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Abstract

Dysfunction in 24-h circadian rhythms is a common occurrence in aging adults, however,
circadian rhythm disruptions (CRD) are more severe in people with age-related neurodegenerative
diseases, including Alzheimer’s disease and related dementias (ADRD) and Parkinson’s disease
(PD). Manifestations of CRD differ according to type and severity of neurodegenerative disease,
and importantly, could occur before onset of typical clinical symptoms of neurodegeneration.
Evidence from preliminary studies suggest that—in addition to being a symptom of
neurodegeneration—CRD might also be a potential risk factor for developing ADRD and PD,
although large, longitudinal studies are needed to confirm this. The mechanistic link between
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circadian rhythms and neurodegeneration is not fully understood, although proposed underlying
pathways include alterations in protein homeostasis, and immune and inflammatory function.
While preliminary clinical studies are promising, more studies of CRD and its mechanisms are
needed, and treatment trials are required to determine whether circadian interventions may prevent
or delay the onset of neurodegenerative diseases.

[l. Introduction

Circadian rhythm activities change markedly as people age, and these changes might further
accelerate the aging process (1). While it is recognized that circadian dysfunction in older
adults can be partly attributed to the degeneration of the suprachiasmatic nucleus (SCN),
known as the “master circadian clock” in mammals, the link between circadian rhythms and
neurodegeneration is not fully understood. Patients with neurodegenerative diseases
frequently experience circadian rhythm disruptions (CRD) in a much more severe form than
typical age-related CRD (2-4). For example, they become more active during the night, less
active during the day, and sometimes have complete reversal or loss of the 24-h rest-activity
pattern (5, 6). Importantly, evidence suggests that disruptions of circadian functions could be
early manifestations of neurodegeneration, and might even be a risk factor for the
development of neurodegenerative diseases in healthy adults older than 60 years (7-9).
Greater understanding of the relationship between circadian rhythms and neurodegeneration
could be key to the early identification and management of neurodegenerative diseases.

This review discusses the association between circadian rhythms and neurodegenerative
diseases by summarizing evidence from both human and animal studies. This review focuses
on Alzheimer’s disease and related dementias (ADRD) and Parkinson’s disease (PD), as
these are the most common neurodegenerative diseases and have been studied most in
relation to circadian rhythms. We present both behavioral and biological circadian features
in patients with ADRD and PD, summarize findings from clinical and longitudinal
epidemiologic studies regarding the effects of CRD on the development of ADRD and PD,
and discuss potential underlying mechanisms. Finally, we describe the results of different
circadian interventions. For detailed discussion of studies published before 2013, we refer
readers to previous reviews (10-12).

lll. Circadian rhythms

A circadian rhythm is an approximately 24-hour cycle in the physiological processes of most
organisms that is endogenously generated and can be modulated by external cues (13). A
circadian cycle is characterized by several features. It is self-sustained, as the rhythm persists
in the absence of any exogenous time signals (known as zeitgebers), including dark-light
cycles, which indicates the presence of an intrinsic time-keeping mechanism (i.e. biological
clock). Circadian cycles show rhythmicity, as they persist with a cycle of approximately 24
hours. Circadian cycles also show the ability to be synchronized by external cues, such as
the dark-light cycle or other social and environmental modulators, like activity and
temperature. The circadian rhythmicity is typically measured by three parameters:
amplitude, phase and period. Amplitude is defined as the magnitude of a cycle, or the
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difference between crest and trough values. In relation to a hormonal cycle, for example, it
would be the difference in the levels of the hormone from the trough to the peak within a
time period (i.e. 24 hours). Phase (advanced or delayed) is defined as the timing of a
reference point in the cycle relative to a fixed event. In relation to a sleep-wake cycle, for
example, a phase advance (delay) would mean that sleep timing moves earlier (later). Period
is the time interval between two reference points within a rhythm or recurring wave (for
example between two hormonal peaks).

