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Abstract

Population Genetics of Ancient and Modern DNA

by

Anna-Sapfo Malaspinas

Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Montgomery Slatkin, Chair

In this work, I develop computational tools focused around the utilization of DNA se-
quence data to address questions relative to forensic science, medical genetics, human evo-
lution and ancient DNA.

First, I compute the theoretical probability that two individual profiles match by chance
at two loci in a subdivided population. This question is of particular interest in forensic
science, where DNA evidence has become a widespread tool of investigation and criminal
conviction. I find that the effect of ignoring population subdivision can be unfavorable to
the defendant, but that the two loci can essentially be treated as unlinked.

Second, I develop a method to identify genes that are interacting, or in epistasis, to pro-
duce a particular phenotype. Determining interacting genes is indeed of particular relevance
in medical genetics to help map disease genes. I validate the method with simulations and
demonstrate an improved performance over existing approaches. I also apply the method to
recently available genomic data from domesticated dogs, identifying genes in epistastis for
the hair length phenotype - thus representing candidate genes for functional validation.

Third, I use a summary statistic of DNA sequences, the site frequency spectrum, to
estimate parameters of recent human history, and to characterize the potential event of
admixture between Neanderthals and humans. I find evidence for recent gene flow between
Neanderthals and Europeans, and to a lesser extent between Neanderthals and Africans.

Finally, I develop a likelihood method to jointly estimate the age and selection coefficient
of an identified mutation, along with the population size, by using time serial samples.
Such datasets are widespread in the fields of ancient DNA as well as experimental and viral
evolution. I validate the method through simulations. I re-analyze a recent dataset for a
locus coding for the distribution of black pigmentation in horses - and estimate that the
allele far predates domestication, arising between 20,000 and 13,000 years ago.
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à Barbara

Un seul être vous manque, et tout est dépeuplé.

Alphonse de Lamartine, 1820
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Chapter 1

Introduction

Historically, population genetics was born amid a fierce battle between the biometricians,
those who believed in continuous evolution, and the supporters of Mendel. As is often the
case, the resolution came with the realization by the pioneers of population genetics - Fisher,
Haldane, and Wright - that the opponents were both right (Provine, 2001). Some 80 years
later, we still rely on the fundamental work of these scientists as a starting point for most
evolutionary studies. Each chapter of the current work represents natural extensions to the
models they originally developed. In fact, the questions addressed here already preoccupied
the first population geneticists. Perhaps the main difference today is that the molecular
biology underlying the processes is much better characterized. Thus, for exampe, we know
the mechanisms behind dominance, we have identified Mendel’s factors etc. Another funda-
mental difference is the abundance of available data to test evolutionary hypotheses. Indeed,
at the beginning of the 20th century most relevant data came from breeding experiments -
which were both costly and time consuming. Today, a whole genome can be obtained in a
day and the cost is accessible to many labs worldwide. Thus, the last decades have clearly
been a reality check on the theory that was developed at the beginning of the 20th century,
but also for a refinement of this theory using modern biological insight. The current work is
well cast in this framework. I investigate here aspects of the main evolutionary forces that
were put forward in the early developments of the field. Broadly, in chapter 2 I consider the
effects of drift and population subdivision for a finite population. The object of chapter 3
is gene interaction, one of the main discoveries leading to the synthesis of Darwinism and
Mendelism. In chapter 4, I try to characterize gene flow between two populations. Finally
in chapter 5, I explore the standard selection-drift models when applied to a specific type
of data. I will now give a brief overview of each chapter. Note that chapters 2-5 describe
results from collaborative projects done with different groups of collaborators.

In chapter 2, I generalize a recently introduced graphical framework to compute the
probability that haplotypes or genotypes of two individuals drawn from a finite, subdivided
population match. As in previous work I assume an infinite-alleles model. I focus on the
case of a population divided into two subpopulations, but the underlying framework can be
applied to a general model of population subdivision. I examine the effect of population sub-
division on the match probabilities and the accuracy of the product rule which approximates
multi-locus match probabilities as a product of one-locus match probabilities. I quantify
the deviation from predictions of the product rule by R, the ratio of the multi-locus match
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probability to the product of the one-locus match probabilities. I carry out the computation
for two loci and find that ignoring subdivision can lead to underestimation of the match
probabilities if the population under consideration actually has subdivision structure and
the individuals originate from the same subpopulation. On the other hand, under a given
model of population subdivision, I find that the ratio R for two loci is only slightly greater
than 1 for a large range of symmetric and asymmetric migration rates. Keeping in mind
that the infinite-alleles model is not the appropriate mutation model for STR loci, I conclude
that, for two loci and biologically reasonable parameter values, population subdivision may
lead to results that disfavor innocent suspects because of an increase in identity-by-descent
in finite populations. On the other hand, for the same range of parameters, population
subdivision does not lead to a substantial increase in linkage disequilibrium between loci.
Those results are consistent with established practice.

In chapter 3, I describe a two-stage method for detecting epistasis by combining the
traditionally used single-locus search with a search for multiway interactions. Indeed, rapid
research progress in genotyping techniques have allowed large genome-wide association stud-
ies. Existing methods often focus on determining associations between single loci and a
specific phenotype. However, a particular phenotype is usually the result of complex rela-
tionships between multiple loci and the environment. Our method is based on an extended
version of Fisher’s exact test. To perform this test, a Markov chain is constructed on the
space of multidimensional contingency tables using the elements of a Markov basis as moves.
I test our method on simulated data and compare it to a two-stage logistic regression method
and to a fully Bayesian method, showing that I am able to detect the interacting loci when
other methods fail to do so. Finally, I apply our method to a genome-wide data set consisting
of 685 dogs and identify epistasis associated with canine hair length for four pairs of SNPs.

In chapter 4, I characterize the Neanderthal admixture with modern humans assuming
a particular demographic scenario. Neanderthals are believed to be the closest evolutionary
relatives of modern humans. But how exactly the Neanderthals disappeared, and the nature
of their relationship to modern human, remains a widely disputed topic. In particular, de-
spite the wealth of archaeological and anthropological knowledge, the admixture question is
still an open question. Recently, a whole Neanderthal genome was sequenced and evidence
for admixture was found. Nevertheless, specific demographic scenarios for admixture were
not tested. I use a summary statistics of DNA data, the site frequency spectrum, to char-
acterize the Neanderthal admixture with modern humans. In particular, I infer parameters
for several simplistic demographic models between humans and Neanderthals. The models I
test have in common a single admixture event between a human population (CEU or YRI)
and the Neanderthals. I use an alignement of the high coverage trio data of the 1,000 genome
project and the Neanderthal to infer the time of admixture and the amount of admixture.
I find evidence of admixture between Europeans and Neanderthals, consistent with previ-
ous results. I also find evidence for a small amount of admixture (less than 1%) between
Africans and Neanderthals. I estimate the time of admixture to be around 45,000 years,
consistent with the archeaological record. I conclude that the joint site frequency spectrum
is informative to test hypotheses for early human evolution.

In chapter 5, I develop a likelihood method to jointly estimate the selection coefficient
and the age of an allele from time serial data. Recent advances in sequencing technologies
have made available an ever-increasing amount of ancient genomic data. In particular, it is
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now possible to target specific single nucleotide polymorphisms in several samples at different
time points. Such time series data is also available in the context of experimental or viral
evolution. Time-series data should allow for a more precise inference of population genetic
parameters, and to test hypotheses about the recent action of natural selection. I assume
a single panmictic population evolving through time and a constant selection coefficient.
The transition probabilities are calculated by approximating the standard diffusion equation
of the Wright-Fisher model with a one step process. I show that our method produces
almost unbiased estimates. The power of the method is tested via simulations. Finally,
the usefullness of the method is illustrated with an application to a locus, the ASIP locus,
encoding coat color in horses, a pattern that has previously been linked with domestication.
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Chapter 2

Match probabilities in a finite,
subdivided population

Le dix-huitième siècle, c’est là une partie de sa gloire, a aboli la torture; le dix-neuvième
siècle abolira la peine de mort. Victor Hugo, 1848.

2.1 Introduction

In forensic science, the analysis of DNA has become increasingly important. The multi-locus
genotype, the DNA profile, of a biological sample from a crime scene is compared with the
DNA profile of one or more suspects and often with the set of profiles in a large database. In
the United States, the CODIS (Combined DNA Index System) is comprised of genotypes for
13 tetranucleotide microsatellite loci (http://www.fbi.gov/hq/lab/html/codis1.htm).

In the absence of laboratory error, a match between an individual’s profile and that from
the crime scene can be explained in one of two ways: either the individual is the source of
the crime-scene sample or the individual is not the source but has the same profile by chance
alone. The probability of such a match has been defined in different ways that also depend
on the underlying population genetic model. In this paper we define the match probability
as the probability of a match between two individuals drawn at random. We consider
the cases where the two individuals come from the same subpopulation or from different
subpopulations. Given that a genetic match is often sufficient to uphold a conviction (Song
et al., 2009), the match probability plays an important role in the US and other judicial
systems.

In US courts, the match probability is usually computed by following the recommenda-
tions of the second National Research Council Report (Committee on DNA Forensic Science:
An Update, 1996), called NRCII. Recommendation 4.1 of the NRCII advocates for the use
of the profile frequencies to compute the match probability. But if the subpopulation origin
of the sample is known but not the allele frequencies for the specific subpopulation, NRCII
recommends the use of the equation developed by Balding and Nichols (1994, 1995) (rec-
ommendation 4.2). The NRC report has been criticized in the scientific community (see
for example Evett and Weir (1998); Balding (2005)). In particular it has been argued that
the equation of Balding and Nichols (1994, 1995) should be used even in cases where the
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origin of the sample is unknown. The latter equation describes the conditional probability
that given an observed profile we find another individual with the same profile. This con-
ditional match probability depends on a parameter, θ, which accounts for small deviations
from Hardy-Weinberg frequencies caused by population subdivision or other deviations from
random mating, and which is equivalent to FST in the population genetics literature. NRCII
recommend a value of θ between 0.01 and 0.03 to account for the observed genotype frequen-
cies in all known human populations, but others have argued that in some minority groups a
value of 0.05 may be more appropriate (e.g. Balding (2005)). NRCII recommends that the
multi-locus genotypic match probability be computed by multiplying the one-locus match
probabilities, which, following convention in the forensics literature, we will call the product
rule. For the 13 CODIS loci, the match probability of two unrelated individuals computed
using the product rule is on the order of 10−14 ∼ 10−15 (Song et al., 2009).

The use of the product rule remains controversial (Laurie and Weir, 2003; Bhaskar and
Song, 2009). Because of the difficulty of analyzing multi-locus models in finite populations,
there has been relatively little theoretical work on the conditions under which the product
rule provides an accurate approximation to the match probabilities of multi-locus profiles.
For a small number of loci, Laurie and Weir (2003) and Song and Slatkin (2007) computed
the match probability in a finite randomly mating population and found that the deviations
from the predictions of the product rule are small unless mutation rates are unrealistically
high. Bhaskar and Song (2009) later generalized the graphical method of Song and Slatkin
(2007) to compute the match probability of haploid genotypes for as many as 10 loci in a
Wright-Fisher model and 13 loci in a Moran model. They showed that deviations from the
predictions of the product rule are sensitive to the assumed mutation rate but, for mutation
rates consistent with the observed levels of heterozygosity at CODIS loci, deviations from
the predictions of the product rule were relatively small for up to 13 loci.

All of these theoretical studies of match probabilities assume an infinite-alleles model of
mutation at each locus (i.e., every mutation leads to a new allele never seen before in the
population). They predict the deviation from the product rule resulting from multi-locus
identity-by-descent created by genetic drift in a finite population. These models cannot
predict the overall deviations from the product rule in practice, however, because the loci
used for forensic purposes are short tandem repeat (STR) loci for which the infinite-alleles
model is not realistic. The same allele can be created more than once by mutation. A
stepwise mutation model is more appropriate for STR loci but does not lead to a tractable
theory of match probabilities even in a single population. The match probabilities calculated
from the infinite-alleles model indicate the magnitude of deviations from the product rule
expected because of the accumulated identity-by-descent, which is likely to be the primary
effect of population subdivision.

Here, we extend the graphical framework derived by Song and Slatkin (2007) to explicitly
account for population subdivision. We model two linked loci in two subpopulations that
exchange migrants. We derive a system of coupled linear recurrence equations for the match
probabilities. The equilibrium match probabilities are then found by assuming stationarity
and solving the recurrence equations. As in the previous studies, we assume an infinite-
alleles model. Our goals are to determine the effect of population subdivision on the match
probabilities, and to study what assumptions about population subdivision lead to two-locus
match probabilities that differ substantially from the predictions made using the product
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rule. The model allows us to address two scenarios of practical interest.

1. Same-subpopulation scenario: Suppose there are two subpopulations α and β, and the
source of the crime-scene sample and the defendant are both from the same subpopu-
lation, say subpopulation α. In this case, the correct thing to do would be to compute
the match probability between two individuals taken at random within the subpopu-
lation α. However, the subpopulation origin of the individuals is not known and one
considers the match of two individuals taken at random from the entire population
assuming no subdivision, i.e., assuming random mating between all individuals of the
whole population. This case corresponds to the situation described by Balding and
Nichols (1994, 1995).

2. Cryptic subdivision scenario: One is interested in the match probability between two
individuals randomly drawn from the entire population. He or she computes this
probability assuming no population subdivision, but what is thought to be a single
randomly mating population actually consists of two subpopulations with some gene
flow between them.

This paper is organized as follows. In Section 2.2, we first describe the Wright-Fisher
random mating model for a subdivided population and give a more precise definition of
match probabilities. We then describe in Section 2.3 our extension of the aforementioned
graphical framework to incorporate population structure. In Section 2.4, we present the
results for the haplotypic and genotypic match probabilities for one and two loci for various
migration rates. We show that the aforementioned same-subpopulation scenario can lead
to substantial underestimation of the match probabilities, while both scenarios considered
result in relatively small deviations from the product rule for reasonable mutation rates at
the two loci.

2.2 Random mating model for a subdivided population

and match probabilities

In this paper, we consider a population consisting of two subpopulations with migration.
Provided below is a brief description of the assumed random mating model. See Table 2.1
for a summary of notation.

1. The total population is finite and of constant size N (2N gametes).

2. Generations are non-overlapping.

3. The population has two subpopulations, α and β, with constant sizes Nα and Nβ. Note
that N = Nα +Nβ.

4. We assume a standard Wright-Fisher random union of gametes within each subpopu-
lation as in Laurie and Weir (2003), extended to incorporate migration.
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Table 2.1: Summary of Notation.

Notation Signification
2N The total number of gametes in each generation.

α, β Subpopulation labels.

2Nα, 2Nβ Number of gametes in subpopulations α and β, respectively.

µi Mutation rate at locus i per generation, per gamete (indepen-
dent of the subpopulation label).

mαβ, mβα Backward migration rate from α to β, and from β to α, respec-
tively, per generation, per gamete.

xi Allele at locus i of a gamete from an unspecified subpopulation.

x A haplotypic sequence x = x1x2.

ai Allele at locus i of a gamete from subpopulation α.

a A haplotypic sequence a = a1a2.

bi Allele at locus i of a gamete from subpopulation β.

b A haplotypic sequence b = b1b2.

xi ≡ x′i For locus i, alleles xi and x′i match.

x ≡ x′ For all loci i, allele xi of x and allele x′i of x′ match.

5. Mutations occur at locus i with probability µi per generation and are independent of
the subpopulation, and of other loci. Each mutation event produces a new allele never
seen before in the population, i.e., we assume an infinite-alleles model.

6. Recombination may occur each generation between loci with probability r per genera-
tion for gametes within a subpopulation, at a rate independent of the subpopulation.

7. Forward in time, the probability a particular individual from subpopulation α migrates
to subpopulation β is mβαNβ/Nα per generation. The analogous probability for migra-
tion from β to α is mαβNα/Nβ. The parameters mαβ and mβα are backward migration
fractions.

8. All loci are neutral.

9. Migration is conservative (Nagylaki, 1980), i.e., mαβNα = mβαNβ, or equivalently
Nα =

mβα
mαβ+mβα

N and Nβ =
mαβ

mαβ+mβα
N .

A new generation is obtained by drawing individuals from the previous generation. For
two loci, a gamete from an unspecified subpopulation is denoted by x = x1x2, where xi
denotes the allele at locus i. Further, we denote by a = a1a2 and b = b1b2 gametes from
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subpopulation α and β, respectively. Considering only two loci, our assumptions imply the
following scheme for the generation of offsprings.

1. Two gametes, x1 = x1
1x

1
2 and x2 = x2

1x
2
2, are drawn with replacement from within a

subpopulation.

2. The two gametes drawn recombine with probability r to create the offspring gamete.
With probability 1

2
(1 − r), 1

2
(1 − r), 1

2
r, 1

2
r, the offspring gametes are, respectively,

x1
1x

1
2, x2

1x
2
2, x1

1x
2
2, x2

1x
1
2.

3. As described above, each offspring gamete produced in a subpopulation may migrate
to the other subpopulation with a certain probability.

4. At each locus i, each offspring gamete may have undergone mutation with probability
µi, independent of the subpopulation. Every mutation creates a new allele never seen
before in the population.

The above procedure is repeated Nα times in subpopulation α and Nβ times in subpopulation
β.

We are interested in the one-locus and the two-locus random match probability for the
haplotypic and genotypic case. We define it as the probability that two individuals drawn at
random match at 1 or 2 loci, respectively (Laurie and Weir, 2003; Song and Slatkin, 2007).
We will consider three different cases; the two haploid or diploid individuals come from the
same subpopulation (either α or β) or each of them comes from a different subpopulation.
We assume that the alleles of each locus for each individual are known. Our definition differs
from the match probability defined by some authors (e.g. Weir (2004)) in that it is not a
conditional match probability.

2.3 Description of the graphical framework

Song and Slatkin (2007) derive recursion equations by representing match relations as graphs
and by performing operations on them. The four parts in the above-mentioned mating
scheme will be captured by four different operations on graphs, namely, vertex-merge, vertex-
split, vertex-recolor, and vertex-count, respectively. Our graphical method is the same as
theirs’, except that vertices are now colored to distinguish gametes from different subpopu-
lations.

2.3.1 Correspondence between match probabilities and graphs

The graphs we consider are undirected graphs with edge labels and vertex colors. Each
vertex represents a gamete and the color of the vertex indicates the subpopulation to which
the gamete belongs. Two vertices are joined by an edge (or an arc) labeled i if the associated
gametes match at locus i. Three examples of match graphs are shown in Figure 2.1. We
sometimes omit edge labels for convenience of drawing, in which case we adopt the convention
of drawing locus 1 (respectively, locus 2) edges above (respectively, below) the vertices.
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G1 = a1 a2 b3 a4

1

1

2

1

G2 = a1 b2 a3 a4

1

1

2

1

G3 = b1 a2 a3 a4

1

1

2

1

Figure 2.1: Example of graphical representation of match probabilities. Filled circles repre-
sent gametes from subpopulation α, while open circles represent gametes from subpopulation
β. The graph G1 corresponds to the probability P(a1

1 ≡ a2
1, a

1
1 ≡ b3

1, a
2
1 ≡ b3

1, a
1
2 ≡ a4

2) that
three gametes a1, a2 and b3 match at locus 1, and that two gametes a1 and a4 match at locus
2. The graph G2 corresponds to P(a1

1 ≡ b2
1, a

1
1 ≡ a3

1, b
2
1 ≡ a3

1, a
3
2 ≡ a4

2) and the graph G3

corresponds to P(b1
1 ≡ a2

1, b
1
1 ≡ a3

1, a
2
1 ≡ a3

1, b
1
2 ≡ a4

2). Note that the superscripts 1, 2, 3, and
4 allow us to refer to specific vertices, but otherwise they have no meaning. In particular,
two graphs obtained by permuting superscripts are equivalent. For example, graphs G1 and
G2 are isomorphic, while G1 and G3 are not.

As pointed out in Song and Slatkin (2007), two match probabilities are equal under
random mating if they are related by some permutation of gamete labels. More formally,
two graphs are equivalent if they are isomorphic as vertex-colored edge-labeled graphs. For
example in Figure 2.1, G1 and G2 are isomorphic, but neither G1 nor G2 is isomorphic to
G3. If we permute the superscripts on gametes as 1 → 3, 2 → 1, 3 → 2, 4 → 4, we can
transform G1 into G2, but there exists no permutation that can transform G1 (or G2) into
G3.

In the graphical framework, the goal is to relate an offspring graph GO (corresponding to
a match relationship at time t) to a set of parental graphs GP

1 , G
P
2 , . . . (corresponding to a

set of match relationships at time t− 1). Let A denote the set of all possible ancestries (i.e.,
a set of mutation, migration, recombination and coalescent events) one-generation back in
time for the gametes in GO. Then, the probability of GO can be decomposed as

P(GO) =
∑

A∈A
P(GO | A)P(A). (2.3.1)

For many ancestries A ∈ A, the conditional probability P(GO | A) may be zero; our method
considers only the set of ancestries A ∈ A with positive P(GO | A) and sums over that
set. We say that an ancestry A is valid if P(GO | A) > 0. Given a particular valid an-
cestry Ak ∈ A, there corresponds a parental graph GP

k such that P(GP
k ) = P(GO | Ak).

At stationarity, isomorphic parental and offspring graphs have the same probability, and
hence we can construct a closed system of linear equations by repeatedly using (2.3.1). We
assume that mutation (U), migration (M), recombination (R) and coalescence (C) events
are independent of each other, and hence we can decompose the probability of a particular
one-generation ancestry Ak into four parts as P(Ak) = QU

kQ
M
k Q

R
kQ

C
k , with the superscript

denoting the type of event.
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1

2

2

1

2

Figure 2.2: Graphical representation of two-locus match probabilities. From left to right,
QU is equal to (1− µ1)2(1− µ2)2, (1− µ2)2, and (1− µ1)2(1− µ2)2, respectively.

