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ABSTRACT OF THE DISSERTATION 

 

Penalty-Based Dynamic Programming for the Identification of Post-Translational Modifications 

in Peptide Mass Spectra 

by 

Laurence E. Bernstein 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2018 

 

Professor Nuno Bandeira, Chair 

Professor Steven Briggs, Co-Chair 

 

Tandem mass spectrometry (MS/MS) has long been the leading method of identifying 

peptides and proteins in complex biological samples and many algorithms have been created for 

this purpose. Many of the methods for searching MS/MS spectra against a database of known 

proteins must restrict the number of post-translational modifications (PTMs) that they can 

identify because the larger the number of PTMs being considered, the larger the search space, 
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which in turn increases both computational complexity and the potential for false matches. In 

addition these algorithms cannot discover new peptides or homologues or be used with species 

for which a protein database does not exist. Newer algorithms have been developed that perform 

“open” or “blind” searches capable of finding any possible modifications, however these 

methods increase the search space even further, often resulting in lower performance and the 

generation of many putative modification masses that must be sifted through manually to 

determine which are real.  

To address the shortcomings of the existing methods, we created a new blind database 

search algorithm based on spectral networks. Our method uses a modification of the standard 

spectral tagging filtration techniques tailored for contig-consensus spectra generated from 

spectral networks, along with, the first of its kind, penalty-based, dynamic programming 

spectrum-database alignment algorithm that is able to accurately to identify both a priori 

specified modifications as well as novel PTMs. We then developed a workflow based on these 

new techniques that combines previous work in clustering, spectral alignment, spectral networks, 

and multi-spectral assembly. Because our new algorithm only identifies spectra that lie within 

the spectral networks, we created a workflow,  called RaVen, that merged our method with MS-

GF+ and combines the results from both methods resulting in a method with massive 

improvement in overall identification rates above existing methods while at the same time 

identifying many more rare modifications in samples. We also propose an improved way of 

measuring the accuracy of blind search algorithms: “peptide variants” which better meet captures 

the goals of blind search methods and does not rely on precise localization of modifications 

(which is very difficult to achieve for most algorithms). 
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CHAPTER 1 - Spectral networks identification of rare 

post-translational modifications and hypermodified 

regions in lens crystallin proteins 

 

 Abstract 1.1.
 

Post-translational modifications and sequence cleavage events are key to protein-level 

regulation of biological processes and have been repeatedly implicated in disease phenotypes. 

Such events have potentially even greater relevance in the case of long-lived proteins in cellular 

contexts with little or no protein turnover, where long-term accumulation of protein damage can 

degrade protein function, as is the case with crystallin proteins in cataract lens. Building on high-

throughput tandem mass spectrometry for the analysis of proteomics samples, various algorithms 

have been developed for the detection of unexpected modifications; however, current approaches 

still estimate the significance of detected modifications primarily by their frequency of 

occurrence on multiple peptides. This approach is generally effective for the detection of 

widespread artifacts and sample-handling modifications, but has limited ability to detect rarer 

modifications which are potentially more likely to have biological significance. Our proposed 

RaVen approach assesses the significance of detected modifications using spectral networks 

algorithms to match spectra of peptides with different modification states, thereby substantially 

increasing the detectability of modifications with strong signal even if they occur on only a 

single site in the whole proteome. Using this approach, RaVen not only detects nearly all 

modifications reported by previous algorithms, but further detects over 60 known and putatively 

novel rare modifications in lens crystallins spanning both chemical and enzymatic post-

translational modifications, as well as several putative sequence polymorphisms. Furthermore, 
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by capitalizing on the detection and consensus interpretation of multiple modified variants of 

peptides with overlapping sequences, RaVen detects modifications on over two thirds of all 

crystallin peptides and reveals for the first time the occurrence of hypermodified protein regions 

covered by nearly three hundred distinct peptide sequence and modification variants. All data 

and search results were deposited in MassIVE (MSV000082143) and are available via 

ProteomeXchange with identifier PXD009167. 

 

 Introduction 1.2.

 

Mass spectrometry (MS) has, for some time, been the leading method for high-

throughput identification of proteins in complex biological samples and many algorithms have 

been developed for this task including: Sequest [1], Mascot [2] and MS-GF+ [3]. Such 

`restricted’ search algorithms have made significant progress in the ability to identify proteins 

and peptides with at most a few common post-translational modifications (PTMs), but challenges 

still remain for sensitive identification of PTMs, especially when considering a large selection of 

possible PTMs . As a result, biological inquiries of proteomics data typically restrict the number 

of searched modifications to five or fewer possibilities, even though hundreds of possible 

variations are documented in Unimod [4]. All these algorithms must perform the same task of 

comparing spectra gathered by mass spectrometry experiments to a database of known proteins 

in order to find the best match. However the databases themselves have the limitation that they 

normally only contain unmodified protein sequences and not the many various forms of the 

protein that can possibly result from post-translational modifications. Because of this, these 

algorithms all suffer from two serious problems. First, as the number of PTMs being considered 
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increases, the computational complexity grows rapidly (and often exponentially). Second, as the 

search space grows, either by increase in the number of modifications allowed or increase in the 

size of the database, the potential for false matches rises significantly, resulting in far fewer 

identifications. 

This problem becomes even more pronounced when we expand the search to unknown 

modifications. Such “open” searches expand the database by ten thousand times for a single 

modification or one million times for multiple modifications. As such, a range of algorithms such 

as MS-Alignment[5][6], OpenSea [7], TagRecon [8] and MODa [9] have been proposed for 

spectrum identification in the presence of unexpected modifications. More recently Chick et al. 

[10] extended Proteome Discoverer to allow open database searches by vastly increasing 

precursor ion tolerance. By using a large ion tolerance, the open search technique is able to 

identify unknown modification masses. Kong et al. improved on this approach with MSFragger 

[11] greatly increasing the speed and thereby making it more practical. However both MODa and 

the open search method generate large sets of putative modification masses. Most of these 

masses have very low occurrence rates, resulting in the necessity for manual examination to 

determine those that reflect true PTMs. An algorithm that can handle the increased virtual 

database size as well as allow for blind PTM searching is highly desirable for many current 

datasets, such as cancer or antibody sets where there are many differences from the nominal 

protein database, as well as for sets where the true protein database of interest is not known and 

only a homologous database is available. Our RaVen workflow (Figure 1.1) approaches the 

problem of open modification discovery from a different perspective. First, RaVen capitalizes on 

the principle that peptides with unexpected modifications are nearly always co-expressed with 

either unmodified or commonly-modified versions of the same peptides. As such, similar to 
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alignment of sequencing reads to detect related or overlapping sequences, RaVen builds on 

alignment between spectra [12] [13] to detect related variations of peptide sequences or post-

translational modifications. Second, RaVen combines pairwise spectral alignments into multi-

aligned protein `contigs’ [14] and leverages the much-increased signal-to-noise ratio in contig-

consensus sequences to derive de novo sequence tags used to filter the database search space, a 

novel multi-spectrum extension of the tag filtering approach initially proposed by Mann and 

Wilm [15] and later incorporated into multiple search tools [9][16][7][8]. Third, RaVen uses 

spectral alignment frequencies of putative modification masses to score hypothetical variations 

(e.g., PTMs, polymorphisms, etc.) only on sequences selected by high-scoring contig matches. 

RaVen thus utilizes spectral alignment to address two major challenges in the detection of 

unexpected modifications: a) it builds on correlated fragmentation of related peptides to 

construct contig spectra with longer sequence coverage and much higher signal-to-noise ratios 

and b) it considers unexpected modifications only at positions in the database where the 

sequence matches the high-quality de novo sequences derived from spectral contigs. Finally, 

RaVen’s shifted focus towards peptide `variants’ (differently-modified or polymorphic versions 

of a peptide sequence) and protein variant regions (PVRs) advances the expectations of open 

modification searches from the traditional detection of common (typically sample-handling) 

modifications, into a more detailed assessment of the occurrence of variations on specific 

peptides and proteins. By further combining this detection with the analysis of differential 

expression across multiple conditions, we show how even infrequent unexpected variations 

(which are typically lost in traditional frequency-based approaches) can be explained as known-

but-unexpected modifications with substantial changes in expression across healthy and disease 

states. 
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 Results 1.3.

 

Lens proteins constitute an ideal type of sample for blind search algorithms for detection 

of post-translational modifications. As is well known from the literature [17], lens crystallins do 

not turn over but rather continuously accumulate damage and modifications over an individual’s 

life span. Several of these modifications have been implicated in disease phenotypes such as 

opaque lens and impaired vision, commonly referred to as cataracts. In addition to the relevance 

to phenotypes of protein-related disease, lens tissue is also ideal for this study from a technical 

perspective because the relative simplicity of the lens proteome (>95% abundance concentrated 

in only <15 proteins) makes extensive characterization of proteome diversity much more 

accessible to mass spectrometry instruments (i.e., more scanning events available to detect 

biological diversity of the same proteins, rather than superficially characterizing many more 

proteins). Finally, the specific lens dataset analyzed here covers a range of ages (3 days to 93 

years old) and phenotypes (healthy or cataracts), and has already been studied in various 

previous publications [9][18][19][20][21], thereby defining a comprehensive point of reference 

against which to compare new results, as well as establishing a high bar for new algorithms 

aiming to detect novelty in proteomics samples.  

The performance of RaVen was first assessed in comparison with state-of-the-art 

approaches for i) restricted database search for unmodified or commonly-modified peptides 

(MS-GF+ [3]) and ii) blind modification search for peptides with unexpected modifications 

(MODa [9]).  MS-GF+ has been shown to match or outperform a range of algorithms for peptide 

and protein identification over a wide variety of sample types and collection methods [3] and 

supports only user-specified modifications. Also, MODa is a leading advanced multi-blind 
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search algorithm whose performance remains competitive with recent approaches (MSFragger 

[11]) while at the same time supporting multi-blind searches for peptides with two or more 

unexpected modifications and having already been tested on the same Lens dataset reanalyzed 

here. Open search methods, such as MSFragger, are also capable of finding unexpected 

modifications; however according to the authors of MSFragger, modification masses discovered 

by their method and MODa are very similar and MODa recovered a greater number of PSMs 

when run in semi-tryptic mode (as was done here). As illustrated in Figure 1.2a, RaVen 

identified 25,242 clustered spectra whereas MS-GF+ identified 15,183 spectra and MODa 

identified only 11,556 spectra. This corresponds to gain of 66% and 118%, respectively. The 

overlap in identified spectra further reveal that RaVen results included 95% of all identifications 

made by MS-GF+ and 86% of all MODa identifications, as well as show that RaVen identifies 

34% more spectra than MS-GF+ and MODa combined. In addition, RaVen identifies 9054 

spectra that were not identified by either of the other two algorithms, which is greater than 5 

times the number of MODa-only identifications and nearly 11 times the number MS-GF+-only 

identifications.  

To better assess the quality and significance of the peptide identifications resulting from 

the spectrum identifications, we define a peptide `variant’ as a tuple (P,m) where P is a peptide 

sequence in the sample and m is the sum of all modification masses incident on P for a specific 

spectrum identification. Intuitively, a peptide variant corresponds to one modification form of a 

unique peptide sequence with a set of modifications resulting in a unique sum of modification 

masses. Since the putative biological relevance of blind search identifications is primarily 

proportional to the number of unique modified peptide forms, we correspondingly compared the 

relevance of identification results by enforcing variant-level false discovery rate (FDR), which is 
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a stricter and more accurate way to enforce 1% FDR for blind search results than the traditional 

1% FDR at the level of peptide-spectrum matches (PSMs). As shown in Figure 1.2, RaVen 

identified 78% more variants than MS-GF+, which is not surprising since restricted searches 

force users to determine the set of modifications independently of the sample and are thus 

typically configured to search only for common modifications. However, even though MODa is 

not subject to the same limitations as MS-GF+ and supports multi-blind identification of multiple 

unexpected modifications per peptide, RaVen also identified 75% more variants than MODa. 

Overall, RaVen identified over 85% of all variants found by MS-GF+ and 76% of variants found 

by MODa, while also yielding over 4.5 times as many RaVen-only unique variants as MODa-

only and over 12 times as many as MS-GF+-only unique variants. 

 

 Discovery of modifications 1.4.

 

The assessment of putative modification masses selected by blind modification searches 

is typically done by counting the number of PSMs identified with a specific mass offset on a 

specific amino acid, and these are typically reported as an offset frequency table [6] with one 

column per amino acid (plus columns for N/C-termini) and one row per mass offset with cell 

values reporting the number of PSMs identified for each pair (Table 1.1). While this is a 

common way to assess the significance of putative modification masses resulting from mass 

offsets in identifications from blind searches, offset frequency tables have disadvantages that 

limit their utility for the analysis of putative modification masses. For example, Table 1.2 shows 

that using this simple procedure to construct the offset frequency table results in hundreds of 

non-zero entries with nearly every mass offset being assigned to multiple putative sites. First, it 
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should be noted that the number of PSMs for a peptide variant is not a direct indicator of its 

correctness or statistical significance; while there may be indirect correlations (e.g., more PSMs 

per peptide indicate higher abundance and may thus correlate with better signal-to-noise ratios), 

it is also possible for incorrect identifications to have high PSM counts as long as the search tool 

is consistent in how it assigns identifications to multiple MS/MS spectrum acquisitions from the 

same LC/MS precursor. To avoid the effect of this abundance-induced bias and instead assess 

the frequency of mass offsets using distinct observations of unique peptide sequences, RaVen 

constructs offset frequency tables using unique variant counts instead of PSM counts. Second, 

blind search algorithms have no prior knowledge of which sites are valid or invalid for 

unexpected modifications and thus tend to assign mass offsets to spurious sites when the spectra 

are not informative enough to precisely localize the site of the mass offset (which is very 

frequently the case). As a result, offset frequency tables often have high counts for correct pairs 

of sites and offset masses but these are almost always accompanied by many other incorrect site 

localizations where the lack of spectrum fragments resulted in the same mass offsets also being 

localized to other amino acids near the correct sites [21]. RaVen addresses this problem by i) 

assigning partial credit to all amino acids in spectrum mass ranges where there are no localizing 

peaks and ii) iteratively selecting the highest-scoring sites and correspondingly removing support 

for neighboring sites from variants explained by previously selected site and mass offset pairs 

(see Supplemental Methods and Table 1.2). Using this refined offset frequency table and 

requiring a minimum of 10 variants to consider a mass offset as a putative modification (see 

Table 1.3), we found that all but one discovered modification masses were correct (the single 

exception was a +17 Da mass due to a 13C error on oxidation) and that RaVen identifications 

included over 80% of all distinct modifications previously reported using MODa searches [9], as 
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well as detecting additional modifications that were previously missed (homoserine lactone on 

methionine and a carbon artefact on tryptophan [22].  

Detection of rare modifications is usually difficult in blind searches because their 

dependency on offset frequency tables biases the analysis towards high-frequency modifications, 

which mostly tend to be sample handling modifications of no biological relevance, as is 

illustrated in Table 1.3 by the detection of 17 artefactual modifications for at most 8 post-

translational modifications (PTMs). But in contrast to this methods-induced bias towards high 

frequency (and mostly artefactual) modifications, there is actually no a priori requirement for the 

functional significance of biological modifications to correspond to high frequency of occurrence 

on many distinct peptide sequences. In fact, the opposite may be closer to the truth as precise 

regulation of protein function would more likely bias selection towards enzymes that modify 

only specific targets and only in the right cellular context. To address this challenge, RaVen uses 

a unique feature of spectral networks instead of offset frequency table for the detection of rare 

modifications (i.e., occurring on <10 distinct variants). Using the statistical significance of 

spectrum/spectrum alignments [12] between spectra of peptides differing by the modification 

mass (see Figure 1.3), RaVen detects a total of 112 putative modification masses. As illustrated 

in Figure 1.4, 15% of these are masses attributable to common modifications such as those in  

Table 1.3 and 33% are the masses attributable to rare modifications found in Table 1.4. The bulk 

of the remaining identified masses fall into two categories: masses that are off by one Dalton 

from true modification masses due to carbon isotopes (20%) and masses which are actually a 

combination of two modification masses which could not be separated due to missing peaks in 

the data (29%). The remaining two masses (2%) were manually confirmed to correspond to 

correct identifications but could not be attributed to any combination of known modifications – 
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these are therefore reported as “Undetermined” and could correspond to new modifications. In 

total 80% of all masses identified with our technique were verifiable as correct (either individual 

or combined modifications) while 20% were off by one dalton due to carbon isotopes. By 

contrast, the MODa offset frequency table contains nearly 1000 cells with non-zero counts and 

still does not capture all the modifications discovered by RaVen. Moreover, one would have to 

inspect every one of those cells in order to capture as many of our modifications as possible 

since our spectral alignment approach discovers multiple modifications with a single 

representative PSM. Using spectral networks for selection of modifications, RaVen further 

identifies an additional 68 unique modifications and polymorphisms Table 1.4, over twice as 

many as could be detected by relying solely on the offset frequency table. As expected, the set of 

rare modifications includes few artifacts (only 26% of all rare modifications) and is instead 

enriched for chemical derivatives and amino acid substitutions. Together with the common 

modifications detected by RaVen, these additional modifications include all those previously 

reported using MODa [9] as well as glycosylation, trioxidation, malonylation, maleimide, 

acetyladehyde and 18 different types of substitutions. Finally, RaVen detects four uncategorized 

modifications that are well supported by the data (see Table 1.5). 

