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Abstract

Background—At least nineteen states have laws that require telling women with dense breasts
and a negative screening mammogram to consider supplemental screening. The most readily
available supplemental screening modality is ultrasound, yet little is known about its effectiveness.

Objective—To evaluate the benefits, harms, and cost-effectiveness of supplemental ultrasound
screening for women with dense breasts.

Design—Comparative modeling with 3 validated simulation models.

Data Sources—Surveillance, Epidemiology, and End Results Program; Breast Cancer
Surveillance Consortium; the medical literature.

Target Population—A contemporary cohort of women eligible for routine screening.
Time Horizon—L.ifetime.
Perspective—Payer.

Interventions—Supplemental ultrasound screening for women with dense breasts following a
negative screening mammaogram.

Outcome Measures—Breast cancer deaths averted, quality-adjusted life years (QALYs)
gained, false positive ultrasound biopsy recommendations, costs, costs per QALY gained.

Results of Base-Case Analysis—Supplemental ultrasound screening after a negative
mammogram for women aged 50-74 with heterogeneously or extremely dense breasts averted
0.36 additional breast cancer deaths (range across models: 0.14-0.75), gained 1.7 QALY (0.9—
4.7), and resulted in 354 false-positive ultrasound biopsy recommendations (345-421) per 1000
women with dense breasts compared with biennial screening by mammaography alone. The cost-
effectiveness ratio was $325,000 per QALY gained ($112,000-$766,000). Restricting
supplemental ultrasound screening to women with extremely dense breasts cost $246,000 per
QALY gained ($74,000-$535,000).

Results of Sensitivity Analysis—The conclusions were not sensitive to ultrasound
performance characteristics, screening frequency, or starting age.

Limitations—~Provider costs for coordinating supplemental ultrasound were not considered.

Conclusions—Supplemental ultrasound screening for women with dense breasts undergoing
screening mammography would substantially increase costs while producing relatively small
benefits in breast cancer deaths averted and QALY's gained.

Primary Funding Source—National Institutes of Health

INTRODUCTION

Mammographic breast density is a risk factor for developing breast cancer(1, 2). It also
affects mammography performance(3-6). Consequently, the false-negative rate of screening
mammography varies as much as 10-fold from the lowest to the highest categories of breast
density(5). Because breast density affects cancer risk and the false-negative rate of
screening, at least nineteen states have enacted legislation requiring that women with dense
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breasts be told of their breast density following a screening mammogram and that they
might benefit from supplemental screening tests such as ultrasound(7, 8). Similar legislation
is under consideration at the national level(9).

Breast density notification laws have an uncertain impact on health but could affect millions
of women. More than 50% of women aged 40-74 years have dense breasts(10),defined in
the laws as heterogeneously or extremely dense breast tissue by the American College of
Radiology’s Breast Imaging Reporting and Data System (BI-RADS)(9, 11). However, the
American College of Radiology and other organizations have cautioned legislators, health
policy makers, and health care providers to carefully consider the unintended consequences
of breast density notification legislation, including the uncertain harms and benefits of
supplemental screening(8, 12—15). These concerns are amplified given the subjective nature
of the BI-RADS breast density assessment and the challenges providers face in accurately
assessing and communicating breast cancer risk to their patients.

Ultrasound is often suggested for supplemental screening of women with dense breasts
because it is widely available and has relatively low direct medical costs(16-18). Shortly
after Connecticut became the first state to enact a breast density notification law, as many as
30% of women with dense breasts at some practices within the state were undergoing
supplemental ultrasound screening(19-21). Limited data from clinical trials and
observational studies suggest that the addition of handheld ultrasound screening to
mammography for women with dense breasts increases cancer detection rates at the expense
of increased biopsies for women without cancer(16, 19-22). Moreover, the impact of
supplemental ultrasound screening on long-term outcomes such as breast cancer mortality
and its cost-effectiveness at a population-level are not known(8).

We assessed the potential population benefits, harms, and cost effectiveness of supplemental
screening ultrasound for women with dense breasts using three established Cancer
Intervention and Surveillance Modeling Network (CISNET) breast cancer models(23). The
models incorporate evidence from clinical trials and observational studies to estimate the
impact of various screening scenarios on breast cancer outcomes including breast cancer
mortality, quality-adjusted life years (QALYS), and costs(24, 25). The results provide
evidence for policymakers considering breast density notification legislation and for women
and providers evaluating screening options for women with dense breasts.

