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Machine translation of cortical activity to text with an encoder–
decoder framework

Joseph G. Makin1,2, David A. Moses1,2, Edward F. Chang1,2

1Center for Integrative Neuroscience, UCSF, San Francisco, CA, USA.

2Department of Neurological Surgery, UCSF, San Francisco, CA, USA.

Abstract

A decade after speech was first decoded from human brain signals, accuracy and speed remain 

far below that of natural speech. Here we show how to decode the electrocorticogram with high 

accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, 

we train a recurrent neural network to encode each sentence-length sequence of neural activity 

into an abstract representation, and then to decode this representation, word by word, into an 

English sentence. For each participant, data consist of several spoken repeats of a set of 30–

50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over 

peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. 

Finally, we show how decoding with limited data can be improved with transfer learning, by 

training certain layers of the network under multiple participants’ data.

In the last decade, brain–machine interfaces (BMIs) have transitioned from animal models 

into human participants, demonstrating that some amount of motor function can be restored 

to tetraplegics—typically, continuous movements with two degrees of freedom1–3. Although 

this type of control can be used in conjunction with a virtual keyboard to produce text, 

even under ideal cursor control (not currently achievable), the word rate would still be 

limited to that of typing with a single finger. The alternative is direct decoding of spoken (or 

attempted) speech, but heretofore such BMIs have been limited either to isolated phonemes 

or monosyllables4–8 or, in the case of continuous speech on moderately sized vocabularies 

(about 100 words)9, to decoding correctly less than 40% of words.
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To achieve higher accuracies, we exploit the conceptual similarity of the task of decoding 

speech from neural activity to the task of machine translation; that is, the algorithmic 

translation of text from one language to another. Conceptually, the goal in both cases is to 

build a map between two different representations of the same underlying unit of analysis. 

More concretely, in both cases the aim is to transform one sequence of arbitrary length into 

another sequence of arbitrary length—arbitrary because the lengths of the input and output 

sequences vary and are not deterministically related to each other. In this study, we attempt 

to decode a single sentence at a time, as in most modern machine-translation algorithms, so 

in fact both tasks map to the same kind of output, a sequence of words corresponding to one 

sentence. The inputs of the two tasks, on the other hand, are very different: neural signals 

and text. But modern architectures for machine translation learn their features directly from 

the data with artificial neural networks10,11, suggesting that end-toend learning algorithms 

for machine translation can be applied with little alteration to speech decoding.

To test this hypothesis, we train one such ‘sequence-to-sequence’ architecture on neural 

signals obtained from the electrocorticogram (ECoG) during speech production, and the 

transcriptions of the corresponding spoken sentences. The most important remaining 

difference between this task and machine translation is that, whereas datasets for the latter 

can contain upwards of a million sentences12,13, a single participant in the acute ECoG 

studies that form the basis of this investigation typically provides no more than a few 

thousand. To exploit the benefits of end-to-end learning in the context of such comparatively 

exiguous training data, we use a restricted ‘language’ consisting of just 30–50 unique 

sentences; and, in some cases, transfer learning from other participants and other speaking 

tasks.

Results

Participants in the study read aloud sentences from one of two datasets: a set of picture 

descriptions (30 sentences, about 125 unique words), typically administered in a single 

session; or MOCHA-TIMIT14 (460 sentences, about 1,800 unique words), administered in 

blocks of 50 (or 60 for the final block), which we refer to as MOCHA-1, MOCHA-2 and 

so on. Blocks were repeated as time allowed. For testing, we considered only those sets of 

sentences that were repeated at least three times (that is, providing one set for testing and 

at least two for training), which in practice restricted the MOCHA-TIMIT set to MOCHA-1 

(50 sentences, about 250 unique words). We consider here the four participants with at least 

this minimum of data coverage.

Decoding pipeline.

We begin with a brief description of the decoding pipeline, illustrated in Fig. 1, and 

described in detail in the Methods. We recorded neural activity with high-density (4-mm 

pitch) ECoG grids from the peri-Sylvian cortices of participants, who were undergoing 

clinical monitoring for seizures, while they read sentences aloud. At each electrode, the 

envelope of the high-frequency component (70–150 Hz, that is ‘high-γ’) of the ECoG signal

—that is, the amplitude of the analytic signal in this range—was extracted at about 200 Hz 

(ref. 15), and the resulting sequences—each corresponding to a single sentence—passed as 
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input data to an ‘encoder–decoder’-style artificial neural network10. The network processes 

the sequences in three stages:

1. Temporal convolution: a fully connected, feed-forward network cannot exploit 

the fact that similar features are likely to recur at different points in the sequence 

of ECoG data. For example, the production of a particular phoneme is likely to 

have a similar signature at a particular electrode independently of when it was 

produced16. To learn efficiently such regularities, the network applies the same 

temporally brief filter (depicted with a rectangle across high-γ waveforms in Fig. 

1) at regular intervals (strides) along the entire input sequence. Setting the stride 

greater than one sample effectively downsamples the resulting output sequence. 

Our network learns a set of such filters, yielding a set of filtered sequences 

effectively downsampled to 16 Hz.

2. Encoder recurrent neural network (RNN): the downsampled sequences are 

consumed seriatim by an RNN. That is, at each time step, the input to the 

encoder RNN consists of the current sample of each of the downsampled 

sequences, as well as its own previous state. The final hidden state (yellow 

bars in Fig. 1) then provides a single, high-dimensional encoding of the entire 

sequence, independent of its length. To guide the encoder toward useful solutions 

during training, we also require it to predict, at each time step, a representation 

of the speech audio signal, the sequence of Mel-frequency cepstral coefficients 

(MFCCs; see the Methods).

3. Decoder RNN: finally, the high-dimensional state must be transformed back 

into another sequence, this time of words. A second RNN is therefore initialized 

at this state, and then trained to emit at each time step either a word or the 

end-of-sequence token—at which point decoding is terminated. At each step in 

the output sequence, the decoder takes as input, in addition to its own previous 

hidden state, either the preceding word in the actual sentence uttered by the 

participant (during the model-training stage), or its own predicted word at the 

preceding step (during the testing stage). The use of words for targets stands in 

contrast to previous attempts at speech decoding, which target phonemes4–9.

The entire network is simultaneously trained to make the encoder emit values close to the 

target MFCCs, and the decoder assign high probability to each target word. Note that the 

MFCC-targeting provides an ‘auxiliary loss’, a form of multi-task learning17,18: its purpose 

is merely to guide the network toward good solutions to the word-sequence decoding 

problem; during testing, the MFCC predictions are simply discarded, and decoding is based 

entirely on the decoder RNN’s output. All training proceeds by stochastic gradient descent 

via backpropagation19, with dropout20 applied to all layers. (A more mathematical treatment 

of the decoder appears in the Methods.)

Decoding performance.

Here and throughout, we quantify performance with the average (across all tested sentences) 

word error rate (WER); that is, the minimum number of deletions, insertions and 

substitutions required to transform the predicted sentence into the true sentence, normalized 
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by the length of the latter. Thus, the WER for perfect decoding is 0%, and for erroneous 

decoding is technically unbounded, although in fact can be capped at 100% simply by 

predicting empty sentences. For reference, in speech transcription, WERs of 5% are 

professional-level21, and 20–25% is the outer bound of acceptable performance22. It is also 

the level at which voice-recognition technology was widely adopted, albeit on much larger 

vocabularies23.