 

 Detection of modified peptides and hypervariable 1.5.

protein regions 

 

Beyond the traditional analysis of distinct types of modifications detected by blind 

search, RaVen’s analysis of peptide variants as highly-correlated spectra grouped into spectral 

networks (see Figure 1.5 for an example) further focuses the analysis of results on how the same 

peptides or protein regions may be modified with different types or combinations of 
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modifications. In particular, RaVen analysis revealed that the Lysine N-term on the βS-crystallin 

peptide “KPIDWGAASPAVQSFR“ has the most distinct modifications of any amino acid in the 

sample. Table 1.6 lists the 15 different modifications found at this position, including the 

common modifications methylation, acetylation and carboxyethyl as well as less-common 

modifications such as formylation, carbamidomethyl, carboxymethyl, pyridylacetyl and 

maleimide. Table 1.6 further shows that the αA-crystallin peptide ”QWHLEGSFPVLATEPPK” 

was found to be modified with 21 different types of modifications, the highest number of all 

peptides in our sample, including both common PTMS such as carbamylation, pyro-glutamate, 

phosphorylation and sodium adduct, as well as rare modifications like metylsufonethyl, 

ethoxyformyl and potassium adducts. 

Since protein activity, interactions and subcellular localization can be regulated by both 

modifications and cleavage events, it is important to characterize protein-level diversity by 

aggregating all peptide variants with overlapping sequences. RaVen thus defines a Protein 

Variant Region (PVR) as a region where each peptide overlaps with at least one other peptide 

mapped to the same region by at least 50% of its amino acids. While most PVRs identified by 

RaVen are composed of <10 variants, RaVen’s analysis of the diversity of protein-level variation 

further revealed many hypervariable protein regions with dozens of peptide variants (Table 1.8 

and Figure 1.7), including one region on CRYAA with an unprecedented 256 distinct variants 

(Figure 1.6). The dramatic variability of CRYAA is also shown in Figure 1.8, illustrating the 202 

different modifications identified by RaVen in the hundreds of variants covering regions of this 

protein. While there appears to be some correlation between the coverage of protein regions and 

the number of modifications detected in the same regions, the most variant portions of the 

protein were not the amino acids with the highest coverage and the diversity of modifications 
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found on distinct amino acids appears to be more correlated with location on the protein than 

with amino acid type; for example specific Lysines and Arginines are observed with up to six 

distinct modifications even though the vast majority were mostly unmodified. Altogether, RaVen 

identified 106 hypervariable protein regions with 10+ variants on 23 proteins. 

 

 Cohorts 1.6.

 

The RaVen workflow integrates identification of variants with visualization of expression 

across multiple samples or cohorts by mapping relative abundances of variants to pie charts on 

spectral networks nodes representing peptide variants. In addition, RaVen automatically reports 

the number of spectra assigned to each peptide variant in each user-defined group to facilitate 

downstream statistical analysis of differential expression across conditions. While the statistical 

and biological significance of these observations cannot be established with the small size of the 

available groups, these observations still suggest that rare modifications could potentially play a 

role in functional differences between the groups of patients in the original study (PMID: 

15080731). 

We divided the samples by age and cataracts vs. non-cataracts. By doing this we were 

able to explore cohort- specific trends that were present in the sample. Previous papers have 

shown broad correlations between lens samples and certain types of modifications such as 

increased deamidation in aging [23][24] [25] and increased oxidation in cataracts samples [26]. 

Given the low mass resolution, high prevalence of carbon isotopes, and possibility of artefactual 

sample-handling modifications in this data set, we did not seek to establish deamidation as a 

differentially expressed modification in the cataracts group, but rather focused on modifications 
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of higher mass and more reliable in vivo detection using mass spectrometry experiments. In 

particular, RaVen identified cysteine methylation as a common modification in lens, and its 

detected higher expression in βS crystalline is in agreement with the literature (Haines et al, 

2008). However, even though methylation of Cys 185 in βA1 crystallin was reported to be only 

mildly elevated (~40%) in cataract tissue, our mass spectrometry detection of this event 

estimated an >8-fold increase in our sample, thus suggesting that this modification may be more 

prevalent than previously thought (Table 1.9). While our lens data was not specifically processed 

for detection of phosphorylated peptides, RaVen’s identification of 42 phosphopeptides allowed 

us to compare their expression across groups and confirm that these are generally not more 

prevalent in cataracts[27].  One phosphopeptide was found to have higher spectral counts in 

cataracts (Table 1.9); however, its low spectral counts moderated the significance of this finding 

and would require additional experiments to establish their differential expression. Finally, 

RaVen’s identification of high levels of αB-crystallin Met-68 oxidation are also in agreement 

with the literature [28] but, in contrast to other studies suggesting higher oxidation in 

cataracts[29], RaVen identifications generally indicated lower oxidation levels for old age and 

cataracts samples while finding a nearly six-fold overall increase of oxidation in the infant group 

(Table 1.9). For example, peptide HWNEWGAFQPQ(M,16)QSLR from CRBB1 is 4 times more 

abundant than the unmodified peptide in infant samples, but is two to four times less abundant 

than the unmodified peptide in old-age and cataracts groups, despite the protein itself being 

much more abundant in these groups (~3 times higher spectral counts than in the infant group). 

Table 1.9 further reports the 10 modifications with the highest relative expression for each 

cohort. Of particular note, RaVen detected an undetermined modification of 55 daltons on 

arginine with high spectral counts in old age; this modification was also previously reported 
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in[20], 2006 but its identity remains undetermined to date. To illustrate how RaVen spectral 

networks support the inspection and validation of differentially expressed unexpected 

modifications, Figure 1.9 shows the spectral network for the cataract-specific peptide 

VQ(D,14)DFVEIHGK. Spectral networks facilitate manual inspection of RaVen results in two 

major ways. First, the neighbors of the modified peptide in the spectral network show that its 

spectrum is very strongly correlated to those of multiple spectra of the corresponding unmodified 

peptide (e.g., Figure 1.10), thereby strongly supporting the identification of the +14 dalton mass 

offset on this peptide sequence (which can be explained as either Asp methylation or an 

AspGlu polymorphism). Second, the pie charts overlaid with the nodes show the spectral 

counts of each peptide variant in the various groups covered in our data. In particular, the solid 

grey circle for VQ(D,14)DFVEIHGK illustrates that this variant occurs only in the cataracts 

group and is the only variant of this peptide that is cataracts-specific. 

 

 Discussion 1.7.
 

The spectral networks approach underlying RaVen’s discovery of modifications advances 

blind modification searches in three main directions. First, RaVen uses spectral assembly to 

derive high-quality network-level (instead of spectrum-level) de novo sequence tags used to 

select database locations for sequence/spectrum alignment using sample-specific modification 

mass frequencies. Second, RaVen shows that correlations of peptide fragmentation patterns 

between differently-modified variants of the same peptides can support discovery of non-

common (or rare) modifications in a manner that is much more sensitive than what is typically 

reported using offset frequency functions. While this approach is not suitable to detecting peptide 

variants that occur in only one modified form in the set of searched files (note that RaVen 
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supports joint analysis of files from many samples), we would note that a) RaVen shows that 

using correlated variants does result in the detection of many modifications and b) the false 

discovery rate is expected to be much higher in cases when peptides would occur in only one 

modified form, without corroborating information from related variants. Third, RaVen’s 

aggregation of multiple variants of overlapping peptide sequences in the same spectral networks 

further focuses the analysis of the results on the diversity of proteome variant that can be 

detected on the same peptides or on the same protein variants regions. In fact, our analysis of 

lens proteins reveals an unprecedented level of diversity with over 100 regions being identified 

with 10+ distinct peptide variants and with hundreds of modified variants identified to a single 

region of Alpha Crystalin A. While it remains unclear whether some of this diversity may be 

potentially related to structural protein features (e.g., solvent accessibility or disordered regions), 

RaVen’s ability to detect hypermodified regions motivates a quest for the determination of the 

functional significance of this immense proteomics diversity at the level of modifications and 

cleavage events. 

 

 Online Methods 1.8.

 

The first stage of the RaVen workflow uses the AlignGF spectral alignment algorithm 

[12] combined with the MetaSPS spectral assembly algorithm [30] to construct spectral contigs. 

As previously described [31], MS-Cluster is used to group spectra obtained by repeated 

acquisition of the same peptide; each cluster is represented by a cluster-consensus spectrum and 

the resulting identifications are assigned to all corresponding cluster members. Cluster-consensus 

spectra are processed in two separate ways. First, RaVen uses MS-GF+ [3] searches of cluster-
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consensus spectra to provide the peptide spectrum matches (PSMs) used by AlignGF to estimate 

the false discovery rate (FDR) of spectral alignment. Second, RaVen uses MetaSPS [30] to 

construct spectral contigs whereby cluster-consensus spectra are converted to Prefix Residue 

Mass (PRM) spectra (i.e., peak intensities are converted to likelihood scores and peak masses are 

converted to putative prefix/N-term cumulative amino acid masses [32] and AlignGF spectral 

pairs (filtered at 1% FDR) are used to assemble spectra into contigs and thereby derive contig-

consensus PRM spectra. 

While contig-consensus spectra were previously shown to have very high signal-to-noise 

ratios and to enable very high quality de novo peptide sequencing [30][33][34][35], RaVen uses 

these spectra to generate shorter de novo sequences (i.e., tags) that are more likely to be 100% 

correct and can thus be used to reduce the database search space of which sequences are matched 

to which spectra. Database filters based on de novo sequencing tags have been previously shown 

to be very effective [16][8][15] and Raven contig tags (see Supplementary Methods) were also 

found to efficiently filter the database from a maximum of 1 trillion possible contig-DB match 

locations down to 318,147 using contig tags of length 5 with up to two missing peaks (Figure 

1.11 and Figure 1.12), corresponding to a reduction of approximately 3 million times in the 

database search space. 

 

 Blind modification searches 1.9.

 

The second stage of the RaVen workflow uses a new dynamic programming algorithm to 

align assembled PRM spectra to the protein sequence locations determined by the contig-DB 

matches. RaVen contig tag filters effectively reduced the search space of each assembled PRM 
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spectrum by over 1 million times to an average of only 11-2 candidate locations per spectrum. 

RaVen alignment of assembled spectra to protein sequences extends previous spectral alignment 

approaches [9][6][5] in three major ways. First, penalties are applied to dynamic programming 

match scores to discourage matches that are less likely to be correct. As detailed in Supplemental 

Methods, discovered modifications are segregated into known, putative and unknown categories 

based on user input and sample-specific frequencies of occurrence of each modification mass.  

As shown in Figure 1.3, some detected mass offsets are over 1000x more frequent than others 

(e.g., sample-handling modifications such as Methionine oxidation) and thus should be preferred 

over alternatives using more exotic modifications on peptide-spectrum matches (PSMs) whose 

scores are otherwise similar. In addition, penalties are also used to reflect observation of 

enzymatic digestion rules and are automatically adjusted to the mean of each spectrum’s per-

peak likelihood scores. Second, RaVen uses pre-computed gap-alignment blocks to optimize the 

calculation of aggregate penalties over regions of the spectra with many missing or unmatched 

peaks (see Figure 1.13) with each block being reused an average of 49 times for the lens data 

analyzed here. Third, since spectra of shorter/longer peptides or of precursors with different 

charge states tend to have different score distributions [33][36], we use the generating function 

model [37] for calculation of per-spectrum spectral probabilities to normalize PSM scores and 

make them more comparable for estimation of false discovery rate (FDR). Finally, since spectra 

of unmodified peptides or with poor MS/MS fragmentation may not align into spectral networks 

(Figure 1.14), RaVen further considers MS-GF+ PSMs for spectra that remain unidentified after 

spectral-sequence alignments PSMs are filtered at 1% PSM-level FDR. While this step cannot 

contribute new PSMs with unexpected modifications, it is still useful for increasing spectrum 
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identification rates and overall protein sequence coverage, thereby supporting the identification 

of both proteins and overall peptide sequence diversity. 

For comparison purposes, all tools were run on the lens tandem mass spectrometry data 

using parameters as similar as possible. The human lens data consists of 786,291 MS/MS spectra 

acquired on a Thermo LCQ Classic instrument from seven different samples: normal samples 

from 0 days old, 2 years old, 18 years old, 35, 70 and 93-year-old lens, and 70 and 93-year-old 

cataract lens (see Table 1.10). Accordingly, parent mass tolerance was set to 2.5 daltons, 

fragment mass tolerance was set to 0.4 daltons, trypsin digest was specified but peptides were 

allowed to have non-tryptic termini; results were gathered at 1% FDR (either PSM-level or 

variant-level, depending on which comparison is being reported). Five common known 

modifications were set for RaVen and MS-GF+: oxidation (M+15.994915), pyroglutamate on N-

terminal Q (Q -17.026549), N-terminal carbamylation (+43.005814), N-term acetylation 

(+42.010565), and deamidation on N and Q (N,Q+0.984016). MODa was set to “multi-blind” 

mode to allow for discovery of multiple modifications on a single peptide. All searches used the 

reviewed subset of UniProt human proteins 20,199 proteins, also referred to as SwissProt) as 

downloaded on May 5
th

, 2016, concatenated with the sequences of commonly observed 

contaminant proteins [38]. 

 

 Site selection using offset frequency tables 1.10.

 

First, to avoid arbitrary localization of modifications when there are no supporting peaks 

in the spectrum, RaVen records the modification as being on one of several amino acids found in 

the mass range (i.e., gap) between the two closest peptide cleavage ions in the spectrum. Second, 
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an initial set of counts for the offset frequency table is computed, spreading the count for these 

“gap modifications” over all amino acids in the gap; for example, if the original annotation was 

(PEP,16), this would yield a ⅔ count for P and a ⅓ count for E. Third, RaVen selects the highest 

count modification site X for each modification mass M, reassigns M to X on all gaps containing 

X and eliminates the counts from the gap assignment. In the case of (PEP,16), if (P,16) had the 

highest counts then the modification would be localized to “P” (note that the selection of which P 

is modified is not relevant at this stage, as the immediate goal is only to infer which amino acids 

are more likely to be modified by which modification masses). Fourth, the procedure is repeated 

until all gaps have been eliminated. In this way all gap PTMs are reassigned to their most likely 

single amino acid annotation. 

 

 Supplemental – Consensus spectrum tagging 1.11.