METHODS

We used three micro simulation models developed independently with in the National
Cancer Institute-funded CISNET consortium (www.cisnet.cancer.gov): Model E (Erasmus
University Medical Center), Model G-E (Georgetown University Medical Center and Albert
Einstein College of Medicine), and Model W (University of Wisconsin and Harvard Medical
School). These modeling groups are collaborating in the program project grant that
supported this study and are described in detail elsewhere(26—28) and online at http://
cisnet.cancer.gov/breast/profiles.html; Appendix Table 1 outlines the main model
differences and assumptions. Our analyses used a lifetime horizon and federal payer
perspective. Briefly, the models simulated life histories of women who were at risk for
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breast cancer, underwent screening, were treated for breast cancers diagnosed by screening
or clinical detection, and were at risk for death from breast cancer and other causes. The
models have independent approaches and different modeling structures(23), but use
common inputs, including incidence in the absence of screening, mammography
performance, treatment effectiveness, and competing causes of mortality(29). The models
approximately replicate US breast cancer incidence and mortality trends(26—28, 30); see
Appendix Figure 1.For this analysis we used stimulated cohorts of women born in 1960, as
described elsewhere(24, 25).

Model Parameters

At age 40, women in the simulated model cohorts were assigned an initial breast density
based on the distribution of BI-RADS density categories for premenopausal women in the
Breast Cancer Surveillance Consortium (BCSC; Table 1)(31). At age 50, women in the
model cohorts were assigned to the same breast density category or the next lower category
so the prevalence of breast density categories matched the BCSC observed prevalence for
postmenopausal women(31). Sensitivity analyses were conducted with Model W to examine
the impact of re-assigning density at both age 50 and age 65, based on the BCSC breast
density prevalence data for women aged 50-64 (44% with dense breasts) and =65 years
(33% with dense breasts). In all scenarios, a woman’s modeled risk of developing breast
cancer depended on her age and breast density, based on BCSC data (Table 1).

Sensitivity and specificity of digital mammography were determined as a function of age,
breast density, and screening interval using BCSC data (Appendix Table 2)(32). The
American College of Radiology Imaging Network (ACRIN) Protocol 6666 study, a
randomized trial of screening handheld ultrasound among high-risk women with at least one
risk factor for breast cancer, provides the only controlled study of ultrasound test
performance(33). Based on this study, experts (authors CIL, CDL) estimated screening
ultrasound performance following a negative mammogram for average-risk women. We
used a screening ultrasound sensitivity of 0.55 for women with dense breasts following a
negative mammogram. We used a specificity of 0.94, with positive exams defined as those
recommended for biopsy. Models were calibrated such that94% of ultrasound screen-
detected cancers were invasive and 6% were in situ, as observed in published studies(16,
22). Sensitivity analyses evaluated a range of performance characteristics (Table 1).

Health-related quality of life utilities were a function of age(34)and decremented for breast
cancer diagnosis and stage-specific treatment(35). Sensitivity analyses included short-term
reductions in quality of life for a screening exam (0.006 for one week per screening exam)
or a positive screening result(0.105 for five weeks)(36).

The cost of a screening digital mammogram was $138 based on the 2013 Medicare
reimbursement rate. Screening ultrasound does not currently have a specific reimbursement
rate, so we used the diagnostic breast ultrasound reimbursement rate of $100.Sensitivity
analyses were also conducted using higher potential reimbursement rates for screening
ultrasound because of its increased work intensity compared to diagnostic ultrasound.
Diagnostic costs for additional imaging and biopsy following a positive screening
mammogram and costs for cancer treatment were from the literature(32, 37). Diagnostic
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costs following a positive ultrasound were assumed to be equal to the biopsy-related costs of
diagnostic work-up after a positive mammogram. All costs were in 2013 US dollars.

Screening strategies

Primary analysis compared three strategies for women aged 5074 receiving biennial
mammography screening: 1) mammography alone; 2) mammography plus screening
ultrasound following a negative mammogram for women with extremely dense breasts; and
3) mammography plus handheld screening ultrasound following a negative mammogram for
women with heterogeneously or extremely dense breasts (base-case). Secondary analyses
evaluated the three strategies as an annual screening regimen for women aged 40-74.All
strategies were compared with “no screening.” All scenarios assumed 100% adherence to
the screening regimen and adjuvant treatment guidelines.

