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ABSTRACT OF THE DISSERTATION

Using AI to Mitigate Variability in CT Scans: Improving Consistency in Medical Image

Analysis

by

Leihao Wei

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Gregory J Pottie, Co-Chair

Professor William Hsu, Co-Chair

Computed tomography (CT) plays an integral role in diagnosing and screening various types

of diseases. A growing number of machine learning (ML) models have been developed for

prediction and classification that utilize derived quantitative image features, thanks in part

to the availability of large CT datasets and advances in medical image analysis. Researchers

have classified disease severity using quantitative image features such as hand-crafted ra-

diomic and deep features. Despite reporting high classification performance, these models

typically do not generalize well. Variations in the appearance of CT scans caused by dif-

ferences in acquisition and reconstruction parameters adversely impact the reproducibility

of quantitative image features and the performance of machine learning algorithms. As a

result, few ML algorithms have been used in clinical settings. Mitigating the effects of vary-

ing CT acquisition and reconstruction parameters is a challenging inverse problem. Recent

advances in deep learning have demonstrated that image translation and denoising models

can achieve high per-pixel similarity metrics when compared to a target image. The pur-
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pose of this dissertation is to develop and evaluate two conditional generative models that

mitigate the effects of working with CT scans acquired and reconstructed with a variety of

parameters. The overarching hypothesis is that improved image quality results in better

consistency in nodule detection. In essence, these models attempt to learn the underlying

conditional distribution on the normalized images (high-quality) given the un-normalized

(low-quality) images. First, I propose a novel CT image normalization method based on a

3D conditional generative adversarial network (GAN) that utilizes a spectral-normalization

algorithm. My model provides an end-to-end solution for normalizing scans acquired us-

ing different doses, slice thicknesses, and reconstruction kernels. This study demonstrates

that the GAN is capable of mitigating the variability in image quality, quantitative image

features, and lung nodule detection using an automated Computer-Aided-Detection (CAD)

algorithm. I show that GAN improved perceptual similarity by 22%, and resulted in a 16%

increase in features with a good level of agreement based on concordance correlation coeffi-

cient analysis. As a result, the performance of the existing nodule detection model was up

to 75% more consistent with the reference scan. Second, I explore the use of a conditional

normalizing flow-based model to incorporate uncertainty information during image transla-

tion. The model is capable of learning the explicit conditional density and generating several

plausible image outputs, providing a means to reduce the distortions introduced by existing

methods. I show that the normalizing flow method achieves a 6% improvement in perpetual

quality compared to the state-of-the-art GAN-based method and the resulted agreement

level of the detection task is improved by 13%. This dissertation compares these two genera-

tive approaches, identifying their strengths and limitations when normalizing heterogeneous

CT images and mitigating the effect of different acquisition and reconstruction parameters

on downstream clinical tasks.
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CHAPTER 1

Introduction

Computer vision entered the era of deep learning since the introduction of AlexNet [58] in

2012, which won the 2012 ImageNet LSVRC-2012 competition by a large margin compared

to second place (15.3% vs 26.2% error rates). The performance of machine learning (ML)-

based object detection consistently improved over the years. Object detection is not the only

application of deep learning. It can also be used in imaging applications for segmentation [77],

image generation [36], image restoration [121], and non-imaging applications such as natural

language processing (NLP) [89]. This remarkable achievement in artificial intelligence (AI)

would not have been possible without the modern data infrastructure that enables us to

process, store, and transfer large amounts of data at a lower cost. Together, with the use

of Graphic Processing Units (GPUs) for model training, these advances have led to a new

stage in which professions, particularly medicine, can employ easy-to-access tools to harness

the power of image analysis powered by deep learning models to help make better decisions

(e.g., become better at identifying subtle signs of early-stage disease).

Clinical decisions based solely on AI output can have life-or-death consequences. The

FDA has set strict requirements for medical device licensing due to the high risk involved in

applying AI/ML in medical diagnosis and decision-making. As of September 2020, 29 medical

devices refer to AI/ML have been registered with the Food & Drug Administration [12].

Though AI/ML-based medical solutions are increasingly available on the market, adoption

remains a challenge. The implementation of these technologies in medical practice is hindered

by regulatory frameworks and a lack of trust between physicians and patients regarding new
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technologies. Researchers in the field of AI are responsible for bridging the knowledge gap by

ensuring that models are reliable and reproducible with the goal of achieving more consistent

clinical outcomes.

This dissertation demonstrates how AI can be harnessed to enhance diagnostic images,

making them more consistent with the goal of improving clinical outcomes. While these

techniques can be applied in a variety of clinical domains and imaging modalities, this work

is driven by the a desire to improve the detection of early-stage lung cancer from Computed

Tomography (CT) scans.

1.1 Motivation

The World Health Organization estimates that lung cancer will cause 1.8 million deaths

in 2020 [114]. Lung cancer is the leading cause of death compared to cancers of the colon,

breast, and prostate combined. As a result of lower smoking rates and improvements in early

detection and treatment, lung cancer cases are continuously declining. CT is widely used to

screen for lung cancer largely due to its high sensitivity, detecting even very small nodules

in the lung. Low-Dose Computed Tomography (LDCT) of the chest is particularly effective

and safe in detecting lung cancer at its earliest, most treatable stage. As a randomized

controlled trial, the National Lung Screening Trial (NLST) [120] showed a 20% mortality

rate reduction in patients who underwent chest low-dose computed tomography (LDCT). The

key to improving the survival rate and prognosis of cancer patients lies in early detection

and intervention.

The increasing availability of large CT datasets and advances in medical image analysis

have resulted in a proliferation of machine learning (ML) models that use images for clas-

sification and prediction. Researchers from Google Artificial Intelligence and Northwestern

Medicine have developed an AI model capable of detecting lung cancer more accurately than

radiologists [8]. However, despite its success, the algorithm has not been implemented in
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clinical practice in the two years since publication. Jacob and Ginneken [50] noted that

although the model is promising, further validation is required, and it could only be used if

the Lung-RADS [83] screening guidelines were changed to allow for recommendations from

proprietary AI systems.

In addition, both the model training and validation were conducted using NLST data.

Whether the model could handle heterogeneous datasets effectively is uncertain. A large

body of research has demonstrated that quantitative imaging features (QIFs), including

hand-crafted “radiomic” features and neural network-based “deep” features, can be used to

predict disease severity and progression. However, CT scan acquisition and reconstruction

variants have a significant impact on the outcome, making QIFs with poor reproducibility.

Variations in dose, slice thickness, reconstruction method, and reconstruction kernel nega-

tively impact the reproducibility of QIFs and the performance of ML models that detect lung

nodules [28–30]. To date, solutions have been to standardize acquisition protocols prospec-

tively, which excludes the analysis of existing scans, or to normalize post-reconstructed

images, which have had mixed results. Moreover, determining the optimal strategy for im-

age normalization is task-dependent. The goal of lung cancer detection, for example, is to

identify small areas of high contrast changes that could indicate suspicious nodules.

The performance of detection is affected by the dose and reconstruction method. The

impact of CT parameters is not uniform, and no single approach to image normalization is

optimal for all CT parameters and tasks. In this dissertation, we test the hypothesis that

a systematic, task-dependent methodology for characterizing and mitigating the impact of

variability on CT parameters will identify reproducible QIFs and lead to more consistent

ML models.

Considering the widespread use of computer vision combined with deep learning for

natural images, sometimes we may overlook the importance of AI-driven image enhancement

technology. The quality of an image captured by a smartphone camera is now comparable to

that captured by a digital single-lens reflex (DSLR) camera. The reason is not technological
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advances in optical components but computational photography powered by algorithms. In

photography, this paradigm shift has already taken place. The medical imaging society can

adopt this methodology as a result of the momentum of this transformation.

Ultimately, the project will use AI to improve image quality “computationally” to achieve

consistency in image style and appearance, and downstream image analysis tasks can be

automated without any human involvement to exclude existing scans that do not conform

to the standardized protocols. This study develops robust ML models capable of mitigating

the variability of medical images under various conditions simultaneously to deliver more

consistent clinical predictions after normalization. However, it is challenging to achieve this

goal. The appearance and use-case of medical images differ significantly from natural images.

In particular, the differences impose two obstacles that prevent us from developing practical

models.

• In contrast to CT scanners, cameras sensors are very standardized, ensuring relative

consistency in image quality across a range of devices. Technologists, on the other

hand, adjust CT scanner acquisition and reconstruction parameters according various

factors, including patient characteristics, institutional standards, and manufacturer

recommendations. All medical imaging techniques are subject to inter- and intra-

variability. As such, reconstructed images are not usually consistent in appearance.

• Due to patient privacy regulations and the low incidence of medical imaging scans,

imaging data are not as readily available or as abundant as natural images. Limited

data makes it difficult to train effective models. Models do not usually generalize well

to data obtained from another institution.