We begin by considering the performance of the encoder–decoder framework for one 

example participant speaking the 50 sentences of MOCHA-1 (50 sentences, about 250 

unique words) (Fig. 2a). (The relative performance of decoders for the other three 

participants is quite similar; see Supplementary Fig. 1.) The mean WER for the participant 

shown in Fig. 2a is approximately 3%. The previous state-of-the-art WER for speech 

decoding is 60%, and operated with a smaller (100-word) vocabulary9.

Since all training and testing sentences belong to the same set of 50, it is also possible 

to compare performance against a sentence classifier (as opposed to word-by-word 

decoder). Here we compare against a state-of-the-art phoneme-based classifier for speech 

production24. Briefly, each of the 50 MOCHA-1 sentences was assigned its own hidden 

Markov model (HMM), whose emissions are neural activity and whose hidden state 

can transition only through the phonemes of that sentence (including self transitions). 

Test sequences of ECoG data were classified by choosing the HMM—and corresponding 

MOCHA-1 sentence—whose most-likely phoneme sequence (Viterbi path) had the highest 

probability across all 50 HMMs. (See the Methods for details.) The WERs for this model, 

approximately 33% (Fig. 2a, ‘phoneme-based HMM’), are about an order of magnitude 

larger than that of the encoder–decoder network.

What accounts for the superior performance of the encoder–decoder network? To quantify 

the contributions of its various elements, we systematically remove or cripple them, and 

retrain networks from scratch. The second box in Fig. 2a shows performance on data that 

have been spatially downsampled to simulate lower-density ECoG grids. Specifically, we 

simply discarded every other channel along both dimensions of the grid, leaving just one 

quarter of the channels; that is, nominally 64 instead of 256. The error rates are about four 

times greater—although within the usable range, showing the importance of the algorithm 

in addition to high-density grids. The third box shows performance when MFCCs are not 

targeted during training. The error rates are similar to those of models trained on data from a 

low-density grid, but notably superior to previous attempts at speech decoding. Thus, where 

speech audio is not available, as may well be the case for a candidate for a speech prosthesis, 

error rates are several times greater—but again within the usable range. Next, we consider a 

network whose input layer is fully connected, rather than convolutional (fourth box). WERs 

octuple. Note that the temporal convolution in our model also effectively downsamples the 

signal by a factor of 12 (see the Decoding pipeline subsection above), bringing the length of 

the average sequence seen by the encoder RNN down from about 450 to about 40 samples. 

And, indeed, our exploratory analyses showed that some of the performance lost by using 

fully connected input layers can be recovered simply by downsampling the high-γ activity 

before passing it to them. Thus, the decrease in performance due to removing temporal 
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convolution may be explained in part by the difficulty encoder–decoder networks have with 

long input sequences25.

Recall that the endpoints of each ECoG sequence fed to the encoder–decoder were 

determined by the endpoints of the corresponding speech audio signal. Thus, it might 

seem possible for the network to have learned merely the (approximate) length of each 

unique sentence in MOCHA-1, and then during testing to be simply classifying them on this 

basis, the decoder RNN having learned to reconstruct individual sentences from an implicit 

class label. To show that this is not the case, we replace each sample of ECoG data with 

(Gaussian) noise, retrain encoder–decoder networks and retest. Performance is much worse 

than that of any of the decoders—indeed, near chance (WERs of about 100%; see ‘length 

info. only’ box in Fig. 2a).

Next we consider how many data are required to achieve high performance. Figure 2b shows 

WERs for all four participants as a function of the number of repeats of the training set used 

as training data for the neural networks. We note that for no participant did the total amount 

of training data exceed 40 min in total length. When at least 15 repeats were available 

for training, WERs could be driven below 25%, the outer bound of acceptable speech 

transcription, although in the best case (participant b/pink) only four repeats were required. 

On two participants (participant b/pink, participant d/brown), training on the full training 

set yielded WERs below 8%, which is approximately the performance of professional 

transcribers for spoken speech21.

Transfer learning.

In Fig. 2b we included two participants with few training repeats of the MOCHA sentences 

(participant a/green, participant d/brown) and, consequently, poor decoding performance. 

Here we explore how performance for these participants can be improved with transfer 

learning17,26; that is, by training the network on a related task, either in parallel with or 

before training on the decoding task at hand, namely the MOCHA-1 sentence set.

We begin with participant a, who spoke only about 4 min of the MOCHA-1 dataset 

(that is, two passes through all 50 sentences, not counting the held-out block on which 

performance was evaluated). The first box of Fig. 3a (encoder–decoder) shows WERs for 

encoder–decoder networks trained on the two available blocks of MOCHA-1 (corresponding 

to the final point in the green line in Fig. 2b), which is about 53%. Next, we consider 

performance when networks are first pretrained (see the Methods for details) on the more 

plentiful data for participant b (ten repeats of MOCHA-1). Indeed, this transfer-learning 

procedure decreases WER by about 17% (from the first to the second box, participant TL’, 

of Fig. 3a; the improvement is significant under a one-sided Wilcoxon signed-rank test, 

Holm–Bonferroni corrected for multiple comparisons, with P  < 0.0005).

We have so far excluded blocks of MOCHA-TIMIT beyond the first 50 (MOCHA-1), since 

we were unable to collect a sufficient number of repeats for training and testing. However, 

the data from these excluded blocks may nevertheless provide subsentence information 

that is useful for decoding MOCHA-1, in particular word-level labels as well perhaps as 

information about lower-level features in the ECoG data. To test this hypothesis, we extend 
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the training set to include also the rest of the MOCHA sentences spoken by participant 

a—namely, two repeats of MOCHA-2 through MOCHA-9, which together comprise 410 

unique sentences (disjoint from MOCHA-1); train from scratch on this complete set of 

MOCHA-TIMIT; and test again on MOCHA-1. This cross-task training decreases WER by 

31% over the baseline (from the first to the third box, ‘task TL’, of Fig. 3a; P  ≪ 0.001). 

This result is particularly important because it shows that the encoder–decoder is not merely 

classifying sentences (in the encoder) and then reconstructing them (in the decoder), without 

learning their constituent parts (words), in which case the decoding scheme would not 

generalize well. Instead, the network is evidently learning subsentence information.

Finally, we consider a combined form of transfer learning, in which encoder–decoder 

networks are pretrained on all MOCHA-TIMIT data for participant b (an additional single 

set of MOCHA-2 through MOCHA-9); then trained on all MOCHA-TIMIT data for 

participant a; and then tested as usual on a held-out block of MOCHA-1 for participant 

a. This ‘dual transfer learning’ (Fig. 3a, fourth bar) decreases WER by 36% over baseline, 

although the improvement over task transfer learning alone is not statistically significant 

after correction for multiple comparisons.

Do the improvements transfer in the opposite direction, from participant a to participant b? 

Since decoding performance for participant b is already essentially perfect when training 

on all blocks (Fig. 2a), we consider instead performance when training on just two passes 

through all 50 sentences, as for participant a. We repeat the series of transfer-learning 

experiments and find a very similar pattern of results (Fig. 3b): pretraining on the data 

from participant a improves performance (second bar, +participant TL), as does training on 

sentences outside of the test set (that is, MOCHA-2 through MOCHA-9; third bar, +task 

TL). Using both types of transfer learning together improves results further still (P  < 0.005 

after correcting for multiple comparisons), again by about 36% over baseline.