Circadian rhythms are generated in highly specialized cells of specific structures of the brain
that control a complex network of coupled self-sustained clocks in the brain and in the
peripheral organs. In mammals, the central or master clock of the circadian network is
located in two groups of neurons called the SCN, in the anterior hypothalamus. The SCN
consists of approximately 20,000 specialized neurons, which receive direct synaptic input
from the retina, synchronizing activity to the external light- dark cycle (14). Light input
serves to synchronize the core cellular clock machinery in SCN neurons, which keeps 24-
hour time and in turn synchronize cellular clocks throughout the body via neurohormonal
modulation. At the molecular level, the properties of circadian clocks are based on changes
in the expression of certain genes and consist of proteins which form a transcriptional-
translation feedback loop that is tuned to a 24-hour period (15). The clock proteins BMAL1
and Clock interact to drive transcription of clock-controlled genes, including their own
negative feedback repressors, which include PERIOD, CRYTOCHROME, and REV-ERB
proteins (16). This transcriptional feedback loop maintains 24-hour rhythms in gene
expression which are required for behavioral and physiologic rhythmicity at the organismal
level. While light is the primary circadian cue, resetting the circadian cycle in synchrony
with the daily environmental and behavioral cycle (entrainment) is achieved through the 24-
h cycle of light input (photic synchronizer) to the SCN and neurohormonal modulations
(non-photic synchronizers) (e.g. temperature, food availability, social interactions) for the
peripheral ones. Importantly, in the absence of external cues, such as in constant darkness,
the circadian system retains a near 24-hour rhythm, while light cues that are out of phase
with the SCN cause a gradual resetting of the clock to entrain to the new rhythm.

The pattern of one’s circadian rhythm can be measured with both biological and behavioral
markers. Landmark experiments by Czeisler et al. (17) identified core body temperature
(CBT), as well as melatonin and cortisol secretions, as circadian biomarkers, oscillations of
which are controlled by the SCN. In normally entrained individuals, CBT has a rhythm that
falls during the night and rises in the early hours of the morning; cortisol peaks in blood and
saliva early in the morning, then regularly decreases throughout late morning and afternoon,
to reach low values during evening and night, thereby availing sleep; melatonin is generated
by the pineal gland, with its onset near sunset, peak during the nighttime hours and offset
after sun rise, thereby stimulating wakefulness. The circadian rhythm of melatonin in saliva
or plasma is one of the most commonly used circadian phase biomarkers in human beings
(18). The onset time of melatonin secretion under dim light conditions, known as the dim
light melatonin onset (DLMO), has been suggested as the single most accurate circadian
phase marker in humans (19).
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Behavioral markers of circadian rhythm mainly include sleep-wake cycles and rest-activity
rhythms. The circadian system has powerful influence over the sleep-wake cycle, such that it
is often difficult to distinguish the relative contributions of these two processes on behavior.
The circadian clock regulates the timing of sleep, as mutations in core circadian clock genes
in mice and humans manifest as abnormal sleep patterns, including short sleep time, early or
late sleep phase, or fragmented sleep-wake rhythms (20, 21). Moreover, clock gene
expression can be influenced by sleep deprivation, emphasizing that these systems are
interrelated. While specific circadian analyses (such as cosinor analysis) can be used to parse
out aspects of CRD from behavioral data, activity must be monitored around the clock for
several days. Some circadian biomarkers, such as the timing of melatonin secretion or
oscillation of expression of selected clock genes in blood, maintain their 24-hour oscillations
even in the face of sleep deprivation (22, 23). Therefore, it is important for studies to include
both behavioral and biological markers of circadian rhythms to more robustly identify CRD.
Given the scope of this review, we include studies if they present information on biological
markers or behavioral markers related to sleep timing, daytime sleep or sleepiness and rest-
activity rhythm; studies that only present nocturnal sleep disruptions are excluded.

Age-related changes in any of the structures or processes involved in generating or
entraining circadian rhythms may modify circadian rhythmicity. In particular, circadian
phase has been shown in a study comparing 48 older adults (aged 77-89 years) with 36
younger adults (aged 20-52 years) to move earlier, or advance, with age (24), while the
amplitude of the rhythms tend to decrease (25). For example, older adults have decreased
peak melatonin, elevated nadir level of CBT, and a phase advance (earlier onset) in the peak
of these rhythms compared with adults aged less than 60(1, 26), (27). Age-related changes in
sleep-wake cycles may be related to circadian dysfunction and manifest as earlier bedtimes
and rise times, increased sleep fragmentation, and increased daytime sleepiness that has
been frequently suggested as an early indicator of declining health in the elderly (28, 29).
Older adults are also more prone to several circadian rhythm sleep-wake disorders
(CRSWDs)—characterized by the inability to fall asleep, remain asleep, or wake at the
desired time—including advanced sleep-wake phase disorders (ASWPD), jet lag disorder,
and shift-work disorder(30, 31). The circadian system is paramount for maintaining
synchrony between internal physiology, behavior, and the cues deriving from the external
environment. When this synchrony is lost, e.g. due to jet lag, shift work, or chronic sleep
deprivation, a “circadian misalignment” occurs, leading to substantial health consequences
affecting cardiovascular, metabolic, cognitive, immunological and oncogenic processes, with
impact also on safety, performance and productivity (32-34).