Deep learning has been increasingly used to manipulate medical images, including low-

dose CT denoising [17] and CT image synthesis [142]. As a result, recent advances in machine

learning-based image restoration and super-resolution developed for natural images can also

be applied to medical images.
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1.2 Contribution

This dissertation addresses these two obstacles by pursuing three research aims.

• Aim 1: develop a generative adversarial network (GAN)-based model to mitigate the

image feature variability under different CT image conditions.

• Aim 2: investigate an alternative normalizing Flow-based approach with the goal of

improving model performance, minimizing artifacts during mitigation, and increasing

trust in the model’s output by estimating model uncertainty.

• Aim 3: improve the robustness of the models developed in Aims 1 & 2 by 1) improving

model training and inference efficiency; 2) understanding and investigating barriers

that result in poor model generalizability.

Towards Aim 1, we propose a 3D spectral-norm GAN (SNGAN) that normalizes CT

images acquired and reconstructed under different conditions. We used raw projection data

from LDCT chest scans of patients to generate a variety of reconstructions that simulate

different dose levels, slice thicknesses, and reconstruction kernels. Each scan from 186 pa-

tients was reconstructed using 10 image conditions representing different acquisition and

reconstruction parameters. Defining one condition to be the reference (i.e., a scan acquired

at 100% dose, 1.0 mm slice thickness, medium kernel), we trained SNGAN models to nor-

malize all other scans to the reference. We evaluated SNGAN against other state-of-the-art

methods by comparing image quality metrics, impact on computed radiomic feature values,

and a specific task (i.e., lung nodule detection). Our SNGAN improved perceptual similarity

by 22%, compared to another GAN-based method. SNGAN resulted in smaller radiomic fea-

ture errors when compared to the reference condition (16% increase in features with “good”

and “moderate” agreement based on concordance correlation coefficient). Performance of

the existing nodule detection model was more consistent on scans normalized using SNGAN
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achieved compared to unnormalized scans (up to 75% improvement in concordance correla-

tion coefficient). Collectively, these results demonstrate the SNGAN’s ability to normalize

heterogeneous CT images and reduce adverse impacts on downstream tasks.

Towards Aim 2, we present CTFlow, a normalizing Flow-based method for translating

images acquired and reconstructed using different doses and kernels to a reference scan. Un-

like existing state-of-the-art image denoising and translation approaches that only generate

a single output, Flow-based methods learn the explicit conditional density, capture the un-

certainty associated with restoration, and output the entire spectrum of plausible solutions.

We harness these capabilities to generate more realistic restored reference scans. To evaluate

the performance of CTFlow, first, we compare CTFlow with other denoising techniques by

training and testing it on the AAPM-Mayo Clinic Low-Dose CT Grand Challenge dataset.

CTFlow achieves superior performance for both peak signal-to-noise ratio and perceptual

quality metrics. Second, we train and evaluate CTFlow on the same CT chest scans col-

lected in Aim 1, analyzing the difference in restored reference scans on the performance of

a lung nodule detection algorithm. CTFlow produces more consistent predictions across all

dose and kernel conditions than the GAN-based method in Aim 1. Third, we investigated

generalization performance by evaluating a pretrained CTFlow model on a publicly avail-

able low-dose CT chest dataset. We show that CTFlow maintains higher image fidelity than

GAN-based methods. In summary, normalizing flow performs state-of-the-art CT image

translation and provides additional information through its ability to quantify restoration

uncertainty.

Towards Aim 3, as an extension of both Aim 1 and 2, we performed two analyses. First,

we present an efficient and accurate spatial-temporal convolution method to accelerate an

existing denoising network based on the SRResNet. We trained and evaluated our model

using data from our institution. We compared the performance of the proposed spatial-

temporal convolution network to the SRResNet with full 3D convolutional layers. Using

8-bit quantization, we demonstrated a 7-fold speed-up during inference. Using lung nodule
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characterization as a driving task, we analyzed the impact on image quality metrics and

radiomic feature values. Our results show that our method achieves better perceptual qual-

ity, and the outputs are consistent with the SRResNet baseline outputs for some radiomic

features (31 out of 57 total features). These observations together demonstrate that the

proposed spatial-temporal method can be potentially useful for clinical applications where

the computational resource is limited.

Second, we evaluated image normalization techniques using a multi-pronged approach

that incorporates 1) per-pixel image quality, 2) radiomic features variability, and 3) task

performance differences, using a ML model. As part of the evaluation of a previously reported

3D GAN-based approach in Aim 1, we examined its performance on LDCT scans acquired

at different institutions with varying dose levels and reconstruction kernels. However, the

GAN did not improve performance in terms of quantitative imaging features or downstream

tasks even though it produced superior image quality metrics. In summary, these results

suggest a more complex relationship between CT acquisition and reconstruction parameters

and their effect on radiomic features and ML model performance, which cannot be captured

by using pixel metrics alone. Our approach provides a more comprehensive picture of the

effect of normalization. Both efficiency and generalization studies are under the umbrella of

model robustness.

Collectively, this dissertation provides the medical imaging community with a ML frame-

work for image normalization and touches upon topics such as image synthesis, model gen-

eralization, task-driven evaluations, and model uncertainty analysis. Under this framework,

results from this work provide evidence that ML-based methods are capable of normalizing

heterogeneous scans acquired under different conditions to a reference condition (e.g., pa-

rameters that are recommended by Societies for clinical practice). This work helps address

part of the gap between computer-aided detection/diagnosis models that are cited in the

academic literature and their clinical translation.
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1.3 Organization

In Chapter 2, we describe the technical background information on the basics of CT, ra-

diomics, and an overview of related work of image enhancement techniques for mitigating

variability in medical images. Chapter 3 discusses Aim 1, developing and evaluating a GAN

to normalize CT images. This chapter is an extension work based on a previous peer-reviewed

paper [133]. In order to overcome the limitations of the model described in Chapter 3, Chap-

ter 4 is related to Aim 2, describing the conditional Flow-based image normalization model.

I show how this approach is capable of modeling uncertainty which is unsupported by GAN-

based methods. Chapter 5 summarizes the comprehensive evaluation performed as part of

Aim 3 and proposes recommendations for improving model generalization. This chapter

is adapted from a prior publication [69]. Moreover, Chapter 5 discusses ways to improve

computational efficiency using the novel spatial-temporal convolution. A summary of the

results and concluding remarks from Chapters 3 to 5 are presented in Chapter 6, along with

a discussion of the limitations of this work and future directions.
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CHAPTER 2

Background

2.1 Computed Tomography

A beam of x-rays is aimed at the patient at different angles, creating a series of signals that

are analyzed by the machine’s computer to produce cross-sectional images of the body. Data

from the scanner were transmitted to a computer, which combined successive slices into a

three-dimensional image of the patient, making it easier to locate and identify basic organs,

tissues, and tumors. The process to map the measurements back to a three-dimensional

image, is considered an inverse problem. In this problem setting, M is an operator that

yields measurement data y given the model parameters x, the true image data, and N is the

measurement noise. The goal of CT imaging is to infer the true image from the measurement

results y.

y =M(x) +N (2.1)

2.1.1 Filtered back projection

Using the Radon transform [124], we can represent an image f(x, y) represented by the

function as a series of line integrals at different offsets from the origin. This is shown in
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Figure 2.1: Radon Transform. Image is adapted from [41].

Figure. 2.1 and is defined mathematically as:

g(r, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy (2.2)

, where r is the perpendicular offset of the line of projection. In other medical imaging

techniques such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography

(PET), data is acquired similarly by projecting a beam through an object. As a result of

its characteristic sinusoidal shape after collecting Radon transform data at all angle θ, is

referred tp as “sinogram” or (raw) projection data.

Once projection data g(r, θ) is obtained, we need to solve the inverse problem by finding

f(x, y). Fourier slice theorem states that 1D Fourier transform of the projection g(r, θ) is

equal to the 2D Fourier transform of f(x, y) evaluated at that angle θ or G(0, θ), parallel to

that the slice.

G(ω, θ) = F (u, v)|u,v=ω cos θ,ω sin θ (2.3)

2D inverse transform of the image is

f(x, y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

F (u, v)ej(ux+vy)dxdy (2.4)
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After changing of variables,

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞
−∞
|ω|G(ω, θ)ej(x cos θ+y sin θ)dωdθ (2.5)

Here, we multiply the projection with |ω| in Fourier domain. This is called filtered

back projection. Intuitively, |ω| is a ramp filter (high-frequency filter) to compensate low-

frequency components accumulated during forward projection. This process corrects the

image by reducing blurring. However, because the ramp filter emphasizes too many high-

frequency components of the image, it can cause unwanted noise. Several other high-pass

filters are commonly used to reduce noise. In medical physics, this is referred to as recon-

struction kernels. The kernel affects the appearance of image structures by smoothing or

sharpening the image. Different kernels have been developed for specific anatomical appli-

cations. There is generally a trade-off between spatial resolution and noise for each kernel.

