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ABSTRACT 
 

 
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help 

understand the etiology and pathophysiology of schizophrenia. In particular, it has been 

demonstrated that MK-801, a highly potent and selective NMDA antagonist, induces spatial 

memory and learning impairments in rodents similar to cognitive deficits observed in patients with 

schizophrenia. Additionally, it has been shown that MK-801 leads to decreased blood perfusion in 

brain regions associated with the memory and learning network (i.e., the septohippocampal 

network). However, there is still a lack of functional connectivity analysis for the impact of MK801 

on the septohippocampal network related to learning and memory. Here we conduct a functional 

connectivity analysis for MK801 effect on the septohippocampal networks using functional 

Ultrasound Imaging (fUSI) between two groups of mice injected with saline (control) and MK-

801. Additionally, we demonstrate the importance of prewhitening fUSI extracted data to eliminate 

autocorrelation. Results show that prewhitening the data reveals that functional connectivity of 

certain regions significantly decreases overtime due to the MK-801 effect. 

 

https://www.nature.com/articles/mp2012137#Bib1
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INTRODUCTION 

The N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed as a 

potential mechanism underlying the cognitive deficits observed in schizophrenia (Gilmour et al., 

2012). This hypothesis suggests that a reduction in NMDAR function may contribute to the 

pathophysiology of the disorder, particularly in relation to impairments in learning, memory, and 

executive function (Alherz et al., 2017). To investigate this hypothesis, researchers have utilized 

pharmacological agents that antagonize NMDAR function, such as dizocilpine (MK-801) (Lee & 

Zhou, 2019). 

MK-801 is a highly potent and selective non-competitive NMDAR antagonist that has been 

widely used in animal models to induce cognitive deficits similar to those observed in 

schizophrenia (Blot et al., 2013). Numerous studies have demonstrated that MK-801 

administration in rodents leads to impairments in spatial learning and memory, as well as deficits 

in working memory and cognitive flexibility (Bygrave et al., 2016). These cognitive deficits are 

thought to arise from the disruption of NMDAR-dependent synaptic plasticity and the 

consequent alterations in neural network function (Holahan et al., 2011). 

The septo-hippocampal network, which comprises the hippocampus and the septum, is a critical 

neural circuit involved in learning, memory, and spatial navigation (Solari & Hangya, 2018). The 

hippocampus, in particular, is known to play a crucial role in the formation and consolidation of 

declarative memories (Huijgen & Samson, 2015). NMDAR-dependent synaptic plasticity within 

the hippocampus, such as long-term potentiation (LTP), is considered a fundamental mechanism 

underlying learning and memory processes (Hunt & Castillo, 2012). Disruption of NMDAR 
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function within the septo-hippocampal network has been implicated in the cognitive deficits 

associated with schizophrenia and other neuropsychiatric disorders (Peer et al., 2017). 

Previous studies have shown that MK-801 administration leads to a reduction in cerebral blood 

flow and glucose metabolism within brain regions associated with the septo-hippocampal 

network (Nehls et al., 1990). These findings suggest that NMDAR hypofunction may result in 

altered neural activity and metabolic dysfunction within this critical circuit. However, the 

specific impact of MK-801 on functional connectivity within the septo-hippocampal network and 

its relation to cognitive deficits remains poorly understood. 

Functional ultrasound imaging (fUSI) is a novel neuroimaging technique that allows for the 

high-resolution mapping of cerebral blood volume (CBV) changes with excellent spatial and 

temporal resolution. fUSI has emerged as a powerful tool for investigating dynamic changes in 

brain activity and functional connectivity in animal models (Urban et al., 2015). By measuring 

CBV changes as a proxy for neural activity, fUSI enables the assessment of functional 

connectivity between brain regions and how it is altered in response to pharmacological 

interventions or disease states (Crown et al., 2024). 

In the present study, we aimed to investigate the effects of MK-801 administration on functional 

connectivity within the septo-hippocampal network and its adjacent regions using fUSI in a 

mouse model. We hypothesized that MK-801 would lead to a reduction in functional 

connectivity within this network, reflecting the disruption of NMDAR-dependent signaling and 

its impact on neural circuit function. Furthermore, we sought to address the potential 

confounding effects of autocorrelation in fUSI data by employing a prewhitening procedure 

using an autoregressive integrated moving average (ARIMA) model. By comparing the results 
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obtained from raw and prewhitened data, we aimed to provide a more accurate assessment of the 

temporal dynamics of functional connectivity changes induced by MK-801. 

The findings of this study may provide valuable insights into the mechanisms underlying 

cognitive deficits in schizophrenia and other neuropsychiatric disorders associated with NMDAR 

hypofunction. Understanding the impact of MK-801 on functional connectivity within the septo-

hippocampal network may inform the development of novel therapeutic strategies targeting this 

critical circuit. Moreover, this study highlights the importance of accounting for autocorrelation 

in fUSI data analysis to ensure the reliability and validity of functional connectivity measures. 
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METHODS 

2.1. Animal acquisition & Surgical Procedures 
Sixteen male C57BL/6 mice, aged between 8 and 12 weeks, were procured from Charles River 

Laboratories (Hollister, CA). stratified into two principal experimental cohorts: a vehicle control 

group receiving saline administration (n = 8), and a treatment group receiving the 

pharmacological agent MK-801 (n = 8). 