2.3.2 Operations on graphs

We now describe a graphical method to find, for a given offspring graph GO, the set of all
valid one-generation ancestries A. Further, we describe the computation of QU

k , Q
M
k , Q

R
k , and

QC
k for each ancestral Ak.

Mutation or vertex count

Since we consider an infinite-alleles model, if two offspring gametes match at a particular
locus, then their parental gametes in the previous generation must also match at that locus.
Moreover, no mutation could have happened at that locus in producing the offspring gametes.

If n gametes match at locus i in the offspring graph GO, an overall factor of (1−µi)n will
contribute to QU

k . More generally, for every valid ancestry Ak, we obtain QU
k =

∏2
i=1(1 −

µi)
δi(G

O), where δi(G
O) is the number of vertices in GO that are involved in a match relation

for locus i (i.e., the number of vertices incident with an edge corresponding to locus i).
Examples are provided in Figure 2.2. This procedure is referred to as a “vertex-count”
operation.

The intermediate graph resulting from a mutation event or a vertex-count operation is
identical to the original graph. We will denote by GM , the resulting graph to refer to the
fact that the next operation corresponds to a migration event.

2.3.3 Migration or vertex recolor

The graphs considered in Song and Slatkin (2007) have uncolored vertices. To take into
account the population subdivision, we color the vertices. A migration event corresponds to
a “vertex recoloring” operation in the graphical framework (see Figure 2.3).

Consider a graph with nα vertices from subpopulation α and nβ vertices from subpopula-
tion β. Since the migration rates are typically small, we linearize the probability of migration
per generation, and therefore QM

k = 1−nαmαβ−nβmβα if no migration happens, QM
k = mαβ

if a gamete from α migrates to β or QM
k = mβα if a gamete from β migrates to α.

The graph resulting from a recoloring operation is an intermediate graph denoted by GR,
indicating that the next operation is for a recombination event.

2.3.4 Recombination or vertex split

Going backward in time, if a recombination event occurs in an offspring gamete, then two
parental gametes must be tracked, each contributing a new vertex. Recombination is relevant
only if we consider two or more loci.
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GM
1

=
a
1

b
2

a
3

1

2

= GR
1b

1
b
2

a
3

1

2

Prob. mαβ

GM
1

= a1 b2 a3

1

2

= GR
2a1 a2 a3

1

2

Prob. mβα

Figure 2.3: Illustration of vertex-recolor operations on match graphs for two loci. In the
top figure, vertex a1 is recolored and the label changes to b1; this event occurs with proba-
bility mαβ. In the bottom figure, vertex b2 is recolored (and the label changes to a2) with
probability mβα.

GR
1

=
a
1

b
2

1

2

= GC
1a

1
b
2

1

2Prob. (1 − r)2

GR
1

= a1 b2

1

2

= GC
2a1 a2 b3

1

2
Prob. r(1 − r)

GR
1

=
a1 b2

1

2

= GC
3a1 a2 b3 b4

1

2

Prob. r2

Figure 2.4: Illustration of vertex-split operations on match graphs for two loci. In GR
1 ,

vertices a1 and b2 each have δ-degree 2, so there can be up to two split operations. The top
figure corresponds to there being no split. In the middle figure only vertex a1 is split, while
both a1 and b2 are split in the bottom figure.

The operation on graphs that corresponds to recombination is a “vertex-split” operation.
Any vertex with at least two incident edges with different labels can undergo a split operation.
We can associate a number δ(v) (the δ-degree) to each vertex v, such that for a given
match graph the δ-degree is the number of loci at which the vertex is involved in a match
relationship. Denote by n the number of vertices with δ-degree larger than one. Hence, if s
out of the n vertices split, then QR

k = rs(1− r)n−s. See Figure 2.4 for an example.
The graph obtained from a vertex-split operation is an intermediate graph denoted by

GC . The next operation to consider corresponds to coalescent events.
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GC
1

= a1 b2 a3 a4 = GP
1a1 b2 a3

Prob. 2fα(3, 2)

GC
1

= a1 b2 a3 a4 = GP
2b1 a2

Prob. fα(3, 1)

Figure 2.5: Illustration of vertex-merge operations on match graphs for two loci. In the
top figure, there are two different vertex-merge operations that can transform GC

1 into GP
1 ,

explaining the factor of 2 in the associated probability. Specifically, a1 and a4 can be merged
into a single vertex, or a3 and a4 can be merged. In the bottom figure, a1, a3 and a4 are
merged into a single vertex. Vertices from different subpopulations cannot be merged.

2.3.5 Coalescence or vertex merge

Finally, because parental gametes are drawn with replacement, a parental gamete may be
drawn more than once. Going backward in time, this means that two (or more) vertices
in GC may undergo a “merge operation,” provided that the vertices have the same color.
Adopting Convention 1 of Song and Slatkin (2007), merging a set of vertices entails removing
all edges between the vertices in that set. Any set of vertices in the same subpopulation can
merge. The probability of such a merge is the probability of drawing the same gamete two
or more times from the same subpopulation. Such a merged graph will be called a parental
graph GP .

The probability of a merge event given a graph GC is almost identical to Equation 2
of Song and Slatkin (2007). Since two gametes from different subpopulations cannot be
merged, each subpopulation can be considered independently. Having nα (respectively, nβ)
vertices of type α (respectively, β) before the merge operation and jα (respectively, jβ) after
merging, implies that jα (respectively, jβ) distinct gametes were drawn. The probability of
such an event is given by

QC
k = fα(nα, jα)fβ(nβ, jβ),

where

fα(nα, jα) =
2Nα(2Nα − 1) · · · (2Nα − jα + 1)

(2Nα)nα
,

and fβ(nβ, jβ) is similarly defined with Nα replaced with Nβ.
Note that two different merge operations may produce isomorphic graphs. Isolated ver-

tices are not involved in any match relationship, and hence can be ignored. A graph con-
taining only isolated vertices has probability one. See Figure 2.5 for an example.

2.3.6 Summary: count, recolor, split, and merge

There are four graphical operations corresponding to different evolutionary events: vertex-
count, vertex-recolor, vertex-split, and vertex-merge. The first three operations produce
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GO = GM

GR
1

GR
2

GR
3

GC
1

GC
2

GC
3

GC
4

GP
1

GP
2

GP
3

GP
4

GP
5

Vertex Recolor Vertex Split Vertex Merge

time t time t − 1

Figure 2.6: Schematic summary of the graphical approach of Song and Slatkin (2007) mod-
ified to account for population subdivision. Our notation reflects the operation to be per-
formed: the vertices of GM will be recolored to account for migration, the vertices of GR

i will
be split to account for recombination and finally the vertices of GC

i will be merged to account
for coalescence. The offspring graph GO on the left can be written as a linear combination
of the resulting parental graphs, GP

i , on the right. The coefficients correspond to all possible
single generation evolutionary histories, starting with the offspring graph.

intermediate graphs GM , GR, and GC . They are used to relate an offspring graph GO

representing a match probability at time t to a set of parental match graphs GP
k at time

t− 1. A schematic summary (corresponding to Figure 8 of Song and Slatkin 2007) is shown
in Figure 2.6. At stationarity, the match probabilities are independent of t.

2.3.7 An example of a closed system of equations

Illustrated in Figure 2.7 is an example of a closed system of recurrence equations in our
graphical framework. It is for the simplest case (i.e., the one-locus haplotypic match),
involving three equations and three unknown variables. Because we consider only a single
locus, no vertex-split operations are involved. The one-locus match probability Ph(xi ≡ x′i)
appears as one of the unknown variables in Figure 2.7, and solving the coupled equations
allows us to compute that stationary probability.

Note that, when µi = 0 for all loci i, every match probability is equal to one, and,
therefore, the right-hand side of each equation in Figure 2.7 must sum to one. This can be
easily verified. Such consistency conditions are useful for checking that the coefficients in
the recurrence equations have been determined correctly.

2.4 Results on match probabilities

We are interested in computing two quantities: the two-locus match probability (denoted
by Ph in the haplotypic case and by Pg in the genotypic case) computed without assuming
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i

= (1 − µi)
2

[
(1 − 2mαβ)[fα(2, 2)

i

+ fα(2, 1)] + 2mαβ

i
]

i

= (1 − µi)
2

[
(1 − mαβ − mβα)

i

+ mαβ

i

+ mβα

i
]

i

= (1 − µi)
2

[
(1 − 2mβα)[fβ(2, 2)

i

+ fβ(2, 1)] + 2mβα

i
]

Figure 2.7: Graphical representation of the closed system of equations involving one-locus
match probabilities for locus i. Recall that the probability of migration is linearized.

independence of the loci, and the ratio (denoted by Rh for the haplotypic case and by Rg

for the genotypic case) of that probability to the approximate two-locus match probability
obtained by multiplying the one-locus match probabilities. Under linkage equilibrium, the
multi-locus match probability is given by the product of the one-locus match probabilities at
the loci involved. Therefore, assuming linkage equilibrium the ratios Rh and Rg are equal to
one. If the ratios are greater than 1, the actual match probabilities exceed those obtained by
assuming the product rule because of linkage disequilibrium created between unlinked loci
by the interaction of mutation and genetic drift.

To examine the effect of population subdivision on the above quantities, we present
below some numerical results for both haplotypic and genotypic cases. We implemented our
graphical method in Python to generate the system of equations, and then used Mathematica
to solve the system. For simplicity, we present results for the case of the same mutation rate
for all loci, i.e., µi = µ for all i.

2.4.1 Haplotypic match probability

One-locus haplotypic match

The system of equations shown in Figure 2.7 can be used to obtain the haplotypic match
probability Ph(xi ≡ x′i) for locus i. Note that the ratio Rh is equal to 1 by definition.

Numerical values for one-locus haplotypic match probabilities are given in Table 2.2. The
population size is set to N = 10, 000, which is an approximate long-term effective population
size of humans (Nei M. and Graur D., 1984; Harding et al., 1997; Harpending et al., 1998).
The two mutation rates used, 10−4 and 10−3, correspond to expected heterozygosities in a
randomly mating population of 4Nµ/(1 + 4Nµ) = 0.8 and 0.976. In the case of symmetric
migration, the range of migration rates from 10−6 to 10−2 respectively correspond to 0.02 to
200 migrants per generation. Shown in this and later tables are 1) the FST value, 2) the match
probability for two different individuals sampled randomly from the same subpopulation, and
3) the match probability of two different individuals chosen at random without regard to
subpopulation. The last probability, denoted by Prandom, is a weighted average defined as
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follows:

Prandom
h (x ≡ x′) =

N2
α

N2
Ph(a ≡ a′) +

2NαNβ

N2
Ph(a ≡ b′) +

N2
β

N2
Ph(b ≡ b′), (2.4.2)

where a and a′ (respectively, b and b′) denote alleles from subpopulation α (respectively, β).
The version of FST we adopt is

FST =
Nα
N
· Ph(ai ≡ a′i) +

Nβ
N
· Ph(bi ≡ b′i)− Prandom

h (x ≡ x′)

1− Prandom
h (x ≡ x′)

.

In the asymmetric case, the within-subpopulation match probability decreases as the sub-
population size increases. In the symmetric case, the more isolated the subpopulations, the
higher the within-subpopulation and the smaller the between-subpopulations match prob-
abilities. The effect of subdivision on the match probabilities is further discussed below in
Section 2.4.2.

Two-locus haplotypic match

The two-locus system has a total of 26 match relations. The corresponding graphs are
illustrated in Figure 2.8. Given two gametes x = x1x2 and x′ = x′1x

′
2, the haplotypic match

probability is Ph(x ≡ x′). If the loci are independent, then the product rule holds, yielding
Ph(x1 ≡ x′1)Ph(x2 ≡ x′2) for the match probability. To quantify the departure from the
product rule, we consider the following ratio:

Rh(x ≡ x′) =
Ph(x ≡ x′)

Ph(x1 ≡ x′1)Ph(x2 ≡ x′2)
.

Both the match probability Ph and the ratio Rh depend on the subpopulations to which
the gametes x and x′ belong. There are three different cases. 1) They both belong to
subpopulation α. 2) They both belong to subpopulation β. 3) One belongs to subpopulation
α, while the other belongs to subpopulation β. Graphical representations of Ph for the three
cases are illustrated in Figures 2.9.

Numerical values of match probabilities Ph and ratios Rh are provided in Table 2.3. The
same parameters were used as in the one-locus case were used. In all cases, Rh is not much
greater than 1, even for the smallest migration rate we considered. Therefore, the product
rule provides an adequate approximation for computing the match probabilities.

2.4.2 Genotypic match probability

One-locus genotypic match probability

Consider two unordered pairs {xi, x̄i} and {x′i, x̄′i} of alleles. The probability of genotypic
match at locus i is denoted Pg({xi, x̄i} ≡ {x′i, x̄′i}). There are two possible ways to have a
one-locus genotypic match: 1) xi ≡ x′i and x̄i ≡ x̄′i, or 2) xi ≡ x̄′i and x̄i ≡ x′i. However, these
possibilities are not mutually exclusive, and as explained in Song and Slatkin (2007), the
probability of a genotypic match can be computed using the inclusion-exclusion principle.
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Locus 1

Locus 2

Locus 1 and 2

Figure 2.8: The match graphs involved in the two-locus haplotypic match probability. These
probabilities form a closed system of equations comprising 26 variables and 26 equations.

Ph(a ≡ a′) =

Ph(b ≡ b′) =

Ph(a ≡ b) =

Figure 2.9: The match graphs corresponding to the two-locus haplotypic match probability
for two gametes from subpopulation α, two from subpopulation β and one from subpopula-
tion α and one from β.

In the graphical framework, the probability of a one-locus genotypic match is as shown in
Figure 2.10. The system of equations for the one-locus genotypic match case involves 18
variables (and 18 equations). Numerical values are reported in Table 2.4.

The conclusions are similar to those for the one-locus haplotypic case. One noticeable
difference is that the match probabilities are smaller than for haplotypic matches.
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Pg({ai, āi} ≡ {a′i, ā
′

i}) = 2 ×

i

i

−

i

Pg({bi, b̄i} ≡ {b′i, b̄
′

i}) = 2 ×

i

i

−

i

Pg({ai, āi} ≡ {bi, b̄i}) = 2 ×

i

i

−

i

Figure 2.10: The one-locus genotypic match probabilities for two pairs of alleles at locus i.

Pg({a, ā} ≡ {a′
, ā

′}) = 2

[

+ − −

]

+

Pg({b, b̄} ≡ {b′, b̄
′

}) = 2

[

+ − −

]

+

Pg({a, ā} ≡ {b, b̄}) = 2

[

+ − −

]

+

Figure 2.11: The two-locus genotypic match probabilities for two pairs of two-locus gametes.

Two-locus genotypic match probability

Consider two unordered pairs {xi, x̄i} and {x′i, x̄′i} of gametes. The probability of two-locus
genotypic match is denoted by Pg({xi, x̄i} ≡ {x′i, x̄′i}). The match probability under the
product rule is Pg({x1, x̄1} ≡ {x′1, x̄′1})× Pg({x2, x̄2} ≡ {x′2, x̄′2}). To quantify the departure
from the product rule, we compute the following ratio:

Rg({xi, x̄i} ≡ {x′i, x̄′i}) =
Pg({xi, x̄i} ≡ {x′i, x̄′i})

Pg({x1, x̄1} ≡ {x′1, x̄′1})Pg({x2, x̄2} ≡ {x′2, x̄′2})
.

There are four possible ways of having a two-locus genotypic match. But, again, those
possibilities are not mutually exclusive and the probability of a two-locus genotypic match
can be computed using the inclusion-exclusion principle. The three possible two-locus match
probabilities, depending on the subpopulations of the gametes, are shown in Figure 2.11. The
three ratios, Rg, can be computed depending on the origin of the gametes. The closed system
of equation has 1463 variables (or equations). Numerical values are reported in Table 2.5.

Similar conclusions can be drawn as in the two-locus haplotypic case. The main difference
is that genotypic match probabilities are considerably smaller (by about one order of magni-
tude). Moreover, for small migration rates, the ratio Rg is not as elevated as Rh. For example,
in the case of symmetric migration with mαβ = mβα = 10−6, the between-subpopulation ra-
tio Rg({a, ā} ≡ {b, b̄}) is equal to 1.229 for µ = 10−3 and 1.007 for µ = 10−4, while the
corresponding values for the haplotypic ratio Rh are 5.113 and 1.050, respectively (see Ta-
bles 2.3 and 2.5). The ratio Rg is close to 1 for µ = 10−4, suggesting that in the genotypic
case, the product rule is accurate in the two-locus case for small mutation rates.
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To examine the effect of population subdivision on the match probability computation,
we plot in Figure 2.12 Prandomh (x ≡ x′) and Ph(a ≡ a′) (respectively, Prandomg ({xi, x̄i} ≡
{x′i, x̄′i}) and Pg({ai, āi} ≡ {a′i, ā′i})) as a function of FST for the two-locus haplotypic (re-
spectively, genotypic) case. The one-locus cases are qualitatively similar and therefore not
shown. We compare the no subdivision case, the symmetric case, and the asymmetric case
of Table 2.3 and Table 2.5 for µ = 1 × 10−4. The results in our tables labeled “Within α”
and “Within β” are relevant for the same-subpopulation scenario, i.e. where the two indi-
viduals are drawn from one subpopulation versus drawn from the entire population ignoring
subdivision. The “Within α” results assume population α is that subpopulation and the
“Within β” results assume population β is that subpopulation. “Random” are relevant for
the cryptic subdivision scenario, in which two partially isolated populations are treated as a
single population.

As has been shown before (e.g. Balding and Nichols (1994, 1995)), ignoring subdivision
can lead to underestimation of the match probabilities for the same-subpopulation scenario,
i.e. when the two individuals belong to the same subpopulation (subplots on the right of
Figure 2.12). We see this effect for both the asymmetric and the symmetric case even for
small FST values. On the other hand, for the cryptic subdivision scenario, the asymmetric
and symmetric “Random” match probabilities agree closely with the no subdivision match
probabilities. In this case, ignoring subdivision leads to significant underestimates of the
match probability only when the mutation rate is higher (say, µ = 1 × 10−3; plots not
shown). This effect is qualitatively the same for all cases considered.

2.5 Discussion and Conclusion

Given the increasing use of DNA evidence in criminal investigation in the United States
and elsewhere, it is important to determine whether the one-locus match probability equa-
tions are adequate and whether the product rule provides accurate estimates of multi-locus
match probabilities. In this paper, we showed that migration can be easily incorporated
into the previously proposed graphical framework for computing exact match probabilities
at stationarity. We computed the match probabilities for two loci in a population with two
subpopulations that exchange migrants.

One of the advantages of our approach is that it relies on an explicit population subdi-
vision model. That is, if one has an idea of the actual subdivision, the appropriate scenario
can be investigated. Our results show that, for the same-subpopulation scenario, even with
small FST values for the case of two subpopulations with symmetric or asymmetric migra-
tion, ignoring subdivision can lead to important underestimates of the match probability.
This result had been shown before by others e.g. Balding and Nichols (1994, 1995) for a
different subdivision model. For the cryptic subdivision scenario, underestimation of the
match probability occurs only for high mutation rates (µ) of 10−3, not necessarily consistent
with reasonable levels of heterozygosity. Similarly, in all the results, noticeable deviations
from the product rule are obtained only for the largest mutation rate (µ) of 10−3, and even
for that mutation rate the predictions of the product rule are close to the correct values.
Under the infinite-alleles mutation model, a total population size of 10,000 and a mutation
rate of 10−3 predict a heterozygosity larger than 4Nµ/(1 + 4Nµ) = 0.976—how much larger
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depends on the migration rates. Under a generalized stepwise mutation model, the predicted
heterozygosity is somewhat smaller, of the order of 0.9 (Di Rienzo et al., 1994). Published
heterozygosities for CODIS loci are in the range of 0.75-0.9 (Budowle et al., 2001), which
suggests that mutation rates at CODIS are lower than 10−3 and that is consistent with the
observed mutation rates at other STR loci (Ellegren, 2000). Therefore, for two loci, we
conclude that the population subdivision of the kind modeled in this paper does lead to
underestimates of the match probabilities but does not lead to substantial deviations from
the predictions of the product rule. This conclusion is consistent with established practice
see e.g. Balding (2005) and Committee on DNA Forensic Science: An Update (1996). Nev-
ertheless, the effect of more loci and more subpopulations remains an open question. Our
intuition, based on the results of higher mutation rate, is that the effects might be more im-
portant for more than two loci and more than two subpopulations. Finally, the method we
present in this paper is relevant, not only for the forensic sciences, but in a general context
of identity-by-descent calculation.
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Chapter 3

Detecting epistasis via Markov bases

3.1 Introduction

Conditions with genetic components such as cancer, heart disease, and diabetes, are the
most common causes of mortality in developed countries. Therefore, the mapping of genes
involved in such complex diseases represents a major goal of human genetics. However,
genetic variants associated with complex diseases are hard to detect. Indeed, only a small
portion of the heritability of complex diseases can be explained by the variants identified so
far. This led to several hypotheses (see e.g. Manolio et al. (2009)). One of them is that
most common diseases are caused by several rare variants with low effects, rather than a
few common variants with large effects (Pritchard (2001)). Another hypothesis is that the
variants interact in order to produce the disease phenotype and independently only explain
a small fraction of the genetic variance. In this work, we mainly focus on the interaction
hypothesis, but we will also discuss the relevance of our method to the rare variant hypothesis
along the way.

Recent development of methods to screen hundreds of thousands of SNPs has allowed the
discovery of over 50 disease susceptibility loci with marginal effects (McCarthy et al. (2008)).
Genome-wide association studies have hence proven to be fruitful in understanding complex
multifactorial traits. The absence of reports of interacting loci, however, shows the need for
better methods for detecting not only marginal effects of specific loci, but also interactions
of loci. Although some progress in detecting interactions has been achieved in the last few
years using simple log-linear models, these methods remain inefficient to detect interactions
for large-scale data (Albrechtsen et al. (2007)).