For the participant with the worst performance on the MOCHA-TIMIT data, participant 

d (see again Fig. 2b), adding the rest of the MOCHA sentences to the training set does 

not improve results, perhaps unsurprisingly (Fig. 3c, ‘task TL’). However, cross-participant 

transfer learning (from participant b into participant d) again significantly improves 

decoding (P  < 0.005 after correcting for multiple comparisons). The small improvement 

due to cross-participant transfer learning in the context of cross-task transfer learning, on the 

other hand, does not survive correction for multiple comparisons.

Finally, for the two participants reading picture descriptions, participant transfer learning did 

not improve results.

Anatomical contributions.

To determine what areas of the cortex contribute to decoding in the trained models, we 

compute the derivative of the encoder–decoder’s loss function with respect to the electrode 

activities across time. These values measure how the loss function would be changed by 

small changes to the electrode activities, and therefore the relative importance of each 

electrode. (A similar technique is used to visualize the regions of images contributing to 

object identification by convolutional neural networks27.) Under the assumption that positive 
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and negative contributions to the gradient are equally meaningful, we compute their norm 

(rather than average) across time and examples, yielding a single (positive) number for 

each electrode. More details are available in the Methods, but we emphasize here one in 

particular: this method can give misleading results if the electrodes are referenced against a 

common mean or mode, which can smear the effects of some electrodes across the grid. All 

of our models, in contrast, were trained on bipolar-referenced electrodes28,29.

Figure 4 shows, for each of the four participants, the distribution of these contributions 

to decoding within each anatomical area. The projections onto the cortical surface appear 

in Fig. 5. For all participants, the largest contributing areas are the ventral sensorimotor 

cortex (vSMC) and superior temporal gyrus (STG), as expected from the cortical areas most 

strongly associated with, respectively, speech production30 and speech perception31,32. This 

is true even in the participant with right-hemisphere coverage (a/green). (This participant, 

similar to the others, was determined to be left-hemisphere language-dominant.) More 

specifically, in patients with STG coverage (all except participant c), strong contributions 

were made from the middle portion of STG, directly inferior to vSMC: the primary auditory 

areas (Brodmann areas 41 and 42), as well as nearby portions of Wernicke’s area. The 

activities of neural populations in this region are known to be influenced by the anticipated, 

as well as actual, feedback of self-vocalization33. These results therefore suggest that the 

network has learned to decode commands to the speech articulators (vSMC) and auditory 

feedback, either actual or anticipated (STG).

Discussion

We have shown that spoken speech can be decoded reliably from ECoG data, with WERs as 

low as 3% on datasets with 250-word vocabularies. But there are several provisos. First, the 

speech to be decoded was limited to 30–50 sentences. The decoder learns the structure of the 

sentences and uses it to improve its predictions. This can be seen in the errors the decoder 

makes, which frequently include pieces or even the entirety of other valid sentences from the 

training set (see Table 1). Although we should like the decoder to learn and to exploit the 

regularities of the language, it remains to show how many data would be required to expand 

from our tiny languages to a more general form of English.

On the other hand, the network is not merely classifying sentences, since performance is 

improved by augmenting the training set even with sentences not contained in the testing set 

(Fig. 3a,b). This result is critical: it implies that the network has learned to identify words, 

not just sentences, from ECoG data, and therefore that generalization to decoding of novel 

sentences is possible. Indeed, where data are plentiful, encoder–decoder models have been 

shown to learn very general models of English34. And, as we have seen, the number of data 

required can be reduced by pretraining the network on other participants—even when their 

ECoG arrays are implanted in different hemispheres (Figs. 3 and 5). In principle, transfer 

learning could also be used to acquire a general language model without any neural data at 

all, by pretraining an encoder–decoder network on a task of translation to, or auto-encoding 

of, the target language (for example, English)—and then discarding the encoder.
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We attribute the success of this decoder to three major factors. First, RNNs with long 

short-term memory (LSTM) are known to provide state-of-the-art information extraction 

from complex sequences, and the encoder–decoder framework in particular has been shown 

to work well for machine translation, a task analogous to speech decoding. Furthermore, 

the network is trained end-to-end, obviating the need to hand-engineer speech-related neural 

features about which our knowledge is quite limited. This allows the decoder to be agnostic 

even about which cortical regions might contribute to speech decoding.

Second, the most basic labeled element in our approach is the word, rather than the phoneme 

as in previous approaches. Here the trade-off is between coverage and distinguishability: far 

fewer phonemes than words are required to cover the space of English speech, but individual 

phonemes are shorter, and therefore less distinguishable from each other, than words. In fact, 

the production of any particular phoneme in continuous speech is strongly influenced by 

the phonemes preceding it (coarticulation), which decreases its distinguishability still further 

(or, equivalently, reduces coverage by requiring parsing in terms of biphones, triphones or 

even quinphones). At the other extreme, English sentences are even more distinguishable 

than words, but their coverage is much worse. Of course, in this study we have limited 

the language to just a few hundred words, artificially reducing the cost of poor coverage. 

But our results suggest that expanding the amount of data beyond 30 min will allow for an 

expansion in vocabulary and flexibility of sentence structure. We also note that even a few 

hundred words would be quite useful to a patient otherwise unable to speak at all. Finally, 

the use of words rather than phonemes may also make possible access to semantic and 

lexical representations in the cortex.

Third and finally, decoding was improved by modifying the basic encoder–decoder 

architecture10 in two ways: adding an auxiliary penalty to the encoder that obliges the 

middle layer of the RNN to predict the MFCCs of the speech audio; and replacing the 

fully connected feedforward layers with temporal-convolution layers, which also effectively 

downsamples the incoming ECoG signals by a factor of about ten. (For a detailed discussion 

of the architecture, see the Methods, and especially Figs. 6 and 7.) In fact, very recent 

work in machine learning has shown that RNNs can sometimes be replaced entirely with 

temporal-convolution networks, with superior results35—a promising avenue for future 

improvements to the decoder presented here.

We have emphasized the practical virtue of neural networks learning their own features 

from the data, but it comes at a scientific price: the learned features—in this case, neural 

activity in different brain regions—can be difficult to characterize. This is an open research 

area in machine learning. What we can say (Figs. 4 and 5) is that the anatomical areas 

predominantly contributing to decoding are the vSMC30 and the STG31,32—the major 

loci of speech production and perception, respectively. The highly contributing vSMC 

electrodes are themselves clustered near the central sulcus and the Sylvian fissure, directly 

superior to the highly contributing electrodes of the STG. The contributions from STG may 

reflect direct perception of the participant’s own speech (auditory feedback), but neural 

activity in middle STG is also known to be influenced by the anticipated feedback of self-

vocalization33, arguably via efference copy36, so these contributions may likewise reflect 

predicted auditory responses.
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To investigate the kinds of features being used, one can examine the patterns of errors 

produced. However, these are not always indicative of the feature space used by the network, 

whose errors often involve substitution of phrases or even whole sentences from other 

sentences of the training set (a strong bias that presumably improves decoding performance 

overall by guiding decoded output toward ‘legitimate’ sentences of the limited language). 

Nevertheless, some examples are suggestive. There appear to be phonemic errors (for 

example, in Table 1, ‘robin wear’ for ‘roll of wire’, ‘theatre’ for ‘thieves’, ‘did’ for ‘tina’), 

as expected, but also semantic errors—for example, the remarkable series of errors for ‘those 

musicians harmonize marvelously’, by different models trained on the data from participant 

a, in terms of various semantically related but lexically distinct sentences (‘the spinach 

was a famous singer’, ‘tina turner those musicians harmonize singer’, ‘does turner OOV
increases’). Since the focus of the present work was decoding quality, we do not pursue 

questions of neural features any further here. But these examples nevertheless illustrate the 

utility of powerful decoders in revealing such features, and we consider a more thorough 

investigation to be the most pressing future work.

