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EPIGRAPH

You have to believe in something,

no matter how stupid it sounds.

— The Servant
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ABSTRACT OF THE THESIS

Exploration in Complex Naturalistic Behavior
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Umesh Kumar Singla
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Professor Marcelo Mattar, Chair

Professor Sicun Gao, Co-Chair

Exploration and search are such crucial occurrences in the natural world around

us, yet we don’t know much about what drives the precise structure we observe.

While exploration by animals in discrete choice tasks has been extensively re-

searched, exploration in sequential contexts has received little attention. We take

a behaviorally rich dataset of mice exploring a labyrinth by Rosenberg et al. [2021]

and model it using search strategies from foraging literature in an RL framework.

We discovered that an ecologically inspired Lévy walk model adequately explains

the efficiency and preferences of mice exploring the labyrinth. We implemented the

model in the temporally extended ϵ-greedy exploration framework, which allowed

us to interpret the search strategy using general principles. We found that animals

exhibit super-diffusive behavior and leverage temporal persistence to navigate the

maze rather than making decisions at each intersection. Our study provides a new

perspective on Lévy flight foraging and opens new avenues for investigating the

interaction between exploration dynamics and the naturalistic environments.
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Chapter 1

Introduction

If you were to experience the complicated landscape of Venice or New York City

for the first time, you would likely be struck by the beauty and intricacy of the city.

You would likely be amazed by the winding canals, the historic architecture, and

the vibrant culture of Venice. You would be amazed by the towering skyscrapers,

the bustling streets, and the vibrant energy of the New York City. You might feel

a bit overwhelmed at first by the seemingly endless maze of narrow streets and

waterways, or the crowds and the fast pace of life in case of NYC, but you would

likely be excited to explore and discover the hidden gems of the city. If your sole

aim for the evening is to explore the city or look for a fun dinner place, you would

start by wandering around the area. Even if it’s your first time, you are fairly

confident that you will be able to find something to engage yourselves with that

evening, and that you will learn more about the city without getting lost. There

are a few steps that one can take to help ensure that they do not get lost and be

able to discover the sounds and sights of the city. You will likely start by doing

some research and familiarize yourself with the layout of the city and the different

neighborhoods. This can help you to get a sense of the different areas and how

they are connected, and can make it easier to orient yourself once you are there.

You are confident that you will not get lost in the city because you have probably

done something similar before on an another trip. Alternatively, you feel you have

a natural understanding of how space is organized, which can help you to orient

yourself and find your way around the city. This understanding of spatial design
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gives you a sense of confidence and assurance, and is going to help you navigate

the city with ease. In any case, your curiosity about things and a capability to

move around will most probably lead you to discover something to do in the city

that will be memorable for life.

Why is it that we tend to keep exploring despite any certainty of getting a

reward? And how is it that we are able to cover a large portion of space in so little

time without getting stuck and without getting overwhelmed by the sheer number

of possible paths and options to choose from? Berlyne’s book on ‘Conflict, Arousal

and Curiosity’, that influenced the development of research into animal exploratory

behavior for decades, was the first to make a distinction between extrinsic and in-

trinsic exploration [Berlyne, 1960]. Extrinsic exploration was now seen as behavior

focused on achieving a specific goal or fulfilling a particular requirement. In con-

trast, intrinsic exploration behavior is characterized by the investigation of the

stimuli and is driven by curiosity and an interest in the stimuli itself. But, while

the distinction between the two types of exploration is extremely useful for gaining

insights into the brains and behavior, in practice it can be difficult to disentangle

the two types of exploration since the two generally go hand in hand. Even if

the motives or the consequences of the two differ, the responses can be identical

[Hughes, 1997]. Building upon this motivation, we seek to tease apart and un-

derstand various components that could underlie exploratory behavior: the ones

that are driven by external factors, or by intrinsic motivation, or simply are an

outcome of the neuronal noise, and lastly, possibly originated as a part of millions

of years of the natural selection process [Viswanathan et al., 2011]. The problem

of foraging aims to identify the complex mixture of behavior and physical struc-

ture of animals that gives rise to their efficiency in gathering food in a variety of

environments. Identifying characteristics of efficient search and exploration is one

important component in this problem [Krebs and Stephens, 2019].
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1.1 Exploration

Biological intelligence is characterized by its ability to quickly learn new con-

cepts from only a handful of examples, adapt to changing surroundings, and use

previous knowledge to make predictions about the environment [Hassabis et al.,

2017]. Efficient exploration in the real world is one hallmark of biological intel-

ligence. Exploration is fundamental for survival of animals and human beings.

Animals need to keep looking for sources of food and new places to shelter to

keep themselves safe from getting predated by avoiding being in the same place

for long. Human exploration in the modern world is important for similar reasons

but also to keep looking for new things and experiences in life to avoid the stress

of monotonicity and keep the will to live alive.

Understanding the exploratory behavior of humans and animals is one of the

central goals of behavioral ecology and neuroscience. Exploratory behavior is a

natural expression of spatial learning [O’keefe and Nadel, 1979]. Exploration in

animals has been widely studied in open field foraging tasks [Tchernichovski et al.,

Tchernichovski and Benjamini] and in discrete settings such as multi-arm bandits

[Costa et al., 2019]. The dynamics of exploration have also been studied at mul-

tiple time scales - from characterizing twists and turns in a novel environment to

capturing movement patterns in mazes or farmlands [Atkinson et al., 2002]. Mod-

eling animal exploration can help us capture normative principles behind their

strategies and provide a low-dimension description of behavior, which can further

be correlated with the neural activity to gain insights into the brain.

To further motivate the question of why the exploratory behavior are not fully

random, we can look into a recent example from the neuroscience literature. Coen

et al. [2014] analyzed the type of courtship songs in Drosophila which showed that

the type of song can be predicted by postural cues from the female, previously

thought to vary at random. By analyzing more than 100,000 love songs and care-

fully monitoring the location of the courting couple, the authors suggested that a

logic and order exist in the apparent musical randomness. Further, this behavior

is also better predicted by a model that takes into account an estimate of the

singing male’s internal state. A thorough and detailed analysis of complex and
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unpredictable behavioural patterns resulted in the identification of simple under-

lying rules, showing behavioural variability and complexity can have an underlying

structure and can help us with understanding nervous-system function and identify

the computational problems brains are trying to solve [Ölveczky, 2014]. There’s

no reason to expect a structure in the animal movement behavior but there is also

no reason to not expect.

1.2 Naturalistic Behavior

While a large portion of the literature has focused on exploration in simplistic

settings of bandits tasks or open fields, only a few studies have tried to model

behavior in larger, complex environments. The experiments in neuroscience do

not come close to the complexity, the sequential nature and naturalistic quality of

real life settings. They also involve significant amount of human interference and

tend to have very short periods of exploration. In biological organisms, it is clear

that exploration is not optimal and animals resort to heuristics, possibly due to

limited cognitive resources. In more realistic settings which are generally sequential

in nature, algorithms ought to be much more complex. Recent developments in

computer vision and machine learning tools have made it possible to track and

monitor animals with unprecedented accuracy. We are now seeing an upsurge

in the use of complex mazes for studying animal behavior, which contain many

choice points and much larger spatial area [Vallianatou et al., 2021, Uster et al.,

1976, Alonso et al., 2020, Grobéty and Schenk, 1992, Nagy et al., 2020]. One such

recent experiment developed by Rosenberg et al. [2021] involves animals exploring

a complex labyrinth for hours without any human interference whatsoever. The

animals have access to sufficient food and water in the home cage and the maze

offers no explicit external reward. But, as noted in Rosenberg et al. [2021], we see

animals continue to explore the maze throughout the night. While this behavior

supports the presence of some kind of intrinsic motivation in the animals that is

making them explore, the structure and efficiency exhibited by animals in itself is

quite remarkable and makes up for a perfect example of complex yet naturalistic
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exploratory behavior that remains poorly understood.

1.3 Our Contribution

While exploration by animals in discrete choice tasks has been extensively re-

searched, exploration in sequential contexts in biological agents has received little

attention. During cognitive activities such as spatial navigation, animals demon-

strate complex yet highly structured behavior. Despite their structure, the con-

cepts underpinning exploratory patterns are poorly understood. To our knowledge,

no existing MDP algorithm has attempted to capture exploratory patterns in an-

imal movement in complex real-life settings. In this work, we emphasize on the

sequential settings from the natural world that offer sparse or zero external re-

wards. The motivation behind this and the future work is to identify the structure

in the natural world around us, attempt to learn the origins behind it, and com-

putationally model it to help build better and efficient autonomous agents. Once

we have separated out the seemingly random component of exploration and have

replicated it, we can move on to other aspects of the problem such as learning and

adaptation. That is, adding the effects of a ”brain” to a ”brainless” model.