Smoother kernels produce images with less noise, but at the expense of reduced spatial res-

olution. A sharper kernel provides images with a higher spatial resolution, but increases the

amount of noise in the image. It is important to select a reconstruction kernel based on spe-

cific clinical applications. When conducting exams for the brain or abdomen, for example,

smooth kernels are typically used in order to reduce image noise and enhance low contrast

detection. In contrast, sharper kernels are typically used to assess bone-like structures due

to the clinical requirement for better spatial resolution.

The second dimension of reconstruction parameters is slice thickness, which controls the

spatial resolution in the longitudinal direction. The medical professional’s responsibility is to

select the most suitable reconstruction kernel and slice thickness for each clinical application

to minimize radiation dose and maintain image quality. Recommended protocols have been

developed by the American Association of Physicists in Medicine (AAPM) Working Group

to be used in the specific context of Lung Cancer Screening [2]. The protocols were based

in part on manufacturer’s guidelines, but were also adapted based on the National Lung

Screening Trial.

11



2.1.2 Radiation dose

Dose, however, is not a reconstruction parameter but an acquisition parameter. Dose affects

the noise level of images and thus the Signal-to-Noise Ratio (SNR). The radiation risk of

X-ray CT gained increasing concern in the past decades. Studies have shown that although

exposure to ionizing radiation from natural or background sources has not been changed

since 1980, in the US the total per capita radiation exposure has nearly doubled, and experts

believe the main reason is increased use of medical imaging [99]. Researchers at Brigham

and Women’s Hospital in Boston conducted a study in 2009 to estimate the risk of cancer

caused by CT scans over the course of 22 years for 31462 patients. Overall, the increase in

risk was 0.7% higher than the overall lifetime risk of cancer in the United States. On the

other hand, patients with multiple CT scans were at higher risk, ranging from 2.7% to 12.7%.

An increased risk of thyroid cancer and leukemia may also be associated with CT scans in

adults and those diagnosed with non-Hodgkin lymphoma (NHL) at a young age. [109,122].

Until we learn more, the general consensus is to limit the use of ionizing radiation for

medical procedures. Therefore, the U.S. Preventive Services Task Force (USPSTF) rec-

ommends annual LDCT for lung cancer screening for people who have higher risks [52].

However, lowering CT scan dose leads to noisy raw data as well as streak artifacts after

reconstruction. Because of the reduced X-ray dose, image noise may degrade image quality

and result in an unsatisfactory diagnostic accuracy. Extensive studies have been conducted

to minimize noise and artifacts for LDCT, including iterative reconstruction algorithms and

image post-processing.

While the first CT scanners used iterative algorithms in 1970s, their clinical applica-

tion was impeded by a lack of computational power [105, 112, 134]. Researchers have been

developing new iterative algorithms for better LDCT image reconstruction [34]. They are

followed by forward projection to the original reconstructed image to create simulated projec-

tion data, and then compared to the measured raw data. An updated reconstructed image
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is generated in case of a mismatch. The alternating process of correcting reconstructed

imaging data and simulating projection data is repeated until a pre-defined condition is

met and the final image is generated. The correcting process aims to optimize an objective

function based on a system model, a statistical noise model, or prior information about

the true image [27, 66, 100, 117]. Among the most popular image priors are total variation

(TV) regularization [111], dictionary learning [137], and wavelet frames [20]. However, their

computational cost and sensitivity to parameters changes restrict their practical application.

Methods of image post-processing after reconstruction are much more efficient than iter-

ative reconstruction because they act directly on reconstructed images. The K-SVD method

is proposed to reduce artifacts in CT reconstructions inspired by compressed sensing [7].

Another technique of practical use for CT imaging post-processing is Block Matching 3D

(BM3D); it exploits similarities among the image blocks [22, 31, 54]. The Nonlocal Mean

(NLM) filtering method estimates noise components based on multiple patches extracted

from different locations in the image [70]. These post-processing methods have significantly

improved the quality of the images; however, the results typically suffer from blurring and

artifacts due to the nonuniform distribution of reconstruction noise.

Meanwhile, deep learning is becoming increasingly popular for computer vision tasks,

but it is also proving to be very useful for denoising LDCT. The same concept is extended to

computer vision tasks beyond denoising, such as super-resolution. Section 2.3 explores the

related work that utilize deep learning for noise reduction and mitigates imaging variabilities

due to multiple CT parameters.

13



2.2 Radiomics

Radiomics refers to a branch of medical science based on extracting a variety of pre-defined

quantitative imaging features from radiographic images using data-driven algorithms. The

features of these images tend to reveal disease characteristics that are not readily apparent

to radiologists. It is believed that radiomics is capable of using the unique imaging char-

acteristics of disease forms to predict prognosis and therapeutic response, thus facilitating

personalized medicine [60]. Nevertheless, the technique can be applied to any medical study

requiring medical imaging.

Radiomic features can be divided into shape-based features, first-order features, and

higher-order texture-based features [93]. With the exception of shape features, all features

can be calculated on either the original or derived images, obtained by applying preprocessing

filters such as Wavelet, Lapacian of Gaussian (LoG) filters.

First-order features describe the distribution of voxel intensities within the region de-

fined by the mask through first-order statistics. Still, they do not represent the voxel-level

relationships within the image. The inter-voxel relationships can be captured by texture-

based features, the gray level co-occurrence matrix (GLCM) , gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM), and neighborhood gray zone difference

matrix (NGTDM). GLCM features are the most commonly used textural features applied

to various of medical imaging modalities to characterize biological tissue [6,95,116]. A gray

level run length matrix (GLRLM) identifies the number of adjacent voxels with the same

gray level value. It characterizes the gray level run lengths of different gray level intensities

in any direction [113]. In addition, GLRLM-based features are also being used to describe

biological tissues across other medical imaging modalities [55, 115]. A number of NGTDM

features have been developed to correlate the quantitative values of texture features as closely

as possible to human’s visual interpretation of texture [21,123]. For example, coarseness pro-

vides a measure of local uniformity, while contrast provides quantitative information about
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differences between intensity levels in neighboring regions.

Using radiomic features, researchers suggested that a subset of intratumoral heterogeneity

can improve survival prediction [6]. In addition, studies showed that radiomic features linked

to prognostics in lung cancer might also be useful in head-and-neck cancer. However, Parmar

et al. [95] demonstrated that some radiomic features might be associated with different

prediction outcomes depending on the type of cancer. The researchers also observed that

radiomic features are sensitive to the disease type. The features relevant to predicted lung

cancer survival do not always successfully predict survival from head and neck cancers.

Several studies have shown that radiomic features predict treatment response better than

conventional measures, such as tumor volume and diameter [123]. Radiomics has also been

shown to be beneficial in predicting a patient’s immunotherapy response using pre-treatment

PET/CT for Non-small-cell lung carcinoma (NSCLC) patients [91].

The availability of large CT datasets coupled with advances in medical image analysis has

led to a proliferation of machine learning (ML) models that utilize quantitative image (ra-

diomic) features for prediction and classification. However, few radiomic features are used in

clinical practice. One significant barrier is that variations in CT acquisition and reconstruc-

tion impact downstream analyses, resulting in radiomic features with poor reproducibility.

The inability to reproduce quantitative image features is well-documented [53,76,78,125,148].

Prior studies have demonstrated that differences in dose, slice thickness, and reconstruction

kernel affects reproducibility in radiomics and tasks such as lung nodule detection and seg-

mentation [28, 29]. Similarly, robust methods to mitigate the effects of CT scanner-specific

acquisition and reconstruction parameters are critically needed to generate reliable radiomic

features and achieve consistent algorithm performance. The following chapters will explore

the impact of CT image normalization on radiomic feature value variability.
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2.3 Related work

This section presents an overview of the related works for mitigating variations due to mul-

tiple CT parameters. CT voxel intensity profiles are created at different scales and shift

factors due to CT parameter variations. Changes in the imaging intensity domain do not

contribute equally to the quantitative imaging feature extraction, leading to biases. As a

result, statistical analysis and machine learning based on radiomic features are notoriously

sensitive to such changes, which subsequently hampers building robust models by pooling

data. Thus, normalization is used prior to downstream image analysis. Given this context,

there are two main workstreams to address this challenge: 1.) normalizing in image intensity

domain directly and 2.) normalizing in quantitative imaging features domain (radiomics).

In the first workstream, acquisition protocols and reconstruction settings are normalized,

for example, based on CT imaging guidelines. Although it can reduce variabilities due to

multicenter effects, recent analysis has demonstrated that it cannot eliminate them [19].

However, recent developments based on GANs have shown great promise to generate images

with a more similar appearance to the reference [47]. In the second workstream, to ensure

that downstream statistical analysis only relies on robust features that are not affected

by multicenter variations, only those features are selected. It is also possible to keep all

derived features, but their statistical properties are reconciled (normalized) to have a common

distribution. A variety of methods have been discussed in this category, such as ComBat or

“combating batch effects when combining batches” [51].

