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Article https://doi.org/10.1038/s41467-023-36047-5

Element- and enantiomer-selective visualiza-
tion of molecular motion in real-time

R.Mincigrucci 1,14 , J. R. Rouxel 2,3,14 , B. Rossi1,4, E. Principi 1, C. Bottari1,5,
S. Catalini6,7,8, J. S. Pelli-Cresi1, D. Fainozzi 1,5, L. Foglia 1, A. Simoncig1,
A. Matruglio9, G. Kurdi 1, F. Capotondi 1, E. Pedersoli 1, A. Perucchi 1,
F. Piccirilli1, A. Gessini1, M. Giarola10, G. Mariotto11, M. Oppermann 2,12,
S. Mukamel 13, F. Bencivenga1, M. Chergui 2 & C. Masciovecchio 1

Ultrafast optical-domain spectroscopies allow to monitor in real time the
motion of nuclei in molecules. Achieving element-selectivity had to await the
advent of time resolvedX-ray spectroscopy,which is now commonly carried at
X-ray free electron lasers. However, detecting light element that are commonly
encountered in organic molecules, remained elusive due to the need to work
under vacuum. Here, we present an impulsive stimulated Raman scattering
(ISRS) pump/carbon K-edge absorption probe investigation, which allowed
observationof the low-frequency vibrationalmodes involving specific selected
carbon atoms in the IbuprofenRSdimer. Remarkably, by controlling the probe
light polarization we can preferentially access the enantiomer of the dimer to
which the carbon atoms belong.

The ability to monitor in real-time the motion of nuclei within a
molecule, whether it is diatomic or amacromolecule, becamepossible
during the 1980s with the advent of ultrafast spectroscopy1. However,
optical spectroscopy is not an element-specific tool, yet the ultimate
goal of physical (bio)chemists is tomonitor the role of eachatom in the
course of a (bio)chemical reaction. This led to the development and
implementation of time-resolved X-ray2,3 and electron diffraction4,5,
and of X-ray spectroscopy2,6. Femtosecond X-ray diffraction and X-ray
absorption spectroscopy can map the time evolution of specific
atomic elements but this approach was initially limited to systems
containing heavy atoms because they efficiently scatter and/or absorb
hard X-rays6–8. Hard X-ray absorption spectroscopy allows to observe

the local atomic environment of a given element as well as its elec-
tronic structure. In time-domain experiments, it was used to probe the
dynamics of photoexcited metal molecular complexes2,6,
biomolecules9,10 and solids2. Extending thesemethods to the soft X-ray
domain, opens an observation window into light elements, such as C,
N, O, S, F, etc, and transition metals via their M-edges, which play a
crucial role in organic chemistry and biochemistry. This was recently
achieved using both table-top set-ups11 based on High Harmonic
Generation (HHG)12,13 and at large scale facilities14–17 and X-ray free
electron lasers (FEL)18–20.

Chiralmolecules exist in two different forms, called left and right-
handed enantiomers, that are chemically identical but are mirror
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images of each other. Chirality plays a crucial role in stereochemistry,
inorganic chemistry and in biochemistry. Nature is homo-chiral and
therefore distinguishing molecular enantiomers is a central issue in
pharmacology, toxicology and drug design. The method commonly
used to detect enantiomers is circular dichroism (CD) spectroscopy. It
exploits the fact that light polarized into a circular wave is absorbed
differently by left-handed and right-handed enantiomers. In the spirit
of monitoring the evolution of chemical systems, time-resolved CD
optical spectroscopies with sub-picosecond to nanosecond resolution
have been implemented in various spectral regions21–26, in order to
investigate the dynamics of peptide chains, metalloproteins andmetal
complexes27–30. Extending these capabilities to core-level spectro-
scopies allows to identify the role of specific elements within a given
enantiomer during a chemical reaction.