Finally, we consider the use of the encoder–decoder framework in the context of a BMI, in 

particular as a speech prosthesis. The decoding stage of the network already works in close 

to real time. Furthermore, in a chronically implanted participant, the amount of available 

training data will be orders of magnitude greater than the half hour or so of speech used 

in this study, which suggests that the vocabulary and flexibility of the language might be 

greatly expandable. On the other hand, MFCCs may not be available—the participant may 

have already lost the ability to speak. This will degrade performance, but not insuperably 

(Fig. 2a; see also Supplementary Fig. 1 for the other three participants). Indeed, without 

MFCCs, the only data required beyond the ECoG and the text of the target sentences 

are their start and end times—a distinct advantage over decoders that rely on phoneme 

transcription. Recent work shows that speech onset and offset can be reliably decoded 

from ECoG data alone24. A more difficult issue is likely to be the changes in cortical 

representation induced by the impairment or by postimpairment plasticity. Here again the 

fact that the algorithm learns its own features makes it a promising candidate.

online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41593-020-0608-8.

Methods

The participants in this study were undergoing treatment for epilepsy at the University 

of California San Francisco (UCSF) Medical Center. Electrocorticographic (ECoG) arrays 

were surgically implanted on each patient’s cortical surface to localize the foci of their 

seizures. Before surgery, the patients gave written, informed consent to participate in this 

study, which was executed according to protocol approved by the UCSF Committee on 

Human Research. All four participants of this study (referred to herein by lowercase letters) 
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were female, right-handed and determined to be left-hemisphere language-dominant. At the 

time of the recordings, they were aged 47 (a), 31 (b), 29 (c) and 49 (d) years. Data collection 

and analysis were not performed blind to the conditions of the experiments. Further details 

can be found in the companion Nature Reearch Reporting Summary.

Task.

Participants read sentences aloud, one at a time. Each sentence was presented briefly on 

a computer screen for recital, followed by a few seconds of rest (blank display). Two 

participants (a and b) read from the 460-sentence set known as MOCHA-TIMIT14. These 

sentences were designed to cover essentially all of the forms of coarticulation (connected 

speech processes) that occur in English, but are otherwise unremarkable specimens of 

the language, averaging 9 ± 2.3 words in length, yielding a total vocabulary of about 

1,800 unique words. Sentences were presented in blocks of 50 (or 60 for the ninth set), 

within which the order of presentation was random (without replacement). The other two 

participants (c and d) read from a set of 30 sentences describing three (unseen) cartoon 

drawings, running 6.4 ± 2.3 words on average, and yielding a total vocabulary of about 125 

words; see Supplementary Table 1. A typical block of these ‘picture descriptions’ consisted 

of either all 30 sentences or a subset of just 10 (describing one picture).

The reading of these blocks was distributed across several days. The number of passes 

through the entire set depended on available time and varied by patient. The breakdown is 

summarized in Supplementary Table 2.

Data collection and preprocessing.

Neural data.—The recording and preprocessing procedures have been described in detail 

elsewhere15,24, but we repeat them briefly here. Participants were implanted with 4-mm-

pitch ECoG arrays in locations chosen for clinical purposes. Three participants (a, b, b) 

were implanted with 256-channel grids over peri-Sylvian cortices; the remaining participant 

was implanted with a 128-channel grid located dorsal to the Sylvian fissure, primarily over 

premotor, motor and primary sensory cortices (see Fig. 5). Grids were implanted over the 

left hemisphere of all patients except participant a.

Analog ECoG signals were amplified and then digitized at about 3 kHz, and channels 

with visible artifact or excessive noise were removed. These digital signals were then 

anti-aliased (low-pass filtered at 200 Hz) and downsampled to 400 Hz. Next, from the 

N remaining electrodes, 2N channels were generated by bipolar referencing. Specifically, 

from the activity of each electrode, the activities of its neighbor below (first channel) and 

its neighbor to the right (second channel) were subtracted. (This is similar to the scheme 

used by Burke and colleagues28 and shown by others to improve brain-state classification29, 

except that they generate 4N channels by using all four neighboring electrodes. But half 

of these are redundant, being but additive inverses of the remainder.) This corresponds 

exactly to a two-dimensional spatial derivative, a high-pass filter that discards information 

varying slowly over the grid (which we take to be noise). Bipolar referencing obviates 

notch filtering; improves the interpretation of electrode contributions (see “The relative 

contributions of electrodes to decoding”) by obviating common-average referencing, which 

Makin et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2023 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can spread the activities of electrodes across the whole grid; and, in our experiments, mildly 

improved overall decoding.

Finally, the analytic amplitudes (at each channel) were extracted in each of eight adjacent 

frequency bands between 70 and 150 Hz, averaged across bands and downsampled to about 

200 Hz. More precisely, the high-γ band filters were designed in the frequency domain 

as Gaussian windows, with mean ± s.d. frequencies (in Hz) of 73.0 ± 4.68, 79.5 ± 4.92, 

87.8 ± 5.17, 96.9 ± 5.43, 107.0 ± 5.70, 118.1 ± 5.99, 130.4 ± 6.30, 144.0 ± 6.62. The 

analytic signal was computed directly by zeroing out the negative frequency components 

in the frequency domain. The analytic signals from participant a and participant b were 

downsampled to precisely 200 Hz, whereas the signals from participant c and participant 

d were downsampled to 58∕211 ≈ 190 Hz for consistency with another study involving the 

same participants24. The amplitudes of the (complex) analytic signal were then z-scored on 

the basis of a 30-s sliding window, yielding the ‘high-γ’ signals discussed in the main text.

Speech transcriptions.—Speech was transcribed at the word level by hand or, where 

aided by speech-to-text software, with manual correction. Participants did not always read 

the sentences correctly, so the actual spoken vocabulary was generally a superset of the 

nominal vocabularies of the MOCHA-TIMIT or picture-description sentence sets, including 

nonwords (false starts, filled pauses, mispronunciations and the like). Nevertheless, the 

decoder represents words with a ‘one-hot’ encoding, and consequently requires a fixed-size 

vocabulary. To allow the decoder to generalize to new participants engaged in the same 

task (namely, producing sentences from either MOCHA-TIMIT or the picture descriptions), 

all words not in the nominal sets (less than 1% of the total) were replaced with a single 

out-of-vocabulary token before their use as training data.

Sentence onset and offset times were manually extracted and used to clip the neural data into 

sentence-length sequences.

Speech audio signal.—The speech audio of the participants was recorded 

simultaneously with the neural data at about 24 kHz with a dedicated microphone channel, 

and time aligned.

MFCCs are features commonly extracted from speech audio for the purpose of rendering 

linguistic (phonemic) content more perspicuous. Briefly, the coefficients at each ‘frame’ 

characterize (the logarithm of) the local power spectrum in log-spaced bins, a spacing 

that reflects the frequency discrimination of human hearing. Following typical practice, 

we used the leading 13 coefficients (of the discrete cosine transform), replacing the first 

of these with the log of the total frame energy. We extracted MFCCs in Python with the 

python_speech_features package37, using 20-ms sliding frames with a slide of 1/F sampling, 

where F sampling is the sampling rate of the high-γ data (about 200 Hz).

The network.