 

MetaSPS [30] assembly of cluster-consensus spectra results in networks of spectra from 

peptides with overlapping sequences (i.e., contigs), with each contig also represented by a 

contig-consensus spectrum which MetaSPS originally used for de novo protein sequencing [13] 

for an overview of spectral alignment and network algorithms). In difference from this, RaVen 

uses contig-consensus spectra to derive short amino acid sequence tags which are matched to the 

database to determine the set of locations used for alignment of spectra assembled into the 

corresponding contig (see Figure 1.1).  The concept of using short de novo sequence tags to filter 

database search matches was originally proposed by Mann and Wilm [15] and has since been 

used in various related approaches [38][9][18][8][39]. RaVen extends this concept by using 

contig-derived sequence tags to reduce the overall number of database locations that are matched 



20 

 

to contig-consensus spectra. RaVen de novo sequence tags are constructed by connecting contig-

consensus spectrum peaks whose masses differ by one amino acid mass; peaks whose masses 

differ by two amino acid masses (e.g., X and Z) may also be connected by mass gaps 

corresponding to the summed amino acid masses (e.g., mass(X)+mass(Z)) and representing all 

possible permutations of the two amino acids (e.g., “XZ” or “ZX”). As previously shown [30], 

the accuracy of de novo sequencing is much higher in contig-consensus spectra than in non-

assembled spectra because noise peaks are mostly eliminated (or have proportionally reduced 

scores) and because likelihood scores from signal peaks are accumulated from all spectra 

assembled into each contig. These higher signal-to-noise ratios in contig-consensus spectra thus 

allow for the determination of longer sequence tags than the 3-mer sequence tags that are 

traditionally derived from individual spectra (see Figure 1.11). Since multiple different tags may 

be derived from each spectrum, it is common [9][16] to rank the tags by the combined score of 

its matching spectrum peaks and then to use the top N tags per spectrum to filter the database. As 

shown in Figure 1.11 the choice of tag length and the number of allowed gaps per tag, has a 

substantial effect on the number of times that a tag is matched to the SwissProt database (Figure 

1.11a), as well as on the number of contigs with at least one correct match (i.e., the minimum 

necessary to retain the correct identification). While the filtration efficiency increases with 

longer tags (i.e., longer sequences have less matches to the database), missing spectrum peaks 

due to incomplete peptide fragmentation generally constrain the length of the longest correct tags 

that can be extracted from contig-consensus spectra. As such, we have found that the best 

compromise between sensitivity and filtration efficiency is with tags of length 5 with up to two 

gaps of two amino acid masses (i.e., 5-2 in Figure 1.11); the next best option would be to use 

tags of length 6 with up to two gaps of two amino acid masses (i.e., 6-2 in Figure 1.11) but the 
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16x gain in filtration efficiency reduces sensitivity by 9%. Using 50 tags per contig-consensus 

spectrum and with each tag yielding 20 matches to the SwissProt database, this filtration step 

results in contig-consensus spectra being matched to only 1,000 locations in the database 

instead of at 11 million possible locations (i.e., considering matches at every amino acid on 

every protein), thus corresponding to >10,000-fold decrease in the search space. Since we are 

primarily interested in identifying modifications for proteins whose identification is already 

otherwise likely, we obtain further reduction in the search space by considering only proteins for 

which MS-GF+ has found at least one PSM (MS-GF+ identifies over 99% of all proteins in our 

data regardless of their modifications). 

For every location where a contig tag is matched to the database, we perform a tag-

extension procedure where the score of a tag match is increased if the database sequence 

flanking the matched tag also matches the masses of peaks flanking the tag in the contig-

consensus spectrum (see Figure 1.1b in the main text); the score of each tag match is thus 

increased by the summed score of all contig-consensus spectrum peaks matched to the flanking 

database sequence. Scores updated with the tag extension procedure are then used to remove 

contig tag matches whose score is not less than 80% of the maximum extended tag match score 

for the same contig. As shown in Figure 1.12a, lowering the threshold of acceptable tag match 

scores down to 75% or 70% of the top score yields additional identifications but the number of 

additional identifications is very low when weighed against the very large increase in the number 

of contig tag matches (see Figure 1.12), thus resulting in a poor tradeoff of increased sensitivity 

versus speed. Once the final set of contig tag matches is determined, assembled spectra are then 

aligned to the highly reduced set of database locations determined by the set of tag matches for 

the corresponding contig. As shown in Figure 1.12, the selected 80% threshold for contig tag 
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match scores results in only 536,927 matched database locations for 8348 contigs, thus resulting 

in each assembled spectrum being matched to an average of only 11-12 database locations, 

corresponding to a reduction of six orders of magnitude (i.e., 1.0x10
6
) in the number of locations 

where assembled spectra are aligned to the database. 

 

 Supplemental – Penalty Based Alignment 1.12.

 

Spectrum/sequence alignment algorithms were first introduced in 2001 [5] and have since 

been adopted in various approaches [9][6][40] used to find high-scoring spectrum/sequence 

matches while allowing up to K unexpected modifications per match. Because allowing for 

multiple modifications per match tended to yield many false-positive matches, K was usually set 

to 1 (MODa[9] allows for multi-blind searches with K>1 but requires the interleaving occurrence 

of sequence tags between putative modifications). Rather than explicitly limiting the number of 

possible modifications per peptide, RaVen allows for any number and type of modifications but 

restricts their excessive usage by imposing score penalties that are inversely proportional to the 

sample-specific evidence in support of each putative modification mass. 

To determine penalties for our alignment we use information from the spectral pairs that 

were identified during construction of the spectral networks. If there is a parent mass difference 

D (exceeding the parent mass tolerance) between two spectra matched by an AlignGF [9] 

spectral pair, then D supports the possibility that some modification (or other peptide 

transformation, such as a sequence extension) of mass D could have occurred within (or at either 

end of) the higher-mass peptide whose spectrum is being observed. By estimating the frequency 

of all such mass differences between all statistically significant AlignGF spectral pairs, we obtain 
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a histogram as shown in Figure 1.3, where high-count parent mass differences indicate the 

presence of putative modifications that are likely to be occurring in the sample (especially 

sample-handling modifications, as these are most likely to induce modifications on many 

peptides). While it is unavoidable that some false positive spectral pairs may be detected by the 

spectral matching process, we note that the corresponding “noise” introduced into this histogram 

is likely to distribute the detected parent mass differences across random mass difference bins, as 

there is no prior reason to expect false positive spectral pairs to induce biases towards specific 

parent mass differences. Furthermore, we impose 1% FDR on AlignGF spectral pairs and set a 

minimum per-mass frequency threshold for putative modifications of 0.5%, thus making it 

highly unlikely that false positive mass differences will substantially affect the frequencies 

histogram. Since spectral alignment cannot determine the directionality of modifications (i.e., a 

mass difference of D daltons could correspond to either a mass increase of +D or a mass 

decrease of –D on the modified peptide) and frequently cannot assign the precise amino acid 

localization of the modification (most spectra have incomplete fragmentation), the histogram 

provides evidence only towards the absolute value of the modification mass. The resulting 

histogram frequencies of the putative modifications are then used to define penalties used in the 

dynamic programming alignment algorithm used for scoring spectrum-sequence matches 

(described below). 

Previous peptide-spectrum matching algorithms[3, 41–43] have established the utility of 

assessing the quality of matches using functions of the sum of the total intensity of PRM peaks 

that match the theoretical amino acid masses of a peptide from the database. Similarly, RaVen 

uses scored PRM spectra for spectrum-sequence matches, defining the base matching score as 

the sum of the PRM intensity scores, which is then modified by penalties derived from the 
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frequency of occurrence of the modification masses used to make the spectrum match the 

sequence. In order to properly combine penalties with the summed PRM score, the penalty 

values are scaled as multipliers of the average PRM intensity score in each spectrum, thereby 

making penalties automatically adjusted to each spectrum’s peak scores and facilitating their 

intuitive interpretation as the “number of peak equivalents” required for the match to benefit 

from using a modification mass. More formally, we define peak equivalent (PE) as follows. 

Suppose we have two possible database matches, M1 and M2 for the same spectrum S, whose 

average peak score is A. Suppose also that annotations M1 and M2 have identical amino acid 

sequences, have nearly identical annotations, but M2 contains the modification m. If the 

modification m has a penalty of 1.0 peak equivalents, then M2 will have a higher match score 

than M1 if and only if M2 matches at least (1.0 * A) more total peak score than M1. Intuitively, 

using peak equivalents allows us to model penalties in a way that relates directly to each 

spectrum, in that adding a modification with a penalty of P into the alignment requires matching 

additional P (average) peaks to compensate for the penalty.  

We divide all possible modifications into three categories: known, putative and unknown. 

We define known modifications as those that are specified a-priori. These are modifications of 

the type that are expected to appear often in most samples such as oxidation or deamidation. For 

our data we specified known modifications for oxidation of methionine, pyroglutamate of n-

terminal glutamine, deamidation of asparagine and glutamine, and n-terminal acetylation and 

carbamylation. We assign modifications in this category a penalty of 0.01 peak equivalents. This 

penalty is small enough that adding such a modification will not greatly impact our final score 

but greater than zero so that adding a known modification still yields a lower score than no 

modification at all. The second category of putative modifications, are those for which there is 
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evidence of their presence in the sample from the histogram of spectral pairs as described above. 

These modifications may include modifications such as methylation, or sodium adducts which 

are given a penalty between a minimum value of 1.0 and a maximum value of 1.5; we map the 

frequency of mass differences of the spectral pairs to the peak equivalent range using a simple 

scaling procedure:  

𝑃𝑢𝑡𝑎𝑡𝑖𝑣𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 1.5 −
𝑓𝑟𝑒𝑞 −  𝑚𝑖𝑛𝐹𝑟𝑒𝑞

𝑚𝑎𝑥𝐹𝑟𝑒𝑞 − 𝑚𝑖𝑛𝐹𝑟𝑒𝑞
∗ 0.5 

Where maxFreq is the frequency of the most common mass difference and is given the minimum 

penalty of 1.0 and minFreq is the least common (but still above a minimum threshold of 0.05% 

to exclude noise) is given the maximum penalty of 1.5. After excluding the know modification 

masses and masses corresponding to amino acids (which are likely just peptide extensions) we 

found 23 mass differences that were labeled as putative modifications in our data. 

While the frequencies of mass differences in the spectral pairs histogram helps to reduce 

penalties for very common modifications, the detection of rare modifications is also emphasized 

by considering spectrum-specific putative penalties for mass differences of spectral pairs 

incident on each spectrum. These penalties are also scaled in the same manner as above from the 

minimum (1.0) to maximum (1.5) peak equivalents but for a given spectrum S and a putative 

modification of mass m, the scaling is based on the best AlignGF score (i.e., -log(AlignGF 

probability)) for a spectral pairs (S,S’) where mass(S’)-mass(S)=m and the normalization is 

based on the range of AlignGF scores over all pairs in the data. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 1.5 −
𝐵𝑒𝑠𝑡𝑃𝑎𝑖𝑟𝑆𝑐𝑜𝑟𝑒 − 𝑚𝑖𝑛𝐴𝐺𝐹𝑆𝑐𝑜𝑟𝑒

𝑚𝑎𝑥𝐴𝐺𝐹𝑆𝑐𝑜𝑟𝑒 − 𝑚𝑖𝑛𝐴𝐺𝐹𝑆𝑐𝑜𝑟𝑒
∗ 0.5 

 

 

All modifications not covered by the previous two categories are considered “unknown” 

modifications. These are modifications for which we have no significant prior evidence and are 
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the least likely to actually represent real modifications. We therefore assign these modifications a 

penalty of 1.5 times the maximum putative penalty.  

With our penalty based approach, additional penalties from other sources of information 

can be added to the algorithm. In particular, we also apply a relatively small penalty based upon 

proper tryptic cleavage of the candidate database peptide sequences. Tryptic penalties are applied 

when the amino acid preceding the peptide is not K, nor R, when there is a K or R in the middle 

of the peptide or when the final amino acid is neither K nor R. In any of these cases a cumulative 

0.5 peak equivalent penalty is applied for each “missed cleavage” location. These cleavage 

penalties are in addition to any other penalties from modifications. For future experiments, 

similar penalties can be created easily for other proteases. 

Using these penalties our alignment score consists of the sum of matched peaks minus the 

penalty from any modifications or missed cleavages that were used to achieve the match. The 

recurrence relationship for PSM scoring is defined as follows:  

𝑆[𝑖][𝑗] the PSM scoring matrix 

𝐷[0. . 𝑚] amino acid sequence of the database peptide 

𝑇[0. . 𝑚] masses of peaks of the theoretical database spectrum 

𝑀[0. . 𝑛] masses of the peaks of the peptide spectrum 

𝐼[0. . 𝑛] intensities of the peaks of the peptide spectrum (i.e., PRM 

scores) 

𝑃[𝐴][𝑚] the penalty for a modification of mass m on amino acid 

string A 

C[A] Cleavage penalty for amino acid string A 

SSP Spectrum specific penalty 

  

𝛥𝑀(𝑎, 𝑏) = 𝑀[𝑏] − 𝑀[𝑎] Delta mass between peaks in the peptide spectrum  

𝛥𝑇(𝑐, 𝑑) = 𝑇[𝑑] − 𝑇[𝑐] Delta mass between peaks in the theoretical spectrum 

𝛥𝑃(𝑎, 𝑏, 𝑐, 𝑑)
= 𝛥𝑇(𝑐, 𝑑) –  𝛥𝑀(𝑎, 𝑏) 

Delta mass between a gap in the peptide spectrum and amino 

acid sequence in the database (i.e., the hypothesis for scan 

number k, d modification mass) 

  

The Recurrence Relation is thus defined as follows 
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𝑆[𝑖][𝑗] = 𝐼 [0], 𝑤ℎ𝑒𝑟𝑒 𝑖 =  0 𝑜𝑟 𝑗 =  0 

𝑆[𝑖][𝑗] = 𝐼[𝑗] +  𝑆[𝑥][𝑦] +  𝐶[𝐷[𝑥. . 𝑖]] +  𝑚𝑖𝑛 { 𝑃[ 𝐷[𝑥. . 𝑖]][𝛥𝑃(𝑥, 𝑖, 𝑦, 𝑗)], 𝑆𝑆𝑃}  ∀  0 ≤ 𝑥

< 𝑖, 0 ≤ 𝑦 < 𝑗 
 

Notice that for our alignment we use unlimited “lookback” in both dimensions. This is so 

that we may match gaps where either there are noise peaks in the spectrum and we wish to ignore 

them in favor of the true peaks, or there are missing peaks in the spectrum (which is often the 

case for the contig-consensus spectra) and we wish to match multiple amino acids from the 

database to adjacent peaks in the spectrum. In theory this makes the algorithm O(n
2
m

2
), where n 

is number of masses in the spectrum and m is the number of amino acids in the database 

sequence, and is potentially quite slow. However, in practice the lookback can be limited to any 

amount desired so we limit lookback to 1500 daltons in the spectrum and 8 amino acids in the 

database (additional details discussed below).  

To reduce the runtime of the alignment algorithm we employ an optimization for all gap 

matches. A gap match is any match in the alignment that does not compare consecutive 

theoretical masses to consecutive spectral peaks. Any such match can be thought of as matching 

a “gap mass” G (the mass between the start and end peaks being considered), with the database 

string (the sequence of amino acids being matched). Because our algorithm uses the sum of the 

peak scores minus the sum of any penalties, we simply need to add the scores of the two 

bounding peaks, and then subtract any penalties required to match the mass G to the theoretical 

mass of the database string. Since the best score will always be the same for the same sequence 

of amino acids and the same mass, we can precompute the answers for each amino acid sequence 

and store these gap-alignment (GA) blocks for each mass. Additionally, the order of the amino 

acids does not matter since modifications appear on a single amino acid without respect to order 

(we do not consider context) and by definition a gap contains no interior spectrum peaks to 
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determine the localization of modifications. The only limiting factor is the amount of memory 

required to cache all such GA blocks. For our purposes, we precompute all 2-mers, 3-mers and 

4-mers with 1 dalton bins. This results in less than 16000 GA blocks requiring only ≈100 

megabytes of memory. For each bin we compute the lowest penalty that could be achieved at 

that mass for the amino acid sequence in question. Each GA block appears as in Figure 1.13. 

Once computed, the solution for any gap match up to four amino acids will then be a single 

lookup in the GA block corresponding to the amino acid sequence in question, i.e. - O(1). If we 

wish to compute the penalty for a gap of five to eight amino acids we may combine the values 

for two GA blocks, one that represents the initial 4-mer of string, and another that represents the 

remainder. For example, for a 7-mer, we combine the GA blocks for the beginning 4-mer and the 

trailing 3-mer. The answer can be found in O(n) time where n is the length of a single GA block 

(1500). This is done by finding the minimal value (penalty): 

 

min[𝐺𝐴𝐵𝑙𝑜𝑐𝑘1[𝑚] + 𝐺𝐴𝐵𝑙𝑜𝑐𝑘2[𝑀 − 𝑚]]  ∀  0 ≤ 𝑚 ≤ 𝑁 

 

Where m is the mass of the bin from one block and M is the total mass of the spectral gap we are 

computing.  This method can be used to combine more than two GA blocks for even longer 

amino acid gaps, but the runtimes increase quickly and hence this becomes undesirable for 

values above the precomputed size times two. Since the average amino acid mass is 

approximately 120 daltons, allowing our GA blocks to be 1500 daltons allows sufficient length 

for eight average amino acid masses combined with multiple large (over 100 dalton) 

modification masses. Also, this is a very large spectral gap to have no matching peaks; a gap this 

large is already indicative of a poor quality spectrum and as such, is likely to be misidentified 
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regardless. This was also further supported by our observation that considering larger gaps did 

not positively influence identifications in our data. 