Simulations of X-ray CD signals of organic molecules show that
the dichroic response of a given element varies with the electronic
coupling to substitution groups, its distance from the chiral centre, its
local geometry and chemical structure31–38. This implies that for iden-
tical atoms, e.g. carbon atoms, the CD signal is different for different
chemical environments31–33,36. This is a great advantages as it adds the
dichroic response to the chemical shift allowing to distinguish iden-
tical but non-equivalent (due to their different chemical environments)
elements. As X-ray absorption edges are often congested, the combi-
nation of these two observables can help distinguishing them spec-
trally, and it is therefore particularly attractive for the study of a large
class of organicmolecules in solutions39. Since thesemoleculesmostly
consist of light elements whose core transitions lie between 280 eV
(carbon) and 700 eV (fluorine), this calls for ultrashort sources of cir-
cularly polarized soft X-ray pulses. Table-top sources based on HHG
are starting to be implemented in this photon energy range11,40, but the
control of their polarization still needs to be demonstrated41,42. On the
other hand, circularly polarized soft X-ray pulses can routinely be
generated at the FERMI FEL in the region of the carbon K-edge43.

Most chemical reactions occur in the dark and therefore, the
ability to visualize interactions between ground state molecules with
element- and enantioselectivity would give a unique degree of insight
into their reactivity. Impulsive stimulated Raman scattering (ISRS) is a
well-establishedmethod to generate coherent vibrations in the ground
state ofmolecules, and inparticular, in the low-frequency regionwhere
intermolecular motions are often encountered44. Here we combine
ISRS with ultrafast circularly polarized soft X-ray absorption spectro-
scopy at the carbon K-edge, to visualize the response of specific car-
bon atoms in a racemic powder mixture of 4-isobutyl-2-
phenylpropionic acid, commonly known as Ibuprofen (IBP), subject
to low-frequency coherent vibrations in the ground state. The ISRS
triggers the latter, which translate into modulations of the C K-edge
absorption. Furthermore, the polarization control of the EUV pulses
adds enantiomeric selectivity, tying it to the element-selectivity.

Results
Low-frequency Raman modes
IBP is an over-the-counter anti-inflammatory non-steroidal drug that is
widely used for its analgesic and antipyretic activities45. It is chiral and
its two enantiomers are labelled (S+) and (R−), with the former being
the pharmacologically active one, although the underlying reason is
not clear, as for example in the cross-monomer allosteric inhibition, in
which (S)-IBP can competitively block the action of one monomer of
the cyclo-oxygenase (COX) enzyme, composed by two equal halves46.
The commercial drug is the racemicmixture of these twoenantiomers,
whose crystalline phase I ((RS)-IBP) is stable up to the melting point
Tm= 349K24. The two enantiomers form a head-to-tail dimer through
intermolecular hydrogen bonds between the carboxyl groups of two
adjacent molecules (Fig. 1). The activity of the two enantiomers, and in
particular the off-resonance Raman spectrum of IBP has been investi-
gated by several authors47–50. The spectrum exhibits several bands in

the low-frequency (20–150 cm−1) region, but also at high frequencies,
in particular in the fingerprint region between 600 and 1700 cm−1. The
origin of the low-energy vibrations is important for the present study.
While previous experimental Raman and theoretical studies mainly
focused on the intramolecular vibrations lying above 200 cm−1 47,51–53,
Hédoux et al. found that the low-energy region48 exhibits three spec-
tral features at ~20 cm−1, ~50 cm−1 and ~80 cm−1, which the authors
assigned to phonons, i.e. intermolecular collective modes. Lazarevic
et al. 49 argued that the symmetry properties of the (RS)-IBP crystal
structure imply a large number of the intermolecular vibrations,
leading them to conclude that the above low-frequency features of the
Raman spectrum are spectrally unresolved multi-peak structures.

In the present work, we revisited the low-frequency range of the
Raman spectrum of the (RS)-IBP powder (see Supplementary Meth-
ods 2 for details) and reproduced the published results, showing a
clear feature at ~24 cm−1 with an additionalweaker peakat ~28 cm−1 (see
Supplementary Fig. 9). Animations of the IBP low-energy vibrations are
reported in Supplementary Movies 1–3. These results were com-
plemented by Fourier Transform Far-Infra-red studies (see Supple-
mentary Methods 2 for details), which exhibit several features up to
70 cm−1 and confirms the presence of a weak feature between 20 and
30 cm−1 (see Supplementary Fig. 10). More recently, Krausbeck et al. 54