Prior to experimental procedures, the mice were anesthetized via inhalation of 5% isoflurane, 

delivered in a carrier gas mixture comprised of oxygen and nitrous oxide in a 1:2 ratio. 

Subsequently, the anesthetic depth was maintained at a constant rate, ranging from 1.5% to 2%, 

throughout the surgical intervention and data acquisition phases. Thermoregulatory measures 

were implemented to maintain physiological body temperature during the recording sessions, 

achieved by positioning the subjects on an electric heating pad. Furthermore, to facilitate 

unobstructed transcranial imaging, the hair on the cranial region of each mouse was removed 

using a commercially available depilatory cream (Nair, Pharmapacks). All procedures were 

approved by the University of Southern California, Institutional Animal Care and Use 

Committee (IACUC #21006) 

2.2 Data Acquisition 
fUSI data were obtained employing the Iconeus One system (Iconeus, Paris, France). Image 

acquisition was facilitated by a linear ultrasound transducer (i.e., fUSI probe) array comprising 

128 channels, operating at a center frequency of 15 MHz with a pitch of 0.1 mm. This 

methodology afforded a comprehensive field of view, encompassing a width of 12.8 mm, a depth 

of 10 mm, and a plane thickness of 400 μm. Furthermore, the technique resulted in a spatial 
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resolution of 100 μm x 100 μm within the imaging plane. The ultrasound transducer was 

positioned on the intact skull and cutaneous tissue along the sagittal plane of the right cerebral 

hemisphere. Continuous functional ultrasound imaging (fUSI) data were acquired for a duration 

of 60 minutes, with the imaging plane oriented sagittal to facilitate imaging of the 

septohippocampal network within the right hemisphere. 40 minutes of this data were used for 

data analysis. This decision was informed by previous studies where the dose of MK-801 in the 

brain was seen to peak systematically approximately 40-60 min post injection (Wegener et al. 

2011). Prior to recording, a butterfly needle was inserted to minimize the potential for motion 

artifacts arising from the subsequent injection procedure. Following an initial 5-minute baseline 

recording period, an intraperitoneal (i.p.) injection was administered, with the subjects receiving 

either 0.2 cc of saline solution (vehicle control group) or MK-801 at a dosage of 1.5 mg/kg 

(treatment group). This dosage was chosen according to previous studies which have established 

that a 1.0 mg/kg MK-801 injection elicits behavioral and physiological symptoms analogous to 

those observed in schizophrenia (Long et al. 2006). 

2.3 Plane Selection & Imaging 
The image acquisition plane of interest was identified through the co-registration of a three-

dimensional whole-brain functional ultrasound imaging (fUSI) dataset for each individual mouse 

with a standardized Allen Mouse Common Coordinates Framework brain atlas. This process was 

facilitated by dedicated software integrated within the Iconeus One system. To maintain a 

consistent field of view (FOV) throughout the experimental procedures, the ultrasound probe 

was securely mounted on a motorized system, with the transverse FOV intersecting the 

previously co-registered sagittal imaging plane. The imaging data were acquired through the 

compounding of 200 frames, captured at a frame rate of 500 Hz. This process employed 11 tilted 