We take a behaviorally rich dataset of mice exploring a labyrinth by Rosen-

berg et al. [2021] and model it using search strategies from foraging literature

in a reinforcement learning framework. We develop a set of evaluation metrics

through careful data analysis. We discovered that an ecologically inspired Lévy

search model adequately explains the efficiency and preferences of mice exploring

the labyrinth. We implemented the model in temporally-extended ϵ-greedy explo-

ration [Dabney et al., 2020] framework, allowing us to interpret the search strat-

egy using general principles: animals exhibit super-diffusive behavior and leverage

temporal persistence to move in the maze rather than making decisions at every

junction. Our study provides a new perspective on Lévy flight foraging and opens

new avenues for investigating the interaction between exploration dynamics and

the naturalistic environments. There are a number of possibilities for interest-

ing theoretical and experimental research on the complex dynamics of biological
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interactions. Future studies may uncover new and unexpected insights into the

mechanisms and behaviors that govern these interactions.

1.4 Outline

In this work, we review a set of algorithms proposed in the Reinforcement

Learning literature on exploration in sequential settings in section 3.1, with the

goal of identifying algorithms that could plausibly describe animal behavior. In

chapter 2, we also review the literature on anomalous diffusion and a number of

random models that have been proposed in movement ecology to describe animal

foraging patterns. We then analyze in chapter 4 a rich dataset of animals exploring

a labyrinth, a fairly complex naturalistic setting and build a set of evaluation met-

rics. And finally in chapter 5, we conclude by proposing a new candidate algorithm

inspired by ecology and implemented in a reinforcement learning framework that

seems to capture much of the animal behavior we witnessed in our dataset.
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Chapter 2

Preliminaries

This chapter introduces core concepts that will be used throughout the the-

sis. We briefly present the full reinforcement learning problem in section 2.1, its

formulation using the markov decision process framework in subsection 2.1.1, and

introduce the problem of exploration as tackled in artificial intelligence in bandit

or sequential settings (subsection 2.1.3). We then introduce the relatively recent

work in RL on capturing the behavior at multiple time scales in section 2.2, briefly

reviewing the theory behind semi-MDPs and options in subsection 2.2.1.

2.1 Reinforcement Learning

Reinforcement Learning (RL) provides a framework to study how an agent can

learn to choose actions that maximize the reward signal. When an RL agent starts

acting in an environment, it typically does not have any knowledge about the task

or the environment it needs to tackle. RL agents are interactive: they have a

certain goal, can sense parts of their environments and choose actions to influence

their environment. The agent has to operate despite significant uncertainty about

the environment it is in. The agent interacts with the environment, observes

the consequences of its actions in the form of transitions and feedback, and then

is expected to use these observations to perform better. The interactivity is the

distinguishing element of an RL agent. Reinforcement learning is the closest to the

kind of learning that humans and other animals do, out of all the forms of machine
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learning approaches. Many of the core algorithms of reinforcement learning are

inspired by biological learning systems. Various RL algorithms operate in mildly

different ways, although most of them do some variation of state value estimation

at their core [Sutton and Barto, 2018].

Model-Based vs Model-Free RL When it comes to learning about the envi-

ronment, it is important to distinguish algorithms that are model-based and that

are model-free. When the agent is supposed to learn the model of the environment,

models can be used for planning a course of action by considering possible future

states and transitions. While this seems obviously useful, it also requires more

computational resources as well as adds work for us to find its biological imple-

mentation. On the other hand, we have model-free methods that are trial-and-error

learners - which could be viewed as almost the opposite of planning [Sutton and

Barto, 2018].

2.1.1 Markov Decision Processes

Reinforcement learning can be set within the Markov Decision Process (MDP)

formalism [Puterman, 1994]. An MDP is defined by the tuple (S,A, P, r, γ) where:

• s ∈ S is a state in the state space.

• a ∈ A is an action in the action space.

• P (s′|s, a) is the probability of transitioning from state s to state s′ on taking

action a. MDPs assume that the environment is Markovian, so the transition

probability P (s′|s, a) depends only on the current state-action pair. That is,

P (St+1 = s′|st, at) = P (St+1 = s′|st, at, st−1, at−1, st−2, at−2, ..., s0, a0). All

the sequence of observations, actions and information on environment ob-

tained by agent during its journey is called history.

• r : S × A → R is the reward function which maps the current state-action

pair (s, a) to the immediate reward obtained from the set of real numbers.
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• γ ∈ [0, 1) is the discount factor. With γ = 0, it considers only immediate

rewards. γ discounts the value of future rewards.

Policy Let P(A) denote the space of probability distributions over actions; then

a policy π : S → P(A) assigns some probability to each action conditioned on a

given state. Policy describes an agent’s behavior, that is, tells it what action to

take in a given situation. Generally an RL agent starts with a random policy and

continues to improve its policy by learning from the outcomes of its actions in the

environment. Value-iteration methods help agent estimate the expected reward (or

value) it can get by taking an action in its current state. However, various methods

also exist in policy space where we directly optimize over policy functions.

2.1.2 Exploration-Exploitation Trade-off

One of the core challenges of RL is the exploration-exploitation trade-off. To

continue to improve its policy and perform better, the agent needs to keep gather-

ing more and more information about the environment which could mean acting

sub-optimally at times (explore). If the agent only manages to visit a portion of the

environment (that is only a subset of states), its knowledge about the environment

remains low and might perform poorly when it comes to new observations. How-

ever, if it focuses too much on the parts of the environment that it has not explored

enough, it loses the chance to get immediate rewards that it knows about. This

trade-off depends on a number of factors, such as environment dynamics, presence

of immediate or long-term rewards, number of states and their properties, set of

actions, etc.

Another one of the core challenges in RL is the temporal credit assignment. The

agent must accurately assign the credit to past actions that helped it in achieving

long-term return and in an efficient manner. However identifying such actions is

not a trivial problem.

We only focus on the problem of exploration-exploitation trade-off in this work.

In fact, the majority of the current work is only focused on the exploration phase.
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2.1.3 Exploration

Exploration plays a central role in RL and it has been studied quite exten-

sively in the field. Exploration methods have evolved from simple ideas such as

pure randomization, to increasingly effective algorithms that come with theoret-

ical guarantees in various domains and have shown impressive performance in

complex problems. In finite state-action spaces, they perform quite well and are

well-understood but when it comes to large-scale environments, or sparse reward

settings such as in sequential problems, these algorithms are of limited practical

use.

We are primarily concerned with exploration in sequential settings where ex-

ploration has even greater impact. In sequential settings, exploration controls not

only the immediate information but also the potential information an agent could

get in the future. There’s been a ton of applications of exploration algorithms

in bandit settings that perform really well and come with theoretical guarantees

(e.g. PAC bounds) [Kearns and Singh, 2002, Brafman and Tennenholtz, 2002,

Azar et al., 2017, Wang et al., 2020]. We expand on existing exploration methods

in sequential settings in section 3.1 in detail since it’s the primary concern of our

work.

Based on the information exploration algorithms tend to utilize, they are gener-

ally categorized generally into undirected and directed exploration [Thrun, 1992].

In undirected exploration methods, an agent selects exploratory actions at ran-

dom, without using any exploration-specific knowledge. Random walk is the sim-

plest method in this category. Another example is the Boltzmann distribution

(based on inverse-temperature parameter for balancing the exploration and ex-

ploitation).

In directed exploration methods, agents leverage the obtained information to

pursue the exploration of states that haven’t been visited recently or more gener-

ally, the agent thinks would be more informative. How does an agent formalize

the notion of information? When it comes to pure exploration, what information

are they seeking or what information could be useful? For example, in a city or

a maze, exploration is necessary for acquiring spatial information. Exploration
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can be viewed as a search for undiscovered rewards or looking for alternate ways

to get to known rewards or avoid preys. There are various ways to think about

this: in terms of ”curiosity-seeking”, reducing prediction ”uncertainty”, ”sensa-

tion seeking”, ”novelty seeking”, energy constraints, etc [Hughes, 1997]. We look

at definitions of some of these and the exploration algorithms based on them in

section 3.1.

