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Abstract

The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indis-

cernible lineages of well-known exemplars referred to as biotypes. It is distributed through-

out tropical and subtropical latitudes and includes the contemporary invasive haplotypes,

termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological

diversity, however, most members are poorly studied or completely uncharacterized.

Genetic studies have revealed substantial diversity within the group based on a fragment of

the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested

markers being less useful for deep phylogenetic comparisons. The view of global relation-

ships within the B. tabaci sibsp. group is largely derived from this single marker, making

assessment of gene flow and genetic structure difficult at the population level. Here, the

population structure was explored for B. tabaci in a global context using nuclear data from

variable microsatellite markers. Worldwide collections were examined representing most of

the available diversity, including known monophagous, polyphagous, invasive, and indige-

nous haplotypes. Well-characterized biotypes and other related geographic lineages discov-

ered represented highly differentiated genetic clusters with little or no evidence of gene flow.

The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, sug-

gesting that they stemmed from large founding populations that have maintained ancestral

variation, despite homogenizing effects, possibly due to human-mediated among-popula-

tion gene flow. Results of the microsatellite analyses are in general agreement with pub-

lished mtCOI phylogenies; however, notable conflicts exist between the nuclear and

mitochondrial relationships, highlighting the need for a multifaceted approach to delineate

the evolutionary history of the group. This study supports the hypothesis that the extant B.

tabaci sibsp. group contains ancient genetic entities and highlights the vast cryptic diversity

throughout the genome in the group.
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Introduction

The evolutionary processes leading to speciation in ecologically and genetically divergent pop-

ulations have attracted the interest of many [1–3], leading to a focus on the study of speciation

in phytophagous insects [4–7]. One view of speciation is that of a continuous process involving

polymorphic populations as they evolve to become distinct species, with “biotypes” or “eco-

logical races” acting as intermediate stages [5, 8]. At the other extreme, there are several empir-

ical examples of morphologically conserved lineages, apparently reproductively isolated for

millions of years that are either allopatric (e.g. [9, 10]) or have shifted into sympatric (e.g. [11])

or parapatric ranges (e.g. [12]). Such populations of morphologically conserved lineages that

are genetically divergent and often also reproductively isolated, are referred to as cryptic or

sibsp. because of their previous classification into a single taxon, based on identical morpholo-

gies. Cryptic species are more common than previously expected, and are now known to occur

across major metazoan taxa and biogeographical regions [13]. With advances in molecular

and genetics approaches the discovery and description of cryptic species have increased expo-

nentially in the past two decades [14].

The view that cryptic lineages are the outcome of recent speciation events has been con-

tested in light of studies suggesting ancestral divergence of morphologically cryptic lineages, in

some cases dating to the Oligocene i.e. 24 million years ago ([10, 14, 15] and references

therein). It has been suggested that behavioral, physiological, and developmental plasticity

may allow organisms to compensate for environmental perturbations without requiring mor-

phological change [16], a collection of mechanisms that when invoked lead to “morphological

stasis”. Therefore, persistent morphologies can be maintained by stabilizing selection [17],

while divergence at other traits (behavioral, ecological, genetic) and ultimately speciation can

proceed at a “normal” pace. Such selection pressures may be imposed especially by conditions

experienced at extreme or ‘marginal’ environments [14].

Studies of multiple co-distributed cryptic lineages, combining phylogeographic and popula-

tion genetics approaches provide an excellent framework to appreciate cryptic biodiversity

[15]. One such system is the whitefly sibling species (sibsp.) group Bemisia tabaci Grennadius

(Hemiptera: Aleyrodidae) for which the taxon was first described as Aleyrodes tabaci in 1889

(see references in [18]). This group comprises an untold number of cryptic lineages worldwide

[18–23], some of which currently overlap in geographic range. The morphologically indistin-

guishable lineages, traditionally characterized as B. tabaci biotypes [18, 22, 24] with many dis-

tinguished more recently as mitochondrial (COI) haplotypes show variability in certain

biological and ecological traits, among which are plant virus transmission efficiency (compe-

tency), insecticide resistance, fecundity, dispersal, and mating behavior [24]. In addition a few

are invasive pests while all are vectors of the genus, Begomovirus (Geminiviridae), and most

typically are thought to be polyphagous, with a small number of monophagous types, as well as

types that may be restricted by host and geographic ranges [18, 22, 24]. Ever since molecular

techniques were used initially to study this system in the late 1980’s, it became evident that this

complex also exhibits extreme variation at the genetic level (for reviews see [23, 24, 25]).

Recent analyses of a comprehensive mtCOI dataset, some of which are available in the Gen-

Bank database, recognized a large number of cryptic variant groups, or haplotype clades [19,

24]. Using similar datasets Dinsdale et al. [20] and Lee et al. [26] proposed the treatment of

entities within the dataset as operational taxonomic unites (OTUs), and a hypothetical ‘species’

cutoff at 3.5% or 4.0%, respectively, based on mtDNA divergence only (see designations in S1

Table), which excludes consideration of phylogenetic relationships or biological characteris-

tics. The particular ecological factors that have contributed to the apparently extreme diversifi-

cation in B. tabaci are not yet understood, but it has been suggested that lineages of B. tabaci
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diverged millions of years ago following separation of continental landmasses [22], coinciding

with a period of global diversification across the plant and animal kingdoms that were associ-

ated with major climatic and tectonic events [27]. Evidence supporting this hypothesis stems

from the unexpectedly high divergence between mtCOI sequences among clades-up to ~26%

[24], and phylogeographic separation among many mtCOI gene clades [20].

Understanding the boundaries within this species group ideally requires a thorough assess-

ment of different biological and ecological characters, together with mating experiments, to

determine which lineages are reproductively isolated and/or to what extent. However, estab-

lishing which lineages have developed reproductive barriers, thus constituting “distinct gene

pools”, can be assessed through indirect estimates of gene flow by studying differentiation in

multiple nuclear markers [28]. Genetic analyses not only provide information about contem-

porary gene flow among lineages, but also shed light on historical demographic processes such

as ancestral population expansions and time of divergence from a common ancestor.

Analyses with several markers and DNA sequences of a number of gene regions in B. tabaci
have provided us with a general picture of the biogeographic distribution of lineages, with the

mtCOI gene being the most diverse and other nuclear loci showing much less divergence [29,

30]. Thus, our current view to date of the global phylogenetic and phylogeographic relation-

ships in B. tabaci relies solely on the mtCOI [19, 20, 22, 24, 30]. Although this marker has been

widely used to assess the divergent and cryptic nature of the B. tabaci sibsp. group its overall

value for informative phylogeographic reconstruction, species boundaries delineation, and

understanding population structure has been strongly criticized [31–35]. Issues include, (1)

that inheritance of mtDNA is matrilineal and thus not representative of processes involving

males, (2) the mitochondrial genome is small but also contains a large proportion of functional

genes and thus likely to be impacted by selective sweeps [34, 36], (3) mtDNA is known to

move between species in many organisms [37], and (4) for stochastic reasons, as one locus it

may not be representative of the actual demographic history of the organism. Indeed, in B.

tabaci, this marker exhibits 0–26% divergence [24], which exceeds the variation typical of

closely related species that may be attributable to effects of haploid males and/or bacterial sym-

bionts [38]. For these reasons divergence of mtDNA itself is not sufficient for describing spe-

cies or for understanding the history and structure of biological diversity.

Microsatellite markers are used for the inference of genetic relationships between popula-

tions of the same species or closely related species because of their high polymorphism owing

to high mutation rates and representation across the nuclear genome [39]. Multiple microsat-

ellite loci have been isolated from B. tabaci [40–46] and have been used to examine local popu-

lation structure and differentiation in biotypes (for a review see [25]), providing insights into

the roles of host and geography in structuring of populations [47–49], in detecting hybridiza-

tion among sympatric invasive and indigenous biotypes in a region [42], in detecting associa-

tions of biotypes with differential insecticide resistance levels [50] or endosymbiont

composition [50–52] and in identifying the sources and routes of dispersal of invasive biotypes

in new areas [25]. However, multiple nuclear loci have not yet been employed to determine

the genetic structure of worldwide lineages and biotypes.

In this study, we used 13 microsatellite loci to resolve the global population structure of the

B. tabaci sibsp. group and add further insight into the current relationships within and

between B. tabaci lineages. The goal was to determine whether “biotypes” that were initially

described on the basis of esterase markers and then based on mtCOI analysis, together with

biological and ecological data, are also phylogenetic entities, that is, whether they form mono-

phyletic groups with restricted, or perhaps, no gene flow among them. By analyzing the world-

wide distribution of populations representing monophagous, polyphagous, widespread

invasive, and indigenous biotypes, we aimed to examine not only the global evolutionary
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history, but also differential patterns of genetic diversity across this sibsp. group. Finally, we

compared our results to published mtCOI phylogenetic conclusions to determine what addi-

tional insights these nuclear genome markers might provide to illuminate the diversity, popu-

lation structure, and history of B. tabaci.