 

 Supplemental - FDR 1.13.

 

To determine which identifications are significant we used the standard False Discovery 

Rate (FDR) method [44] using the target database and a shuffled decoy database. We use a 

shuffled database rather than the common reversed database because we do not know the 

orientation of the peptide in contig-consensus spectra [30]. In addition, given that the computed 

alignment scores are highly dependent on the total intensity of peaks in each individual 

spectrum, we use a method similar to that used by MS-GF to compute p-values to derive a “p-

value score” or “p-score” suitable for estimation of FDR. This p-score is computed by 

calculating the distribution of scores for all possible peptides using only the known modifications 

(putative and unknown modifications are not considered). Using the actual score of the 

alignment match (which includes the penalties for all modifications), we determine the chance of 

a random match (with known modifications) scoring higher than our penalty-scored match. 

Because we do not consider putative or unknown modifications in the null space of all possible 

matches, this is not a true p-value as computed in MS-GF but still works well as a spectrum-

specific normalized identification score. 

 

 Supplemental – Variants 1.14.

 

Since site localization is often unknown or uncertain for putative or unknown 
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modifications, we define the concept of a “peptide variant” or simply “variant”. All peptides 

which have the same amino acid sequence and whose total mass differs by no more than the 

parent mass tolerance are considered to be a single peptide variant. For example the two 

peptides: VARIANT and VARIA(N,1)T are considered the same variant if the parent mass 

tolerance was at least 1 dalton, while VARIANT and VARIA(N,1)TS would never be considered 

the same variant because they do not have the same unmodified peptide. The two peptides: 

(V,12)ARIA(N,1)T and VA(R,15)IANT would be considered the same variant if the parent mass 

tolerance was 2 daltons, since the unmodified peptides are the same and their total mass is within 

2 daltons. Because the lens data we used is low resolution, we set a mass tolerance of 2.5 daltons 

for our analysis. 

We propose that counting identifications of peptide variants is better than simply 

counting spectrum identifications or unique modifications for multiple reasons. First, if 

performance of an algorithm is measured solely in terms of additional identifications, just using 

spectral identifications does not necessarily reflect the amount of new information that could be 

of potential biological relevance (e.g., there is not much additional information in identifying 

more spectra to peptides that were already otherwise identified). Second, if two different 

identifications differ only with respect to their modifications, and those modifications fall within 

the parent mass tolerance it is often not possible to determine if the PTM identification is 

accurate without a manual inspection of the spectrum. Third, since localization of modifications 

is usually beyond the scope of blind search algorithms, it is likely that two peptides with similar 

total modification masses on the same underlying peptide sequence would actually represent the 

same modification, while just being mislabeled by the algorithm as differing PTM combinations. 

As such, identification of variants focuses the analysis of the results in the discovery of distinct 
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new modifications rather than on the discovery of new sites for the same modifications (which 

would require addressing other issues such as co-elution of similarly modified peptides). 

Once we have obtained the list of FDR filtered identifications for the individual spectra using our 

new alignment we then reduce all the PSMs to one single PSM that is a representative of each 

variant. The PSM chosen is the one with the highest p-value (or p-score) of all PSMs in the 

variant group.  

Since MS-GF+ identifications are used to estimate false discovery rates of AlignGF 

spectral pairs, we further reuse those identifications for spectra that are not directly identified by 

our alignment (e.g., spectra with no pairs in the dataset or poor spectra with no sequence tags). 

Since the p-values used to compute FDR by MS-GF+ and the p-scores used in our FDR 

computation are not comparable, we use search-specific PSM q-values as the PSM scores used 

for variant representatives. Finally, variant representatives are ranked by their corresponding 

variant q-scores and variant-level FDR is estimated as usual  [44]. 

 

 Supplemental – Detection of common modifications 1.15.

using variants-based offset frequency function 

 

As described in the main text, traditional approaches to blind database search [9][11][45] 

traditionally use offset frequency functions based on PSM counts to detect frequent (amino acid, 

mass offset) pairs and thus cannot readily distinguish modifications occurring on many different 

sequences (and thus more likely to be real) from modifications identified on only a few 

sequences but with high spectral counts (as is often the case for very abundant peptides). RaVen 

makes this distinction by computing offset frequency functions not on PSMs but on counts of 

unique peptide variants with each detected mass offset (Table 1.2). Moreover, since the 
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localization of masses with blind searches is not known a priori, RaVen assigns partial credit to 

multiple amino acids where there are no distinguishing peaks and uses an iterative strategy to 

converge to the minimal set of amino acids that covers all identified peptide variants. For 

example: a peptide variant containing a detected mass of +12 on a gap (ABCC, +12) would not 

have any spectrum peaks supporting any of the four amino acids in the ABCC subsequence so 

RaVen would assign the frequency of observation of the mass offset in proportion to the number 

of times each amino acid is observed in the subsequence: (A,12) ¼, (B,12) ¼, (C,12) ½. Once the 

initial table of frequencies is constructed RaVen uses a greedy set cover algorithm to selected 

assignments of detected mass offsets to amino acids or N/C-termini. The method proceeds as 

follows: 

1. For every cell in the offset frequency table, find the site with the highest counts.  

a. For every variant identification with a subsequence that contains that site and 

mass, assign the modification to the selected site. I.e., if mass +12 has the most 

counts on H, change (ABH, +12) to AB(H, +12).  

2. Recompute all the frequencies in the offset frequency table using the updated variant 

identifications. 

3. Repeat steps 1 and 2 until all gaps have been resolved.  

 

 

Using this procedure RaVen’s variant-based PTM table has greatly increased ability to 

localize modifications (see Figure 1.15). 

 

 Supplemental – Detection of rare modifications using 1.16.

spectral networks and alignment probabilities 

 

While offset frequency functions have been very successful for the detection of sample-

handling modifications or very abundant post-translational modifications, their foundations on 

the frequency of observation of a mass offset on many peptides intrinsically bias against the 
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detection of rare, but potentially biologically more relevant post-translational modifications. In 

fact, it is not unreasonable to expect that functional post-translational modifications would 

mostly occur on only very few sites where corresponding modification enzymes (e.g., kinases or 

acetylases) would have been evolutionarily refined to modify with a high degree of specificity 

and only under controlled regulatory contexts. To specifically support the detection of rare but 

highly-significant mass offsets, RaVen capitalizes on the significance of spectral alignments 

between the spectrum with the putative mass offset and all of its neighbors in the corresponding 

spectral networks. Intuitively, this supports the notion that a putative modification is significant 

if there are other spectra with highly correlated fragmentation patterns assigned to overlapping 

peptide sequences with zero or other different modifications – a type of event that may occur 

only once yet still result in very significant spectral alignment p-values [12]. 

For example, if a spectrum S is identified as having a modification of mass X and is also 

aligned to a spectrum S’ where mass(S)-mass(S’)=X then that supports the hypothesis that the 

modification mass X is not merely an alignment anomaly since the likelihood of the spectral 

pairing algorithm randomly paring two spectra that happen to have the same mass difference is 

very low (identifications are derived by aligning each spectrum to the database but spectral pairs 

are derived by aligning spectra to spectra). Also, since spectral alignments are filtered at a 1% 

FDR threshold and database identifications are also filtered at 1% FDR, the odds of such an 

event happening by random chance would be very low. The more neighbors in the network that 

support the existence of the modification and the higher their pair scoring, the less likely the 

modification is simply a random product of the alignment algorithm and more likely is a true 

discovery. The supported mod score is thus determined by summing the scores of all pairs of the 

spectrum that have a mass difference equal to the modification mass and that are in the same 
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peptide region. Using this method, from the thousands of modifications discovered, we can 

rapidly find modifications that may be present in only a handful of spectra, but are well 

supported by additional network data.  

 

 Supplemental – Detection of variants with chohort-1.17.

specific fold changes in spectral counts 

 

In order to detect cohort-specific fold changes in spectral counts, we compute the ratio of 

the number of PSM’s containing the modification in the cohort of interest to the sum of those 

that occur in the control cohort. However, different cohorts may contain different total number of 

spectra or have different rates of identification so we need to find an appropriate baseline for 

comparison. As such, we select the most prevalent form of the peptide (often this is the 

unmodified form, but may be one with a very common modification) and compute the fold 

change as follows: 

 Ncases = Number of PSMs with the modification in the cohort of interest 

 Ncontrol = Total PSMs with the modification in the control cohort 

 MPcases = Number of PSMs of the most prevalent form in the cohort of interest 

 MPcontrol = Total PSMs of the most prevalent in the control cohort 

 

𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒 =

Ncases
MPcases
Ncontrol

MPcontrol

 

 

To reduce exposure to highly-variable ratios resulting from low spectral counts, we limit 

our consideration to variants with at least 15 total identified spectra in all cohorts and with most 

prevalent forms that have at least 5 spectra in each cohort. Finally, because many of these 
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modifications are rare, we consider any cohorts with zero identifications to have had one 

identification. 
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Figure 1.1:  The RaVen Workflow  

(a) Tandem mass spectra are aligned using AlignGF and assembled into spectrum contigs using MetaSPS; (b) 

De novo sequence tags are extracted from contig consensus spectra and matched to the database to select 

putative match positions; (c) contig-assembled spectra are aligned to tag-filtered database sequences using a 

dynamic programming algorithm parameterized with sample-specific modification frequency scores. 
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Figure 1.2:  Comparison of identification rates of RaVen, MS-GF+ and MODa.  

(a) shows the number of cluster identifications for each algorithm while (b) shows number of variants (i.e., unique 

modified peptide sequences, regardless of the localization of modifications). Totals for all identifications by each 

algorithm are shown next to the colored circles with the names of each algorithm. 
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Table 1.1:  Upper portion of PTM Table from MODa showing all cells with >10 counts.  

Green cells are known modifications (according to unimod.org) while red cells are unknown. Table exhibits very 

poor localization of the modification sites, particularly for those modifications with very high counts. 
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Table 1.2:  Upper portion of the PTM Table using the RaVen method using variants with recursive localization by 

frequency showing all cells with >10 counts.  

Highlighted cells are those with values of at least 10 counts. Green cells are known modifications (according to 

unimod.org) while red cells are unknown. Compare this smaller number of high count cells and large proportion of 

known modifications with the same table as created by MODa. 
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Figure 1.3:  Histogram of pairwise deltas used to generate penalties for spectral alignment. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 6 1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1
%

 o
f 

A
ll 

P
ai

rs
 

Pair Mass Difference 



41 

 

 
 

 
Figure 1.4:  Pair Supported Modifications 

Using Pair Supported Modification Calling (PSMC) rather than PSM frequency table easily identifies uncommon 

modifications. Of the modification masses identified 49% are verifiable as correct as is (either common or 

uncommon). Another 29% are correct in combination with other nearby modifications on the peptide or were 

combinations of more common modifications, and another 20% were simply off by one dalton due to the mass 

errors in the data. 2% of the modifications found were supported by the spectra but not readily identifiable as 

combinations of known modifications (possibly novel). 
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Figure 1.5:  Snapshot of the network containing the KPIDWGAASPAVQSR peptide  

with many of the modifications present for this peptide along with pie charts showing the distribution of the peptides 

in the various cohorts.  
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Figure 1.6:  All 256 manually verified discovered variants of the largest Protein Variant Region  

(PVR) identified in the region spanning amino acids 65 to 146 of the αA-crystallin protein (P02489). 
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Table 1.3:  Common modifications with 10 or more variants in the RaVen offset frequency table.  

 

Mass Site Classification Description #Variants 
-48 M Chemical Derivative Homoserine lactone 14 

-42 R Artefact Ornithine 10 

-18 D Chemical Derivative Dehydration 16 

 E Artefact Pyro-glu 12 

 S PTM Dehydration 18 

 T PTM Dehydration 23 

-17 N Chemical Derivative N-Succinimide 19 

 Q Artefact Pyro-glu 42 

1 N Artefact Deamidation 339 

 Q Artefact Deamidation 251 

4 W Chemical Derivative Kynurenin 14 

12 W Artefact Carbon 12 

14 C PTM Methylation 84 

16 M Artefact Oxidation 221 

 W Artefact Oxidation 21 

22 D Artefact Sodium adduct 36 

 E Artefact Sodium adduct 52 

 Q Artefact Sodium adduct 18 

28 K Artefact Dimethylation 16 

 N-term Artefact Formylation 12 

 S Artefact Formylation 37 

 T Artefact Formylation 14 

32 W PTM Di-oxidation 14 

42 K PTM Acetylation 24 

 N-term PTM Acetylation 165 

43 K Multiple Carbamylation 15 

 N-term Multiple Carbamylation 341 

54 R Other Methylglyoxal-derived 
hydroimidazolone 

16 

57 N-term Artefact Carboxyamidomethylation 44 

58 K Artefact Carboxymethyl 26 

72 K PTM Carboxyethyl 12 

80 S PTM Phosphorylation 34 
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Table 1.4:  Rare modifications observed with less than 10 variants in the offset frequency table but well supported 

by additional spectral pairs data. 
 

 

Table 1.5:  Modification masses that are well supported by the data but have not been previously categorized in 

UniMod or in the literature. 

 

Mass Site #Variants 

25 D 1 

88 K 6 

115 K 2 

118 Q 3 

   

Mass Site Classificati
on 

Description #Var
s 

 Mass Site Classification Description #Vars 

-41 R Substitution RD 3  40 N-term C Artefact Pyro-carbamidomethyl 7 

-34 F Substitution FI/L 5  41 N-term Chem Derivative Amidine 1 

-32 M Substitution M-->V 7  43 M Artefact Carbamylation 7 

-30 S Substitution S-->G 5  44 A Substitution A-->N 2 

-28 N Chemical 
Derivative 

Pyrrolidone 1   K Artefact Carboxylation 8 

-28 R Substitution R-->K 2   W Artefact Carboxylation 8 

-27 K Substitution KT 2  48 C Chem Derivative Trioxidation 6 

-22 H Substitution H-->N 2  53 E Chem Derivative Iron 1 

-19 R Substitution R-->H 1  57 K Other Carbamidomethyl 4 

-16 L Substitution L-->P 5  60 A Substitution AM 1 

 S Chemical 
Derivative 

Deoxy 4  64 C PTM Sulfur Dioxide 1 

-15 Q Substitution Q-->I/L 3  71 C Artefact Propionamide 2 

-14 I Substitution I-->V 5  72 H Chem Derivative Ethoxyformyl 2 

-13 N Substitution N-->T 1   R Multiple Dihydroxyimidazolidine 2 

-1 C Multiple Deydro 1  73 I Substitution I-->W 1 

10 S Substitution S-->P 4  80 T PTM Phosphorylation 8 

12 E Artefact Carbon 1  86 C Chem Derivative Malonylation 1 

 H Artefact Carbon 2  87 C Artefact Acrylamide adduct 2 

 T Artefact Carbon 3  88 K Other Thioacyl 1 

14 D PTM/SAAP Methylation 2  94 K Other Acrolein addition 1 

 H PTM Methylation 6  97 K Chem Derivative Maleimide 5 

 K PTM Methylation 2  101 C PTM HN2_Mustard 8 

 S PTM Methylation 5   K PTM HN2_Mustard 8 

16 F Artefact Oxidation 4  105 C Chem Derivative Pyridylethyl 5 

 H Artefact Oxidation 2  106 K Chem Derivative methylsulfonylethyl 1 

 K PTM Oxidation 3  114 C Chem Derivative Dicarbamidomethyl 1 

17 E Artefact Ammonium 2  116 C Chem Derivative 2-succinyl 8 

24 I Substitution I --> H 1  119 K Chem Derivative Pyridylacetyl 1 

26 N-term Other Acetaldeyhde 4  120 C Chem Derivative Ethylsulfonylethyl 3 

 H Other Acetaldeyhde 4  127 N-term Chem Derivative N-Succinimidyl-2-
morpholine acetate 

1 

27 S Chemical 
Derivative 

Ethyl amino 1  140 K Chem Derivative Maleimide 1 

28 D Artefact Ethylation 1  145 N-term Chem Derivative CAMthiopropanoyl 1 

30 V Substitution V-->E 1  161 N PTM Hexosamine 2 

34 H Chemical 
Derivative 

Chlorination   162 C Glycosylation Hex 1 

38 D Artefact Cation:K 8   K Glycosylation Hex 1 

 E Artefact Cation:K 5  174 C Chem Derivative Thiadiazolydation of 
cysteine 

1 

 K Artefact Cation:K 1  209 C Artefact Carbamidomethylated 
DTT modification of 

cysteine 

2 
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Table 1.6:  Most modified single amino acid ‘K’ at position 159 in the βS-crystallin protein. 