2.2 Temporal Abstraction in RL

It has been argued that in order to scale to large problems, RL agents should be

able to reason at multiple temporal scales [Dayan and Hinton, 1992, Sutton et al.,

1999, Precup, 2000, Kaelbling, 1993, Dabney et al., 2020]. Learning, planning, and

representing knowledge at multiple levels of temporal abstraction are key challenges

for AI. To tackle this, Sutton et al. [1999] introduced for the first time, temporally-

extended courses of actions - options. Options are closed-loop policies to take

actions over a period of time. It could be the same action repeated a number of

times or a composite action. Depending on how options are designed to evolve,

we may have markov options as well as semi-markov options. We do not,

however, expand on the closed-loop nature of options and how to learn and improve

options in this thesis.

Examples of options include getting on a bike, switching on the TV, going

to lunch, and traveling to a distant city, and primitive actions such as muscle

twitches or moving left can be regarded as options as well (Figure 2.1). Options

are an extension of the general notion of an action - so options may be used

interchangeably with primitive actions in existing planning and learning methods.

Precup et al. [1998] and Sutton et al. [1999] show that options enable temporally

abstract knowledge and action to be included in the RL framework in a natural and

general way. By including the options to existing notion of primitive actions, the

framework allows an agent to work simultaneously with high-level and low-level

temporal representations.
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Figure 2.1: A cooking activity involves taking actions at multiple time scales. At
high level: choose a recipe, make a grocery list. At medium: get a pot, collect
ingredients. At lower: wrist and arm movement, stirring, and such. Example from
Precup [2000].

2.2.1 Options and Semi-MDPs

Temporally-extended actions are represented by a policy (behavior) together

with a termination condition. An action represented in this way is called an option.

In an action-repeat kind of option (e.g. ’go-forward k = 6 times’), the termination

condition could merely be when the number of times the action was to be repeated

becomes zero (k = 0).

The current definition of options is designed to make them similar to actions as

much as possible while adding the possibility of them being temporally-extended.

Options can be easily incorporated in MDPs, allowing an agent to use existing

algorithms and heuristics for selecting actions or courses of action. There’s a

lot of ongoing work on coming up with a different action representation [Sharma

et al., 2017] or being able to learn and discover options, either depending on the

environment [Kulkarni et al., 2016] or in a task-agnostic fashion [Amin et al., 2021a,

Riemer et al., 2018, Harb et al., 2018, Vezhnevets et al., 2017, Fox et al., 2017].

Particularly, the study by Kulkarni et al. [2016] designs intrinsic rewards to aid

longer sequences of actions.
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Options Options consist of three components: a policy π : S × A → [0, 1], a

termination condition β : S+ → [0, 1], and initiation set I ∈ S [Sutton et al.,

1999]. Note that [0, 1] denotes all the real values from 0 (inclusive) to 1 (inclusive)

to denote the probability range. Initiation set consists of states where a certain

option can be initiated for execution. An option < I, π, β > is available in state

st if and only if st ∈ I. That is, given a set of options O, the available options

Os for each state s is implicitly defined by how each option is initialized. When

an option is executed, the actions are chosen according to the policy π until the

option is terminated according to the probability β.

Markov and Semi-Markov Options Sometimes it is useful to have a timeout

on an option to terminate before it has reached a particular intended state [Sutton

et al., 1999]. With Markov options, the decision to terminate solely depends on

the current state. Semi-Markov options are defined to overcome this problem and

extend the framework to even more cases of possible interest. With semi-Markov

options, policies and termination conditions can make their choice depending on

the events that have occurred since the option was initiated.

In their most general formulation, an option is initiated at some time t, deter-

mines the actions selected for some number of steps k, and then terminates in state

st+k. At each intermediate time τ , t ≤ τ ≤ t+ k, the decisions of a Markov option

may depend only on sτ , whereas the decisions of a semi-Markov option may depend

on the entire preceding sequence st, at, rt+1, st+1, at+1, . . . , rτ , sτ but not on events

prior to st or after sτ . This sequence is called the history from t to τ , denoted

by htτ . The set of all histories is usually denoted by Ω. In case of semi-Markov

options, the policy and termination condition are functions of possible histories,

that is, π : Ω× A → [0, 1] and β : Ω → [0, 1].

A set of options defined over an MDP formally constitutes a semi-MDP or

SMDP. We state the theorem 1 from Sutton et al. [1999] below and with it, we

wrap our review of options and semi-MDPs theory (Figure 2.2).

(MDP + Options = SMDP). For any MDP, and any set of options
defined on that MDP, the decision process that selects only among
those options, executing each to termination, is an SMDP.
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Figure 2.2: Actions in MDP vs SMDP. Figure from Precup [2000].

Options can also select other options, such as in hierarchical structures, giving

rise to higher-level options that are also semi-Markov (even if all the lower level

options are Markov). Overall, semi-Markov options include a very general and

wide range of possibilities [Sutton et al., 1999].

Frame Skipping in DQN Frame skipping proved to be an important element

in the success of Deep Q-Network (DQN) in tackling various Atari games [Mnih

et al., 2015]. Skipping few states allowed DQN to be more efficient in learning the

policy by reducing the need for observations since the difference between successive

observations tends to be small. The agent skips over a few states (frames) and

continues to repeatedly playing the same action before deciding to terminate the

action-repeat sequence and selecting a new action or option to proceed. Taking

it further, various studies [Braylan et al., 2015, Khan et al., 2019] have shown

additional improvement in the performance by tuning the skip-size. One line of

work tries to learn policies for a fixed skip-size set of action sequences [Metelli

et al., 2020, Lee et al., 2020] in parallel to the behavior policy. Along similar

lines, Dabney et al. [2020] showed a drastic improvement in the performance as

well as generalizability of the principle across domains by using a certain skip-size

distribution with motivation from behavioral ecology literature.
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2.2.2 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a type of reinforcement learning

that uses multiple levels of temporal abstraction to solve complex problems [Dayan

and Hinton, 1992]. HRL divides a complex task into simpler subtasks and assigns

each subtask to a different agent. Each agent is trained to optimize its own subtask,

while the overall task is optimized by coordinating the agents together. By using

multiple levels of temporal abstraction, HRL is able to solve complex problems

that may be too difficult for traditional reinforcement learning algorithms.
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Chapter 3

Related Work

This chapter attempts to review the advances in the study of exploration and

more generally, behavior, in reinforcement learning and ecology literature. In sec-

tion 3.1, we briefly review the key exploration algorithms and define various notions

of intrinsic motivation that have been proposed for sparse sequential settings over

the last two decades. In section 3.2, we review some of the key search models

from movement ecology that have been used to describe various animal species’

movement behavior and the principles behind them.

3.1 Exploration Methods in Sequential Tasks

Exploration in sequential settings is an interesting problem, and even more so

when it comes to sparse reward settings. If the agent does not get any immediate

reward or does not get any reward at all, it’s still helpful for the agent to keep

exploring in the hope it will get some in the future. The challenge here is to model

such an agent that is always looking for something despite any external motivation

for any general situation.

As noted in subsection 2.1.3 on exploration in RL, recent studies have come up

with definitions of various notions of intrinsic motivation and have utilized them

to drive exploration in various sequential tasks such as ATARI games. There are

also techniques for exploration that act completely blind, that is, the agent selects

actions in the absence of any information obtained from environment or does not
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have any metric to measure or track its own performance. We list below a few

notable techniques taken from a recent survey on the topic by Amin et al. [2021b]

that are relevant for the current work.

3.1.1 Blind exploration

ϵ-greedy remains one of the widely used methods for exploration still. In the ϵ-

greedy approach, the parameter ϵ ∈ [0, 1] controls the balance between exploration

and exploitation. The action at every step t is chosen such that,

at =

{
a∗t with probability 1− ϵ

random with probability ϵ
(3.1)

where a∗t is the greedy action taken at time t. For settings with no external

rewards, that is no greedy choice exists, it reduces to simply taking a random

action at all times. Needless to say, when it comes to being decisive about following

a certain direction just to see what’s out there, ϵ-greedy is very shortsighted and

the probability of moving consistently in a direction decays exponentially with the

number of steps [Dabney et al., 2020].

3.1.2 Intrinsically-Motivated Exploration

Novelty

Shyam et al. [2019] proposed an exploration algorithm, Model-based Active eX-

ploration (MAX), which utilizes novelty of transitions as a learning signal. They

define novelty as the Jenson-Shannon divergence between the predicted space of

distributions and the resulting distribution, and choose the action which maximizes

this novelty measure at each step. In environments that are inherently static and

do not change by agent’s interactions, this algorithm quickly reduces to a random

walk once the environment transitions are known.
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Information Gain

Information Gain has been used in exploration strategies as a measure of in-

trinsic motivation by many studies. One such study by Little and Sommer [2013],

proposes maximizing predicted information gain (PIG). Agents keep an internal

model of the environment. Upon taking an action, it calculates the KL-divergence

of its updated internal model from the one it had predicted before taking the action.