IV. Circadian disruption in neurodegeneration

a. Alzheimer’s disease and related dementias

Compared to healthy adults of the same age, patients with moderate-to-severe AD have been
considered to have much more severe circadian disruptions—including higher
fragmentations, dampened amplitude and phase delay—as opposed to more typical
advanced circadian phase associated with healthy aging (5). It was suggested that
“sundowning”, known as the increasing behavioral and neuropsychiatric symptoms in AD
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patients around the time of sunset, could also partly be attributed to the phase delay of
temperature and hormone rhythms in AD (35, 36). The most common CRSWD seen in AD
patients is irregular sleep-wake rhythm disorder (ISWRD), as opposed to ASWRD in
healthy older adults. ISWRD is defined as a lack of clear 24-hour sleep-wake pattern,
usually with long periods of wakefulness during the night and irregular bouts of sleep
throughout the day which might get worse in severe AD (37, 38).

Over the past five years, a growing number of studies observed patients of various levels of
cognitive impairment and found their circadian patterns differed from those reported in
previous studies that focused on moderate to severe AD (5). This could be due to the
different type or severity of cognitive impairment reported in these more recent studies.
These studies included patients with pre-clinical AD (7), mild cognitive impairment (MCI)
(39) (40), mild AD (2) (41) (42), moderate to severe AD (42), global AD(43), as well as
early onset dementia (EOD) (3). All of these studies have reported on behavioral markers of
CRD, including disruptions of rest-activity rhythms and sleep timing (table 1). Overall,
studies have found high rest-activity rhythm fragmentation(3) (7) but only a slight reduction
or no change in the amplitude of rest-activity or melatonin rhythms (2, 3, 7, 41, 43). One US
study in 189 cognitive healthy older adults (mean age 66.6 years; 50 with preclinical AD
pathology as measured by PET) showed decreased rhythm amplitude associated with aging,
but not with AD pathology(7). Another study in 16 mild-to-moderate AD patients (mean age
70.3 years) from Italy found large variability among individual actigraphic profiles
compared with 10 age-matched neurologically healthy controls, which could have also
contributed to the overall minor changes in the amplitude of rhythms in these patients (41).
There are mixed findings with regard to changes in circadian phases. Data from the ongoing
Rush University Memory and Aging Project suggested a statistically significant phase delay
in rest-activity rhythm among 7 AD patients (mean age 90.5 years) compared to 10 age-
matched controls (43), whereas a study of 48 AD patients (mean age 70.6 years) from ltaly
and 29 age-matched controls without dementia showed an advanced bedtime in AD,
especially for moderate to severe cases of AD (42). Meanwhile, two studies of MCI patients
both found a phase advance, one in melatonin and sleep onset 30 patients with MCI (mean
age 65.9 years) compared with 28 healthy age-matched controls (39), and another in CBT
and activity rhythm in 21 patients with MCI (mean age 74.1 years) compared with 19
healthy age-matched controls(40). The differences among these findings could be due to the
different characteristics of the participants, including age, and severity of cognitive
impairment (AD vs. MCI). XX

In general, studies that focused on severe AD found more circadian disruptions, while
studies in MCI, preclinical AD and mild AD suggested moderate circadian changes (2) (7)
(39). However, Weissova et al. found no correlation between circadian features and severity
measures of AD in 16 mild to moderate AD patients (mean age 70.3 years) compared with
10 age-matched neurologically healthy controls (41). This might be because of the small
sample size and relatively small range of AD severity between participants in this single
study. XX No study to date has prospectively examined change in circadian rhythms with
the progression of AD symptoms. Few studies have examined molecular perturbations in
circadian clock oscillations in ADRD, though alteration in clock gene methylation and
expression have been described in fibroblast cultures from post mortem tissue (44), and
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altered clock gene expression noted in varying brain regions of post-mortem tissue (45).
Further, evidence specifically pertaining to circadian disruptions among patients with non-
AD dementia is sparse. Larger and longitudinal studies are needed to determine the
correlation between both behavioral and biological markers of CRD and severity or
progression of AD. Additional studies designed to establish circadian markers and features
specific to each type of dementia might help with the differential diagnosis of the disease.