https://d1wqtxts1xzle7.cloudfront.net/88789613/j.neulet.2011.08.01220220720-1-1tqym1g-libre.pdf?1658314322=&response-content-disposition=inline%3B+filename%3DEvaluation_of_brain_pharmacokinetics_of.pdf&Expires=1715194223&Signature=ORrL0wpyEWm8QdH2Ez977os-p~fwoynvOy9v2EijG~79pfAm5YEk8kMdEdwZnU2O1CDYb6UIFWrqE2~SVnk3vHvrMlpMRQQnjkOCpbBLaCimWV5IM35aLYtUsbEbxCLdW~6DlwXKEcONNUXp50B123A5hA8yi4CNmY9f0DCPPjpccj5PWGtQ4tsJIA5fg~a5e9yQgGEDrh7AvsLBz6fho30aa6RUOhPZYCYKhG830C6aY8FkMePpJsVYtUxqpPKkukw6r5U-9sRRdzcy5LZ3yPwT0h58U3~XKGamtW52k2~bNYYh1f6TME5ZNolfbX4pANJqxC5zURPXzejA3~HN0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/88789613/j.neulet.2011.08.01220220720-1-1tqym1g-libre.pdf?1658314322=&response-content-disposition=inline%3B+filename%3DEvaluation_of_brain_pharmacokinetics_of.pdf&Expires=1715194223&Signature=ORrL0wpyEWm8QdH2Ez977os-p~fwoynvOy9v2EijG~79pfAm5YEk8kMdEdwZnU2O1CDYb6UIFWrqE2~SVnk3vHvrMlpMRQQnjkOCpbBLaCimWV5IM35aLYtUsbEbxCLdW~6DlwXKEcONNUXp50B123A5hA8yi4CNmY9f0DCPPjpccj5PWGtQ4tsJIA5fg~a5e9yQgGEDrh7AvsLBz6fho30aa6RUOhPZYCYKhG830C6aY8FkMePpJsVYtUxqpPKkukw6r5U-9sRRdzcy5LZ3yPwT0h58U3~XKGamtW52k2~bNYYh1f6TME5ZNolfbX4pANJqxC5zURPXzejA3~HN0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/88789613/j.neulet.2011.08.01220220720-1-1tqym1g-libre.pdf?1658314322=&response-content-disposition=inline%3B+filename%3DEvaluation_of_brain_pharmacokinetics_of.pdf&Expires=1715194223&Signature=ORrL0wpyEWm8QdH2Ez977os-p~fwoynvOy9v2EijG~79pfAm5YEk8kMdEdwZnU2O1CDYb6UIFWrqE2~SVnk3vHvrMlpMRQQnjkOCpbBLaCimWV5IM35aLYtUsbEbxCLdW~6DlwXKEcONNUXp50B123A5hA8yi4CNmY9f0DCPPjpccj5PWGtQ4tsJIA5fg~a5e9yQgGEDrh7AvsLBz6fho30aa6RUOhPZYCYKhG830C6aY8FkMePpJsVYtUxqpPKkukw6r5U-9sRRdzcy5LZ3yPwT0h58U3~XKGamtW52k2~bNYYh1f6TME5ZNolfbX4pANJqxC5zURPXzejA3~HN0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/88789613/j.neulet.2011.08.01220220720-1-1tqym1g-libre.pdf?1658314322=&response-content-disposition=inline%3B+filename%3DEvaluation_of_brain_pharmacokinetics_of.pdf&Expires=1715194223&Signature=ORrL0wpyEWm8QdH2Ez977os-p~fwoynvOy9v2EijG~79pfAm5YEk8kMdEdwZnU2O1CDYb6UIFWrqE2~SVnk3vHvrMlpMRQQnjkOCpbBLaCimWV5IM35aLYtUsbEbxCLdW~6DlwXKEcONNUXp50B123A5hA8yi4CNmY9f0DCPPjpccj5PWGtQ4tsJIA5fg~a5e9yQgGEDrh7AvsLBz6fho30aa6RUOhPZYCYKhG830C6aY8FkMePpJsVYtUxqpPKkukw6r5U-9sRRdzcy5LZ3yPwT0h58U3~XKGamtW52k2~bNYYh1f6TME5ZNolfbX4pANJqxC5zURPXzejA3~HN0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/88789613/j.neulet.2011.08.01220220720-1-1tqym1g-libre.pdf?1658314322=&response-content-disposition=inline%3B+filename%3DEvaluation_of_brain_pharmacokinetics_of.pdf&Expires=1715194223&Signature=ORrL0wpyEWm8QdH2Ez977os-p~fwoynvOy9v2EijG~79pfAm5YEk8kMdEdwZnU2O1CDYb6UIFWrqE2~SVnk3vHvrMlpMRQQnjkOCpbBLaCimWV5IM35aLYtUsbEbxCLdW~6DlwXKEcONNUXp50B123A5hA8yi4CNmY9f0DCPPjpccj5PWGtQ4tsJIA5fg~a5e9yQgGEDrh7AvsLBz6fho30aa6RUOhPZYCYKhG830C6aY8FkMePpJsVYtUxqpPKkukw6r5U-9sRRdzcy5LZ3yPwT0h58U3~XKGamtW52k2~bNYYh1f6TME5ZNolfbX4pANJqxC5zURPXzejA3~HN0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
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plane waves, incrementally separated by 2 degrees, spanning from -10° to +10°. The acquisition 

sequence was executed at a pulse repetition frequency (PRF) of 5.5 kHz, employing real-time 

continuous acquisition of successive blocks. Each block consisted of 400 ms of compounded 

plane wave images, followed by a 600 ms pause between pulses. 

2.4 Data Pre-processing 
pD images generated by the Iconeus One acquisition system undergo pre-processing through the 

application of integrated algorithms. These built-in algorithms employ singular value 

decomposition (SVD) techniques for clutter filtering (Ledoux et al. 1997), as well as phase 

correlation methods for sub-pixel motion registration. To derive the pD images, the algorithms 

were utilized to isolate the blood signal from the tissue signal. Potential physiological and 

motion artifacts were addressed through the adoption of rigid motion correction techniques, 

which have proven effective in functional ultrasound imaging (fUSI) and other neuroimaging 

modalities (Stringer et al. 2019). These motion correction measures were integrated with high-

frequency filtering algorithms to suppress noise-related artifacts. Specifically, a low-pass filter 

with a normalized passband frequency of 0.02 Hz and a stopband attenuation of 60 dB was 

implemented. This filter incorporated a delay compensation mechanism to mitigate any temporal 

distortions introduced by the filtering process itself, thereby facilitating the effective removal of 

high-frequency fluctuations from the pD signal data. 