Many models of interaction have been presented in the past, as for example the additive
model and the multiplicative model. The former model assumes that the SNPs act indepen-
dently, and a single marker approach seems to perform well. In the multiplicative model,
SNPs interact in the sense that the presence of two (or more) variants have a stronger effect
than the sum of the effects of each single SNP. We will discuss such models in more detail
in Section 3.2.1. A complete classification of two-locus interaction models has been given in
Hallgrimsdottir and Yuster (2008).

In the method described in this work, we first reduce the potential interacting SNPs
to a small number by filtering all SNPs genome-wide with a single locus approach. The
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loci achieving some threshold are then further examined for interactions. Such a two-stage
approach has been suggested in Marchini et al. (2005). For some models of interaction, they
show that the two-stage approach outperforms the single-locus search and performs at least
as well as when testing for interaction within all subsets of k SNPs.

Single locus methods consider each SNP individually and test for association based on dif-
ferences in genotypic frequencies between case and control individuals. Widely used methods
for the single-locus search are the χ2 goodness-of-fit test or Fisher’s exact test together with
a Bonferroni correction of the p-values to account for the large number of tests performed.
We suggest using Fisher’s exact test as a first stage to rank the SNPs by their p-value and
select a subset of SNPs, which is then further analyzed. Under the rare variant hypothesis
the resulting contingency tables are sparse and it is desirable to test for interactions within
the selected subset using an exact test. We suggest using Markov bases for this purpose.

In Section 3.2, we define three models of interaction and present our algorithm for detect-
ing epistasis using Markov bases in hypothesis testing. In Section 3.3, we test our method
on simulated data and make a comparison to logistic regression and BEAM, a Bayesian
approach (Zhang and Liu (2007)). Finally, we run our algorithm on a genome-wide dataset
from dogs (Cadieu et al. (2009)) to test for epistasis related to canine hair length.

3.2 Method

3.2.1 Models of interaction

In this work, we mainly study the interaction between two SNPs and a binary phenotype,
as for example the disease status of an individual. However, our method can be easily
generalized for studying interaction between three or more SNPs and a phenotype with
three or more states. We show a generalization in Section 3.3.4, where we analyze a genome-
wide dataset from dogs and, inter alia, test for interaction between three SNPs and a binary
hair length phenotype (short hair versus long hair).

The binary phenotype is denoted by D, taking values 0 and 1. We assume that the SNPs
are polymorphic with only two possible nucleotides. The two SNPs are denoted by X and
Y , each with genotypes taking values 0, 1 and 2 representing the number of minor alleles.
We investigate three different models of interaction: a control model, an additive model, and
a multiplicative model. The parameterization is given in the following tables showing the
odds of having a specific phenotype

P(D = 1|genotype)

P(D = 0|genotype)
.

• Control model:

Y
0 1 2

0 ε ε ε
X 1 ε ε ε

2 ε ε ε
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• Additive model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβ εαβ2

2 εα2 εα2β εα2β2

• Multiplicative model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβδ εαβ2δ2

2 εα2 εα2βδ2 εα2β2δ4

These three models can also be expressed as log-linear models. We denote the state of X
by i, the state of Y by j, and the state of D by k. If nijk describes the expected cell counts
in a 3 × 3 × 2 contingency table, then the three models can be expressed in the following
way, where the γ terms represent the effects the variables have on the cell counts (e.g. γXi
represents the main effect for X), and α, β, δ, and ε are defined by the odds of having a
specific phenotype shown in the above tables:

Control model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε)

Additive model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε) + ik logα
+jk log β

Multiplicative model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε) + ik logα
+jk log β + ijk log δ

Note that in the additive model the interaction effect for SNP X (SNP Y ) and the disease
status is additive with respect to the number of causative SNPs i (j), whereas in the multi-
plicative model there is an additional 3-way interaction effect between SNPs X, Y , and the
disease status, which is multiplicative in the number of causative SNPs i, j. From the rep-
resentation as log-linear models we can deduce the nesting relationship shown on the Venn
diagram in Figure 3.1. Note that the additive model corresponds to the intersection of the
no 3-way interaction model (log(nijk) = γ + γXi + γYj + γDk + γXYij + γXDik + γY Djk ) with the
multiplicative model, and the control model is nested within the additive model.

In a biological context, interaction between markers (or SNPs) is usually used as a syn-
onym for epistasis. Cordell (2002) gives a broad definition: “Epistasis refers to departure
from ‘independence’ of the effects of different genetic loci in the way they combine to cause
disease”. Epistasis is for example the result of a multiplicative effect between two markers
(i.e. log(δ) 6= 0 in the multiplicative model).
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Control model

Saturated model

Epistasis

Figure 3.1: Nesting relationship of the control model, the additive model, and the multi-
plicative model. The intersection of the no 3-way interaction model with the multiplicative
model corresponds to the additive model. The shading indicates the presence of epistasis.

In contrast, in a mathematical context interaction is used as synonym for correlation.
Two markers are said to be interacting if they are correlated, i.e.

P(marker 1 = i,marker 2 = j) 6= P(marker 1 = i)P(marker 2 = j).

In general, in association studies the goal is to find a set of markers that are correlated
with a specific phenotype. However, the markers can be correlated with each other as well.
In what follows, we will use the term interaction as synonym for correlation and the term
epistasis with respect to a specific phenotype synonymously to the presence of a k-way
interaction (k ≥ 3) between k − 1 SNPs and a specific phenotype. The epistatic models are
indicated by the shading in Figure 3.1.

3.2.2 Algorithm

The χ2 goodness-of-fit-test is the most widely used test for detecting interaction within
contingency tables. Under independence the χ2 statistic is asymptotically χ2 distributed.
However, this approximation is problematic when some cell counts are small, which is often
the case in contingency tables resulting from association studies and particularly problematic
under the rare variant hypothesis. The other widely used test is Fisher’s exact test. As
its name suggests, it has the advantage of being exact. But it is a permutation test and
therefore computationally more intensive. For tables with large total counts or tables of
higher dimension, enumerating all possible tables with given margins is not feasible.

Diaconis and Sturmfels (1998) describe an extended version of Fisher’s exact test using
Markov bases. A Markov basis for testing a specific interaction model is a set of moves
connecting all contingency tables with the same sufficient statistics. So, a Markov basis
allows constructing a Markov chain on the set of contingency tables with given margins and
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Model Minimal sufficient statistics Expected counts
(X, Y,D) (ni..), (n.j.), (n..k) n̂ijk =

ni..n.j.n..k
(n...)2

(XY,D) (nij.), (n..k) n̂ijk =
nij.n..k
(n...)

(XD,Y ) (ni.k), (n.j.) n̂ijk =
ni.kn.j.
(n...)

(X, Y D) (ni..), (n.jk) n̂ijk =
n.jkni..
(n...)

(XY, Y D) (nij.), (n.jk) n̂ijk =
nij.n.jk
(n.j.)

(XY,XD) (nij.), (ni.k) n̂ijk =
nij.ni.k
(ni..)

(XD,Y D) (ni.k), (n.jk) n̂ijk =
ni.knj.k
(n..k)

(XY,XD, Y D) (nij.), (ni.k), (n.jk) Iterative proportional fitting

Table 3.1: Standard interaction models for three-dimensional contingency tables.

computing the p-value of a given contingency table using the resulting posterior distribution.
Such a test can be used for analyzing multidimensional tables with large total counts. In
addition, it has been shown in Diaconis and Sturmfels (1998) that the resulting posterior
distribution is a good approximation of the exact distribution of the χ2-statistic even for very
sparse contingency tables, leading to a substantially more accurate interaction test than the
χ2-test for sparse tables. Useful properties of Markov bases can be found in (Drton et al.
(2009)).

The Markov basis of the null model can be computed using the software 4ti2∗ and an
example is given in the appendix. Then a Markov chain is started in the observed 3× 3× 2
data table using the elements of the Markov basis as moves in the Metropolis-Hastings steps.
At each step the χ2 statistic is computed. Its posterior distribution is an approximation of
the exact distribution of the χ2 statistic.

Interaction tests with the extended version of Fisher’s exact test

In this subsection we present various hypotheses that can easily be tested using Markov
bases and discuss a hypothesis that is particularly interesting for association studies. The
corresponding Markov basis can be found in the appendix. For simplicity we constrain this
discussion to the case of two SNPs and a binary phenotype.

Table 3.2.2 consists of the standard log-linear models on three variables. Their fit to a
given data table can be computed using the extended version of Fisher’s exact test. We use
the notation presented in Bishop et al. (1975) to denote the different models. Interaction
is assumed between the variables not separated by commas in the model. So the model
(X, Y,D) in Table 3.2.2 represents the independence model, the model (XY,XD, Y D) the
no 3-way interaction model and the other models are intermediate models. For association
studies the no 3-way interaction model (XY,XD, Y D) is particularly interesting and will be
used as null model in our testing procedure.

Performing the extended version of Fisher’s exact test involves sampling from the space
of contingency tables with fixed minimal sufficient statistics and computing the χ2 statistic.
So, the minimal sufficient statistics and the expected counts for each cell of the table need

∗http://www.4ti2.de/
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Phenotype status: Total:
0 1

Haplotype: 00 n000 n001 n00.

01 n010 n011 n01.

10 n100 n101 n10.

11 n110 n111 n11.

Total: n..0 n..1 n...

Table 3.2: Testing for association between haplotypes and phenotype.

to be calculated. These are given in Table 3.2.2. If a loop is present in the model config-
uration as for example in the no 3-way interaction model (this model can be rewritten as
(XY, Y D,DX)), then there is no closed-form estimator for the cell counts (see Bishop et al.
(1975)). But in this case, estimates can be achieved by iterative proportional fitting (i.e.
Fienberg (1970)).

It is important to note that testing for epistasis necessarily implies working with mul-
tidimensional contingency tables and is not possible in the collapsed two-dimensional table
shown above. In this table, the two SNPs are treated like a single variable and we consider
the haplotype and not the SNPs separately. The sufficient statistics for the model described
in Table 3.2.2 are the row and column sums (nij.) and (n..k). So testing for association in this
collapsed table is the same as using (XY,D) as null model. In this case, the null hypothesis
would be rejected even in the presence of marginal effects only, showing that testing for
epistasis in Table 3.2.2 is impossible.

Hypothesis testing with the extended version of Fisher’s exact test

Our goal is to detect epistasis when present. According to the definition of epistasis in
Section 3.2.1 and as shown in Figure 3.1, epistasis is present with regard to two SNPs
and a specific phenotype, when a 3-way interaction is found. So we suggest using as null
hypothesis the no 3-way interaction model and testing this hypothesis with the extended
version of Fisher’s exact test. The corresponding Markov basis consists of 15 moves and
is given in the appendix. It can be used to compute the posterior distribution of the χ2

statistic and approximate the exact p-value of the data table. If the p-value is lower than
some threshold, we reject the null hypothesis of no epistasis.

Although in this work we focus merely on epistasis, it is worth noting that one can
easily build tests for different types of interaction using Markov bases. If one is interested
in detecting whether the epistatic effect is of multiplicative nature, one can perform the
extended version of Fisher’s exact test on the contingency tables, which have been classified
as epistatic, using the multiplicative model as null hypothesis. In this case, the corresponding
Markov basis consists of 49 moves. Similarly, if one is interested in detecting additive effects,
one can use the additive model as null hypothesis and test the contingency tables, which
have been classified as non-epistatic. In this case, the corresponding Markov basis consists
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of 156 moves. The Markov bases for these tests can be found on our website†.

3.3 Results

In this section, we first conduct a simulation study to evaluate the performance of the
suggested method. We then compare our method to a two-stage logistic regression approach
and to BEAM (Zhang and Liu (2007)). Logistic regression is a widely used method for
detecting epistasis within a selection of SNPs. BEAM is a purely Bayesian method for
detecting epistatic interactions on a genome-wide scale. We end this section by applying our
method to a genome-wide data set consisting of 685 dogs with the goal of finding epistasis
associated with canine hair length.

3.3.1 Simulation study

We simulated a total of 50 potential association studies with 400 cases and 400 controls
for three different minor allele frequencies of the causative SNPs and the three models of
interaction presented in Section 3.2.1. We chose as minor allele frequencies (MAF) 0.1, 0.25
and 0.4. The parameters for the three models of interaction were determined numerically
fixing the marginal effect measured by the effect size

λi :=
p(D = 1|gi = 1)

p(D = 0|gi = 1)

p(D = 0|gi = 0)

p(D = 1|gi = 0)
− 1

and the prevalence

π :=
∑

g1,g2

p(D|g1, g2)p(g1, g2).

For our simulations, we used an effect size of λ1 = λ2 = 1 and a sample prevalence of
π = 0.5. Choosing in addition α = β in the additive model, and α = β and δ = 3α in the
multiplicative model, determines all parameters of the interaction models and one can solve
for α, β, δ and ε numerically.

The simulations were performed using HAP-SAMPLE (Wright et al. (2007)) and were
restricted to the SNPs typed with the Affy CHIP on chromosome 9 and chromosome 13 of
the Phase I/II HapMap data‡, resulting in about 10,000 SNPs per individual. On each of
the two chromosomes we selected one SNP to be causative. The causative SNPs were chosen
consistent with the minor allele frequencies and far apart from any other marker (at least
20,000bp apart). Note that HAP-SAMPLE generates the cases and controls by resampling
from HapMap. This means that the simulated data show linkage disequilibrium and allele
frequencies similar to real data.

As suggested in Marchini et al. (2005), we took a two-stage approach for finding interact-
ing SNPs. In the first step, we ranked all SNPs according to their p-value in Fisher’s exact
test on the 2x3 genotype table and selected the ten SNPs with the lowest marginal p-values.
Within this subset, we then tested for interaction using the extended version of Fisher’s

†http://www.carolineuhler.com/epistasis.htm
‡http://hapmap.ncbi.nlm.nih.gov/
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exact test with the no 3-way interaction model as null hypothesis. We generated three
Markov chains with 40,000 iterations each and different starting values, and used the tools
described in Gilks et al. (1995) to assess convergence of the chains. This included analyzing
the Gelman-Rubin statistic and the autocorrelations. After discarding an initial burn-in of
10,000 iterations, we combined the remaining samples of the three chains to generate the
posterior distribution of the χ2 statistic.

In Figure 3.2 (left), we report the rejection rate of the no 3-way interaction hypothesis for
each of the three minor allele frequencies. Per point in the figure we simulated 50 potential
association studies. The power of our two-stage testing procedure corresponds to the curve
under the multiplicative model. The higher the minor allele frequency, the more accurately
we can detect epistasis. Under the additive model and the control model, no epistasis is
present. We never rejected the null hypothesis under the control model and only once under
the additive model, resulting in a high specificity of the testing procedure.

We also analyze the performance of each step separately. Figure 3.2 (middle) shows the
performance of the first step and reports the proportion of 50 association studies, in which
the two causative SNPs were ranked among the ten SNPs with the lowest p-values. Because
Fisher’s exact test measures marginal association, the curves under the additive model and
the multiplicative model are similar.

Figure 3.2 (right) shows the performance of the second step in our method and reports
the proportion of 50 association studies, in which the null hypothesis of no 3-way interaction
was rejected using only the extended version of Fisher’s exact test on the 50 causative SNP
pairs.

3.3.2 Comparison to logistic regression

For validation, we compare the performance of our method to logistic regression via ROC
curves. Logistic regression is probably the most widely used method for detecting epistasis
within a selection of SNPs nowadays. We base the comparison on the simulated association
studies presented in the previous section using only the simulations under the multiplicative
model. The structure of interaction within this model should favor logistic regression as
logistic regression tests for exactly this kind of interaction.

As before, for each minor allele frequency and each of the 50 simulation studies, we first
filtered all SNPs with Fisher’s exact test and chose the ten SNPs with the lowest p-values
for further analysis. Both causative SNPs are within the ten filtered SNPs for 19 (46) [45]
out of the 50 simulation studies for MAF=0.1 (MAF=0.25) [MAF=0.4]. We then ran the
extended version of Fisher’s exact test and logistic regression on all possible pairs of SNPs
in the subsets consisting of the ten filtered SNPs. This results in 50 ·

(
10
2

)
tests per minor

allele frequency with 19 (46) [45] true positives for MAF=0.1 (MAF=0.25) [MAF=0.4].
Because both methods, logistic regression and our method, require filtering all SNPs first,

we compare the methods only based on the ten filtered SNPs. The ROC curves comparing
the second stage of our method to logistic regression are plotted in Figure 3.3 showing that
our method performs substantially better than logistic regression for MAF=0.1 with an area
under the ROC curve of 0.861 compared to 0.773 for logistic regression. For MAF=0.25 and
MAF=0.4 both methods have nearly perfect ROC curves with areas 0.9986 [0.99994] for our
method compared to 0.9993 [0.99997] for logistic regression for MAF=0.25 [MAF=0.4].
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Figure 3.2: Rejection rate of the no 3-way interaction test in the two-stage approach on 50
simulated association studies for MAF=0.1, MAF=0.25, and MAF=0.4 (top left). Propor-
tion of 50 association studies, in which the two causative SNPs were ranked among the ten
SNPs with the lowest p-values by Fisher’s exact test (top right). Rejection rate of the no
3-way interaction hypothesis using only the extended version of Fisher’s exact test on the
50 causative SNP pairs (bottom).

3.3.3 Comparison to BEAM

We also compare our method to BEAM, a Bayesian approach for detecting epistatic inter-
actions in association studies (Zhang and Liu (2007)). We chose to compare our method
to BEAM, because the authors show it is more powerful than a variety of other approaches
including the stepwise logistic regression approach, and it is one of the few recent methods
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Figure 3.3: ROC curves of the extended version of Fisher’s exact test and logistic regression
for MAF=0.1 (top left), MAF=0.25 (top right), and MAF=0.4 (bottom) based on the ten
filtered SNPs.

that can handle genome-wide data.
In this method, all SNPs are divided into three groups, namely, SNPs that are not asso-

ciated with the disease, SNPs that contribute to the disease risk only through main effects,
and SNPs that interact to cause the disease. BEAM outputs the posterior probabilities for
each SNP to belong to these three groups. The authors propose to use the results in a
frequentist hypothesis-testing framework calculating the so called B-statistc and testing for
association between each SNP or set of SNPs and the disease phenotype. BEAM was de-
signed to increase the power to detect any association with the disease, and not to separate
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main effects from epistasis. Therefore, BEAM outputs SNPs that interact marginally or
through a k-way interaction with the disease. This does not match our definition of epistasis
since the presence of marginal effects only, already gives rise to a significant result using
BEAM.

We compare our method to BEAM using the B-statistic. BEAM reports this statistic
only for the pairs of SNPs which have a non-zero posterior probability of belonging to the
third group. In addition, the B-statistic is automatically set to zero for the SNP pairs where
any of the SNPs is found to be interacting marginally with the disease. We force BEAM to
include the marginal effects into the B-statistic by choosing a significance level of zero for
marginal effects. This should favor BEAM in terms of sensitivity.

We ran BEAM with the default parameters on our simulated datasets for the multiplica-
tive model. Due to the long running time of BEAM, we based the comparison only on 1,000
SNPs out of the 10,000 SNPs simulated for the analysis in Section 3.3.1. BEAM takes about
10.6 hours for the analysis of one dataset with 10,000 SNPs and 400 cases and controls,
whereas the same analysis with our method takes about 0.7 hours on an Intel Core 2.2 GHz
laptop with 2 Gb memory.

In contrast to BEAM, our method is a stepwise approach, which makes a comparison via
ROC curves difficult. We therefore compare the performance of all three tests by plotting for
a fixed number x of SNP pairs the proportion of simulation studies for which the interacting
SNP pair belongs to the x SNP pairs with the lowest p-values. The resulting curves are
shown in Figure 3.4. Although the marginal effects were not extracted, BEAM has a very
high false negative rate, attributing a p-value of 1 to the majority of SNPs, interacting and
not interacting SNPs.

3.3.4 Genome-wide association study of hair length in dogs

We demonstrate the potential of our Markov basis method in genome-wide association studies
by analyzing a hair length dataset consisting of 685 dogs from 65 breeds and containing
40, 842 SNPs (Cadieu et al. (2009)).

The individuals in Cadieu et al. (2009) were divided into two groups for the hair length
phenotype: 319 dogs from 31 breeds with long hair as cases and 364 from 34 breeds with
short hair as controls. In the original study, it is shown that the long versus short hair
phenotype is associated with a mutation (Cys95Phe) that changes exon one in the fibroblast
growth factor-5 (FGF5 gene). Indeed, the SNP with the lowest p-value using Fisher’s exact
test is located on chromosome 32 at position 7, 100, 913 for the Canmap dataset, i.e. about
300Kb apart from FGF5.

We ranked the 40, 842 SNPs by their p-value using Fisher’s exact test and selected the 20
lowest ranked SNPs (about 0.05%) to test for 3-way interaction. Note that all 20 SNPs are
significantly correlated (p-value < 0.05) with the phenotype. We found a significant p-value
(< 0.05) for four out of the

(
20
2

)
pairs. These pairs together with their p-values are listed in

Table 3.3.
The pairs include six distinct SNPs located on five different chromosomes and the two

SNPs lying on the same chromosome are not significantly interacting (p-value of 0.54). This
means that a false positive correlation due to hitchhiking effects can likley be avoided.
Hitchhiking effects are known to extend across long stretches of chromosomes in particular
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Figure 3.4: Proportion of simulation studies for which the interacting SNP pair belongs to
the x SNP pairs with the lowest p-values for MAF=0.1 (top left), MAF=0.25 (top right),
and MAF=0.4 (bottom).

in domesticated species (Sutter et al. (2004); Wayne and Ostrander (2007); Mather et al.
(2007)) consistent with the prediction of Smith and Haigh (1974).