 
 

Most Modified Protein Position Type 
[42]KPIDWGAASPAVQSFR Acetylation 

(K,44)PIDWGAASPAV(Q,1)SFR Carboxy 
(K,58)PIDWGAASPAVQSFR Carboxymethyl 
(K,72)PIDWGASPAVQSFR Carboxyethyl 

(K,97)PIDWGAASPAVQSFR Maleimide 
(K,101)PIDWGAASPAVQSFR HN2_mustard 
(K,119)PIDWGAASPAVQSFR Pyridylacetyl 

[58](K,94)PIDWGAASPAVQSFR Acrolein addition 
R(K,14)PIDWGAASPAVQSFR Methylation 
R(K,28)PIDWGAASPAVQSFR Formylation 
R(K,57)PIDWGAASPAVQSFR Carbamidomethyl 
(K,127)PIDWGAASPAVQSFR N-Succinimidyl-2-morpholine acetate 
(K,140)PIDWGAASPAVQSFR Malemide 
(K,162)PIDWGAASPAVQSFR Hexose glycosylation 
(K,88)PIDWGAASPAVQSFR Unknown 

 

 

Table 1.7:  Most modified peptide at position 236 (C-terminal) in the αA-crystallin protein. 
 

Most Modified Peptide Type 
(Q,-17)WHLEGSFPVLATEPPK Pyro-glu 

(Q,-17)(W,4)HLEGSFPVLATEPPK Pyro-glu & Kynurenin 

(Q,-17)(W,12)HLEGSFPVLATEPPK Pyro-glu & Carbon Adduct 

(Q,-17)WHLEGSFPVLAT(E,22)PPK Pyro-glu & Sodium Adduct 

(Q,-17)WHLEG(S,28)FPVLATEPPK Pyro-glu & Formylation 

(Q,-17)(W,32)HLEGSFPVLATEPPK Pyro-glu & Dioxidation 

QWHLEGSFPVLAT(E,22)PPK Sodium Adduct 

(Q,-17)WHLEGSFPVLAT(E,38)PPK Pyro-glu & Potassium Adduct 

(Q,-17)(W,44)HLEGSFPVLATEPPK Pyro-glu & Carboxy 

Q(W,32)HLEGSFPVLATEPPK Dioxidation 

[43]QWHLEGSFPVLATEPPK Carbamylation 

QW(H,72)LEGSFPVLATEPPK Ethoxyformyl 

(Q,-17)W(H,72)LEGSFPVLATEPPK Pyro-glu & Ethoxyformyl 

(Q,-17)WHLEGSFPVLA(T,80)EPPK Phosphorylation 

[43]QW(H,26)LEGSFPVLATEPPK Substitution HY 

QWHLEGSFPVLATEPP(K,43) Carbamylation 

(Q,-17)WHLEGSFPVLAT(E,22)PP(K,43) Sodium Adduct & Carbamylation 

(Q,-17)WHLEGSFPVLATEPP(K,72) Pyro-glu & Carboxyethyl 

(Q,-17)WHLEGSFPVLAT(E,22)PP(K,72) Sodium Adduct & Carboxyethyl 

(Q,-17)WHLEGSFPVLATEPP(K,106) Pyro-glu & Methylsulfonylethyl 
(Q,-17)WHLEGSFPVLATEPP(K,114) Pyro-glu & Double Carbamidomethylation 
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Table 1.8:  Top 20 largest protein regions in terms of total variant count. 

 
 

Protein PVR Sequence Count 

CRYAA 

SDRDKFVIFLDVKHFSPEDLTVKVQDDFVEIHGKHNERQDDHG-

YISREFHRRYRLPSNVDQSALSCSLSADGMLTFCGPKIQ 294 

CRBS LSSCRAVHLPSGGQYKIQIFEKGDFSGQMYETTEDCPSIMEQFHMRE 102 

CRBB1 RVGSVKVSSGTWVGYQYPGYRGYQYLLEPGDFRHWNEWGAFQPQMQSLRR 93 

CRBB2 EKAGSVLVQAGPWVGYEQANCKGEQFVFEKGEYPRWDSWTSSR 92 

CRBB1 TKGKGAPPAGTSPSPGTTLAPTTVPITSAKAAELPPGNYR 87 

CRYAB KYRIPADVDPLTITSSLSSDGVLTVNGPRKQVSGPER 86 

CRBB1 LRDKQWHLEGSFPVLATEPPK 84 

CRBA1 RMEFTSSCPNVSERSFDNVRSLKVESGAWIGYEHTSFCGQQFILERG 81 

CRYAA MDVTIQHPWFKRTLGPFYPSRLFDQFFGEGLFEYDLLPFLSSTISPYYR 80 

CRBS QYLLDKKEYRKPIDWGAASPAVQSFRR 76 

CRBB2 RGLQYLLEKGDYKDSSDFGAPHPQVQSVRR 75 

CRYAB LRAPSWFDTGLSEMRLEKDRFSVNLDVKHFSPEELKVK 71 

CRBS RYDCDCDCADFHTYLSR 66 

CRBB1 

SDRLMSFRPIKMDAQEHKISLFEGANFKGNTIEIQGDDAPSLWVYGFSDRVGS

VK 65 

CRBS CNSIKVEGGTWAVYERPNFAGYMYILPQGEYPEYQRW 63 

CRYAB KVKVLGDVIEVHGKHEERQDEHGFISREFHR 59 

CRBA1 MTIFEKENFIGRQWEISDDYPSLQAMGWFNNEVGSMK 58 

CRBB2 KKMEIIDDDVPSFHAHGYQEKVSSVR 54 

CRBS MSKTGTKITFYEDKNFQGRR 53 

CRBB1 GFDRVRSIIVSAGPWVAFEQSNFRGEMFILEKGEYPR 51 
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Figure 1.7:  Histogram of number of variants in various protein regions throughout the sample. 
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Figure 1.8:  Diagram of variants and modifications of the CRYAA protein.  

Above the sequence is the histogram of the number of variants that cover each amino acid, while below the 

sequence are symbols denoting what types of modifications were found at that location. Each symbol represents a 

unique modification found at that site. Even though the localization of these modifications may not be precise, the 

diagram still reveals the diversity of protein-level modifications, as well as the variation between areas of high and 

low modification rates. 
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Table 1.9:  Top 10 modifications detected with the highest increase in spectral counts for the Cataract, Old Age, 

and Infant cohorts. 
 

 
Peptide 

 
Protein 

 
Location 

 
Classification 

 
Cohort 

Fold  
Incr 

R.HWNEWDA(S,27)QPQLQSVR.R CRBB3_HUMAN 180-195 Ethyl amino Cataract 18.5 

K.VQ(D,14)DFVEIHGK.H CRYAA_HUMAN 89-99 Methyl Cataract 16.3 

M.[42]ASDHQTQAGKPQ(S,10)LNPK.I CRBB2_HUMAN 2-18 Acetyl & 
Substitution SP 

Cataract 9.4 

R.YRLPSNVDQSALSCSLSADGMLTF(C,120)GPK.I CRYAA_HUMAN 118-145 Ethylsulfonylethyl Cataract 7.4 

R.SYETTTD(C,105)PNLQPYFSR.C CRGC_HUMAN 16-32 Pyridylethyl Cataract 5.4 
R.GFQYVLE(C,14)DHHSGDYK.H CRBA4_HUMAN 159-174 Methyl Cataract 5.2 

K.EY(R,55)KPIDWGAASPAVQSFR.R CRBS_HUMAN 156-174 Undetermined Cataract 4.7 
R.HWNEWGAFQPQMQ(S,-30)LR.R CRBB1_HUMAN 215-230 Substitution SG Cataract 4.2 

C.SLSADGMLTF(C,14)GPK.I CRYAA_HUMAN 132-145 Methyl Cataract 4.2 

D.(S,80)SDFGAPHPQVQSVR.R CRBB2_HUMAN 174-188 Phospho Cataract 3.9 
K.(E,22)YR(K,44)PIDWGAASPAVQSFR.R CRBS_HUMAN 156-174 Sodium & Carboxy Old Age 12.35 

R.GYQYILE(C,14)DHHGGDYK.H CRBA1_HUMAN 178-193 Methyl Old Age 8.7 

M.(D,25)IAIHHPWIR.R CRYAB_HUMAN 2-11 Undetermined Old Age 8.2 
R.T(N,-17)AMSGLVR.A BFSP2_HUMAN 44-52 N-Succinimide Old Age 6.4 

R.G(E,22)YPSWDAWGG(N,1)TAYPAER.L CRBA4_HUMAN 72-90 Sodium Old Age 6.3 

N.[42]PTPGSLGPWK.I CRBA1_HUMAN 23-32 Acetyl Old Age 4.7 
K.VQDDFV(E,22)IHGK.H CRYAA_HUMAN 89-99 Sodium Old Age 4.4 

R.GEMFILE(K,58)GEYPR.W CRBB1_HUMAN 111-123 Carboxymethyl Old Age 4.4 

T.[26]TLAPTTVPITSAK.A CRBB1_HUMAN 38-50 Acetaldeyhde Old Age 4.2 
K.GDFSGQMYETT(E,22)DCPSIME(Q,1)FHMR.E CRBS_HUMAN 102-125 Sodium Old Age 4.0 

R.HWNE(W,16)GAFQPQ(M,16)QSLR.R CRBB1_HUMAN 215-230 Oxidation x2 Infant 274.2 

K.VLEGV(W,44)IFYELPNYR.G CRBS_HUMAN 132-146 Carboxylation Infant 45.4 
R.SLHVLEGC(W,16)VLYELPNYR.G CRGC_HUMAN 123-140 Oxidation Infant 19.9 

R.[28]YRLPSNVDQSALSCSLSADGMLTFCGPK.I CRYAA_HUMAN 118-145 Formyl Infant 19.3 

_.[42](M,16)DIAIHHP(W,16)IR.R CRYAB_HUMAN 1-11 Acetyl + Oxidation 
x2 

Infant 19.2 

_.[42](M,-48)DIAIHHPWIR.R CRYAB_HUMAN 1-11 Acetyl & 

Homoserine lactone 

Infant 13.5 

R.HWNEWGAFQPQ(M,16)QSLR.R CRBB1_HUMAN 215-230 Oxidation Infant 12.4 

K.[26]HFSPEDLTVK.V CRYAA_HUMAN 79-88 Acetaldeyhde Infant 11.7 

K.GL(M,16)(M,16)ELSEDCPSIQDR.F CRGC_HUMAN 100-115 Oxidation x2 Infant 11.5 
K.[26]IQTGLDATHAER.A CRYAA_HUMAN 146-157 Acetaldeyhde Infant 9.4 
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Figure 1.9:  A section of the spectral network showing the VQ(D,14)DFVEIHGK peptide 

and representative neighbor peptides matched by spectral alignment, as well as per-node pie charts with cohort-

specific relative abundance showing that this peptide is only present in the Cataracts cohort. 
 

  

VQDDFVEIHK VQ(D,14)DFVEIHK 
 

Figure 1.10:  Spectra showing the match between modified and unmodified forms of the VQDFVEIHGK peptide. 
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Table 1.10:  Table of all lens data files used in analysis. 
 

Filename Number of Spectra Condition 
0d.mgf 13206 Any 

2yo_insol.mgf 56620 Insoluble 

2yo_sol.mgf 53945 Soluble 

18yo_insol.mgf 67847 Insoluble 

18yo_sol.mgf 56393 Soluble 

32yo_sol.mgf 13304 Soluble 

35yo_insol.mgf 60445 Insoluble 

35yo_sol.mgf 52286 Soluble 

70yo_insol.mgf 64112 Insoluble 

70yo_sol.mgf 65263 Soluble 

93yo_insol.mgf 13404 Insoluble 

93yo_sol.mgf 17171 Soluble 

70yo_cat_insol.mgf 59605 Insoluble (with Cataracts) 

70yo_cat_sol.mgf 62325 Soluble (with Cataracts) 

93yo_cat_insol.mgf 65283 Insoluble (with Cataracts) 

93yo_cat_sol.mgf 65082 Soluble (with Cataracts) 
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(a) 
Tag  

Length 
Allowed  

Tag Gaps 
 

Target Matches 
Contigs with  

Matching Tags 

3 0 143,634,098 2683 

4 1 41,965,703 3524 

4 0 5,055,268 2003 

5 2 3,772,770 3828 

5 1 2,154,127 3059 

5 0 249,219 1485 

6 2 235,791 3494 

6 1 122,534 2384 

6 0 15,596 930 

 

  

(b) 

 
(c) 

 
 
Figure 1.11:  Number of contig tags generated and the number of contigs for which a tag can be found.  

Length 5 with 2 allowed missing peaks gives best performance while maintaing “reasonable” number of matches. 

One could also consider tags of 6-2 if willing to suffer a drop in performance in return for a 10x speedup in 

processing. However processing speed for contig alignment step is not really a large factor. (a) Table showing tag 

matches versus number of contigs with at least one match. (b) Number of tags rises rapidly with the use of short 

tags. (c) Number of correct tags does not increase with smaller tag sizes, but rather when using large tag sizes 

while allowing missing peaks.  
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(a) 

 
  

(b) 

 
  
Figure 1.12:  Choice for percentage of contig matches kept to form spectral tags for 46,396 spectra in 8348 contigs 

with at least one correct match.  

(a) Ability to find correct PSM drops off slowly before 80% retention threshold for contig tags. At an 80% threshold 

more than 99% of all spectra tags are still retained. (b) The total number of spectral tags falls rapidly as retention 

threshold becomes stricter. 
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Figure 1.13:  Pre-computed Gap-Alignment Block (GAB) 

An example of a pre-computed gap-alignment block for the amino acid string “MN”.  Each bin represents a gap 

mass or mass difference between two peaks in the spectrum of interest, so bin 144 is a (rounded) mass of 144 

daltons. A mass of this size corresponds to the sum of masses for Methionine and Asparagine with no 

modifications., therefore the penalty for this match is 0. All other bins are given values that correspond to the lowest 

penalty explanation for an annotation with that mass. The bin at 145 corresponds to a +1 modification which is 

explained by the known modification of Deamidation on Asparagine and therefore has a penalty of K, the penalty 

for one known mod. Similarly the mass bin at 160 corresponds to the known +16 modification of Oxidation of 

Methionine and also receives the value K. The bin at 161 corresponds to a modification of +17, or simultaneous 

modifications of Oxidation of Methionine and Deamidation of Asparagine, and therefore has a penalty of 2 known 

modifications or 2*K. The bin at 162, corresponds to a modification of +18, which for the purposes of this example 

is a putative modification discovered in the pair data, and therefore receives the penalty value (P18) for a 

modification of +18 daltons computed from the frequency of a +18 shift in the pairs data. The bin at 163 

corresponds to a +19 modification which is best explained by a putative modification of +18 on M combined with a 

Deamidation of Asparagine and receives a penalty for both or: P18 + K. However, the bin at 164 has no better 

explanation than an unknown modification of +20 daltons (two unknowns that added to +20 would be even worse) 

and therefore receives the penalty for an unknown modification: U as do all other mass bins that cannot be explained 

by sums of known and/or putative modifications. Once computed this gap-alignment block can be used to look up a 

match between the database string “MN” and any gap between two peaks in the spectrum that has mass between 114 

and 1499 daltons in O(1) time. Note: In no gap of less than 114 daltons could actually be considered since that is the 

minimum mass of two amino acids (2 Glycines). 
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Figure 1.14:  Raven Only Misses Very Poor MSGF+ Identifications 

Histogram of the –log(p-values) of all the identifications made by MSGF+ versus only those that Raven failed to 

identify. The values for the MSGF+ identifications range from 9.5 to 24.5, however for the 1046 PSMs which 

Raven failed to identify, 98% had a value between 9.5 and 10.0. Raven only misses MSGF+ identifications which 

have a low probability of being correct. 
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Figure 1.15:  Percentage of identifications localized to the top three sites with the highest counts in the offset 

frequency table for the five most frequent modifications shows that RaVen greatly improves localization over 

MODa. 
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CHAPTER 2 - Discovery of post-translational 

modifications and proteomics diversity in colorectal 

cancer 

 

 Abstract 2.1.