The simplest form of normalization is standardization or centering. f(x) = (x − µ)/σ,

where x and f(x) are the original and normalized feature values, respectively, µ and σ are the

mean and standard deviation of the feature values. Feature values can either be extracted

from quantitative imaging features or the original image intensity values. However, a simple

standardization does not capture local intensity relationships that are essential for recovering

image features for normalization.
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2.3.1 Normalization in image intensity domain

Histogram matching-based algorithm has been widely used prior to ML-based techniques

became widely available [131]. Histogram matching translates input images by mapping the

source image’s histogram to the target image’s histogram using a prior cumulative distribu-

tion function (CDF). In practice, the target reference image’s cumulative histogram is quite

often missing or not well defined. The major disadvantage of histograms is the loss of infor-

mation about local features within the image. However, it is also possible to divide a source

image into patches and match histograms for every patch, hoping to achieve location-specific

image synthesis using patch-based representations. Histogram matching based on patches,

however, can introduce artifacts along the edges of patches. As Figure 2.2 shown, histogram

matching is sensitive to parameters changes and artifact-prone.

Additionally, extracting abstract features beyond image intensity requires sophisticated

preprocessing, e.g.. textural analysis. It is necessary to apply image processing filters prior

to matching a histogram with an image. There are many ways to analyze images for texture

analysis, such as applying Gabor filters to analyze specific frequency content in specific

directions and a localized area. Feature engineering involves designing a filter to extract

salient features from images. In summary, focusing only on the intensity information alone

is insufficient for ensuring consistent image normalization.

The transforming relationship between unnormalized and target image is not necessarily

linear. To ensure robust quantitative imaging features from translated images, models that

consider nonlinear mappings are essential in order to mitigate the effects of variations from

multiple dimensions. For example, several studies have been conducted to develop better

image processing models for low-dose CT denoising thanks to the recent advancement of

deep learning-based image translation techniques. The same approach can be extended to

mitigation tasks beyond CT denoising. Those works fall into two categories: Convolutional

neural network-based (CNN) and generative adversarial network-based (GAN) approaches,
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Figure 2.2: Histogram matching example. A.) unnormalized image. B.) reference image. C.

and D.) normalized images using different histogram matching parameters (bins and patch

size). Artifacts can be seen at the edges of C are blurred; D has a discontinuous region at

the right of the tumor. Images are adapted from [72].

both seeking a function Gθ to map an input low-dose image x to a ground-truth routine-dose

image y so that the density Π(Gθ(x)) is close to the real data density.

2.3.1.1 CNN-based approaches

Mitigating the effects of dose has been the focus of multiple prior studies involving low-

dose CT. CNN-based approaches utilize training on a deep convolutional neural network to

optimize mean square error (MSE) loss, which directly maps a corrupted input image to a

reference at a standard condition. The most commonly used ones are variants of U-net [102].

Chen et al. [17] used a residual encoder-decoder convolutional neural network (RED-CNN) to

reduce noise in low-dose CT images. Figure 2.3 depicts the network structure of RED-CNN.

RED-CNN is derived from the classic U-net [46] that contains an encoding and decoding

branch with skipped connections.

Park et al. [94] used a U-net to overcome partial volume effects by learning an end-to-

end mapping between 15 mm and 3 mm slice thickness images. Differences in reconstruction

kernels can substantially impact texture features, which are commonly used in Computer

Aided Detection (CAD) algorithms for disease characterization. Lee et al. [19, 65] used a
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Figure 2.3: Architecture of RED-CNN network. Images are adapted from [17].

CNN to convert between smooth and sharp kernels. They demonstrated that normalizing

kernels reduces variation in computed emphysema scores.

One issue with the CNNs is that they heavily rely on convolutional kernels, which in-

tegrate fixed-size filters to process one local neighborhood at a time. As a result, they do

not efficiently retrieve information about a large region’s structure. “Self-attention” was

introduced in [67] to capture a wide range of spatial information both within CT slices and

between CT slices. CNNs powered by the self-attention mechanism are able to leverage

pixels that have more significant relationships regardless of their distance and achieve better

denoising results.

Though these innovative network structures have produced impressive results, they learn

the direct mapping between target and source, typically using the mean squared error (MSE)

between the network output and the ground truth as the loss function. Despite its simplicity,

MSE implies that the underlying image data was derived from a Gaussian prior, which is

rarely the case for complex imaging data. Pixel-wise MSE results in over-smoothed edges

and loss of detail. When an algorithm attempts to minimize per-pixel MSE, it ignores

images with textural features essential for human visual perception. In the next section,
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we demonstrate the power of using GAN-based approaches to overcome the oversmoothing

effect, as seen in CNN.

2.3.1.2 GAN-based approaches

Over the past few years, GAN-based approaches have been shown to generate realistic sam-

ples that are virtually indistinguishable from the training data. GANs take a minmax game

theory approach that utilize adversarial training by directly sampling data and thus bypass

any explicit density function estimation [36]. In the context of minmax games, there are two

players, a generator G and a discriminator D. The basic formulation of GAN is presented

in equation 2.6. D and G are trained by solving the following minimax problem.

min
G

max
D
L(D,G) = Ex∼Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))] (2.6)

Here, E[ ] denotes the expectation operator. Pr and Pz represent the real (reference)

data distribution and the generated data distribution. z denotes a noisy feature vector

that encodes a unique image. Generator G transforms z to an image sample that looks

similar to the real one from a data distribution, denoted by Pg. If D were trained to

behave like an optimal discriminator for G, the minmax optimization process is equivalent

to minimizing the Jensen-Shannon (JS) divergence of Pr and Pg. The generative model

framework can be extended to the “conditional” generative model, where one can impose

a prior of unnormalized image x to the formulation (2.7), allowing G to transform z to a

reference image sample G(z; x̂) given a unnormalized image x̂. An example of the GAN

network structure is shown in Fig. 2.4.

min
G

max
D
L(D,G) = Ex∼Pr [logD(x)] + Ez∼Pz ,x̂∼Px̂ [log(1−D(G(z; x̂)))] (2.7)

Wolterink [136] was the first to use a GAN to translate low-dose scans to appear similar

to scans acquired at higher doses. Yang et al. [139] pursued a WGAN-based approach to

enhance low-dose CT images, showing the effectiveness of a perceptual loss module to retain
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Figure 2.4: An example of Network architecture of GAN-based LDCT denoising model.

Images are adapted from [67].

the texture characteristics of the image and avoid the oversmoothing effect. Figure 2.5

depicts a collection of normalized images for the AAPM dataset [3] study. It can be seen

that GAN is able to recover textural details and thus improve image quality.

Wei [133] implemented a spectral-norm GAN (SNGAN) to stabilize GAN training and

was able to mitigate variations due to multiple CT parameters. You et al. [144] demonstrated

that a CycleGAN [151] could recover high-resolution images from down-sampled ones. Chen

[18] implemented a similar GAN-based model for a MRI dataset. GAN-variants still need

the use of content loss (such as MSE) to preserve structural consistency. Both approaches

involve minimizing the MSE between the ground truth data.

θ̂ = argmin
θ

1

N

N∑
i=1

‖Gθ(x)− y‖2 (2.8)

Studies [49, 84, 152] have shown that GANs suffer from mode collapse and are prone to

ignore the input noise vector z. All GAN-based methods mentioned above discourage using
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Figure 2.5: DictRecon, CNN and GAN-based approaches evaluation results on AAPM LDCT

challenge dataset. Images are adapted from [139].
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the random vector z, and therefore the mapping is deterministic.

The limitations of existing CNN- and GAN-based works may be summarized as fol-

lows: a) they are typically trained on scans that have Gaussian noise added to them post-

reconstruction, which does not reflect the physics of noise generation in raw projection at a

low dose, b) most of the works only mitigate a single source of variability (e.g., dose or slice

thickness) rather than address the impact of multiple parameters simultaneously, a scenario

that is routinely encountered in practice, and c) they are evaluated using voxel-level metrics

such as peak signal-to-noise ratio, which does not necessarily reflect how such normalization

techniques would influence tasks such as emphysema scoring or nodule detection.

2.3.2 Normalization in QIFs domain

Combat is an empirical Bayesian method for data harmonization that was initially designed

for genomic [85, 97, 110]. Various laboratories, tools and technicians may handle samples

differently, leading to variations in measurement results. Johnson et al. [51] used the term

“batch effect” to refer to the variabilities. Generally, ComBat applies to situations in which

various features of the same type are measured for each subject, or where imaging-derived

feature metrics are derived from different anatomical regions or voxels. “Batch effect” is

conceptually related to variations in radiomic features due to differences in scanner models,

acquisition protocols, and reconstruction settings across multiple centers [11, 81, 92]. As a

result of ComBat, derived QIF data generated under different CT conditions can be repre-

sented in a common space, taking into consideration the effects of multicenter variations.