In order to identify potential pathways we first considered genes, which are close to the
six SNPs we identified as interacting. To do so, we used the dog genome available through
the ncbi website§. Most of the genes we report here have been annotated automatically. Our
strategy was to consider the gene containing the candidate SNP (if any) and the immediate
left and right neighboring gene, resulting in a total of two or three genes per SNP.

§http://www.ncbi.nlm.nih.gov/genome/guide/dog/, build 2.1
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chromosome and location of SNPs p-value potential relevant genes
chr30.18465869, chr26.6171079 0 FGF7 -?
chr15.44092912, chr23.49871523 0 IGF1 -P2RY1
chr24.26359293, chr15.43667654 2e-04 ASIP -?
chr15.43667654, chr23.49871523 1e-04 ?-P2RY1

Table 3.3: Pairs of SNPs, which significantly interact with the hair length phenotype for the
Canmap dataset. Question marks indicate that we were not able to identify a closeby gene
which is functionally related to hair growth.

Among the six significantly interacting SNPs, four are located close to genes that have
been shown to be linked to hair growth in other organisms. This is not surprising, since
these SNPs also have a significant marginal association with hair growth. We here report
the function of these candidate genes. The two other SNPs are located close to genes that
we were not able to identify as functionally related to hair growth.

First, the SNP chr30.18465869 is located close to (about 80Kb) fibroblast growth factor
7 (FGF7 also called keratinocyte growth factor, KGF ), i.e. it belongs to the same family as
the gene reported in the original study (but on a different chromosome). The FGF family
members are involved in a variety of biological processes including hair development reported
in human, mouse, rat and chicken (GO:0031069, Ashburner et al. (2000)).

Secondly, chr15.44092912 is located between two genes, and about 200Kb from the
insulin-like growth factor 1 gene (IGF1 ). IGF1 has been reported to be associated with
the hair growth cycle and the differentiation of the hair shaft in mice (Weger and Schlake
(2005)).

Thirdly, chr23.49871523 is located about 430Kb from the purinergic receptor P2Y1
(P2RY1 ). The purinergic receptors have been shown to be part of a signaling system for
proliferation and differentiation in human anagen hair follicles (Greig et al. (2008)).

Finally, chr24.26359293 is located inside the agouti-signaling protein (gene ASIP), a
gene known to affect coat color in dogs and other mammals. The link to hair growth is not
obvious but this gene is expressed during four to seven days of hair growth in mice (Wolff
et al. (2007)).

According to our analysis, IGF1 and P2RY1 are significantly interacting. All other pairs
of interacting SNPs involve at least one SNP for which we were not able to identify a closeby
candidate gene related to hair growth (see Table 3.3). IGF1 has a tyrosine kinase receptor
and P2RY1 is a G-protein coupled receptor. One possibility is that these receptors cross-talk
as has been shown previously for these types of receptors in order to control mitogenic signals
(Dikic and Blaukat (1999)). However, a functional assay would be necessary to establish that
any of the statistical interactions we found are also biologically meaningful.

We also considered all triplets of SNPs among the 20 preselected SNPs and tested for
4-way interaction. However, we did not find any evidence for interaction among the

(
20
3

)

triplets.
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3.4 Discussion

In this work, we proposed a Markov basis approach for detecting epistasis in genome-wide
association studies. The use of different Markov bases allows to easily test for different types
of interaction and epistasis involving two or more SNPs. These Markov bases need to be
computed only once and can be downloaded from our website¶ for the tests presented in this
work.

The use of an exact test is of particular relevance for disease mapping studies where
the contingency tables are often sparse. One example where there has been also functional
validation, is a deletion associated with Crohn’s disease McCarroll et al. (2008) This deletion
was found to have a population frequency of 0.07, and a frequency of 0.11 in the cases Manolio
et al. (2009). So within 400 controls and under Hardy-Weinberg equilibrium, we would expect
only 2 individuals to be homozygote for this deletion. This shows that also for a moderate
number of cases and controls the resulting tables for disease association studies are likely
to be sparse. The sparsity is even more pronounced for rare variants, defined as variants
with a MAF smaller than 0.005. Current genome wide association studies are still missing
these rare variants, but advances in sequencing technologies should allow to sequence these
variants and apporpriate statistical methods will then be necessary.

We tested our method in simulation studies and showed that it outperforms a stepwise
logistic regression approach and BEAM for the multiplicative interaction model. Logistic
regression has the advantage of a very short running time (3 seconds compared to 39 minutes
using our method for the analysis of one dataset with 10,000 SNPs and 400 cases and controls
not including the filtering step, which takes about 1 minute for both methods on an Intel
Core 2.2 GHz laptop with 2 Gb memory). However, especially for a minor allele frequency of
0.1, logistic regression performs worse than our method, even when simulating epistasis under
a multiplicative model, which should favor logistic regression. This difference arises because
our method approximates the exact p-value well for all sample sizes while the performance
of logistic regression increases with larger sample size. 400 cases and 400 controls are not
sufficient to get a good performance using logistic regression for a minor allele frequency of
0.1 and it is expected to do even worse for rare variants. Another advantage of our method
compared to logistic regression is that it is not geared towards testing for multiplicative
interaction only, but should be able to detect epistasis regardless of the interaction model
chosen. It would be interesting to compare these two methods on data sets generated by
other interaction models.

BEAM on the other hand, has the advantage of not needing to filter the large number
of SNPs first. However, it runs about 15 times slower than our method for our simulations
and has a very high false negative rate. The difference between our results and what the
authors of BEAM have found might be due to linkage disequilibrium in our data. BEAM
handles linkage disequilibrium with a first order Markov chain, which will be improved in
future versions (Yu Zhang, personal communication). But as of today, we conclude that this
method is impractical for whole genome association studies, since linkage disequilibrium is
present in most real datasets.

The limitation of our method is the need for a filtering step to reduce the number of

¶http://www.carolineuhler.com/epistasis.htm
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SNPs to a small subset. Especially if the marginal association of the interacting SNPs
with the disease is small, these SNPs might not be caught by the filter. However, in our
simulations using Fisher’s exact test as a filter seems to perform well. Another possibility
is to incorporate biological information such as existing pathways (Emily et al. (2009)) to
choose a subset of possibly interacting SNPs.

We demonstrated the potential of the proposed two-stage method in genome-wide as-
sociation studies by analyzing a hair length dataset consisting of 685 dogs and containing
40, 842 SNPs using the extended version of Fisher’s exact test. In this dataset, we found
a significant epistatic effect for four SNP pairs. These SNPs lie on different chromosomes,
reducing the risk of a false positive correlation due to linkage effects. The dataset includes
dogs from 65 distinct breeds. Although linkage disequilibrium has been shown to extend over
several megabases within breeds, linkage disquelibrium extends only over tens of kilobases
between breeds and drops faster than in human populations (Sutter et al. (2004), Karlsson
et al. (2007), Lindblad-Toh et al. (2005)), suggesting that it is possible to do fine-mapping
between breeds. These observations are consistent with two bottlenecks, the first associated
with the domestication from wolves and the second associated with the intense selection to
create the breeds. Other studies have successfully employed the extensive variation between
breeds to map genes affecting size and behavior (Jones et al. (2008); Cadieu et al. (2009)).
The validity of this approach rests on the assumption that the breeds used are random sam-
ples of unrelated breeds or that related breeds make up a small part of our sample (Jones
et al. (2008); Goddard and Hayes (2009)). This is rarely the case and false positive results
may therefore have arisen from population structure. A second independent dataset would
be useful to confirm our findings. Finally, a functional assay would be necessary to establish
if the interactions we found are also biologically meaningful.
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Appendix: Markov basis

The Markov basis corresponding to the no 3-way interaction model on a 3 × 3 × 2 table is
given below. The tables are reported as vectors

(n111, n211, n311, n121, n221, n321, n131, n231, n331, n112, n212, n312, n122, n222, n322, n132, n232, n332).

f1 = (0 0 0 1 0 -1 -1 0 1 0 0 0 -1 0 1 1 0 -1)
f2 = (0 0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1)
f3 = (1 0 -1 0 0 0 -1 0 1 -1 0 1 0 0 0 1 0 -1)
f4 = (0 1 -1 0 0 0 0 -1 1 0 -1 1 0 0 0 0 1 -1)
f5 = (0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0)
f6 = (1 -1 0 0 0 0 -1 1 0 -1 1 0 0 0 0 1 -1 0)
f7 = (1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0 0)
f8 = (1 0 -1 -1 0 1 0 0 0 -1 0 1 1 0 -1 0 0 0)
f9 = (0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0)
f10 = (0 1 -1 -1 0 1 1 -1 0 0 -1 1 1 0 -1 -1 1 0)
f11 = (1 0 -1 0 -1 1 -1 1 0 -1 0 1 0 1 -1 1 -1 0)
f12 = (-1 1 0 1 0 -1 0 -1 1 1 -1 0 -1 0 1 0 1 -1)
f13 = (1 -1 0 0 1 -1 -1 0 1 -1 1 0 0 -1 1 1 0 -1)
f14 = (1 0 -1 -1 1 0 0 -1 1 -1 0 1 1 -1 0 0 1 -1)
f15 = (0 1 -1 1 -1 0 -1 0 1 0 -1 1 -1 1 0 1 0 -1)



41

Chapter 4

Characterizing Neanderthal
admixture using the joint derived SFS
with humans

Genealogy. An account of one’s descent from an ancestor who did not particularly care to
trace his own. The Devil’s Dictionary, Ambrose Bierce, 1911.

4.1 Introduction

Neanderthal history Maybe more than any other member of the homo genus, the Ne-
anderthals fascinate. Much of it is probably owing to the first characterization of the Nean-
derthals as inferior to humans. They were always thought to be devoid of symbolic thinking,
some wild brutal form of human. For example, in 1864, Hugh Falconer, an eminent pale-
oanthropologist, attributed the Forbe’s Quarry Neanderthal cranium to “a very low type of
humanity - very low and savage, and of extreme antiquity” at the British Association for
the Advancement of Science meeting in Bath (Patou-Mathis, 2006). Even today, the word
“neanderthal” is used as an adjective to suggest a person that is uncivilized, unintelligent,
brutal, or even old-fashioned and conservative∗. The idea that modern humans effectively
replaced them while dispersing out of Africa has contributed to such mythology. It is perhaps
for this reason that the debate about whether the (inferior) Neanderthals admixed with the
(superior) humans continues to attract the attention and to fuel the imagination of a wide
public (Wade, 2010; Curry, 2010; Rincon, 2010; Finlayson, 2010; Dessibourg, 2010).

Neanderthals are believed to be the closest evolutionary relative of modern humans. But
how exactly the Neanderthals disappeared, and the nature of their relationship to modern
humans, remains a widely disputed topic. The first Neanderthal, a 2-3 year old child, was
found in Engis Cave, Belgium, in 1829-1830 but was not attributed to the Neanderthals until
much later. The type specimen, a skullcap, was discovered 20 years later in the Neander
Valley in 1856. Several fossils have been found in Eurasia since these first discoveries from
sites ranging from Europe to Siberia (see Figure 4.1).

∗

http://oxforddictionaries.com/view/entry/m en gb0550940#m en gb0550940
http://dictionary.cambridge.org/dictionary/british/neanderthal 2
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Figure 4.1: Range of Neanderthal fossils across Europe and Middle East. Figure provided
by Johannes Krause, (see Figure 1 of Krause et al. (2007)).

It is hard to get a precise picture of the extent to which Neanderthals and anatomically
modern humans coexisted or alternated in space and time. Indeed, authors do not always
agree, with lines of evidence stemming from both fossil remains and archaeological study.
According to Patou-Mathis (2006), the last Neanderthal fossils were found in Europe and
are of the order of 30,000 years old. The most recent fossil was discovered in the Vindija
cave, Croatia and is estimated to about 28,000 years (Smith et al. (1999) but see also Joris
and Street (2008)). In the Middle East on the other hand, the youngest known discovery
is found in Amud in a layer about 45,000 years old (e.g. Patou-Mathis (2006)). Industry
associated with Neanderthals is dated to between 46,000 and 100,000 years in the Tabun
cave (Israel) (e.g. Conroy (2005)).

Some authors believe that the first anatomically modern humans were in Europe as early
as 40,000 years (e.g. Patou-Mathis (2006)). If those dates are correct, Neanderthals and
anatomically modern humans co-inhabited in Europe for around 12,000 years.

In the Middle East, the coexistence seems to have lasted longer. Anatomically modern
humans predate Neanderthals according to the fossil record (Patou-Mathis (2006) and Con-
roy (2005)). At Qafzeh, dental samples believed to belong to anatomically modern humans
have been dated to 90,000 years (Conroy (2005) and citation therein). This would mean an
overlap of around 45,000 years.

The numbers differ by up to an order of magnitude between authors, but in most cases,
they all agree that Neanderthals and humans coexisted for at least 2,000 years in Europe,
and in the Middle East around 40,000 years ago (but see also Joris and Street (2008)). The
discrepancies between authors is due both to the difficulty of attributing fossils to a specific
lineage and also of dating the specimens.

Most paleoanthropologists agree that classic Neanderthals have unique features (Conroy,



CHAPTER 4. NEANDERTHAL ADMIXTURE 43

2005; Harvati et al., 2004), with the most often cited being the double arched bony browridge,
the high wide and voluminous nose, high rounded orbits, large front teeth and short limbs.
In favor of admixture, some authors have suggested certain remains to be hybrids between
modern humans and Neanderthals (Duarte et al. (1999) but see Tattersall and Schwartz
(1999)).

In the last decades, several teams have demonstrated that Neanderthals used sophisti-
cated tools (Eren et al., 2008), controlled fire (Albert et al., 2010; Roebroeks and Villa,
2011), buried their dead (Solecki, 1975) and made symbolic or ornamental objects (Zilhao
et al., 2010). These later studies have served to shed a more “human” light on Neanderthals.
Despite this wealth of anthropological knowledge however, there is insufficient evidence to
resolve the admixture question (see Herrera et al. (2009) for a review).

Evidence from genetic data The late 20th century has seen the emergence of sequencing
technologies that have boosted the production of genomic data. This development has had
a huge impact on the field of ancient DNA.

Thanks to those advances, the first short fragment of Neanderthal mtDNA was published
in 1997 (Krings et al., 1997). Several more fragments of Neanderthal DNA were published in
the following years (Krings et al., 1999; Ovchinnikov et al., 2000; Krings et al., 2000; Schmitz
et al., 2002; Serre et al., 2004; Lalueza-Fox et al., 2005; Orlando et al., 2006; Caramelli et al.,
2006; Lalueza-Fox et al., 2006; Krause et al., 2007) and in 2008 (Green et al., 2008), the
first complete mtDNA sequence was obtained. Finally in 2009, five more complete mtDNA
were sequenced (Briggs et al., 2009). All studies based on mtDNA have suggested that the
Neanderthals fall outside of human diversity. However, mtDNA is only a single locus, and
some have argued that a small amount of admixture could not be excluded. While Nordborg
(1998) concludes that one can only reject a model with random mating between Neanderthals
and modern humans, Serre et al. (2004) exclude an admixture proportion higher than 25%
and Blum and Rosenberg (2007) found an upper bound of 5% for the amount of admixture.
Those three studies are based on different mtDNA data, and assume different demographic
models. Others found no evidence for admixture. Indeed, Currat and Excoffier (2004) argue,
also based on mtDNA, that admixture may be lower than 0.1% if there is range expansion.

Prior to the sequencing of the Neanderthal genome, several studies used human (nuclear)
DNA and made inference about admixture proportions. Some made use of multiple loci. For
example Wall et al. (2009) use a simulation approach to get maximum likelihood estimates
for several demographic scenarios. In particular, they conclude that 14% admixture could
explain the data, and that a model without admixture could not fit the data significantly
better. Eswaran et al. (2005), using a simulation approach, conclude that up to 80% of
human loci may have been influenced by archaic admixture. But others, such as Fagundes
et al. (2007), also analyzing several loci from modern humans, find no sign of interbreeding.
Some specific loci exhibit patterns suggestive of an introgression event such as the tau MAPT
locus (Baker et al., 1999), or the microcephalin and ASPM gene (Evans et al. (2005), Mekel-
Bobrov et al. (2005) but see Currat et al. (2006)). In other words, similar to the fossil based
studies, genetic based studies often arrive at quite different conclusions.

Large quantities of Neanderthal nuclear genome were released in 2006 by Noonan et al.
(2006) and Green et al. (2006). Unfortunately, these studies were not able to answer the
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question unequivocally. In particular they produced conflicting results with respect to the
admixture question. The data of Noonan et al. (2006) is compatible with 0% to 39% of
admixture while the data of Green et al. (2006) is compatible with 81% to 100% of ad-
mixture, see Wall and Kim (2007). This discrepancy was probably due to some amount of
contamination in Green et al.’s dataset (Wall and Kim, 2007).

Last year, a draft of a complete Neanderthal genome was published (Green et al., 2010),
with evidence for admixture between Neanderthals and non-Africans being strongly argued
for. The conclusion is based on a statistic (D), that compares two human genomes to the
Neanderthal, using chimp as an outgroup. The authors show that the Neanderthal is closer to
non-Africans than to Africans. They measure around 1−4% admixture, assuming admixture
happened 50,000 to 80,000 years ago.

The goal of the current work is to estimate the time of admixture and the amount of
admixture under a simplistic demographic scenario with a single event of admixture at some
time, tadmix, in the past, and with f describing the admixture proportion. We perform
a re-analysis of the draft Neanderthal genome aligned to two Africans and two European
complete genomes. The use of additional human data should afford greater power to estimate
demographic parameters than the Dstat (Durand et al., 2011) used in Green et al. (2010).

In the Methods section (section 4.2), we first describe the derived SFS, followed by the
inference scheme and finally we describe the likelihood function. In the Results section
(section 4.3) we analyze the Neanderthal genome data with the high coverage 1,000 genome
trios, show the theoretical expectations of the spectrum with admixture, and estimate the
maximum likelihood parameters. We conclude with section 4.4, discussing several future
directions but also caveats.

Throughout this work, we will fix some demographic features to estimated values in
published articles. In particular we will follow closely Wall et al. (2009), in order to simplify
the problem. Note that this has a certain circularity since Wall et al. used also African
and non-African data to estimate their demographic parameters, and that those estimated
parameters depend in turn on the admixture proportion.

4.2 Method

4.2.1 Site frequency spectrum

The site frequency spectrum is a summary of single nucleotide polymorphism (SNP) data. It
contains information about past demographic or selection events in a population. Assuming
a sample of n chromosomes, we can denote by Xi the number of sites where the derived
allele is present in i copies among n. For example the number of sites per locus where the
derived allele is present in 1 copy (singletons) will be denoted X1, the number of sites where
the derived allele is present in 2 copies, X2 etc. We define the site frequency spectrum SFS
as the set of means over loci of X1, X2, ..., Xn−1, SFS = (E(X1), E(X2), ..., E(Xn−1)), i.e.
we have SFSi = E(Xi).

The higher the mutation rate the higher the value of E(Xi) for all i. One intuitive way to
see that is to think in terms of coalescent theory and of the tree that describes the sample (see
e.g. Wakeley (2008)). The SFSi is proportional to the length of branches with i descendants
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in a sample. If we assume an infinite sites model, then the number of mutations is going
to be thrown on the tree following a Poisson process with a rate proportional to the branch
lengths of the tree and to the rescaled mutation rate, θ. If we denote by µ the mutation
rate and Ne the effective population size, then we have θ = 4Neµ, the rescaled mutation
rate. The rescaled mutation rate is then a scaling factor for the SFS. For example, under
the standard model of constant population size and no selection, the SFS is defined by
SFSi = θ

i
(e.g. Griffiths (2003)).

This definition generalizes easily to M populations. In this case, we look at the number
of sites with i1 derived alleles in P1 among n1 chromosomes and i2 derived alleles in P2

among n2 chromosomes, that we can denote Xi1,i2 . Then the SFS is characterized by
SFSi1,i2 = E(Xi1,i2).

4.2.2 Theory for the derived SFS

Without admixture

In the absence of any admixture, Chen et al. (2007) published several results for the joint
SFS between two populations, P1 and P2. In particular they derived several results when
there is only one sample available in P1.

We denote by SFSder = (SFSi1=1,i2) = (SFSi1=1,1, SFSi1=1,2, ..., SFSi1=1,n2), respec-
tively SFSanc = (SFSi1=0,i2), the joint SFS between P1 and P2 when the one sample in
P1 has the derived (respectively ancestral) allele. We call those spectra the derived SFS
(SFSder) and the ancestral SFS (SFSanc).

Let us assume that the populations P1 and P2 diverged at time T generations in the past.
Then for the derived spectrum they obtained a very simple formula:

SFSi1=1,i2 =
θe−t(T )

n2 + 1
(4.2.1)

where 0 < i2 < n2 and the rescaled time t(T ) =
´ T

0
dt′

2N(t′)
. In other words, the joint derived

SFS is constant for all i2. This result is useful because it is robust to population size changes
in the two populations, i.e., the derived SFS will always be flat no matter the history of
the population size is. The only thing that changes is the expected number of sites for each
category.

The expression for SFSanc is more complex and we are not reproducing it here since we
are not going to use the SFSanc for inference. From now on we will focus upon the SFSder.

With admixture

In this paragraph, we follow Gutenkunst et al.’s notation. The effect of admixture on the
SFSder is not obvious. One way to get the expected values is to take a diffusion approach,
which is a continuous approximation to a Wright-Fisher population genetics model in discrete
generations (e.g. Durret (2010)). For two populations, we can denote by φ(x1, x2, t) the joint
density of derived allele at frequencies x1 and x2 at time t in P1 and P2. In order to find φ
for a particular demographic scenario without selection or migration between populations,
one can solve:
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∂

∂t
φ =

1

2

(
∂2

∂x2
1

x1(1− x1)

ν1

+
∂2

∂x2
2

x2(1− x2)

ν2

)
φ (4.2.2)

where νi = Ni
Nref

the relative effective size of population i with respect to a reference popula-

tion size Nref . We can pick Nref = Ne, the effective population size of the first population
for example. We will assume one admixture event. If the admixture event is from 1 → 2
forward in time, this corresponds to creating a population P3 made of a mixture of P1

and P2 and then removing P2. We denote by f the proportion of P3 coming from P1 and
by tadmix the time of admixture. We have the population creation φ(x1, x2, x3, tadmix) =
φ(x1, x2, tadmix)δ(x3 − [fx1 + (1 − f)x2]), where δ is the Dirac delta function. At the same

time, we remove the population φ(x1, x3, tadmix) =
´ 1

0
φ(x1, x2, x3, tadmix)dx2.