b. Parkinson’s disease

Both motor and non-motor manifestations of PD show disruptions in their typical 24-h
oscillations. Unlike patients with ADRD, CRD among PD patients is featured by a reduction
in the amplitude of the circadian rhythm but no statistically significant shift in circadian
phases (4) (46) (47) (48) (49) (50). Sleep-wake disturbances as a whole are the most
common non-motor symptom of PD patients, affecting up to 80% of PD patients (51).
Indeed, five of the six studies that examined circadian features in PD patients reported on
either excessive daytime sleepiness (EDS) (4) (46) (47) or changes in sleep timing (table 2)
(47) (50) (48). It has been reported that PD patients were at least twice as likely to
experience EDS compared to healthy older adults (4, 46). Only one study reported slightly
later sleep onset time in 30 PD patients (mean age at diagnosis 68.0 years) compared to 15
healthy age-matched controls from England (47), while the others did not find significant
differences in sleep timing (48, 50). One Australian study found among 12 PD patients
(mean age 62.2 years) a significant reduction in the mesor (mean value around which the
rhythm oscillates) and amplitude of their CBT rhythm, compared to 11 healthy age-matched
controls(48). Three studies examined rhythms of melatonin secretion, using plasma (4),
serum (47) and saliva melatonin (50), respectively. While none of these studies found a
difference in the timing of melatonin onset, most found significantly reduced circulating
melatonin levels among PD patients compared with age-matched healthy controls (4) (47).
Importantly, the usual circadian dip in blood pressure during the night may be lost in PD,
putting patients at significantly higher risk for cardiovascular complications including
nocturnal hypertension (49). For example, a study of 111 PD patients (mean age 67.8years)
from Spain reported that 71.1% of patients did not have the usual dip in blood pressure as
measured by 24-h ambulatory blood pressure monitoring (49).

Despite the consistently reported CRD among PD patients, it remains unclear whether these
circadian changes result from dopaminergic treatment or PD disease progression itself.
Studies have reported that the dopaminergic treatment might lead to phase advance of the
melatonin rhythm(52, 53), however, another study including 29 PD patients (mean age 64.2
years; 16 medicated and 13 non-medicated) and 28 healthy age-matched controls from
Australia found more than double the melatonin secretion and uncoupling of circadian and
sleep-wake regulations in the group receiving dopamine treatment (50). EDS is another
potential consequence of dopaminergic treatment (46). One study in Norway suggested a
doubled frequency of EDS among 153 drug-naive patients with early PD (mean age 66.3
years), compared to 169 age- and sex-matched controls at baseline, and a tripled frequency
of EDS among these patients after 5 years of dopaminergic treatment compared to the
controls (46). Larger studies with other circadian markers (eg, cortisol secretion, CBT, etc
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are needed to help clarify the effects of dopaminergic treatment on circadian rhythms,
relative to neurodegeneration per se.

V. Circadian disruption and risk of neurodegeneration

A critical question is whether CRD is a cause or consequence of neurodegeneration, or both.
If CRD were contributing to neurodegeneration, it would be expected to occur early in
disease course (or precede disease), and would increase disease risk or rate of progression.
While this question is still unanswered, growing evidence suggests that CRD might precede
the development of clinical symptoms of neurodegenerative diseases. One study of 189
cognitively healthy older adults (mean age 66.6 years; 50 with preclinical AD pathology as
measured by PET) reported that circadian rest-activity rhythm fragmentation appeared very
early on in the preclinical phase of AD compared with XX, and correlated with AD-related
pathology as assessed with PET imaging and cerebrospinal fluid (CSF) phosphorylated tau
to amyloid B (Ap)42 ratio (7). Several studies have found a correlation between sleep-wake
disturbances and increased levels of AD-related biomarkers or brain structural change in
cognitively healthy adults aged 60 years and older, though other biological markers of CRD
such as CBT or cortisol rhythm were not specifically examined (9, 54, 55). Alterations in
circadian melatonin rhythm measured in saliva were also found in 24 cognitively healthy
men (mean age 57.5 years) compared with 26 men (mean age 57.3 years) who were
cognitively impaired (56). These cross-sectional findings suggested that CRD could be a
result of preclinical AD pathology and may be a prodromal symptom.