ComBat works as described in formulation 2.9, where Yijg refers to extracted radiomics

features values, and Xβ̂g denotes covariate matrix for sample conditions and regression co-

efficients in the model that are not caused by CT parameter variability. Least-square is used

to estimate features-wise mean and standard deviation, α̂g and σ̂g for feature g, sample j,

and group i.
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Figure 2.6: PCA and summary distribution in LACC dataset (Locally advanced cervical

cancer): Scatter plots of two principal components of the radiomic features across the three

groups (Brest, McGill, Nantes) using untransformed (unnormalized) data or data normalized

with ComBat. Images are adapted from [103].

Zijg =
Yijg − α̂g −Xβ̂g

σ̂g
(2.9)

After standardization, Zijg is assumed to take the parametric forms for prior distribution,

N (γig, δ
2
ig). Method of moments is used to estimate hyperparameters used to compute the

empirical Bayes estimates of conditional posterior means features-wise for the center effects

parameters [11, 51]. The final adjusted values after feature normalization are given by 2.10.

As shown in Figure 2.6, ComBat is able to mitigate heterogeneities observed in radiomic

features among three groups of data.

Y ∗ijg =
σ̂g

δ̂∗ig
(Zijg − γ̂∗ig)α̂g +Xβ̂g (2.10)

ComBat empirical Bayes estimation method has several advantages over a general linear

model, including using a covariate to model a site or scanner as a fixed effect. Notably, Com-

Bat is more resilient to outliners in cases of small sample sizes [51]. ComBat assumes that,
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for a given scanner, scanner effects across features originate from a common distribution,

and leverages information across features to shrink estimates towards a common mean [11].

With the increasing popularity of deep learning models for medical analysis tasks, deep

features are extracted instead of radiomic features. Generally, deep features cannot be in-

terpreted, and are depend only on pre-trained models. Since deep learning models are not

standard, each institute can develop models that vary from different disease types. Never-

theless, the model parameters change with each iteration of model training for a fixed model,

resulting in different forms of deep features. Therefore, normalization in the QIF domain is

no longer feasible. Although Combat is effective at normalizing radiomic features, it remains

to be seen whether the method can also be applied to deep learning models.
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CHAPTER 3

Conditional Generative Adversarial Networks

Variations in the appearance of Computed Tomography (CT) scans due to differences in ac-

quisition and reconstruction parameters (e.g., dose, slice thickness, kernel) adversely impact

the reproducibility of quantitative image features and the performance of machine learning

models. Prior studies have attempted to mitigate the effect of a single parameter (e.g.,

dose), but variability in image appearance often results from the combined effect of dif-

ferences in multiple parameters. In this study, we propose a 3D spectral-norm generative

adversarial network (SNGAN) that normalizes CT images acquired and reconstructed under

different conditions. We used raw projection data from low-dose chest CT scans of patients

to generate a variety of reconstructions that simulate different dose levels, slice thicknesses,

and reconstruction kernels. Each scan from 186 patients was reconstructed using 10 image

conditions representing different acquisition and reconstruction parameters. Defining one

condition to be the reference (i.e., a scan acquired at 100% dose, 1.0 mm slice thickness,

medium kernel), we trained SNGAN models to normalize all other scans to the reference.

We evaluated SNGAN against other state-of-the-art methods by comparing image quality

metrics, impact on computed radiomic feature values, and a specific task (i.e., lung nodule

detection). Our SNGAN improved perceptual similarity by 22%, compared to another GAN-

based method. SNGAN resulted in smaller radiomic feature errors when compared to the

reference condition (16% increase in features with “good” and “moderate” agreement based

on concordance correlation coefficient). Performance of the existing nodule detection model

was more consistent on scans normalized using SNGAN achieved compared to unnormalized

scans (up to 75% improvement in concordance correlation coefficient). Collectively, these
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results demonstrate the SNGAN’s ability to normalize heterogeneous CT images and reduce

adverse impacts on downstream tasks.

3.1 Introduction

We present a generative adversarial network (GAN)-based approach to mitigate the effects

of working with CT scans that have been acquired and reconstructed using a range of param-

eters. Our goal is to attain consistent radiomic feature values and computer-aided diagnosis

(CAD) performance when characterizing the same imaging abnormality across a wide range

of input scans. We demonstrate this application in the context of lung nodule detection on

low-dose CT. We hypothesize that the improved image quality results in better consistency in

nodule detection. Our approach takes CT scans, acquired at varying doses and reconstructed

using different slice thicknesses and kernels, as input and generates images that appear as if

they were acquired using an identical set of parameters (i.e., a reference condition).

The novel CT image normalization method is based on a 3D GAN that utilizes a spectral-

normalization technique. Our model, called spectral-normalization GAN or SNGAN, pro-

vides an end-to-end solution for normalizing scans acquired using different doses, slice thick-

nesses, and reconstruction kernels. Our work is distinctly different to “one-size-fits-all” data

augmentation approach that makes robust and generalized models for different input con-

ditions. Instead, we created separate models for each common CT condition that are used

in clinical practice to map the unnormalized CTs to a reference. Separate models are more

flexible to address certain input conditions where mitigation is needed. Each institution has

its own set of commonly used protocols for acquisition and reconstruction. As prior work

from our team suggests, certain parameter variability may not have an impact on the repro-

ducibility of some radiomic features [30]. Thus, normalization might not be necessary for

those conditions. However, one can choose the appropriate model for a particular condition

when normalization is beneficial. The contributions of our work are as follows:
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1. We trained and validated our SNGAN model on a large collection of raw projection

data acquired from patients undergoing lung cancer screening using a high-throughput

reconstruction and analysis pipeline [44].

2. SNGAN mitigates variability from three CT parameters simultaneously (dose, slice

thickness, and kernel). 3D convolutions are used to improve the spatial resolution

along the z direction.

3. A multi-pronged evaluation is conducted to evaluate the impact of SNGAN in a) opti-

mizing per-voxel and perceptual metrics, b) reducing variability of computed radiomic

feature values across different scans, and c) achieving more consistent performance of a

previously published lung nodule detection [14] when executed on scans acquired using

different parameters.

While using GANs to mitigate the effect of multiple parameters has not been widely

explored, we compare our approach to one existing work called GANai [72]. GANai uses

a conditional GAN (cGAN) and alternative training strategies to map two reconstruction

parameters (kernel and slice thickness) to a target condition. However, its ability to improve

the resolution along the z direction was fundamentally limited due to the 2D network struc-

ture. Their training was performed in 2D with source (thick slice) and target (thin slice)

image pairs. The partial volume effect was not fully addressed. We overcome this by utilizing

3D convolutions in our network. Our method learns the spatial correlation in adjacent slices

from thin slice scans and results in high z resolution in normalized images. The authors also

did not investigate the impact of their cGAN on radiomic feature values due to variations

in dose. To the best of our knowledge, no existing work has attempted to simultaneously

normalize multiple CT parameters (dose, kernels and slice thickness). Moreover, while most

studies evaluate their approaches using per-voxel image quality metrics or human reader

studies, we designed the experiments to be objective and task-oriented, providing a clearer

understanding of what impact the method would potentially have in practice.
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3.2 Method

GANs have been used to generate photo-realistic images, translate images from one style

into another, and perform image enhancement such as denoising [36, 64]. However, GANs

are notoriously difficult to train and sensitive to the choice of hyperparameters. Arjovsky et

al. [9] was the first to realize that a GAN’s loss function had fluctuating gradients, frequently

resulting in unstable training. Based on this finding, multiple studies attempted to identify

better loss functions that achieved smoother landscapes. One potential function is the Earth-

Mover distance used in the Wasserstein GAN with Gradient Penalty (WGAN-GP) [38].

WGAN requires the computation of the second-order gradient, thus increasing complexity.

Our model utilizes a robust spectral-norm layer to satisfy the Lipschitz constraint as opposed

to using Wasserstein distance.

As a comparison, we implemented a baseline 3D model based on a convolutional neural

network (CNN) with absolute error (L1) loss. When specifically mitigating the effect of

dose, we implemented WGAN-GP as a comparison. First, we evaluated image quality using

the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Learned Perceptual

Image Patch Similarity (LPIPS) [147] calculated along the axial, coronal, and sagittal planes.

Second, we studied the effect of normalization on radiomic features by computing these

features from segmented nodule regions using CNN and SNGAN. We calculated the absolute

error and concordance correlation coefficient (CCC) between radiomic features computed

using the scans acquired at the reference condition and unnormalized vs. normalized scans.