The joint density φ at present is obtained by solving equation 4.2.2 and intergating up to
tadmix, then transforming φ as mentioned above for the admixture event and finally solving
again equation 4.2.2 and integrating up to present. To get the joint SFS at present, tpres,
we integrate the density φ at time tpres over all possible frequencies. This allows to go from
population frequencies, to sample frequencies. Assuming a binomial sampling of the alleles
and n1 samples in P1 and n2 samples in P2, we have:

SFSi1,i2 =

ˆ 1

0

ˆ 1

0

(
n1

i1

)
xi11 (1− x1)n1−i1

(
n1

i2

)
xi22 (1− x2)n2−i2φ(x1, x2, tpres)dx1dx2.

The derived SFS, as introduced above, is

SFSder = SFSi1=1,i2 =

ˆ 1

0

ˆ 1

0

x1

(
n1

i2

)
xi22 (1− x2)n2−i2φ(x1, x2, tpres)dx1dx2.

Gutenkunst et al. (2009) implemented in ∂a∂i a method to numerically solve equation
4.2.2 and compute the joint SFS for up to three populations for an arbitrary number of
samples per population, and for an arbitrary set of demographic events. We will use their
method throughout and present results with v.1.5.2 of ∂a∂i.

4.2.3 Inferring demographic parameters from the SFSder

A likelihood approach

We will use ∂a∂i to find the maximum likelihood estimates (MLEs) for a particular de-
mographic scenario. The program computes the likelihood of the demographic parameters
given the observed SFS, under a particular demographic scenario. Since Gutenkunst et al.
found the likelihood calculation to be deterministic and numerically smooth, they use an
optimization algorithm to find the MLEs for the parameters.

We can denote Λ the parameters of the demographic scenario, SFSobs1,i2
the observed

derived SFS and SFS1,i2 = SFS1,i2(Λ) the expected derived SFS. If all the sites are inde-
pendent (i.e. if there is no linkage) each entry of the SFS is an independent Poisson variable.
Then the likelihood of the parameters for the two populations as discussed above is
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`(Λ) = log

(
n2−1∏

i2=1

e−SFS1,i2
(Λ)SFS1,i2(Λ)SFS

obs
1,i2

SFSobs1,i2
!

)
.

In this work, we want to estimate two parameters Λ = (f, tadmix), the admixture pro-
portion f and the time of admixture tadmix. To do so, we will compute the MLEs of those
parameters:

(fmle, tmleadmix) = argmax
f,tadmix

(`(Λ)).

Since the SNPs are linked in the data that we use (genome wide dataset), the likelihood
is a composite likelihood. As discussed in Wiuf (2006), composite likelihood estimators are
consistent estimators for a wide range of neutral coalescent models.

Interval of confidence (CI)

The MLEs are not normally distributed around the true value of the sample and we cannot
use the Fisher information for example to compute the confidence interval of the MLEs.
Moreover, as discussed below, standard likelihood ratio test statistics will not necessarily
follow a χ distribution even if the number of samples is high. We discuss below how we will
compute the confidence interval under these circumstances.

In order to compute confidence intervals, we could use a parametric approach and sim-
ulate data with recombination that mimics the real data, using for example ms (Hudson
(2002)). The problem with such an approach is, because we use genome wide data, that
it is hard to separate the data into unlinked loci. Instead, we follow the approach used in
Green et al. (2010) and use a nonparametric approach. That is, block jackknife (e.g. Kuen-
sch (1989)) to estimate the variance of the MLEs. We follow closely Green et al. (2010)’s
strategy. We cut the genomes in M = 100 blocks. We replicate the inference step a 100
times each time removing one block. That is, for a parameter λ ∈ Λ, we get 100 maximum
likelihood estimates λ−1, λ−2...λ−100 and denote λ̂J the mean of those estimates. To compute
the standard deviation of a parameter λ we can then use the following formula:

σλ̂ =

[
M − 1

M

M∑

i=1

(λ̂−i − λ̂J)2

]1/2

.

4.2.4 Demographic scenarios for early human evolution

Simple model

In this work, we investigate several very simplistic models of recent human evolution, hop-
ing that they capture the main features well enough to produce a reasonable estimate of
admixture proportion and time of admixture between Neanderthals and humans.

We will express time in two units: the (unlabeled) coalescent units, and the number
of years. The correspondence between the two is 0.1 = 50, 000[years]. Indeed we assume
a generation time of 25[years/generation], and a constant effective population size Nref =
Ne = 10, 000 for all populations. The coalescent time is the number of generations divided
by 2Ne.
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Figure 4.2: Simple model. Model with a population split and one admixture event.
The population size is fixed to Nref = 10, 000. The split time is fixed to tsplit = 0.8 =
400, 000[years]. The goal is to estimate the admixture time tadmix and the admixture pro-
portion f .

The first model we will consider, is also the simplest one. We assume that two populations
split at some time tsplit in the past and that there is a single event of admixture from
Neanderthals into humans going forward in time. The admixture happens at time tadmix and
the admixture proportion is f . Such a model is shown in Figure 4.2. In order to estimate
Λ = (tadmix, f) we will fix tsplit = 400, 000[years] following Wall et al. (2009). We refer to
this model as the simple model from now on.

Adding a bottleneck

The second model will be considered for the European population only. It follows closely
Wall et al. (2009) who, as others before (Schaffner et al., 2005; Voight et al., 2005), found
evidence for a bottleneck in Europeans. As before, the two populations split at tsplit, and
there is a single bottleneck in the human population with an event of admixture as above.
See Figure 4.3 for notation. These authors fix the split time between Neanderthals and
modern humans to tsplit = 0.8 = 400, 000[years]. They impose a bottleneck of fixed duration
of 1,000 years. They estimate the start of the bottleneck to tstartB = 0.072 = 36, 000[years]
and the strength of the bottleneck to 0.005 fold decrease, νB = NBottleneck

Nref
= 0.005. Note that

the rationale is that only the ratio of the bottleneck duration and the bottleneck strength
matters, so co-estimating those variables is hard because they are strongly correlated. Here
we set the bottleneck parameters to the fixed or estimated parameters in Wall et al. (2009),
i.e. we fix tstartB = 0.072, tdurB == 0.002, νB2 = 0.005 and, as before, we keep tsplit = 0.8. From
now on, we refer to this model as the bottleneck model.
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Figure 4.3: Bottleneck model. Simple model with a bottleneck event. The population
size is fixed to Nref = 10000. The times are fixed to tsplit = 0.8 = 400, 000[years], tBstart =
0.072 = 36, 000[years], tBdur = 1000[years] and the bottleneck parameter νB = 0.005. The
goal is to estimate the admixture time tadmix and the admixture proportion f .

Adding growth

The third model will be considered for the African population only. Indeed, Wall et al. (2009)
found evidence for growth in the African population but not the European population.
Others before them had found evidence of growth (Pluzhnikov et al., 2002; Adams and
Hudson, 2004). They assume that at a time tg the population started growing until it
reached a population 100 fold larger at present and that the growth happens in an exponential
manner. Similar to the other two models, we will fix the parameters they found for the growth
and estimate the admixture proportion and admixture time for the Africans. So we fix the
split time tsplit = 0.8 and for growth in the African population the parameters are fixed to
the MLEs of Wall et al. (2009), i.e., assuming the present day population is 100 times bigger
than the ancestral population, tg = 0.07 = 35, 000[years], (see Figure 4.4). From now on we
refer to this model as the growth model.

Comparing demographic models

Ideally, we would want to compare the different demographic models. For nested models,
one way is to do a likelihood ratio test (LRT). For proper likelihoods, the likelihood test
ratio statistics follows a χ2 distribution.

But for composite likelihoods, the distribution of the likelihood ratio is not known. In
some cases, it has been shown that a LRT is anti-conservative, rejecting the null model
more often than it should (Bustamante et al. (2001)). The intuition behind this result is
that linkage reduces the number of independent observations, increasing the variance. If
linkage is ignored, we underestimate variance for the site frequencies. This can lead to
falsely rejecting the null hypothesis, and hence render the test anti-conservative, in the cases
where the alternative hypothesis leads to an increase in variance as well.
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Figure 4.4: Growth model. Simple model with a growth event. The population size is
fixed to Nref = 10, 000. The times are fixed to tsplit = 0.8 = 400, 000[years] and tg = 0.07 =
35, 000[years] and the population size of YRI at present is assumed to be 100 times bigger
than the ancestral population. Moreover, we assume an exponential growth. Again, the goal
is to estimate the admixture time tadmix and the admixture proportion f .

One way to go around this is to compute the distribution of the test statistics by simulat-
ing under the null model and computing the LRT for each replicate. In our case, one would
need to know the how to adjacent sites are linked for the whole genome. More precisely one
would need to separate the genome into unlinked loci, and model some recombination within
locus. We will not attempt this here.

For non-nested models, the situation is similar. For proper likelihood one can compute the
Akaike Information Criterion (AIC) (Akaike, 1974). Models with small AIC are preferred.
The AIC is a difference between the maximum log-likelihood and the number of parameters.
Unfortunately, we do not know if the properties of the AIC remain valid for composite
likelihood and therefore do not attempt to use it.

To conclude, in this work, we will compare models only qualitatively, by comparing the
residuals between the best fit model and the data for example.

4.2.5 Effects of sequencing error on the Neanderthal genome

Since we can compute the expected spectra, we can also look at the effect of errors in the
DNA sequence. The goal is to see what is the qualitative effect of a certain amount of
error. Since the Neanderthal genome data we use in this work is 1-fold coverage (see below),
it is certainly incorrect to assume that the Neanderthal is errorless. We consider here the
simplest possible error: uniform probability of error on the Neanderthal sequence. Indeed,
the Neanderthal is likely to be damaged through deamination related to degradation of the
sample as well as sequencing error. Note that uniformity is a simplifying assumption since it
has been shown that the deamination is not uniform through the read and mostly cytosines
are affected, see for example Briggs et al. (2007).
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The effect of sequencing error is to wrongly attribute a site to the derived SFS instead of
the ancestral SFS and vice-versa. We denote SFSderε and SFSancε the derived and ancestral
SFS when error is taken into account, and ε the probability of error:

SFSancε = ε · SFSder + (1− ε) · SFSanc (4.2.3)

and
SFSderε = ε · SFSanc + (1− ε) · SFSder. (4.2.4)

4.2.6 Data

Neanderthal genome

We use the Neanderthal genome published in Green et al. (2010). We use the data from the
three bones found in the Vindija cave and labeled Vi33.16, Vi33.25 and Vi33.26. The bones
Vi33.16 and Vi33.26 were carbon dated to 38, 310 ± 2, 130[years] and 44, 450 ± 550[years]
respectively. The bone Vi33.25 was found in a layer older than the other two, but was
not carbon dated. The complete mtDNA genome for Vi33.16 and Vi33.25 were sequenced
Green et al. (2008); Briggs et al. (2009), and found to be different at 10 positions. The
bones Vi33.16 and Vi33.26 have indistinguishable mtDNA but the age of the bones and the
difference in nucleotide diversity between bones versus within bones support the hypothesis
that they are from two different individuals (Green et al., 2008). Therefore, it is likely that
the Neanderthal genome we use is a composite genome of three individuals.

We only use the autosomal chromosomes (the three Neanderthal individuals are thought
to be female, see Green et al. (2010)). We use a similar filter as in the original paper. We
keep only reads that have a mapping quality above 30, a base quality above 20 and a total
coverage less than six.

Trios of the 1,000 genome project

The analysis of the human samples of the current work could be done with various human
datasets of African or European origin. We choose to work with the data published by the
1,000 genome project, see Durbin et al. (2010). In particular we choose to work with the two
family trios. Each family is comprised of a daughter, the mother and the father. We use the
parents of each family, that is, we have for each population 4 chromosomes of two unrelated
individuals. The two populations are Utah residents with Northern and Western European
ancestry from the CEPH collection (CEU) and Yoruba, from Ibadan, Nigeria (YRI).

In the 1,000 genome project, the trios have the advantage of being very high coverage.
The mean mapped depth is 43.14 in CEU and 40.05 in YRI. We used the vcf files that were
made available through the website (( http://www.1000genomes.org/) and more specifically
the data released on October 2010†. The vcf file for each population includes only the sites
that are polymorphic when the individuals of the trios and the reference human sequence
are considered together.

†ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot data/release/2010 07/trio/SNPs/
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Figure 4.5: SFSs or total number of sites for the CEU and YRI population (right and left
respectively). In bubble pattern is the theoretical spectrum for four chromosomes under
a standard neutral model (∝ 1

i
where i is the number of derived alleles). In grey is the

observed spectrum. We see that the observed spectra agree closely with the neutral spectrum
especially for the YRI.

4.3 Results

4.3.1 SFS in CEU and YRI

Because of the high coverage in the trio data (more than 40 fold), we assume that the SNP
calling process is errorless. We limit ourselves to the sites in the vcf files and therefore we
exclude the non-polymorphic sites for both CEU and YRI population. We found 2,481,331
polymorphic sites for the CEU and 3,063,614 polymorphic sites for the YRI population.

Figure 4.5 gives the SFS for the parents of the CEU and YRI. From now on we will
refer to the CEU parents as CEU and the YRI parents as YRI. Encouragingly, the observed
SFSs agree closely with the standard neutral model.

4.3.2 Joint site frequency spectrum N×CEU and N×YRI

We filter the Neanderthal genome and keep sites that have a map quality above 30, a base
quality above 20 and a total coverage less than or equal to 6. Indeed, high coverage sites
are more likely to result from mapping artefacts. We are left with about 1.5 × 109 base
pairs. We then align the Neanderthal to the CEU dataset and the YRI dataset, lifting their
pre-existing alignment to to human reference genome.

We want to calculate the SFS of N×CEU and N×YRI. The Neanderthal genome is low
coverage (about 1 fold) and we verify that this is the case also for sites where the YRI or
CEU are polymorphic. We plot the coverage in Figure 4.6. The distribution of coverage is
very similar for the two populations, as expected. Because it is low coverage, it is hard to
get genotype information with confidence. Instead, we sample one read per Neanderthal, a
proxy for one Neanderthal chromosome. Damage and sequencing error are a serious problem
in this context. We do not try to address in the present work. We assume that the one
chromosome we sample is errorless. Initially, we ignore error in the Neanderthal sequence.
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Figure 4.6: Distribution of the coverage of the Neanderthal for sites polymorphic for CEU
on the left and polymorphic for YRI on the right. Note that more than 90% of the sites have
up to 3 fold coverage.

We build two spectra of size 1×3. The SFSder is shown in Figure 4.7.

4.3.3 Derived spectrum: expectations

We compute the numerical SFSder for different values of tadmix and f using ∂a∂i in order to
build some intuition of the effect of the different demographic events on the spectrum. The
parameter θ is a scaling factor and we fix it to θ = 1. We consider below that the admixture
has to have happened earlier than 45, 000 years to be in agreement with the archeological
record (see Introduction), i.e. at least approximately 0.09 = 45, 000[years] ago and more
recently than the split between the Neanderthal and human populations.

The human and Neanderthal samples do not have the same age. This should be, in
principle, taken into account. But since we have only one Neanderthal chromosome and
we consider only the segregating sites in humans, the age of the Neanderthal sample has
no impact on the observed spectrum for the demographic models considered. In fact, the
missing branch length only contributes to sites derived in Neanderthal but not polymorphic
in humans.

Note that it is unlikely that the admixture proportion is higher than 25% based on
mitochondrial data results (e.g. Nordborg (1998), Serre et al. (2004)). We plot various
spectra for a reasonable range for the parameters, i.e. 0 ≤ tadmix ≤ 0.4 and 0 ≤ f ≤ 0.2 in
the following subsections.

Simple model

The simple model is shown in Figure 4.2. The expected spectra are shown in Figure 4.8.
As expected, without admixture the SFSder is constant. The effect of having an admix-

ture event is an overall increase in the expected number of SNPs derived in the Neanderthal
and polymorphic in humans.

For higher f or smaller tadmix, the excess in singletons, doubletons or tripletons is higher.
The effect on f is quite intuitive, the higher f the more likely it is that the Neanderthal
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Figure 4.7: The SFSder for CEU and YRI for sites where the Neanderthal has a coverage
up to 6, a base quality of 20 and a map quality of 30. The spectrum is plotted for sites with
1, 2 or 3 derived alleles from left to right in each human population.
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Figure 4.8: Theoretical SFSs for the simple model shown in Figure 4.2 when different values
of the tadmix and f for θ = 1.
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SFSder  for bottleneck model for different  (f,tadmix)

Figure 4.9: Theoretical SFSs when the admixture happens before the bottleneck (0.072 <
tadmix < 0.8). In red is the excess of SNPs of the simple model, in orange is the overlap
between the simple model and the bottleneck model.

and the humans are in the same population before all four humans coalesce. The effect of
tadmix is a bit less intuitive perhaps. It is easier to think in terms of the singletons. The
older the time of admixture the more likely two humans will have coalesced by the time the
Neanderthal migrates into the human population, decreasing the number of singletons. At
the limit, tadmix = tsplit, the spectrum should be flat but with a lower constant (see equation
4.2.1).

Bottleneck model

The demographic model is shown in Figure 4.3. We compare the case with a bottleneck with
the case without. We looked separately at the case where the admixture happens before the
bottleneck (0.072 ≤ tadmix ≤ 0.4, Figure 4.9), during the bottleneck (0.07 ≤ tadmix ≤ 0.072,
Figure 4.10) or after the bottleneck (tadmix ≤ 0.07, Figure 4.11). The legend is as follows:
in orange, the overlap between the simple model and the bottleneck models, in red is the
excess of SNPs of the simple model.

As expected, if there is no admixture, the spectrum is constant but that constant is
different depending on the bottleneck. The overall effect is a loss of segregating sites. In
particular, if the admixture happens before the bottleneck (tadmix > tBstart) the excess of
singletons, doubletons and tripletons, due to the admixture are lost for the most part. If the
admixture happens after the bottleneck the effect is an overall decrease in segregating sites,
but the sites unique to the admixture remain. To match the observed CEU data for example,
the intuition is that either the admixture is fairly old with strong admixture or more recent
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Figure 4.10: Theoretical SFSs when the admixture happens during the bottleneck (0.070 <
tadmix < 0.072). In red is the excess of SNPs of the simple model, in orange is the overlap
between the simple model and the bottleneck model.
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Figure 4.11: Theoretical SFSs when the admixture happens after the bottleneck (0 <
tadmix < 0.070). In red is the excess of SNPs of the simple model, in orange is the overlap
between the simple model and the bottleneck model.
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Figure 4.12: Theoretical SFSs for growth model. In yellow is the excess of SNPs of the
growth model, in orange is the overlap between the simple model and the growth model.

with weaker admixture. In other words the timing of the bottleneck has an impact on when
the admixture occurred.

Growth model

The demographic model with growth is shown in Figure 4.4. The expected spectra are shown
in Figure 4.12. We compare the case with growth with the case without growth. The legend
is as follows: in orange the overlap between the simple and the growth model, in yellow is
excess of SNPs of the growth model.

The overall effect is an excess of singletons. In particular the effect is stronger if the
admixture happens just before the growth starts. This can be explained because the pop-
ulation size increases, slowing the rate of coalescence, leading to more singletons. But in
general, the spectra are similar to those observed without growth. If there is no admixture,
the spectrum remains flat, as expected by the theory, and there is very little effect of the
growth event if the admixture event is very recent or very old.

4.3.4 Derived spectrum: parameter estimates

Likelihood function

We plot here the likelihood function for each population for the different demographic sce-
narios. The likelihood was computed over a 50× 50 grid of tadmix and f values. These plots
are helpful in determining that there is only one maximum, and also in determining that
the optimization algorithms land on the maximum. We consider the different demographic
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Figure 4.13: Likelihood surface for the simple model for f ∈ (0, 0.2) and tadmix ∈ (0, 0.4) for
the CEU population.

scenarios separately and list the maxima found. We reserve the discussion of the actual
values to the next section where we run the optimization algorithm, and find values closer
to the actual maxima.

First we plot the results for the simple model. As seen in Figure 4.13 and 4.14 the
maxima are found for CEU at tadmix = 0.041 and f = 2.0% and for YRI at tadmix = 0.000
and f = 0.04%. Note that those times are not compatible with the archaelogical evidence
of overlap between modern humans and Neanderthals.

Then we plot the results for the bottleneck model. The likelihood surfaces are shown
in Figures 4.15, 4.16 and 4.18. We separate the cases where the admixture happens before,
during, or after the bottleneck to be able to find the global maximum. Indeed, we expect
a discontinuity. The maximum was found for the case where the admixture happens more
recently than the bottleneck, that is tadmix = 0.057 and f = 1.2%. Again, the time is not
compatible with the archaelogical record.

Finally we looked at the growth model. The likelihood surface is plotted in Figure 4.18.
The maxima for the sparse grid are found for tadmix = 0.0001 and f = 0.4%. Again, the
time is not compatible with the archaelogical record.