Several longitudinal studies with long follow-up periods (5-41 years) also reported greater
cognitive decline, increased risk of all-cause dementia and increased risk of PD among those
with circadian disturbances, including shift work, compared with those without CRD (57—
61). Table 3 shows longitudinal studies investigating CRD and risk of developing ADRD or
PD published over the past five years. These studies all examined behavioral indicators of
CRD, including actigraphy-measured rest-activity rhythm and daytime napping (8, 59, 62)
and self-reported sleep timing(63). Two studies both found an association between lower
baseline circadian amplitude and greater cognitive decline at 3-5 years follow up in 2754
cognitively healthy men (mean age 76.0 years) (62) and 1287 cognitively healthy women
(mean age 82.8 years) (59) from the USA. Bokenberger et al. reported in 11,247 individuals
(mean age 72.5 years at baseline) from the Swedish Twin Registry that delayed rising time
predicted dementia incidence after 17 years of follow up (63). Another study of 2920 men
(mean age 76.0 years) from the USA suggested that those who napped for at least 1h per day
were twice as likely to develop PD after 11 years of follow up (8). While all together these
studies suggest that reduced circadian amplitude and circadian phase shifts precede the risk
of ADRD, and that daytime inactivity precedes the risk of PD in healthy older adults, the
number of published studies is small, especially for PD. Additional confirmatory studies
with a long follow-up period are needed to determine whether CRD is a risk factor for
ADRD and PD. Comprehensive and repeated measures of CRD with simultaneous
assessment of preclinical disease biomarkers (such as amyloid and tau pathology) will also
help understand the nature of this association.
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Underlying mechanisms

The mechanisms by which neurodegenerative pathology affects circadian function likely
vary by specific disease. In AD, human post-mortem neuropathological studies have
demonstrated loss of critical neuronal populations in the SCN, including those expressing
arginine vasopressin (AVP) or vasoactive intestinal peptide (VIP) (43, 64). Both age- and
AD-associated loss of VIP-expressing neurons in the SCN were correlated with pre-mortem
circadian dysfunction (Fig.1). However, the mechanisms driving SCN neuronal loss are
unclear, as it is not a major site of amyloid plaque or neurofibrillary pathology. Circadian
abnormalities are observed in transgenic mouse models of AD, including those expressing
human mutant amyloid precursor protein (APP), tau, or both. However, there is great
heterogeneity across mouse models, and little correlation with pathology, obscuring any
definitive mechanistic conclusions (65-67). AP peptide has been implicated as a mediator of
circadian dysfunction, and in cultured cells it can induce degradation of the master clock
protein BMALL1 (68, 69). However, this direct interaction between Ap and the circadian
clock has not been demonstrated in vivo in animals, or in humans. Altered methylation of
the BMAL1 promoter, leading to altered BMAL1 expression and disrupted circadian
rhythms, was described in fibroblasts from AD patients and in post-mortem AD brain
samples, suggesting an underlying epigenetic mechanism of circadian disruption in AD (Fig.
1) (44).

Conversely, there are several proposed mechanisms by which the circadian clock influences
neurodegenerative disease (Fig. 1). Circadian dysfunction could promote neurodegeneration
by altering sleep timing, leading to less consolidated nighttime sleep and increased daytime
napping. Sleep deprivation causes altered Ap dynamics in humans (70) and increased AB
and tau pathology in mouse models(71, 72), and can increase inflammatory and neuronal
injury markers in human cerebrospinal fluid (73). Sleep deprivation has also been shown in
mouse models to impact other aspects of neurodegeneration including protein clearance
from the brain, inflammation, and synaptic homeostasis (74, 75). In this case, intervention to
promote sleep should overcome any effect of circadian disruption. However, in mouse
models, clock gene deletion in the brain can cause neuropathology (eg, astrogliosis) without
altering sleep, suggesting that altered sleep patterns alone may not explain the brain effects
of circadian disruption (76).