Materials and Methods

Bemisia tabaci samples and populations

A total of 839 female whiteflies from 50 collections, sampled worldwide were genotyped in this

study (S1 Table). A permit was not required from the country of origin for whitefly collections

because B. tabaci is an agricultural pest widely distributed in the field and plantations/green-

houses, not a species of any conservation status. Whiteflies were collected from both public

and private land. In cases where collection was done from private land, permission to collect

was granted by landowners. Adult females were used for genetic analysis because whiteflies are

haplodiploid with diploid females and haploid males [53]. The samples span distinct geo-

graphic sampling locations representative of the global distribution of B. tabaci and were

obtained through direct field sampling and laboratory collections (J.K. Brown and many col-

laborators, worldwide) (S1 Table). The field samples encompassed partially characterized or

uncharacterized haplotypes, and well-studied biotypes, collectively, representing haplotypes

that cluster in six (or seven) major clades inferred by the mtCOI phylogeny of the sibsp. group

[24], and sequences considered to be separate species by Dinsdale et al [20] and Lee et al [26].

DNA extraction

Whitefly adults were collected live and preserved in 95% ethanol. Whiteflies from most collec-

tions (adults, with nymphs when available) were identified to species by R. Gill (CDFA, Sacra-

mento, CA). Samples that originated from previously studied or biotype reference collections

have been assigned to mtCOI clade (S1 Table), based on previously sequenced data at the

mtCOI gene. For newly studied collections a region of approximately 800 bp of the mtCOI

gene was amplified and sequenced in both directions for at least one specimen per population

using primers and protocols described in Hadjistylli [54] to confirm that these belong to the B.

tabaci sibsp. group and to identify the mtCOI clade they belong to. GenBank accession num-

bers for all available sequences are provided in S1 Table. For DNA extraction, whole adult

whiteflies were homogenized in individual 1.5 ml microcentrifuge tubes and genomic DNA

was extracted using the Qiagen DNeasy DNA Blood and Tissue kit following the manufactur-

er’s protocol. A modification to this protocol was implemented to perform a final elution of

the DNA from the column in 80μl buffer AE, followed by a second elution in 20μl AE, with the

two eluates combined in a single microcentrifuge tube and stored at -20˚C.

Microsatellite loci

A total of 13 microsatellite loci (Table 1) were amplified using polymerase chain reaction

(PCR) (see protocols below). We used loci developed in our laboratory [44] and from several

literature sources [40, 41, 43, 45, 46]. The loci we used were isolated from different B. tabaci
biotypes and had different repeat motifs, likely evolving at different rates (Table 1). Out of a

total of 65 microsatellite primer pairs we tested and screened, we selected 13 loci that cross-

amplified in most of our populations. Samples that failed to amplify at any given locus were

genotyped at least 3 times before scoring those genotypes as missing data.

Population Genetic Structure of the Whitefly Bemisia tabaci
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PCR protocols and microsatellite genotyping

Microsatellite forward primers were labeled with a fluorescent dye with an unlabeled reverse

primer (Table 1). PCR was carried out as described in Hadjistylli et al. [44]. When it was possi-

ble to assess the allelic range for each population, subsequent amplifications of loci across all

populations were carried out using multiplexing multiple primer pairs in a single reaction (3–

5 pairs per reaction, labeled with different fluorescent dyes, or having discrete allele size

ranges). Multiplex PCR was done in 96-well plates using the Multiplex PCR Kit (Qiagen) in

15 μl reaction volumes containing 6 μl of the Qiagen PCR Master Mix (1X), 2 μM of each

primer, 3 μl RNase-free water and 1 μl of genomic DNA. Thermocycling conditions were as

follows: 15 min at 95˚C followed by 30 cycles of 30 s at 94˚C, 90 s at 60˚C, 60 s at 72˚C, with a

final extension step of 60˚C for 30 min. Final PCR products were mixed with a cocktail of 48:1

Hi-Di formamide (ABI): LIZ500 size standard (ABI) (0.5 μl PCR product, 0.2 μl LIZ, 9.3 μl

formamide) and were denatured at 95˚C for 5 min. Fragments were ran on an ABI 3730 DNA

sequencer and genotypic data were visualized and scored manually using the software Gene-

Mapper version 4.0 (ABI). All runs included negative and multiple positive experimental con-

trols to ensure consistency in allele scoring. The program Flexibin [55] was used to facilitate

binning and help detect miscalled microsatellite alleles.

Basic population genetics statistics

Prior to any analyses we tested for significant differentiation among populations sampled from

neighboring locations using the exact test as implemented in Genepop (version 4.0.10) [56,

57]. Significance levels were corrected for multiple comparisons using the standard Bonferroni

correction at the 0.05 levels. Populations that were not significantly differentiated were pooled

into a single sample for further analyses (see S1 Table). We used the program GenAlEx 6.1

[58] to calculate locus-specific statistics (number of alleles, total expected heterozygosity, mean

expected and observed heterozygosities and F statistics) across all populations as well as popu-

lation specific statistics across all loci and per locus (Na, HO, HE, and F statistics).

Table 1. Characteristics and sources of microsatellite loci used in this study.

Microsatellite locus Allele size range (bp) Fluorescent dye colorc Repeat motif Isolation source Reference

aWF1B11 101–178 PET (CCTGA)12impd Biotype B [44]

WF2C01 110–225 PET (GTTT)11imp Biotype B [44]

WF2H06 141–214 NED (TTTG)11 Biotype B [44]

WF1B06 128–170 PET (ACTC)8 Biotype B [44]

WF2E11 159–264 PET (GATT)27imp Biotype B [44]
aBEM6 161–236 6-FAM (CA)8imp Australia [41]
aBEM15 166–238 6-FAM (CAA)6(CAG)4(CAA)4 Asia (Indonesia) [41]
aBEM31 105–142 HEX (GCT)4(GTT)2 Asia (Vietnam) [41]
aBT-b103 118–151 HEX (AC)8(TC)3 Biotype Q [45]
aBT-e49 266–390 6-FAM (TTG)12(TTC)11 Biotype Q [46]

BtIs1.2 256–368 6-FAM (CA)13N14(CA)8 B/Q [43]
bMS145 171–225 PET (AC)9 Biotype B [40]
aMS177 233–278 6-FAM (CA)7 Biotype B [40]

aDenotes loci used in the 7-locus analysis
bDenotes additional locus used in the PCA
c6-FAM, PET, NED (Applied Biosystems), 6-FAM, HEX (SIGMA-ALDRICH)
dImperfect

doi:10.1371/journal.pone.0165105.t001
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Because not all of our samples amplified at all loci, to obtain unbiased estimates of genetic

diversity we used a reduced dataset based on 7 loci (see Table 1), excluding any individuals or

whole populations that had any missing data (e.g. Uganda-sweetpotato, China-Hainan, Jatro-

pha-Puerto Rico (PR), Guatemala, Mozambique), resulting in a reduced dataset with 690 indi-

viduals. Loci isolated from different biotype sources were selected for these calculations e.g.

two loci from biotype B, two from biotype Q, two from Asian populations, one from an Aus-

tralian population, to avoid bias associated with primer development (e.g., microsatellites were

more variable in the biotype from which they were isolated). Observed (Ho) and expected

(HE) heterozygosities per population were calculated in GenAlEx 6.1. For presentation pur-

poses Ho and HE were averaged across populations for each biotype, haplotype, or geographic

group based on the results of the neighbor joining tree (NJ) and clustering analyses (explained

below). Allelic richness (number of alleles) was calculated using the rarefaction method imple-

mented in the program HPrare [59] to correct for differences in the size and number of popu-

lations per biotype / region. Rarefaction standardized samples to the minimum eight genes per

population and one population per region. We used the hierarchical sampling scheme offered

in HPrare to group populations into known biotypes or geographic regions as determined

from the NJ tree. Allelic richness between pairs of populations was then compared using analy-

sis of variance with loci considered as blocks using a randomized complete blocks design, fol-

lowed by Tukey’s multiple comparison tests in R [60].

Tests for significant genotypic linkage disequilibrium (LD) among all pairs of loci and for

significant deviations from Hardy-Weinberg equilibrium (HWE) were conducted in the pro-

gram Genepop (version 4.0.10) using the Markov chain method with default settings. The sig-

nificance levels were adjusted using a Bonferroni correction (0.05 level).

Null alleles

Null alleles can potentially bias estimates of genetic differentiation by reducing the genetic

diversity within populations thereby increasing and overestimating the inter-population

genetic differentiation (estimates of FST and genetic distance) [61, 62]. In order to address this

issue we used the program FreeNa [61] in our full dataset to calculate unbiased global and pair-

wise FST of Weir [63] and Cavalli-Sforza and Edwards chord distance (DC) [64] corrected for

null alleles using 1000 bootstrap replications over all 13 loci. Pairwise DC corrected and uncor-

rected for null alleles were used to construct neighbor-joining (NJ) trees using Neighbor avail-

able in the software package Phylip-3.69 [65]. Trees were used for comparing the extent to

which null alleles could bias the other analyses reported here. The estimated frequency of null

alleles per locus for each population was calculated in FreeNa using the EM algorithm [66].