The KL-divergence can be used as a measure of inaccuracy or missing information

Im in agent’s model. Agents then take actions that decrease this missing informa-

tion Im the most, since that would lead to explore relatively more uncertain areas

of the environment known to agent, as indicated by the larger Im.

Entropy

Another measure that has been proposed by Hazan et al. [2019] is to maximize

entropy of the distribution over visited states. The idea behind it is to effi-

ciently learn policies in an MDP which optimize task-agnostic reward functions,

for example, optimizing an objective that is only a function of the state-visitation

frequencies. They propose one such objective could be the cross-entropy reward

function: cross-entropy between a uniform distribution and the policy-induced dis-

tribution over states, and maximize this function. In particular, it generates and

optimizes a sequence of intrinsic reward signals. The cross-entropy encourages the

”most uniform” random walk over the MDP. The optimal policy obtained is called

MaxEnt exploration policy.

Curiosity

A particularly interesting work on the topic is the Intrinsic Curiosity Module

(ICM) by Pathak et al. [2017] which has gained popularity in the field. ICM define

curiosity as ”the error in an agent’s ability to predict the consequence of its own

actions”, or simply put, state prediction error conditioned on action taken.

The authors primarily evaluate it on continuous action and state paradigms such

as 3D game of VizDoom or classic game of Super Mario Bros, so the input to their

algorithm is pixel frames. It focuses on representing part of the environment that
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either affects the agent or is affected by the agent i.e. influential feature space. If

there is a source of variation that is inconsequential for the agent, then the agent

has no incentive to know about it. To reiterate an example given by the authors

to help understand the intuition: if the agent is observing movement of leaves in a

breeze, it is hard to predict movement of leaf pixels but the vanilla state prediction

error remains high and it actually brings no real utility to the agent.

The Intrinsic Curiosity Module consists of two models - a forward and an

inverse, as described below:

• The inverse model helps learn a feature space that encodes information rel-

evant for predicting the agent’s actions only. It is trained to predict the

action taken using the difference in features of the previous state ϕ(st) and

the state that resulted in after taking that action ϕ(st+1). The predicted ac-

tion is never used, it just ensures the model is only learning the space that is

affected by the agent or affects the agent. Since the network is only required

to predict the action, it starts getting rid of the state feature space that is

not relevant for the action.

• The forward model makes predictions in this feature space and this prediction

error is used as a positive curiosity reward to drive the exploration.

In short, it learns to explore the parts of the space (like the video screen) that

the agent is not able to predict what would happen if it ”goes” there very well.

It is also subtly different from relying on the vanilla state prediction error (the

famous TV problem).

Space coverage

One algorithm, PolyRL by Amin et al. [2021a], takes a slightly different ap-

proach to the problem. The authors intuit that if the reinforcement signal is very

scarce, the agent should rely on some form of short-term memory to be able to

cover its environment efficiently. They introduce a measure of spread in the

state space as the metric to optimize avoid getting stuck in a small region and be
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able to generate persistent trajectories in a certain direction. They call this fea-

ture of the trajectories as locally self-avoiding random walks (LSA-RWs). PolyRL

is built upon concepts from statistical physics used to explain behavior of free-

rotating chains in polymer physics. It is primarily motivated by the continuous

action and state space problems.

A key point about this method is that the PolyRL is able to reproduce the

consistent movement behavior without the need for action-repeats. Previous work

done on similar topics by Dabney et al. [2020] or Sharma et al. [2017] emphasized

the need for either action-repeats, or learning composite actions or learning a dif-

ferent action-representation. This algorithm remains to be tested in our task and

it would be interesting to evaluate it with respect to animal behavior in future. As

highlighted in section 3.2 later, animal ecologists have identified a form of direc-

tional persistence and short-term memory effects in various species, and PolyRL

bears a resemblance to the two effects.

A huge argument in favor of PolyRL is none of the modern exploration algo-

rithms address short-term memory or generalizability over multiple environments.

An effective exploration algorithm has to be generally applicable. We expand on

the notion of temporal abstraction further in section 2.2.

Table 3.1: Examples of some reward-free exploration approaches.

Algorithm Intrinsic Motivation

Shyam et al. 2019 Novelty
Little and Sommer 2013 Information Gain

Hazan et al. 2019 Entropy
Pathak et al. 2017 Curiosity
Amin et al. 2021a Space Coverage
Dearden et al. 1998 Uncertainty

The above reward-free exploration methods and the corresponding notion of

intrinsic motivation they use are summarized in Table 3.1. Various other notions

of intrinsic motivation also exist, such as boredom [Schmidhuber, 1991b], adap-

tive curiosity [Schmidhuber, 1991a], or surprise [Modirshanechi et al., 2021]. For

reward-free settings and static environments, these perform relatively similar to

those described above, so we omit their discussion here.
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3.2 Animal Foraging

The physics of foraging studies and builds mechanistic explanations of animal

movement behavior. Animal foraging behavior has been studied in environments

varying in the density of food, patchiness or terrains. Although they do not char-

acterize any learning with experience, such limiting models may help to quantify

important features of the exploration dynamics and help separate the problem of

distinguishing the learning component of behavior from that of the random walk-

ing[Viswanathan et al., 2011]. Below we review some of the important concepts

from movement diffusion literature and their evidence as studied in various biolog-

ical entities.

3.2.1 Anomalous Diffusion

Diffusion is the net movement of anything (for example, atoms, ions, molecules,

energy) generally from a region of higher concentration to a region of lower concen-

tration. The concept of diffusion is widely used in many fields, including physics,

chemistry, biology, sociology, economics, and finance. Diffusion in ecological mod-

els is generally characterized as anomalous diffusion and is described by a non-linear

relationship between the mean squared displacement (MSD), and time t:

MSD ∝ tα (3.2)

Depending on α, we observe different kinds of behavior:

1. Diffusive Behavior (α = 1)

2. Superdiffusive Behavior (α > 1)

3. Subdiffusive Behavior (α < 1)

In this work, we are primarily concerned with diffusive and superdiffusive be-

havior.
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Figure 3.1: The (top) MSD with time for diffusive, superdiffusive and subdiffusive
motion and (bottom) examples of the corresponding trajectories. Figure from
Wadkin et al. [2021].

3.2.2 Random Walk

Uncorrelated random walkers or random walkers (RW) choose a decision uni-

formly from the choices at each time step depicting a Brownian motion kind of

behavior [Bartumeus et al., 2005]. Standard methods in spatial ecology tradition-

ally have assumed Brownian motion as a basic properties of animal movement. It

exhibits normal diffusive behavior and tends to lead to the problem of oversam-

pling. Random Walk does not account for directional persistence and they are

relatively short-sighted when it comes to covering large distances. While real or-

ganisms have a tendency to continue moving in the same direction and they rarely

make 180 degree turns.

To overcome this lack of directional persistence, we have correlated random

walks (CRWs) where short-term correlations are introduced in the random walk

(Figure 3.2). An example of such a correlation would be constraining the turning

angle distribution (ρ) between the next step vector and the current step vector to

reduce sharp frequent turns.
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Figure 3.2: Correlated random walks (CRWs) are different from uncorrelated ran-
dom walks due to directional persistence. Figure by M. L. Felisberto.

3.2.3 Lévy Walk

Lévy Walks are characterized by long periods of wandering in a small area and

occasionally longer steps in a random direction. Lévy Walks add further directional

persistence to correlated random walks in a scale-free manner. It tends to exhibit

superdiffusive behavior and have been known to optimize search efficiencies in a

variety of animal species, such as birds and fish [Viswanathan et al., 2002, Hills

et al., 2013, Viswanathan et al., 1999, Sims et al., 2019].

To formalize LW(µ):

• Step-lengths are sampled from a heavy-tailed distribution (parameterized by

µ).

p(l) ∼ l−µ, l > l0 (3.3)

where l > l0 is a lower cutoff where the power law tail begins.

Variation of the parameter µ allows superdiffusive Lévy searches as well as

Brownian searches involving normal diffusion. By varying µ, we can deter-

mine the search efficiency in a given environment and estimate how much

advantage can be gained by exploiting diffusivity and randomness. The gen-

eral range for µ is considered to be between 1 and 3, where µ = 1 denotes

long ballistic motion and µ = 3 corresponds to normal diffusion. Lévy walks

and flights correspond to intermediate values of µ.

23



• Step-direction is sampled uniformly over 360 degrees.

Figure 3.3: An example of 1000 steps of a Lévy flight in two dimensions in com-
parison to 1000-step Brownian motion. Figure from Viswanathan et al. [2011].