To conclude this section we note that for the simple model and the growth model, there
is a single maximum. On the other hand, for the bottleneck model there are local maxima
for the times of admixture before the bottleneck, during the bottleneck, and after the bot-
tleneck. This discontinuity suggests that the timing of bottleneck has a strong impact on
the parameter estimates, as mentioned above.
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Figure 4.14: Likelihood surface for the simple model for f ∈ (0, 0.2) and tadmix ∈ (0, 0.4) for
the YRI population.
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Figure 4.15: Likelihood surface for the bottleneck model if the admixture happens before
the bottleneck (0.072 ≤ tadmix ≤ 0.4) for the CEU population.
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Figure 4.16: Likelihood surface for the bottleneck model when the admixture happens during
the bottleneck (0.070 ≤ tadmix < 0.072) for the CEU population.
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Figure 4.17: Likelihood for the bottleneck model when the admixture happens after the
bottleneck (0 ≤ tadmix < 0.070) for the CEU population.
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Figure 4.18: Likelihood surface for growth model for f ∈ (0, 0.2) and tadmix ∈ (0, 0.4) for the
YRI population.

MLEs and confidence intervals for tadmix and f

In order to find the MLEs, we used the optimization algorithms that are implemented in
∂a∂i ‡. For the CEU results we used the Nelder-Mead simplex algorithm (Nelder and Mead,
1965). For the YRI population, we saw in the previous section that the optima are close to
the boundary of the parameter space. For most results, we used therefore the L-BFGS-B
bounded algorithm (Byrd et al., 1995; Zhu et al., 1997). In some cases, the algorithm did
not converge and we use the Nelder-Mead simplex algorithm instead.

We assume the parameters have values in the intervals f ∈ (0, 1) and tadmix ∈ (0.09, 0.8).
The time of admixture is constrained by archaelogical evidence and the population split
time. The confidence intervals were computed as described in section 4.2.3.

We plot the distribution of f−i and tadmix−i for each jackknife replicate in Figure 4.20
for each demographic model and population. The standard deviation of those distributions
allows to build a 95% confidence interval (also shown in Figure 4.20). All the MLEs estimates
and the standard deviation are given on Table 4.1. We also plot the spectra of each jackknife
replicates (see Figure 4.19). Each replicate consists of 99/100 of the original data.

The first thing to note is that the maxima are consistent with the surface of the previous
section, suggesting that the optimization algorithms converge to the right point.

We also see that the spectra for the jackknife replicates are very similar to the original
dataset. Consistently, we see that the distribution around the time of admixture is very
narrow, at the lower bound of the parameter range, i.e. 0.09. This is the case for YRI

‡relying on the fmin and the fmin bfgs methods of scipy (Jones et al., 2001b)
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Figure 4.19: The SFSder for each jackknife replicate is shown in orange and the SFSder for
the data is shown in black. Each spectrum is renormalized since the replicates have 99% of
the original dataset. We see very little variation between replicates; there are actually 100
lines for the jackknife replicates.

and CEU for all demographic models. The value of 0.09 is consistent with the plots of
the likelihood surface of the previous section. The maximum likelihood for the admixture
time depends on the lower bound of the parameter range. Therefore, those results suggest
that if those demographic models and the archaeological evidence are valid, the admixture
happened shortly before 45, 000[years] for both YRI and CEU.

For the CEU population, the admixture proportion’s 95% confidence interval is (2.3%, 3, 3%)
for the simple model and (6.5%, 10.7%) for the model with bottleneck. Both intervals do
not include the 0%. We can therefore conclude that, if the demographic model is realistic,
there is evidence of admixture between CEU and Neanderthals. Note that, the two intervals
do not overlap. The first is consistent with the conclusion of Green et al. (2010). The latter
study found f to be between 1% and 4%. The second estimate we get with the bottleneck
is closer to the estimate of Wall et al. (2009). These authors found evidence for admixture
of about 14%. The bottleneck model is directly inspired from this second study. Therefore
it is reasonable that we get closer estimates. In Wall et al. (2009), they also fix tadmix to a
higher value of 50, 000[years]. This explains in part the fact that we get a lower value and
we therefore conclude that our results for CEU are broadly consistent with previous studies.

For the YRI population we find the admixture proportion to be much lower, i.e. lower
than 1%, but the confidence interval does not include 0%. Indeed, the admixture proportion’s
95% confidence interval is (0.3%, 0.7%) for the simple demographic model and (0.3%, 0.6%)
for the model with growth. As for the CEU, we can conclude that there is evidence for
admixture between YRI and Neanderthals. This result was not directly discussed in Green
et al. (2010). Moreover, this demographic model was not directly tested by Wall et al. (2009),
and it is therefore hard to compare our results with theirs. In their paper, they assumed
the admixture happens within the non-African population only. We could perhaps reconcile
the two results by fixing a similar model with admixture with CEU only and migration
between YRI and CEU. In fact such a model should lead to evidence of admixture for both
CEU and YRI, depending on the migration rate, but a lower level with YRI (when the two
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Figure 4.20: Distribution of MLEs for each replicate of the jackknife procedure. Each estimate is
for a dataset for which a block was removed. In red is the maximum likelihood estimate for the
whole dataset and the interval is the 95% confidence interval (1.96σ−Λ).
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YRI fmle σfmle tmleadmix σtmleadmix
`max

simple model 0.52% 0.09% 0.090 (45000[years]) 0.000 -161.05
growth 0.46% 0.09% 0.090 (45000[years]) 0.000 -146.65

CEU fmle σfmle tmleadmix σtmleadmix
`max

simple model 2.8% 0.2% 0.090 (45000[years]) 0.000 -23.05
bottleneck 8.6% 1.1% 0.090 (45000[years]) 0.000 -190.60

Table 4.1: MLEs and maximum likelihood for input valuesf ∈ (0, 1) and tadmix ∈ (0.09, 0.8).

populations are considered separately). To test a model like that, one would need to build
the joint spectrum for all three populations, Neanderthals, YRI, and CEU. This would be
an interesting future work.

We now plot for each model the resulting expected spectra from the best fit models (see
Figure 4.21) and, the Anscombe residuals (see Figure 4.22) for each model. The latter are a
normalized difference between the data and the model.

We can compare the spectra qualitatively. We see that the expected spectra, the maxi-
mum likelihood values, and the residuals suggest that, for the YRI, the model with growth
is a better fit. It has a higher likelihood but also smaller residuals. Both overestimate the
middle frequency SNPs and underestimate the high frequency SNPs.

For the CEU, the model without the bottleneck is actually a better fit. The simple
demographic model for the CEU seems to provide a very good fit, while the bottleneck model
overestimates the middle frequency SNPs and underestimates the low and high frequency
SNPs. Both for the YRI and the CEU the two alternative models are not nested.

Validation: comparison with ms simulations

Another way to see qualitatively how the model fits the data is to simulate some new data
with the same demographic model using the MLEs. We can use ms (Hudson, 2002) to
simulate such data. We can then find the maximum likelihood for each simulation and
compare this distribution to the values for the observed data. If the model is a good fit
for the data, then the maximum likelihood of the observed data should not be smaller than
most simulation replicates.

Ideally, one would want to simulate data with linkage between sites. The effect of linkage
is to decrease the number of independent loci, i.e. to decrease the number of independent
observations. Since we do not try to assign a significance value, we will assume that there is
not linkage between sites.

We perform 400 simulations. We pick a θ value for each demographic scenario such that
there is, on average, about one SNP per independent locus. We simulate sequence data
so that the total number of polymorphic sites in CEU or YRI, where the Neanderthal is
derived, is the same for the simulations and the observed data. For the YRI population
there are about 400,000 such SNPs and for the CEU population about 330,000. For the
simple demographic scenario we have to simulate about 4,300,000 loci for the YRI and
about 3,200,000 for the CEU. For the demographic scenario with bottleneck, we simulate
about 3,400,000 loci for the CEU. And finally for the demographic scenario with growth in
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Figure 4.21: Comparison between the expected spectra from the models with the demo-
graphic models with the maximum likelihood estimates compared to the data.
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Figure 4.22: Ascombe residuals for the different demographic models for the CEU and the
YRI data.
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Figure 4.23: Spectra for the ms simulations. In orange the simulations and in black the
observed spectrum. On top the CEU population and at the bottom the YRI with the two
possible demographic scenarios for each.

YRI, we simulate about 4,200,000 loci. If we had modeled the right linkage, the number of
independent loci would have been smaller, therefore the variance of the distribution would
have been wider. Because of that, a confidence interval based on some simulations would be
too narrow.

The results are shown in Figures 4.23, 4.24 and 4.25. They are consistent with the previ-
ous section. That is, the simple model for the CEU is a reasonable fit but the other models
are not explaining the data very well. We see that first on the simulated spectra (Figure
4.23). Indeed, the observed spectra is within the range of simulated spectra for the simple
model for CEU only. Then, we also see that, looking at the maximum likelihood distribu-
tion. Although we cannot assign a significance value, the observed maximum likelihood for
the observed data is much smaller for all simulations. Finally, Figure 4.25 is a validation of
the method itself (i.e. a validation of ∂a∂i for our particular demographic models). In fact,
we recover the input parameters. On this Figure, we see that there is a strong correlation
between the parameters. This result is intuitive and we already observed it in section 4.3.3.

On the other hand, the variance is high and somehow inconsistent with the interval of
confidence we built with the non parametric jackknife method. This can already be expected
from the spectra from the ms simulations of Figure 4.23 that have a higher variance than the
spectra from the jackknife replicates in Figure 4.19. Indeed, the actual confidence interval
based on these simulations should be larger if we had modeled the right linkage. It is not
clear why this is the case and further work is necessary for both the jackknife replicates and
the ms simulations to try to reconcile the results.
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Figure 4.24: Distribution of the MLEs and `max for the ms simulations for each demographic
model and population (CEU at the top, YRI at the bottom). For all but the simple model
for CEU, the observed likelihood value is much smaller than the values of the ms simulations,
suggesting that those three models do not explain the data well.



CHAPTER 4. NEANDERTHAL ADMIXTURE 68

0.08 0.11 0.13
tadmix

0.024
0.026
0.028
0.030
0.032
0.034
0.036
0.038
0.040
0.042

f

0

50

100

150

200

250
tmleadmix data
tmleadmix simulations

0 20 40 60 80 100 120 140

fmle  data
fmle  simulations

ms simulations for CEU for simple model

0.08 0.10 0.12 0.15
tadmix

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f

0

50

100

150

200

250
tmleadmix data
tmleadmix simulations

0 50 100 150 200 250

fmle  data
fmle  simulations

ms simulations for CEU for bottleneck model

0.05 0.16 0.28 0.39
tadmix

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

f

0

50

100

150

200

250

300
tmleadmix data
tmleadmix simulations

0 50 100 150 200 250 300

fmle  data
fmle  simulations

ms simulations for YRI for simple model

0.05 0.18 0.32
tadmix

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

f

0

50

100

150

200

250

300
tmleadmix data
tmleadmix simulations

0 50 100 150 200 250 300

fmle  data
fmle  simulations

ms simulations for YRI for growth model

Figure 4.25: Distribution of the MLEs for the ms simulations for each demographic model
and population. At the top the results for the CEU population and at the bottom the results
for the YRI population. In all cases we observe a correlation between the two parameters.
Indeed, intuitively and as observed in the theoretical spectra (see e.g. Figure 4.8), one can
obtain similar results for high tadmix and f or low tadmix and f .



CHAPTER 4. NEANDERTHAL ADMIXTURE 69

4.3.5 Effect of sequencing error on f

First we plot the expectation for the spectra with or without error, assuming as above θ = 1,
different values of admixture proportion and time of admixture for the simple model. We
look at four error probabilities: ε = 0.01, 0.02, 0.1, 0.2. The graphs are shown in Figure 4.26
for error probabilities of 0.01 and 0.02 and in Figure 4.27 for error probabilities of 0.1 and
0.2. The effect of mislabelling the Neanderthal becomes very large for error of the order
of 10%. In all cases, we see an excess of all categories, with the excess being higher for
smaller frequency. We can therefore expect an overestimate of the admixture proportion (or
underestimate of admixture time).

We quantify the effect of sequencing error on f and tadmix separately. We look at the
simple model only.

First we fix tadmix = 0.09 and quantify the effect on f . Then, for several true values
of f , f truth ∈ {0, 0.02, 0.04, ..., 0.2}, we build the extected spectrum and infer f back. We
then compute the expected spectra SFSder, SFSanc. Assuming some amount of error ε, we
compute SFSderε and SFSancε . For each f truth we infer fmle using the resulting spectra as
input data.

The corresponding graph is in Figure 4.28. The effect is an overestimate of the admixture
proportion even for 1% or 2% error for all values of the truth, as could be expected from the
spectrum. What is maybe surprising is that there is a “saturation” effect. For high error
probabilities, the estimate is always about 0.2 for all values of the truth, that is, the effect
of the error dominates for all admixture proportion.

For the effect on tadmix we proceed similarly. We fix f = 0.04 and then compute the MLE
for tadmix assuming some amount of error ε.

The results are shown in Figure 4.29. As could be foreseen from the expected spectra,
the tadmix is underestimated if ignoring error, even for an error of the order of 1%. Again
there is a saturation effect, and the MLE for tadmix is 0 for all values of the truth when the
error is above 10%.

In conclusion, to get an accurate estimate of f and tadmix based on the derived SFS
one cannot ignore the effect of sequencing error. Moreover, if the error is above 10%, it is
unlikely we can actually recover the truth at all.

4.4 Conclusion, future work and caveats

The admixture question is relevant to better understand the history of Neanderthals them-
selves, but is also of importance to define modern humans. The question has been addressed
from several angles: archaeological, paleoanthropological and genetical. Interestingly, each
field carries opponents and proponents of the admixture question.

The sequencing of the Neanderthal genome has made it possible to directly compare
modern humans and Neanderthal on a large scale from a genetic perspective. But thus far,
it is safe to say that the findings raise as many questions as they answer (Hodgson et al.,
2010).

In this work we infer demographic parameters under a particular demographic scenario
related to the African Hybridization and Replacement Model described in Stringer (2002).



CHAPTER 4. NEANDERTHAL ADMIXTURE 70

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.4)

SFSder  for simple model with ε = 0.01 for different (f,tadmix )

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.2)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.00,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.05,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.10,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.15,0.4)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(0.20,0.4)

SFSder  for simple model with ε = 0.02 for different (f,tadmix )

Figure 4.26: Theoretical SFSderε . In orange is the overlap between spectra without error
and spectra with error. In red is the excess due to an error of ε = 0.01 above and ε = 0.02
below.
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Figure 4.27: Theoretical SFSderε . In orange is the overlap between spectra without error and
spectra with error. In red is the excess due to an error of ε = 0.1 above and ε = 0.2 below.
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Figure 4.28: Effect of sequencing error on the admixture proportion estimate. On the x-axis
the true f and on the y-axis the estimate using ∂a∂i and an exhaustive search for f values
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the true tadmix and on the y-axis the estimate using ∂a∂i and an exhaustive search for tadmix
values between 0 and 1.
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We do not try to investigate other demographic scenarios that could explain the data (e.g.
substructure within Africa (Green et al., 2010). It is therefore important to remain cautious
when interpreting our results.

We show that the SFS is a powerful tool to estimate admixture time and admixture
proportion for a recent event of admixture. Indeed, the method proposed provides estimates
with narrow confidence intervals, even when considering the SFS for four chromosomes
only. Note that the method is not new (Gutenkunst et al., 2009), only the application to
that particular problem is new.

Assuming that the demographic models are close to reality, we also show evidence for
admixture between Neanderthals and Europeans as shown before (e.g. Wall et al. (2009);
Green et al. (2010)). We also estimate, to our knowledge for the first time, the age of
admixture between Neanderthals and Europeans to about 45,000 years. The amount of
admixture was found to be sensitive to the demographic model and ranges between 2% and
11% for the models considered.

We also show evidence for some admixture between Neanderthals and Africans. This
result is not obviously consistent with the archaeological record and with past studies. It
could be due however to an incomplete demographic model that does not consider Europeans
and Africans simultaneously . In fact, it might be that the effect we observe is not due to
admixture with Africans but rather to migration between Africans and Europeans after the
Neanderthal-European admixture.

This study is a first step into using the joint SFS to estimate parameters of early modern
human evolution. Several aspects of the data have been ignored in order to obtain this result.
We discuss now several of those aspects and also provide some ideas on how to take them
into account for future work.

Two aspects typical of concern when studying ancient DNA are contamination and dam-
age (e.g. Hofreiter et al. (2001)). Both of them may have an impact on the demographic
estimates. Damage should have a very similar effect to sequencing error, except that it
would affect preferentially certain nucleotides. Contamination on the other hand should be
investigated separately and would have an effect that would depend on the contaminants.
One way to deal with all three aspects, i.e. sequencing error, damage and contamination, is
to build a probabilistic model including all three.

Another aspect is the choice of demographic models and the parameters of those models
- a particularly important point given the sensitivity of the estimated admixture proportion
on the underlying model. Thus, those demographic models have of course an influence on
the parameter estimates. Our estimates depend heavily on archaelogical evidence and on
Wall et al.’s estimates. Although the last Neanderthal in Middle East was found around
45,000 years, maybe Neanderthals and modern humans overlapped until later. Therefore
our choice to constrain the time of admixture to be older than 45,000 years is disputable.
We also demonstrate that the timing of the bottleneck will have an effect on the admixture
time in Europeans. On the other hand, the results for Africans seems to be robust to adding
a growth event. Ideally one would want to estimate all parameters, including the time of the
bottleneck, to get a demographic estimate. The problem is that the more parameters added,
the higher the variance. For only four chromosomes, it is unlikely that we are able to estimate
many parameters with confidence. There are several promising directions to increase power.
The first is to build the joint spectrum for the data we use here. The second is to add
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additional human genomes. Moreover, we decided to work with only one chromosome for
the Neanderthal, though roughly half of the sites of interest are covered more than once.
Potentially we could infer the genotype at each site and work with two chromosomes for the
Neanderthal.

Here, we present the results of the derived SFS. We therefore completely ignore part
of the data, i.e. the ancestral SFS. This was by choice, given that the ancestral SFS
depends on the population histories even without admixture, and is therefore less robust
to misspecification of the demographic events. In the future, while we explore other demo-
graphic scenarios, it would be of interest to include the results of the ancestral SFS as it
also contains information about the admixture event.

One point that remains quite weak in this work are the estimates of the uncertainty on
the parameters. As shown, the parametric and non parametric methods produce different
results. The two procedures are quite different. The ms simulations model the randomness
of the coalescent process while the jackknife simulates the randomness of sampling from a
given data distribution. A first direction for future work would be to assess the robustness
of the standard deviation estimates depending on the block size of the jackknife. A second
direction would be to correctly model the linkage between sites in order to run parametric
simulations. This should allow for the calculation of LRTs for the various nested models.

Finally, although the SFS has proven to be quite powerful to test hypotheses in evo-
lutionary biology, it is still a summary of the data and in particular does not contain any
information about linkage. It would be beneficial to construct a method that would allow for
the joint consideration of linkage among sites. We believe that such a method would afford
considerably improved power.
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Chapter 5

A likelihood method for jointly
estimating the selection coefficient
and the allele age for time serial data

Modern population genetics has progressed enormously from the simple one-locus, two-allele
models of Fisher, Haldane, and Wright in the early 1930s. The Origins of Theoretical
Population Genetics, William B. Provine, 2001.

5.1 Introduction

Time series analysis is widespread in several fields, such as economics (e.g. Hamilton (1994)).
The related statistical models deal with a time ordered sequence of observations. Such obser-
vations are prevalent in several areas of biology as well. But until recently, time molecular
series data was only available for time spanning a few generations in higher organisms.
Therefore, in the context of population genetics, time serial data was mostly limited to viral
evolution or experimental evolution for samples taken at time intervals of several coalescent
units (e.g. Wichman et al. (2005); Bollback and Huelsenbeck (2007); Nelson and Holmes
(2007); Gresham et al. (2008) ).

With recent advances in DNA sequencing and DNA preparation techniques, the study
of extinct and long dead organisms is now entering a new era. Previously limited to short
segments of mitochondrial DNA, whole nuclear genomes are now available from several
extinct species, thus providing new insights into deep evolutionary history (e.g. Rasmussen
et al. (2010); Reich et al. (2010)). Moreover, it is now possible to target specific DNA
regions in ancient organisms (e.g. Lalueza-Fox et al. (2007); Ludwig et al. (2009); Rusk
(2009)). Therefore, time serial data will become increasingly available for a whole range of
organisms allowing one to test evolutionary questions using not only present day samples,
but also samples from extinct populations.

Theory to describe the temporal change in allele frequency has existed since the advent of
population genetics (e.g. Fisher (1922); Wright (1931)). Although not very common, several
statistical methods and estimators to deal with time serial data have been developed. For
example, several methods to estimate the change in population size have been published
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(e.g. Waples (1989); Williamson and Slatkin (1999); Anderson et al. (2000); Drummond
and Rambaut (2007) ). More recently, in 2008, Bollback et al. developed a method to
co-estimate the effective population size, Ne, and the selection coefficient, s, from temporal
allele frequency data. They model the evolution of the allele frequency of a di-allelic locus
with a diffusion process that approximates a Wright-Fisher population genetic model (WF).
They assume the locus is under constant natural selection that acts on diploid individuals.

Our work is a natural extension to Bollback et al.’s method to allow for the estimation of
the allele age, t0, as well. The age of an allele is the time since the mutation event. Allele age
is an omnipresent parameter in population genetics and it is closely linked to the selection
coefficient (see Slatkin and Rannala (2000) for a review). Bollback et al. assume that at
the first time of sampling the population allele frequency is uniformly distributed. It follows
from this assumption that even if the allele was not sampled at the oldest sampling time, it
had to be present in the population. In this work, we would like to co-estimate s, Ne and t0
by computing the likelihood of the data given the parameters.

In section 5.2.1 we explain how we approximate the WF model with a one step process.
We then discuss the numerical details of the implementation in sections 5.2.2 and 5.3.1.We
show how our method performs based on simulations in sections 5.2.3 and 5.3.2. To conclude,
we analyze a dataset of horses for the ASIP locus for samples dating from the Pleistocene
up to the present in sections5.2.4 and 5.3.3.