Individual-based analyses

Neighbor Joining tree. The program Populations version 1.2.30 [67] was used to con-

struct an unrooted NJ tree, based on DC among individuals using information from the full

dataset. DC is less biased by the presence of null alleles compared to Nei’s [68] standard genetic

distance (DS) [61]. In addition, DC does not make the assumption of constant population size

or constant mutation rates among loci and performs better than other genetic distances in

recovering correct tree topologies [69]. The NJ analysis was done at the individual rather than

at the population level to allow for the detection of genetic structure in sample populations

and also for the potential migration of individuals between populations. The output obtained

from the program Populations was visualized using the Interactive Tree Of Life (iTOL) tool

available on line at http://itol.embl.de/ [69–71].

Population Genetic Structure of the Whitefly Bemisia tabaci
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Principal Coordinates Analysis (PCA). Principal coordinates analysis (PCA) was used as

an alternative analysis of the individual genotypes to compare the consistency of results

between methods. It allows for detection of the major patterns in a multivariate dataset, such

as a microsatellite dataset with multiple samples and loci [58] by transforming and condensing

the multilocus genotype information into a smaller number of derived variables. The Excel

based program GenAlEx 6.1 [58] was used to calculate a genetic distance matrix, using option

codominant-genotypic, method described in Smouse and Peakall [72] and to convert this into

a covariance matrix with data standardization for the PCA. The genetic distance matrix esti-

mation is based on a pairwise individual-by-individual calculation without taking into account

the population that an individual belongs to. For a simpler display of individuals from all pop-

ulations into a single PCA we color-coded individuals belonging in the same biotype or geo-

graphic group (as determined from the NJ tree). For this analysis the seven loci that amplified

across most populations and an additional locus (Table 1) were used, as well as individuals

having few missing data that added valuable information to the PCA, resulting in a dataset

with 712 individuals.

Bayesian clustering analysis to assess worldwide population structure. To identify

major genetic clusters in the worldwide populations of B. tabaci we used the Bayesian cluster-

ing approach implemented in the program STRUCTURE 2.3.3 [72–76]. Since the model used in

this method assumes Hardy-Weinberg and linkage equilibrium within populations we

excluded the three loci that significantly deviated from HWE in more than one population out

of 41 (S2 Table). No population was excluded from the analysis, because no consistent pattern

of deviation from HWE was evident for multiple loci. We ran five replicates, each using a

burn-in length of 100,000 and a run length of 1,000,000 steps, with the admixture and the cor-

related allele frequencies models since some of the populations are likely admixed and have

shared allele frequencies, without using prior population information (geographic sampling

location).

Because after multiple runs using STRUCTURE, the strongest signals of genetic partition

were observed among very divergent genetic groups, while at the same time structure could

not be detected at lower levels of differentiation, the data set was subdivided to examine sub-

structure within each of the inferred clusters. For the Q biotype specifically, because the global

STRUCTURE analysis indicated the presence of two geographic genetic clusters within the

biotype, we ran three different analyses at the substructure level to further examine differentia-

tion within these clusters: one run with all Q biotype populations and two separate runs, for

each geographic cluster of the Q biotype.

For each of these sub-structure runs, loci that contained missing data or that deviated from

Hardy-Weinberg equilibrium for those populations were excluded. Each run comprised

500,000 iterations following a 100,000 burn-in period, for 3 replicates, and with the admixture

and correlated allele frequencies models. The initial number of clusters (K) to be tested for

each run is given below each of the STRUCTURE plots. To determine the best K value

explained by the data for all runs the posterior probabilities were examined for each K and the

ΔK estimator, as described by Evanno et al. [77] using the program STRUCTURE HAR-

VESTER [78] (S1 Fig). Results from replicates for the inferred K from each run were analyzed

in the program CLUMPP [79] to produce averaged matrices of individual and population cluster

membership coefficients. Finally, the program Distruct v1.1 [80] was used to produce graphi-

cal displays of the resulting bar plots. The program BAPS [81] was used as an alternative Bayes-

ian clustering approach to compare the consistency of these results with those obtained using

STRUCTURE.

Genetic differentiation within the two invasive biotypes B and Q was further examined with

analysis of molecular variance (AMOVA), a statistical procedure that allows the hierarchical

Population Genetic Structure of the Whitefly Bemisia tabaci
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partitioning of genetic variation among populations and regions [82, 83], using the program

GenAlEx 6.1 [58]. We used the estimate FPT, an analogue of FST that calculates population dif-

ferentiation based on genotypic variance by suppressing intra-individual variation, which is a

more suitable estimate for comparing patterns of molecular variance in the case of codominant

microsatellite data (GenAlEx Manual and Appendix). The hierarchical distribution of genetic

variation among populations /countries (ie within biotype) and within populations (among

individuals) was calculated using 9 loci, 132 samples from seven populations for biotype B, and

11 loci, 213 samples from 9 populations for biotype Q (Table 2). AMOVA within Q biotype

(Western and Eastern Mediterranean genetic groups) was done by subdividing the dataset

accordingly. Tests of significance were performed using 9999 permutations.

Results

Basic population genetics statistics

Out of the 10,907 genotypes we attempted to obtain (13 loci x 839 samples), 1,829 failed to

amplify consistently in certain populations (16.8% of dataset) with only 136 missing genotypes

(1.2%) arising from ambiguous or non-specific PCR amplification. The complete dataset of 13

loci was used only for estimation of null alleles and the NJ tree, with other analyses done on

reduced datasets, excluding loci deviating from HWE and missing data, as indicated in each

case.

Tests for population differentiation showed that six sets of samples, each collected from

neighboring locations, had non-significant population differentiation (P> 0.05 after Bonfer-

roni correction) and were pooled together resulting in a total of 41 populations to be further

analyzed (S1 Table).

Table 2. Analysis of molecular variance (AMOVA) results for biotype B and biotype Q populations.

Source of variation dfa SS MS Estimate of

variance

% of total

variation

Φ-Statistics

Biotype B Among populations / countries (within B

biotype)

6 209.094 34.849 1.714 27% ΦPT =

0.271*

Among individuals (within populations) 125 575.315 4.603 4.603 73%

Total 131 784.409 6.317 100%

Biotype Q Among populations / countries (within Q

biotype)

8 791.194 98.899 4.031 46% ΦPT =

0.458*

Among individuals (within populations) 204 972.360 4.766 4.766 54%

Total 212 1763.554 8.798 100%

Biotype Q–Western

Mediterranean

Among populations / countries (within Q

biotype West Med)

4 125.827 31.457 1.270 20% ΦPT =

0.198*

Among individuals (within populations) 103 529.766 5.143 5.143 80%

Total 107 655.593 6.413 100%

Biotype Q–Eastern

Mediterranean

Among populations / countries (within Q

biotype East Med)

3 230.158 76.719 2.794 39% ΦPT =

0.389*

Among individuals (within populations) 101 442.594 4.382 4.382 61%

Total 104 672.752 7.177 100%

Estimates of ΦPT were calculated using 9 loci (excluding WF2C01, BEM6, BT-e49, BtIs1.2) on 132 samples from seven populations for biotype B and 11

loci (excluding BEM6, BT-b103) on 213 samples from 9 populations for biotype Q. Analyses within biotype Q were done on relevant subsets of the dataset,

for Western and Eastern Mediterranean populations.
adf: degrees of freedom, SS: sum of squares, MS: mean squares

*significant at P<0.0001 (based on 9999 permutations)

doi:10.1371/journal.pone.0165105.t002
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High allelic richness was evident in all microsatellites (S2 Table), with 10 to 42 alleles per

locus resulting in a total of 271 alleles across the 41 populations. When patterns of deviation

were examined at the locus level, three loci deviated significantly from HWE in more than one

population (S2 Table). No significant linkage disequilibrium was detected between loci.

The results indicated that different patterns of genetic diversity exist among biotypes and

geographic groups. Fig 1 shows the number of alleles after rarefaction averaged across seven

loci for each of the different biotypes or geographic groups. There were significant differences

in allelic richness between populations (F12,72 = 2.26, P = 0.02). Populations from the New

World (including biotype A) and biotype S had the lowest number of alleles, while the invasive

biotypes B and Q (West and East Med refer to subclades Q1 and Q2 respectively as per Chu

et al. [84]) had an intermediate number of alleles. The highest number of alleles was observed

in the Yemen population, the presumed closest relative of biotype B represented in the dataset,

and in populations from Sub-Saharan West and North and West Africa that is the presumed

closest relatives of biotype Q sister clade represented herein (Fig 1, Table 3). However, the only

statistically significant difference in allelic richness was found between the Yemen population

and the New World (biotype A) populations (P = 0.04) (Fig 1).

Estimates of heterozygosity showed similar patterns as allelic richness: the introduced to

Spain, S biotype, and New World populations had the lowest heterozygosity; the invasive bio-

types B and Q had moderate to high heterozygosity, while the highest levels were observed in

their close relatives extant in Yemen and the North and West African lineages, and for another

Fig 1. Allelic richness (±SE) (corrected for unequal sample size after rarefaction) in different biotypes

and geographic groups. Different letters above the error bars denote statistically significant differences

(P = 0,02).

doi:10.1371/journal.pone.0165105.g001
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related biotype referred to as Ms from Reunion Island (Fig 2, Table 3), a haplotype first identi-

fied in Uganda (Ug) and initially referred to as the Ug-non B [85].