Levy flight foraging hypothesis Since Lévy flights have been shown to opti-

mize random searches, the Lévy flight foraging (LFF) hypothesis states that the

biological organisms must have evolved to exploit Lévy flights [Viswanathan et al.,

1999]. But Viswanathan et al. [2011] attempts to generalize this hypothesis to

describe species and circumstances where a more mixture set of search processes

have been observed. The exact reformulated LFF hypothesis is stated below.

Superdiffusive motion governed by fat-tailed propagators optimizes en-
counter rates under specific (but common) circumstances; hence some
species must have evolved mechanisms that exploit these properties of
Lévy walks.

24



3.2.4 Intermittent Search

It is shown alternating between walking and intensive search tends to explain

the behavior of animals behavior. Intermittent searches capture the behavior at

two scales of movement: walking followed by a period of intensive search in a small

area [Bénichou et al., 2006]. The movement reflects a ballistic relocation to a far

away area and generally the search is turned off during this relocation.

To formalize IS:

• Move to a neighboring site with probability p

• Relocate ballistically off in random direction, with 1− p

Figure 3.4: Intermittent searches consist of two phases: a search phase alternating
with a relocation phase. Figure from Viswanathan et al. [2011].

Utilizing the known efficiency of Lévy walks for movement, studies have shown

the lévy-modulated intermittent searches (LWIS) are more advantageous compared

to ballistic relocations [Lomholt et al., 2008]. The resulting Lévy walks reduce

oversampling and further optimize the search strategy in the situation of very

sparse rewards.

To formalize LWIS(µ):

• Lévy Walk to move throughout the maze
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• Intensive Search when it hits the boundary

It is important to note here that the above described models are better treated

more alike than different even though they differ in the statistical properties of

the movements shown. Studies have shown one form of movement behavior can

be understood within the context of another, or there have been hybrid models of

CRWs and Lévy walks, and such. Nature is full of sub-optimal mechanisms and the

evolutionary basis of their origins are continuously being studied. Lévy walks and

Brownian motion are merely idealizations, it is not wise to expect to observe perfect

Lévy walks or perfect random walks in real organisms. There is no theoretical

argument to expect Lévy walks in all biological organisms. The structure of the

environment also plays a huge role in the efficiency and applicability of the above

stochastic search models [Viswanathan et al., 2011].
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Chapter 4

Mouse Maze Dataset

In this chapter, we describe an experiment conducted by Rosenberg et al. [2021]

which resulted in a rich dataset on animal exploration in a sufficiently complex

maze. We describe certain physical features of the maze that are important to

keep it noise-free as much as possible and give us a controlled setting to analyze

while keeping any interference to the naturalistic motion or drive to navigate as

low as possible. We then state some of the findings from original analysis of the

dataset that are relevant to our study.

4.1 Experiment

The maze is an enclosed complex labyrinth, as shown in Figure 4.1. A short

tunnel offers free access to a maze, a wide network of corridors. The home cage has

bedding and food. The animal’s movement in the maze is recorded from below.

The logical structure of the maze is a binary tree, with 6 levels of branches,

from home to 64 endpoints (end nodes). The levels are numbered 0, 1, . . . , 6

where level 0 is the central point of the maze and at level 6 are the leaf nodes

(Figure 4.2). At leaf nodes, the only action animals can take is to return back to

its parent node at level 5. One of the 64 endpoints of the maze is fit with a water

port (sometimes referred to as reward port or reward node). After activation by a

brief poke by an animal, the port delivers a small amount of water, followed by a

90s time-out period.
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Figure 4.1: The maze environment. Top (A) and side (B) views of a home cage,
connected via a tunnel to the labyrinth. Figure from Rosenberg et al. [2021].

All observations were made in darkness during the animal’s subjective night.

There were two groups of animals: First, 10 rewarded animals who were mildly

water-deprived before the experiment, had access to food in the home cage but

water only through the water port. Second, 10 unrewarded mice who had free

access to food and water in the cage, and received no water from the port in the

maze. One unrewarded animal did not pass between home and the maze enough

and was discarded from further analysis.

Each animal was recorded continuously for 7 hours and there was no human

interference whatsoever. The animal was free to move between the cage and the

maze as it wished.

We retain the definitions of bout (each foray into the maze from entrance to exit

through home), step (transition from one node to another), trajectory (sequence

of nodes visited one after another), node (a node in the binary tree - a junction or

an end node), node sequence, as per the original study. Three sample trajectories

of an animal in the maze is shown in Figure 4.3.
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Figure 4.2: The maze is structured as a complete binary tree with 63 branch points
(in levels numbered 0,. . . ,5) and 64 end nodes. Figure from Rosenberg et al. [2021].

Rotation A rotation experiment on a subset of the animals to help gain some

insights about animals’ learning in the maze and if the physical or sensory cues

such as glue odor, urine trail have anything to do. Once the animals have been

exposed to the maze for several hours, the experimenters rotated the maze by 180

degrees. If the animals did follow the odor to reach the water port, they would

travel to the original water port node which lies opposite to the current water

port location now, as shown in Figure 4.4. On the other hand, if they learned the

sequence of turns, they would reach the right water port node which is at the same

location as before.
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Entry

Exit

Figure 4.3: The maze environment with a sample trajectory of an animal from
entry to exit plotted on it.

4.2 Maze Construction Features

1. Possibility of using external light as cues: The maze is built to limit the

passage of external light through walls, floor and ceiling as much as possible.

The bottom and walls of the maze were constructed of black plastic that

is transparent in the infrared. The room is kept dark except for infrared

illumination for recordings and the walls and floor are opaque for animals.

Even if the animal finds enough light, the goals (water port or the home

cage) are invisible within the maze except from the immediately adjacent

corridor. A lot of previous studies have concluded the use of light, odor and

other sensory cues by rodents to help navigate a place. The current design

of this maze tries to restrict those options [Rosenberg et al., 2021, Munn,

1950].

2. Symmetry: The maze is constructed with maximal symmetry around the

center point. If the maze wasn’t symmetrical, the learning of reward or home
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Figure 4.4: The rotation experiment. Figure from Rosenberg et al. [2021].

path could be partially attributed to sensory cues (even if no light, animals

can possibly use the kinesthetic intelligence and the asymmetry in surround-

ings to get a sense of their location in the maze space). All the junctions at

a level are visually and geometrically identical and the two branches out of

a parent node are identical locally. The two children nodes of a parent can

be distinguished in terms of direction if the physical maze is viewed from the

top, that is, at global level but not locally.

4.3 Behavioral Insights

Here we present some of the general behavioral insights as analyzed by the

authors of the original study. The two groups of animals have the exploration

phase in common while the animals exposed to the water port exhibit certain

goal-oriented learning and structure in their navigation behavior.

Insights common to all animals

1. Animals initially hesitate to enter the maze. Initially animals would

not cross the main corridor from home to the maze or do frequent hesitant

entries until level 1 before returning to the cage. After a few such entries,
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the animals seem to feel more comfortable and start going further into the

maze and do longer bouts into most or all of the end nodes.

2. Exploration occupies a huge fraction of the animal’s time in the

maze. Animals could have chosen to stay at the home cage or next to

the water port, rather they seem to keep exploring throughout the night

(Figure 4.5). Exploration is defined as all periods in which the animal is in

the maze but not a direct path to water or to the home cage. We retain this

definition of exploration in our analysis as it is.

Leave

5%

Explore

95%

Leave

5%

Drink

10%

Explore

84%

Figure 4.5: Exploration constitutes a significant proportion of the animal’s activity.
Pie charts show time spent in each mode averaged over animals and duration of
the experiment. Figure from Rosenberg et al. [2021].
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3. Animals are efficient at exploring. As seen before, animals tend to

explore the space throughout the night that could be for a number of reasons:

look for hidden reward [Berlyne, 1955] or satisfy their curiosity of being in a

new space [Berlyne and Slater, 1957] or perhaps they are simply acting upon

their hyperactive tendencies [Jones et al., 2017]. We measure how quickly

the animals are able to cover the area of maze by being efficient about not

visiting areas they just visited and avoid getting stuck. We again use the

definition of efficiency of exploration as defined in the experimental study:

number of visits N32 required to survey half the end nodes, that is:

E =
32

N32

(4.1)

An optimal agent would visit the end nodes systematically and without re-

peats, thus covering all the end nodes at just 64 visits giving rise to an

efficiency of 1.0. Behavior like this would require perfect memory to track

every node. On the other hand, a random agent makes 3 decisions at every

junction without any notion of recency leading to highly inefficient behav-

ior (E = 0.23 calculated by simulating random agents). The mice show an

efficiency of about 0.39 with very little variability among them and interest-

ingly this lies in the middle of the efficiency of a perfect agent and that of

a random agent (Figure 4.6). We believe this observation holds the key to

possibly uncover a certain fundamental principle of animal navigation.