Analysis

For each strategy, the models estimated breast cancer mortality, life-years, QALYs, false-
positive exams, and costs across the lifetimes of each simulated woman beginning at age 40.
Costs, life years, and QALY were discounted at 3% annually(38). Within-model cost-
effectiveness ratios were calculated for each ultrasound strategy relative to its comparable
mammography-alone strategy by dividing the difference in total costs by the difference in
QALYs. All results are presented as median and range from the three simulation models.

Role of the funding source

This work was funded by the National Cancer Institute. The funding source had no role in
the design and conduct of the study; collection, management, analysis, and interpretation of
the data; preparation, review, and approval of the manuscript; or the decision to submit the
manuscript for publication.

RESULTS

The three models yielded similar results for the estimated benefits and harms of the
screening strategies (Figure 1, Appendix Tables 3 and 4). In the absence of screening, the
models estimated 25.4 breast cancer deaths (range, 21.4-27.5) per 1000 women. Strategies
with mammaography screening alone reduced breast cancer mortality to 19.7 (14.7-20.3) and
15.2 (10.3-17.5) breast cancer deaths per 1000 women for biennial 50-74 and annual 40-74
mammography screening, respectively. Relative to “no screening”, these gains came at an
increase in total costs of approximately $1 million per 1000 women for biennial 50-74
mammography screening and $3 million per 1000 women for annual 40-74 mammography
screening.

For women aged 50-74 undergoing biennial screening, the models estimated that
supplemental ultrasound would result in 504 ultrasound screening exams (range across
models: 361, 584)per 1000 women if targeted to women with extremely dense breasts and
3827 ultrasound screening exams (3417-4048) per 1000 women if targeted to women with
heterogeneously or extremely dense breasts(Table 2).

Ann Intern Med. Author manuscript; available in PMC 2016 February 03.
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Compared to biennial mammography screening alone for women aged 50-74, supplemental
screening ultrasound for women with extremely dense breasts averted 0.30 additional breast
cancer deaths (range across models 0.14-0.75) and produced 1.1 additional QALY (0.8—
3.9) per 1000 women with extremely dense breasts (Table 3). The median 1.1 QALYSs
gained per 1000 women is equivalent to 9.6 hours per woman. These gains came at the cost
of 189 false-positive ultrasound biopsy recommendations(173-259) and $287,000
($271,000-$411,000) per 1000 women with extremely dense breasts. These findings gave a
cost-effectiveness ratio of $246,000 per QALY gained ($74,000-$535,000) for supplemental
ultrasound relative to digital mammography screening alone. Supplemental ultrasound
screening for women with heterogeneously or extremely dense breasts averted 0.36
additional breast cancer deaths (0.17-0.93) and produced 1.7 additional QALYSs (0.9-4.7), at
a cost of 354 false-positive ultrasound biopsy recommendations and $560,000($529,000-
$625,000) per 1000 women with heterogeneously or extremely dense breasts. These findings
gave a cost-effectiveness ratio of $325,000 per QALY gained ($112,000-$766,000) for
supplemental ultrasound relative to mammography screening alone (Table 3).

For an annual screening regimen for women aged 40-74, the benefits, harms, and costs of
supplemental ultrasound screening were substantially amplified (Tables 2 and 3).
Supplemental ultrasound screening for women with heterogeneously or extremely dense
breasts averted 0.43 additional breast cancer deaths (0.08-1.28) and produced 3.0 additional
QALYs (0.7-9.4) per 1,000 women with heterogeneously or extremely dense breasts
compared to mammography screening alone. These findings yielded a cost-effectiveness
ratio of $728,000 ($223,000-$3,509,000) per QALY gained for supplemental ultrasound
relative to mammography screening alone (Table 3).

The incremental cost-effectiveness of expanding supplemental ultrasound screening from
women with extremely dense breasts to women with either heterogeneously or extremely
dense breasts was $338,000 per QALY gained ($121,000-$562,000) in the biennial
screening scenario for women aged 50-74 and $776,000 per QALY gained ($259,000-
$3,583,000) for the annual screening scenario for women aged 40-74 (data not shown).