 

2.5 Statistical Analysis Tools 
All analysis was performed on MATLAB 9.12.0.1927505 (R2022a) to 24.1.0.2537033 (R2024). 

For FC analysis of intraperitoneally administered MK-801 on the within septohippocampal 

network and its adjacent areas, we first calculated the percent change in cerebral blood volume 

https://www.sciencedirect.com/science/article/pii/S0959438818300977
https://www.sciencedirect.com/science/article/pii/S0959438818300977
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(ΔCBV) relative to baseline measurements (i.e., the average ΔCBV of first 5 min prior to saline 

or MK-801 injection) for the time series of each region of interest (ROI). To investigate the 

temporal dynamics of FC within the network, we employed a rolling functional connectivity 

(RFC) approach. This method involves calculating the Pearson correlation coefficient r of a pair 

of time series using a sliding window of 60 seconds, which was applied throughout the entire 

duration of the recording (2400 seconds). This enabled us to capture the evolution of functional 

connectivity over time. 

r =	
!(#!$#)(&!$&)

'!(#!$#)2(&!$&)2
 

To quantify these temporal evolutions, we fit a linear model to the RFC and use the slopes of the 

regression model for each ROI pair RFC to evaluate change of FC overtime and conduct a two-

sided significance test about each slope against the mean of 0 (𝑝 < 0.05). We validate the 

assumptions of the regression model by assessing normality through histograms (Figure 1.c) and 

QQ-plots of the residuals (Figure 1.d). According to the histograms and QQ-plots, the residual 

plots for all RFCs were deemed to be approximately normally distributed, confirming the 

suitability of employing linear regression. 
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Figure 1. Assessment of the linear regression model used to quantify temporal changes in 
functional connectivity.  
(A) Representative example of a rolling functional connectivity (RFC) plot between 
Hippocampus and Striatum in MK-801 group the shaded areas representing 95% confidence 
intervals. The linear regression model is fitted to the RFC data to obtain the slope, which 
represents the rate of change in functional connectivity over time.  
(B) Plot of calculated linear slope alongside the RFC points from part (A), highlighting the fitted 
regression lines for both groups. The shaded areas represent the 95% confidence bounds for each 
regression line.  
(C) Histogram of the residuals obtained from the linear regression model, demonstrating the 
approximately normal distribution of the residuals.  
(D) Quantile-Quantile (QQ) plot of the residuals against the standard normal distribution. The 
close alignment of the residuals to the diagonal line further confirms the normality assumption of 
the linear regression model. The normality of the residuals, as assessed by the histogram and QQ 
plot, validates the use of linear regression for analyzing the temporal changes in functional 
connectivity. 
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2.6 Prewhitening  
The motion-corrected power Doppler time series data from the 6 ROIs subsequent exhibited non-

stationarity with strong autocorrelation according to the AutoCorrelation Function (ACF) and 

Partial AutoCorrelation Function (PACF) plots (fig 3a). This is typically expected from 

biological systems including the brain (Derado et al. 2010). Thus, one of the steps was to 

conduct FC analysis on prewhitened (PW) data, which is the data that is void of autocorrelation, 

and compare it with the non-PW counterpart. We accomplished this by employing a predictive 

modeling approach based on the AutoRegressive Integrated Moving Average (ARIMA) 

framework pioneered by Box and Gen (Box et al. 2015). This mathematical model is the 

combination of an autoregressive model, integration of data and moving average models with 

which respectively are represented in degrees of (p, d, q). By fine tuning these parameters we can 

facilitate the forecasting of a future time point 𝑦! by explicitly incorporating the contributions of 

autocorrelation from its preceding values, namely {𝑦!"#, . . . , 𝑦!"2, 𝑦!"1}. Upon obtaining the 

forecasted time series	𝑦!, which is informed by the autocorrelative structure of the data, we can 

proceed to calculate the residuals 𝜀! by subtracting 𝑦! from the original time series, where 𝜔 

represents a constant. 

 

𝑦! 	= 	𝜔	 + 	𝜙𝑦!"$ 	+ 	𝜀!  
          Prewhitened series:                𝜀𝒕	 =	𝒚𝒕 	− 𝝎	 + 	𝝓𝒚𝒕"𝒑                                      (1) 
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This operation yields a residual sequence (𝜀!) that is characterized by the absence of 

autocorrelation, commonly referred to as "white noise". This process, known as prewhitening, 

effectively removes the temporal dependencies inherent in the original data.  

 Before diving into prewhitening, we must understand that in a time series data, 

correlation comes in two forms as shown below: Direct, and Indirect. In prewhitening data it's 

important to take both of these types of correlations into account. A great tool for inspecting 

these two correlations is the ACF and the PACF as they plot distinct types of correlations as a 

function of lag of the time series. Here, a “lag” of a time series y, denoted by 𝐿#{𝑦},simply refers 

to shifting the time series by a specific number of time periods. For example, a lag of 1 means 

shifting the entire time series data forward by 1 time period. Thus, the correlation of lag 0 will be 

the correlation of the time series with itself, yielding a value of 1. The difference between ACF 

and PACF is in the inclusion of indirect correlation. The ACF estimates the Pearson correlation 

coefficient between a timepoint 𝑦! and its lagged counterpart 𝑦!"#, thereby incorporating both 

direct and indirect dependencies. In contrast, the PACF computes the correlation between 𝑦! and 