High-level description.—The encoder–decoder is an artificial neural network—

essentially an extremely complicated, parameterized function that is constructed by 

composition of simple functions, and ‘trained’ by changing those parameters so as 
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incrementally to decrease a penalty on its outputs. In our case, the input, outputs and 

penalties for a single sentence are:

• Input: the sequence of high-γ vectors (with the length of each vector the number 

of recording electrodes) recorded during production of the sentence

• Outputs: the sequence of predicted MFCCs extracted from the speech audio 

signal, and the sequence of predicted words

• Penalties: the deviations of the predicted from the observed sequences of MFCCs 

and words

The deviations are quantified in terms of cross entropy. For each word in the sequence, 

cross entropy is (proportional to) the average number of yes/no questions that would be 

required to ‘guess’ correctly the true word, given the output (predicted probabilities) of 

the decoder. For each element (vector) of the MFCC sequence, which is assumed to be 

normally distributed, the cross entropy is just the mean square error between the observed 

and predicted vectors (plus a constant term). At each step of the training procedure, the cross 

entropies are computed over a randomly chosen subset of all sentences, and the parameters 

(weights) of the network are changed in the direction that decreases these penalties. Note 

that we do not actually use the predicted MFCCs during the testing phase: the point of 

training the network to predict the speech audio signal is simply to guide the network toward 

solutions to the primary goal, predicting the correct sequence of words17.

Mathematical description.—We now describe and justify this procedure more 

technically. Notational conventions are standard: capital letters for random variables, 

lowercase for their instantiations, boldface font for vectors and italic for scalars. We use 

angle brackets, ⋅ , strictly for sample averages (as opposed to expectation values). For 

empirical probability distributions of data generated by ‘the world’, we reserve P , and for 

distributions under models, Q. The set of all parameters of the model is denoted Θ.

Consider the probabilistic graphical model in Fig. 6a. Some true but unknown relationships 

(denoted by the probability distribution P) obtain between the sequences of spoken words, 

W 0
J, corresponding audio waveforms, A 0

M, and contemporaneous neural activity, N 0
K

—commands to the articulators, neurolinguistic representations, efference copy, auditory 

feedback and so on. (Clearly, the number of words (J) in a given sentence will not be the 

same as the number (K) of vectors in a given ECoG sequence, or the number (M) in a given 

MFCC sequence. But neither will K and M be equal, since MFCCs need to be downsampled 

relative to the ECoG sequence, due to the decimating effect of the temporal convolution. 

We discuss this below (see “Implementation: the data”). Also, to lighten notation, we do not 

mark the fact that these integers are themselves random variables.) The task of the network 

is to predict (provide probability distribution Q over) each MFCC and word sequence, given 

just a neural sequence as input. The training procedure thus aims to bring Q closer to P , or 

more precisely to minimize the conditional Kullback–Leibler (KL) divergences,

DKL P a 0
M ∣ n 0

K ∥ Q a 0
M ∣ n 0

K; Θ
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and

DKL P w 0
J ∣ n 0

K ∥ Q w 0
J ∣ n 0

K; Θ

averaged under the observed data P n 0
K , by improving the parameters Θ. This is the 

standard formulation for fitting probabilistic models to data.

The minimization can equivalently be written in terms of cross entropies (by dropping 

the entropy terms from the KL divergences, since they do not depend on the parameters), 

which can be further simplified by assuming specific forms for the conditional distributions 

over MFCCs and words. In particular, we assume that at each step m in the sequence, the 

deviations of the observed vector of MFCCs, am, from the model predictions, a sm
e , Θ , are 

normally distributed and conditionally independent of all other sequence steps:

Q a 0
M ∣ n 0

K; Θ = ∏
m

M 1
Z exp − 1

2 am − a sm
e , Θ T am − a sm

e , Θ

(For simplicity we let the covariance matrix be the identity matrix here, but it does not affect 

the minimization.) The prediction a sm
e , Θ —the vector output of the encoder RNN at step 

m—depends on the entire sequence of neural data only by I way of the encoder state at step 

m:

sm
e = f n 0

K, Θ

where the function f is given by the encoder RNN. (In the networks discussed in the 

main text, f is a three-layer bidirectional network of LSTM cells; see the discussion of 

the architecture in “Implementation: architecture” below.) The cross entropy for the MFCC 

sequences then becomes

HP a 0
M, n 0

K Q a 0
M ∣ n 0

K; Θ
= − logQ a 0

M ∣ n 0
K; Θ P a 0

M, n 0
K

= ∑
m

M
∑

i

13 1
2 am, i − am, i sm

e , Θ 2
P a 0

M, n 0
K

+ C,
(1)

where the inner sum is over all 13 coefficients used at each step.

Similarly, at each step of the word sequence, we interpret the (vector) output of the decoder 

RNN, w, as a set of categorical probabilities over the words of the vocabulary:

Q w 0
J ∣ n 0

K; Θ = ∏
j = 0

J
Q wj ∣ w 0

j − 1, n 0
K; Θ

= ∏
j = 0

J
wj

Tw sj
d, Θ
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where w sj
d, Θ  is the vector of probabilities over words predicted by the decoder based on 

its current state, sj
d. The first equality follows from the chain rule of probability, but the 

second follows only from the graph in Fig. 6b, and embodies the hypothesis that the decoder 

state, sj
d, can provide a compact summary of the preceding words in the sequence (that is, up 

through step j − 1). The second line is consistent with the first because the decoder state sj
d

depends on only preceding words and the sequence of neural data, via the recursion

sj
d = f wj − 1, sj − 1

d , Θ , w−1: = EOS , s−1
d : = sM

e n 0
K

where the function f is given by the decoder RNN (see again Fig. 6). Note that the 

dependence on the neural data enters in only through the final encoder state, sM
e . This 

embodies the hypothesis that all of the information about the word sequence I that can be 

extracted from the neural sequence can be summarized in a single, fixed-length vector. In 

any case, the resulting cross entropy for the word sequences is therefore

HP w 0
J , n 0

K Q w 0
J ∣ n 0

K; Θ = − logQ w 0
J ∣ n 0

K; Θ P w 0
J , n 0

K

= − ∑
j = 0

J
log wj

Tw sj
d, Θ

P w 0
J , n 0

K

(2)

Note that, since the observed words are one-hot, the inner product in the last line simply 

extracts from the vector of predicted probabilities, w, the predicted probability of the 

observed word (so that the predicted probabilities of the other words have no effect on 

the cost function).

The relative importance of the cross entropies in equations (1) and (2) is not obvious 

a priori: ultimately, we require only that the model produce (good) word sequences—no 

MFCCs need be generated—but MFCC-targeting nevertheless guides the network toward 

better solutions (especially early in training). In practice, then, we set the loss function equal 

to a weighted sum of these penalties (dropping the constants), with the weight, λ, determined 

empirically (see below):

ℓ(Θ)

= λ∑
m

M
∑

i

13 1
2 am, i − am, i sm

e , Θ 2 − ∑
j = 0

J
log wj

Tw sj
d, Θ

P a 0
M, w 0

J , n 0
K

. (3)

As usual, we minimize this loss by stochastic gradient descent. That is, we evaluate the 

gradient (with respect to Θ) of the function in brackets not under the total data distribution P , 

but rather under a random subset of these data; take a step in the direction of this gradient; 

and then repeat the process until approximate convergence.