Close examination of the model results revealed that differences in model estimates of the
benefits of supplemental ultrasound screening were largely due to variation in the estimated
ultrasound screening cancer detection rates among women with dense breasts following a
negative mammogram (Table 4).

Sensitivity analyses

For biennial screening of women aged 50-74, the cost-effectiveness of supplemental
ultrasound screening of women with heterogeneously or extremely dense breasts compared
to mammography alone improved to $127,000 ($60,000-$353,000) per QALY gained when
using elevated screening ultrasound sensitivity (0.85) and specificity (0.98) (Figure 2).
Increasing the cost of a screening ultrasound exam to equal a screening mammogram had a
modest impact on cost-effectiveness (median $396,000 per QALY gained), while the
inclusion of short-term utility decrements for screening tests and diagnostic work-up
substantially reduced the cost-effectiveness (median $703,000 per QALY gained) of
supplemental ultrasound. Re-assigning breast density at both age 50 and age 65 (vs. at age
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50 only) had a small impact on the results for Model W ($347,000 vs.$325,000 per QALY
gained for the base-case scenario).

DISCUSSION

Our models predicted that supplemental ultrasound screening for women with dense breasts
would result in limited health gains and substantially increased expenses. The three models
estimated that supplemental screening of women with heterogeneously or extremely dense
breasts and a negative mammogram would cost more than $100,000 per QALY gained for
either biennial screening of women aged 5074 or annual screening of women aged 40-74.
The models consistently showed that targeting supplemental ultrasound screening to women
with extremely dense breasts undergoing biennial mammography would be more efficient
than targeting women with either heterogeneously or extremely dense breasts, although even
this strategy was not cost effective by most standards. The results also demonstrated that if
supplemental ultrasound screening was used, it would be more cost effective for biennial
screening of women aged 50-74 than annual screening of women aged 40-74.

While estimates of the breast cancer deaths averted and QALY's gained with supplemental
ultrasound screening varied across models, all models found a small impact of supplemental
ultrasound screening on breast cancer mortality and QALYS, particularly compared with the
impact of screening mammography alone, which has a comparatively high sensitivity for
detecting breast cancer. Consistent with prior work(25), our models estimated that biennial
mammography alone for women aged 50-74 averted approximately six breast cancer deaths
per 1000 women compared to no screening. Supplemental ultrasound screening of all
women with heterogeneously or extremely dense breasts was estimated to reduce the breast
cancer death rate by 0.36deaths per 1000 women with dense breasts compared to
mammography screening alone. The models were consistent in finding that supplemental
ultrasound screening for women with heterogeneously or extremely dense breasts would
cost more than $100,000 per QALY gained relative to mammaography screening alone. Thus,
despite improved screening sensitivity with the addition of supplemental ultrasound, each
model projected a limited impact on breast cancer mortality and QALY gained due to
relatively low cancer detection rates for screening ultrasound among women at average risk
who undergo regular mammography screening.

While breast density legislation typically defines “dense breasts” as heterogeneously or
extremely dense, we found that scenarios where supplemental ultrasound screening was
limited to women with extremely dense breasts were relatively more efficient. For biennial
screening of women aged 50-74, the models estimated improved cost effectiveness for
supplemental ultrasound screening when targeted to women with extremely dense breasts;
one model estimated $74,000 per QALY gained relative to mammography alone. All three
models generated unfavorable cost-effectiveness ratios for supplemental ultrasound
screening of women with extremely dense breasts for annual screening of women aged 40—
74, reinforcing the effect of screening frequency on results.

Conclusions were generally consistent across models and robust in sensitivity analyses.
Model estimates of costs and false-positive ultrasound screens for each screening strategy

Ann Intern Med. Author manuscript; available in PMC 2016 February 03.
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were in close agreement. The models showed more substantial variation in estimates of the
benefits of supplemental screening, although all models reported small benefits. Cost-
effectiveness ratios used measures of benefit in the denominator and thus were sensitive to
small differences.