𝑦!"# while controlling for the intervening correlations between 𝑦!"1 to 𝑦!"#"1, thus isolating the 

direct dependence at 𝐿#{𝑦}. Thus, by continually plotting the ACF and PACF of our modified 

time series throughout our analysis we can understand how much of the direct and indirect 

correlation we have eliminated from our original data. Throughout our prewhitening procedure, 

ACF and PACF will serve as a visualization tool to understand how much of the correlation we 

have eliminated from our original time series. 
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2.6.1 Integration (d) 
In time series data, we do not have independence as the measurement of some time period 

depends on the measurement of that value on the previous time periods. But to build predictive 

models, we need consistency, specifically within distributions. As ARIMA is a stationary class 

model, its first assumption is that the underlying time series is stationary. A time series is 

deemed stationary if it meets the following three criteria (Saridakis & Papaioannou, 2014): 

1. The mean (𝜇) is constant, typically assumed to be zero. 

2. The variance (𝜎) is constant across all time intervals of t. 

3. There is no seasonality within the time series 

 This underlying assumption is crucial as in a non-stationary time series, the relationships 

between observations and their dependence on past values can change over time. This violates 

the assumption of constant statistical properties, making it difficult to capture and model the 

underlying patterns accurately. Stationarity ensures that the relationships and dependencies 

within the data remain consistent, allowing the model to reliably capture and exploit these 

patterns. We can check for the 3 stationary criteria by simply plotting and visually analyzing the 

time series. For example, figure 2a depicts the hippocampal time series data from a 

representative MK mouse, illustrating the oscillatory patterns exhibited by this brain region. We 

observe an overall time trend and inconsistent variation throughout the time series. We remove 

this trend by differentiating the time series. Differencing is the process of computing the 

difference between consecutive observations in a time series to remove trends or seasonality. 

Notably, the 'integrated' component of the ARIMA model corresponds to the degree of 

differencing, represented by the parameter d in the conventional ARIMA (p, d, q) notation. This 
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parameter tells us the number of times the differencing operation needs to be applied to make the 

time series stationary.  

 
𝑦! 	= 	𝜔	 +	𝑦!"1 	+ 	𝜀!  

          Differencing: 𝑦! 	− 𝑦!"1 = 𝜔	 + 𝜀!		                                 
 

 
Figure 2. Transformation of non-stationary hippocampal CBV time series data into a stationary 
process using differencing. 
(A) Raw hippocampal CBV time series data from a representative MK-801-treated mouse, 
exhibiting non-stationary oscillatory patterns with an overall time trend and inconsistent 
variation throughout the series. 
(B) Differenced (ARIMA (0, 1, 0)) hippocampal CBV time series data, demonstrating a 
stationary process with a constant mean (μ = 0) and constant variance across the series. The 
differencing procedure removes the time trend and stabilizes the variance, resulting in a series 
characterized by white noise (εₜ) with constant statistical properties. 
 
 
By simply taking the first difference or ARIMA (0, 1, 0) of our non-stationary time series, we are 

left with 𝜔	 + 𝜀𝑡. 𝜔 represents a constant and 𝜀! is just white noise with constant mean and 

variance. Thus, since they both have constant statistical properties (i.e., mean, variance), we are 
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left with a stationary time series. By doing this procedure with fig## left panel, we obtain the 

right panel which shows us the differenced time series. By visual observation, we see that the 

differenced time series has a constant 𝑚𝑒𝑎𝑛, 𝜇 = 0 and a constant variance across the series. We 

further observe this by performing the Augmented Dickey-Fuller test for stationarity. As we are 

confident in the stationarity of the time-series, we can move on to the model building process 

 
2.6.2 AutoRegressive (AR)  
As previously mentioned, the ARIMA model forecasting capability relies on the incorporation of 

historical time points. In time series, each datapoint is dependent on the previous one, thus the 

AR part of ARIMA is essentially based solely on historical values of that series called Lags. 

Thus, by building a regression model of the form 

𝐴𝑅(1):							𝑦! = 	𝜔	 +	𝜙1𝑦!"1 + 𝜀! 
AR	(2):							𝑦𝑡 = 	𝜔 + 𝜙1𝑦!"1 +		𝜙2𝑦!"2 	+ 𝜀!	
𝐴𝑅(𝑝):							𝑦! = 	𝜔	 +	𝜙1𝑦!"1 +		𝜙2𝑦!"2+	. . . +𝜙#𝑦!"# +	𝜀!		                   (1) 

where 𝜔 is the constant, 𝜀! the white noise, and {𝜙1𝑦!"1 +		𝜙2𝑦!"2+	. . . +𝜙$𝑦!"$} is the 

previous time points or lags, we can predict the future time point 𝑦! based on the inherent 

dynamics of the series. 

 

2.6.3. Moving Average (MA)      
Thus the MA model depends not on the previous values of Y but the previous errors, i.e., the 

lagged errors, that exist across time. 

