))

)∑
i,j mim

′
jΛiαΛjα

.

(A.19)

Using this, we find the scaling dimension of the vertex operator O(x, t) = ei
∑
imiφi(x,t). At

zero temperature T = 0

〈
O(x, t)O†(x, t = 0)

〉
=
∏
α

(
a

ivαt

)∑
i,j mimjΛiαΛjα

∼ t−2∆O , (A.20)

with scaling dimension

∆O =
1

2

∑
i,j,α

mimjΛiαΛjα. (A.21)
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Appendix B

Effective theory of ∆12 = 1 fixed

point

After changing variables to the charge mode φρ12 = 1√
2
(φ1 + φ2) and the neutral

mode φσ12 = 1√
2
(φ1−φ2) [92] we have (we will not write expressions already defined in 5.1)
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S =
∑

i=σ12,ρ12,3,4

Si +
∑

i,j∈{σ12,ρ12,3,4},i 6=j

Sij + Sψ + Stunneling,34ψ (B.1a)

Sρ12 = − 1

4π

∫
t,x

[∂xφρ12(∂tφρ12 + vρ12∂xφρ12 ] (B.1b)

Sσ12 = − 1

4π

∫
t,x

[∂xφσ12(∂tφσ12 + vσ12∂xφσ12 ] +

∫
t,x

[
ξ12(x) ei

√
2φσ12 +h.c.

]
(B.1c)

Sρ12,σ12 = −2vρ12,σ12

4π

∫
t,x

∂xφρ12∂xφσ12 (B.1d)

i = 3, 4 : Sρ12,i = −2vρ12,i

4π

∫
t,x

∂xφρ12∂xφi (B.1e)

i = 3, 4 : Sσ12,i = −2vσ12,i

4π

∫
t,x

∂xφσ12∂xφi. (B.1f)

When vρ12,σ12 = vσ12,3 = vσ12,4 = W34 = 0, Sσ12 has an SO(3) symmetry [92, 95, 96]. To

see this, define current operators (a is the short-distance cutoff)

Jx =
1

2πa
cos(
√

2φσ12) (B.2a)

Jy =
1

2πa
sin(
√

2φσ12) (B.2b)

Jz =
1

2π
√

2
∂xφσ12 . (B.2c)

These operators satisfy a su(2)1 similar to disordered fixed point of QHE at filling fraction

ν = 2/3 presented in Eq. 3.58. Similar to section 3.4.3 we eliminate the tunneling term

from Sσ12 . We express the currents J̃a in terms of a new bosonic field φ̃σ12 , similar to B.2,

and write the Hamiltonian Hσ12 as

Hσ12 =

∫
dx
vσ12

4π
(∂xφ̃)2. (B.3)
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The resulting action is

S =
∑

i=σ12,ρ12,3,4

Si +
∑

i,j∈{σ12,ρ12,3,4},i 6=j

Sij + Sψ + Stunneling,34ψ (B.4a)

Sσ12 = − 1

4π

∫
t,x

[
∂xφ̃σ12(∂tφ̃σ12 + vσ12∂xφ̃σ12

]
(B.4b)

Sσ12,i = −2vσ12,i

4π

∫
t,x

∂xφi

(√
2

a
Ozx cos(

√
2φ̃σ12) +

√
2

a
Ozy sin(

√
2φ̃σ12) +Ozz∂xφ̃σ12

)
,

(B.4c)

for i = ρ12, 3, 4. Here, we also used the following transformation in order to eliminate the

terms proportional to hz(x)

φi(x, t)→ φi(x, t) + 2
√

2π
vσ12,i

vi

∫ x

−∞
dx hz(x) (B.5)

for i = ρ12, 3, 4.
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Appendix C

Derivation of conductivity

coefficients

C.1 Electrical conductivity coefficient

We want to compute tunneling between a set of chiral modes described by the free

field Hamiltonian HF =
∑

αHα, due to interactions of the form

V =

∫
dx ξ(x)

∏
α

Xα(x) + h.c. (C.1)

in the presence of a chemical potential bias

Hµ = −
∫

dx
∑
α

µαnα(x), nα =
1

2π
∂xφα. (C.2)

The bosonic fields φα satisfy the commutation relations [φα(x), φβ(x′′)] = δαβπi
ηα
kα

sign(x−

x′). Chiral fermions will be described by chiral bosons. Here Xα is only a function of φα

and ξ(x) is Gaussian-correlated disorder satisfying ξ(x)ξ(x′) = WV δ(x−x′). The continuity
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equation for each number current Iα is