Implementation: the data.—A single training datum consists of the triple ( a 0
M, w 0

J, 

n 0
K). The neural sequence n 0

K consists of vectors of high-γ activity from precisely (see 

Data collection and preprocessing above) that period of time during which the participant 

produced the sequences of words and MFCCs. The length K of this sequence thus depends 

on this time but also on the sampling rate (approximately 200 Hz). Before entering the 
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neural network, this sequence is reversed in time, to reduce the number of computations 

separating the initial element of the input sequence from the (presumably most correlated) 

initial element of the output (word) sequence10. The length of each vector in this sequence is 

equal to the number of (functioning) ECoG channels.

Similarly, the length J of the word sequence is simply the number of words in the 

sentence, plus one extra terminating token, EOS . A single element of this sequence, wj, 

that is, a ‘word’, is likewise a vector, being a one-hot encoding, with length equal to the 

vocabulary size (about 1,800 for MOCHA-TIMIT and 125 for the picture descriptions; see 

Supplementary Table 2). This includes an out-of-vocabulary token, OOV , to cover words 

not in the actual sentence sets but erroneously produced by the participants (in practice less 

than 1% of the data).

The length M of the MFCC sequences would seem, at first blush, to be perforce identical 

to K, the length of the neural sequences, since the encoder neural network maps each 

element of the input sequence to an output. However, the layer of temporal convolution 

that precedes the encoder RNN effectively decimates the neural sequences by a factor of 

12 (see “Implementation: architecture”). Since the input sequences are initially sampled 

at about 200 Hz, data thus enter the encoder RNN at about 16 Hz. To achieve the same 

sampling rate for the audio signal, the MFCC sequences were simply decimated by a factor 

of 12, starting from the zeroth sequence element. In fact, the MFCC sequences ought to 

be low-pass filtered first (at about 8 Hz) to prevent aliasing, but since the production of 

high-fidelity MFCCs is not ultimately a desideratum for our network, in practice we used 

the crude approximation of simply discarding samples. The length of a single element of the 

MFCC sequence is 13, corresponding to the total frame energy (first element) and MFCCs 

2–13 (see Speech audio signal above).

The sequences in any given triple ( a 0
M, w 0

J, n 0
K) will not in general have the same 

lengths as the sequences of any other triple, since speaking time and the number of words 

per sentence vary by example. The network was nevertheless trained in mini-batches, simply 

by zero-padding the data out to the longest sequence in each mini-batch, and making 

sure to read out RNN outputs at each sequence’s true, rather than nominal, length (see 

“Implementation: architecture”). Clearly, training will be inefficient if mini-batches are 

dominated by padding, which can happen if (for example) one input sequence is much 

longer than the others. To alleviate this, one can try to group sentences into mini-batches 

with similar lengths, but we did not attempt such expedients. Instead, we simply enforced a 

maximum sentence length of 6.25 s, which in practice truncated less than 1% of examples. 

Mini-batches were then created simply by randomizing, at the beginning of each epoch, 

the order of the sequences, and then dividing the result into consecutive batches of 256 

examples. (There is one exception: the networks trained with fully connected, rather than 

temporal-convolution, input layers (no conv.) were too large to be trained at this batch size, 

and were instead trained on batches of 64 examples apiece. No other adjustments were made 

in training this network.)
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Implementation: architecture.—The basic architecture of the network, shown in Fig. 7, 

was modeled after the encoder–decoder neural network for machine translation of Sutskever 

and colleagues10, although there are significant modifications.

Each sequence of ECoG data (orange boxes, bottom left) enters the network through a layer 

of temporal convolution (green boxes). The stride length (that is, number of samples of 

temporal shift) of the convolutional filters sets the effective decimation factor—in this case, 

12. In this network the filter width is also fixed to the stride length. This order-of-magnitude 

downsampling is crucial to good performance: without it, the input sequences are too long 

even for the LSTM cells to follow. Since the analytic amplitude does not have much content 

beyond about 20 Hz, the procedure also throws away little information. The convolutional 

layer consists of 100 filters (channels); no max-pooling or other nonlinearity was applied to 

them.

Output from the convolutional layer at each time step (that is, a 100-dimensional 

vector) passes into the encoder RNN (gold rectangles), which consists of three layers of 

bidirectional RNNs. In particular, each ‘layer’ consists of an RNN processing the sequence 

in the forward direction (receiving input m − 1 before receiving input m) and an RNN 

processing the sequence in the backward direction (receiving input m before receiving input 

m − 1). The outputs of these RNNs are concatenated and passed as input to the next layer. 

Each ‘unit’ in a single RNN layer is a cell of LSTM: a complex of simple units that 

interact multiplicatively, rather than additively, allowing the model to learn to gate the flow 

of information and therefore preserve (and dump) information across long time scales38. 

We used the LSTM design of Gers and colleagues39. Since both the forward and backward 

RNNs have 400 units, the total RNN state is an 800-dimensional vector (the state of the 

LSTM cells in the two directions, concatenated together).

The outputs of the second (middle) layer of the encoder RNN also pass through a fully 

connected output layer (bluish boxes; 225 linear units followed by rectified-linear functions) 

and thence through a ‘fat’ (13 × 225) matrix, yielding the MFCC predictions.

The decoder RNN (gold rectangles) is initialized with the final state of the final layer of the 

encoder RNN. (In fact, this state is a concatenation of the final state of the forward encoder 

RNN with the first state of the backward encoder RNN, although both correspond to step M
of the input sequence. Thus, the dimension of the decoder state is 800 = 400 × 2.) This RNN 

receives as input the preceding word, encoded one-hot and embedded in a 150-dimensional 

space with a fully connected layer of rectified-linear units (bluish boxes below). The decoder 

RNN is necessarily unidirectional, since it cannot be allowed to access future words. The 

output of the decoder RNN passes through a single matrix that projects the state into the 

space of words, with dimension equal to the vocabulary size. For the picture-description 

task, with its small vocabulary, this dimension is 125. For MOCHA-TIMIT, we let the output 

dimension be 1,806 even when training and testing only with MOCHA-1; that is, the first 

set of 50 sentences, with its much smaller vocabulary (about 250 words). This facilitated 

comparisons with cross-task training, as in Fig. 3 in the main text.
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The architecture hyperparameters are summarized in Supplementary Table 3. Note that 

we refer to the temporal-convolution layer as an encoder ‘embedding’, a slight abuse of 

terminology since the neural data are dense even before this layer, but which emphasizes 

the parallel to machine-translation architectures. In those networks, the encoder and decoder 

embeddings are sometimes shared (to facilitate, for example, translation of proper nouns), 

but this is inappropriate in the present case, neural and word data being different in kind.

Training, testing, hyperparameter optimization and cross-validation.

Training.—The network described in the previous section (“Implementation: architecture”) 

was implemented in TensorFlow, an open-source machine-learning framework with a 

Python API40. Gradient descent was performed with AdaM optimization41. Dropout20 was 

applied to all layers, but the network was not regularized in any other way (for example, 

weight decay). Dropout in the RNN was applied to the nonrecurrent connections only42.

Across-participant transfer learning proceeded as follows. First, the network was initialized 

randomly and then ‘pretrained’ for 200 epochs on one participant. Then the input 

convolutional layer was reset to random initial values, all other weights in the network 

were ‘frozen’ and the network was trained on the second (target) participant for 60 epochs. 