High throughput proteomics analysis of tumor tissue allows for the observation of 

translated gene products as well as post-translational modifications which could be related to 

altered cancer biology. Recognizing this potential, the NIH Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) program has supported the acquisition and study of reference collections 

of tumor proteomics mass spectrometry data. While these collections have analyzed changes in 

protein expression and translation of genomic events, limited attention has been given to the 

detection and potential role of post-translational modifications in tumor tissues. Using a newly-

developed blind database search approach (RaVen) we reanalyze the CPTAC colorectal cancer 

data (MSV000079852) and reveal dozens of previously undetected post-translational 

modifications in over 15,000 modified peptide variants, including some found to be potentially 

differentially expressed between healthy and tumor samples. In addition to detecting both known 

and novel modifications, as well as rare modifications and amino acid polymorphisms, our 

analysis further reveals the occurrence of hyper-modified protein regions in colorectal cancer 

including a single region in hemoglobin subunit beta (HBB) covered by over 70 distinct peptide 

variants. The novel detection of such proteomics diversity illustrates how blind modification 

searches can reveal novel proteomics events of potential biological significance, including the 

detection of previously-undetected modification variants mapped to functional protein regions. 

 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=120ab12f58594dd29c5a71de529a9686
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 Introduction 2.2.

Deeper understanding of the molecular basis of cancer requires large-scale analysis of not 

only genomes but also of altered cancer proteomes [46], [47], [48], [49], [50], [51], [52], [53]. To 

address this need, in 2006 the National Cancer Institute (NCI) at the National Institutes of Health 

(NIH) started the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and held their first 

annual meeting in 2008 [54]. Since that time, NCI has continued this effort with follow-on 

funding in 2011 and established 8 lead centers and many collaborating groups around the world. 

One result of this effort is the CPTAC Data Portal, which is a repository of all 6.3 TB of 

proteomic data collected by Proteome Characterization Centers (PCCs) in the consortium [55]. 

However, to date, the primary focus of studies analyzing this data has been towards the 

discovery of genetic variants in cancerous tissue [56], [57], [58] or have sought to quantify 

protein abundance to examine differences in protein expression between normal and cancerous 

tissue [49], [50], [52], [53]. However, while post-translational modifications and sequence 

cleavage events are key to protein-level regulation of biological processes and have been 

repeatedly implicated in disease phenotypes, the analysis of these events has not been a primary 

focus of CPTAC studies of colorectal cancer proteomics data, potentially leaving a wealth of 

proteomics information undiscovered within this community resource dataset. 

One of the largest studies conducted by Zhang et al. [46] in 2014, performed a proteomic 

analysis using three different analysis tools: Pepitome [59], Myrimatch [60], and MS-GF+ [36]. 

Pepitome is a spectral library matching algorithm and therefore can only match previously 

annotated spectra and cannot make discoveries of any new PTMs. Myrimatch and MS-GF+ are 

both database matching algorithms that must use a list of a-priori specified PTMs, which in this 

case were set to allow only three modifications: oxidation of methionine, n-terminal acetylation 
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and n-terminal pyroglutamine. In 2010, Dasari et al, developed a new search method called 

TagRecon and tested it on yeast whole cell lysate samples from the CPTAC data. They compared 

their results with those from Inspect, X!Tandem and Myrimatch, but all these database engines 

were configured to allow only the same three modifications: oxidation of methionine, n-terminal 

acetylation and n-terminal pyroglutamine. In 2016, Rudnick et al created the Common Data 

Analysis Platform (CDAP) [61] which used only MS-GF+ for the identification of peptides in all 

data sets. In addition, because the standard database search techniques such as Myrimatch, MS-

GF+ and others like Sequest [1] or Mascot [2]  cannot identify variant peptides not in the 

database the authors in Zhang et al. were forced to create a customized database using matched 

RNA sequences from RNA-seq data.  

Our recently created RaVen methodology (Bernstein, L., Wertz, J., Na, S., and Bandeira, 

N., 2018) is a blind database search approach allowing for unexpected and previously unknown 

modifications to be discovered in complex biological samples. Because such an approach can 

yield modifications of any mass, it is also capable of detecting somatic protein variants as amino 

acids with mass modifications. This allows RaVen to detect a wide range of proteogenomic 

events that may be linked to disease phenotypes. Using 12 case and 12 control samples from the 

CPTAC colorectal data set we show how RaVen can reveal protein regions of high variability, 

previously undetected amino acid substitutions, and post-translational modification events with 

high differential expression in the sample. We demonstrate that using a novel technique such as 

RaVen to reanalyze existing community databases has great potential in expanding our 

knowledge of disease and cancer proteome diversity. 
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 Material and Methods 2.3.

Our RaVen (Bernstein, L., Wertz, J., Na, S., and Bandeira, N., 2018) workflow builds on 

a variety of spectral clustering, alignment and filtering algorithms to reduce the size of the input 

space and allow a deep investigation of the spectra of greatest interest (those with rare or 

unknown modifications). Input spectra are first clustered using the MS-Cluster software [31], to 

reduce the size of the input spectra data. Each cluster is represented by a cluster-consensus 

spectrum and the resulting identifications are assigned to all corresponding cluster members.  

This reduced set of clustered spectra then becomes the input to two parallel processes. 

First, the clustered spectra are input to the MS-GF+ [3] algorithm and the identifications from M-

SGF+ are used in multiple phases of the follow-on processing. Second, the clustered spectra are 

input to the PepNovo [62] scoring method. PepNovo uses a likelihood ratio model to determine 

whether the peaks observed in the mass spectrum are more likely to have been produced under 

this fragmentation model than under a model that treats peaks as random events. PepNovo 

replaces the peak intensities with likelihood values enhancing the contrast of B and Y ion pairs 

while reducing other (presumably noise) peaks creating prefix-residue mass (PRM) spectra [63]. 

The PRM spectra along with the MS-GF+ identifications are used as inputs to the AlignGF 

algorithm [12] which performs pairwise alignments. The resulting pairs are used for creation of 

spectral networks [64] as well as identification of putative modification masses. The spectral 

networks are then input to the MetaSPS [30] algorithm which assembles cluster-consensus 

spectra from peptides with overlapping sequences (i.e., contigs) and derives short de novo 

sequences (tags) to match to the database and identify unmodified contigs. It is these contigs that 

are first identified by RaVen. 
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To reduce the overall number of database locations that are required to be matched to the 

contig-consensus spectra, RaVen uses de novo sequence tags similar to that originally proposed 

by Mann and Wilm [15] and used in various related approaches [38] [9] [18] [8] [39]. These tags 

are constructed by connecting contig-consensus spectrum peaks whose masses differ by the mass 

of one or two amino acids. Accuracy of de novo sequencing has been shown [30] to be much 

higher in these contig-consensus spectra than in non-assembled individual spectra because noise 

peaks are mostly eliminated and likelihood scores from peaks are combined from the multiple 

assembled spectra. At all locations where a contig tag is matched to the database, RaVen 

performs a tag-extension procedure and keeps only the best matches. Using this final set of 

extended tags, the assembled spectra are aligned to the highly reduced set of database locations 

with a penalty based spectrum/sequence alignment algorithm (Bernstein, L., Wertz, J., Na, S., 

and Bandeira, N., 2018). The penalties are divided into three categories: known modifications, 

putative modifications and unknown modifications. Known modification penalties are fixed at a 

very small value and used when introducing a modification of a-priori known type (such as 

M+16 for oxidation of methionine). Putative modifications are discovered using the information 

obtained from the spectral pairs output of the AlignGF algorithm creating a histogram of the 

parent mass differences to capture possible modification masses that occur frequently in the 

sample. These frequently occurring masses are indicative of possible modifications in the 

peptides and from them we derive putative modifications and set their penalty proportional to 

their probability of occurrence in the sample pairs. Unknown penalties are set to a large (greater 

than the largest putative penalty) value and used for all modifications that are in neither the 

known or putative categories. Using this method, RaVen finds alignments for all spectra in all 

contigs and then uses a standard False Discovery Rate (FDR) method [44] with the target 
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database and a shuffled decoy database to determine the set of identifications. It then removes 

any spectra identified by RaVen from the list of MS-GF+ identifications, combines the 

remaining MS-GF+ identifications with all RaVen identifications, and thresholds the new 

combined list at 1% FDR to arrive at the final set of peptide-spectrum identifications. Since site 

localization is often difficult to achieve in blind searches, RaVen uses the concept of a peptide 

`variant’ to better assess the quality and significance of the peptide identifications. For any given 

spectrum identification S, RaVen defines the variant for S as the pair (P,m) where P is the 

peptide sequence and m is the sum of all modification masses on P. RaVen then enforces variant-

level FDR (with variant scores set to the best score of all spectra identified to the same variant), 

which is stricter and more accurate than the traditional 1% FDR at the level of peptide-spectrum 

matches and avoids the problems of false localization in blind search results. 

Putative modification masses in blind modification searches are typically reported as an 

offset frequency table [6] with one column per amino acid (plus columns for N/C-termini) and 

one row per mass offset with cell values reporting the number of PSMs identified for each pair. 

This approach, while widely used, has severe disadvantages in that finding biologically relevant 

modifications within the table is hampered by the sheer size of the table and large number of 

non-zero entries. Blind searches can also spread the same modification over multiple cells in the 

table due to the combination of smaller masses into a single modification mass and errors due to 

mass accuracy, therefore correctly identified modifications that occur infrequently can be 

difficult to pick out even when an algorithm correctly identifies them. Modification masses 

resulting in large numbers of cell counts are typically not biologically relevant and instead are 

more likely the result of sample handling modifications while rare modifications are almost 

always the results of biologically relevant processes. This means that finding modifications of 
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interest can require evaluating individual identifications by hand. RaVen’s use of variants 

alleviates these issues by reporting counts of variants rather than counts of PSMs. RaVen also 

uses a localization procedure that assigns partial credit to all amino acids in the variant where the 

modification location cannot be determined due to lack of spectrum peaks. RaVen then iterates 

through the table selecting the site with the globally highest counts for all variants containing 

that amino acid and mass combination and removing counts for neighboring sites. This 

procedure is repeated until all modification masses have been assigned a single amino acid site. 

Furthermore RaVen can verify the mass modifications against information from pair alignments 

obtained during the AlignGF stage of our workflow and use information from spectral network 

neighbors to provide independent verification of the correctness of assigned modification 

masses.  

 Results 2.4.

 

 Using RaVen’s localized, variant-based offset frequency table we compiled a list of the 

twenty most frequently occurring modifications in the data (Table 2.11). As expected, this list is 

topped by the commonly occurring modifications that restricted algorithms normally include in 

their searches, and that were used in previous examinations of the CPTAC data [46],  [61]: i.e. - 

oxidation, deamidation, pyro-glu, and acetylation. Also comprising nearly 50% of the list are 

other common sample handling artefacts such as carbamylation, formylation, carbamidomethyl, 

and sodium adduct. As we anticipated, these modifications tell us little or nothing of biological 

relevance, and instead we must look to the rarer modifications that go undetected by most 

standard algorithms. 

 In Table 2.12 we see the list of top twenty rare modifications being observed with ten or 

fewer identifications. Contrary to what we see in Table 1, there are only four artefactual 
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modifications amongst these rare modifications: oxidation (on two different amino acids), 

carbamidomethyl, and dicarbamidomethyl. Eight of the remaining modifications are identified as 

amino acid substitutions, which is not surprising given the nature of the data set. To confirm 

these rare observations RaVen uses spectral networks to compare the identified spectra to other 

similar spectra. 

One such example amongst the rare modifications is a -30 dalton modification on 

methionine, which corresponds to a methionine to threonine substitution. This substitution is the 

result of a single nucleotide polymorphism (SNP) of AUG to ACG and RaVen detects this 

change on multiple proteins (HBB, H2B1K, and FABPL) with very high confidence. Along with 

the direct spectral evidence in support of this identification (see Figure 2.16), RaVen also finds 

corroborating evidence for this identification in the spectral networks where the modified variant 

is aligned to a spectrum of an unmodified version of the same peptide that has nearly identical 

peak structure (see Figure 2.17). Although we find no substitutions of this type reported on any 

of these three proteins in UniProt, there is a reported methionine to lysine (AUG to AAG SNP) 

unstable hemoglobin variant reported [65] at that location lending credence to the possibility that 

other such SNPs may exist at that location. 

Similarly, the rarest modification in the list, n-succinimidyl-2-morpholine acetate (SMA) 

is detected on a mere 5 peptides; however, RaVen shows strong support for this modification in 

the networks. In Figure 2.18 we see that not only is the SMA identification of the individual 

spectra very strongly supported by the matching peaks, but additionally the network shows a 

very similar spectral structure in a variant with the much more common +26 acetylaldehyde 

modification on the n-term. 

https://www.uniprot.org/uniprot/P05783
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RaVen also performs analysis of protein regions, some of which contain unusually high 

diversity in terms of peptide cleavages and modification masses that may point to specific 

regions of biological interest on certain proteins. To accomplish this analysis, RaVen identifies a 

Protein Variant Region (PVR) as a region where each peptide overlaps with at least one other 

peptide by at least 50% of its amino acids. Most proteins (~90%) contain 20 or less identified 

peptide variants but RaVen identifies over 70 proteins with more than 100 variants. Not 

surprisingly, as shown in Figure 2.19, the top 10 proteins with the most variants contain many of 

the longest proteins; however, the number of discovered variants is not proportional to protein 

length, rather the protein with the highest variant density (Table 2.13) is the short hemoglobin 

protein sp|P68871|HBB_HUMAN. Within this protein there is a wide range of coverage over the 

entire length of the protein (Figure 2.20). While some amino acids have no peptides which 

include their position, others have over 70 variants in the protein variant region.  

The region of highest variability occurs on hemoglobin protein HBB from position 66 to 

position 85. Within this region of 20 amino acids we identify 71 verifiable unique variants (see 

Figure 2.21), including 12 different cleavage variants, 10 variants with no modification, and 61 

variants with at least one modification. In addition, RaVen detects 25 variants with modifications 

that correspond to amino acid substitutions. These represent 16 unique substitutions since some 

variants contain duplicate substitutions in combination with additional modifications. Seven of 

these substitutions have previously been reported in UniProt; however, the other 9 substitutions 

are novel discoveries by RaVen. One of the detected substitutions corresponds to a +16 dalton 

modification near the n-term and might be attributed to the more common oxidation on lysine; 

however, we report these modifications as valine to aspartic acid substitutions (a substitution 

reported in UniProt at this protein position) based on information from multiple identifications 

https://www.uniprot.org/uniprot/P05783
https://www.uniprot.org/uniprot/P05783
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which reveals that on three of the four variants with this modification, n-terminal lysine 

oxidation is not possible due to the presence of n-terminal formylation or carboxylation. 

While we do not presume that all discovered modifications are localized precisely (this is 

the reason we advocate using peptide variants to measure performance of blind searches), RaVen 

brings together multiple sources of information to help make a final determination on the most 

likely annotation. For example, we report the variant K
-1

V
-28

LGAFSDGLAHLDNLK that has 

both a -1 dalton modification and a -28 dalton modification on consecutive amino acids which 

generally is an unlikely annotation, particularly in light of the fact that there is not an intervening 

peak in the spectrum to support splitting the -29 mass into two modifications. While it is not 

possible to prove that RaVen’s interpretation is the proper one, RaVen has multiple lines of 

evidence to support this choice. First, the spectral network shows a good correlation to a variant 

with only the -28 dalton modification. Second, there are numerous instances of the -28 

modification on valine (valine to alanine substitution) and the -1 modification on lysine (lysine to 

allysine substitution) individually throughout the data. Third, we only detect the presence of the -

29 mass modification on the n-term lysine when followed by a valine. 