Third, we fed the normalized images into an existing nodule detection algorithm, comparing

the performance of our nodule detection algorithm when given unnormalized and normalized

scans.
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Figure 3.1: UCLA dataset. Condition A-I were generated from the reference raw sinogram

data using dose simulation, followed by image reconstruction with weighted filtered back

projection (wFBP) algorithm. [45]
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3.2.1 Datasets

Our dataset consisted of 186 chest LDCT exams that were acquired at an equivalent dose

of ∼2mGy. The images were collected under IRB/ethics board protocol number 11-000126

(Computer Analysis of CT images). Raw projection data of scans performed on Siemens CT

scanners (Definition Flash, Sensation 64, Definition AS) were exported. Poisson noise was

introduced into the raw projection data, as described in [44] at levels that were equivalent

to 10% and 25% of the original dose. Original full-dose and reduced dose projection data

were then reconstructed into an image size of 512 × 512 using three reconstruction kernels

(smooth, medium, sharp) and two slice thicknesses (1.0 mm, 2.0 mm). Fig. 3.1 illustrates

how a cropped image of a lung nodule would appear across each of the reconstructed con-

ditions. The dataset was split as follows: 80 scans for training, 20 scans for validation, and

86 scans for testing. In the test set, 43 scans (50%) contained a total of 68 lung nodules.

The centroids of these nodules were marked by a trained image analyst using the original

radiologist report as a reference. In this study, the reference condition was set to be 100%

dose, medium kernel, and 1.0 mm slice thickness. The slice thickness and kernel was chosen

to reflect parameters that are currently recommended for lung cancer screening [1].

3.2.2 Network architecture

3.2.2.1 GAN and loss functions

GANs consist of a generator G and a discriminator D. The generator learns a function

G(x) that takes an inputted scan x, outputting an image ŷ that mimics the appearance of

a scan y acquired under a reference condition. A discriminator D is trained using both the

normalized scans generated by generator and actual scans acquired at the reference condition

as inputs to differentiate between ŷ and y. D constantly judges the similarity between ŷ

and y to improve the performance of the generator. A good generative model is achieved

when the discriminator can no longer distinguish between them. In this work, we follow a
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similar network architecture as reported by Wei [133]. Inspired by Enhanced Deep Residual

Networks (EDSR) [73], we use a SRResNet as our generator, which consists of multiple

layers of residual blocks to extract features. The basic residual block is composed of two

3 × 3 × 3 convolutional layers and a ReLU. The deep features extraction is followed by an

upsampling block in the z-direction and two sequential convolutional blocks before outputting

a generated normalized image. This upsampling block mitigates the partial volume effect

resulting from thicker slices. Hinge loss is used for the discriminator to constrain D to focus

on samples that are difficult to classify as model outputs versus actual scans. The generator

loss function contains an L1 content loss and an adversarial loss. The discriminator loss

VD(G,D) and generator loss VG(G,D) are shown in equations 3.1 and 3.2, where px and py

are distributions of non-reference input scans and the reference scan, respectively. Training

proceeds with alternating D and G updates, minG maxD[VD(G,D)+VG(G,D)], where Θ and

W are the network parameters of the discriminator and generator, respectively. The weights

of Θ and W are initialized using Kaiming initialization [42] with a scale of 0.1. The network

structures are illustrated in Fig. 3.2. The baseline CNN model has the same architecture

as the generator network but trained without the discriminator model. Either L1 or L2 loss

can be used to train a CNN model. Details regarding the choice of loss functions can be

found in 3.3.1.1.

VD(G,D) = E
y∼py

[min(0,−1 +DΘ(y)]

+ E
x∼qx

[min(0,−1−DΘ(GW (x)))] (3.1)

VG(G,D) = −α1 E
x∼qx

[DΘ(GW (x))]

+ α2 E
x∼qx
y∼py

‖GW (x)− y‖1 (3.2)
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Figure 3.2: Network architecture of the generator (left) and discriminator (right). s{}f{}

stands for stride number and filter number. The upsampling block only operates in the z

direction.

3.2.2.2 Spectral-norm

To improve the training stability, WGAN-GP [38] imposed local regularization on the dis-

criminator to satisfy the Lipschitz continuity constraint by penalizing the gradients. Here,

we used spectral-norm [90] to achieve the same goal. The spectral-norm is a robust global

regularization, as opposed to calculating the computationally expensive second-order gra-

dient penalty term in WGAN-GP. Given a weight matrix W, K-Lipschitz constraint states

that ‖Wx‖ ≤ K‖x‖, for any x and finite K. The spectral-norm is the maximum singular
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value of matrix W. One can normalize W by the largest singular value of WTW or
√
λ1

to satisfy 1-Lipschitz continuity, where λ1 is the dominant eigenvalue. However, computing

eigenvalues using singular value decomposition (SVD) is not desirable for larger matrices due

to the computational cost. We followed the same strategy introduced in [90] using power

iteration to compute this value efficiently. The algorithm is outlined in Algorithm 1. Instead

of performing multiple iterations to find the converging spectral-norm value, we only con-

ducted a single iteration at each backward propagation, which reduced the computational

complexity. Therefore, normalizing W by spectral-norm was seamlessly integrated into the

global network parameter update step.

Algorithm 1: Spectral-norm power iteration algorithm.

Sample a random vector ũn ∈ Rmn from an isotropic distribution, where mn is the

dimension of the n-th layer;

for each mini batch do

for each linear operation layer n do

• ṽn ← WT
n ũn

‖WT
n ũn‖

;

• ũn ← Wnṽn
‖Wnṽn‖ ;

• Spectral-norm for layer n weight matrix,

W∗n ←Wn/
√
λ1 where

√
λ1 = ũTnWnṽn;

• Update Wn, with learning rate α, and β1,2

using Adam optimizer,

Wn ←Wn − Adam(∇WnL(W∗n, D), α, β1,2);

end

end
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3.2.3 Model training

We inputted patches of size 16×64×64 voxels (depth, height, width), excluding patches that

were primarily outside of the body. We randomly generated the input patches to avoid

overfitting. The raw voxel Hounsfield values were cropped to [-1000, 500] and were scaled to

[0, 1]. The outputted patch from the network had a dimension of 32×64×64. As reported

in [90], the best choice of the D/G update ratio was 1, which was what we used for our model.

An Adam optimizer with β1 = 0.5 and β2 = 0.999 was employed. For the generator loss

function, α1 = 1 and α2 = 5e− 3 were used. These values were determined based on a grid

search performed on the validation set. The batch size was set to 16. Training was stopped

at 100k iterations when good convergence of image quality metric was achieved. The learning

rate was 1e − 5 and halved every 20k iterations. We used a single Nvidia Tesla v100 GPU

to train the model, taking approximately 60 hours. The NVIDIA APEX [88] mixed-precision

training package was used to accelerate training and reduce GPU memory requirements.

For robust inference and saving GPU memory, volumetric scans were represented using

half precision (FP16) and split into smaller 3D patches of size 512×512×32 (height, width,

depth). The outputted 3D patches are put back together with an overlap of 4 voxels in the

z-direction to reduce artifacts in stitching.

3.2.4 Experimental design

We investigated two normalization scenarios: 1) normalizing scans that were acquired at

different doses but with the same slice thickness and kernel (i.e., single CT parameter nor-

malization) and 2) normalizing scans acquired at different doses, slice thicknesses, and re-

construction kernels (i.e., multiple CT parameter normalization). In scenario 1, the network

acted as a denoising algorithm, a special case of scenario 2, in order to compare our SNGAN

approach compared to another GAN-based denoising algorithm, WGAN-GP. The approach

for each scenario is described briefly:
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1. We trained models to normalize an image acquired at a simulated 10% dose to an image

acquired at 100% dose. Image quality was evaluated using metrics such as PSNR, SSIM

and LPIPS. As a comparison, we re-implemented WGAN-GP [139] with the following

modifications: a) In the generator, we removed the ReLU in the last layer. We refer

to this generator network as vanilla CNN. b) In the discriminator, the perceptual loss

module was omitted given that a pretrained 3D perceptual network was not readily

available.

2. Models were trained to simultaneously normalize differences in dose, kernel, and slice

thickness. We trained individual SNGAN and baseline CNN models to perform a

mapping between nine different image conditions (2.0 mm slice thickness scans acquired

at 10% dose, 25% dose, and 100% dose, each reconstructed with either a smooth,

medium, or sharp kernel) to the reference condition.