𝑀𝐴(1):								𝑦! = 	𝜔	 + 	𝜙′𝜀!"1 + 𝜀!	 
𝑀𝐴(2):								𝑦! = 	𝜔	 + 	𝜙′𝜀!"1 + 𝜙′𝜀!"2 + 𝜀!	 
𝑀𝐴(𝑞):								𝑦! = 	𝜔	 + 	𝜙′𝜀!"1 + 𝜙′𝜀!"2+	. . . +𝜙′𝜀!"+ + 𝜀!	                        (2) 

Where again 𝑦" is the predicted time point, w is the constant, the 
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{𝜙𝜀𝑡−1 +𝜙𝜀𝑡−2+	. . . +𝜙𝜀𝑡−𝑞} is the previous time point and 𝑒" is the current error.  

 

2.6.4. ARIMA 
Now, by combining the AR model (eq.1) and the MA model (eq.2) we get the equation for the 

ARIMA model which is: 

 
𝑦! = 	𝜔	 + 	𝜙1𝑦𝑡−1+	. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝜙′𝜀!"1+	. . . +𝜙′𝜀!"+ + 	 𝜀𝑡 

The ARIMA model incorporates both the autoregressive and moving average components, 

allowing for a more comprehensive representation of the time series dynamics. To determine the 

optimal ARIMA model for our hippocampal CBV time series data, we employed a systematic 

approach. We first examined the ACF and partial autocorrelation function (PACF) of the 

differenced time series to identify potential autoregressive and moving average terms. Based on 

the ACF and PACF plots, we considered several candidate models and evaluated their goodness 

of fit using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

These criteria balance the model's complexity and its ability to explain the data, with lower 

values indicating a better fit. After comparing various ARIMA models, we found that the 

ARIMA (4, 1, 0) model provided the best fit for our hippocampal CBV time series data. This 

model suggests that the current value of the time series depends on the four previous values 

(autoregressive term of order 4) and that the data has been differenced once to achieve 

stationarity (differencing term of order 1). The absence of a moving average term (q = 0) 

indicates that the model does not incorporate lagged forecast errors. To assess the effectiveness 

of the ARIMA (4, 1, 0) model in removing autocorrelation from the time series data, we 

examined the ACF and PACF plots of the prewhitened data (Figure 3). As evident in Figure 3B, 
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the ACF and PACF of the prewhitened data exhibit a dramatic reduction in autocorrelation 

compared to the raw data (Figure 3A). The majority of the lags in the prewhitened data fall 

within the shaded confidence interval, suggesting that the residuals are approximately 

independently distributed. This indicates that the ARIMA (4, 1, 0) model successfully captures 

and removes the temporal dependencies present in the raw hippocampal CBV time series data, 

resulting in a more stationary and uncorrelated process. The removal of autocorrelation is crucial 

for subsequent analyses, as it ensures that the statistical properties of the data are stable over time 

and that the observations are independent, allowing for valid inference and hypothesis testing. 

 
 
 

 
Figure 3. Autocorrelation and partial autocorrelation analysis of raw and prewhitened 
hippocampal CBV time series data from a representative MK-801-treated mouse.  
(A) ACF and PACF of the raw hippocampal CBV time series data. The ACF and PACF plots 
demonstrate significant autocorrelation across multiple lags, indicating the presence of strong 
temporal dependencies in the non-prewhitened data.  
(B) Sample ACF and sample PACF of the prewhitened hippocampal CBV time series data. After 
applying the prewhitening procedure, the ACF and PACF plots exhibit a dramatic reduction in 
autocorrelation, with the majority of the lags falling within the shaded confidence interval. This 
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suggests that the prewhitened time series more closely resembles an independently distributed 
process, effectively mitigating the confounding effects of autocorrelation present in the raw data. 

 

 
  



   
 

 
 
 

20 

RESULTS 

3.1 Rolling Functional Connectivity Analysis 
To investigate the effects of MK-801 on functional connectivity, we employed a rolling 

functional connectivity (RFC) analysis. This approach involved calculating the Pearson 

correlation coefficient between pairs of ROIs using a sliding window technique. For each pair of 

the 6 ROIs (hippocampus, striatum, pallidum, thalamus, hypothalamus, and mPFC), we first 

normalized their time series to the initial 5-minute baseline period. We then defined a 60-second 

window and computed the correlation coefficient between the corresponding segments of the two 

ROIs' time series. The window was sequentially shifted forward in time until it reached the end 

of the 2400-second recording period. This process was repeated for all possible pairwise 

combinations of the 6 ROIs. Figure 4a illustrates an example of RFC calculation process for two 

representative ROIs (i.e., Hippocampus and Striatum), demonstrating how the correlation 

coefficient is obtained for each 60-second window and how the window is incrementally moved 

along the normalized time series until the entire recording duration is covered.  
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Figure 4. Schematic representation of the rolling functional connectivity (RFC) analysis 
procedure using time series data from two regions of interest (ROIs) in a representative mouse. 
(A) CBV change over time in the hippocampus (ROI 1). The shaded rectangles {𝑌1, 𝑌2, 𝑌3, . . . , 𝑌#} 
represent the 60-second sliding windows that sequentially move from the beginning to the end of 
the time series.  
(B) CBV changes over time in the striatum (ROI 2). The shaded rectangles {𝑋1, 𝑋2, 𝑋3, . . . , 𝑋#} 
represent the corresponding 60-second sliding windows for the striatum time series. For each 
pair of corresponding windows from the hippocampus and striatum time series, the Pearson 
correlation coefficient is calculated (e.g., Pearson Correlation (𝑋1, 𝑌1) 	= 	 𝑟1, Pearson Correlation 
(𝑋2, 𝑌2) 	= 	 𝑟2, ..., Pearson Correlation (𝑋#, 𝑌#) 	= 	 𝑟#). (C) The resulting rolling functional 
connectivity plot, obtained by plotting the calculated Pearson correlation coefficients 
(𝑟1, 𝑟2, . . . , 𝑟#) against the time points corresponding to each window pair. This RFC procedure 
enables the assessment of dynamic changes in functional connectivity between the two ROIs 
throughout the recorded period. 
 