Null alleles

Although analysis using FreeNa [66] showed that null alleles were present in the dataset (S3

Table), estimates from the corrected and non-corrected dataset were very similar. In the case

of FST, the global estimate across all loci and populations was 0.54 (95% CI: 0.46–0.62) before

correction for null alleles and 0.53 (0.45–0.61) after correction. Per locus estimates of FST with

and without the correction were also very similar, with only six out of 13 loci having slightly

overestimated values before the correction and the largest difference between corrected—

uncorrected dataset at a locus being 0.03 (locus WF1B06). The NJ trees built based on DC cal-

culated with both the corrected and uncorrected for null alleles dataset gave identical topolo-

gies (not shown), that were consistent with the groupings recovered from individual NJ trees

(Fig 3).

Individual-based analyses

Neighbor Joining tree. The NJ tree based on individuals gave a clear picture of the genetic

structure associated with the biotype/haplotype, or geographic origin, with the exception of

the known introduced, invasive populations (Fig 3). A total of 18 groups, including seven

established biotypes, showed clear genetic structure, with individuals within each group being

more related to each other than to individuals from any other group.

Within the Q biotype clade there was a obvious split into two sister genetic groups originat-

ing from the eastern Mediterranean (including the Israel-Q) and those sampled from the west-

ern Mediterranean (including the Spanish-Q), a genetic split also evident based on the mtCOI

data [84]. The Eastern Mediterranean Q cluster was more structured than the West Mediterra-

nean Q and comprised well-differentiated populations that included those from Cyprus,

Greece, Israel, and Turkey, whereas, there was evidence of more gene flow within the Western

Mediterranean group that included those from Spain, Morocco, France, Canary Islands, and a

population introduced to China.

The B biotype formed a monophyletic group with evidently high migration among its five

sister populations, with the exception of the Arizona B population that was well differentiated

from the rest. Other biotypes that formed monophyletic groups in the tree were biotype S [86]

(collected in Spain but now known to be extant in West Africa on cassava and probably other

hosts), biotype Ms from Reunion Island, biotype T (Italy) [87, 88] and the Jatropha -PR bio-

type (Caribbean) [18, 89] whereas populations of the biotype A (Arizona A and Riverside A)

[85, 89, 90] were not differentiated from the other New World populations collected in Central

America.

Also, there were examples of individuals that did not belong to any previously recognized

biotype, but that nevertheless formed clear and well-differentiated groups. Examples were hap-

lotypes from Burkina Faso (Q-like relative), Sudan and Sudan Q-like, Moorea-FP (sister clade

to Sub-Saharan, West African clade), Yemen (B biotype relative), and samples from China-

Hainan, India, Pakistan (Asia I and II) and the Uganda-sweetpotato population. Haplotypes

collected from cassava in Mozambique and Uganda and haplotypes from South Africa were

not well-differentiated from one another, but formed one large clade, herein referred to as

Sub-Saharan East Africa [24], with the S biotype (found initially in Spain but later in West

Africa where it is thought to have originated) nested within it. A similar pattern, with unclear

differentiation, was observed among individuals from Cameroon and Ivory Coast (Sub-Saha-

ran, West African clade).
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Table 3. Population specific statistics over 13 microsatellite loci.

Population namea Nab HE
c HO

d Fe

Arizona A 1.462 (0.573) 0.079 (0.057) 0.064 (0.058) 0.305 (0.167)

Arizona B 4.923 (0.755) 0.436 (0.089) 0.408 (0.093) 0.101 (0.059)

Australia 1.462 (0.369) 0.137 (0.075) 0.154 (0.087) -0.150 (0.116)

Burkina Faso 3, 4, 6 8.846 (1.754) 0.573 (0.075) 0.453 (0.084) 0.204 (0.098)

Cameroon 2, 14 4.538 (0.685) 0.559 (0.047) 0.479 (0.086) 0.175 (0.123)

CanIsl-1, 3, 4, 6 (Canary Islands) 4.769 (1.063) 0.456 (0.078) 0.439 (0.080) 0.067 (0.101)

China 2.692 (0.414) 0.308 (0.072) 0.280 (0.076) 0.101 (0.116)

China-Hainan 1.077 (0.309) 0.093 (0.059) 0.077 (0.049) 0.069 (0.069)

Cyprus 2006 5.462 (1.004) 0.446 (0.096) 0.414 (0.088) 0.052 (0.041)

Cyprus 2008 4.385 (1.071) 0.348 (0.083) 0.356 (0.084) -0.009 (0.046)

Cyp (Cyprus-Ork) 1.077 (0.288) 0.173 (0.066) 0.154 (0.067) 0.040 (0.162)

Egypt 6.385 (1.135) 0.515 (0.070) 0.441 (0.075) 0.177 (0.090)

France 3.692 (0.429) 0.453 (0.059) 0.480 (0.071) 0.000 (0.089)

Greece-1, 3 4.615 (0.888) 0.439 (0.090) 0.361 (0.079) 0.137 (0.066)

Greece-2 3.769 (0.907) 0.427 (0.058) 0.276 (0.060) 0.329 (0.128)

Guatemala 0.923 (0.288) 0.078 (0.054) 0.038 (0.038) 0.379 (0.243)

India 2.077 (0.487) 0.240 (0.073) 0.233 (0.081) 0.127 (0.130)

Israel Q 3.000 (0.494) 0.357 (0.084) 0.351 (0.088) 0.016 (0.057)

Israel-3, 4 B 3.615 (0.549) 0.462 (0.080) 0.568 (0.102) -0.205 (0.053)

Italy T 2.154 (0.576) 0.297 (0.084) 0.279 (0.081) 0.045 (0.057)

Ivory Coast 3.769 (0.590) 0.453 (0.080) 0.345 (0.087) 0.268 (0.117)

Jatropha-Puerto Rico 0.846 (0.222) 0.048 (0.048) 0.038 (0.038) 0.200 (0.064)

Mexico 1.615 (0.432) 0.167 (0.071) 0.093 (0.051) 0.370 (0.118)

Mexico-Culiacan 1.308 (0.511) 0.077 (0.052) 0.074 (0.064) 0.216 (0.190)

Moorea-French Polynesia 0.538 (0.215) 0.038 (0.026) 0.044 (0.030) -0.167 (0.000)

Morocco 3.538 (0.573) 0.431 (0.080) 0.378 (0.086) 0.097 (0.102)

Mozambique 2.538 (0.867) 0.294 (0.095) 0.118 (0.051) 0.610 (0.079)

Pakistan K 2.538 (0.647) 0.275 (0.078) 0.241 (0.070) 0.120 (0.056)

Panama 3.154 (0.390) 0.461 (0.068) 0.459 (0.077) -0.006 (0.076)

Reunion-MS 2.154 (0.296) 0.275 (0.063) 0.117 (0.039) 0.552 (0.099)

Reunion-MS-2009 3.308 (0.499) 0.427 (0.066) 0.477 (0.090) -0.114 (0.108)

Riverside A 1.308 (0.485) 0.080 (0.054) 0.049 (0.041) 0.403 (0.154)

South Africa 2.462 (0.627) 0.264 (0.080) 0.157 (0.064) 0.325 (0.120)

Spain S 1.769 (0.568) 0.132 (0.067) 0.071 (0.034) 0.333 (0.078)

Spain 4.538 (0.985) 0.416 (0.066) 0.379 (0.077) 0.065 (0.093)

Sudan 3.308 (0.737) 0.424 (0.093) 0.359 (0.092) 0.151 (0.098)

Sudan Q-like 2.692 (0.308) 0.383 (0.060) 0.431 (0.075) -0.092 (0.068)

Turkey M 2.615 (0.417) 0.302 (0.079) 0.253 (0.074) 0.115 (0.109)

Uganda-cassava 1.615 (0.500) 0.226 (0.084) 0.152 (0.081) 0.388 (0.160)

Uganda-sweetpotato 3.538 (1.084) 0.324 (0.097) 0.229 (0.083) 0.290 (0.102)

Yemen 1, 2 –B2 5.385 (0.656) 0.624 (0.060) 0.532 (0.069) 0.105 (0.104)

aSamples collected from neighboring locations, which showed non-significant differentiation (exact tests of population differentiation) were pooled together,

as shown in S1 Table.
bMean number of different alleles over loci (±SE)
c,dMean expected (HE) and mean observed (HO) heterozygosities over loci (±SE)
eMean fixation index (F) over loci (±SE)

doi:10.1371/journal.pone.0165105.t003
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When within population patterns were examined, we observed high diversity among indi-

viduals within populations of biotype B despite the lack of structure among them. In contrast,

the opposite pattern was observed for the monophagous Jatropha-PR biotype in that the 28

individuals we examined forming a distinct clade, and individuals were nearly genetically

identical to each other.