−∂xIα(x, t) = ∂tnα(x, t) = i[H,nα(x)](t). (C.3)

For the Hamiltonian H = HF +Hµ + V

−∂xIα(t) = −ηαvα∂xnα(x, t) + i

∫
dx′ ξ(x′)[Xα(x′), nα(x)]

∏
β 6=α

Xα(x′) + h.c. . (C.4)

As we discussed in section 4.3.1, this equation should be understood as the continuous limit

of a series of point contact tunnelings [97, 103]. Different tunnelings are assumed incoherent

so that each mode comes to local equilibrium between consecutive tunnelings. It follows

that nα = 1
2π

1
kαvα

µα can be assume constant and so we drop the ∂xnα term.

We calculate the expectation value of ∂xIα using the Keldysh technique

∂x 〈Iα(x, t)〉 =
1

2

∑
σ12

〈
TC ∂xIi,H0(x, t, s) ei

∑
s′ s
′ ∫ dt′V (t′,s′)H0

〉
, (C.5)

H0 ≡ HF +Hµ, (C.6)

where TC indicates “time” ordering along the Keldysh contour. Expanding the exponential

to first order in ξ and taking disorder average

∂x 〈Iα(x, t)〉 =
i

2

∑
ss′

s′
∫

dt′
〈
TC ∂xIα(x, t, s)HF V (t′, s′)H0

〉
(C.7)

=
1

2
WV

∑
ss′

s′
∫

dx′
∫

dt′
〈
TC [Xα(x′), nα(x)](t, s)X†α(x′, t′, s′)

〉
×
∏
β 6=α

〈
TC Xβ(x′, t, s)X†β(x′, t′, s′)

〉
+ h.c. .

We look at two cases separately.
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C.1.1 Random tunneling

Operators that tunnel electrons/quasiparticles between edge channels of a frac-

tional quantum Hall state have the form ei
∑
imiφi , where φi with Latin index repre-

sents a chiral boson mode carrying charge νi and chirality ηi with commutation relation

[φi(x), φj(x
′)] = δijπiηiνi sign(x − x′). This term also has a coefficient 1

(2πa)Ne
, with a the

UV distance cut-off and Ne the number of electrons transferred, which we will retain at the

end of our calculations. Here conservation of electric charge implies
∑

i ηimiνi = 0. In case

there are Coulomb interactions between these fractional modes we use a transformation

φi = Λiαφα to diagonalize the quadratic part of the action. In terms of the diagonal basis

φα (which are indexed by Greek letters), the electron/quasi-particle tunneling operator is

ei
∑
α λαφα =

∏
αXα with Xα ≡ eiλαφα and λα =

∑
imiΛiα.

From the Heisenberg equation of motion for φα, evolved with H0,

∂tφα = −ηαvα∂xφα +
ηα
kα
µα (C.8)

→ Xα(x, t)H0 = eiηαλαµαt/kα Xα(x, t)HF . (C.9)

Also,

[Xα(x′), nα(x)] =
ηαλα
kα

Xα(x)δ(x− x′). (C.10)

So (from now all the time dependencies are with respect to HF )

∂x 〈Iα(x, t)〉 =
1

2

ηαλα
kα

WV

∑
ss′

s′
∫

dt′
∏
β

eiηβλβµβ(t−t′)/kβ
〈
TCXβ(x, t, s)X†β(x, t′, s′)

〉
− h.c.

(C.11)

= i
ηαλα
kα

WV

∑
ss′

s′
∫

dt′ sin
(
Ω(t− t′)

)∏
β

〈
TCXβ(t, s)X†β(t′, s′)

〉
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where µβ = 0 if β is a Majorana mode and we defined Ω ≡
∑

β
ηβλβ
kβ

µβ. The Keldysh Green

function of a chiral operator Xα is

〈
TCXα(x, t, s)X†α(0, t′, s′)

〉
=

(
AαTα

vα sin πTα
vα

(a+ iχss′(t− t′)(vα(t− t′)− ηαx)

)2dα

(C.12)

where vα,Tα and dα are the velocity, temperature, and scaling dimension of operator Xα.

