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Abstract

Evaluating the association between diseases and the longitudinal pattern of pharmacological 

therapy has become increasingly important. However, in many longitudinal studies, self-reported 

medication usage data collected at patients’ follow up visits could be missing for various reasons. 

These pieces of missing or inaccurate/untenable information complicate determining the trajectory 

of medication use and its complete effects for patients. Although longitudinal models can deal 

with specific types of missing data, inappropriate handling of this issue can lead to a biased 

estimation of regression parameters especially when missing data mechanisms are complex and 

depend upon multiple sources of variation. We propose a latent class based multiple imputation 

(MI) approach using a Bayesian quantile regression (BQR) that incorporates cluster of unobserved 

heterogeneity for medication usage data with intermittent missing values. Findings from our 

simulation study indicate that the proposed method performs better than traditional MI methods 

under certain scenarios of data distribution. We also demonstrate applications of the proposed 

method to data from the Prospective Study of Outcomes in Ankylosing Spondylitis (AS) (PSOAS) 

cohort when assessing an association between longitudinal nonsteroidal anti-inflammatory drugs 

MinJae.Lee@uth.tmc.edu. 

HHS Public Access
Author manuscript
J Biopharm Stat. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
J Biopharm Stat. 2020 ; 30(1): 160–177. doi:10.1080/10543406.2019.1684306.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(NSAIDs) usage and radiographic damage in AS, while the longitudinal NSAID index data are 

intermittently missing.

Keywords

Multiple Imputation; Intermittent Missing; Bayesian Quantile Regression; Latent Class; 
Asymmetric Laplace Distribution; Prospective Study of Outcomes in Ankylosing Spondylitis 
(PSOAS)

1 Introduction

Longitudinal cohort studies provide an opportunity for assessing the effect of 

pharmacological therapy on diseases. For example, nonsteroidal anti-inflammatory drugs 

(NSAIDs) are commonly used to manage inflammation and chronic pain in patients with 

ankylosing spondylitis (AS) [1]. For effect optimization, patients may need to take higher 

doses; this may carry a greater risk for side effects, most notably gastrointestinal and 

cardiovascular adverse events [2]. Therefore, it is important to explore how the level of use 

varies over time among patients, and assess its association with disease severity or 

progression. However, most commonly used measurement tools for medication usage rely 

on participant self-report and these self-reported medication usage data collected at patients’ 

follow up visits could be missing for various reasons. Besides missed/skipped study visits, 

limited ability to self-report can also lead to missing or inaccurate/untenable information, 

which complicates determining the trajectory of medication use and its complete effects for 

patients. Due to these types of gaps and biases in participant reporting, statistical modeling 

to assess these measurements is challenging. These issues become even more critical in the 

assessment of change, since they may mask the longitudinal signal. In the Prospective Study 

of Outcomes in Ankylosing Spondylitis (PSOAS) [3, 4], which motivated our study, 69.3% 

of patients had missing NSAIDs intake data (NSAID index) for at least one time point 

among their follow up visits. An intermittent missing data pattern (i.e., a missing value was 

followed by an observed value) [5] was found for the majority of study patients in PSOAS 

cohort.

Compared to naive or ad-hoc methods for handling missing data including single imputation 

approaches that may introduce substantial bias or invalid study conclusion, it has been 

shown that model-based imputation techniques such as multiple imputation (MI) methods 

[6] provide more valid statistical inference [7, 8]. MI approaches have been widely used in 

medical research to better understand treatment effects in clinical trials [9, 10]. However, 

many of these were likelihood-based methods that focus on estimation of means assuming 

normality of the data distribution, which might be invalid for the non-normal data. In many 

observational studies, medication usage data based on dose and frequency, are usually not 

normally distributed. For the variables arising from this type of data source, applying 

transformation may not be a perfect solution to deal with complex data distributions. 

Specifically, NSAID usage data in PSOAS cohort contain a large number of zeros, and also 

transformation is not a solution to make data normal. Quantile regression models [11] have 

been used in longitudinal analyses as an important alternative to mean-based regression 
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models because of their flexibility for modeling non-normal data and heterogeneous 

conditional distributions. Its implementation for MI have been introduced by Wei et al. [12] 

for handling missing covariates in quantile regression for independent samples and Liu et al. 
[13] proposed a quantile regression in the presence of monotone missingness with sensitivity 

analysis. Bayesian methods can be easily adapted to treat missing data as additional 

unknown quantities for which a posterior distribution is estimated. A transition of the 

Bayesian approach to quantile regression can be implemented through modeling the error 

distribution using asymmetric Laplace distribution (ALD). Various estimation approaches of 

Bayesian quantile regression (BQR) have been developed [14, 15, 16] and extended to deal 

with missing data [17, 18]. To assess the effectiveness of medications on disease over time, 

it would be important to characterize its longitudinal pattern that could vary across 

individuals. This may lead to further investigation to identify groups of patients with similar 

medication usage patterns over time. The findings from this work can also be effectively 

used when we impute the intermittent missing data over follow up time points. For example, 

there could be an attempt to impute missing pieces of medication usage data for those with a 

persistent longitudinal medication usage, i.e., patients who reported no medication for all 

visits, or had consistently high (or low) level of medication intake over time. However, it 

would not be easy to impute missing values for patients who frequently changed their level 

of medication intake over time, unless we incorporate the longitudinal trajectory of data into 

imputation modeling. Group-based trajectory modeling has been developed to identify 

clusters of individuals using their longitudinal patterns, which also allows irregular spacing 

of measurements and missing data [19, 20, 21]. Assuming a heterogeneous population, 

latent class models can be also considered; a Bayesian two-part model has been recently 

introduced to analyze longitudinal medical expenditure data [22]. The latent class based 

multiple imputation approaches have been developed for missing categorical data [23, 24], 

and specifically those in large-scale assessment surveys [25, 26]. Two-stage multiple 

imputation [27], which accounts for qualitatively different types of missing categorical data 

(e.g. refusal vs. don’t know) has been also proposed. However, these were mainly for 

categorical data in a cross-sectional analysis. To our knowledge there are no published 

studies that have developed an imputation approach which specifically accommodates 

missing data under the joint latent class BQR modeling for multi-level (or longitudinal) 

designs. The development of a statistical approach to handle missing data while 

simultaneously controlling for unobserved heterogeneity, which also helps identify the 

cluster of longitudinal trajectories, is necessitated, especially for the longitudinal studies that 

involve effects of self-reported drug treatment on disease severity/progression. We adopt the 

idea of latent class framework to establish appropriate implementation of imputation 

techniques, through BQR model under a mixed effects structure, which helps avoid 

distributional assumptions and misspecification of error distributions.