5.2 Materials and Methods

5.2.1 Theory

We assume that there is a single, panmictic population evolving according to a WF pop-
ulation genetic model. Under this model, the frequency of an allele A is a homogeneous
discrete-time Markov chain. We denote the Markov chain describing the frequency of the
allele A through time by Xt. We assume that selection is constant from the time the allele
arose up to present. The allele under selection arises only once and there is no recurrent
mutation. In other words, the only evolutionary forces acting on that allele are genetic drift
and selection.

Selection is modeled as acting on diploid individuals. If we denote the two alleles by A
and a, we can choose the genotypic fitness to be wAA = 1 + s, wAa = 1 + sh and waa = 1
where s is the selection coefficient and h is the dominance coefficient (s > −1 and h ∈ [0, 1],
see e.g. Ewens (2004)). If Ne is the effective population size, the states of Xt are the
allelic frequencies that we can also write with respect to the population size xj = j

2Ne
for

0 ≤ j ≤ 2Ne. Therefore the state space is {0, 1
2Ne

, ..., 2Ne−1
2Ne

, 1}. We define the rescaled
selection coefficient γ = 2Nes.

We would like to compute the likelihood of the allele age t0, the rescaled selection co-
efficient γ and the effective population size Ne. To simplify the notation, let us write
θ ≡ (γ, Ne, t0) for the parameters of interest. Assume we have samples from m distinct
sampling time points. We suppose that M = (n1, n2, . . . , nm) chromosomes were collected,
among which I = (i1, i2, . . . , im) are of the A type and that the chromosomes where drawn
at times T = (t1, t2, . . . , tm), where time is measured in generations with tk−1 < tk (see
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Figure 5.1: Notation used throughout the text. The chromosomes M = (n1, n2, . . . , nm)
are sampled at times T = (t1, t2, . . . , tm) and there are I = (i1, i2, . . . , im) A alleles at each
sampling time.

Figure 5.1). Then the likelihood function of the parameters, conditioning implicitly on M
and h, is `(θ) = p(i1, . . . , im|θ, T ).

To compute the likelihood, we can condition and sum over all the population allelic
frequencies, xj1 , . . . , xjm , at each sampling time t1, t2, . . . , tm. We can then rewrite the
likelihood:

`(θ) =
∑

j1

. . .
∑

jm

p(i1, . . . , im|θ, T, xj1 , xj2 , . . . , xjm)p(xj1 , xj2 . . . , xjm|θ, T ). (5.2.1)

Conditional on the population allelic frequencies, the number of A alleles ij at each sampling
time are independent of one other. The right side of the summation of equation 5.2.1 becomes

p(i1, . . . , im|θ, T, xj1 , xj2 , . . . , xjm) = p(i1|xj1) . . . p(im|xjm). (5.2.2)

In the WF model the population is large and panmictic, therefore we can assume that we
sample the chromosomes with replacement, for k ∈ {0, ..,m} can be written as:

p(ik|xjk) =

(
nk
ik

)
xikjk(1− xjk)

nk−ik . (5.2.3)

Since Xt is a Markov chain we have that the left side of equation 5.2.1 as:

p(xj1 , xj2 , . . . , xjm |θ, T ) = p(xjm|xjm−1 , θ, T )p(xjm−1 |xjm−2 , θ, T ) . . . p(xj1|xj0 , θ, T ),
(5.2.4)

where xj0 is the frequency of the allele when it first arose in the population, i.e. xj0 = 1
2Ne

.
We can rewrite the transition probabilities of Xt p(xjk |xjk−1

, θ, T ) = ptk−tk−1
(xjk−1

, xjk),
conditioning implicitely on θ and T . By substituting equation 5.2.4 and 5.2.3 into 5.2.1 we
get:



CHAPTER 5. ANCIENT SELECTION 78

`(θ) = p(i1, . . . , im|θ, T ) =
2Ne∑

jm=0

p(im|
jm

2Ne

)
2Ne∑

jm−1=0

ptm−tm−1(
jm−1

2Ne

,
jm

2Ne

) · · ·

p(i2|
j2

2Ne

)
2Ne∑

j1=0

pt2−t1(
j1

2Ne

,
j2

2Ne

) ·

p(i1|
j1

2Ne

)pt1−t0(
1

2Ne

,
j1

2Ne

). (5.2.5)

The solution for the transition probabilities for the non-neutral case of the WF model
is elaborate (Ewens (2004) and citations therein). But if we rescale the time by 2Ne, the
Markov chain, Xt, can be approximated by a diffusion process (“WF diffusion process”), Yτ
(see e.g. (Durrett, 2008)). Time is now in units of 2Ne generations and is continuous and we
replace T by T = (τ1, . . . , τm) where τi = ti

2Ne
. The state space is also continuous with states

denoted by y ∈ [0, 1]. This holds in the limit of large Ne, where X[τ2Ne] ' Yτ . The transition
probabilities of the diffusion process are denoted p(yk|yk−1, θ, T ) = pτk−τk−1

(yk−1, yk). In this
work we approximate the diffusion process itself by a one step process that we denote by Zτ
(see e.g. Van Kampen (1992)). A one step process is a continuous-time Markov chain (i.e.
discrete in space and continuous in time) where jumps are only allowed between two states
that are adjacent to each other. As before, the states of the process Zτ are the population
allelic frequencies that we denote by {z0, z1, . . . , zH−1}, where H is an integer. The states
are chosen such that z0 and zH−1 are respectively the 0 and 1 allelic frequencies, and they
are absorbing states since there is no recurrent mutation. The other states are chosen such
that 0 < zk < 1 and zk−1 < zk for 0 < k < H − 1. The infinitesimal generator Q of such a
process is a tridiagonal H ×H matrix. By denoting βi (respectively δi) the rate of jumping
to the right (respectively the left) of state i, we have that:

Q =




0 . . . 0
δ1 η1 β1 0

0
. . . . . . . . . 0

...
...

0 δk ηk βk 0
... 0

. . . . . . . . . 0
0 δH−2 ηH−2 βH−2

0 . . . 0 0




(5.2.6)

where ηk = −(βk + δk). The transition probability between two states zjk−1
and zjk of the

process is pτk−τk−1
(zjk−1

, zjk) = (exp(Q(τk+1 − τk)))jk−1,jk
. With the appropriate choice of βi

and δi (see Appendix A), one can show that for large H, Zτ ' Yτ . In particular βi and δi
will be functions of zj, zj−1, zj+1, γ and h. Note that Yτ is a continuous variable whereas Zτ
is discrete. Therefore, choosing yk−1 = zjk−1

and yk = zjk /∈ {0, 1} we have that:
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pτk−τk−1
(yk−1, yk) w

pτk−τk−1
(zjk−1

, zjk)(
zjk+1−zjk−1

2

) =
(exp(Q(τk − τk−1)))jk−1,jk(

zjk+1−zjk−1

2

) (5.2.7)

where the denominator is necessary since Yτ has a continuous state space and Zτ has a
discrete state space. We can rewrite the likelihood described in equation 5.2.5 by replacing
the original process Xt by the one step process Zτ . We then have:

`(θ) = p(i1, . . . , im|θ, T ) =
H−1∑

jm=0

p(im|zjm)
H−1∑

jm−1=0

pτm−τm−1(zjm−1 , zjm) · · ·

p(i2|zj2)
H−1∑

j1=0

pτ2−τ1(zj1 , zj2) ·

p(i1|zj1)pτ1−τ0(
1

2Ne

, zj1). (5.2.8)

where p(ik|zjk) =

(
nk
ik

)
zikjk(1− zjk)nk−ik from equation 5.2.3.

In the case of experimental evolution this unconditional process should be realistic since
in principle one might want to estimate the selection coefficient for any locus. We will now
consider one special case of what is presented above, motivated by ancient DNA data. We
will assume that the allele is segregating at the last sampling time (i.e., the process is never
reaching the states 0 or 1). This case corresponds to what we think is a realistic scenario
for how ancient DNA data would be collected, where presumably the locus of interest is
polymorphic at present. Indeed, only such loci would be selected for inference.

We can rewrite the likelihood as follows:

`C(θ) = p(i1, . . . , im|θ, T , zjm /∈ {0, 1}) =
p(i1, . . . , im, zjm /∈ {0, 1}|θ, T )∑H−2

jm=1 pτm−τ0(
1

2Ne
, zjm)

(5.2.9)

where

p(i1, . . . , im, zjm /∈ {0, 1}|θ, T ) =
H−2∑

jm=1

p(im|zjm)
H−2∑

jm−1=1

pτm−τm−1(zjm−1 , zjm) · · ·

p(i2|zj2)
H−2∑

j1=0

pτ2−τ1(zj1 , zj2) ·

p(i1|zj1)pτ1−τ0(
1

2Ne

, zj1). (5.2.10)
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We can consider the subprocess ZC
τ defined on the reduced state space {z1, . . . , zH−2} ⊂

{z0, z1 . . . zH−2, zH−1}. The infinitesimal generator qC of such a process is the matrix Q
without the first and last rows and columns, i.e.,:

qC =




η1 β1 0 . . . 0
δ2 η2 β2 0

0
. . . . . . . . . 0

...
0 δk ηk βk 0

...
. . . . . . . . . . . . 0

0 δH−3 ηH−3 βH−3

0 . . . 0 δH−2 ηH−2




. (5.2.11)

Denoting pCτk−τk−1
(zjk−1

, zjk) the transition probabilities of this subprocess we have that

pτk−τk−1
(zjk−1

, zjk) = pCτk−τk−1
(zjk−1

, zjk) for ∀ jk−1, jk /∈ {0, H − 1} (see appendix B for more
details).

Finally in order to compute the likelihood of equations 5.2.8 and 5.2.9, the only difficulty
is to compute the matrix exponentiation eQτ and eq

Cτ , respectively.

5.2.2 Numerics

We evaluate numerically the matrix exponentiation. The advantage of the current approach
compared to Bollback et al.’s is that we do not need to do a numerical integration step since
the state space is already finite. The description of the matrix exponentiation is given in
appendix B.

Although asymptotically the one step process is equivalent to the WF model, since the
state space of Zτ has a finite number of states, the accuracy of the approximation will depend
on the choice of the states, or what we call from now on “the grid”. We investigate three
grids strongly inspired by Gutenkunst et al. (2009). The first one is a uniform grid with a
point added at 1

2Ne
. The second and third grid are a “quadratic grid” and an “exponential

grid”. The last two grids were chosen to be refined around the boundaries such that the
distance between adjacent points changes smoothly. The details for the grids are given in
Appendix B. All three grids have a point at 1

2Ne
.

The likelihood function is complex. We were not able to compute the maximum of
the function analytically. Therefore, in order to find the maximum we first computed the
likelihood over a large range of parameters. We verified that there is a single maximum
for each time interval defined by adjacent sampling times, i.e., if t0 < t1, the time intervals
are (−∞, t0), (t1, t2),...,(tm−1, tm), and that the likelihood surface is smooth. We used the
SciPy (Jones et al., 2001a) implementation of the Nelder-Mead simplex algorithm (Nelder
and Mead 1965) to find the maximum for each time interval.

Our implementation is written in Python and C++ making use of Numpy (Oliphant,
2006), SciPy and mpack (Nakata, 2010) libraries for computations and of the Matplotlib
library (Hunter, 2007) for plotting.
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5.2.3 Simulations

In order to test our model, we simulate several datasets with the WF model forward in time.
Simulating with the WF model can be time consuming if the population size is large, so
we picked a small population size (Ne = 500). But in principle the conclusions hold for
higher population size. We then infer the maximum likelihood estimates (MLEs) using our
one step method. We use two different sampling schemes. The first one is similar to the
real dataset we analyze below, i.e., 6 sampling times each with 50 chromosomes. And a
second one corresponding to having twice as many sampling times with half the number
of chromosomes, i.e., 12 sampling times and 25 chromosomes. We searched for the MLEs
across a finite domain, i.e., Ne ∈ [100, 1000], t0 ∈ [−3000, 0], and γ ∈ [−200, 200]. We can
finally assess the accuracy of our estimator and compare the sampling schemes by looking
at the bias of the estimates and the root mean square error (RMSE).

5.2.4 Real data

In 2009, Ludwig et al. (2009) sequenced several loci encoding coat color in horses. Each
locus had been shown to be linked with a color phenotype in present day horses. In other
words, the phenotype associated with each locus is segregating in present populations. We
re-analyze in this work one of the loci encoding for the agouti-signaling-protein (ASIP), that
controls the distribution of the black pigment (Rieder et al. (2001)). The hypothesis is that
at the beginning of domestication, some coat colors in horse were positively selected for.

The samples sequenced were obtained from Siberia, Middle and Eastern Europe, China
and the Iberian Peninsula. As in Ludwig et al. (2009) we grouped the samples into six
sampling times, t1 ' −20000, t2 ' −13100, t3 ' −37000, t4 ' −2800, t5 ' −1100 and
t6 ' −500 where the unit is years BC. We assumed that the generation time of horses is 5
years, following Ludwig et al. (2009). The wild type horses are presumed to have been of
bay color. The mutation of interest is recessive, since only horses homozygous for the ASIP
locus will be black. So, in this case h = 0.

To compute a possible range for the population sizes we use data from Cieslak et al.
(2010). They sequenced part of the control region of the mtDNA for 78 samples that are
part of Ludwig et al. (2009)’s dataset. The control region of the mtDNA is a non coding
region. One way to compute the population size Ne is to compute the diversity π of the
samples. Then, assuming the region is neutral and ignoring hitchhiking effects due to nearby
selected sites, we use the relationship that relates the diversity of a sample to the population
size, π = 2Neµ⇒ Ne = π

2µ
, where µ is the mutation rate per base pair per generation. To get

an estimate of the mean and standard error of π of the mtDNA sample, we use the maximum
likelihood method implemented in MEGA (Tamura K et al., 2011) with default parameters.
The standard error for the diversity was computed performing 1000 bootstraps. We use
Jazin et al. (1998)’s estimate for the mutation rate (i.e., µ ∈ (3.0 · 10−6, 4.4 · 10−5)). Those
authors used human families to get direct estimates of the mutation rate for mtDNA control
region for a single generation. Although the mutation rate is an important parameter, we
do not have direct estimate in horses and we have to rely on results for other species . To
get conservative upper lower bounds for Ne we use the 95% confidence interval (CI) bounds
of the mutation rate and the diversity. If the CIs for µ and π are denoted (µlow, µup) and
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Figure 5.2: Likelihood for the neutral case for several values of Ne and t0. The likelihood is
for two samples taken at times −200 and 0 generations of size M = (4, 4) and with I = (1, 3)
derived alleles. On the left (right), we fix Ne (respectively t0) to several values and plot the
likelihood versus t0 (respectively Ne).

(πlow, πup) respectively, we defined Nelow = πlow
2µup

and Neup = πup
2µlow

.

In order to find the MLEs we use a domain defined by Ne ∈ [200, 5000], t0 ∈ [−10000, 0],
and γ ∈ [−200, 200] for the parameters. We fix H = 400 for this computation.

For the CIs, there exist several asymptotic results that apply for maximum likelihood,
especially for a time serial Markov chain. But here, the sample sizes are generally small,
therefore we chose to compute the CIs with a parametric bootstrap approach.

Note that several assumptions of our model are violated with this dataset, such as con-
stant population size, potentially random mating (since the samples are taken from all around
the world), but also, the MC1R locus, encoding a melanocortin receptor and related to the
black pigment production, is known to have an epistatic interaction with ASIP (Rieder
et al.). Nevertheless we decided to analyze these data to be able to compare those with the
results obtained with Bollback et al.’s method on the same dataset.

5.3 Results and Discussion

5.3.1 Numerics

In order to validate the method we compared several known analytical results for the WF
model with the one step process. For the neutral case, it is possible to compute the likelihood
since the transition probabilities are known for the diffusion process (see e.g. Ewens (2004)).
We plot the results in Figure 5.2 for a quadratic grid of size 100 for two samples of size
M = (4, 4) and number of A alleles I = (1, 3), sampled at times T = (−200, 0) for several
values of Ne and t0. The plots suggest that even for a grid of size 100 the one step process
is a very good approximation of the diffusion process.
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Figure 5.3: Relative error (RE) for the three grids discussed in 5.3.1 for the likelihood of 2
samples taken at times -3000 and 0, with M = (4, 4). The parameter H describes the size of
the grid. The y-axis is in logarithmic scale. In this example, the one step process converges
towards the diffusion process faster when using the quadratic grid rather than the other two
grids.

We then compare the relative error between the diffusion and the one step process and
demonstrate that, when we increase the grid size the one step process converges towards the
diffusion process. The results for a particular choice of parameters is shown in Figure 5.3
for the three grids discussed in 5.3.1. First we note that the one step process does converge
as expected with increasing grid size. In this example, the convergence is faster for the
quadratic grid. We looked at several combinations of parameters, and we observe that the
quadratic grid and the exponential grid perform better than the uniform grid in general but
that the ordering between the other two grids depends on the parameters. Indeed, if the
allele age is close to the first sampling time a grid more refined around the frequency 1

2Ne
performs better. In the applications below we will use a quadratic grid of size between 100
and 400.

5.3.2 Simulations

We picked a population size of Ne = 500 and set the allele age to t0 = −1400. We fix the
selection coefficient to seven potential values: γ ∈ {−10,−5, 0, 5, 10, 15, 20}.

First, we fix the sampling times to T = (−1000,−800,−600,−400,−200, 0) generations
and sample 50 chromosomes at each time point. Then we look at a scheme where the samples
are taken every 100 generations from -1100 up to 0 (i.e. 12 samples). At each sampling time
we sample 25 chromosomes. The intent is to quantify whether it is better to sample more
chromosomes at fewer time points, or the opposite.

The boxplot results for these simulations are shown on Figure 5.4. They are standard



CHAPTER 5. ANCIENT SELECTION 84

boxplots showing the five point summary (the minimum, the first quartile, the median, the
third quartile, and the maximum). Then we plot the bias and the RMSE on Figure 5.5 for
both schemes.

For the population size, the MLEs span all the potential range of Ne values, but the
bulk of the results exclude very low population sizes. This suggests nevertheless that it
is hard to estimate Ne with our method, at least with a precision higher than one order of
magnitude. Our estimator is biased upwards for both schemes but this might be explained by
the presence of outliers since the median is largely accurate. Moreover, the second scheme,
with less chromosomes and more sampling schemes leads to a smaller bias and a smaller
RMSE for most cases.

In contrast, the results for the selection coefficient are essentially unbiased, with a sym-
metric distribution, and the median matching the mean of the distribution. The variance
remains large and only when γ is quite high can one reject neutrality. In particular, the
higher the selection coefficient, the higher the variance. The RMSE this time is worse for
the second sampling scheme.

The results for the allele age also exhibit a large variance. The tail of the distribution is
large. This can be explained by the use of the conditional process. Indeed for weak selection,
if the number of derived alleles is high at the first sampling time the likelihood becomes
uninformative for the allele age (i.e., the likelihood is flat for older allele ages; Figure 5.2).
This leads to difficulty for the optimization algorithm to converge to the global maximum.
The results seem to be systematically biased upwards, although the median is accurate. For
strong selection the likelihood is more informative and the estimator is unbiased. Also, for
strong selection the scheme with more samples through time performs considerably better.

In conclusion, especially for strong selection, sampling fewer chromosomes over more
sampling times will lead to better results.

5.3.3 Real data

The change in allelic frequency of this locus is shown in Figure 5.6. Although the frequency
is increasing in around 3,000 generations from 0 to ∼0.8 between the first and the third
sampling time, suggesting positive selection, it then drops down to 0.4 in around 500 gener-
ations. It is interesting to note that the archaeological evidence for domestication suggests a
date of 3500 years BC (Outram et al., 2009), which would correspond to the third sampling
time (i.e. when the sample frequencies start decreasing).

The first step is to choose a potential range for the population size. We found π = 0.024
with a 95% CI of (0.018, 0.030). Together with the 95% CI of the mutation rate, this leads to
a range for Ne of (200, 5000). This is a small population size. It might be explained by the
fact the horses are a domesticated species and most samples are taken after the beginning
of domestication, resulting in a small Ne. On the other hand it might be that the mutation
rate calculated for the human population for the control region is not appropriate for horses.

We first plot the likelihood surface for 4 values of Ne on Figure 5.7. This will help us
confirm that we have found a global maximum. We note that the higher the population size
the higher the γ and the older the allele age that maximizes the likelihood. For example if
the population is fixed at Ne = 200 then γmax = −1.5 and tmax0 = −2567. In contrast, if we
fix Ne = 5000, then γmax = 9.1 and tmax0 = −3550. In other words, if the mutation rate is
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Figure 5.4: Boxplots for the MLEs of each simulation replicate, for seven different parameter
combinations. At the top is the scheme with 6 sampling times and 50 chromosomes sampled.
At the bottom, the scheme with 12 sampling times and 25 chromosomes sampled. On each
plot, left are the estimates for the population size, Ne, in the middle for the rescaled selection
coefficient, γ, and right for the allele age, t0. For all subplots the triangle represents the mean
of the estimates, and the circle the true value. The rectangles of the boxplots are for the first
and third quartile and the black line represents the median. The outliers are also indicated
by crosses.