Aα is a constant (Aα = 2 for Majorana fermions, Aα = πa for a vertex operator, and

Aα = π
kα

for a boson density operator ∂xφα) and

χss′(t) =

sgn(t) −1

1 − sgn(t)

 . (C.13)

Substituting in the appropriate Green functions, assuming all modes are at the same tem-

perature,

∂x 〈Iα〉 = i
ηαλα
kα

.WV .
∏
β

(
Aβ
vβ

)2dβ .T 2∆
∑
ss′

s′
∫

dt′
sin (Ω(t− t′))∏

β sin
(
πTβ
vβ

(a+ iχss′vβ(t− t′))
)2dβ

= i
ηαλα
kα

.WV .
∏
β

(
Aβ
vβ

)2dβ .T 2∆
∑
s

s

∫
dt′

sin (Ωt′)∏
β sin

(
πT
vβ

(a+ isvβt′)
)2dβ

, (C.14)

where in the last equality we dropped the odd terms when s = s′. Changing variables to

t′ = −s(t+ i/2T ) and dropping a’s assuming ∀β : aT/vβ < 1

∂x 〈Iα〉 = i
ηαλα
kα

.WV .
∏
β

(
Aβ
vβ

)2dβ .T 2∆×

∑
s

s

∫
dt
−s (sin (Ωt) cosh (Ω/2T ) + i cos (Ωt) sinh (Ω/2T ))

cosh (πTt)2∆

= 2
ηαλα
kα

.WV .
∏
β

(
Aβ
vβ

)2dβ .T 2∆ sinh

(
Ω

2T

)∫
dt

cosh (iΩt)

cosh (πTt)2∆

=
ηαλα
πkα

.WV .
∏
β

(
Aβ
vβ

)2dβ .22∆T 2∆−1 sinh

(
Ω

2T

)
B(∆ + i

Ω

2πT
,∆− i Ω

2πT
),

(C.15)
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where ∆ =
∑

β dβ is the scaling dimension of
∏
β Xβ. So in the ohmic regime when Ω� T

we have (we’re also retaining the 1
(2πa)Ne

factor)

∂x 〈Iα〉 = σ0gV
ηαλα
kα

∑
β

ηβλβ
kβ

µβ(x), gV = WV .
(2πa)2(∆−Ne)∏

γ v
2dγ
γ

.
Γ(∆)2

Γ(2∆)
T 2∆−2. (C.16)

Assuming local equilibrium we have 〈Iβ〉 = ηβσ0µα/kβ. We can write these set of equations

in terms of the original modes Ii = ΛiαIα as

∂x 〈Ii〉 = −gV ηiνimi

∑
j

mj 〈Ij(x)〉 . (C.17)

C.1.2 Random density-density

For concreteness let’s look at the example of the disordered fixed point of the ν = 2

quantum Hall edge state. This is the theory that we derived in Appendix B if we only focus

on the φ1 and φ2 modes and ignore the rest:

S = S1 + S2 + S12 + Stunneling,12 (C.18a)

i = 1, 2 : Si = − 1

4π

∫
t,x

[∂xφi(ηi∂tφi + vi∂xφi)] (C.18b)

S12 = −v12

4π

∫
t,x

∂xφ1∂xφ2 (C.18c)

Stunneling,12 = −
∫
t,x

[
ξ12(x) ei(φ1−φ2) +h.c.

]
. (C.18d)

We first change the basis to the charge mode φρ = 1√
2
(φ1 + φ2) and the neutral mode

φσ = 1√
2
(φ1 − φ2) and then perform a gauge transformation O(x) to eliminate the random
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tunneling term. Now, we can write down the Hamiltonian for the disordered fixed point as

HF = Hρ +Hσ (C.19a)

Hρ =
vρ
4π

∫
dx (∂xφρ)

2 (C.19b)

Hσ =

∫
dx

2πvσ
3
J̃2
σ (C.19c)

where current operators J̃a are defined as in (3.57). The residual density-density interaction

between the charge mode φρ and the new neutral mode φ̃σ is

V = Hρσ =
1

2π

∫
dx∂xφρ(ξσ.J̃(x)), ξaσ ≡ 2π

√
2vρσO

za(x). (C.20)

ξaσ is a quenched random variable, the auto-correlation of which decays on the length

scales of ∼ v2
σ/W12. This renders V irrelevant. Assuming v2

σ/W12 is small enough, for

simplicity we take ξσ to have Gaussian correlation ξaσ(x)ξbσ(x′) = δabWσδ(x − x′) where

Wσ ≈ 8π2v2
ρσv

2
σ/W12.