simulated the off- (excited at 514.5 nm) and on-resonance (excited at
265.9 nm) Raman spectra of the S-IBP monomer. While the RS dimer
shows a low-frequency region that is characterized by several spectral
features up to ~150 cm−1, the S monomer exhibited only a single fea-
ture in the 0 to 200 cm−1 region, around 20–30 cm−1. Based on the
above-mentioned studies, it is possible to conclude that: (a) resonance
enhancement of the Raman spectrum in the lowest frequency region
of the S-IBPmonomer yields exclusively themodes around 20-30 cm−1;
(b) in the crystal, these modes contain intramolecular and inter-
molecular (dimeric) contributions, including phonons. We therefore
anticipate that exciting the system with a femtosecond pulse tuned to
the region of the first absorption band of IBP would trigger by ISRS,
low-frequency modes of both the monomer and the dimer49,54.

Carbon absorption spectrum
Figure 2a shows the steady-state C K-edge absorption spectra for RC
and LC light recorded in a point-by-point scan of the FEL as described
in methods section. These spectra exhibit clear differences, namely,
the spectrum recorded with LC light shows an enhanced absorption at
the edge (285–286 eV) compared to the RC counterpart, while above
287 eV, the spectrum using RC light has a stronger absorption. The
difference between these two spectra is shown in Fig. 2b, which
represents the C K-edge CD spectrum of the system. It shows the clear
dichroic response of the system with a characteristic energy depen-
dence in the regionof the CK-edge32,33,38, which in principle reflects the
response of all C atoms in the system. Further support to this comes
fromquantumchemical calculations of theCK-edge energies at the cc-
pVDZ/RASSCF(6/6) level (details are given in Supplementary Meth-
ods 1). Single reference calculations that ignore electronic correlations
are poorly suited for core-excited states calculation. CASSCF can
achieve a more accurate calculation using multi-determinant wave-
functions optimized within subsets of the molecular orbitals con-
stituting the active space (AS). The calculations were performed for
four different AS including different molecular orbitals within the SCF
optimization. Increasing the size of the AS was carried out until con-
vergence, chemical plausibility and agreement with experimental
spectra were attained (see Supplementary Methods 1). Too small AS’s
induce transition energies and moments that strongly depend on the
orbital included while the larger ones converge to a more physical
result at the expense of a higher computation cost. Supplementary
Table 4gives theK-edgeenergies of thedifferentC atoms asnumbered
in Fig. 1a, and Supplementary Fig. 4 shows the shape of the various
HOMO’s and LUMO’s. Supplementary Figs. 6 and 7 show their energies
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and oscillator strengths in the form of stick diagrams for the different
AS’s. A rigid shift of 6.4 eV was applied to the core-transition energies
in order to match the experimental spectra. AS3 is taken as the most
reliable because it shows results comparable to AS2 but is larger than
the latter. The atoms that comeclose to the edge energy around285 eV
are labelled (17,3) and (23,7), (24,8), (25,9), (28,12) and (29,13), which
refers to the identical atoms in the two enantiomers. The energy dif-
ference between the different C atoms is ascribed to the K-edge che-
mical shift due to different local environments around the atoms (see
Supplementary Methods 1 for details). However, of these only (28,12)
near ~285.7 eV and (17,3) near ~285 eV have an appreciable oscillator
strength (Supplementary Fig. 7). Figure 2a reproduces the stick dia-
gramdue to these atomic transitions. Further to this,we also simulated
the CD spectrum (shown in Fig. 2b) following the procedure of ref. 55 at
the RASSCF(9/8)/cc-pVDZ level. The agreement with the experimental
CD spectrum is very good, confirming that inequivalent C atoms
exhibit a differential dichroic response at the C K-edge, i.e. the enan-
tiomeric selectivity allows distinguishing different classes of C
atoms33,34. This is a key point because it implies that in a chemical
reaction, e.g. upon binding to a substrate, not all atoms respond in the
same fashion, in particular those located on different enantiomers.