4. Animals exhibit strong biases about where to go further on arriving

at a junction. They have a strong bias to keep moving forward (PSF = 0.8,

PBF = 0.8) when they face a branch (B) or a stem (S), that is, a fixed

probability of going back at any point in the maze. They also have a tendency

to alternate (PSA = 0.8), that is, if they took a left turn at the previous

junction, they seem to prefer taking right turn at the next junction. Lastly,

they also have a mild preference (PBS = 0.65) for going into the branch

instead of going straight in a corridor. The 4 biases are depicted in Figure 4.7.

As with efficiency of exploration, the study found a remarkable degree of
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Figure 4.6: Animals are quite efficient at exploration w.r.t. space coverage. Explo-
ration efficiency as defined in text plotted for one animal (Left) and all 19 animals
(Right). Figure from Rosenberg et al. [2021].

consistency in these local rules of behavior as well. We will exploit some

of these biases later in this thesis and also try to interpret them slightly

differently to help correlate some of these with the ecology literature and

develop a model to explain navigation in the maze. An important point to

note here is that some of these biases (PSA) are not realizable when the maze

is viewed as a symmetric binary tree with no difference in the two children at

any node but only carry meaning when the maze is viewed as an expanded

physical space as it actually is.

5. Animals visit certain end nodes a lot more frequently than oth-

ers. While the animals vary quite a bit in showing this preference, the

effect remains consistent and significant across all animals of the two groups.

Specifically, animals tend to prefer nodes that lie on the outer edge of the

maze than those on the inner, by a factor of 2.2 (ranges from 1.8x to 4x

across animals), depicted in Figure 4.8. This preference again is an example

of a behavior variable that is only meaningful in the physical notion of the

maze and not the abstract binary tree one.

To note, the presence of water port on the outer node of the maze does not

affect this bias as evidenced by the similar preference for peripheral nodes in

unrewarded animals that do not have any water port.
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Figure 4.7: Scatter graph of the biases PBF and PSF (left) and PBS and PSA (right).
Each dot represents a mouse. Cross: a random agent. Figure from Rosenberg et al.
[2021].

6. Animals go from end nodes to home by taking a direct path. ”Home

runs” are direct paths without reversals that take the animal to home. Home

runs have a special significance in ethology literature because factors such

as fear or uncertainty make animals remember a route to escape, which in

this case is the route to the maze entrance (home) [Rosenberg et al., 2021,

Tchernichovski et al., 1998, Fonio et al., 2009]. As authors of the original

study find after day analysis, animals do not seem to practice the home path

explicitly by taking incremental steps and gradually building it, neither they

retrace their path that they took while entering the maze (Figure 4.9). We

will later try to argue how these home runs do not necessarily denote learning

of the six decisions.

We will see similar behavior in section 4.3 on insights from rewarded animals

towards navigation to the water port as well. Animals learn to take direct

paths from home or even from deeper end nodes to water port very soon

in the experiment. How do the animals navigate when they perform direct

paths to the water port or to the exit? The original study doesn’t touch

upon it but it does point us towards certain construction features of the

maze (covered in section 4.2 earlier) and the observed behavior that can help

us constrain some answers to the question and discard others.
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Figure 4.8: Preference for outer end nodes during exploration. The number of
visits to different end nodes encoded by a gray scale, for unrewarded animals.
Darker nodes mean higher preference. Figure from Rosenberg et al. [2021].

Insights specific to rewarded animals

1. Animals start visiting water port at a higher rate suddenly. Animals

exhibit a sudden change in behavior with respect to rate of visits to water

port at a certain point of life, long after discovering the water port for the

first time (Figure 4.10). It is also followed by a higher rate of longer direct

paths from anywhere in the maze to the water port (”sudden insight”). The

authors observe this behavior in about 5 out of the 10 rewarded animals and

a gradual but similar performance change for remaining 5 animals.

2. Animals use physical cues to learn the goal path, at least in the

beginning. As part of the rotation experiment, the maze is rotated by 180

degrees after exposing the animals to it for a few hours and the original water

port node get shifted to its mirror image location. Only 1 out of 4 animals

confuses the two locations for the first trip but quickly gets back to the

correct reward path to the new water port node and the rest 3 animals went

straight to the correct water port before ever visiting the image location.

However, for the first hour following it, the visit frequency to the image
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Figure 4.9: Learning of the home path. Locations in the maze where the 19
animals started their first home run. Darker color indicates locations used by 2 or
3 animals. Figure from Rosenberg et al. [2021].

location increased by 1.8x compared to before the rotation and the reward

node visits and reward rate both declined. This led the authors to conclude

that navigation does not strictly depend on the physical cues but animals do

notice a change in these cues which is reflected by the decreased reward rate

and increased visits to image location.

4.4 Significance

Most animal behavior studies employ far-simpler tasks than the current exper-

iment that involve learning between left or right, or similar. These behaviors have

a complexity of 1 bit or less, and often animals can learn these associations after a

single trial. The tasks a mouse performs in the maze are far more complex and are

in a close to naturalistic setting. For example, the path from the maze entrance

to the water port involves 6 junctions, with 3 options at each. The current binary

maze has 64 branches of equal length with only one leading to the water port. The

probability of animal making the choice that helps it move forward towards the

water port or the exit becomes increasingly low.
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Figure 4.10: The bump in reward rate at 1350s depict sudden changes in behavior.
For C1, plotted are the cumulative number of rewards; of long paths to water
(red); and of similar paths to 3 control nodes (blue, divided by 3). Figure from
Rosenberg et al. [2021].

The absence of any human interference and trial structure is another big as-

pect of the current experimental design significant for future animal behavioral

studies. The current dataset is vastly rich in terms of behavior syllables and

complexity. The rich nature of this dataset is also prone to a lot of vague and am-

biguous hypotheses about the structure of navigation in the maze because of the

human tendency to try to generalize from only a few observations in day-to-day

life. There is also very limited amount of work on experiments in such highly-

constrained physical space in the field of ethology or human behavior or artificial

intelligence. This raises the importance of systematically studying the behavior

even more and only then making any conclusions to help come up with valid hy-

pothesis. Further, this also signifies how much we can learn about animal behavior

by conducting behavior experiments in complex environments with many choice

points. As pointed out by the experimenters, with the rising advances in computer

vision and user-friendly tools for single and multi-animal tracking, we are already

seeing some [Alonso et al., 2020, Grobéty and Schenk, 1992, Nagy et al., 2020,
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Wood et al., 2018] and should expect more experiments of similar complexity in

the near future.
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Chapter 5

Models of Exploration in Mouse

Maze

This chapter describes the set of methods used in the project for modeling and

analysis. We first describe an existing model of animal exploratory behavior ob-

served in the Mouse Maze dataset in section 5.1 and later introduce our modeling

setup in section 5.2. We then present the results of our model in section 5.3 and

compare the two using a set of evaluation metrics, and then provide an interpre-

tation of our results in section 5.4.

5.1 Biased Walk

Rosenberg et al. [2021] proposed a simple yet an effective model of mice ex-

ploratory behavior using decision turning biases shown by animals as highlighted

in their data analysis in chapter 4. Biased Walk is a variation of the Correlated

Random Walk where the current decision is related to the previous turn in the

sense that the previous turn determines the probabilities of three possible choices

at the current turn. This model was not presented as to be the best model of

mice behavior but it nonetheless serves as a good candidate model to compare our

results against.

The correlations in this biased walk are built upon the below 4 turning biases

(hence, we label it as BiasedWalk4 model) calculated using the number of actions
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taken at a particular type of junction:

1. A strong preference to go forward when the animal faces a junction. The

two types of junctions are distinguished as stem and branch based on how

the animal is entering the junction (Figure 5.1). The two biases are labeled

PSF (forward through stem) and PBF (forward through branch).

2. A strong preference (PSA) to take alternating turns left and right rather than

repeating the same direction turn at junctions. Note that the left and right

turns are defined globally and not with respect to where the animal is coming

from.

3. A slight preference to take a branch that leads the animal out of the maze,

that is, from a deeper level to a shallower level in terms of navigating on the

binary tree (PBS: from branch-to-stem).

Figure 5.1: Definition of four turning biases at a T-junction based on the ratios of
actions taken. For details, refer Rosenberg et al. [2021].