An analysis that used a dataset of eight loci gave a tree with much less resolution within the

clades containing the B and Q biotypes and their closest relatives, and between those and their

closest relatives from Yemen and North and West Africa, respectively (since those excluded

five loci amplified mostly in these populations). Otherwise, the analysis with eight loci did not

affect the overall tree topology and resulted in the same groupings in other biotypes and geo-

graphic regions (results not shown).

Principal Coordinates Analysis. The 8-locus dataset used for the PCA had very little

missing data (out of 5,696 possible genotypes only 82 or 1.4% failed to amplify). The PCA

showed that the first three components explained a cumulative 72.3% of the total variance (Fig

4) of the data. Overall the PCA gave similar major patterns as the individual-based NJ tree (Fig

3). There were 7 clear clusters that corresponded to individuals from the New World, Asia,

Sub-Saharan East Africa and biotypes S, T, Ms (Reunion), Uganda non-B [85, 91, 92], B, and

Q. Within the biotype Q sister clade there was a split with some overlap between the Eastern

and Western Mediterranean at the level of the second PCA axis, was visible when the axes

were rotated. The Yemen individuals were loosely clustered between the B and Ms biotypes. A

similar pattern was observed for individuals from the Q-relatives from West and North Africa

(Burkina Faso, Sudan) and the Sudan-Q-like haplotype, which were collectively scattered

between African populations and the biotype Q clade. Likewise, individuals from Cameroon

Fig 2. Observed (Ho) and expected (He) heterozygosity in different biotypes and geographic groups.

doi:10.1371/journal.pone.0165105.g002
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and Ivory Coast (Sub-Saharan West Africa) did not form a cluster, but were scattered and

mostly overlapped with the Q-relatives from West and North Africa. Overall, this analysis

showed that the most differentiated cluster with the largest genetic distance from all others, at

all levels of the PCA, was the New World cluster. The B and Q biotype sister clade groups, and

the major Asian cluster were also very distinct, occupying the furthermost positions of the

PCA axes.

Bayesian clustering analysis to assess worldwide population structure. The initial

results from the clustering analysis that included all individuals in STRUCTURE revealed the pres-

ence of 9 genetic groups that in general corresponded to biotype designations (Fig 5). However

some populations, such as those from India, the T biotype, and the Uganda-sweet potato had

Fig 3. Unrooted NJ tree based on Cavalli-Sforza & Edwards chord distance (DC) among individuals. The tree was constructed

using the full dataset of 839 whiteflies from 50 collections, genotyped at all 13 microsatellite loci used in this study. Colored clades

and branches represent biotypes previously characterized based on mtCOI data and biological/ ecological information. Other

groupings are named according to geographic structuring of populations.

doi:10.1371/journal.pone.0165105.g003
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Fig 4. Three-dimensional plot of a Principal Coordinates Analysis based on a genetic distance matrix calculated from

individual multilocus microsatellite genotypes. The PCA was produced using eight loci (WF1B11, BEM6, BEM15, BEM31, BT-

b103, BT-e49, MS145, MS177) and a dataset of 712 individuals from 42 populations. Data from individuals and from populations

(denoted in S1 Table with *) that had many missing data and added little value to the PCA was excluded from this analysis.

Individuals are color-coded according to biotype or geographic group they belong to based on results from NJ tree with corresponding

colors.

doi:10.1371/journal.pone.0165105.g004
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mixed estimated membership coefficients, and unclear assignments into clusters between rep-

licate runs. In addition, in the multiple runs attempted, the correct value of K varied, with the

Evanno et al. [77] procedure indicating the presence of high peaks in ΔK at K = 4, and 9 with

smaller peaks at K = 11 and 14 (S1 Fig). Here we chose to present K = 9 because when the pos-

terior probabilities were plotted [Pr (K)] against K, Pr (K) plateaued at K = 9 (S2 Fig). Plots

showing clustering results at K = 8, 10 and 11 are also presented as supporting information

(S3, S4 and S5 Figs).

After subdividing the dataset by biotype or by geographic group level (based on results

from the NJ tree and a priori knowledge of population affiliations with biotypes), it was possi-

ble to identify a number of clusters K by examining both the posterior probabilities of the data

against K and the ΔK estimator. Results from these sub-structure runs revealed some interest-

ing patterns (Fig 6). In the Western Mediterranean the Q biotype and related haplotypes split

into four clusters, consisting of China, France, Morocco and Spain, and the Canary Islands,

with the last two clusters seemingly sharing migrants. France and the population introduced

into China [91, 92] were well differentiated, while individuals from Canary Islands, Morocco

and Spain shared a fraction of their genotypes with France and China. A different picture was

observed in the Eastern Mediterranean Q biotype plot, for which a clear genetic structure was

observed among all four populations. Thus, there seems to be very little gene flow between the

two Q biotype sister groups (Eastern and Western) (Fig 5), with mostly the Greek populations

from the Eastern Mediterranean sharing some ancestry with the Western Mediterranean clus-

ter. The result was similar and clear when all Q biotype-like populations (Eastern and West-

ern) were included in a single STRUCTURE run (S6 Fig).

There was a similar pattern for the Asian populations and their relative, the T biotype from

Italy, with all populations well differentiated and no evidence of gene flow among them.

In the analysis of African populations, we excluded Mozambique (which in other analyses

clustered with Sub-Saharan, East African populations) in order to use as many loci as possible

since this population deviated from HWE in an additional two loci. Biotype S, a South African

haplotype, and some Uganda cassava-colonizers formed a single cluster, populations from

Burkina Faso and Sudan formed another (by mtCOI these group with others in the Q-like

Fig 5. Bayesian clustering analysis results of worldwide multilocus genotypes of B. tabaci performed in STRUCTURE.

Individuals are arranged on the x-axis, each represented by a thin vertical line and partitioned into each of 9 inferred clusters (K) with

their estimated membership fractions on the y-axis. Labels below the plot represent the sampled populations and above the plot the

biotypes or geographic groups. Clusters are colored according to groupings identified in other analyses (PCA, NJ tree). The number

of K specified and the loci used are indicated below the plot.

doi:10.1371/journal.pone.0165105.g005
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clades, sisters to B-like clades), while Cameroon and Ivory Coast haplotypes grouped together

as a separate cluster. The Ugandan-sweetpotato (perhaps not B. tabaci, or a divergent lineage)

and Sudan Q-like populations were genetically distinct from all other clusters. Despite the

well-defined structure in this plot, some admixture and migration was detected between the

Western and Eastern African clusters.

Genetic structure was also observed within the New World, with the Jatropha-PR popula-

tion forming a distinct cluster, and a clear differentiation between the Arizona A biotype (e.g.

prototype) and the Riverside A haplotype, with the former being most genetically similar to

the Guatemalan population (Caribbean-Central America), and the second with the popula-

tions from western Mexico.

Moderate structure was observed in the B biotype-closest relatives analysis. The Arizona B

biotype was genetically different from the Egypt, Greece-1 and Cyprus-2006 populations,

which collectively formed a single cluster, with only fractions of individuals’ genotypes sharing

ancestry with Arizona B. The B biotype sister clade relatives from Israel and Panama (exotic

introduction there) were admixed between the Arizona B (prototype) cluster and the B-like

Fig 6. Bayesian clustering analysis results of multilocus genotypes of B. tabaci from different biotypes or geographic groups

performed in STRUCTURE (sub-structure analysis). Individuals are arranged on the x-axis, each represented by a thin vertical line and

partitioned into each of the inferred clusters (K) with their estimated membership fractions on the y-axis. Labels below the plot represent

the sampled populations and above the plot the biotypes or geographic groups. The number of K specified and the loci used in each run

are indicated below each plot.

doi:10.1371/journal.pone.0165105.g006
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cluster consisting of Egypt, Greece, and Cyprus collections. Finally, the population from

Yemen was genetically distinct from all B biotype populations.

The results of the analysis using BAPS identified 28 genetic clusters worldwide, was generally

in agreement with the STRUCTURE results when examined at the biotype/geographic region level

(results not shown). Because in BAPS we included all populations, this analysis also identified as

genetically distinct the samples from Reunion Ms, Reunion Ms-2009, Cyprus-Ork, Moorea-

FP, and Australia, which were excluded from the sub-structure analysis carried out using

STRUCTURE because they were not associated with a larger geographic group.

Genetic differentiation within the two invasive biotypes B and Q based on the FPT estimate

via AMOVA indicated that most of the genetic variance in both biotypes was significantly par-

titioned within populations with less variance among populations (P<0.0001). This was partic-

ularly the case for B biotype where 73% of variance was within populations (FPT = 0.271;

P<0.0001) and for Western Mediterranean Q biotype with 80% of variance partitioned within

populations (FPT = 0.198; P<0.0001) (Table 2).