Time-resolved studies
Figure 3 shows the time evolution of the transmission signal upon
impulsive excitationof the systemat ~4.7 eV and for different soft X-ray
probe photon energies and circular polarizations. All traces reveal
periodic intensitymodulations (5–10% amplitudeof the signal) around
a mean value of the transmission. The data in panel (a) were obtained
at a probe energy of 285.7 eV and with RC polarized light. Panels (b)
and (c) show time scans acquired using a probe photon energy of
285.0 eV with LC and RC polarization, respectively. All three panels
exhibit clear modulations with a sine dependence, as expected for
Raman-induced processes56. We refrain from plotting the time traces
of the CD signal (difference between left and right polarized signal)
because, due to the low S/N and the fact that themodes have the same
phase, this would completely wash out the modulations. The three
traces were fitted to damped sinusoidal functions (described in
methods sections), which yield the frequencies and damping con-
stants given in Table 1 and Supplementary Table 1. These frequencies
(periods corresponding to ca. 1.1–1.4 ps) are in good agreement with
the calculated andmeasured lowest Ramanpeaks, also given in Table 1
and Supplementary Table 2. The damping times (1.4–4 ps) of these
threemodes correspond to 8 to 25 cm−1 spectral widths, which explain
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Fig. 1 | Atom labelling and vibrational modes. a The Ibuprofen dimer with the
numbering of the carbon atoms. b–d The three intermolecular modes of the dimer
(see Supplementary Movie 1–3). The structures appearing in contrasted and semi-

transparent colours, correspond to the minimum and maximum deformations for
the calculated intermolecular modes of the dimer.
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why they cannot be resolved in the steady-state Raman spectrum (See
Supplementary Fig. 9). For technical reasons, the data could not be
measured until full damping of the traces, causing important uncer-
tainties on the values of the damping constants.

Important to note in Fig. 3 are the following: (a) the difference
between the CR and CL signal at 285 eV clearly points to an enantios-
electivity of the molecular vibrations by the polarized X-ray pulse, via
the element-selectivity; (b) the difference between the 285 eV and
285.7 eV CR traces, shows that by tuning even slightly (0.7 eV) the
probe energy, the response of the system significantly changes. These
observations highlight the capability of our experimental approach to
distinguish between identical elements having different chemical
environments. It also shows that these elements respond differently to
the low-frequency deformations of the molecule.

Discussion
It is interesting to compare the present approach to other methods
that can be chromophore-sensitive, in particular vibrational optical
activity (VOA). VOA (infra-red CD) has been shown capable of deter-
mining absolute configuration of small organic chiral molecules and
the supramolecular chirality of biomolecules such as the protein sec-
ondary structure and the DNA helicity56–58. However, VOA spectro-
scopy suffers from the intrinsically weak (electric-dipole forbidden)
chiral signal and is affected by the intense achiral (electric-dipole
allowed) background. These hinder its transfer to dynamical (time-
resolved) studies. In order to enhance chiral-to-achiral contrast ratio,
non-linear methods, such as chiral vibrational sum-frequency genera-
tion (SFG)57–59 and CARS (coherent anti-Stokes Raman scattering)-

ROA60 spectroscopies, have been implemented and allow chiroptical
time-resolved studies in isotropic media. However, none of these
studies has reached the low-frequency range of intermolecularmodes,
and they additionally lack element-specificity.

The present results suggest a strategy to identify which atoms are
most affected by molecular deformations (in the present case, low-
frequency vibrational modes) in a given enantiomer subsequent to a

280 282 284 286 288 290 292 294
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Theory

a)

285.7 eV
28 (12)
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17 (3)
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Fig. 2 | Absorption spectrum and XCD signal. a Steady-state carbon K-edge
absorption spectrum of S-IBP recorded with circularly left (blue trace) and right
(red trace) polarized light. The sticks represent the calculated transition energies
and oscillatory strengths for the first core-excited state of each of the 13 carbon
atoms in the molecule. Black sticks are the transitions investigated in the present
work. b Steady-state carbon K-edge X-ray circular dichroism (XCD) signal calcu-
lated as the difference of the L and R spectra shown in panel a, normalized by their
sum. Insets in panel b show the selected atoms by the corresponding probe
wavelength and their numbering. Numbers in brackets refer to the S enantiomer.