That is, the error gradient was backpropagated through the entire network but only the 

convolutional layer was updated. Thus, during this stage of training, the convolutional 

layer is trained to extract, from the second participant’s data, features that work well 

with an encoder–decoder network fit to the first participant’s data. Finally, the weights in 

the encoder–decoder were unfrozen, and the entire network ‘post-trained’ for another 540 

epochs (for a total of 800 epochs). This allowed the rest of the network to accommodate 

idiosyncrasies in the second participant’s data.

Testing.—To test the network, data are passed through as during training, with one very 

important, and one minor, difference. During both training and testing, the output of the 

decoder provides a probability distribution over word sequences:

Q w 0
J ∣ n 0

K; Θ = ∏
j = 0

J
wj

Tw sj
d wj − 1, sj − 1

d , Θ (4)

During training, it is necessary to evaluate this distribution only under each observed word 

sequence, w 0
J. That is, at each step in the sequence, the output of the network is evaluated 

only at the current observed word (wj in the right-hand side of equation (4)); and likewise the 

input to the network is set equal to a one-hot vector encoding the previous observed word 

(Wj − 1 in the right-hand side of equation (4)). During testing, however, one would like to 

compute the probability distribution over all sequences, or at least to find the most probable 

sequence under this distribution. Evaluating all sequences is, however, intractable, because 

the number of sequences grows exponentially in the sequence length. Instead, we employ the 

usual heuristic to find the most probable sequence: at each step, we simply pick the most 

likely word, and use it as input at the next step10. This is not guaranteed to find the most 

probable sequence under the model distribution because (for example) the first word in this 

most probable sequence need not be the most probable first word. To alleviate this difficulty, 
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it is possible to maintain a ‘beam’ (as opposed to point) of the N most probable sequences, 

where the width N of the beam controls the trade-off between optimality and tractability—

but in our experiments using a beam search did not notably improve performance, so we did 

not use it.

The minor difference between testing and training is in the set of parameters used. 

We evaluate the network not under the final parameter values, ΘT, but rather under an 

exponential moving average of these parameters, ΘT, across update steps t:

Θt = ηΘt − 1 + (1 − η)Θt, for t ∈ [0, …, T ]

where the decay rate η is a hyperparameter. This smooths out shocks in the weight changes.

Training and testing hyperparameters and their values are listed in Supplementary Table 4.

Hyperparameter optimization and cross-validation.—All hyperparameters were 

chosen based on performance of a single participant (b, pink in the main-text figures) on 

a single validation block. Initial choices were made ad hoc by trial and error, and then a grid 

search was performed for the dropout fractions, the MFCC-penalty weight (λ) and the layer 

sizes. This validation block was not, in fact, excluded from the final tests, since it was but 

one tenth of the total test size and therefore unlikely to ‘leak’ information from the training 

into the results.

Results (WERs) were cross-validated. For each evaluation, N randomly chosen blocks were 

held out for testing, and a network was trained from scratch on the remaining blocks, where 

N was chosen so as to hold out approximately 10% of the data. Numerical breakdowns are 

given in Supplementary Table 2.

Significance testing.—Recall that each box in Fig. 2a and Fig. 3 shows the average 

(and its standard error) WER across 30 models trained from scratch and tested on randomly 

held-out validation blocks. Now, the identity of the validation block influences the results 

(some blocks are harder to decode than others), so the performance (WER) differences 

between any two decoders will vary less if taken only between matching pairs of validation 

blocks. Therefore, the randomization of validation blocks was performed just once for 

each participant, allowing pairings of all 30 model instances for any two decoders under 

comparison. To the WER differences from these validation-block-matched pairs, we applied 

a (one-sided) Wilcoxon signed-rank test, asking whether a particular model or form of 

transfer learning were not superior to its rivals. (Note that this test does not assume anything 

about the shape of the underlying distributions.) The resulting P  values were then Holm–

Bonferroni corrected for multiple comparisons. For example, the encoder–decoder network 

was compared with five other decoders (four variants, plus the phoneme-based HMM), so 

the P  values reported for Fig. 2a were corrected for five comparisons. The transfer-learning 

results were corrected for 14 comparisons: the 12 comparisons annotated in Fig. 3, plus the 

two comparisons of WER with and without transfer learning for the picture-description data 

(not shown in the figure but discussed in the “Transfer learning” section of Results).
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The (minimum) number of participants and the number of model instances used in the 

across-decoder comparisons were not predetermined with statistical methods but are similar 

to those reported in previous publications9,24.

The relative contributions of electrodes to decoding.

The contribution of an individual electrode, and therefore local anatomical area, might be 

estimated in multiple ways. Perhaps the most straightforward is simply to train a network 

with that electrode left out, and measure the increase in WER. Unfortunately, that increase 

will generally be small compared with the variation in WER across retrainings due simply to 

the randomness of stochastic gradient descent with random initialization, and therefore hard 

to detect without repeated retrainings—each of which takes upwards of 45 min of wall time. 

Multiplying these 45 min by the number of electrodes (about 250) and again by the number 

of repeats required to detect the WER signal in the noise of retrainings (about ten) yields a 

prohibitively large amount of computation time.

Alternatively, this electrode-omission procedure could be modified for groups of electrodes, 

each perhaps corresponding to a gross anatomical area. But even setting aside the loss of 

spatial resolution, second-order effects—that is, interactions between (groups of) electrodes

—would be ignored. For example, the electrode-omission procedure would underestimate 

the contribution of those electrodes that contribute significantly to decoding when present, 

but for which the network can to some extent compensate, when absent, by leaning on other 

channels.

Instead, then, we examine the gradient of the loss function, equation (3), with respect 

to the inputs; that is, the sequences of high-γ activity. This measures how much small 

deviations from an input sequence at each electrode affect the loss, and is the same quantity 

proposed27 to determine which regions of an image are most useful to its classification by 

a convolutional neural network. In the present case, we should like to know the relative 

usefulness of electrodes, not for a particular sequence of ECoG data, nor for a particular 

time in the sequences, but for all sequences at all moments in time. To remove this 

‘nuisance’ variation, we take the norm of the derivatives across example sequences and 

time steps within those sequences. (We use a norm rather than an average because it is the 

magnitudes of the derivatives that matter: it doesn’t matter whether an increase or a decrease 

in the high-γ activity is required to decrease the loss.) The gradient itself is computed via 

backpropagation through the trained model, all of the way into the testing (as opposed to 

training) data.

As the bipolar referencing scheme derives each input channel from a pair of electrodes, the 

assignment of channels to anatomical areas is not unequivocal. In particular, some channels 

comprise pairs that cross anatomical boundaries. Our solution was simply to assign each 

channel to the location of the upper or leftmost electrode in its pair. This determined the 

anatomical label used to construct Fig. 4, and the corresponding color in Fig. 5. However, in 

the latter, each channel was plotted halfway between the locations of its corresponding pair 

of electrodes.
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Finally, since we are interested only in relative electrode contributions within, rather than 

across, participants, for display in Fig. 4 we rescaled all data into the same range of arbitrary 

units.

Phoneme-based sentence classifier.

The Viterbi decoders against which the encoder–decoder models were compared (as in Fig. 