While proteogenomics algorithms have been developed to search mass spectrometry 

proteomics data against new genomic or transcriptomic sequences [66], there has been limited 

analysis of the potential of blind modification searches to either dispute or confirm the 

correctness of proteogenomics identifications – a comparison that is especially relevant when 

claiming amino acid polymorphisms or short sequence extensions (e.g., novel splicing events or 

exon boundaries) whose induced mass offsets might also correspond to modification masses. To 

illustrate this potential, we performed a detailed comparison of the RaVen identifications and the 

official CPTAC proteogenomics results for patient TCGA-AA-3518-01A-11, which consists of 
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65,723 peptide spectrum matches (PSMs) released by the CPTAC data portal for this analysis. 

While the high number of spectrum identifications initially suggests the potential for detection of 

many novel translated sequence variations, our remapping of the reported peptide sequences to 

the UniProt reference human proteome reveals that only 0.06% (36 PSMs) actually cover 

sequences that are not already reported in UniProt – a significantly lower level of detection of 

proteomics diversity than what we find through RaVen blind modification search. But since 

proteogenomics and blind modification searches consider distinct search spaces for spectrum 

identification, parallel analyses of the same data also provide the opportunity to contrast results 

from both searches to either challenge or increase confidence in the detection of novel 

proteomics events. Illustrating this concept, we focus on one specific polymorphism event 

detected in patient TCGA-AA-3518-01A-11, identified to SALFAQINQGESITHALK by the 

proteogenomics search and matched by RaVen’s detection of a -16 Da modification in its 

identification SS
-16

LFAQINQGESITHALK (Alanine is 16 Da lighter than Serine).  In addition 

to explaining the detected delta mass as a translated polymorphism supported by mRNA data, 

this match further helps explain the +10 Da modification discovered by RaVen on a different 

variant of the same peptide sequence. While this +10 Da offset could potentially be interpreted as 

a polymorphism of S to P, combining information from the proteogenomics identification and 

RaVen’s blind search results suggests a different, less surprising conclusion. In RaVen’s spectral 

networks, the -16 variant forms a pair with the +10 variant (Figure 2.22). This spectral network 

evidence combined with the widespread detection of Acetaldehyde (+26 Da) on peptide N-

termini (50 detected variants in the same dataset) yields the much less surprising interpretation of 

the exact same +10 Da offset as 
+26

SALFAQINQGESITHALK which combines the N-terminal 

offset of +26 Da with the -16 Da from the S to A sequence change. Complementary to this 
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example where proteogenomics helps interpret blind search results, the latter can also help 

eliminate false positives from proteogenomics searches – typical examples include reinterpreting 

N-term extensions by Glycine as the much more common N-term Carbamidomethylation or 

realizing that certain polymorphisms (e.g., Alanine to Serine) can often be explained by common 

modifications (e.g., oxidation) on the same or on nearby amino acids (e.g., oxidation on a 

Methionine adjacent to a putatively mutated Alanine). As such, it would be highly recommended 

to conduct both types of searches for samples where proteogenomics is expected to be needed for 

the detection of translation products from mutated genomes. 

Comparing cases and controls is a traditional approach to finding differential expression 

of biological events that may be related to the phenotypes separating patients (or other samples) 

into groups. In the same spirit, the CPTAC data acquisition for colorectal cancer tumors was also 

complemented by acquisition of proteomics mass spectrometry data from healthy patients, even 

though those were all acquired at a later stage and possibly on different mass spectrometry 

instruments, thereby potentially compromising the power of the dataset to determine the 

association between the groups and changes in expression of proteins or peptides (due to 

potentially large batch effects). Nevertheless, we used spectral counts to conduct a preliminary 

analysis of the differential expression of modified peptides between the tumor and control groups 

using 12 cases and 12 controls of age and gender-matched colorectal samples. Since spectral 

counts are typically low for modified peptides (i.e., under 10 spectra per modified peptide 

variant), we opted to consider ratios of change in expression of at least 2-fold. As such, the 

minimum number of spectra to obtain a consistent 2-fold variation between groups would be to 

have spectral counts of 1 for each observation of a peptide in each patient in one group (12 

counts per group) and spectral counts of 2 for each observation of the same peptide in each 
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patient in the other group (24 counts per group), altogether requiring 36 spectra across 24 

patients. To allow some margin for missing data, which is typically the case for low spectral 

count, we considered only 16,534 variants with at least 30 total spectra observed across all 

groups. Of these variants, there are over 1,500 unmodified peptides with a fold change of over 4, 

which are most likely due to changes in protein expression as previously reported by [46]. 

However, our primary interest is to consider the changes in the level of post-translational 

modifications rather than changes in overall protein expression, hence we focused our analysis 

on the changes in fractions of peptide observations that are observed with a modification versus 

all other states of the exact same peptide sequence (either unmodified or with other 

modifications). These changes in fractions of modified variants were thus calculated using the 

following ratio: 

 

Vcase = Number of spectra of the variant of interest in the case cohort 

Vcontrol = Number of spectra of the variant of interest in the control cohort 

Tcase = Total number of spectra of all variants of the peptide in the case cohort 

Tcontrol = Total number of spectra of all variants of the peptide in the control cohort 

 

𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒 = log2

(
Vcase
Tcase)

(
Vcontrol
Tcontrol

)
 

 

We then perform a t-test using all 12 case and control cohorts, where each observation is the per-

patient ratio: 

𝑃𝑒𝑟𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑎𝑡𝑖𝑜 = log2 (
Vcase

Tcase
) 

Of the 2,213 variants with a modification greater than or equal to 4 daltons (we chose 4 

daltons as a minimum modification mass to minimize confusion with C
13

 parent mass errors), we 

observe 73 variants with a fold change of at least 4, of which 60 pass a t-test threshold of p-value 
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<0.01. Among these 60 variants we discover the peptide PVSSAASVYAGAGGSGSR on 

K1C18_HUMAN (P05783) with a variant containing phosphorylation on the serine at position 

34 - a phosphorylation that has been shown to regulate interaction with YWHAE [67] and 

proposed as a marker of progression of human liver disease [68]. But while our data does not 

detect a significant variation of phosphorylation at serine 34 (Table 2.14), we do detect over 4-

fold change in another variant of this peptide with oxidation of tyrosine at position 36 (a new 

modification site not listed in UniProt or PhosphoSitePlus), thus suggesting that oxidation could 

also potentially play a role in P05783 interactions. We further note that this oxidized tyrosine 

variant was detected with more spectral counts than any other oxidized tyrosine in the sample; 

out of 18,593 peptides containing the amino acid tyrosine, only 73 (less than 0.5%) were 

detected to be oxidized, thus strongly suggesting that this is not an artefactual sample handling 

modification. 

 

 Discussion 2.5.

 

While several proteomics studies of CPTAC data have been conducted since the 

inception of the program in 2006, most of these have used focused on quantifying protein 

abundance and some on the analysis of translated genetic variants, typically using restricted 

search algorithms such as MS-GF+ and Myrimatch. The results presented here expand on this 

approach by using the RaVen blind database search method to detect far greater diversity than 

previously reported for post-translational modifications, sites and modified peptide variants. 

RaVen’s blind search technique reveals both previously undetected modifications, as well as new 

polymorphisms, thereby confirming the premise of this special issue that there is a substantial 

https://www.uniprot.org/uniprot/P05783
https://www.uniprot.org/uniprot/P05783
https://www.phosphosite.org/proteinAction?id=944&showAllSites=true
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amount of proteomics “dark matter” that is almost always undetected in proteomics experiments. 

We thus expect that blind search re-analyses of public datasets such as demonstrated here will 

reveal far more proteomics diversity in health and disease than have been reported to date, 

thereby providing the possibility of detection of novel linkages between post-translational 

modifications and their impact on disease phenotypes. 
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Table 2.11:  The top 20 most common modifications are nearly all artefacts and sample handling 

modifications. 

 

Top 20 Common Modifications 

Mass Site Classification Description #Peptides 

16 M Artefact Oxidation 1656 

1 N Multiple Deamidation 1563 

-17 Q Artefact Pyro-glu 650 

42 N-term Post-translational Acetylation 303 

26 N-term Other Acetaldehyde 150 

57 N-term Artefact Carbamidomethyl 142 

-48 M Chemical Derivative Homoserine lactone 99 

43 N-term Multiple Carbamylation 98 

43 M Artefact Carbamylation 98 

28 N-term Artefact Formylation 86 

16 P Post-translational Oxidation 56 

1 Q Multiple Deamidation 50 

209 C Artefact Carbamidomethyl DTT 34 

40 C Artefact Pyro-carbamidomethyl 30 

-18 T Post-translational Dehydration 30 

32 W Chemical Derivative Dioxidation 26 

22 E Artefact Sodium Adduct 23 

-18 E Artefact Pyro-glu 22 

22 D Artefact Sodium Adduct 21 

16 Y Post-translational Oxidation 18 
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Table 2.12:  The top 20 rare modifications contain many substitutions and possibly biologically relevant 

modifications. 

Top 20 Rare Modifications 

Mass Site Classification Description #Peptides 

16 W Artefact Oxidation 10 

14 N-term Chemical derivative Methyl 10 

50 L AA substitution Leu/Ile->Tyr substitution 10 

-34 C Chemical derivative Dehydroalanine 10 

12 N-term Chemical derivative Thiazolidine 9 

100 N-term Post-translational Succinyl 9 

14 K Post-translational Methyl 9 

57 K Artefact Carbamidomethyl 9 

-30 M AA substitution M->T/1 8 

50 I AA substitution I->Y/2 8 

16 F Artefact Oxidation 7 

114 N-term Artefact Dicarbamidomethyl 7 

-28 V AA substitution V->A/1 6 

4 W Chemical derivative Trp->Kynurenin 6 

50 S AA substitution S->H/2 6 

14 H Post-translational Methyl 6 

30 G AA substitution G->S/1 6 

57 E AA substitution E->W/2 6 

-14 A AA substitution A->G/1 6 

127 N-term Chemical derivative 

N-Succinimidyl-2-morpholine acetate 

(SMA) 5 
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Table 2.13:  Top 10 proteins with the highest variant density.  

“Modified coverage” is the total number of amino acids in modified peptide variants with 

sequences mapping to the corresponding protein; “Modified density” is modified coverage 

divided by protein length. 

 

Proteins with highest AA variant coverage density 

Protein Length 
Modified 
coverage 

Modified 
density 

sp|P68871|HBB_HUMAN 147 5007 34.06122 

sp|P60709|ACTB_HUMAN 375 6482 17.28533 

sp|P01834|IGKC_HUMAN 106 1647 15.53774 

sp|P02768|ALBU_HUMAN 609 7484 12.289 

sp|P62805|H4_HUMAN 103 1112 10.79612 

sp|P07148|FABPL_HUMAN 127 1347 10.6063 

sp|P04406|G3P_HUMAN 335 3185 9.507463 

sp|O60814|H2B1K_HUMAN 126 1124 8.920635 

sp|Q8IUE6|H2A2B_HUMAN 130 986 7.584615 

sp|P06702|S10A9_HUMAN 114 831 7.289474 
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Table 2.14:   Variants of the PVSSAASVYAGAGGSGR peptide on protein K1C18.  

The unmodified, and functional phosphorylated forms show no significant fold change between cases and 

controls; however, the novel oxidized and doubly-oxidized forms near the functional phosphor-serine residue 

were detected with a very large 4-fold change. 

 

Variant 
 

Controls Cases 
Fold 

Change 

PVSSAASVYAGAGGSGSR Unmodified 568 491 0.9 

PVSSAA(S,80)VYAGAGGSGSR Phosphorylation 26 18 0.7 

PVSSAASV(Y,16)AGAGGSGSR Oxidation 20 90 4.5 

PVSSAASV(Y,32)AGAGGSGSR Di-oxidation 7 40 5.7 

[28]PVSSAASVYAGAGGSGSR Formylation 20 12 1.7 

[57]PVSSAASVYAGAGGSGSR Carbamidomethyl 33 41 1.2 

[12]PVSSAASVYAGAGGSGSR Thiazolidine 35 36 1.0 

https://www.uniprot.org/uniprot/P05783
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(a) (b) 

  

FFESFGFLSTPDAV(M,-30)GNPK YQLQSQENFEAF(M,-30)K 

  
Figure 2.16:  Two spectra showing detection of the M,-30 modification (M  T substitution).  

Both spectra show strong peak correlation with good localization of the modification by matches to the 

surrounding peaks. (a) Identification of the modification on the protein sp|P68871|HBB_HUMAN (b) Detection 

of the modification on the protein sp|P07148|FABPL_HUMAN. 
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(a) (b) 

 

 

 

 
 (c) 

Figure 2.17:  Spectral network for the FFESFGFLSPDAVMGNPK peptide on protein sp|P68871|HBB_HUMAN.  

(a) Network showing the pair of spectra with the unmodified and modified versions of the peptide. (b) Spectrum of 

the unmodified version of the peptide.  

(c) Spectrum of the M,-30 modified (M  T substitution) version showing very high correlation with the peaks of 

the unmodified version in (b). 
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(a) (b) 

 

 

(c) 

 
  
Figure 2.18:  A portion of the spectral network for the NIETIINTFHQTSVK peptide on protein 

sp|P06702|S10A9_HUMAN.  

(a) Network showing the pair of spectra with the n-terminal +127 (SMA) and n-terminal +26 (acetaldehyde) 

versions of the peptide. (b) Spectrum of the +26 version of the peptide. (c) Spectrum of the +127 version of the 

peptide showing very high correlation with the peaks of the +26 version in (b). 
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Figure 2.19:  Top 10 proteins with the highest abundance (by spectral counts).  

From the comparison it can be seen that there is not a strong connection between spectral abundance of proteins in 

the sample and the number of peptide variants detected per protein.  
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Figure 2.20:  Histogram of variant coverage for the protein HBB (P68871).  

Unmodified spectra and variants are shown in blue, while modified versions are shown in green. We can see 

two types of regions that are well covered. (1) High coverage regions with over 4500 spectra per amino acid. 

These regions also have over 50 variants per amino acid that are nearly all modified. (2) Medium coverage 

regions with under 3000 spectra, which are either well conserved with less than 5 modified variants per amino 

acid, or (3) very diverse sections with dozens of modified variants per amino acid. While higher coverage 

(spectral counts) does facilitate the detection of more peptide variants, the observation of areas of both low and 

high modification diversity within these regions clearly illustrates that peptide abundance is not the only 

determinant of the observed protein diversity. 
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Figure 2.21:  71 manually verified discovered variants of the largest Protein Variant Region (PVR) 

identified in the region spanning amino acids 66 to 85 of the HBB protein (P68871).  

Modifications in blue are modifications which reflect substitutions while modifications in green are 

substitutions that have previously been discovered and listed in Uniprot. 
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 (a) (b) 

 

 
(c) 

 
 
Figure 2.22:  Spectral network for SSLFAQINQGESITHALK peptide on protein K1C18.  

(a) Network showing the pair of spectra with a 26 dalton mass difference. (b) Spectra with S to A polymorphism. (c) 

Spectra with +10 mass modification corresponding to S to A polymorphism and acetyladehyde +26. 

https://www.uniprot.org/uniprot/P05783
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CHAPTER 3 - Enabling massive blind database search 

using multiple enzyme proteomics 

 

 Introduction 3.1.

 

Traditional methods of database search in mass spectrometry, such as Sequest [1], 

Mascot [2] and MS-GF+ [3] face significant challenges with increases in the size of the database 

being searched. Additionally, these methods allow only a pre-specified list of known post-

translational modifications (PTMs) to be discovered in the data. Newer, so-called “blind” or 

“open” search methods allow for the discovery of unexpected modifications but often suffer 

from either reduced overall identification ability or large numbers of false-positive 

identifications which require manual post-processing in order to determine the true novel 

discoveries. Both these blind and non-blind methods suffer severe degradation in terms of speed 

and identification rates as database search size grows, while restricted methods also degrade with 

increased size of their allowed modification lists.  