In this paper, the objective is to propose a specific multiple imputation strategy for 

intermittent missing data, that incorporates latent class into BQR model, such that we can 

provide a better understanding of data associations, in a situation where we are interested in 

identifying different longitudinal data patterns over time, that may lead to different risks of 

disease outcomes. The focus here is to assess, through simulation studies, the performance 

of our proposed approach by comparing to other imputation methods and illustrate its 
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application to real life data from PSOAS, to achieve realistic situations while specifically 

evaluating the longitudinal association between NSAIDs intake and radiographic damage, 

assessed by modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) [28].

2 Statistical Approach

2.1 Linear Quantile Regression Model

Let zi j*  be the measurement for the i-th subject at time j. Suppose we define a linear 

regression model zi j* = xi j
T β + ϵi j, i = 1,⋯,n;   j = 1,⋯,ni, where xij is a p × 1 vector of 

covariates that can include the time of measurement, β is an unknown p × 1 vector of 

regression parameters, and the random errors ϵij are correlated within the subject to reflect 

the serial correlations of repeated measurements within each individual. If the τ-th 

conditional quantile of ϵij given xij is assumed to be zero, a quantile regression model related 

to the τ-th quantile of variable, qτ(zi j*), conditional on xij, has the form 

qτ(zi j*) = xi j
T βτ, 0 < τ < 1, where βτ is a vector of quantile-specific regression parameters 

corresponding to the coefficient β in the linear regression model above. We can define the 

objective function for longitudinal data zi j*  as

Qn(βτ) = 1
n ∑

i = 1

n
∑
j = 1

ni
ρτ(zi j* − xi j

T βτ). (1)

The loss function ρτ(u) = u{τ − I(u ≤ 0)}, with I(⋅) being an indicator function, represents 

the contribution of residuals.

2.2 Longitudinal Mixed effect Model based on Bayesian Quantile Regression

Bayesian inference depends on prior and likelihood function. A transition of a Bayesian 

approach to quantile regression was implemented by modeling the error distribution using 

asymmetric Laplace distribution (ALD). ALD has good performance on data generated from 

various error distributions [29, 30] and theoretic justification. Since ALD can be defined as a 

mixture of normals based on the results of Laplace distribution with τ [31, 32] and it 

includes the common loss function that is used for quantile regression in its kernel, we can 

use it for Bayesian estimation in quantile regression models. The mean of the ALD can be 

determined as a linear function of mixed effect components that allows us to model 

longitudinal (or multilevel) data with multiple sources of variation. In this study, we propose 

the method based on ALD distribution for Bayesian modeling that utilizes Markov Chain 

Monte Carlo (MCMC) computational techniques. Assuming a random variable z* has an 

asymmetric Laplace distribution, denoted ALD(μ, σ, τ), we define a probability density 

function:

f (z* | μ,σ,τ) = τ(1 − τ)
σ exp −ρτ

z* − μ
σ ,
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where μ is the location parameter, σ is the scale parameter and 0 < τ < 1 is the skewness 

parameter. A loss function ρτ assigns weights τ and 1 − τ to observation less and greater 

than μ, respectively, i.e., P(z* ≤ μ) = τ, regardless of the scale parameter σ.

ALD can be also represented as a scale mixture of normal distribution, i.e., 

zi j* = μi j + κ1ei j + ζi j κ2σei j, where ζij ~ N(0,1), eij > 0 is following an exponential 

distribution with mean σ (i.e. eij ~ EXP(σ)), ζij and eij are independent. Scalars κ1 = 1 − 2τ
τ(1 − τ)

and κ2 = 2
τ(1 − τ)  are dependent on τ. Based on this mixture, we define a linear mixed effect 

model that can be expressed as a linear function of the set of variables, xij and vij for fixed 

and random component, respectively:

zi j* = xi j
T β + vi j

Tγi + κ1ei j + ζi j κ2σei j, (2)

where β is a vector for fixed effect variables, a random effect parameter for subject i, γi is 

following q-dimensional multivariate normal (MVN) distribution, γi|Ci ~ MVNq(0, Σ). For 

example, Σ is a 2x2 matrix for the random intercept-slope model (q=2). β, γi, and eij are 

mutually independent each other. Then, a likelihood for zi j* , following ALD distribution, can 

be expressed as

L(β,σ | zi j* ,τ) = τ(1 − τ)
σN exp − ∑

i = 1

n
∑

j = 1

ni
ρτ

zi j* − xi j
T β − vi j

T γi − κ1ei j
σ .

Considering σ as a nuisance parameter, the maximization of the likelihood above is 

equivalent to the minimization of the objective function 

Qn(β) = 1
n ∑i = 1

n ∑ j = 1
ni ρτ zi j* − xi j

T β − vi j
T γi . At any value of τ in (0,1), we can also define a 

normal distribution for zi j*  as follows:

zi j* |ei j N(xi j
T β + vi j

T γi + κ1ei j,κ2σei j),

where β is a τ-specific parameter of fixed effect variables. A linear mixed effect model (2) 

then leads the probability density function at τ determined as

f (zi j* | β,γi,ei j,σ) = 1
2πκ2σei j

exp
(zi j* − xi j

T β − vi j
T γi − κ1ei j)

2

−2κ2σei j
.

A conditional distribution of zi j*  can be defined as follows:
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∏
i = 1

n
∏
j = 1

ni
f zi j* | β, γi, ei j, σ = 2πκ2σ −N /2 ∏

i = 1

n
∏
j = 1

ni
ei j

−1/2

× exp −1
2πκ2σ ∑

i = 1

n
∑

j = 1

ni zi j* − xi j
T β − vi j

T γi − κ1ei j
2

ei j
.

For the situation where a variable zi j*  ranges between 0 and 1 (e.g. NSAID index data in 

PSOAS cohort), we can assume that the variable zi j*  (0 < zi j* < 1) has a logit-normal 

distribution and apply a normal approximation on the logit scale.

2.3 Bayesian Quantile Regression with Latent Class

A model (2) can be extended to allow for the latent classes by introducing a latent 

categorical variable, Ci that takes the values k (k = 1, ⋯, K), when patient i belongs to class 

k. Given f (zi j* |Ci = k,γi) = N(zi j*; μi jk + κ1ei j,κ2σkei j), where μi jk = xi j
T βk + vi j

T γi, a model with a 

latent class can be expressed as:

zi j* = xi j
T βk + vi j

Tγi + κ1ei j + ζi j κ2σkei j, (3)

where parameter βk is for fixed effect variables specific to class k, and γi|Ci is a random 

effect parameter for subject i, following MVNq(0, Σk) with a class k-specific parameter Σk.

For latent class modeling, we define a class indicator Ci which has a categorical distribution 

(Cat) taking the value k with probability πik. When latent class models are used to assess the 

pattern of outcome measures, often latent class models are conducted without covariates, or 

relationships between class membership it covariates is assessed separately after class 

membership was estimated. However, this could make a latent class model misspecified. 