Discussion

Genetic diversity and population differentiation at the worldwide level

Estimates of genetic diversity, measured as allelic richness and heterozygosity showed variable

patterns for different biotypes. The highest levels of allelic richness and heterozygosity were

found in the populations from Sudan and Burkina Faso, and Yemen (Table 3, Figs 1 and 2)

that are the closest relatives of biotypes Q (Spanish Q) and B (Arizona B) and as has been

found in previous studies based on variation in mtCOI [24, 30]. High levels of heterozygosity

were also observed for the Ms biotype from Reunion Island, which also was shown to be a rela-

tive of B biotype in this study (Fig 4) and elsewhere [24, 30], and as a sister clade of biotypes B

and Q in the mtCOI phylogeny [93, 94]. Overall, results show that populations from eastern

Africa and the Middle East have the highest microsatellite diversity within and among popula-

tions, suggesting that they represent old lineages that gave rise to the extant invasive B and Q

biotypes (at ~16–26%), which group within the major Mediterranean-North African-Middle

East clade [24], thereby, potentially pinpointing to this vicinity the origins and diversification

of the B. tabaci invasive haplotypes that group within the B and Q sister clades.

Levels of allelic richness and heterozygosity in the populations examined may have been

influenced by two additional factors: the effects of inbreeding in samples obtained from lab

colonies, and because microsatellite loci can be more variable in biotypes from which they

were isolated [95, 96]. In addressing the first factor, we observed low diversity in some sam-

ples that originated from sustained lab colonies: in the prototype Arizona biotype A col-

lected from cotton fields in Phoenix, AZ, in a geographically proximal relative, the Riverside

A (from Imperial Valley, CA), and in the possibly monophagous S biotype that was collected

in Spain but also extant in western Sub-Saharan Africa) and maintained in a laboratory cul-

ture. However, field collected A-like populations from the Sonoran Desert habitat of the

northwestern states in Mexico Sonora and Sinaloa (located immediately south of Arizona,

USA from where the Arizona-A and Riverside-A are indigenous) had similar estimates, as

did the Arizona A biotype, maintained as a lab colony since 1981. Similarly and perhaps sur-

prisingly as well, samples from other lab colonies (Arizona-B, Israel-Q-like, and Italy T) had

moderate to high allelic richness and heterozygosity, similar to field haplotype or biotype

populations from the same region. Thus, although laboratory rearing of some populations

may play a role in the estimates obtained herein, it is likely that the demographic histories of

these populations (such as ancestral population bottlenecks) account mostly for the pattern

we observed. For example, the low genetic diversity observed in New World populations
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(lab or field collected) is consistent with data from the mtCOI phylogeny, which shows

strikingly less within-clade divergence (~4–8%) in New World compared to Old World

clades (14–26%) [24, 97]. The species-specific variability of microsatellites that might have

influenced patterns of allelic richness and heterozygosity in the samples analyzed here was

compensated in this study because the loci that were used represented 4 different genetic

groups/biotypes (Asia, Australia, Arizona-B biotype, Spanish-Q biotype), thereby minimiz-

ing this effect in our results and conclusions.

The microsatellite analysis of B. tabaci populations revealed large genetic distances at the

worldwide level, and suggests that this taxon consists of very divergent cryptic lineages that

represent geologically old entities (see Results and Figs 3, 4 and 5). These findings are in line

with previous studies of cryptic species that suggested divergence dating back to millions of

years ago, despite morphological conservatism [10, 14, 15]. The results based on nuclear

microsatellites show that these lineages correspond to described and well-studied “biotypes”

that have been characterized on the basis of allozyme differences, phylogenetic analysis of the

mtCOI gene, and biological/ ecological assays such as host-feeding, virus transmission and

crossing experiments [18–20, 22–24, 30]. Furthermore, other distinct genetic groups identified

in these analyses have a geographic basis, with the exception of ‘known’, recently invasive and

introduced haplotypes, and are in general agreement with the mtCOI phylogeny of the sibsp.

group (see S1 Table for population affiliations with mtCO1 clades). The PCA showed that the

most divergent lineage of those we examined is that consisting of New World populations, fol-

lowed by biotypes B, Q, and the Asian populations, with no evidence for gene flow among

them (Fig 4). Although the results suggest older divergence among these groups compared to

any others, divergence date estimates would require molecular dating analysis of phylogenetic

clades since microsatellites are unsuitable for inferring deep phylogenetic relationships.

Indeed, such a study, recently undertaken using molecular dating of the mtCOI gene for B.

tabaci, estimated that New World and Asian lineages had some of the oldest divergence times

(estimated at 44 MYA), predating the divergence of most other clades/genetic lineages within

the species group, in line with our results [22, 27].

Another indication of the extreme divergence in B. tabaci emerging from our results is that

of the 13 loci we used, seven failed to amplify in samples from some populations. Non-amplifi-

cation of microsatellite loci by PCR is most often caused by poor primer specificity due to

mutations in regions flanking the microsatellite repeat sequence, resulting to what is known as

“null alleles” [98, 99]. Although null alleles can occur at a low frequency at the species level,

this frequency increases with increasing phylogenetic distance at the genus level [61]. This a
priori observation is also in line with conclusions herein, because microsatellite loci that failed

to amplify did so systematically within a biotype or geographic group, consistent with the pre-

sumed genetic relationships among populations, with non-amplifying loci occurring mostly in

individuals of the most divergent lineages (e.g. New World) (Fig 4). Despite the null alleles

identified, the genetic differentiation estimates (FST) using corrected and uncorrected datasets

were very similar. In addition, the NJ trees constructed based on Dc corrected for null alleles

gave the same tree topologies as uncorrected trees, suggesting that null alleles had minimal

impact in the analyses and did not affect the conclusions.

The invasive biotypes (B and Q)

The most well-known biotypes in the B. tabaci sibsp. group currently are the invasive haplo-

types that group in the clusters contained within the main B and Q biotype ‘sister’ clades.

Some B-like haplotypes have expanded their geographic range to a worldwide scale in the past

30 years, while the Q-like invasive types have done so more recently [100–105]. Many other
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biotypes and genetically distinct haplotypes around the world, such as the cassava and sweet-

potato populations found in Africa [85, 106] are pests and plant virus vectors of great local and

regional importance in sub-Saharan Africa. Thus far some of these cassava types have

remained restricted to their presumed endemic locales, while certain of them have become

invasive and are now widely distributed (e.g. since the 1990’) in sub-Saharan Africa where they

transmit a suite of highly damaging begomoviruses to cassava [106].

The factors that have favored the worldwide expansion of the B and Q biotypes per se have

yet to be determined; but the most likely explanation is that the direction of global trade of

infested plant products has facilitated these invasions into locations having both a similar cli-

mate and susceptible plant host species. From this and previous studies [18, 19, 30], it does not

seem that other non-B-like or non-Q-like populations have expanded their range worldwide

and become invasive, or at least to a similarly detectable magnitude. It is likely therefore that

certain inherent characteristics of B- and Q-like haplotypes (notable in the prototype biotypes)

have also contributed to successful invasions and displacements of local biotypes, for example,

the A biotype was rapidly displaced by the B in the US and in other locales in the American

Tropics within a very short timeframe [18, 89]. Further, the AZ-A, AZ-B, and Q1 biotypes are

known to exhibit differential resistance to certain insecticides [91, 107–110]. The widespread

invasion of B and Q biotypes into new areas [100, 101] where local biotypes are still susceptible

to certain types of insecticides could readily provide the invaders a competitive advantage and

with time their populations built up, driving local biotypes to extinction if they cannot inter-

breed (compatibly) with them.

Here, results indicated that the invasive biotypes B and Q did not have lower genetic diver-

sity when compared to that of all other biotypes (Figs 1 and 2), which would be an expected

pattern in invasive populations under bottlenecks from multiple founder effects, and direc-

tional selection, for example, from intensive agriculture (e.g. insecticide applications). In fact,

estimates of allelic richness and heterozygosity were high in most populations of biotypes B

and Q, indicating high levels of genetic diversity [50, 51]. Additionally, despite the relatively

low structure observed in the clades containing the B biotype (and relatives), and the Western

Mediterranean Spanish Q and Q-like relatives (Figs 3 and 6), we found substantial variation

among individuals, especially within (Western) Q relatives, with all multilocus genotypes

being unique and most of the variance partitioned among individuals. The moderate diversity

in the invasive B biotype indicates a large effective population size and an ancestral lineage,

and suggests that the presence of ancestral variation has likely resisted the homogenizing

effects of human-mediated gene flow among populations. The fact that B biotype and Western

Mediterranean Q1 and Q-like relatives showed less structure and more percentage of variance

partitioned among individuals rather than among populations suggests extended gene flow

and substantial differentiation at the population level, likely maintained by continuous inva-

sion events across countries and regions. This is the opposite of what we observed, for exam-

ple, in the non-agriculturally important, monophagous Jatropha-PR biotype where almost all

individuals had identical genotypes and no differentiation (Fig 3), possibly a result of its host-

specialization on the genus, Jatropha and closely related euphorbiaceous species in the Carib-

bean Islands. So, despite the genetic bottlenecks induced by founder effects in these invasive

biotypes, genetic diversity remains high, possibly either due to persistent ancestral variation or

due to continuous and repeated migrations from multiple diverse source populations from dif-

ferent regions, or both. This latter phenomenon has been observed in other organisms [111,