The four biases are depicted in Figure 5.1. The intuition behind the model is

as follows: The forward biases keep the animal from re-entering the territory it has

already covered, and the branch-to-stem makes the animal go to different parts of
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the maze. This is different from a purely random walker which will keep getting

stuck in the tips of the tree and oversample an area of the maze.

As we will see in section 5.3 on results, BiasedWalk4 performs quite well in

capturing the exploration efficiency and some of the preferences of animals. This

was also an indication that the underlying search algorithm of animals possibly

does not need a global memory of places visited and can be explained by purely

local turning rules to a large extent, as inferred by the authors of the original study.

Although the model replicates a good amount of the pattern of preferences and

efficient to a certain degree, the model in its current form is tough to interpret and

the 4 parameters seem highly specific to this maze. The model does not provide a

full description of the animal’s search strategy.

5.2 Temporally-Extended ϵ-Greedy

After a thorough review of ecology literature on foraging, we found Lévy walks

are known to optimize search efficiency in particularly sparse-reward environments

[Viswanathan et al., 1999]. Lévy walks in animal foraging are random walks built

with directional persistence to enable longer steps. Further, an intermittent strat-

egy which alternates an intense search phase with Lévy walks (section 3.2) is

claimed to have higher search efficiency than just the Lévy walks [Lomholt et al.,

2008, Oshanin et al., 2009] in various biological species. After an iterative process

of building a handcrafted model of the navigation behavior and closely analyzing

the behavior data, we hypothesized one component of the behavior is the move-

ment around the corridors and another is the intensive search in a sub-quadrant

when they hit an end (Figure 5.2). Note that this does not necessarily imply they

”switch off” the search component when they are Lévy-walking but that they tend

to search more intensively in the corresponding sub-quadrant area when hit they

an end node.

On the other side of the spectrum, in deep reinforcement learning, Dabney et al.

[2020] recently proposed an exploration framework, temporally-extended ϵ-greedy,

built upon the properties of ϵ-greedy with an addition of temporal persistence to it.
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Figure 5.2: The hypothesized two components of behavior: efficient movement and
intensive search.

By building upon ϵ-greedy, temporally-extended ϵ-greedy retains the convergence

properties of vanilla ϵ-greedy without the need for rigorous proofs or to modify the

greedy policy.

As we can see, the principle of temporal persistence bears a direct correspon-

dence with the directional persistence that motivated the correlated random walk

and Lévy walk models in ecology literature (section 3.2). Because of this strong

resemblance, temporally-extended ϵ-greedy seems to be a promising approach to

study the exploration behavior, if we can adapt it to our maze environment.

Temporally-Extended ϵ-greedy Temporally-extended ϵ-greedy replaces ac-

tions with temporally extended sequence of actions, or options, in standard ϵ-

greedy. Options provide a way to temporally abstract away the decisions at each

time step and instead help encode the long-term intention. Using options helps

us learn behavior at multiple time scales and by appropriately defining a set of

options, we can ”align” the exploratory behavior of an agent with a given environ-

ment and control the nature of exploration. However, learning a set of options for

an environment automatically remains a challenge in the field. We overcome it by

defining them instead by hand and leave the work on the discovery of options in
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Figure 5.3: Average first-visit times comparing ϵ-greedy approach and its
temporally-extended version. Blue represents fewer steps to first-visit and red
states rarely or never seen. Figure from Dabney et al. [2020].

this maze and similar environments to future.

A temporally-extended ϵ-greedy exploration strategy depends on choosing an

exploration probability ϵ, a set of options O, and a sampling distribution p with

support O. Then, on each step:

• With probability ϵ, sample an option w ∼ p(O) and follows it until termina-

tion.

• With probability 1− ϵ, follow the current policy π for one step.

For purely exploration settings such as ours, we set ϵ to 1.0 which removes the

need for learning a policy π. The maze in fact does not offer any external reward.

To adapt temporally-extended ϵ-greedy to our setting, we want to ideally capture

the hypothesized Lévy walk intermittent search strategy in our set of options.

The idea is to use options to encode extended sequences of actions, which

corresponds to longer paths in a purely spatial setting (Figure 5.4). Lévy walks

sample a step of length n and continue moving in the same direction for n steps.

Given the structure of our maze and the walls, we first have to define the notion

of ”directional persistence” for our environment.

We define ”moving in the forward direction” as taking alternate turns at sub-

sequent junctions into the maze since an alternate path in our maze corresponds
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Figure 5.4: Primitive actions and options in a spatial grid world setting. Figure
from Fruit et al. [2017].

to the least amount of direction or orientation changes in our setting. The for-

ward direction defined this way corresponds to taking certain branches down the

tree with a rough consideration of the forward direction on the physical maze.

Similarly, we defined ”moving in the backwards direction” as the opposite of mov-

ing forward, taking actions as going out of the maze from deeper to shallower

levels. This backwards direction is equivalent to going up the tree. Finally, to

define temporally-extended random movements, we consider all the possible paths

in the maze without any consideration of forward and backwards direction. This

corresponds to having all the branches up and down the tree as choices.

We formalize the problem of exploration in the current MDP as following:

• States: The set of states constitutes all the 63 turning points, all the 64 end

nodes in the maze and 1 home node - a total of 128 states.

• Primitive actions: At home, the only action is to go to 0. At end nodes,

the only action is to go back. At all the other nodes in the maze, there are

3 actions available: go-further-left, go-further-right or go-back.

• Transitions: The transition probabilities in the current MDP are entirely

deterministic. Taking left at a state where left action is available, it will

always go left.
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• Reward: There is 0 reward throughout the maze and hence no value prop-

agation. Therefore, we do not also attempt to learn a policy or define a

discount factor here.

• Options: Using the above definition of longer straight paths, we construct

options of lengths 1 to 12 (since the maximum distance between any two

states in in the maze is 12) for each state as following:

1. For states within the maze: We hypothesized animals to be using

Lévy walks to move around the maze. Lévy Walks are encoded as long

sequences of length n in forward and back directions (Figure 5.5).

Figure 5.5: The set of Lévy Walk options of length 3 at two states in the maze. The
red o indicates option initiation and the red • indicates the option termination.

2. For states at end nodes: Animals are hypothesized to search more

thoroughly in the ”corner” areas. Thus, Intensive Search options at end

nodes are encoded as temporally-extended random movements of length

n (Figure 5.6).

Lévy Walk (LW) model We use the zeta distribution z(n) ∼ n−µ with µ = 2

to first sample a step-length n. Then we sample one option of all n-length options

available at that state in a uniform manner. Zeta distribution is one heavy-tailed

distribution widely known to optimize search efficiency in ecology [Viswanathan

et al., 1999].
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Figure 5.6: The set of Intense Search options of length 1 (yellow), length 2 (green)
and length 4 (blue) at three different end nodes in the maze. The red o indicates
option initiation and the red • indicates the option termination.

A simple interpretation of LW agent is that the agent tends to follow a certain

notion of “going further” to navigate around the maze but is also aware of a

different spatial scale and starts an intensive back-and-forth search in the sub-

quadrant when it hits an end point.

5.3 Results

We simulated a random agent, a BiasedWalk4 agent and a LW agent each for a

25000 step long trajectory. Then we split the trajectory into bouts based on when

it went to the home cage, to have our data in the same form as the original study.

Below we compare the three models using efficiency and other evaluation metrics

as described in chapter 4, and describe how close they come to capturing animal’s

preferences.

1. Lévy Walk model captures exploration efficiency of animals with respect

to end nodes fairly well (Figure 5.7). Exploration efficiency is indication

of how efficiently the space is being covered throughout the course of the

experiment. Lévy Walks in ecology are known to optimize the efficiency of

random searches in sparse-reward environments. However, we see Lévy Walk
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model offers only a minor improvement over BiasedWalk4 model [Rosenberg

et al., 2021].

Figure 5.7: Exploration efficiency of animals is well captured by the Lévy Walk
model.

2. Lévy Walk model also captures exploration efficiency better than Biased-

Walk4 with respect to the inner levels of the maze (level 3, 4 and 5), indicat-

ing that movement of animals in the maze and corridors is better captured

by a search efficiency-optimized model than only a turn decision optimized

model (Figure 5.8). The effect is especially large for efficiency w.r.t. level 3.

3. Lévy Walk model exhibits very similar the decision biases as animals do.

Since BiasedWalk4 is built upon these very four bias probabilities, it’s not a

fair comparison with the Lévy Walk model. Lévy Walk shows slightly higher

forward bias (PSF ) indicating a higher directional persistence in our model

as compared to animals. A more detailed analysis by varying Lévy walk

parameter µ can help understanding this gap (Figure 5.9).