Covariates that influence, in theory, the latent class membership can be included in the 

model since the latent class models with covariates may allow us to classify an individual in 

one of the latent classes, on the basis of some individual characteristics. Use of covariates in 

latent class models can also help understand how different levels on the covariates predict 

subgroup membership [33, 34].

A probability πik can be determined through generalized logit model as follows with s-

dimensional covariate vector, wi, which can include variables that affect the probability of 

belonging to a given class:

Ci Cat(πi1,πi2,⋯,πiK), πik =
exp(wi

Tδk)
exp(∑h = 1

K wi
Tδh)

, (4)

where Ci is an integer variable ranging from 1 to K and δh (h=1, ⋯, K; δ1=0 for 

identifiability) is a vector of regression parameters for a covariate vector wi. We assume that 
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the number of classes, K is known. Bayesian model-selection strategies such as deviance 

information criterion (DIC) [35] can be used for determining the optimal value of K.

2.4 Multiple Imputation Process: MCMC Algorithm for Bayesian Quantile Regression with 
Latent Class

Given the fact that inferential machinery which is available for Bayesian parameter 

estimation extends to models with missing data, we can specify an appropriate joint model 

for the observed and missing data to model parameters in a usual way through MCMC 

integration. We use Gibbs sampling algorithm for estimations and imputations based on 

Bayesian quantile regression models. Further details regarding the rationale for the posterior 

inference in Bayesian quantile regression with asymptotic Laplace distribution was 

discussed by Kozumi et al. [36], and Gibbs sampling methods for BQR were introduced by 

Yang et al. [37]. The imputation through Gibbs sampling methodology requires the 

generation of a Markov chain from the posterior density. Under the Bayesian framework, we 

can derive the posterior distribution of the parameter through the prior distribution of 

parameters. Informative prior distributions of conjugate form can be assumed for the 

parameters. Specifically, we assume the prior conditional distribution of βk as MVN(b0, B0) 

= MVN(0, Ip×p) and the prior distribution of gi|Ci as MVN(0,Σk) = MVN(0,ϕk
2Iq × q), where 

ϕk
2 IG ν0, ω0 = IG 10, 0.1  (IG: inverse Gaussian distribution). In the prior distributions, these 

hyperparameters βk, γi, B0, Σk are initially assumed to be known constant vectors and 

matrices. The prior distributions for other parameters are determined as: σk ~ IG(c0, d0) = 

IG(1, 1), eij|Ci ~ EXP(1/σk) and δk MVN(0,9
4 Is × s). Based on this prior specification, zij is 

simulated from the Bayesian predictive distribution. Gelman [38] indicated that reasonable 

choices of prior distributions will have minor effects on posterior inferences with well-

identified parameters and large sample sizes, but it is important to study the sensitivity of 

posterior inferences. To check the dependence on prior distributions we conducted a 

sensitivity analysis by comparing posterior inferences under different choices of prior 

distribution (e.g. informative prior distributions), and we found that posterior inferences 

were not sensitive to the choice of priors.

Our goal is to impute the missing values by taking independent draws from the distribution 

f(zij|δk, Ci, βk, σk, ϕk, γi, eij). Quantile regression in Gibbs sampling is fitted separately, at 

each quantile level, based on a grid of ln quantile levels (e.g. ln =9), 0 < u1 < ⋯ < uln
< 1. We 

also checked the sensitivity due to the choices of ln and confirmed that the results of 

imputations were not dependent on the way the grid of ln levels was defined. We carry the 

Gibbs sampling for a quantile level u ∈ (ul, ul+1) as follows:

Step (1) Initialize the parameters θ 0 = δk
0 , Ci

0 , βk
0 , σk

0 , ϕk
0 , γi

0 , ei j
0  from the 

model with missing data.

Step (2) Imputation Step (update imputed values): Given θ(r) at the r-th iteration, 

sample zi j
(r) from N(xi j

T βk
(r) + vi j

T γi
(r) + κ1ei j

(r),κ2σ(r)ei j
(r)) for the missing 
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observations. βk is u-th quantile-specific parameter estimator for class k, 

κ1 = 1 − 2u
u(1 − u)  and κ2 = 2

u(1 − u) .

Step (3) Posterior Step (update parameter estimates): Given the complete sample 

data zi j
(r + 1), simulate the posterior parameter estimates θ(r+1). These new 

estimates are then used in the next imputation step. Sampling steps are as 

follows:

a. sample δk
(r + 1) f (δk | zi j

(r + 1),Ci
(r),βk

(r),σk
(r),ϕk

(r),γi
(r),ei j

(r))

b. sample Ci
(r + 1) f (Ci | zi j

(r + 1),δk
(r + 1),δk

(r),σk
(r),ϕk

(r),γi
(r),ei j

(r))

c. sample βk
(r + 1) f βk | zi j

(r + 1),Ci
(r + 1),δk

(r + 1),σk
(r),ϕk

(r),γi
(r),ei j

(r)

d. sample σk
(r + 1) f σk | zi j

(r + 1),βk
(r + 1),Ci

(r + 1),δk
(r + 1),ϕk

(r),γi
(r),ei j

(r)

e. sample ϕk
2(r + 1) f ϕk

2 | zi j
(r + 1),σk

(r + 1),βk
(r + 1),Ci

(r + 1),δk
(r + 1),γi

(r),ei j
(r)

Repeat Step (c) - (e) for classes k=1, ⋯, K.

f. sample 

γi
(r + 1) f γi | zi j

(r + 1),ϕk
(r + 1),σk

(r + 1),βk
(r + 1),Ci

(r + 1),δk
(r + 1),ei j

(r)

g. sample 

ei j
(r + 1) f ei j | zi j

(r + 1),γi
(r + 1),ϕk

(r + 1),σk
(r + 1),βk

(r + 1),Ci
(r + 1),δk

(r + 1)

Return to Step (a) and repeat until convergence.

Step (4) Repeat Step (2) and Step (3) until the algorithm converges.

For the Gibbs sampling, we generate 700 iterations for each simulated dataset and after 

discarding a burn-in of the first 200 realizations of the sequence, we take the imputed values 

from M iterations to form the M imputed datasets. For example, the 201st, 301st, 401st, 

501st, and 601st iteration can be taken for M=5 datasets. The length of the burn-in can be 

monitored using trace plots and autocorrelation function (ACF) plots for each parameter, in 

order to assess if it is sufficient to achieve convergence. All details related to conditional 

distributions of parameters θ = δk, Ci,   βk, σk, ϕk
2, γi, ei j  are discussed in Appendix A.