112], and so in the case of B. tabaci it would be facilitated by human-mediated transport on

whitefly-infested plants around the world, from multiple source populations originating in rel-

atively close proximity to one another, the upper northwestern portion of Africa and the Mid-

dle East-Arabian Peninsula.
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Several important patterns of population differentiation were evident within invasive types

of B and Q. Within the Q biotype there exists a large split in the Western and Eastern Mediter-

ranean lineages that correspond to what are known as the Spanish-Q (Western) and the Israel-

Q (Eastern) [24, 113, 114] or Q1 and Q2 subclades based on mtCOI haplotypes [46, 50, 51, 84,

92]. While they are both placed in the so-named Q clade (using the Spanish Q as the proto-

type), they clearly represent distinct and divergent lineages with little gene flow between them,

a puzzling result, despite their occurrence in a zone where the Mediterranean Sea connects

Spain and nearby islands, with the Middle East. Furthermore, there seems to be high genetic

structure with limited gene flow within the Eastern Mediterranean-Q populations, but sub-

stantial gene flow among most of the populations examined from the Western Mediterranean

Q-clade, with most of the genetic variance partitioned among individuals rather than among

populations. High levels of differentiation within Western Q1 populations were also reported

in a study that examined samples from a large number of populations across the Mediterra-

nean [50]. The same study also found that the two Q lineages coexist in Spain and France

either separately or in sympatry with evidence for asymmetric gene flow between them. Inter-

estingly, the two Q biotype lineages also seem to differ in endosymbiont composition [38, 50–

52, 115]. It will be interesting to determine which of the two Q-like lineages has more potential

for invasiveness outside their native Mediterranean range. In this study an invasive Q haplo-

type that invaded China grouped within the Q1 western lineage. In Italy a study showed that

the Q2 mitochondrial type (Eastern Med) has invaded, possibly favored by the agroecological

conditions of southern Italy, by the female-biased sex ratio or perhaps by endosymbionts act-

ing as sex-ratio manipulators [115]. Results from another study suggested that at least the US

invasion of the Q biotype stemmed from both the Western Q1 and the Eastern Q2 lineages

[54], a result that can be supported based on knowledge of routes of ornamental and perhaps

other kinds of traded plants that are hosts of B. tabaci. Interestingly, an invasive Q1 population

reported in China has displaced the previously invasive B biotype in at least certain locations,

particularly in certain vegetable crops [92]. To what extent the two lineages have biological

and ecological differences remains to be further studied [116]; they originate from proximal

geographies and apparently both possess high inherent, differential, resistance to presently

used insecticides in agricultural production [50, 113, 117], and which could logically have been

a driving force behind their establishment outside their indigenous zones that contain highly

managed agricultural systems.

Within the B biotype/haplotype collections examined there was high gene flow among pop-

ulations except for Arizona B, which, perhaps surprisingly, was well differentiated from the

others. The Arizona B (prototype B) originated from poinsettia plants that were subsequently

reared as a lab colony in Arizona (JK Brown laboratory) when it was first recognized as an

invasive B. tabaci in the US during 1987–88, based on a unique, homogeneous esterase pattern.

This was followed by a number of apparently parallel introductions on ornamental plants and

by its rapid spread throughout the Americas during the 1990’s-onward (colonizing poinsettia

plants), and subsequently to Japan [100], China (see references in [92]) and elsewhere. It was

the reference population for the esterase-based characterization of the local Arizona (prototype

A) and exotic B populations along with the Arizona prototype B from poinsettia [90], and a

number of additional geographical variants (C through T) [89]. The differentiation observed

for subsequent invasive B haplotype populations may simply be due to temporal changes in

allele frequencies since 1990; however we did not see much differentiation in populations from

Egypt and Cyprus, which were sampled with a gap of five years. The founding effect in the Ari-

zona B prototype colony (from imported poinsettia plants) may be associated with this differ-

entiation, because by laboratory-based isolation only a subset of the introduced population

was selected and bred by serial transfer over multiple generations. The shared ancestry of
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Arizona B with the population from Israel suggests that the B biotype introductions in the

USA may have originated from this area of the Mediterranean owing to trade; indeed the ester-

ase pattern is identical to that reported for an indigenous Israeli population by Wool et al.

[118], a location among others where the use of new synthetic pyrethroids had been recently

instituted, as was also the case in the US.

The exact origins of the invasive B-like and Q-like biotypes have yet to be determined, but

it has been suggested that the so-called Spanish Q biotype originates in southern Spain and has

relatives in Northwest Africa and elsewhere in the Mediterranean and Middle East, while the B

biotype diversified in the eastern African Sahel-Middle East (see references and data in [24]).

Consistent with these hypotheses are our findings of genetic similarities of biotype Q with

North and West African populations and of biotype B with the Yemeni population. Under-

standing the origins of these biotypes and timing of divergence from their closest relatives are

critical for identifying attributes that facilitated their invasiveness and their high pest status.

Other notable biotypes

The B. tabaci sibsp. group represents an excellent system for studies of cryptic speciation

where evolution has favored a wide array of genetically, ecologically, and biologically diverse

lineages around the world. One application is in understanding differences between invasive

and non-invasive biotypes, and how these have shaped their evolution and adaptation.

The T biotype was first identified in Italy in 2003 colonizing only Euphorbia characias in a

high altitude area [87, 88, 119]. The population examined here from Puglia, Italy of this bio-

type appears to be a distinct B. tabaci lineage, but is clearly genetically related to the Asian pop-

ulations, which agrees with existing literature based on mtCOI [19, 22, 24, 120]. The T biotype

likely represents an ancestral introduction of populations into the Mediterranean from Asia,

or remnant populations of a wider historical distribution of Asian lineages whose range later

contracted. An extensive sampling of high altitude areas in the Mediterranean, away from agri-

cultural areas and greenhouse establishments where biotypes B and Q are likely to be found

could provide more information to test these hypotheses. Indeed in one of our sampling efforts

in the island of Cyprus in 2008, we found 2 individuals in a mountainous area far from agricul-

tural fields, which in our microsatellite tree formed a clade sister to the Asian clade that

includes the T biotype. Haplotypes of this new variant, which we call Cyp were also shown to

form a clade sister to T biotype in a mtCOI phylogeny, with ~8% sequence divergence between

the two (authors, preliminary data). Further collecting in such areas to obtain individuals for

biological and ecological assays would determine whether the population we sampled these

whiteflies from represents a distinct biotype, relative to the Asian populations, like the T bio-

type. Another study [121] found another genetic variant in Southern Italy collected from

Rubus ulmifolius and grapevine, referred to as Ru, whose haplotypes formed a sister clade to

the Asian and Australian groups, and the clade consisting of T biotype with which they shared

10.7% pairwise genetic distance. Clearly the T biotype and its relative genetic variants in the

Mediterranean make a very interesting case that should be further explored. With appropriate

genetic analysis of these and other historical samples it would be possible to date their diver-

gence from other close relatives and to determine whether they represent introductions or

remnants of ancestral widespread distribution in the Mediterranean region.

The S biotype, which was first described from the weed Ipomoea indica in Spain in 1995

[86, 122] is most likely a relative of African origin since similar populations are extant there

(JK Brown, unpublished results) and so it has probably been previously introduced into Spain

but did not become widespread in the region [85, 123]. The microsatellite analysis here showed

that this population forms a clade nested within the Sub-Saharan East African clade which
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includes Mozambique and cassava-associated populations from Uganda, and South Africa,

consistent with previous studies based on mtCOI [93, 120], ITS I sequences [124] as well as

AFLP analysis [123]. Genetic diversity estimates indicated that this population had lower allelic

richness compared to other African populations, which suggests that a subset of the source

population was introduced and survived in the sampled area, likely undergoing a genetic bot-

tleneck. Although this biotype had only been previously reported in Spain outside its African

native range, a recent study also reported its presence in Southern France [125]. In that study,

it was shown that microsatellite genotypes from individuals originating from a French Q bio-

type (Western Mediterranean) sample were not clearly assigned to the biotype S population,

but seemed to have admixed ancestry between the Q and S biotypes. This suggests sex-biased

admixture, with females from the S biotype retaining their maternal mtDNA but exchanging

genes with males from the Q biotype. A parallel result, albeit, less well characterized, has been

reported for two populations in Uganda that colonize cassava, although one is thought to per-

haps be polyphagous, and the other monophagous on cassava, possibly making it less fit [106].

Although speculative, perhaps this admixture (hybridization) was induced by the maternally

inherited Wolbachia or Cardinium endosymbionts, known to at times drive uni-directional

gene flow between infected and uninfected populations [126–130]. The S biotype collections

analyzed so far suggest that this haplotype occurs in small populations in the Western Mediter-

ranean, and in some cases in co-existence with the Q biotype. In Africa, the S biotype also

occurs intermixed with haplotypes associated with cassava and vegetable growing regions,

though it is not clear whether there it is monophagous (or nearly so). This is because it has

been found only in small numbers and on varying host species, but whether those species are

reproductive and/or feeding hosts is not known. A question that arises is why has this or many

other biotypes not become invasive after their introduction in their area or other very different

locales, as has the biotype B? Possibly, the competition with biotype Q and/or lower levels of

insecticide resistance and/or host-adaptation do not allow these populations to built-up and

expand. It is also possible that like its cassava-restricted relatives in Africa [124], biotype S can-

not easily adapt to other hosts and become an invasive pest in the region. The distribution of

the S biotype in the Mediterranean and its ecological and genetic interactions with the other

prevalent biotypes in the area makes a very interesting case to be studied extensively in the

future.