 

By employing this RFC analysis, we captured the dynamic changes in functional connectivity 

between brain regions over the experiment. Afterwards, we applied linear regression analysis to 
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quantify the temporal changes in functional connectivity. By fitting a linear regression model to 

each pairwise RFC plot, we obtained the slopes of the regression lines, which represent the 

approximate rate of change in functional connectivity over time. The resulting slopes were 

extracted for both the saline and MK-801 groups and plotted on a connectivity matrix (Figure 

6a). Comparing the slope connectivity matrix of both groups, we found that the MK-801 group 

(right panel) exhibited a more pronounced decrease in FC over time. This was evident from the 

fact that a larger number of ROI pairs in the MK-801 group showed a significant decrease in 

correlation compared to the saline group (left panel).  

 

 

 

3.2 Effect of Autocorrelation Removal 
The effectiveness of the ARIMA (4, 1, 0) model in reducing autocorrelation is clearly illustrated 

in Figure 3b. The ACF and PACF plots of the raw ∆CBV time series (left panels) show 

significant autocorrelation across multiple lags, indicating the presence of strong temporal 

dependencies in the data. In contrast, after applying the pseudo-prewhitening procedure (right 

panels), the ACF and PACF plots exhibit a dramatic reduction in autocorrelation. The majority 

of the lags fall within the shaded confidence interval, suggesting that the prewhitened time series 

are much closer to being independently distributed.  

After prewhitening, we calculated the linear regression slopes on the RFC of the pseudo-PW 

time series (Figure 5b) and compared the resulting connectivity matrices to those obtained from 

the raw (i.e., non-PW) data. The comparison revealed striking differences in the patterns of 

significant slopes between the two preprocessing approaches. In the MK-801 group, the 
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prewhitened data (Figure 5b; right panel), showed a significant decrease in functional 

connectivity across all pairwise ROIs, suggesting a widespread reduction in the temporal 

dynamics of functional connectivity induced by MK-801. This finding contrasts with the more 

localized changes observed in the raw data, where significant decreases were primarily 

concentrated in the functional connectivity between the hippocampus and other ROIs. Looking at 

the heatmap intensity of the slopes in the MK-801 group prewhitened data (Figure 5b; right 

panel), the largest decreases were observed primarily in the functional connectivity between the 

hippocampus and the other 5 ROIs. This finding highlights the particularly strong impact of MK-

801 on the temporal dynamics of hippocampal functional connectivity, which is consistent with 

the role of NMDA receptors in hippocampal-dependent learning and memory processes.  

On the other hand, the prewhitened saline group (Figure 5b; left panel) exhibited a notable shift 

in the distribution of significant slopes after prewhitening. While the raw data indicated 

significant changes mostly in the FC between the striatum and other ROIs, the prewhitened data 

revealed a more diverse pattern of significant slopes. These significant slopes were now mostly 

distributed among individual connections of both the mPFC and thalamus with the striatum and 

pallidum. This suggests that the prewhitening procedure uncovered additional temporal 

dynamics in the saline group that were previously obscured by autocorrelation in the raw data. 
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Figure 5. Comparison of functional connectivity changes over time between saline and MK-801 
groups using linear regression slopes derived from rolling functional connectivity (RFC) 
analysis.  
(A) Connectivity matrices displaying the slopes of linear regression lines fitted to the RFC plots 
for each pair of regions of interest (ROIs) in the saline (left panel) and MK-801 (right panel) 
groups using raw (non-prewhitened) data. The MK-801 group exhibits a more pronounced 
decrease in functional connectivity over time, as evident from the larger number of significantly 
negative slopes compared to the saline group.  
(B) Connectivity matrices displaying the slopes of linear regression lines fitted to the RFC plots 
for each ROI pair in the saline (left panel) and MK-801 (right panel) groups using prewhitened 
data. Prewhitening reveals a widespread reduction in the temporal dynamics of functional 
connectivity induced by MK-801, with the largest decreases observed primarily between the 
hippocampus and other ROIs. In contrast, the prewhitened saline group shows a more diverse 
pattern of significant slopes, with changes mostly distributed among connections of the mPFC 
and thalamus with the striatum and pallidum.  
(C) Distribution of averaged slopes from the connectivity matrices for saline and MK-801 
groups using raw (upper panel) and prewhitened (bottom panel) data. The substantial overlap 
between the distributions in the raw data indicates no significant difference in temporal effects 
on functional connectivity between the groups. However, after prewhitening, the slope 
distributions become more separated, suggesting a distinct and pronounced effect of MK-801 on 
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functional connectivity over time compared to the saline control. (Asterisks indicate the level of 
significance: * p < 0.05, ** p < 0.01, *** p < 0.001) 