For each missing value for zij, u is randomly sampled from an uniform distribution u ~ 

UNIF(0, 1), and the imputed value of zij from the Gibbs sampling at corresponding quantile 

level u ∈ (ul, ul+1) is chosen for the final M imputed datasets. We can conduct any 

longitudinal regression analyses using these M imputed datasets. For our motivating 

example PSOAS study, the association between a variable with imputed values (e.g. NSAID 

index) and an outcome variable (e.g. radiographic damage score, mSASSS) can be assessed 

using each imputed dataset. To obtain the parameter estimates of interest, we define the 

combined MI estimator as a mean of M estimates [6]. i.e., αMI = M−1∑m = 1
M αm. However, 

for the variance of estimator and related p-value which is determined by the normality of 
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estimated parameters αMI, we adopt a bootstrap method by resampling the paired 

observations with replacement based on 500 bootstrap samples, rather than a traditional 

approach. Wang and Feng [39] discussed the asymptotic properties of their proposed 

multiple imputation procedure based on the conditional quantile function and suggested 

bootstrapping methods for the variance estimation, as the asymptotic variance of MI 

estimators takes complex forms and it is difficult to estimate directly.

3 Simulation Studies

We conducted simulation studies to investigate the performance of our developed MI 

methods through different scenarios. Based on the distribution of longitudinal data in 

PSOAS cohort, we assume a longitudinal variable zi j* , given Ci = k and γi, defined through a 

linear mixed effect regression model,

zi j* = xi j
T βk + vi j

Tγi + ϵi j, (5)

where class k-specific (k = 1, ⋯, 4) parameter βk = (β0k, β1k, β2k, β3k)T = (0.01, 0.5, 0.3, 

0.02), which is determined at each class separately for a set of variables xij = (1, x1ij, x2ij, 

tij), and a random intercept parameter γi N(0,ϕk
2). We generated x1 from zero inflated 

negative binomial distribution, ZINB(λ = 20, ϑ = 1, pstr0 = 0.35) (ϑ: dispersion parameter; 

pstr0: probability of structural zero), x2 from Bernoulli (0.7) and a time variable t was 

generated ranging between 0 and 8, where i = 1, ⋯, n; j = 1, ⋯, 8. For the class membership 

modeling which is based in equation (4), we generated a variable k = 1, ⋯, 4 based on a 

multinomial logit regression model using a variable w ~ Bernoulli(0.6) with parameters δ2 = 

−2.1, δ3 = 1.6, δ4 = 3.9. We considered the following three different scenarios of data 

distribution to generate data z*.

Scenario 1 Normal distribution: The error term, ϵij ~ N(0, σ2), where σ2 = 1

Scenario 2 Asymmetric (Exponential) distribution: ϵij = exp(ξij) − 1 and ξij ~ N(0, 

σ2), where σ2 = 1

Scenario 3 Asymmetric (Exponential) distribution, heteroscedastic covariance 

structure (i.e., covariance depends on a set of covariates): ϵij = exp(ξij) 

− 1 and ξij ~ N(0, 1/(1 + x2ij)).

In order to define an outcome variable that mimics the distribution of mSASSS in PSOAS 

cohort, we assumed the following Poisson regression model

log(yi j) = α0 + α1zi j* + α2x1i j, (6)

where α0 = −3, α1 = 1.1, α2 = 3.1, and zi j*  denotes complete data which were generated 

based on the aforementioned three scenarios. We then produced missing values for zi j*  based 

on the intermittent missing data pattern of NSAID index data that was found in PSOAS 

cohort. We postulated a logistic regression model, logit(η) = φ0 + φ1x2ij, where φ0 = −2.4, φ1 

= 2.5 or 4.1. Under this setting (i.e. missing at random (MAR)), we were able to achieve 
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desired missing percentage of 30 or 50%. For example, one of the simulated data with 30% 

overall missing rate, there were 18.2% of subjects with missing data for only 1 visit, 32.8% 

had 2 visits, 25.2% had 3 visits, 16.2% had 4 visits, etc., and 4.2% of patients who had 

complete measurements. For each scenario, three hundred simulation datasets with sample 

size of 500 (based on PSOAS cohort) or 200 were generated.

For multiple imputation, we applied BQR model without latent class, which ignores the 

group-based trajectory (MI-BQR1), as well as that with latent class incorporated (MI-

BQR2). Other imputation methods were further considered, that included MCMC-based MI 

method (MI-MCMC) [40, 41, 42], specifically multivariate imputation by chained equations 

(MICE) method [42]. MICE has been widely used with advances in software development, 

since it is useful for large imputation procedures and very flexible in a broad range of 

settings [43]. We also conducted the analysis using observed data only (OBSVD). Using 

imputed data generated from these different MI methods (or the observed data only), we 

conducted longitudinal regression analyses for each scenario, based on model (6). In order to 

assess the performance of each estimator, we calculated bias and ratio of the mean squared 

error (MSE) of the omniscient estimator (OMNI), a gold standard that is based on the data 

without missing values, to that of each estimator. Throughout we refer to this ratio of MSEs 

as relative efficiency (RE), which will be used for comparing the performance of each 

method. We assume all REs are lesser than 1, i.e., the estimator of the each method has 

higher MSE than the omniscient estimator, a gold standard, and the method with higher RE 

produces more efficient estimators.

Tables 1–3 show the results of simulation study from data with 30% or 50% missing values 

that were generated under MAR mechanism, for each of aforementioned Scenario 1-

Scenario 3. MSE and relative efficiency (100xRE) of parameter α0, α1 and α2 were 

calculated for each simulated dataset and then averaged to be presented in tables. When 30% 

of data were missing (Table 1), overall, the proposed BQR approaches (MI-BQR1 and MI-

BQR2) produced more efficient estimators (i.e. higher REs) than other methods that were 

used for comparison. Specifically, with data based on normal distribution, relative efficiency 

of our MI methods for α1, the coefficients of variable with missing values, was between 

89.3% and 90.7%, while a relative efficiency of MI-MCMC was 87.3% and that of OBSVD 

was 83.3%. Although when data are from non-normal distribution (i.e. Scenario 2 and 

Scenario 3), the magnitude of REs for the proposed method decreased slightly, we still 

found higher relative efficiencies, ranging from 85% to 86.9% for α1, compared to other 

methods with relative efficiencies ranging from 81.3% to 81.9% for OBSVD, from 82.8% to 

84% for MI-MCMC. We also obtained similar patterns in relative efficiencies for other two 

coefficients, α0 and α2.

Similar findings were observed in the presence of 50% of data missing, as shown in Table 2. 