Whitefly population structure inferred using nuclear microsatellites

compared to a mitochondrial DNA marker

In comparing patterns of population structure and history inferred from microsatellite and

mitochondrial DNA some general patterns have emerged. Overall, there was agreement in the

major lineages/clades/biotypes identified from our microsatellite analysis with those obtained

from mitochondrial DNA sequences in several studies [19, 20] and from our data herein (S1

Table, Fig 3). With some exceptions, discussed below, the relationships between populations

in different continents (e.g., Americas, Asia), as well as host-associated structure (e.g. African

cassava–associated populations; the Jatropha-PR biotype (probably once distributed through-

out in Caribbean Basin, pre-B biotype invasion) corroborates the herein envisaged worldwide

structure of B. tabaci populations.

Some discrepancies were observed however that suggest the cautious use of mitochondrial

DNA as a single marker for delineating species boundaries, and further in describing new spe-

cies in this group, despite the methodological efficiencies involved [20, 26, 49], because a single

marker will not usually provide an accurate picture of population histories. For example, in

our microsatellite analysis we found that the population from France we examined clearly
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clusters with the Western Mediterranean Q biotype (Spain Q), with evidence of gene flow with

the Spanish Q-Western Mediterranean population. When the mtDNA of these populations

was examined, however, the French population had the Eastern Mediterranean mitochondrial

haplotype (the same as Cyprus, Turkey, Israel) [54]. This implies female-biased admixture,

between Eastern Mediterranean females and Western Mediterranean males with offspring

retaining their maternal mtDNA, but with gene flow evident in their nuclear DNA. While it is

possible that the mtDNA of Eastern Mediterranean has a competitive advantage over the

Western Mediterranean, the first hypothesis sounds more plausible, as it could be explained

with the involvement of Wolbachia or Cardinium infections. Therefore, a mtDNA phylogeny

would have erroneously assigned the French population to the Eastern Mediterranean Q sub-

clade, ignoring the background nuclear gene flow and provide a misleading picture of the spe-

cies and more recent population histories.

Similar patterns, with conflicting assignments of populations to the Eastern and Western

Mediterranean Q subclades between the microsatellite and mitochondrial DNA were observed

in other populations we examined (Q biotype-Greece and S biotype–Spain) indicating that

this was not an isolated case [54]. In fact, similar findings were also interestingly reported by

another study [50], which showed that the Western Q1 and Eastern Q2 mitochondrial haplo-

types were associated with different nuclear backgrounds, with evidence for admixed nuclear

patterns in samples from France. The high prevalence of Wolbachia, Cardinium, Rickettsia and

other endosymbiont infections in B. tabaci [38, 50, 52, 126, 131–133] suggests that impacts of

symbionts are common phenomenon in this insect. Furthermore, the influence of endosymbi-

onts might be even more profound if populations are infected with different bacterial strains

or species, as was found by a number of studies in populations of the Western Q1 and Eastern

Q2 across the Mediterranean [50, 51, 115]. Several lines of evidence suggest that maternally

inherited endosymbionts can have huge effects on mtDNA evolution, by either decreasing

inter-population genetic diversity (with a symbiont-induced, selective sweep and mtDNA

hitchhiking along) or by increasing diversity following fixation of different symbiont strains in

different populations (which would show high haplotype differentiation, despite ongoing

nuclear gene flow which would remain unchanged) [34].

The possible effects of endosymbiont composition in the evolution of the mtDNA lineages

in B. tabaci are discussed in Gueguen et al [38], who suggest that disentangling the associations

between mtDNA evolution and endosymbiont community would require a comparison

between the molecular evolution of mitochondrial markers and that of suitable nuclear mark-

ers. Moreover, the authors stress out that the close association between mitochondrial diversity

and endosymbiont community may render mtDNA markers unsuitable for biotype identifica-

tion and phylogeny and should be taken into account when attempting to define biotype or

species boundaries [38]. Furthermore, other properties of the mtDNA, such as the reduced

effective population size of the marker and introgression, maternal inheritance, recombina-

tion, inconsistent and complex rates of mutation, its location in a metabolically active, highly

oxidative environment, and heteroplasmy [33, 35] may have very strong effects in the organ-

isms’ evolutionary history, which may confound the interpretation and reconstruction of its

phylogeny.

Another case of conflict between nuclear-mitochondrial data is in the genetic relationships

among biotypes. For example, in this study the Ms biotype is more closely related to the B bio-

type-like subclade, including its relative from Yemen, based on the observation that the two

biotypes shared more multilocus genotypes compared to either of the two with the Q biotype.

This result is in agreement with that obtained for the nuclear ITS1 gene phylogeny [38] in

which the two biotypes shared 100% nt sequence identity for this nuclear marker. However, in

the latter study the mtCOI phylogeny showed that the Ms biotype was more closely related to
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Q than to the B biotype, which conflicts other published mtCOI phylogenies showing that B

and Q biotypes are sister clades, while Ms is an outgroup [20, 42]. These discrepancies can

only be resolved with further analysis of multiple markers from different parts of the genome

combined with other data, but they certainly indicate the degree of uncertainty and error we

encounter by relying to a single gene phylogeny for delineating relationships within this

group.

The results of this study demonstrate that despite their cryptic nature, B. tabaci entities

(biotypes or haplotypes) represent a collection of very old lineages, perhaps isolated from each

other for millions of years as has been suggested for other cryptic taxa. The analysis using

nuclear microsatellite markers from populations worldwide confirms extreme levels of genetic

differentiation in the nuclear genome. Although the pattern of genetic/geographic structure is

generally consistent to that obtained from the mtCOI phylogeny, some examples were identi-

fied in which there is a strong conflict between the two markers. In this light caution should be

taken when using mtDNA as a single marker for phylogenetic reconstruction and species char-

acterization for B. tabaci. Analysis of multiple genetic markers from different parts of the

genome are likely better able to aid in corroborating biological (phenotypic) differences in

populations, provide information about the relative time of divergence among biotypes, and

identify loci under selection. Thus, a multifaceted approach that incorporates biological, eco-

logical, and behavioral studies, crossing experiments, and better knowledge of the role of endo-

symbiont contributions to the obstruction of gene flow, together with genetic information is

needed to understand and determine species boundaries in this complex sibling species group.

Supporting Information

S1 Fig. Plot showing the number of genetic clusters K against the ΔK estimator derived

from STRUCTURE HARVESTER using the Evanno et al method.

(TIF)

S2 Fig. Plot showing the number of likely genetic clusters (K) against the estimated Ln

probability of data.

(TIF)

S3 Fig. Bayesian clustering analysis results of worldwide multilocus genotypes of B. tabaci
performed in STRUCTURE showing clustering results at K = 8.

(TIF)

S4 Fig. Bayesian clustering analysis results of worldwide multilocus genotypes of B. tabaci
performed in STRUCTURE showing clustering results at K = 10.

(TIF)

S5 Fig. Bayesian clustering analysis results of worldwide multilocus genotypes of B. tabaci
performed in STRUCTURE showing clustering results at K = 11.

(TIF)

S6 Fig. Bayesian clustering analysis results of multilocus genotypes of B. tabaci biotype Q

populations (Eastern and Western Mediterranean) performed in STRUCTURE.

(TIF)

S1 Table. Whitefly collections used in this study with collection and population/affiliated

biotype information. aSamples with the same number were collected from neighboring loca-

tions and were pooled together for analysis after exact tests of population differentiation

showed non-significant differentiation. bPopulation names refer to the geographic sampling
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location and were given a biotype alphabetic code (e.g. A, B) if they originated from a reference

collection previously characterized. cGenBank accession number for mtCOI sequence of one

individual from each of the populations sampled in this study. dNumber of adult females geno-

typed. � Populations that were excluded from the PCA analysis.

(XLSX)

S2 Table. Locus specific statistics across populations. aNumber of alleles. b,cMean expected

(HE) and observed (HO) heterozygosities (averaged across populations) (±SE). dInbreeding

coefficient within individuals relative to the population (FIS). eNumber of populations that

deviated from HWE in each locus out of a total of 41 populations

(XLSX)

S3 Table. Population specific statistics for each of the 13 loci genotyped. aSamples collected

from neighboring locations, which showed non-significant differentiation (exact tests of popu-

lation differentiation) were pooled together, as shown in S1 Table. bNumber of different alleles

over loci. c,dExpected (HE) and observed (HO) heterozygosities over loci. eMean fixation index

(F) over loci (±SE). fEstimate of null allele frequency using the EM algorithm as described in

Materials and Methods.

(XLSX)
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