Circadian regulation of immune responses may also contribute to the effects of circadian
dysfunction on neurodegeneration. The circadian system strongly modulates the peripheral
immune response to inflammogens in mice, as the degree of inflammation is highly
dependent on time-of-day of exposure (77, 78). In a mouse model of experimental
autoimmune encephalitis, the time of day of immunization has a striking impact on disease
severity weeks later, while deletion of Bmal1 in myeloid cells exacerbates pathology (79,
80). In the brain, microglia and astrocytes represent the primary innate immune cells, and in
rodents both cell types possess functional circadian clocks which regulate inflammatory
activation (81, 82). Deletion of Bmall in the mouse brain, which disrupts all circadian clock
function, causes widespread astrocyte activation and synaptic degeneration, emphasizing the
importance of core clock function in maintaining innate immune homeostasis in the brain
(76). In mouse models of Amyotrophic Lateral Sclerosis and PD, circadian disruption using
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non-24 hour light dark cycles led to increased glial activation and neuroinflammation and
exacerbated neuropathology (83, 84). Thus, circadian dysfunction appears to promote
aspects of neuroinflammation, which could influence neurodegeneration in many disease
states.

The circadian clock could directly regulate protein homeostasis and quality control, thereby
influencing protein aggregation in neurodegenerative diseases (85). In a mouse AD model,
levels of interstitial fluid Ap peptide in the hippocampus show clear diurnal oscillation,
which require an intact circadian system (86, 87). Similar diurnal oscillations in Ap are
observed in human cerebrospinal fluid (88). Moreover, disruption of the circadian clock in a
mouse p-amyloidosis model of AD leads to accelerated amyloid plaque deposition (86).
Circadian regulation in protein quality control systems, such as autophagy, may contribute to
the circadian influence on protein aggregation in general (89, 90) . Bulk removal of
aggregated proteins from the brain by the glymphatic system, a glia-mediated perivascular
fluid flow, has been associated with sleep, but its relation to the circadian system and the
role of glial clocks in the process are still unclear(74). Recent animal studies demonstrating
circadian clock control of blood-brain barrier permeability may also have implications for
protein aggregates clearance from the brain (91, 92). Finally, numerous mouse studies reveal
a complex, bidirectional relationship between the circadian clock and oxidative stress, a key
pathogenic process in neurodegeneration (76, 93-96). Thus, a number of potential identified
mechanisms, as well as those which are not yet known, could link the circadian clock to
neurodegenerative diseases.

Circadian Interventions

If circadian dysfunction is a risk factor contributing to the development of neurodegenerative
diseases, one of the appealing testable hypotheses is that restoring regular circadian rhythms
might prevent or halt the progress of these diseases as well as mitigating their related
symptoms. Several earlier studies have tested this hypothesis using timed light and/or
melatonin treatments but provided inconsistent results (97). For instance, a double-blind,
placebo-controlled, randomized trial of 189 residents of group care facilities in the
Netherlands (mean age 85.8 years; 164 [87%] had dementia) examined the effects of daily
treatment with whole-day bright light (1000 lux) as compared to dim light (300 lux), and
daily evening melatonin treatment as compared to placebo, and found that the long-term
light treatment (up to 3.5 years) attenuated cognitive decline with aging and improved
depressive symptoms (98). However, another randomized controlled trial of 48 patients
(mean age 83.4years) in two nursing homes in the UK with diagnosed dementia, sleep
disruption, and agitated behavior did not find similar cognitive benefit of bright light (99).
The discrepancy may be attributed to differences in treatment dose, such as exposure
duration and intensity of light, that are especially important for the elderly who have reduced
responses of the circadian system to light exposure (100); future studies should examine
these possibilities.