Our MI methods provided higher REs compared to the other methods across all three 

scenarios. It also demonstrates that the proposed method was not sensitive to the choice of 

data distribution, as compared to MI-MCMC that assumes normality of data. For example, 

relative efficiency of α1 for MI-MCMC under Scenario 3 was about 13% lower than that 

from Scenario 1 (i.e. from 74.7 for Scenario 1 to 64.98 for Scenario 3), while the proposed 

method provided consistent REs (<5% change) over all three scenarios.
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The performance of the proposed method was further assessed when a sample size was 

relatively small (i.e. n = 200), through various aforementioned scenarios (Table 3). Although 

MSEs were getting larger as a sample size decreases, the proposed approaches outperformed 

other methods.

4 Application to Prospective Study of Outcomes in Ankylosing 

Spondylitis (PSOAS) data

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by 

inflammatory spinal pain that usually begins in the second to fourth decades of life. It can 

result in chronic spinal and joint pain and stiffness, leading to functional impairment and 

diminished quality of life, and in some patients, complete spinal fusion. In the PSOAS 

cohort, participants meeting the modified New York (mNY) Classification Criteria for AS 

[44] were enrolled from one of the five study sites (Cedars-Sinai Medical Center in Los 

Angeles, California, the University of Texas McGovern Medical School at Houston (UTH), 

the NIH Clinical Center, University of California at San Francisco (UCSF), and the Princess 

Alexandra Hospital in Brisbane, Australia (PAH) and were followed for up to 15 years 

(through two cycles of NIH funding: 2002–2006 and 2007–2016). At each study visit, 

spaced 6 months apart, the patients underwent a comprehensive clinical evaluation for 

disease activity, spinal mobility and functional impairment. Self-reported outcomes were 

measured at 6-month intervals, and radiographic data including an anterior posterior (AP) 

pelvis X-ray, AP and lateral lumbosacral X-ray and lateral cervical spinal X-ray were 

collected every 2 years, in order to assess longitudinal radiographic damage which was 

defined by scoring the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) [28] 

and the Bath Ankylosing Spondylitis Radiology Index (BASRI) [45]. All medications and 

supplements taken by the patient, including NSAIDs and tumor necrosis factor inhibitors 

(TNFi), as well as laboratory test results of C-reactive protein (CRP) levels and erythrocyte 

sedimentation rate (ESR) were determined at each clinical visit.

One of the objectives of PSOAS, was to evaluate factors associated longitudinal 

radiographic severity as well as the rate of progression in AS patients. Specifically, we 

focused on evaluating the longitudinal association between NSAIDs usage and the extent of 

radiographic damage that is assessed by mSASSS values at each X-ray visit, while 

controlling for the potential confounders. We considered analysis cohort of 536 patients who 

were confirmed AS by mNY criteria and had at least 2 years of radiologic follow up data 

available (as of August 2016) to be able to determine patient’s disease progression. 

However, we faced with a challenge in analyzing NSAID index data in relation to mSASSS. 

We found that 69.3% of patients had missing NSAID index data for at least their one visit; 

12.1% of patients had missing NSAIDs intake data at just one visit, 8.24%, 11.3%, 7.28%, 

9.2%, 9.2% and 12% of patients who had missing at 2, 3, 4, 5, 6 and >6 visits, respectively. 

As PSOAS study is based on dynamic cohort [46] where patients enter and leave over time 

based on their qualifying status, and also patient recruitment and follow-up are currently still 

ongoing, the number of visits (i.e. follow-up duration) differs by subjects. Since medication 

usage data were supposed to be collected every 6 months, we define a completeness of 

NSAID index data for each subject if there is no missing visits between the first and last 
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available visits. An important feature of NSAIDs usage data was that it has an intermittent 

missing pattern. We examined whether there was any other specific missing pattern (e.g. 

monotonic pattern) besides intermittent missing, but no other notable pattern was appeared. 

Additionally, we were able to find that 16% of patients never took NSAIDs (index <0.15%), 

10% had continuously high (index ≥ 50%) NSAIDs use, 5% had continuously low (index < 

50%) use of NSAIDs over time, and rest of them had variable NSAIDs use pattern.

Missing NSAIDs intake data across visits in PSOAS cohort were imputed based on three 

different approaches (MI-MCMC, MI-BQR1, MI-BQR2) that are described in section 3.

For imputation procedure for NSAID index data, BQR was modeled as a function of 

covariates that include time, sex, race, age, co-morbidities, education, smoking status, other 

medications use and mSASSS. In practice, it is important to use all available information to 

build imputation model [6, 47, 48]. The imputation model can also include the covariates 

and outcome of the potential analysis models even if they have limited predictive power 

[49]. Figure 1 shows one of the trace and autocorrelation function (ACF) plots for selected 

parameters of β and σ2, which indicate good performance of imputed iteration.

For the latent class model comparisons, deviance information criterion (DIC) [35] was 

calculated for multiple models (from one- to five-class), and we found that four-class model 

was optimal with the lowest DIC value, i.e., 43863, 41798, 33639, 30553 and 32810 for 

one-, two-, three-, four-, and five-class, respectively. Group membership of each class was 

30.44% (Group 1), 14.68% (Group 2), 28.84% (Group 3) and 26.03% (Group 4). These four 

classes corresponded to an increasing tendency to NSAID index; median values of NSAID 

index for each of four group were 1, 3, 25 and 100, respectively. The results from the latent 

class membership model, which was built based on the significant variables in classifying 

the patients, indicated that patients who had lower baseline disease activity score (Bath 

Ankylosing Spondylitis Disease Activity Index (BASDAI); the higher score, the worse the 

symptoms) or longer disease duration were more likely to be classified into Group 1. 

Though not statistically significant, patients who reported no TNFi use at the baseline visit, 

were less likely to be in Group 1.

Figure 2 displays how NSAID index missing data were imputed for each latent class based 

on the proposed method MI-BQR2; a distribution of NSAID index data is shown, 

distinguishing the observed data (green area) from imputed data (gray area). More zeros 

were imputed in Group 1 compared to other three groups, while higher values (>60) were 

imputed in Group 4. Lower NSAID index values (<30) were imputed in Group 2, but 

imputed values were spread out around 50 in Group 3. However, imputed values across these 

groups based on MI-BQR1 method (data not shown), which latent class was not incorporated 

in, did not seem as distinctive as those from MI-BQR2.

We were interested in whether longitudinal trajectory of NSAID index differs by latent class 

membership; mean trajectories of NSAID index over time for four groups were explored. 

Different longitudinal trajectories of NSAID index were observed across the groups; patients 

in Group 1 had minimal or no use over time, and Group 3 had low use, patients in Group 4 

were on high use (Group 4) persistently over time, while patients in Group 2 started with 
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low level and then had decreasing trend over time. The association of the assigned class 

membership with other variables (e.g. disease progression) was further investigated. 