In order to find the tunneling current between the charge and neutral modes we

bias the modes with chemical potential by introducing the interaction

Hµ = −
∫

dx [µρnρ(x) + µ̃σñσ(x)] (C.21)

with the charge density nρ = 1
2π∂xφρ and the new neutral denstiy ñσ = 1

2π∂xφ̃σ =
√

2J̃z.

The charge mode is conserved

−∂xIρ = ∂tnρ = −ηρvρ∂xnρ (C.22)

while for the neutral mode we have

−∂xĨσ(x, t) = ∂tñσ(x, t) = −ησvσ∂xñσ + i[Hρσ,
√

2J̃z(x, t)]

= −ησvσ∂xñσ +
√

2nρ(x, t)
(
ξxσ(x)J̃y(x, t)− ξyσ(x)J̃x(x, t)

)
. (C.23)
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Similarly as before, we assume the modes are in local equilibrium so we have nρ(x) = 1
2πvρ

µρ

and ñσ(x) = 1
2πvσ

µ̃σ. Note that since the density ñσ(x) decays only due to the interaction

term C.20, we expect this density and its conjugate chemical potential µ̃σ to vary slowly

at low temperatures. Therefore, we drop the terms ∂xnρ and ∂xñσ in the above equations.

Therefore we drop To leading order in Wσ, the expectation value of this operator is

∂x

〈
Ĩσ(x, t)

〉
= − i√

2
Wσ

∑
s,s′

∫
dt′
〈
nρ(x, t, s)H0nρ(x, t

′, s′)H0

〉
(C.24)

×
[ 〈
J̃y(x, t, s)H0 J̃

x(x, t′, s′)H0

〉
−
〈
J̃x(x, t, s)H0 J̃

y(x, t′, s′)H0

〉 ]
.

The equation of motion for J̃a(x), evolved with H0, is

∂tJ̃
x(x, t) = −ησvσ∂xJ̃x(x, t)−

√
2µ̃σJ̃

y(x, t) (C.25a)

∂tJ̃
y(x, t) = −ησvσ∂xJ̃y(x, t) +

√
2µ̃σJ̃

x(x, t) (C.25b)

with solutions

J̃x(x, t) = J̃x(x− ησvσt) cos(
√

2µ̃σt)− J̃y(x− ησvσt) sin(
√

2µ̃σt) (C.26a)

J̃y(x, t) = J̃y(x− ησvσt) cos(
√

2µ̃σt) + J̃x(x− ησvσt) sin(
√

2µ̃σt). (C.26b)

Using this solution we have

∂x

〈
Ĩσ(x, t)

〉
= − i√

2
Wσ

∑
s,s′

∫
dt′ sin(

√
2µ̃σ(t− t′))

〈
nρ(x, t, s)HF nρ(x, t

′, s′)HF
〉

(C.27)

[〈
J̃x(x, t, s)HF J̃

x(x, t′, s′)HF

〉
+
〈
J̃y(x, t, s)HF J̃

y(x, t′, s′)HF

〉]
.

We proceed similarly as before to find

∂x

〈
Ĩσ

〉
= − 1

2π

√
2Wσ

v2
ρv

2
σ

T 2∆−1 sinh

(√
2µ̃σ
2T

)
B(∆ + i

√
2µ̃σ

2πT
,∆− i

√
2µ̃σ

2πT
), (C.28)
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with ∆ = 2. To linear order in µ̃σ

∂x

〈
Ĩσ

〉
= −gσσ0µ̃σ, gσ =

Wσ

12v2
ρv

2
σ

T 2 =
2π2v2

ρσ

3v2
ρW12

T 2. (C.29)

We can express this equation along with ∂xIρ = 0 in a basis similar to the original fractional

modes. We define

I ′1 =
1√
2

(Iρ + Ĩσ) (C.30a)

I ′2 =
1√
2

(Iρ − Ĩσ). (C.30b)

These new modes mix only due the irrelevant interactions such as C.20 and so are expected

to vary slowly at low temperatures. In this basis the kinetic equations are

∂x
〈
I ′i
〉

= −σ0gσηimi

∑
j

mjI
′
j(x) (C.31)

with m1 = 1 and m2 = −1. While this expression looks similar to C.17, the conductivity

coefficient is different and reflects the disordered fixed point.