In 1994, Mann et al. [15] first proposed the use of small de novo tags in order to pre-filter 

the database and reduce the overall search space, and many search methods have incorporated 

this strategy [7][8] [9][16].  While it is possible to increase the size of the tags to handle large 

databases, this poses additional challenges in that standard mass spectra contain large amounts of 

noise and missing spectral peaks which greatly reduce the likelihood of finding longer length 

tags and thus results in reduced sensitivity and lowered numbers of identifications. Furthermore 

as database sizes increase the number of matches to a short (length 3) tag becomes very large, 
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particularly because protein databases are not random, but contain many homologs resulting in 

far more matches than would be encountered randomly for some tags. 

Most existing algorithms use raw MS/MS spectra for identification; however, the RaVen 

workflow includes multiple steps that process the spectra making the prohibition of longer tags 

no longer valid. First, RaVen uses MS-Cluster to form cluster-consensus spectra obtained from 

repeated acquisition of the same peptide. Second, RaVen invokes MetaSPS [30] to construct 

spectral contigs converts cluster-consensus spectra to Prefix Residue Mass (PRM) spectra [32]. 

These cluster-consensus PRM spectra have far fewer noise peaks resulting in a much-increased 

signal-to-noise ratio [30]. Since RaVen uses these spectra for tagging, the previously held belief 

that long tags cannot work no longer applies, instead we have already shown [69] that longer 

tags with gaps produce superior identification results and faster identification times. The 

MetaSPS algorithm; however, has also succeeded in generating even longer contigs when the 

samples are processed using multiple enzymes [33]. This is due to the increased overlap in 

peptides when multiple enzymes are used due to their differing cleavage locations (Figure 2). 

RaVen is able to capitalize on this and use even longer tags than in single enzyme experiments 

resulting in greater gains in processing speed, while at the same time not just maintaining the 

performance that has previously shown to exceed other algorithms, but actually increasing 

performance as tag length grows due to the reduction in the virtual database search space. 
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 Methods 3.2.

To perform the analysis we used the RaVen software exactly as described in Bernstein, 

L., Wertz, J., Na, S., and Bandeira, N., 2018 [69] with the sole exception being the change in 

tagging parameters. A brief description of the salient tagging features of RaVen is given here.  

Rather than use spectral tagging, RaVen uses contig-derived sequence tags to reduce the 

database locations that are matched to contig-consensus spectra. Standard de novo sequence tags 

are constructed by connecting spectrum peaks whose masses differ by one amino acid mass 

(Figure 3.1a); however, RaVen extends this method to allow peaks whose masses differ by two 

amino acid masses (e.g., X and Z) and that may also be connected by mass gaps corresponding to 

the summed amino acid masses (e.g., mass(X)+mass(Z)) and all possible permutations thereof 

(e.g., “XZ” or “ZX”). As Guhtals et al showed [30], the accuracy of de novo sequencing with 

these contig-consensus spectra are much higher than in non-assembled spectra since most noise 

peaks are eliminated or have reduced intensity while signal peaks have larger scores due to 

accumulation of signal from multiple  assembled spectra.  Since multiple tags may be found in 

each spectrum (Figure 3.1a), it is common [9][16] to rank each tag by summing the scores of all 

spectrum peaks which match the tag and then to match the top N scoring tags per spectrum to the 

database. Obviously, filtration efficiency increases with longer tags (i.e., longer sequences have 

less matches to the database); however, missing spectrum peaks constrain the length of the 

longest correct tags that can be extracted from any given contig-consensus spectra. We therefore 

allow gaps, or missing peaks, when matching the de novo tags as shown in Figure 3.1b.  

Previously we have found that using tags of length 5 with up to two gaps of two amino 

acids, and taking the top 50 tags, resulted in the best filtration vs. identification performance 

[69]. However, given the much longer contig-consensus spectra generated as the result of 
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assembly with peptides from multiple enzyme digestion we used length 5 as a starting point and 

tested with tags from length 6 to length 9. Although we also tested the use of various numbers of 

allowed gaps, we discovered that 2 gaps remained the best choice. We also expanded our list 

from 50 to 200 top tags for filtration, because with tags of such length and high filtration rate, we 

did not want to filter any matching tags and during testing it was discovered that using either top 

100 or top 200 tag lists produced nearly identical filtration results. 

 

 Results 3.3.

 

To test our long tagging approach we used the six protein test sample (Table 3.1) used by 

Guthals, A., Clauser, K. R., and Bandeira, N. [30] and included samples from seven different 

enzymatic digestions (see Table 3.2). We assessed the performance of our RaVen approach 

against state-of-the-art approaches for both restricted and unrestricted database searches. For the 

restricted algorithm we chose MS-GF+ [3] because it has been shown to exceed the performance 

of many other existing  algorithms over a variety of sample types and collection methods. For the 

blind approach, we chose MODa [9] which is one of the leading multi-blind search algorithms.  

To examine the effect on increased database size, we ran tests using four databases of 

increasing size from 4 megabytes to 287 megabytes (see Table 3.3). We use the standard False 

Discovery Rate (FDR) method [44] using the target database and a shuffled decoy database. The 

smallest database we tested against consisted of the six known proteins of the sample plus the 

entire yeast proteome, plus a list of common contaminants resulting in a database of 6,645 target 

proteins (~ 4 million amino acids). Because larger databases are required for proper sampling of 

the space of random peptides [70], we did not test with any smaller database (for instance only 

the 6 sample peptides). For our larger databases we added the entire Drosophila proteome to the 
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first database to create a database with a total of 34,828 proteins (~21 million amino acids). We 

then added the entire human proteome to the six sample proteins, contaminants, plus Yeast and 

Drosophila database resulting in a database with 120,725 proteins (~64.5 million amino acids). 

For our final database we searched against the entire Uniprot Reference Protein Set consisting of 

585,133 proteins (~264.7 million amino acids).  

In previous experiments we have shown that when using tags with contig-consensus 

sequences the best performance is obtained when using tags of length five with allowed gaps of 

up to two peaks [69]. However, these searches were conducted with contig-consensus spectra 

created from a single enzyme digestion. While perfect digestion with a single enzyme provides 

no overlap of the resulting peptides (Figure 3.2a) only by relying on missed cleavages (Figure 

3.2b) can overlapping peptides be achieved. However, different digestion enzymes cleave 

proteins in different locations (Figure 3.2c), so by combining the digestion of multiple peptides, 

excellent overlapping can be achieved (Figure 3.2d) which leads to increased contig length as 

shown by Guthals et al [30]. Using these long contig-consensus spectra we tested even longer 

length tags (from 6 to 9) than we previously thought possible. As can be seen in Figure 3.3, at 

1% spectrum level FDR we see increased performance on all database searches at as the tag 

lengths increase from 5 to 6 and then 7, whereas after that point the performance drops 

precipitously (at tag lengths 8 and 9).  

While peptide-spectrum (PSM) identifications at a fixed FDR are a common measure of 

performance for database search algorithms, we instead use a measurement of discovered peptide 

variants where a variant corresponds to a unique peptide sequence with a unique sum of 

modification masses [69]. Our reason for using this measure instead, is that the biological 

relevance of identifications in the context of blind searches is in the discovery of uniquely 
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modified peptide forms. We therefore impose a 1% peptide variant level FDR which is stricter 

than the traditional PSM level FDR. Using this measure we compared the results of our search 

with results from MODa and MS-GF+. As can be seen in Figure 3.5, RaVen outperforms MODa 

blind search by nearly 30% and MS-GF+ by 70% on the largest database set.  

One curious effect that can be seen in the figure is that the performance of MODa and 

MS-GF+ appears to rise with the largest database. This is a highly suspicious result, and merited 

further investigation, upon which we discovered the reason for this increase is that the full 

Uniprot Reference database contains a great number of homologues to the proteins and 

contaminants in the sample. Although we eliminate double identical counting peptides appearing 

on multiple proteins, any search algorithm that includes possible modifications and particularly 

blind searches which are able to match any modification mass may identify homologues in the 

database by detecting a single amino acid change as a modification mass. For example: a peptide 

containing a phenylalanine  (mass 147 daltons) along with an oxidation (mass +16 daltons) 

might be matched to a peptide from a homologous protein with a tyrosine (163 daltons) in the 

same location. To get a more accurate picture of the true identifications we removed all target 

proteins from the sample, common contaminants and all their homologues in all databases. We 

then counted the number of remaining (false positive) identifications found by each algorithm. 

As can be seen in Figure 3.7, at smaller database sizes, both RaVen and MS-GF+ maintain 

approximately a 1% FDR with the small databases, while MODa has ~2% FDR rate. When the 

database becomes very large, the false positive rate for all algorithms rises significantly. RaVen 

yields 3.94% false identifications with the full Uniprot reference, while MODa and MS-GF+ 

have over twice the rate of RaVen (8.22% and 8.74% respectively). There remains the 

possibility; however, that there were unexpected contaminants within the sample, so we further 
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examined identifications without modifications that were agreed upon by all three algorithms 

both MODa and MS-GF+. Inspecting this list of identifications reveals that these additional 

discoveries are also possible homologues of proteins in the sample, which were not taken into 

account in the first pass of eliminating homologues. Using this additional exclusion list, all the 

algorithms adhere closely to the estimated 1% FDR expected for small database sizes; however, 

once again when tested against the Uniprot reference, all the algorithms show an increase in the 

number of false positives. Again, RaVen shows the smallest adverse effect, remaining under 2% 

false identifications on the full Uniprot reference, while MODa increased to nearly 4% and MS-

GF+ to nearly 6%. 

The speed gains from using longer tags are, of course, directly related to the length of the 

tag used. In our earlier work [69] we noted that tags of length 5 with 2 allowed gaps yielded a 

>10,000-fold decrease in the search space for the contig-consensus spectrum. A similar analysis 

for the largest database yields the results seen in Table 3.4. From this table we can see that while 

our 6 protein sample only yielded 620 total contigs, the 5-2 tags yielded ~750 tags per contig-

consensus spectrum, a figure similar to that seen in our previous research. These contig-

consensus spectra matches are elongated through a tag-extension procedure and the tag match 

scores are increased by the score of any spectral peaks that match the flanking sequences in the 

database. Any extended tag matches that score below 80% of the best match are then thrown out 

and the remaining locations are used to align the assembled spectra. As we can see in Table 3.4, 

there is a linear relationship between tag length and resulting database matches and therefore 

overall filtration efficiency. Using tags of length 7 we filter to approximately 50 database 

locations for each assembled spectrum, resulting in over a 5x10e
-6

 reduction in the search space 

and search times of approximately 20 minutes for the largest database. We can compare these 
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figures to what would be required using the standard tags of length 3 that would match, on 

average, ~33,000 locations in the database for every tag on every spectrum, or 6.6 x10e
-6 

tags per 

spectrum if using the top 200 tags, resulting in only a 40-fold decrease in search space. 

 

 Discussion 3.4.

By taking advantage of spectral networks and contig assembly of spectra, our RaVen 

method can leverage the highly increased signal-to-noise ratio of assembled spectra and long 

tags to achieve very high database filtration rates even in standard MS/MS experiments. If 

multiple enzymes are used in the digestion of the sample, we have shown that tag lengths can be 

increased even further due to the increased overlap of the resultant peptides and longer contig-

consensus spectra created by the assembly process. Guthals et al. also showed that peptide 

overlap was improved through the use of MS/MS spectra triplets from experiments run with 

multiple fragmentation methods: i.e. -  electron-transfer dissociation (ETD), collision-induced 

dissociation (CID) and higher-energy collision-induced dissociation (HCD) [30] and this would 

be true for the RaVen identification method as well. It should be noted, that our RaVen method 

relies on the construction of a spectral network which is completed using the alignment of pairs 

of spectra. This is an O(N
2
) matching process, which for very large data sets can take a 

substantial amount of time; however, our use of  AlignGF for matching spectral pairs partially 

mitigates this issue since AlignGF also uses a tagging-based approach to reduce the total number 

of spectral alignments required [12]. Furthermore, we are less concerned about overall 

identification time, but rather increased detection of rare peptide variants even when searching 

against very large databases.  
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Table 3.1:  Six proteins in the test sample. 

sp|P00433|PER1A_ARMRU Peroxidase 

sp|P00974|BPT1_BOVIN Pancreatic trypsin inhibitor 

sp|P07288|KLK3_HUMAN Prostate Specific Antigen 

sp|P0A6F5|CH60_ECOLI Chaperonin E. Coli 

sp|P41160|LEP_MOUSE Leptin 

sp|P68082|MYG_HORSE Myoglobin 

 

 

Table 3.2:  Seven enzymes used in the sample preparation. 

Trypsin 

Chymotrypsin 

Pepsin 

Glu-C 

Lys-C 

Arg-C 

AspN 

 

 

Table 3.3:  Four databases used for all database searches. 

Database 
Number of 
proteins 

Number of 
amino acids 

(millions) 

6-mix proteins with Yeast 6,645 3.96 

6-mix proteins with Yeast and Drosophila 34,828 21.66 

6-mix proteins with Yeast and Drosophila  and Human 120,725 64.50 

All Uniprot Reference Protein Set 585,133 264.70 
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(a) 
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Flanking 

Mass

Flanking 

Mass

Alternate Tag 

Alternate Tag 

T A G 

A G G 

K H P 

T A G S G 

missing 

peak 

Figure 3.1:  Denovo spectrum tagging. (a) Tags of standard length 3. Each spectrum may have multiple 

different tags of equal length that match different peaks in the spectrum. (b) Tag of length 5 with one missing 

peak. 
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    (missed cleavages) 
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    FQTRKEQ 

                    AAEPER 

           YEHADEASRAAEPERPADEG 
                          PADEGWAGATSLAALQGLGER 

Combined  
     Trypsin & Pepsin 

Original Protein 

(a) 

(b) 

(c) 

(d) 

Figure 3.2:  Enzymatic cleavage using multiple enzymes. (a) Perfect cleavage using trypsin results in no overlap 

of resultant peptides. (b) Only missed cleavages result in overlapping peptide. (c) Perfect cleavage with Pepsin 

results in no overlap of peptides. (d) Combined peptides from multipleenzymes results in long contigs. 
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Figure 3.3:  Graph of Tag Length versus spectral identification performance of RaVen 

Performance increases with an increase of tag length from 5 to 7 but falls off rapidly thereafter. 
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Figure 3.4:  Comparison of the number of spectral identifications by all three algorithms at 1% PSM FDR shows 

RaVen performs significantly better than either MODa or MS-GF+. 

Both Raven and MODa show a small decline in the number of identified spectra with very large database size. 

   

1100

1300

1500

1700

1900

2100

2300

2500

0 50 100 150 200 250 300

Comparison of Identifications at 1% PSM FDR 

RaVen

MODa

MS-GF+



99 

 

 

Figure 3.5:  Comparison of peptide variant identifications at 1% FDR for all three search methods (RaVen, MODa 

and MS-GF+) shows RaVen performance far exceeds both other methods. At large database size MODa and MS-

GF+ show an unusual rise in identifications, which appears to be the result of the large number of homologues in the 

Uniprot database (see text). 
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Figure 3.6:  Percentage of false positive identifications by all search algorithms rises dramatically as database size 

increases.  

Both RaVen and MS-GF+ maintain approximately a 1% FDR with the small database, while MODa has ~2% FDR 

rate. When the database becomes very large, MODa and MS-GF+ have over twice the rate of false positives 

compared to RaVen. 

 

 

 

Figure 3.7:  Percentage of false positive identifications by all search algorithms when variants identified by all 

methods are removed.  

All methods maintain approximately ~1% FDR with the small databases; however, when the database becomes very 

large, RaVen false positives increase slightly to 1.8% which MODa and MS-GF+ have 4.2% and 5.8% false positive 

rates respectively. 
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Table 3.4:  Number of tag matches and resulting filtration rates for tags of varying lengths. 

Tag 

Length 

Contig-
Consensus 
Matches 

Matches per 
Contig 

(620 contigs) 
Spectral 
Matches 

Matches per 
spectrum 

(2628 spectra) 
Filtration 
Efficiency 

5 45997 781.17 184,458 70.19 3.77E+06 

6 30484 270.11 142,676 54.29 4.88E+06 

7 23800 160.23 124,102 47.22 5.61E+06 

8 17580 108.40 99,387 37.82 7.00E+06 

9 13594 74.34 81,141 30.88 8.57E+06 
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