3.2.4.1 Image quality assessment

Our primary focus is to improve consistency in downstream analysis tasks, measured by

CAD algorithm performance. Nevertheless, we performed evaluations using standard image

metrics to provide a comparison to prior methods. PSNR and SSIM (shown in formula 3.3

and 3.4) are commonly used to measure local differences between the output (e.g., normalized

image) and a reference image. However, these per-voxel metrics are computed using low-

level features that may not reflect the types of higher-level features that inform specific

tasks. Optimizing the loss corresponding to these metrics (e.g., using mean-squared error)

leads to overly smoothed images and eliminates texture details [150]. To better assess the

image quality, we used LPIPS, a perceptual metric that utilizes a pretrained VGG network

to generate similarity scores from high-level feature space between two images. A lower

LPIPS value represents a closer distance to the reference image. For each metric, results
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Figure 3.3: Single CT parameter (dose) normalization results. Difference images (bottom

left) generated from the normalized showing the residual between unnormalized, WGAN-GP,

and SNGAN compared with the reference condition.
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Figure 3.4: Multi-parameter normalization results. A volume of interest (VOI) containing a

lung nodule is displayed in axial, coronal, and sagittal plane. For a selected viewing plane,

each column represents a normalization condition.
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were calculated along the axial (x-y), coronal (x-z), and sagittal (y-z) planes.

PSNR(x, y) = 10 log10

Max (ŷij, yij)
2

1
mn

∑m
i=1

∑n
j=1(ŷij − yij)2

(3.3)

SSIM (ŷ, y) =
(2µŷµy + C1) + (2σŷy + C2)

(µ2
ŷ + µ2

y + C1)(σ2
ŷ + σ2

y + C2)

C1, C2 constants to stabilize the division

µŷ, µy mean of ŷ, y

σŷ, σy, σŷy standard deviation and co-variance of ŷ, y

(3.4)

3.2.4.2 Radiomic feature analysis

To evaluate the impact of our SNGAN normalization approach on radiomic feature values,

we used pyradiomics [127] to extract first-order, gray level concurrence matrix (glcm), gray

level run length matrix (glrlm), and gray-level size zone matrix (glszm) features. Given that

features were generated from 24×48×48 volumes of interest (VOI) containing the nodule,

shape features were not computed. All features aforementioned can be calculated either on

the original normalized images or preprocessed by applying: a) Laplacian of Gaussian (LoG)

filters (σ=1,2,3,4,5 mm) and b) Wavelet filters {H, L} applied in the x, y and z directions

(H: High pass, L: Low pass). We computed the absolute feature errors under each condition.

The absolute error for the i-th feature was defined as Ei = |X ′i −Xi|, where X is a feature

vector extracted from a VOI at some condition and X ′ is the feature vector from a VOI at

the reference condition.

To facilitate the analysis of the high-dimensional features, we used t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) [80] to reduce feature vectors [XT
1 , X

T
2 , ...X

T
n ] into two

dimensions. For each of the nine mapping conditions (Scenario 2), we visualized the dis-

tribution of features extracted from unnormalized, reference, and normalized (CNN and

SNGAN processed) scans. Kernel density estimation was used to estimate the probability

distribution for each group from the corresponding data points.
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We also used Lin’s concordance correlation coefficients (CCC) [62] to compute the level

of agreement between outputs generated from unnormalized and normalized scans for each

mapping condition. The computed CCC matrix was visualized using a heatmap. In this

study, a threshold of 0.9 was defined as having “good” agreement, a threshold between

0.9 and 0.8 was considered “moderate” agreement, and a threshold of 0.8 and below was

considered “poor” agreement based on prior interpretations of the CCC [63,138].

3.2.4.3 Lung nodule detection task

We evaluated the effect of using CNN- and SNGAN-based techniques to normalize scans

prior to inputting them into a lung nodule detection algorithm. For this task, we utilize an

existing algorithm [14], which utilizes common image analysis techniques such as intensity

thresholding, Euclidean distance, and watershed segmentation to identify nodules in the test

set. The detection model was trained using data from the Lung Database Image Consortium

[10]. The focus of this analysis is not on the detection algorithm’s absolute performance but

on the relative impact of normalization. As such, instead of reporting absolute sensitivity and

F1-score for the algorithm, we used CCC to measure the agreement of the model’s sensitivity

and F1-score between unnormalized or normalized (SNGAN, CNN) scans and the reference

scans. Subject-level sensitivity and F1-score for scan i were computed by formula 3.5, 3.6,

and 3.7 after running the algorithm on all test subjects across all image conditions. The

CCC for subject-level sensitivity and F1-scores were then computed by 3.8 to evaluate the

relative level of agreement in detection performance.

sensitivityi =
TPi

TPi + FNi

(3.5)

precisioni =
TPi

TPi + FPi

(3.6)

F1i =
2× precisioni × sensitivityi

precisioni + sensitivityi
(3.7)

40



CCC =
2ρσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)2
,

where σ, µ = mean({F1i}), std({F1i}),

and ρ is the correlation coefficient.

(3.8)

3.3 Results

To illustrate the results of Scenario 1, a single axial slice is shown in Fig. 3.3 comparing

the unnormalized scan with different normalization techniques. Fig. 3.4 depicts the results

of Scenario 2 for the same axial, coronal, and sagittal slices. All displayed lung window is

centered at -600 Hounsfield units (HU) with a width of 1500 HU.

3.3.1 Scenario 1: Single CT parameter normalization

3.3.1.1 Image quality assessment

Table 3.1 summarizes the image quality results for mitigating the effects of different doses.

SNGAN achieves superior PSNR, SSIM, and LPIPS compared to WGAN-GP. On average,

compared to the of WGAN-GP with c loss, SNGAN improved metrics by 9.0%, 7.3%, and

22.2% respectively. To further understand what aspect of SNGAN was driving the improve-

ments in metrics, we replaced the vanilla CNN generator in WGAN-GP with the SRResNet

generator. We also trained the models with both L1 and L2 loss to see the impact of the

choice of the content loss function. Fig. 3.3 shows each individual model’s residual when

comparing to the reference condition. SNGAN resulted in images that were less noisy as

evidenced by the smaller number of residual pixels. For WGAN-GP approaches (b,c,e,f),

the residuals were substantial along the chest wall, indicating that WGAN-GP struggled to

minimize the error in the region where high-frequency components dominated. The con-

vergence on Wasserstein distance for the various generator and loss functions are shown in

Fig. 3.5. Our ablation analysis showed that a) due to multiple residual connections, the
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SRResNet generator achieved superior Wasserstein distance convergence and was capable of

generating images with better visual quality; b) the use of L1 loss improved the overall image

quality and convergence; and c) even when WGAN-GP was equipped with the same gener-

ator architecture and L1 loss function, SNGAN still achieved superior performance across

all three image metrics, indicating that SNGAN’s discriminator played an important role in

enhancing image quality.

Table 3.1: Image quality comparison. Results at Ax(ial), Co(ronal), and Sa(gittal) viewing

planes were are calculated below. ↑ The higher the better: PSNR and SSIM. ↓ The lower

the better: LPIPS.

GAN type SNGAN WGAN-GP

Generator SRResNet Vanilla SRResNet

Loss function L1 L1 L2 L1 L2

PSNR

Ax 31.09 30.09 28.52 30.46 29.96

Co 32.76 31.67 29.85 32.10 31.57

Sa 31.37 30.38 28.99 30.73 30.28

SSIM

Ax 0.7967 0.7768 0.7456 0.7871 0.7741

Co 0.7771 0.7500 0.7199 0.7675 0.7534

Sa 0.8002 0.7758 0.7467 0.7915 0.7788

LPIPS

Ax 0.1556 0.1873 0.1919 0.16384 0.1691

Co 0.1548 0.1982 0.2076 0.1655 0.1720

Sa 0.1362 0.1744 0.1813 0.1454 0.1513
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Figure 3.5: Wasserstein distance convergence during training. Both L1 or L2 content loss

functions were employed for the CNN baseline and SNGAN models.

3.3.1.2 Training stability

We analyzed the training stability of WGAN-GP and our SNGAN for a variety of learning

rates. Fig. 3.6 shows the discriminator loss during training. A substantial spike for WGAN-

GP was observed at ∼10k iterations, where the discriminator caused the previously learned

weights of the network to reset. When the discriminator failed to learn, the generator fooled

the discriminator with trivial samples, regardless of whether the distribution of generated

images moved towards the target distribution. Therefore, a stable discriminator was critical

for the network to generate samples that resembled the desired reference images. Table 3.2

suggests that our SNGAN discriminator remained stable at a variety of learning rates while

WGAN-GP encountered gradient overflow for learning rates greater than 7e− 5.
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Figure 3.6: Discriminator training loss with different learning rates. WGAN-GP was not

stable when the learning rate was set to be 5e − 5. Spikes are highlighted by the purple

arrows.

3.3.2 Scenario 2: Multiple CT parameter normalization

Our SNGAN approach achieved better perceptual quality in terms of sharpness and texture

compared to the baseline CNN model. Enhancement was more pronounced on the coronal

and sagittal plane, as shown in Fig. 3.4. SNGAN was able to recover textures that resembled

the reference for all three image conditions displayed.

3.3.2.1 Radiomic feature analysis

While the proposed SNGAN approach yielded superior image perceptual quality, we also

examined whether the generated textures have similar statistical characteristics to the ref-
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erence. Fig. 3.7 depicts the distribution of radiomic feature values after dimensionality

reduction using t-SNE. The SNGAN model (green) resulted in transformed radiomics fea-

ture values that overlapped with the feature values extracted from the reference image (red).