C.2 Thermal conductivity coefficient

Similarly, we can find the heat currents exchanged between the edge modes. Here,

we work to linear order in the temperature bias and assume zero chemical potential bias.

From the Heisenberg equation of motion with total Hamiltonian H =
∑

αHα + V :

−∂xJα(t) = ∂tHα(x, t) = i[H,Hα(x)](t) (C.32)

= −ηαvα∂xHα(x, t) + i

∫
dx′ ξ(x′)[Xα(x′),Hα(x)]

∏
β 6=α

Xα(x′) + h.c.,

where Hα is the energy density of mode α. This equation should be understood as change

in heat current due to a series of incoherent tunnelings. Local equilibrium implies 〈Hα〉 =
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1
2vα

κ0T
2
α so to leading order we can drop the first term on the right hand side. We will find

the expectation value of ∂xJα using the Keldysh technique (HF =
∑

αHα),

〈∂xJα(x, t)〉 =
1

2

∑
s

〈
TC ∂xJα(x, t, s)HF ei

∑
s′ s
′ ∫ dt′V (t′,s′)HF

〉
. (C.33)

Expanding the slow evolution operator to first order

∂x 〈Jα(x, t)〉 =
−i
2

∑
ss′

s′
∫

dt′
〈
TC∂xJα(x, t, s)HF V (t′, s′)HF

〉
=

1

2
WV

∑
ss′

s′
∫

dx′
∫

dt′
〈
TC [Xα(x′),Hα(x)](t, s)X†α(x′, t′, s′)

〉
(C.34)

×
∏
β 6=α

〈
TCXβ(x′, t, s)X†β(x′, t′, s′)

〉
+ h.c.

where we dropped the HF index after the second equality and also took the disorder average.

We assume the modes are in local equilibrium so that the temperatures Tα are actually local

temperatures at point x. Using [Xα(x′),Hα(x)](t)HF = iδ(x− x′)∂tXα(x, t)HF we get

∂x 〈Jα〉 =
1

2
WV (2πdαTα)

∏
β

(
AβTβ
vβ

)2dβ× (C.35)

∑
ss′

s′
∫

dt′χss′(t− t′)
cot πTαvα (a+ iχss′vα(t− t′))∏

β sin
(
πTβ
vβ

(a+ iχss′vβ(t− t′))
)2dβ

+ h.c.

χss(t) is an odd function of t so tχss(t) is even and so the integral vanishes for s = s′.

Therefore, (χs,−s = −s)

∂x 〈Jα〉 = WV .πdαTα.
∏
β

(
AβTβ
vβ

)2dβ .
∑
s

∫
dt′

cot πTαvα (a+ isvαt
′)∏

β sin
(
πTβ
vβ

(a+ isvβt′)
)2dα

+ h.c. (C.36)

Ignoring a’s (assuming aTβ/vβ < 1) and changing variables to t′ = −s(t+ i 1
2Tα

),

∂x 〈Jα〉 = WV .πdαTα.
∏
β

(
AβTβ
vβ

)2dβ× (C.37)

∑
s

∫
dt

i sinh(πTαt)

cosh(sπTαt)2dα+1
∏
β 6=α sin

(
πTβ
2Tα
− iπTαt)

)2dβ
+ h.c.
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Expanding the integrand to first order in τβα ≡ Tβ − Tα

∂x 〈Jα〉 = WV .πdα.
∏
β

(
AβTβ
vβ

)2dβ .
∑
s

∫
dt

i sinh(πTαt)

cosh(πTαt)
∑
β 2dβ+1

.

1− i tanh(πTαt).(
π

2Tα
− iπTαt)

∑
β 6=α

2dβτβα

+ h.c. (C.38)

Dropping the odd terms in the integrand

∂x 〈Jα〉 = 2πdαWV .
∏
β

(
Aβ
vβ

)2dβ .T 2∆−2.
π

2T

∑
j 6=i

2dβτβα.
∑
s

∫
dt

sinh(πTαt)
2

cosh(sπTαt)
∑
β 2dβ+2

= κ0

∑
β 6=α

gQαβ
T 2
β − T 2

α

2
, gQαβ ≡ gV

12dαdβ
1 + 2∆

(C.39)

with gV defined in (C.16).
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