The range in model-estimated supplemental screening benefits reflects uncertainty about
breast cancer natural history in the absence of screening. The models used independent
approaches to simulate the natural history of breast cancer with different assumptions for
unobservable variables such as duration of the preclinical screen-detectable phase of cancer
and the proportion of cancers that do not ultimately lead to breast cancer death. Sensitivity
analyses also indicated considerable variation in cost-effectiveness according to the
ultrasound screening sensitivity and specificity parameters. No randomized controlled
studies are available on the use of adjunct ultrasound for screening in women with dense
breasts but at otherwise average risk for breast cancer(33). Data are needed on ultrasound
screening performance in community settings directly relevant to breast density legislation,
i.e., among women with dense breasts, a negative mammogram, and various risks of
developing breast cancer. Variation in comparative effectiveness estimates could be reduced
with high-quality data on ultrasound screening including cancer detection rate, stage
distribution, and false-negative rate following a negative mammogram among women with
dense breasts at various ages and levels of breast cancer risk. Such data would be
particularly useful in evaluating alternative ultrasound screening strategies that target
women based on factors beyond breast density alone, including breast cancer risk or
likelihood of a false-negative mammogram.

Estimates of the benefits of supplemental ultrasound screening were substantially affected
by considering short-term utility decrements that may result from screening exams and
diagnostic work-up. In sensitivity analyses that assigned short-term utility decrements for
mammography and ultrasound exams, the median cost per QALY gained from supplemental
ultrasound screening increased from $325,000 to $703,000.These results suggest that the
benefit-to-harm balance of supplemental ultrasound could vary substantially depending on a
woman’s tolerance for false-positives and screening-related anxiety. Recent findings from
the Digital Mammographic Imaging Screening Trial(39)suggest that while anxiety is
increased following a false-positive mammogram, health utility scores as measured by the
EQ-5D do not differ from women with a negative mammogram. Further research is needed
to examine the short-term impacts of supplemental ultrasound screening on health utility
scores, particularly given the frequency of biopsy following an abnormal screening
ultrasound exam.

Our cost-effectiveness analysis was from the payer perspective and did not include societal
costs such as patient time or facility costs for coordinating ultrasound screening; these
factors would further increase the costs of supplemental screening. We assumed 100%
screening and treatment adherence in evaluating the screening strategies and did not
evaluate supplemental screening strategies for women not undergoing routine
mammography. We considered only false-positive ultrasound recommendations for biopsy
since only a small fraction of women with suspicious screening ultrasound findings but a
negative mammogram are referred for additional imaging(19-21). However, a substantial
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fraction of ultrasound screening exams result in recommended short-interval follow-up(19-
21). We did not model short-interval follow-up, which would further increase costs and
likely worsen the cost effectiveness of supplemental ultrasound screening. Thus, the
implications and optimal management of women receiving short-interval follow-up
recommendations following ultrasound screening is an area for further research.

Our findings indicated that supplemental ultrasound screening of women with dense breasts
would substantially increase costs while producing small benefits in breast cancer deaths
averted and QALYSs gained. To further improve our understanding of these harms and
benefits, we need research that provides high-quality estimates of the performance of
supplemental ultrasound screening in women at various levels of breast cancer risk. This
includes both handheld ultrasound screening as well as automated whole breast ultrasound,
which is an emerging technology with the potential to increase the standardization of
ultrasound screening while reducing user skill and time constraints (40, 41). We also need
estimates of the utility decrements associated with supplemental screening.

The widespread replacement of film mammography by digital mammography in the US has
reduced but not eliminated the disparity in screening mammaography sensitivity according to
breast density(42). Targeted supplemental screening strategies are also motivated by the
elevated breast cancer risk of women with dense breasts. While our results demonstrate that
even under optimistic assumptions, supplementary handheld ultrasound screening in women
with dense breasts but otherwise average risk is not cost-effective, it remains possible that a
better-performing technology with targeted application to dense-breasted women or to
women at higher than average risk may be useful. We particularly need studies evaluating
the potential role of additional imaging modalities such as magnetic resonance imaging and
digital breast tomosynthesis in screening for women with dense breasts.