CHAPTER 5. ANCIENT SELECTION 86

10 5 0 5 10 15 20
γtruth

50

100

150

200

250

10 5 0 5 10 15 20
γtruth

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

6 sampling times, 50 chrom
12 sampling times, 25 chrom

10 5 0 5 10 15 20
γtruth

300

250

200

150

100

50

0

50

Bias for the two sampling schemesBias for the two sampling schemes

10 5 0 5 10 15 20
γtruth

320

340

360

380

400

420

440

10 5 0 5 10 15 20
γtruth

7

8

9

10

11

12

136 sampling times, 50 chrom
12 sampling times, 25 chrom

10 5 0 5 10 15 20
γtruth

300

400

500

600

700

800

900

RMSE for the two sampling schemesRMSE for the two sampling schemes

Figure 5.5: Bias (top plot) and RMSE (bottom plot) results for the MLEs for seven different
sets of simulations also presented in Figure 5.4



CHAPTER 5. ANCIENT SELECTION 87

4000 3500 3000 2500 2000 1500 1000 500 0
t[generations]

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y 
of

 th
e 

al
le

le

Sample allelic frequency over time

ASIP

Figure 5.6: Change in allelic frequency over time for the ASIP locus. The sample sizes are
M = (10, 22, 20, 20, 36, 38) and the number of derived alleles I = (0, 1, 15, 12, 15, 18). The
times have been offset so that the last sampling time is 0. Domestication is thought to have
happened around -3500 years BC which would correspond to around -600 generations on
this plot, i.e. the 3rd sampling time.

overestimated by say an order of magnitude, our potential range for the population size will
also be much higher, affecting the results.

Since there is no mutant allele at the first time of sampling, the allele might have arisen
after the first sampling time. We denote “dom1” the range between (−∞,−3893] genera-
tions, and “dom2” the range (−3893,−2516]. As discussed before, the likelihood is therefore
discontinuous as a function of the allele age with discontinuities at sampling times. It is
important to look for the global maximum in dom1 and dom2 separately. Moreover, we
compute the 95% CI in dom1 and in dom2 separately. We build the confidence interval as
a union of (potentially) disconnected domains.

The values for the MLEs and 95% CI are shown in Table 5.1. The first thing to note
is that they are compatible with the results of Figure 5.7. The MLEs were found in dom2:
tmle0
∼= −2577 γmle ∼= −1.3 and Nmle

e = 652.
In Figure 5.8 we plot the distribution for the bootstrap replicates for each parameter and

for the maximum likelihood values. The confidence interval was constructed as the 2.5th
and 97.5th percentile. We ran a total of 1400 replicates. For about 30 of those simulations,
the optimizer did not converge. Among successful runs, ∼500 did not have an MLE in dom1
or dom2 and were discarded. From the remaining, about 823 were found in dom2 and 34 in
dom1.

The MLEs and the bootstrap results have several implications. First, we do not find
evidence for positive selection as could be anticipated by the archaeological evidence for
domestication. The discrepancy between this study and Ludwig et al. (2009) is first the
method used and second the parameter range assumed. Indeed, the results in Ludwig et al.
(2009) were obtained using Bollback et al. (2008)’s method. Since our tmle0 is in dom2, and
Bollback et al. 2008 assume that the allele was already present in the first time of sampling,
it is to be expected that our results will be very different. Moreover, the potential range for
the population size in Ludwig et al. 2009 is from 10,000 to 100,000, i.e., it does not overlap
with the range for Ne that we assume here. As noted above, if we had assume a larger
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dom1 dom2
optimum optimum

` 14.9 13.1
t0 -3893 -2577
γ -0.61 -1.3
Ne 1617 652

95% CI
t0 (−4759,−3893]

⋃
(−3892,−2516]

γ (-27.7,60.7)
Ne (200,5000)

Table 5.1: Maximas and CI for the ASIP locus sequenced in (Ludwig et al., 2009). The MLEs
are on the right most column of the first table. The CIs were obtained through parametric
bootstrap, see Figure 5.8

population size, the γmle would be larger.
The distribution of each parameter from the bootstrap replicates are almost unbiased

relative to the true value (as could be expected from the results in the simulation section).
The distribution for γ is close to a normal distribution while the distribution for Ne and
t0 are not as simple. For Ne, the distribution is bimodal with a second mode at the upper
bound. This mode is a reflection of the finite domain we impose on the search for the MLE
rather than an actual mode. Similarly, for t0 there is a mode at the lower bound for dom2,
an artifact of the bounds from the sampling times.

As could be expected from the simulations above, the 95% CI for Ne suggests that with
these data we have no power to estimate Ne. Similarly, we have no power to distinguish
between negative and positive selection as γ’s CI is between −27.7 and 60.7. On the other
hand, the bootstrap replicates suggest that the allele arose in dom2. We can indeed test the
hypothesis that the allele age is not in dom2, H0 : t0 /∈ dom2 versus the hypothesis that
the allele age is in dom2, H1 : t0 ∈ dom2 . We can reject the nul hypothesis H0 with pvalue
1 − 823

823+34
= 0.04. The domain dom2 corresponds to -20,000 to -13,100 years BC. In other

words, from the data, one could have already deduced that the allele had to be present before
-13,100 years (i.e., before the presumed start of domestication). Indeed, domestication in
horses is thought to have started about 3,500 years BC (Outram et al., 2009). Our analysis
shows that it is likely to have arisen within the last 20,000 years.

5.4 Conclusion

The allele age, the strength of selection and the population size are all crucial parameters
in population genetics. Although molecular data is growing exponentially in recent years, it
often remains a challenge to estimate those key parameters.

We develop a maximum likelihood approach to estimate these parameters that deals
with a particular type of data - temporal data. Our method is based on an approximation
to the WF diffusion process, and has the advantage of being quite flexible and appropriate
for hypothesis testing. Moreover, it is fast for small γ, as one evaluation of the likelihood
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function takes ∼0.1 seconds for γ . 40 on a laptop with a i5 2.53 GHz CPU, for a dataset
like the one we analyze here.

We show through simulations that for a realistic sample of realistic size, although the
variance of our estimator is quite large, our MLE is unbiased for estimating selection and is
nearly unbiased for the age of the allele and the effective population size. On the other hand,
our method is not appropriate for estimating the population size, even for simulations where
the model used to simulate the data match the method used to infer the parameters. Indeed,
for a realistic sampling scenario, the MLEs for Ne, although unbiased, can span several orders
of magnitude. This is not surprising. The effective population size is a parameter notoriously
difficult to estimate, and our method considers only a single locus.

The sampling scheme has of course an impact on the accuracy of the estimator. We
investigate two different sampling strategies and conclude that, in the cases considered, it
is better to increase the number of sampling times rather than the number of samples per
time point. It is indeed intuitive that in order to be able to estimate the allele age, for the
conditional process, it is necessary to have a sample close to the allele age. Indeed, in the
conditional process, an allele will never get fixed or lost. Thus, after several coalescent units,
the likelihood is flat.

We re-analyze a locus that was previously found to be under positive selection, ASIP, by
evaluating samples ranging from the Pleistocene to present. In this study, we do not have
enough power to distinguish positive from negative selection for this locus. This could also
be due to an underestimate of the effective population size, or a violation of one or more
assumptions of our null model, as discussed earlier. Although we are not able to estimate
the selection coefficient precisely, we find the age of the ASIP mutation to range between
-20000 to -13100 with an MLE at -13400 years BC, which well predates domestication.

Even though we analyze a mammalian dataset, our method can in principle be applied
to datasets obtained in experimental evolution or viral data. But, it is important to note

that our approximation to the WF model will only be valid provided that s ∼ O
(

1
Ne

)
as

for the WF diffusion process.
It is clear that several violations to the assumptions of the model can lead to increased

bias of our estimator. In particular, we assume a constant, panmictic population size. If the
population is fluctuating in size, this can lead to biased estimates of selection coefficients
and allele age.

Finally, our framework could be extended to include multiple loci at a time, using several
loci simultaneously to estimate Ne while inferring selection at the target locus.
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Appendix A

One step process, Q matrix

We denote by L the generator of the diffusion process Yτ . We have that

L =
1

2
a(y)

d2

dy2
+ b(y)

d

dy
(A.0.1)

where a(y) and b(y) are the infinitesimal variance and mean of our diffusion process. For
the WF model with additive selection (see main text) those functions are:

a(y) = y(1− y) (A.0.2)

b(y) = γy(1− y)(y + h(1− 2y)) (A.0.3)

By definition the generator can also be written as

lim
τ↓0

Ey[f(Yτ )]− f(y)

τ
= Lf(y) (A.0.4)

Ignoring the ∆τ 2 terms, we have for the infinitesimal mean:

Ey[Ys+∆τ − Ys | Ys] ∼= γYs(1− Ys)(Ys + h · (1− 2Ys))∆τ = b(Ys) ·∆τ (A.0.5)

Similarly the infinitesimal variance is:

Ey
[
{Ys+∆t − Ys − γYs(1− Ys)(Ys + h · (1− 2Ys))}2 | Ys

] ∼= Ys(1− Ys)∆τ = a(Ys) ·∆τ.(A.0.6)

We want to choose the Markov chain Z such that Z ' Y , in the sense that the probability
distribution governing the samples of Z is close to the probability distribution governing the
samples of Y . To achieve that, we can match the infinitesimal mean and variance of Z and
Y (see Durrett (2008)). By definition of the generator of Zτ (see equation 5.2.6), we know
the probabilities of transition in time ∆τ . Assuming the process starts at Zs = zi:

Zs+∆τ =





zi with probability 1− (βi + δi)∆τ +O(∆τ 2)

zi+1 with probability βi∆τ +O(∆τ 2)

zi−1 with probability δi∆τ +O(∆τ 2)

(A.0.7)
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We can rewrite equations A.0.5 and A.0.6 replacing Yτ by Zτ . We have for the infinites-
imal mean

Ezi [{Zs+∆t − zi}] ∼= zi · (1− (βi + δi)) + zi+1(βi∆τ) + zi−1(δi∆τ)− zi
= (βi(zi+1 − zi) + δi(zi − zi−1))∆τ

= b(zi) ·∆τ. (A.0.8)

And for the infinitesimal variance:

Var(Zs+∆t − zi) = Ezi
[
{Z∆t − zi}2]− Ezi [{Z∆t − zi}]2

∼= (zi+1 − zi)2 · βi∆τ + (zi−1 − zi)2 · (δ∆τ − (zi − zi)2(1− βi − δi)∆τ
= (βi(zi+1 − zi)2) + (δi(zi − zi−1)2)∆τ

= a(zi) ·∆τ. (A.0.9)

We have therefore two equations A.0.8 and A.0.9 with two unknowns δi and βi. Solving
the system we have:

βi =
(−1 + zi) · zi · (−1− z2

i · γ + h · (−1 + 2 · zi) · (zi − zi−1) · γ + zi · zi−1 · γ)

(zi − zi+1) · (zi−1 − zi+1)
(A.0.10)

δi =
−((−1 + zi) · zi · (−1− z2

i · γ + h · (−1 + 2 · zi) · (zi − zi+1) · γ + zi · zi+1 · γ))

(zi − zi−1) · (zi−1 − zi+1)
(A.0.11)

Note that since we require that δi, βi > 0 ∀i, the range of the possible parameters γ depends
on the choice of the states zi−1, zi, zi+1, or on the grid. In particular if we use a uniform grid

we get: {z0, z1, ..., zH−1} = {0, 1
H−1

, ..., H−2
H−1

, 1} and βi = (−1+H−k)k(1+H2+kγ+H(−2+hγ)−h(γ+2kγ))
2(−1+H)2

and δi = (−1+H−k)k(1+H2−kγ−H(2+hγ)+h(γ+2kγ))
2(−1+H)2

. Most likely the locus of interest is either dom-

inant, co-dominant of recessive, i.e. h ∈ {0, 1
2
, 1}. In those three cases for a uniform grid

the range of γ is easy to compute. If h = 1
2

then −2(H − 1) < γ < 2(H − 1), if h = 0,

−(H − 1) < γ < (H − 1), and if h = 1, − (H−1)2

H−2
< γ < (H−1)2

H−2
. In other words, we will need

a large grid for high values of γ, slowing our computation.
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Appendix B

Numerics

B.1 Matrix exponentiation

We would like to compute the matrix exponential of the matrix Q and the matrix qC for the
conditional process. We will focus on the non conditional process as the conditional process
follows easily. We use the convention of numbering the elements of a matrix starting from 0
to H − 1 for the unconditional process, and from 1 to H − 2 for the conditional process. We
seek to compute

exp(Qt),

where the H × H matrix Q is a tridiagonal matrix with all entries above and below the
diagonal strictly positive. We implement two different approaches to compute the matrix
exponentiation.
The first approach is a scaling and squaring algorithm with a Padé approximation. This
approach is described in detail in Moler and Van Loan (2003) and is implemented in SciPy.
This method works for a general matrix and takes advantage of the properties of the matrix
Q.
The matrix Q is in general not symmetric (δi 6= βi when s 6= 0). Nevertheless all eigenvalues
are real. In particular two eigenvalues are 0 and the others are negative. Thus, when we
remove the first and last column and row, the resulting matrix is the tridiagonal matrix qC .
We can transform the matrix qC into a symmetric matrix with a similarity transformation.
More precisely, there exists a diagonal matrix

d =




d1 0 0 0
0 d2 0 0
... ... ... ...
0 0 dH−3 0
0 0 0 dH−2




(B.1.1)

such that s = d−1qCd is a symmetric matrix. The di can be defined recursively as follows
d1 = 1,d2 =

√
δ2/β1 · d1, d3 =

√
δ3/β2 · d2 , . . .. Note that the square root exists since

βi, δi > 0. The matrices qC and s have the same eigenvalues, and the eigenvalues of a
symmetric matrix are all real. In particular they are also eigenvalues of the original matrix
Q. The two remaining eigenvalues of Q are the two zero eigenvalues (this can be seen writing
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the characteristic polynomials). Therefore all eigenvalues are real. We can build a matrix D
adding a first and last row and column to the matrix d:

D =




1 0 0 0 0 0
0 d1 0 0 0 0
0 0 d2 0 0 0
0 ... ... ... ... 0
0 0 0 dH−3 0 0
0 0 0 0 dH−2 0
0 0 0 0 0 1




(B.1.2)

It follows that R = D−1QD symmetries the interior part of Q (the matrix qC) and is a
tridiagonal matrix as well. Since s = d−1qd is symmetric there exists an orthogonal matrix,
o, such that ` = oT so is diagonal. This matrix ` has the following form:

` =




λ1 0 0 0
0 λ2 0 0
... ... ... ...
0 0 λH−3 0
0 0 0 λH−2




(B.1.3)

We can construct the matrix O as the matrix D before, with o in its center and adding
first and last rows and columns with zeros everywhere but the diagonal entries (0, 0) and
(H − 1, H − 1). Then we see that T = OTRO has an inner part equal to ` the coefficients of
the first and last lines remain equal to 0, and the coefficients on the first and last columns are
non-zero. We denote T (0, j) = v0,j with j = 1, . . . , H − 2 and T (H − 1, j) = vH−1,j with j =
1, . . . , H − 2. That is

T =




0 0 0 0 0 0
v0,1 λ1 0 0 0 vH−1,1

v0,2 0 λ2 0 0 vH−1,2

v0,.. ... ... ... ... vH−1,..

v0,H−3 0 0 λH−3 0 vH−1,H−3

v0,H−2 0 0 0 λH−2 vH−1,H−2

0 0 0 0 0 0




(B.1.4)

where the vi,j 6= 0. We can rewrite T = Λ + V where

Λ =




0 0 0 0 0 0
0 λ1 0 0 0 0
0 0 λ2 0 0 0
0 ... ... ... ... 0
0 0 0 λH−3 0 0
0 0 0 0 λH−2 0
0 0 0 0 0 0




(B.1.5)

and
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V =




0 0 0 0 0 0
v0,1 0 0 0 0 vH−1,1

v0,2 0 0 0 0 vH−1,2

v0,.. ... ... ... ... vH−1,..

v0,H−3 0 0 0 0 vH−1,H−3

v0,H−2 0 0 0 0 vH−1,H−2

0 0 0 0 0 0




. (B.1.6)

We can note that V is nilpotent and that V Λ = 0. It follows that for k ≥ 1, (Λ + V )k =
Λk + Λk−1V , which we can see by induction. There is another identity that will be useful.
If we define:

Λ′ =




0 0 0 0 0
0 1/λ1 0 0 0
0 0 ... 0 0
0 0 0 1/λH−2 0
0 0 0 0 0




(B.1.7)

where λ1, λ2... are the diagonal entries of l. We see that for k ≥ 2, Λk−1 = ΛkΛ′. Since

T = (DO)−1Q(DO)

Q = (DO)T (DO)−1

Qt = (DO)Tt(DO)−1, (B.1.8)

we have:

exp(Qt) =
∞∑

k=0

1

k!
(Qt)k =

∞∑

k=0

1

k!
((DO)Tt(DO)−1)k = DO

( ∞∑

k=0

1

k!
(Tt)k

)
(DO)−1 (B.1.9)

And then we have that

∞∑

k=0

1

k!
(Tt)k = I +

∞∑

k=1

1

k!
((Λ + V )t)k =

= I +
∞∑

k=1

1

k!
(Λt)k +

∞∑

k=1

tk

k!
(Λk−1V ) =

= exp(Λt) + tV +

( ∞∑

k=2

tk

k!
Λk−1

)
V =

= exp(Λt) + tV +

( ∞∑

k=0

tk

k!
Λk − I− Λt

)
Λ′V =

= exp(Λt) + tV + (exp(Λt)− I− Λt) Λ′V. (B.1.10)
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And finally:

exp(Qt) = DO (exp(Λt) + tV + (exp(Λt)− I− Λt) Λ′V ) (DO)−1 (B.1.11)

So that, in terms of computing time, this requires us to compute o using an algorithm for
hermitian matrices,then to compute d by recursion and the rest should follow from matrix
multiplications. The advantage compared to the Padé approach described above is that most
of the work is done once D and O are computed only once and reused for all time intervals.

In practice, the condition number of the matrix o can be very high leading to instabilities
in the matrix exponentiation. Indeed the higher the condition number, the more sensitive
the matrix will be to numerical operation. The condition number of our matrix can be of
the order of 106 for large γ and is therefore ill-conditioned. Note that for the approximation
of the diffusion process to the WF model, γ has to be on the order of 1. Thus, the matrix
exponentiation becomes harder when the conditions for approximating the WF model with
the diffusion are not necessarily met.

In order to overcome this problem we implemented the matrix exponentiation in C++
using a library, mpack (Nakata, 2010), for multiple precision arithmetic. The library mpack
is a multiple precision arithmetic version of LAPACK and BLAS. Although this allows to
exponentiate the matrix for any γ in principle, it makes the matrix exponentiation step much
slower. We therefore empirically test for which parameter range we require more precision
than the double precision of numpy or SciPy that rely on LAPACK.

To do so, for a particular matrix Q = Q(H, h, γ) we compute

test(Q) = norm
(
(D ·O) · (OTD−1)

)
− trace

(
(D ·O) · (OTD−1)

)
(B.1.12)

where norm (A) = norm ((aij)) =
∑

i,j |aij|. The value of test(Q) should be equal to 0.
We choose a threshold value ε such that if test(Q) > ε, we do not trust the default SciPy
implementation and we invoke the higher precision computation. For this work we used
ε = 10−5.

We plot on Figure B.1 the Boolean test(Q) > ε for different values of Ne and γ for h = 0.
We can see on those plots that the matrix instability does depend on γ but not on the
population size. For all the population sizes, the default implementation becomes unstable
for γ & 40.

To conclude, we use one existing method to exponentiate the matrix (Pad) and imple-
mented one more method, with the possibility of increasing the double precision. Which
method to use depends on the type of dataset and the parameter range one needs to ex-
plore. For high values of γ, if there are many time intervals, a method based on the spectral
decomposition would be faster, otherwise the Pad approximation works well.

B.2 Choice of grids

As said in the main text, we investigated several grids inspired by Gutenkunst et al.. No
matter the parameters, to compute the likelihood we need to approximate the transition
probabilities between the original frequency of the A allele, 1

2Ne
, and another frequency

between 0 and 1. Although we could extrapolate, we decided to use grids that all include
the point 1

2Ne
.
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Figure B.1: One example cartography of the parameter combination that require higher
precision for ε = 10−5. We plot the result of the Boolean operation test(Q(H, h, γ,Ne) ≤ ε
The legend is True for gray and white for False. We fix H = 400 and we plot Ne versus γ.

The first is a uniform grid with a point added at 1
2Ne

. We call this grid the “uniform
grid”. Then we investigate a quadratic grid and an exponential grid. The last two grids
were chosen so that, as opposed to the uniform grid, the distance between adjacent points
changes smoothly.

As before, let’s denote {z0, z1, ..., zH} the state space of the one step process or the grid.
The quadratic grid is described by a cubic equation, i.e., the difference between adjacent
points is quadratic. We will assume for simplicity of notation that H is a multiple of 20 (it
is straightforward to generalize), and that G = H

10
. We set the first G + 1 points to form

a uniform grid between 0 and 2
2Ne

, so that the median of this grid is 1
2Ne

. In other words,

zj = j
NeG

for 0 ≤ j ≤ G. Now we assume first that {q0, . . . , qH−G−1} is a uniform grid

between 0 and 1. In other words, q0 = 0, qH−G−1 = 1 and qj = j
H−G−1

. The remaining
points are described by

zG+j = aq3
j + bq2

j + cqj + d (B.2.13)

where d = 2
2Ne

, c = 1
2NeG

, b = −3( 1
H−G−1

+ c+ d
H−G−1

) 1
H−G−1

, a = −2
3
b.

The exponential grid will be defined as follows. If {u0, ..., uH−1} is a uniform grid between
−1 and 1 (i.e., u0 = −1, uH−1 = 1 and uj = −1 + j 2

H−1
), then the grid is

zj =

1
1+exp(−βuj) −

1
1+exp(β)

1
1+exp(−β)

− 1
1+exp(β)

, (B.2.14)

where β is a parameter that defines the density of the grid around the boundaries. We pick
β such as z[H10 ] = 1

2Ne
, with [] denoting the integer part. To do so, we solve numerically the

equation B.2.14 for j =
[
H
10

]
.

We plot the grids of interest versus uniform grids and the spacing between each point in
Figure B.2.
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Figure B.2: Description of three different grids tested of size H=41 and Ne = 104. Left: the
grids are plotted against a uniform grid of points between 0 and 1. Right: the spacing of
adjacent points.
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