 

3.3 Comparison of Temporal Effects on Functional Connectivity Between Saline 
and MK-801 Groups 
As a final step in our analysis, we aimed to compare the extent of the decrease in functional 

connectivity over time between the saline and MK-801 groups, to determine which condition had 

a more pronounced effect on the temporal dynamics of functional connectivity. We plotted the 

distribution of all the averaged slopes shown in the connectivity matrices for both saline and 

MK-801, using both raw and prewhitened data (Figure 5c). In the non-prewhitened slopes (upper 

panel), we observed a substantial overlap between the distributions, indicating no significant 

difference in the temporal effects on functional connectivity between the saline and MK-801 

groups. However, after prewhitening (bottom panel), the plotted slope distributions for the saline 

and MK-801 groups became much more separated, with minimal overlap. This clear separation 

suggests that the effect of MK-801 on functional connectivity over time was much more distinct 

and pronounced compared to the control (saline) condition after removing the confounding 

influence of autocorrelation. The prewhitening process revealed the true temporal impact of MK-

801 on functional connectivity, which was previously obscured by the presence of 

autocorrelation in the raw data. This finding underscores the importance of accounting for 

autocorrelation when investigating the temporal dynamics of functional connectivity, particularly 

in the context of pharmacological interventions such as MK-801 administration. 
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DISCUSSION 

4.1 Declining FC Over Time with MK-801 

The present study aimed to investigate the effects of the NMDA receptor antagonist MK-801 on 

dynamic functional connectivity within the septo-hippocampal network and its adjacent areas 

using fUSI. To explore the temporal dynamics of functional connectivity, we employed a rolling 

RFC analysis. This approach revealed that MK-801 administration not only affects the overall 

strength of functional connectivity but also leads to a more rapid decline in connectivity between 

brain regions involved in learning and memory over time. Specifically, the MK-801 group 

exhibited a more pronounced decrease in functional connectivity when prewhitened across all 

pairwise ROIs compared to the saline group (Telesford et al., 2016). 

 

4.2 The Impact of Autocorrelation Removal on fUSI Data 

Importantly, our study highlights the crucial role of accounting for autocorrelation when 

analyzing time series data. By applying a pseudo-prewhitening procedure using an ARIMA (4, 1, 

0) model, we were able to remove the confounding effects of autocorrelation. The stark 

difference observed between the raw and prewhitened data underscores the importance of this 

step, as failing to account for autocorrelation could lead to biased or spurious results in 

subsequent analyses (Schaffer, Dobbins, & Pearson, 2021). The prewhitened data revealed a 

particularly strong impact of MK-801 on the temporal dynamics of hippocampal functional 

connectivity. The pronounced reduction in the slopes of hippocampal functional connectivity 

suggests that MK-801 administration not only disrupts the overall strength of connections but 

also leads to a more rapid decline in the temporal dynamics of functional interactions between 

the hippocampus and other key regions involved in cognitive processing. This finding is 
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consistent with the critical role of NMDA receptors in hippocampal-dependent learning and 

memory processes (Brigman et al., 2010). 

 

4.3 Implications and Future Directions  

The findings of this study have important implications for understanding the mechanisms 

underlying learning and memory related deficits observed in neuropsychiatric disorders such as 

schizophrenia (Lee et al., 2020). By demonstrating the impact of NMDA receptor hypofunction 

on functional connectivity within and outside of the septo-hippocampal network, our results 

provide valuable insights into the potential neural substrates of cognitive impairments associated 

with these disorders. Future studies should aim to further elucidate the specific mechanisms by 

which MK-801 disrupts functional connectivity and explore potential therapeutic interventions 

that target these mechanisms. Additionally, investigating the effects of MK-801 on functional 

connectivity in awake, behaving animals could provide a more comprehensive understanding of 

how NMDA receptor hypofunction impacts cognitive processes in real-time. 

 

4.4 Limitations 

It is important to acknowledge the limitations of the current study. First, the sample size was 

relatively small, and future studies with larger cohorts may provide more robust and 

generalizable findings. Second, the use of anesthetized animals may have caused changes in the 

CBV (Masamoto & Kanno, 2012), and future studies in awake animals could help mitigate this 

potential confound. Lastly, while fUSI provides high spatial and temporal resolution, it is limited 

to a single imaging plane, and future studies employing multi-plane or three-dimensional 
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imaging techniques could offer a more comprehensive view of the brain-wide effects of MK-801 

(Rabut et al., 2019) 

In conclusion, our study demonstrates that MK-801 administration leads to a more rapid decline 

in functional connectivity as a function of time within and outside the septo-hippocampal 

network. These findings underscore the importance of NMDA receptor signaling in maintaining 

normal functional connectivity and provide valuable insights into the potential neural 

mechanisms underlying cognitive deficits observed in neuropsychiatric disorders. Furthermore, 

our results highlight the critical importance of accounting for autocorrelation when analyzing 

time series data to ensure accurate and reliable conclusions. 
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