In the last five years, only two published circadian intervention studies examined patients
with ADRD or PD. In a multicenter (one in the UK and four in the USA), double-blinded,
parallel-group study (101), 80 patients diagnosed with mild to moderate AD dementia (mean
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age 75.3 years; 13 of them had insomnia) were randomized to receiving daily treatment of a
prolonged-release melatonin formulation for 24 weeks or placebo. In the 60 participants that
completed the trial, there was a positive effect of melatonin treatment on cognitive
performance, especially for those with insomnia, compared with placebo. Another study was
performed in two PD centers in the USA, where 31 patients (mean age 63.2 years) with PD
and coexistent excessive daytime sleepiness who received stable dopaminergic therapy
underwent a 14-day light intervention with twice 1-h exposure to bright (10000 lux) or dim
(<300 lux) light each day (102). The light intervention improved daily activity rhythms and
reduced daytime sleepiness, and the effects were stronger with bright light than with dim
light.

The application of circadian interventions in neurodegenerative diseases is a promising but
emerging field. Many questions and concerns remain to be addressed. First, circadian
rhythms can also be entrained or shifted by many other non-photic time cues or zeitgebers
(103), including food (104), caffeine consumption (105) and exercise (106). These
zeitgebers affect circadian rhythms likely through direct influences on the peripheral clocks
and their feedback to the central circadian clock (107). How to appropriately implement
these time cues in circadian interventions requires better understanding of the interactions
between the central and peripheral clocks. Second, the intrinsic properties such as the period
of the central circadian clock can be different between individuals, leading to different
chronotypes (i.e., evening- and morning-types) and different circadian timings (relative to
time of day) of behavior and physiological functions including melatonin secretion. Thus,
individuals of different chronotypes have different responses even when light exposure and
melatonin are scheduled at the same time of day (108). However, no clinical trials have
incorporated chronotype into personalized circadian interventions. Third, though circadian
control and sleep regulation are tightly coupled, they have different underlying mechanisms.
Understanding these specific mechanistic pathways in addition to distinguishing whether the
observed beneficial effects of interventions are through the influences on the circadian
clocks or directly on the neural circuitry of sleep homeostasis may improve strategies for
future drug and therapeutic design. Fourth, despite the association between CRD and
cognitive impairment, more evidence for the impacts of circadian interventions on cognitive
decline and the progression of neurodegenerations over a long term (e.g., >5 years),
especially after the intervention period, is required. Fifth, no circadian intervention study has
yet considered neuropathological biomarkers. Using structural MRI or PET scans of the
brain and examining longitudinal changes in CSF A and tau levels will help clarify the
contributions of CRD to neuropathological and anatomical changes in the brain, which may
provide insights into potential mechanisms. Lastly, previous studies have been exclusively
focused on the stages of neurodegenerative diseases after the clinical onset of the diseases. It
will be important to test the benefits of circadian therapies for the prevention of the diseases
and related symptoms at preclinical stages.

Conclusions and future directions

People with ADRD or PD frequently experience disruptions in both behavioral and
biological markers of CRD, including disrupted sleep-wake cycles, impaired hormonal and
body temperature rhythms, and dysregulation of the autonomic system. CRD associated with
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neurodegeneration often presents in a much more severe form than typical age-related CRD
and also has distinct features. Unlike healthy older adults who usually have reduced
circadian amplitude and advanced circadian phase, patients with ADRD tend to have high
fragmentation and slightly reduced amplitude of circadian rhythms. There are mixed
findings regarding phase shift among these patients, and they are likely to have irregular
sleep-wake patterns. PD patients tend to have reduced circadian amplitude but no change in
circadian phases. In general, behavioral CRD markers such as sleep timing, daytime
sleepiness and rest-activity rhythms have been examined more often than biological markers
such as CBT and melatonin or cortisol secretion rhythms. Recent evidence has also
suggested that the stage and severity of the disease, as well as the treatment, increase
variation in markers of CRD. Large longitudinal clinical studies are needed to examine the
change in circadian rhythms associated with the progression of neurodegeneration, including
non-AD dementias, and to separate the potentially interacting effects of disease progression
and dopaminergic treatment on circadian rhythms in patients with PD. The integration of
non-behavioral circadian biomarkers into these studies would help disentangle CRD from
sleep/behavioral confounds (panel 2). This will help identify circadian features that are
important for differentiating various types and stages of neurodegenerative diseases, and is
important for the management of circadian symptoms in these diseases.