Our results are directly applicable to breast density legislation. The value of breast density
notification is complex and must be evaluated from a range of perspectives. We hope our
results inform discussions about pending national legislation and also provide health care
providers and women with information to guide decisions about screening strategies.
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Appendix Table 1

Key assumptions and features in the three simulation models, adapted from Stout et al. (32)
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Model™

G-E

Breast cancer natural history

Model structure

Parameter estimation

Screening and Treatment

Implementation of screening
benefits

Implementation of treatment
benefits

Factors affecting treatment
benefits

Software

Programming language

Continuous-time
tumor growth
model beginning in
preclinical in situ
disease; subset does
not progress from
in situ to invasive

Calibrated to US
stage-specific
breast cancer
incidence from
1975-2000

Tumor size

Cure fraction

ER and HER2
status, age, calendar
year

Delphi

Continuous-time
tumor growth
model beginning in
preclinical in situ
disease; subset does
not progress from
early invasive and
may regress if
undetected

Calibrated to US
stage-specific
breast cancer
incidence and
mortality from
1975-2000

Tumor size, age
shifts

Cure faction

ER status, age,
calendar year, stage
at diagnosis

C++

State transition
model beginning in
preclinical in situ
disease; subset does
not progress from in
situ to invasive

Calibrated to US
stage-specific breast
cancer incidence
from 1975-2000

Stage, age shifts

Hazard reduction

ER and HER2
status, age, calendar
year, stage at
diagnosis

C++

CISNET = Cancer Intervention and Surveillance Modeling Network; ER = estrogen receptor; HER2 = human epidermal

growth factor

*
Model abbreviations are: E = Erasmus University Medical Center; W = University of Wisconsin and Harvard Medical
School; G-E - Georgetown University Medical Center and Albert Einstein College of Medicine;

Appendix Table 2

Digital mammaography sensitivity and specificity” by screening interval, age group, and
breast density from the Breast Cancer Surveillance Consortium, 2001-2008, adapted from

Stout et al (32).

BI-RADS breast density

Almost entirely fat

Scattered fibro glandular densities

Ann Intern Med. Author manuscript; available in PMC 2016 February 03.

Age, Yrs Interval
40-49 First 0.84
Annualt 0.69
Biennialt 0.76
50-74 First 0.88
Annual 0.76
Biennial 0.82
40-49 First 0.91
Annual 0.82
Biennial 0.87

Sensitivity ~ Specificity

0.90
0.95
0.94
0.92
0.95
0.95
0.83
0.90
0.89
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BI-RADS breast density

Heterogeneously dense

Extremely dense

Age, Yrs Interval

50-74

40-49

50-74

40-49

50-74

First
Annual
Biennial
First
Annual
Biennial
First
Annual
Biennial
First
Annual
Biennial
First
Annual

Biennial

Sensitivity ~ Specificity

0.94
0.87
0.90
0.86
0.74
0.80
0.90
0.80
0.85
0.87
0.74
0.80
0.90
0.80
0.85

0.85
0.92
0.90
0.78
0.87
0.85
0.81
0.89
0.88
0.82
0.90
0.88
0.85
0.92
0.90

BI-RADS = Breast Imaging Reporting and Data System

Appendix Table 3

TScreening exams with a screen 9 to 18 months prior included in the calculation.

¢Screening exams with a screen 19 to 30 months prior included in the calculation.

Model-specific outcomes per 2000 women associated with biennial 50-74 digital
mammography screening, by screening strategy.”

Page 15

*
Sensitivity and specificity based on a 12-month follow-up period for defining interval cancers. Multivariable logistic
regressions were used to estimate parameters. Covariates included age, screening frequency, and breast density.

Screening strategy

Mammography  Ultrasound
Screenings

Screenings

False Positive
Ultrasound Biopsy  Breast Cancer
Recommendations

Deaths

Life
Years

Quiality-Adjusted
Life Years

Total
Costs

Model E
No screening

Biennial 50-74
mammography
alone

Biennial 50-74
mammography
plus ultrasound for
extremily dense
breasts

Biennial 50-74
mammography
plus ultrasound for
heterogeneously or
extrem;ly dense
breasts

Model W
No screening

Biennial 50-74
mammography
alone

Ann Intern Med. Author manuscript; available in PMC 2016 February 03.