Progressors (42%) were defined if patients had at least one interval (2 sets of X-rays), where 

2 or more mSASSS units increase within 24 months was found. The proportions of 

progressors were 44.1%, 34.9%, 43.2%, 37.8% in Group 1, 2, 3, 4, respectively. This finding 

shows that among the patients in Group 4 who were on high use of NSAID over time, lesser 

progressors were found, compared to those in Group 1 who had minimal or no use over 

time. The longitudinal trajectories among progressors were also different from those in non-

progressors. Figure 3 displays mean NSAID index trajectory for A: progressors and B: non-

progressors, separately by four groups of patients that were identified based on our proposed 

method MI-BQR2. In high use group (Group 4), NSAIDs usage in progressors decreased 

over time, while it was not changing among non-progressors. For Group 3, NSAIDs usage 

was increasing faster during first 6 years among progressors, but this trend was not found for 

non-progressors. Progressors’ NSAIDs intakes decreased much slower compared to non-

progressors’ in Group 2.

Using imputed NSAID index data, we finally assessed the longitudinal association between 

NSAID usage and mSASSS as an outcome variable, while controlling for potential 

confounding factors, that included BASDAI, CRP levels, TNFi usage, as well as 

demographic information such as sex, race, disease duration, co-morbidity, education and 

smoking status. Multivariable mixed effect Poisson regression models were conducted to 

account for the correlations of repeated measurements within a patient. In this analysis, 

NSAID index data were divided into three categories based on the level of intensity: no use, 

low (<50%) and high (≥50%), suggested by clinicians as it was believed to be a clinically 

relevant way. And we also found the association between NSAID index and mSASSS in log 

scale was not linear. Table 4 shows the adjusted rate ratios (RRs) with their 95% confidence 

intervals (CIs) and p-values from the multivariable analysis based on only observed data 

(OBSVD), and imputed NSAID index data by each of two methods: MI-MCMC and MI-

BQR2.

There were noticeable differences across these three methods in the estimates and 

corresponding p-values for NSAID use. The results from the proposed method (MI-BQR2) 

indicated that high NSAID index (≥50%) is inversely associated with radiographic damage 

compared to no use (adjusted RR=0.9; 95% confidence interval (CI)=[0.82, 0.98]; p=0.017), 

while the other methods did not result in a significant association (p=0.759 for OBSVD; 

p=0.245 for MI-MCMC). This significant association was diminished when low NSAID 

index (<50%) was compared to no use (adjusted RR=1.03; 95% confidence interval 

(CI)=[0.91, 1.15]; p=0.646). The results of imputed NSAID index data from MI-BQR2 were 

similar to those from MI-BQR1 (data not shown). We believed that the difference was not 

big enough to capture a significant contribution of the latent class because it may be 

attenuated due to the original imputed NSAID index values being categorized. Hence, we 

conducted analyses after breaking the NSAID index down further, i.e., no use, low (<50%), 

moderate (50%-75%) and high (>75%), and found differences in estimates between two 

methods, MI-BQR1 and MI-BQR2; when high NSAID use (>75%) was compared to no use 

(0%), adjusted RR from MI-BQR2 was 0.90 (p=0.034) and that from MI-BQR1 was 0.92 

(p=0.05). Even though the proposed imputation approach was developed under the mixed 
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effect model framework specifically for multi-level (or longitudinal) designs, we also further 

carried out imputations that is based on MI-BQR2 under a fixed effect only model to show 

what would happen. The significant association of high NSAID usage with lower 

radiographic damage that was found from the proposed method MI-BQR2 disappeared when 

fixed effect only model was used (adjusted RR=0.98, p=0.6).

5 Discussion

It has become increasingly important to study longitudinal treatment effects and evaluate an 

association between diseases and longitudinal patterns of pharmacological therapy. In 

longitudinal studies, it is possible that medication usage data are incompletely collected 

during study visits, which can introduce an intermittent missing data pattern. In this article 

we have proposed the use of a multiple imputation approach that specifically accommodates 

intermittent missing data under the joint latent class Bayesian quantile regression (BQR) 

frame work, in order to account for unobserved heterogeneity into the imputation procedure.

We used Gibbs sampling for the estimation and imputation through Bayesian quantile 

regression. Metropolis Hastings (M-H) can be also used for modeling our BQR model [16]. 

The advantage of the Gibbs sampler over metropolis has been discussed to indicate that 

Gibbs sampling doesn’t have the convergence issue as M-H algorithm has, and unlike M-H 

algorithm which has proposal distribution selection, the proposal distribution of Gibbs 

sampling is simply taken to be the conditional distributions of the target distribution. Each 

density to be sampling is of low dimension and thus it is relatively easy and efficient to 

sample from it.

Our findings from the simulation study presented that the proposed method performs better 

than other methods that were used for comparisons, by having a higher relative efficiency. 

Since different quantiles are used for imputation rather than mean values, our approach was 

found not sensitive to the choice of the error structure as compared to the approach that 

assumes normality of data. It was more robust than completely parametric methods when 

dealing with heteroskedastic variance. Though the proposed imputation algorithm is 

relatively straightforward, a statistical package will be further developed to help users easily 

implement the proposed approach. We also demonstrated an application of our imputation 

method to real data from PSOAS by examining the longitudinal association between NSAID 

usage and radiographic damage for ankylosing spondylitis patients, in a situation where the 

NSAID index data for some patients were incompletely collected during the follow up time 

points.

Despite of aforementioned advantages, there are limitations of the proposed method due to 

the specific nature of the Bayesian ALD approach; most notably is the deliberate 

misspecification of the likelihood on the implications for posterior consistency and the 

coverage probabilities of the resulting posterior distributions [50]. We acknowledge that it is 

important to identify the model carefully for missing data process and interpret the analysis 

results cautiously. Computational burden related to MCMC algorithms for estimating 

regression parameters should be also carefully considered. Another drawback of the 

proposed method is that, as quantiles are fitted separately, the conditional quantile curves are 
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not smooth and the fitted regression lines may cross, which violates the basic probabilistic 

rule and causes problems for inference in practice [50]. The usual approach to deal with this 

problem is to simultaneously fit several quantiles [51]. Even though many of these methods 

give raise to new problems in terms of computation or data requirements [52], it would be 

interesting to separate quantiles well such that quantile crossing can be less likely to occur. 

We also acknowledge that Bayesian nonparametric (BNP) models [54], which a single 

model that can adapt its complexity to the data rather than comparing models that vary in 

complexity, can be used for the imputations to avoid the need to explicit latent classes. 

However, as well as improving the accuracy of the imputations for missing medication data 

over time, the main focus of our study was on providing the longitudinal trajectory of 

medication intake among the patients, especially for the longitudinal studies that involve 

effects of a drug treatment on disease severity or progression over time. In clinical studies, 

MAR is a reasonably assumptions for intermittent missing data, but the proposed method 

can be used to handle unobserved heterogeneity, which also helps better understanding of 

measurement errors in self-reported medication usage data.