Several epidemiologic studies suggested the presence of CRD at the preclinical stage of
ADRD. CRD might be considered as a useful preclinical marker or prodrome for
neurodegenerative diseases and help with the early detection of the disease. Emerging
evidence from longitudinal studies also showed that CRD precedes the development of
ADRD or PD. Additional confirmatory studies with longer follow-up are needed to examine
the relationship between different circadian markers and subsequent risk of developing
neurodegenerative diseases, and should consider the use of biomarkers to help understand
potential mechanisms. For example, using structural MRI or PET scans of the brain and
examining longitudinal changes in CSF Ap and tau levels will help clarify if CRD might
contribute to AD pathology or structural change in the brain. Studies of biological
mechanisms and intervention trials are required to determine if CRD is a cause of
neurodegenerative diseases.

Finally, personalized multicomponent circadian intervention should be developed and tested
for benefits on circadian synchronization as well as symptom management of ADRD or PD.
In addition, large longitudinal clinical trials with long follow-up periods are needed to
examine the long-term benefits of these interventions, and especially to determine whether
these interventions might help prevent or delay the onset of neurodegenerative diseases
among healthy older adults. In this way, CRD may be a promising therapeutic target for the
prevention and management of neurodegenerative diseases.

Search strategy and selection criteria

We identified references for this Review by searches of PubMed between Jan 1, 2013 and
Oct 31, 2018, and by hand searches of reference lists from relevant articles. We used the

search terms: “dementia”, “Alzheimer’s disease”, “cognitive function”, “cognitive decline”,

LI T

“cognition”, “Parkinson disease”, “neurodegeneration” and “circadian rhythm”, “circadian
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clock”, “twenty-four-hour rhythm”, “sleep-wake”, “melatonin” or “chronotherapy”. There
were no language restrictions. We included only references published within the past 5
years, except for key or landmark studies in the field. The final reference list was made
based on relevance to the theme of this review.
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Panel 2:

Directions for future research

Studies of CRD in neurodegeneration should incorporate the assessment of
both biological (eg, CBT, melatonin and cortisol rhythms) and behavioral (eg,
rest-activity rhythms) markers of CRD.

Large, longitudinal studies are needed to determine circadian features for
different types and severities of ADRD, and clarify the link between the
progression of ADRD and change in circadian rhythm disruptions.

The interaction between PD disease progression, dopaminergic treatment, and
circadian changes should be clarified.

Additional studies with long-term (eg, over 20-30 years) follow-up periods
are needed to confirm the effects of CRD on subsequent cognitive decline and
risk of developing ADRD or PD.

Underlying mechanisms for the bi-directional relationship between circadian
rhythms and neurodegeneration need to be understood to help draw causal
inference and inform therapeutic targets.

The use of circadian interventions in patients with neurodegenerative diseases
should be further explored, and personalized circadian treatment should be
explored, taking the large between-individual differences (ie, differing
chronotypes) into consideration.

Randomized controlled trials of individuals at preclinical stages are needed to
test the benefits of circadian therapies for the prevention of neurodegenerative
diseases.
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Figure 1. Proposed bi-directional relationship between CRD and neurodegeneration.
The core circadian clock is present in most cells, including those of the central circadian

pacemaker in the suprachiasmatic nucleus (SCN), and consists of a transcriptional-
translational feedback loop involving the positive transcriptional regulators CLOCK and
BMAL1, and their negative feedback inhibitors PERIOD, CRYTOCHROME, and REV-
ERB proteins. The circadian clock influences sleep timing, which has been shown to directly
control AP dynamics (in humans (90) and mice (87,88)) and glymphatic clearance of toxic
proteins (in animals (76)). Sleep disruption also alters a host of other factors, from synaptic
homeostasis to inflammation. Circadian clocks in microglia and astrocytes (glial clocks)
may regulate the blood-brain barrier (BBB), inflammation, and synaptic function (78, 83,
92, 93)(109), though the evidence is too preliminary to draw a strong conclusion. Animal
studies suggest that circadian clocks in neurons influence brain oxidative stress (78), and
could affect brain metabolic function and synaptic homeostasis (78). Finally, peripheral
clocks in organs such as the gut, liver, and immune tissue impact peripheral metabolism, the
microbiome, and immune function (79). It is proposed that this multi-system perturbation
could promote toxic protein aggregation and neurodegeneration, which in turn could disrupt
circadian clocks in the SCN and periphery. Black arrows=supported by human data, Blue
arrows=supported by animal data, Grey arrows=data is suggestive but too preliminary to
draw firm conclusions.
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