11,014

11,013

11,009

10,754

504

3,827

27

212

25.4

19.7

19.6

19.1

14.7

22,947.7

22,981.0

22,981.6

22,984.4

23,065.5

23,108.5

18,943.8

18,970.4

18,970.9

18,973.3

19,024.9

19,059.8

$1,956,003

$2,872,768

$2,914,062

$3,197,490

$2,021,074

$3,048,791
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False Positive
Mammography Ultrasound Ultrasound Biopsy Breast Cancer Life Quiality-Adjusted
Screening strategy Screenings Screenings  Recommendations Deaths Years Life Years

Total
Costs

Biennial 50-74
mammography
plus ultrasound for 10,753 361 23 14.7 23,108.7 19,059.9
extrem$ly dense
breasts

Biennial 50-74
mammography
plus ultrasound for
heterogeneously or
extrem(;ly dense
breasts

10,746 3,417 218 145 23,109.8 19,060.8

Model G-E
No screening 0 0 0 275 23,510.0 19,374.4

Biennial 50-74
mammography 11,207 0 0 20.3 23,548.7 19,405.4
alone

Biennial 50-74
mammography
plus ultrasound for 11,207 584 37 20.3 23,548.9 19,405.5
extrem(}gly dense
breasts

Biennial 50-74
mammography
plus ultrasound for
heterogeneously or
extrem$ly dense
breasts

11,207 4,048 258 20.2 23,549.4 19,405.9

$3,084,855

$3,393,578

$2,312,148

$3,018,824

$3,078,048

$3,418,949

*
All outcomes computed from age 40 until death. Life years, quality-adjusted life years and total costs were discounted at
3% per year.

t . . . .
Screening ultrasound following a negative screening mammogram.

Appendix Table 4

Model-specific outcomes per 1000 women associated with annual 40-74 digital
mammography screening, by screening strategy.”

False Positive Breast Quality-
Mammography Ultrasound Ultrasound Biopsy  Cancer Adjusted Life

Screening Strategy Screenings Screenings Recommendations  Deaths  Life Years Years Total Costs

Model E

No screening 0 0 0 25.4 22,947.7 18,943.8 $1,956,003
Annual 40-74 30,159 0 0 15.2 23,025.4 19,005.9 $4,989,653

mammography
alone

Annual 40-74
mammography plus

ultrasound for 30,155 2,151 124 15.0 23,027.4 19,007.6 $5,219,332

extremily dense
breasts

Annual 40-74
mammography plus
ultrasound for
heterogeneously or
extremily dense
breasts

Model W

30,142 12,397 721 14.4 23,032.3 19,011.7 $6,280,442

No screening 0 0 0 21.4 23,065.5 19,024.9 $2,021,074

Ann Intern Med. Author manuscript; available in PMC 2016 February 03.
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False Positive Breast Quality-
Mammography  Ultrasound  Ultrasound Biopsy = Cancer Adjusted Life
Screening Strategy Screenings Screenings Recommendations  Deaths Life Years Years Total Costs

Annual 40-74 30,172 0 0 10.3 23,151.5 19,096.5 $5,223,561
mammography
alone

Annual 40-74
mammography plus
ultrasound for 30,165 1,837 117 10.3 23,152.0 19,096.9 $5,448,521
extrem$ly dense
breasts

Annual 40-74
mammography plus

ultrasound for
heterogeneously or 30,145 11,776 751 10.1 23,153.8 19,098.4 $6,584,407
extrem(;ly dense

breasts
Model G-E
No screening 0 0 0 27.5 23,510.0 19,374.4 $2,312,148

Annual 40-74 31,287 0 0 175 23,575.4 19,4275 $5,147,210
mammography
alone

Annual 40-74
mammography plus
ultrasound for 31,287 2,293 147 17.5 23,5755 19,427.6 $5,419,072
extrem(}gly dense
breasts

Annual 40-74
mammography plus
ultrasound for
heterogeneously or 31,286 12,802 818 17.4 23,575.9 19,427.9 $6,598,051
extrem$ly dense
breasts

*
All outcomes computed from age 40 until death. Life years, quality adjusted life years and total costs were discounted at
3% per year.

t . . . .
Screening ultrasound following a negative screening mammogram.
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QALYs per 1000 women