4. Lévy Walk model exhibits an outgoing tendency which is in the range of

most animals (Figure 5.10). Lévy walk is optimized to take longer alternate

straight paths and the structure of the maze is such that alternate straight
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Figure 5.8: Lévy walk model captures the exploration efficiency with respect to
nodes at level 3, 4 and 5 in addition to end nodes.

paths increase the probability of reaching outer nodes more. While the mean

outside-to-inside ratio for unrewarded animals is 2.2, there is a large vari-

ation among them. Lévy walk model exhibits a preference of 2.28 while

BiasedWalk4 shows 2.25, both lying in the range of what animals show.

5. Lévy Walk comes close to animals in terms of occupancy at different levels

of the maze. We estimate the occupancy at a level as normalized number of

visits to all the nodes at that level which is a rough measure of time spent

at different levels. Notably animals spend a significant fraction of time in

smaller scale regions of the maze (sub-quadrants). BiasedWalk4 performed

very close to animals which indicates a more random component of the search

in sub-quadrants. The gap between the Lévy walk and animals in occupancy

of different zones in the maze indicates the, possibly noisy, component of
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Figure 5.9: Lévy Walk model captures the decision biases quite well. For the
definitions of x and y axes, please refer text.

animals’ search strategies that still remains to be understood (Figure 5.11).

6. Lévy Walk model shows a variable markov depth of slightly below 4, indicat-

ing the next turn can be predicated by the current location, preceding 2 turns

(Figure 5.12) and some contribution from further before. It closely resembles

the markov depth shown by animals as indicated by Rosenberg et al. [2021] in

their analysis. It is an improvement over the BiasedWalk4 model which only

captured the contribution of previous 1 location. This finally brings down

the cross-entropy (uncertainty of decisions) from 1.59 for a random agent to

approximately 1.35 for a Lévy Walk agent. Lévy Walks in ecology are shown

to exhibit memory effects due to the embedded directional persistence which

helped us improve the cross-entropy in our model here [Viswanathan et al.,

2011].

5.4 Summary

An ecologically inspired Lévy Walk Intermittent Search explains the mice ex-

ploratory behavior in the labyrinth quite well. Our agent is as efficient as animals
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Figure 5.10: Lévy Walk model exhibits a similar outgoing tendency which is in the
range of most animals.

are and it shows largely similar biases and preferences as animals do. And the

search strategy can be conveniently coded in the framework of temporal abstrac-

tion in RL. According to this model and its performance across various metrics, the

animals tend to be aware of different spatial scales in the maze and behave accord-

ingly. Taking short paths and occasionally longer paths in the maze helps it cover

the space efficiently, and the intensive search helps search it more in the corners.

They abstract away their decisions at each junction using temporal persistence to

continue to move in one direction in the maze.
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Figure 5.11: Lévy Walk performs very close to animals in terms of occupancy at
different levels of the maze.

Figure 5.12: Cross-entropy of the Lévy Walk model’s prediction. For details, see
text and Rosenberg et al. [2021].
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Chapter 6

Discussion

This chapter seeks to interpret and extend our results by drawing from the liter-

ature. We first bring perspectives of interpretation of our results in section 6.1. We

then identify shortcomings and provide clues for possible future work in section 6.2.

6.1 Our Work

Exploration and search are important phenomena in the natural world around

us, and yet we don’t have a good understanding about what gives rise to the

specific structure we observe in real-life settings. Animals and humans are limited

memory beings but we navigate quite efficiently - not as good as an information-

theoretic optimal agent would do but not as bad as a completely random walker.

Understanding the rules that underlie animal search and learning not only can

provide neuroscientists with insight into the animals, but can also provide concrete

examples of biological algorithms to the ML community. Such work will also help

us in the field of AI to create autonomous agents that can behave more closely like

living organisms.

The exploration and search algorithms in the field of computer science or rein-

forcement learning are generally designed to perform optimally which could mean

excessive usage of memory or employing systematic search that animals clearly

don’t possess or exhibit. For example, count-based algorithms try to store how

many times a state has been visited [Bellemare et al., 2013]. Ecoffet et al. [2021]

53



tracks what parts of the environment have been recently or partially explored.

Zhang et al. [2021] tracks boundaries where it left the previous search. Explo-

ration by animals in discrete choice tasks has been studied quite extensively but

rarely in sequential settings. But at the same time, exploration in sequential set-

tings in biological agents has rarely been explored and no existing MDP algorithm

has been able to capture exploratory patterns in animal movement in a complex

naturalistic setting. Animals have certain biases, limited memory and physical

energy constraints and these all interact in a complex manner to give rise to their

behavior in the natural world.

In ecology, it’s been reported across species to have efficient random search

wired into them to help them hunt and forage. The animals show scale-free dy-

namics in their movement patterns and adapt their strategy according to the food

density in the environment Viswanathan et al. [2011]. The search patterns also

exhibit certain fractality and short-term memory effects Ferreira et al. [2012]. Fur-

ther, the complexity of maze geometry and experience are known to affect the

locomotive behavior of animals. For example, Uster et al. [1976] observed in their

experiments with a hexagonal maze that the locomotion speed was highest in

straight sections, decreased at corners and branchings. The change in locomotion

behavior could also reflect a shift of the behavior towards a more detailed inspec-

tion of interesting parts of the maze (corners, alleys). We take the search strategies

from ecology literature and model them in an RL framework, and show that this

behaves much like animals in one rich naturalistic setting of a labyrinth through a

ton of evaluation metrics. While we do not characterize the learning and changed

in the behavior of mice as they gathered more experience throughout the course

of experiment, we found that our model explains the efficiency and captures the

preferences of an average mice exploring the labyrinth quite well when there’s no re-

ward. The principles of directional persistence in ecology and temporal persistence

in RL are equivalent which allowed us to use the framework of temporal abstrac-

tion in RL directly. We found that animals exhibit super-diffusive behavior and

leverage temporal persistence to navigate the maze rather than making decisions

at each intersection. The animals have an efficient movement component based on
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Lévy walks, and an intensive search component in the corners. Our study provides

a new perspective on Lévy flight foraging and opens new avenues for investigating

the interaction between exploration dynamics and the environment.

6.2 Outlook and Shortcomings

We provide a mechanistic view of the exploration behavior that animals seem

to be exhibiting by capturing many of the qualitative evaluation metrics. Since

the animals keep exploring throughout the night, our model does not provide any

indication to what really is the intrinsic reward structure that animals are acting

upon. Recent work by Ashwood et al. uses an Inverse Reinforcement Learning

(IRL) approach to reverse-engineer the animal’s behavior and infer the underlying

intrinsic reward functions. Further, since we only focus on the exploratory com-

ponent of the behavior, the work on characterizing animal learning in the maze

remains. Does the exploration structure remain the same when we introduce a

reward? How does learning of reward affect their paths and internal states? How

to infer and switch between “explore” state, ”are lost” state, “towards goal” or

“towards home” state? Few recent studies have successfully used the GLM-HMM

approach to infer animal’s internal states in simpler tasks [Ashwood et al., 2022,

Coen et al., 2014] but it remains to see if a similar approach could work in our

environment.

Our modeling attempt indicated an ecologically-inspired search efficiency strat-

egy explains the efficiency and preferences of mice exploration in the labyrinth

quite well. But to encode it in the general framework of temporal abstraction

in reinforcement learning, we handcrafted options for the two components of the

exploration - movement and search. In particular, we had to provide a description

of what a straight path could look like in the environment and how to search the

corners once in a smaller zone of the maze without getting stuck. While the frame-

work and the strategy remains general, the designing of options limits our ability

to extend the conclusions to other environments readily. Thus we ask, how can

an agent learn notions of direction in a space? We can further ask if this behavior
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and a similar search strategy would be seen in human mobility patterns. Garg

and Kello [2021] report efficient Lévy walks in humans while they are playing a

virtual reality game set in a mountainous region. But the effect in more complex

and day-to-day environments remains to be understood.

Finally, is there a way to infer the underlying diffusion process using the tra-

jectory data itself? It’s well accepted in the ecology field that the search strategies

can be composed of a number of random search processes and it is rather diffi-

cult to distinguish them using available statistical methods [Viswanathan et al.,

2011, Palyulin et al., 2014]. The discretization granularity of the trajectory data

can have an affect on our conclusion of the underlying search process [Edwards

et al., 2007]. Here we simulate a Lévy walk model which matches the exploration

efficiency of animals very well but this could very well be a result of our specific

modeling setup and doesn’t rule out alternative step-length distributions. A rig-

orous analysis by performing goodness-of-fit tests could provide a more accurate

description.
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