Fig. 3 | Time-resolved X-ray transmission signal. Time-resolved X-ray transmis-
sion signal of the racemic IBP sample measured using probe pulses of: a 285.7 eV
with circular right polarization:b 285 eVwith circular left polarization and; c 285 eV
with circular right polarization. Thick blue lines are fits to the data with damped
sinusoidal functions whose parameters are given in Table 1. Shaded cyan areas
represents the fit confidence bands. Error bars are calculated as errors of themean
value as described in ref. 65.
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perturbation (photon, chemical reaction, etc.) that induces a defor-
mation. This calls for more systematic investigations. It also paves the
way for the direct investigation of ground statemolecular reactions via
the intermolecular vibrational dynamics, with the potential to under-
stand the marked differences in chemical reactivities of enantiomers.
For example, it is known that the S-form of IBP preferentially binds to
cyclodextrins, with a direct effect on its vibrational modes. More
generally, such a detailed level of understanding may lead to new
design strategies of (bio)active molecules such as vibrational/defor-
mational engineering by the use of isotopes to modify the vibrational
behaviour of an identified atom or molecular moiety but keeping
unaltered the electronic properties. Finally, the actinic pulse that
induced the ISRS process could trigger photoactive reactions27,30 and
the present super-selective pump-probe approach could track the
behaviour of selected atoms during the photochemical process.

Methods
Experimental set-up and procedures
The UV–Vis absorption spectrum of IBP in solution, recorded at room
temperature, is shown in Supplementary Fig. 3. Its first absorption
band lies between 250 and 280nm, with structured features related to
the different electronic transitions of the aromatic ring. The spectrum
is well reproduced by theoretical calculations shown as a stick spec-
trum (details in Supplementary Methods 1). The experimental scheme
used in the present study is shown in Fig. 4a. The pump-probe
experimentwas conducted at the EIS-TIMEX61 end-station of the FERMI
FEL62 (Trieste, Italy). The sample was photoexcited with laser pulses at
a photon energy of 4.7 eV, resonant with the IBP absorption (Supple-
mentary Fig. 3), an energy/pulse below 1 μJ and pulse duration of 80 fs.
The pump beam is focused onto a spot size of 90 × 90 μm2 full-width-
at-half-maximum (FWHM). It impinges the sample at an angle of 10
degrees, relative to the surface normal, while the FEL probe pulse is at
normal incidence. This pump pulse generates low-frequencymodes of
the IBPdimer by impulsive stimulatedRamanscattering (ISRS)44. Given
the spectral and temporal width of the UV pulse inducing the ISRS
process, all modes below 370 cm−1 could be coherently excited,
including those around 20–30 cm−1 that dominate the low-frequency
resonance Raman spectrum54. Probing molecular motion is possible
only if the molecular vibrations affect the energy (chemical shift) and/
or intensity the K-edge absorption spectra of the different C atoms.
The soft X-ray FEL photon energies were chosen to match the transi-
tions identified by the theoretical calculations in the C K-edge region
(see Supplementary Methods 1 and black sticks in Fig. 2a). To prevent
long-term IBP photo degradation and optimize the spatial overlap, the
FEL spot size was set to 80μm FWHM and the energy/pulse was
reduced to about 160 nJ. The estimated FEL pulse duration is about
30 fs FWHM. Sample degradation was excluded by visual inspection
performed through a Questar QM100 tele-microscope61. In order to
minimize radiation damage effects (detectable as a monotonic
increase in the measured transmission of the spot), after each time
scan the sample was moved to a pristine region.

The soft X-ray intensity transmitted through the sample was
detected by a Multi-Channel Plate (MCP) placed on the FEL beam axis
and calibrated using an identically hydrophilized silicon nitride
membrane. The calibration was performed by recording the signal
level (I1) on theMCP as a function of the incoming FEL intensity (I0) and
modelling the trend by a second order polynomial. This way, it is
possible to estimate the expected I1 for any given I0 value and to cal-
culate the IBP layer transmission shot-by-shot, as the ratio between the
measured I1 and the one calculated with the second order polynomial
defined above. The procedure was repeated for every probe energy/
polarization (experimental configuration).

Time traces were collected by continuously scanning the pump-
probedelay (at a velocity of 0.5 ps/s) and recording the transmissionof
the soft X-ray beam. Themeasurements were repeated three times for
each experimental configuration. The data were subsequentlymerged
and binned in 50 fs steps; the data points displayed in the time traces
are themeanvaluesof thebin contentwhile error bars are the standard
deviations of the bin entries.