QALYs per 1000 women

QALYs per 1000 women

Page 18

Model E
19,040 1
19,020 4 A40-74
A0.74  M+SUSEDB *
19,000 4 M only d AA0-74
B50-74 M+SUSDB
M+SUSEDB
18,980 4
B30-74 o @ B50-74
M only M+SLUSDB
18,960 A
No Screening *
18,940 T T T T T T 1
50.0 51.0 520 530 54.0 $5.0 S6.0 57.0
Total cost per 1000 women ($ millions)
Model W
19,120 -
A40-74
M+SUSEDB
19,100 A
ao-7s & & AB0-74
B50-74 M anlk =
19,080 - NHSUSEDB ¥ M+SUSDB
19,060 - ® ¢
B50-74 B50-74
o M only M+SUSDB
No Screening
19,020 T |’ T T T T 1
50.0 51.0 520 53.0 54.0 55.0 $6.0 S7.0
Total cost per 1000 women ($ millions)
Model G-E
19,470 A
19,450 4
A40-74
B50-74 M+SUSEDB
19,430 4
' M+SESEDB L R L]
ﬁm‘:‘]“ A40-74
19,410 oy M+SUSDB
B50-74 ® @ B50-74
19,390 - M only M+SUSDB
No Screenin
19,370 T T K T T T T \
50.0 51.0 52.0 53.0 54.0 55.0 $6.0 57.0
Total cost per 1000 women (% millions)
Figure 1.

Discounted quality-adjusted life years versus costs by model and screening strategy. B50—
74, biennial screening for women aged 50-74; A40-74, annual screening for women aged
40-74; M, mammography; SUSEDB, supplemental ultrasound screening for women with
extremely dense breasts; SUSDB, supplemental ultrasound screening for women with dense
breasts (heterogeneously or extremely dense).
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N
’
’
L 4
L 4
Base Increased US Increased US Increased US Increased US Inclusion of short
sensitivity specificity sensitivity and costs term utility
specificity decrements
Figure 2.

Sensitivity analyses comparing cost per quality adjusted life year(QALY) gained for
biennial mammography alone with mammography plus supplemental ultrasound (US) for
women aged 50-74 with heterogeneously or extremely dense breasts. X-axis shows key
variables that were changed. Diamonds show the median from the three simulation models.
Error bars show range across models. Dashed and dotted lines indicate $100,000 and
$50,000 per QALY gained, respectively. The range of values explored for each variable are
described in the methods and in Table 1.
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Key common inputs used by the three simulation models.

Table 1

Prevalence by Age, %

Relative Risk of Breast Cancer

Age 2501
10.2
49.0
355

53

Range in Sensitivity

BI-RADS breast density Age <501
Almost entirely fat 4.3
Scattered fibro glandular densities 343
Heterogeneously dense 47.0
Extremely dense 14.4

Screening ultrasound Base case

performance value
Sensitivity 0.55
Specificity 0.94
Cost of screening ultrasound exam $100

analyses
0.45, 0.85
0.90, 0.98
$100, $138

Age <50" Age 250"
0.49 059
1 (Ref) 1 (Ref)
1.55 1.46
2.00 1.77

Ref, reference group; BI-RADS, the American College of Radiology’s Breast Imaging Reporting and Data System.

*
Unpublished data from the Breast Cancer Surveillance Consortium.

TDensity prevalence is based on BCSC data for premenopausal vs. postmenopausal women undergoing screening mammography (31).
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Table 4

Sample histories from three simulation models of annual 40-74 digital mammography plus ultrasound
screening for women with heterogeneously or extremely dense breasts. Screening outcomes per 10,000

women are shown for a single calendar year corresponding to age 52 years.

Model E Model W  Model G-E

Screening mammograms* 9652 9583 9694
True-positive screening mammograms 27 38 26
Mammography cancer detection rate (per 1000 exams) 2.8 4.0 2.7
Negative mammograms 8811 8669 8684
Screening ultrasounds 3497 3090 3435
True-positive screening ultrasounds 2.8 1.8 0.3
False-negative screening ultrasounds 2.3 11 0.2
False-positive screening ultrasound biopsy recommendations 206 198 219
Ultrasound cancer detection rate (per 1000 exams)i 08 06 01
Ultrasound sensitivity§ 55% 62% 57%
Ultrasound specificity 94% 94% 94%
Percent of ultrasound-detected cancers that are invasive (vs. in situ) 94% 94% 96%

*
Women previously diagnosed with breast cancer are not screened.
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t . . . .
Supplemental ultrasound screening occurs among women with heterogeneously or extremely dense breasts following a negative mammogram.

¥ . . .
Cancers detected among women with a negative screening mammogram.
§

Note that while the overall sensitivity target for screening ultrasound was 0.55 in each model, the models employ different techniques to calibrate

detection probability curves that can vary based on patient age, tumor size, and other factors, thereby resulting in modest differences in sensitivity

across models for the observed sensitivity for a given age group (in this case, age 52).
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