There is a growing interest to develop MI methods that impute missing data across multiple 

variables (i.e. medications) while accounting for the correlations among them, which can be 

also extended by our proposed method. When we assume that the number of classes is 

known, the methods may also be further considered through reversible jump Markov chain 

Monte Carlo (RJMCMC) techniques [53].
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A: Appendix A: Conditional Distributions of Parameters

Following notation in Neelon et al. [22] and Luo et al. [55], the derivation of conditional 

distributions can be determined as below. [label=)]

1. Conditional density of δk:

π δk | ⋅ ∝ ∏
i = 1

n
Pr Ci = k |δk

ICi = k
π δk

= ∏
i:Ci = k

exp wi
Tδk

∑h = 1
K exp wi

Tδh
MVN δk; 0,94 Io × o ,

where MVN(δk; ⋅) is an o-dimensional multivariate normal distribution evaluated 

at δk. Since this full conditional distribution does not have a closed form, δk as a 

vector was updated through a random walk Metropolis algorithm using a 
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multivariate-t3(sgTk) proposal density centered at the previous value, δk
(r − 1),

where sg and Tk are determined based on Neelon et al. [22].

2. Conditional density of Ci for i = 1, ⋯, n:

π(Ci | ⋅ ) = Pr(Ci = k | ⋅ ) = Cat(pik),

where

pik =
πik(δk)[∏ j = 1

nik f (zi j | βk,γi,ei j,σk]MVN(γi; 0,Σk)

∑h = 1
K πih(δh)[∏ j = 1

nik f (zi j | βh,γi,ei j,σh]MVN(γi; 0,Σh)
,

πik(δk) = Pr(Ci = k | δk) as given in (1). If there are no class membership 

covariates, i.e., o = 1 in 1), then update πik directly from a Dirichlet (n1 + ψ1, ⋯, 

nK + ψK) distribution, where ψ1, ⋯, ψK are prior hyperparameters and 

nk = ∑i = 1
n I(Ci = k). (π1 < π2, ⋯, < πK).

3. Conditional density of βk:

π(βk | ⋅ ) = π(βk | zi j,γi,ei j,σk = MVNp(bk,Bk),

where zk is a variable z for class k and

Bk
−1 = 1

κ2σk
∑

i = 1

nk
∑

j = 1

ni xi jxi j
T

ei j
+ B0

−1,

bk = 1
κ2σk

∑
i = 1

nk
∑

j = 1

ni xi j(zi j − vi j
T γi − κ1ei j)
ei j

+ B0
−1b0.

4. Conditional distribution of parameter σk:

π(σk | zi j,βk,γi,ϕk
2) ∝ f (zi j | βk,γi,ei j,σk)π(σk)

IG(c1,d1),

where

c1 =
Nk
2 + c0,
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d1 = d0 + 1
2κ2

∑
i = 1

nk
∑

j = 1

ni (zi j − xi j
T βk − vi j

T γi − κ1ei j)
2

ei j
,

c0, d0 are the parameters values for the prior distribution of σk.

5. Conditional distribution of parameter ϕk
2:

π(ϕk
2 | z,βk,γi,σk) ∝ ∏

j = 1

nk
f (γi |ϕk

2) π(ϕk
2)

IG(ν1,ω1),

where

ν1 = 1
2Jq + ν0,

ω1 = ω0 + 1
2 ∑

j = 1

nk γ j
Tγ j
2 ,

q is the dimension of the random effects and v0, ω0 are the parameters values for 

the prior distribution of ϕk
2.

6. Conditional distribution of γi:

π(γi | ⋅ ) ∝ f (zi j |Ci = k,βk,γi,ei j,σk)MVN(γi; 0,Σk).

Conditional on Ci = k, γi was updated using a random walk Metropolis 

algorithm based on a multivariate-t3(sγRk) proposal density centered at the 

previous value, γi
(r − 1), where the scale matrix Rk was estimated using the inverse 

information matrix obtained from traditional model fit and sγ is a scaling factor 

used to achieve optimal acceptance rates [22].

7. Conditional distribution of eij:
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π(ei j | zi j,βk,γi,σk) ∝ f (zi j | βk,γi,ei j,σk) f (ei j |σk)

∝ 1
ei j

exp
−(zi j − xi j

T β − vi j
T γi − κ1ei j)

2

2k2σkei j
exp −

ei j
σk

∝ 1
ei j

exp −1
2 (ϕi j

2 ei j
−1 + ψi j

2 ei j) .

→ kernel of a generalized inverse Gaussian (GIG) distribution, where

ϕi j
2 =

(zi j − xi j
T βk − vi j

T γi − k1ei j)
2

κ2σk
,

ψi j
2 =

κ1
2

κ2σk
+ 2

σk
.

π(ei j | zi j,β,γi,σk) GIG(0.5,ϕk,ψk)
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Figure 1: 
Trace and autocorrelation function (ACF) plots

Lee et al. Page 21

J Biopharm Stat. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Imputed NSAID index by latent class based on the proposed method MI-BQR2 by Group

Distribution of NSAID index data, distinguishing the observed data (green area) from 

imputed data (gray area) based on MI-BQR2 method
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Figure 3: 
Mean NSAID index trajectory over time

Mean NSAID index trajectory over time for progressor (A) and non-progressor (B): In 

Group 4, NSAIDs usage in progressors decreased, while it was not changing among non-

progressors. For Group 3, NSAIDs usage was increasing faster during first 6 years among 

progressors, but this trend was not found for non-progressors. Progressors’ NSAIDs intakes 

decreased much slower compared to non-progressors’ in Group 2.
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Table 1:

Simulation results (30% missing; Scenario 1- Scenario 3; n = 500)

α α0 α1 α2

Method MSE 100xRE MSE 100xRE MSE 100xRE

Scenario 1: Normal distribution

OMNI 0.0036 – 0.0075 – 0.0009 –

OBSVD 0.0054 74.539 0.0097 83.316 0.0016 68.365

MI-MCMC 0.0052 90.475 0.0095 87.299 0.0014 86.744

MI-BQR1 0.0040 91.677 0.0090 89.323 0.0011 92.626

MI-BQR2 0.0032 93.554 0.0087 90.715 0.0009 98.468

Scenario 2: Asymmetric distribution

OMNI 0.0092 – 0.0277 – 0.0036 –

OBSVD 0.0155 67.907 0.0554 81.904 0.0059 70.328

MI-MCMC 0.0115 80.065 0.0396 83.994 0.0047 77.108

MI-BQR1 0.0102 90.515 0.0377 85.880 0.0041 92.907

MI-BQR2 0.0098 92.735 0.0283 86.984 0.0032 95.345

Scenario 3: Heteroscedastic distribution

OMNI 0.0096 – 0.0275 – 0.0009 –

OBSVD 0.0154 67.521 0.0597 81.271 0.0056 69.376

MI-MCMC 0.0112 81.992 0.0346 82.817 0.0051 77.733

MI-BQR1 0.0109 90.588 0.0393 84.978 0.0041 93.333

MI-BQR2 0.0099 92.579 0.0275 85.348 0.0038 94.349

OMNI (omniscient); OBSVD (using only observed data); MI-MCMC (MCMC-based MI method); MI-BQR1 (BQR-based MI method without 

latent class); MI-BQR2 (BQR-based MI method with latent class); MSE (mean squared error); RE (relative efficiency)
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Table 2:

Simulation results (50% missing; Scenario 1- Scenario 3; n = 500)

α α0 α1 α2

Method MSE 100xRE MSE 100xRE MSE 100xRE

Scenario 1: Normal distribution

OMNI 0.0036 – 0.0075 – 0.0009 –

OBSVD 0.0083 53.019 0.0138 62.263 0.0026 45.086

MI-MCMC 0.0070 73.574 0.0124 74.742 0.0020 83.294

MI-BQR1 0.0044 82.640 0.0106 81.034 0.0011 91.746

MI-BQR2 0.0035 86.540 0.0093 83.027 0.0019 93.372

Scenario 2: Asymmetric distribution

OMNI 0.0092 – 0.0277 – 0.0036 –

OBSVD 0.0256 45.325 0.0691 60.427 0.0094 47.527

MI-MCMC 0.0139 74.633 0.0539 65.633 0.0060 81.375

MI-BQR1 0.0115 82.139 0.0451 77.993 0.0043 89.583

MI-BQR2 0.0092 84.345 0.0315 79.435 0.0034 92.536

Scenario 3: Heteroscedastic distribution

OMNI 0.0096 – 0.0275 – 0.0039 –

OBSVD 0.0283 46.007 0.0639 60.344 0.0096 47.105

MI-MCMC 0.0137 74.851 0.0572 64.984 0.0064 81.478

MI-BQR1 0.0142 81.855 0.0405 76.255 0.0041 89.716

MI-BQR2 0.0114 83.011 0.0367 78.953 0.0029 91.105

OMNI (omniscient); OBSVD (using only observed data); MI-MCMC (MCMC-based MI method); MI-BQR1 (BQR-based MI method without 

latent class); MI-BQR2 (BQR-based MI method with latent class); MSE (mean squared error); RE (relative efficiency)
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Table 3:

Simulation results (30, 50% missing; Scenario 1- Scenario 3; n = 200)

α α0 α1 α2

Method MSE 100xRE MSE 100xRE MSE 100xRE

Scenario 1: Normal distribution, 30% missing

OMNI 0.0261 – 0.0780 – 0.0097 –

OBSVD 0.0412 58.780 0.1084 69.720 0.0153 59.198

MI-MCMC 0.0275 63.172 0.1261 80.224 0.0107 79.657

MI-BQR1 0.0262 79.199 0.0785 88.897 0.0097 89.462

MI-BQR2 0.0255 88.778 0.0781 90.222 0.0095 89.827

Scenario 2: Asymmetric distribution, 30% missing

OMNI 0.0104 – 0.0200 – 0.0025 –

OBSVD 0.0451 65.970 0.0914 64.063 0.0114 69.050

MI-MCMC 0.0375 62.666 0.2132 48.873 0.0105 74.579

MI-BQR1 0.0566 77.253 0.0691 83.481 0.0078 86.555

MI-BQR2 0.0323 86.433 0.0687 85.742 0.0078 87.644

Scenario 3: Heteroscedastic distribution, 30% missing

OMNI 0.0104 – 0.0208 – 0.0025 –

OBSVD 0.0443 65.083 0.0885 68.549 0.0123 57.503

MI-MCMC 0.0366 61.300 0.1997 59.563 0.0102 76.655

MI-BQR1 0.0319 77.584 0.1131 83.029 0.0123 88.534

MI-BQR2 0.0325 80.515 0.0675 85.880 0.0078 92.907

Scenario 1: Normal distribution, 50% missing

OMNI 0.0260 – 0.0780 – 0.0097 –

OBSVD 0.0633 39.311 0.1394 52.920 0.0235 40.155

MI-MCMC 0.0309 63.288 0.2471 60.899 0.0130 60.187

MI-BQR1 0.0273 75.043 0.0823 80.722 0.0099 88.252

MI-BQR2 0.0274 85.879 0.0826 82.187 0.0099 91.720

Scenario 2: Asymmetric distribution, 50% missing

OMNI 0.0104 – 0.0200 – 0.0025 –

OBSVD 0.0633 47.677 0.1155 51.386 0.0192 37.791

MI-MCMC 0.0477 57.188 0.5393 14.521 0.0168 59.096

MI-BQR1 0.0347 70.075 0.0841 74.800 0.0087 80.609

MI-BQR2 0.0344 80.302 0.0813 75.864 0.0087 81.029

Scenario 3: Heteroscedastic distribution, 50% missing

OMNI 0.0104 – 0.0208 – 0.0025 –

OBSVD 0.0633 47.715 0.1160 51.411 0.0192 37.782

MI-MCMC 0.0475 57.830 0.5455 15.655 0.0168 60.471

MI-BQR1 0.0346 70.759 0.1352 75.117 0.0129 82.645
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α α0 α1 α2

Method MSE 100xRE MSE 100xRE MSE 100xRE

MI-BQR2 0.0346 82.134 0.0829 77.993 0.0084 88.583

OMNI (omniscient); OBSVD (using only observed data); MI-MCMC (MCMC-based MI method); MI-BQR1 (BQR-based MI method without 

latent class); MI-BQR2 (BQR-based MI method with latent class); MSE (mean squared error); RE (relative efficiency)
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Table 4:

Analysis results of longitudinal association between NSAIDs usage and mSASSS when NSAID index were 

imputed by different imputation methods

Method OBSVD MI-MCMC MI-BQR2

Variable adj. RR (95% CI) p-value adj. RR (95% CI) p-value adj. RR (95% CI) p-value

NSAID index high vs. no use 0.99 (0.91, 1.07) 0.759 0.96 (0.89, 1.03) 0.245 0.90 (0.82, 0.98) 0.017

NSAID index low vs. no use 1.06 (0.99, 1.14) 0.073 1.04 (0.98, 1.11) 0.229 1.03 (0.91, 1.15) 0.646

OBSVD (using only observed data); MI-MCMC (MCMC-based MI method); MI-BQR2 (BQR-based MI method with latent class); adj. RR: 

adjusted rate ratio after controlling for sex, race, disease duration, co-morbidity, education, smoking status, C-reactive protein (CRP), Bath 
Ankylosing Spondylitis Disease Activity Index (BASDAI) and medication usages of TNFi; CI: confidence interval.
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