Supplementary Fig. 2 shows the pump laser-off shot-by-shot
transmission of IBP acquired over 3500 FEL shots. These scans corre-
spond to a total acquisition time of 350 s each. They show the long-
term stability of the system and data acquisition. They do not exhibit
any features, as expected from removing the pump pulse. These scans
need to be compared to the acquisition time of a pump-probe tem-
poral traces of about 30 s.

The steady-state carbon K-edge absorption spectra (Fig. 2a) were
obtained acquiring and averaging 3500 shots for each FEL photon
energy and polarization. FEL photon energies between 293.5 and
285 eV were generated by high gain harmonic generation (HGHG) of
the 60th harmonic of the seed laser was tuned between 4.9 and 4.7 eV
in steps of about 0.02 eV. Energies range between 283.7 and 279.2 eV
were instead obtained by amplifying the 55th harmonic of the seed
laser tuned between 5.16 and 5.1 eV in steps of about 0.02 eV. In both
configurations, the polarization was varied by changing the phase of
the magnetic field inside the apple II undulators. The X-ray Circular
Dichroism spectrum shown in Fig. 2b of the text is the difference
between the spectra obtained in the two circular polarizations nor-
malized by their sum.

Sample preparation
The samplewasprepared bydissolving 3mgof an IBP racemicmixture
into 1mL of ethanol (Sigma-Aldrich, >99.8%). The solution (1 µL) was
deposited on a commercial Silicon Nitride membrane (Silson, 25 mm2

surface area, 100 nm thickness). In order to obtain the total coverage
of the silicon nitride membrane. Reactive Ion Etching (RIE) plasma
oxygen process was used in order to modify surface wettability (radio
frequency power 20W, O2 flow 30 sccm, exposure time of 5minutes).
Water contact angle measurements showed that this treatment
reduced the water contact angle from 85.1° to 28.5°, as shown in
Supplementary Fig. 1. After the solvent evaporation, IBP is expected to
recrystallize to its native form. Due to the steric encumbrance of the
most probable crystalline form at room temperature63, we expect to
have the phenyl rings almost parallel to the sample surface, with no or
only a weakdependence on the employed depositionprocess64. Under
these conditions, considering the density to be 1.1 g/cm364, we estimate
an IBP layer thickness of about 100nm.

Fit of the time traces
The data points of the signal as a function of time were fit using the
function:

y tð Þ= y0 +θ tð ÞAe�t
τsin

2πt
T

� �
+mt ð1Þ

Table 1 | Parameters of the fit of the temporal traces using
damped sine functions (see Supplementary Table 1 for
details)

Probe energy/
polarization

Frequency
(cm−1)

Damping
constant (ps)

Calculated
(cm−1)

285 eV CL 25 ± 1 2.5 ± 1.3 21.5

285 eV CR 30 ± 3 1.5 ± 0.6 28.8

285.7 eV CR 24.2 ± 0.9 3.8 ± 3 22.6

The low-frequency steady-state Raman spectrumexhibits only onebandcentred around 25 cm−1

whose width increase from ~5 cm−1 at 100 K to ~10cm−1 at 300K49.
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Where θ(t) is the Heaviside theta function. A is amplitude of the var-
iation, τ is the decay time, and T is the oscillation period. Table 1 shows
the fitted values for the three data series. Data shown in the text have
been obtained by subtracting the small, linearly varying background
and normalizing the values for the unperturbed transmission. The
confidencebands of the fit have been calculated using the propagation
of uncertainty on the fitted quantities according to the following for-
mula.

u y,tð Þ=p ∂y
∂y0

� �2

u2 y0
� �

+
∂y
∂m

� �2

u2 mð Þ+ ∂y
∂A

� �2

u2 Að Þ
 

+
∂y
∂τ

� �2

u2 τð Þ+ ∂y
∂ν

� �2

u2 νð Þ
! ð2Þ

where u are the uncertainties of the fitted quantities, given in Table S1,
and ν = 2π

T . The bands in Fig. 3 corresponds to ±2u(y,t), where the factor
2 assumes a 95% coverage probability.

Data availability
The shown data are available under restricted access for weight rea-
sons, access can be obtained by contacting the authors.
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