2a and Supplementary Fig. 1) were trained and tested as follows (see also ref. 24). First, 

phonetic transcriptions were obtained for each sentence, aligned with the neural data. Next, 

small time windows of high-γ activity around each time point were projected onto their 

first few principal components, yielding low-dimensional neural features. Finally, a (fully 

observed) HMM with Gaussian emissions was trained to map phoneme identities to these 

neural features. However, rather than learn the hidden-state transition probabilities from the 

data, and infer phoneme sequences from test data under the resulting model, inferences 

were made with 50 different transition-probability models, one for each sentence in the 

MOCHA-1 set. Each model allowed only those transitions consistent with the corresponding 

sentence (transition to the next phoneme in the sequence, or a self transition). For each 

of these 50 transition-probability models, the most probable (Viterbi) hidden path and its 

corresponding probability were computed; and then the sentence corresponding to the most 

probable path over all models was selected. This process of training and testing was repeated 

over the (random) 30 train/test breakdowns used for the other decoders (see Significance 

testing above) to obtain the results shown in Fig. 2a and Supplementary Fig. 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. The decoding pipeline.
Each participant read sentences from one of two datasets (MOCHA-TIMIT, picture 

descriptions) while neural signals were recorded with an ECoG array (120–250 electrodes) 

covering peri-Sylvian cortices. The analytic amplitudes of the high-γ signals (70–150 Hz) 

were extracted at about 200 Hz, clipped to the length of the spoken sentences and supplied 

as input to an artificial neural network. The early stages of the network learn temporal 

convolutional filters that, additionally, effectively downsample these signals. Each filter 

maps data from 12-sample-wide windows across all electrodes (for example, the green 

window shown on the example high-γ signals in red) to single samples of a feature sequence 

(highlighted in the green square on the blue feature sequences); then slides by 12 input 

samples to produce the next sample of the feature sequence; and so on. One hundred feature 

sequences are produced in this way, and then passed to the encoder rNN, which learns to 

summarize them in a single hidden state. The encoder rNN is also trained to predict the 

MFCCs of the speech audio signal that temporally coincide with the ECoG data, although 

these are not used during testing (see “The decoder pipeline” for details). The final encoder 

hidden state initializes the decoder rNN, which learns to predict the next word in the 

sequence, given the previous word and its own current state. During testing, the previous 

predicted word is used instead.
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Fig. 2 |. WERs of the decoded sentences.
a, WErs for one participant under the encoder–decoder (first bar), four crippled variants 

thereof (bars 2–4 and 6) and a state-of-the-art sentence classifier based on ECoG-to-

phoneme Viterbi decoding (phoneme-based HMM). No MFCCs, trained without requiring 

the encoder to predict MFCCs; low density, trained and tested on simulated lower-density 

grid (8-mm rather than 4-mm spacing); no conv., the network’s temporal convolution layer 

is replaced with a fully connected layer; length info. only, the input ECoG sequences 

are replaced with Gaussian noise, but of the correct length. The box and whiskers show, 

respectively, the quartiles and the extent (excepting outliers which are shown explicitly as 

black diamonds) of the distribution of WErs across n = 30 networks trained independently 

from scratch and evaluated on randomly selected held-out blocks. Significance, indicated by 

asterisks (***P  < 0.0005), was computed with a one-sided Wilcoxon signed-rank test and 

Holm–Bonferroni corrected for five comparisons. Exact P  values appear in Supplementary 

Table 5. b, For four different participants, WEr as a function of the number of repeats of 

the sentence sets used for training; that is, the number of training tokens for each sentence 

type. results for MOCHA-1 (50 sentence types; see “results” for details) are shown in 

solid lines (pink, green, brown); for the picture descriptions (30 sentence types), in dashed 

lines (blue, brown). Note that participant d (brown) read from both sets. The endpoint 

of the pink curve corresponds to the first bar of a. Whiskers indicate standard errors of 

the mean WErs (vertical) and mean number of repeats (horizontal) across n = 10 networks 

trained independently from scratch and evaluated on randomly selected held-out blocks (The 

number of repeats varies because data were divided on the basis of blocks, which vary 

slightly in length).
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Fig. 3 |. WER of the decoded MoCHA-1 sentences for encoder–decoder models trained with 
transfer learning.
Each panel corresponds to a participant (color code as in Fig. 2). The four boxes in each 

panel show WEr without transfer learning (‘encoder–decoder’, as in the final points in Fig. 

2b), with cross-participant transfer learning (+participant TL), with training on sentences 

outside the test set (+task TL) and with both forms of transfer learning (+dual TL). 

The box and whiskers show, respectively, the quartiles and the extent (excepting outliers 

which are shown explicitly as black diamonds) of the distribution of WErs across n = 30
networks trained independently from scratch and evaluated on randomly selected held-out 

blocks. Significance, indicated by asterisks (*P  < 0.05; **P  < 0.005; ***P  < 0.0005; 

NS, not significant), was computed with a one-sided Wilcoxon signed-rank test and Holm–

Bonferroni corrected for 14 comparisons: the 12 shown here plus two others noted in the 

text. Exact P  values appear in Supplementary Table 6. a, participant a, with pretraining on 

participant b/pink (second and fourth bars). b, participant b, with pretraining on participant 

a/green (second and fourth bars). c, participant d, with pretraining on participant b/pink 

(second and fourth bars).
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Fig. 4 |. The contributions of each anatomical area to decoding, as measured by the gradient of 
the loss function with respect to the input data (see “Anatomical contributions” for details).
The contributions are broken down by participant, with the same color scheme as throughout 

(compare with Fig. 2). Each shaded area represents a kernel density estimate of the 

distribution of contributions of electrodes in a particular anatomical area; black dots indicate 

the raw contributions. The scale and ‘zero’ of these contributions were assumed to be 

incomparable across participants and, therefore, all data were rescaled to the same interval 

for each participant (smallest contribution at left, largest contribution at right). Missing 

densities (for example, temporal areas in participant c/blue) correspond to areas with no grid 

coverage. a.u., arbitrary units; IFG, inferior frontal gyrus.
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Fig. 5 |. Electrode coverage and contributions.
a–d, Anatomical reconstructions of the four participants (colored frames indicating 

participant identity according to the color scheme used throughout), with the location 

of the ECoG electrodes indicated with colored discs. For each disc, the area indicates 

the electrode’s contribution to decoding (see the Methods), and the color indicates the 

anatomical region (see key).
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Fig. 6 |. Graphical model for the decoding process.
Circles represent random variables; doubled circles are deterministic functions of their 

inputs. a, The true generative process (above) and the encoder–decoder model (below). 

The true relationship between neural activity (N), the speech-audio signal (A) and word 

sequences (W), denoted P (a, w ∣ n), is unknown (although we have drawn the graph to 

suggest that W and A are independent given N). However, we can observe samples from all 

three variables, which we use to fit the conditional model, Q a, w, sd se , se(n) ∣ n; Θ , which 

is implemented as a neural network. The model separates the encoder states, Se, which 
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directly generate the audio sequences, from the decoder states, Sd, which generate the word 

sequences. During training, model parameters Θ are changed so as to make the model 

distribution, Q, over A and W look more similar to the true distribution, P . b, Detail of the 

graphical model for the decoder, unrolled vertically in sequence steps. Each decoder state 

is computed deterministically from its predecessor and the previously generated word or (in 

the case of the zeroth state) the final encoder state and an initialization token, EOS .
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Fig. 7 |. Network architecture.
The encoder and decoder are shown unrolled in time—or, more precisely, sequence elements 

(columns). Thus, all layers (boxes) within the same row of the encoder or of the decoder 

have the same incoming and outgoing weights. The arrows in both directions indicate a 

bidirectional rNN (see “Implementation: architecture”). Although the figure depicts the 

temporal convolutions as eight-sample-wide convolutions (due to space constraints), all 

results are from networks with 12-sample-wide convolutions. The end-of-sequence token is 

denoted EOS .
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