In comparison, the CNN baseline model (orange) pushed the distribution away from the

reference (A, B, D, E, G, H). It should be noted that SNGAN was suboptimal in transform-

ing radiomics features for condition B (25% dose, smooth kernel) and I (100% dose, sharp

kernel).

Among the four selected features that were used to predict lung nodule malignancy in a

previous study [82], scans normalized using SNGAN had smaller absolute errors compared

to CNN-generated scans, as illustrated in Fig. 3.9. Suboptimal performance for SNGAN in

conditions B and I (Gray-Level-Non-Uniformity and Sum Entropy) was noticeable, under-

scoring what was observed in the t-SNE analysis. Fig. 3.8 depicts the level of reproducibility

for a large set of features. Feature values of unnormalized images had poor agreement for

conditions B, C, D, G and H. In most cases, SNGAN was able to mitigate the variability,

resulting in moderate to good agreement for these conditions. However, the CNN failed

Table 3.2: SNGAN and WGAN-GP stability. Spectral-norm GAN accepted a larger range

of learning rates while WGAN was more sensitive to changes.

lr SNGAN WGAN-GP

1e-5 3 3

5e-5 3 not stable

7e-5 3 7

1e-4 3 7
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to effectively mitigate the variability in most conditions. On average, SNGAN increased

the number of radiomic features that achieved “good” agreement from 326 to 357 (9.5%

increase) and features that achieved “moderate” agreement from 67 to 100 (49% increase).

The number of poor agreements decreased from 255 to 191 (25% decrease). In comparison,

the baseline CNN model decreased the features with “good” and “moderate” agreement from

326 to 214 and from 67 to 65, respectively. It also increased the poor agreement number

from 255 to 369, which was consistent with our observation in t-SNE visualization. SNGAN

could not mitigate the variability observed in certain texture features (e.g., GLCM, GLRLM,

GLSZM), but these features never achieved “good” agreement under any of the evaluated

conditions.

3.3.2.2 Lung nodule detection evaluation

In Table 3.3, after SNGAN normalization, the nodule detection algorithm achieved sensi-

tivity and F1-scores that were more consistent to what was obtained on the reference scan

when compared to CNN and unnormalized scans. On average, the CCC increased by 25%

and 75% for SNGAN on sensitivity and F1-score metrics, respectively, when compared to

unnormalized scans. These results demonstrate that not only SNGAN can mitigate vari-

ability in hand-crafted radiomic features, but it also enables CAD algorithms to perform

more consistently across a variety of input scans. However, it should also be noted that in

condition A, the baseline CNN model clearly outperformed SNGAN (0.7855 versus 0.6431).

Condition A was reconstructed using a smooth kernel. CNN-based models output images

that are smoother in appearance, which may explain why the CNN achieved results that had

a higher level of agreement than SNGAN.
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Table 3.3: Level of agreement of nodule detection performance metrics. CCC was used

to measure the agreement of performance metrics when evaluating the nodule detection

algorithm on unnormalized and normalized (CNN, SNGAN) scans compared to the reference

scan. The highest level of agreement for each image condition for sensitivity and F1-score is

bolded.

Condition
Sensitivity F1-score

unnormalized CNN SNGAN unnormalized CNN SNGAN

A 0.5081 0.7855 0.6431 0.3542 0.7272 0.6593

B 0.6618 0.7007 0.7761 0.3834 0.7112 0.7900

C 0.5909 0.7842 0.8083 0.4692 0.6652 0.7714

D 0.6353 0.6728 0.6508 0.4132 0.5407 0.5407

E 0.6844 0.6584 0.7007 0.5682 0.6493 0.8409

F 0.6024 0.7693 0.8567 0.3919 0.6494 0.8513

G 0.5476 0.7422 0.8144 0.3909 0.6056 0.6643

H 0.5132 0.6348 0.6904 0.3381 0.5896 0.6111

I 0.6533 0.7508 0.8302 0.3556 0.6579 0.6997

Average 0.5997 0.7221 0.7523 0.4072 0.6440 0.7143

3.4 Discussion

Few studies that present a novel normalization technique investigate the impact of the pro-

posed technique on computed radiomic features and downstream clinical tasks. By going

beyond image quality metrics, our study addresses a critical gap in understanding the im-

pact of normalization techniques on downstream tasks such as radiomic analysis and CAD.

As shown in Fig. 3.8, SNGAN is able to mitigate the effect of variability on most of the

first order intensity features. However, both SNGAN and CNN methods are not as effective
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at mitigating variability in texture features. Nevertheless, SNGAN is able to still achieve

moderate agreement in many texture features, much more than the baseline CNN model.

Conditions G, H and I are particularly challenging. One factor is that those image condi-

tions are generated using a sharp kernel that increases spatial resolution but results in noisier

reconstructed images.

We note that the different evaluations (image quality assessment, radiomic features anal-

ysis, nodule detection) provide complementary information. Conclusions drawn from the

radiomic features task does not necessarily translate to performance trends observed in the

nodule detection task. For example, in Fig. 3.7, we observe that using SNGAN achieves

better agreement in radiomic feature values than using a CNN. However, as Table 3.3 shows,

compared to CNN, SNGAN achieves an inferior level of agreement in the detection task for

condition A. As shown in Fig. 3.8, SNGAN struggles to generate consistent feature values

under condition B. Nevertheless, the nodule detection task still performs more consistently

using scans normalized using SNGAN compared to the others. Under condition B, SNGAN

achieves a better F1-score than C, E, G, D, and I. While some similarities between radiomic

and model-learned features may exist, the CAD algorithm likely weighs features differently

when performing the final classification. Performing only one of the three analyses would not

have given us a comprehensive understanding of the observed trends. The mismatch between

radiomic and task performance demonstrates the necessity of a multi-pronged evaluation to

provide a more comprehensive view of the benefits and limitations of a normalization method.

There are limitations to our approach. First, as shown in Fig. 3.9, some radiomic features

(e.g., Idm under Condition A, SumEntropy under Conditions B & I) perform better (e.g., had

smaller absolute errors when compared to the reference scan) when unnormalized than when

normalization is applied. One explanation could be that these specific radiomic features are

sensitive to the effects of normalization: the CNN overly blurs out texture features while the

SNGAN adds too much texture to the images. Second, super-resolution enhancement is an

inherently an ill-posed problem with multiple possible solutions. However, the generator of
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a GAN is deterministic [84]. Stochastic alternatives such as SRFlow [79] may address this

issue. Third, we train individual models for each mapping (9 models to cover all 10 image

conditions where one condition is designated as the reference). Given that having a model

for each mapping is impractical, a conditional GAN (cGAN) could be used to incorporate

contextual information (acquisition and reconstruction parameters) during training to learn

multiple mappings simultaneously, reusing weights for various input conditions. We focus

on the most common types of CT parameter variations (dose, kernel, and slice thickness). It

also should be noted that we have not yet explored other sources of intrascanner variability

such as pitch, kVp, and detector configurations.

SNGAN was trained and evaluated on data acquired using scanners from a single manu-

facturer (Siemens Healthineers, Erlangen, Germany). Generalizability of our model remains

part of future work, but we have examined a wide range of doses, slice thicknesses, and

kernels, which likely overlap with variations seen in scans acquired using scanners from

other manufacturers. SNGAN is also potentially generalizable to other imaging modalities

(e.g., magnetic resonance imaging, positron emission tomography) whenever paired low and

high resolution data are available. Given the difficulty of obtaining paired datasets of the

same subject, one avenue of potential exploration is to employ self super-resolution (SSR)

algorithms [149].

3.5 Conclusion

Our work addresses the need for techniques to mitigate variability in CT scans due to acqui-

sition and reconstruction parameters. This study presents a 3D GAN-based approach called

SNGAN to normalize heterogeneous images using an approach that retains the perceptual

characteristics of the reference image. SNGAN is further enhanced using a spectral-norm

method to ensure training stability. We evaluate our approach in two scenarios (single CT

parameter and multiple CT parameters) and three different experiments (image quality as-
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sessment, radiomic feature analysis, task-based evaluation). We show that SNGAN, when

compared with other normalization techniques, achieves better image quality metrics, re-

duces the variability in radiomic feature values, and achieves a higher level of agreement on

the nodule detection task.
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Figure 3.7: Distributions of radiomic features by t-SNE 2D visualization. The distribution

of radiomic feature values generated from unnormalized images was clearly different than the

distribution of values generated from reference images. SNGAN transformed the distribution

such that it overlapped with the reference. Conversely, the baseline CNN model failed to

correct for distributional differences and in some cases, made the differences greater.
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Figure 3.8: Level of agreement of radiomic feature values. CCC was used to measure the

agreement for various mapping conditions (e.g. CNN outputs and reference). A CCC of

1.0 corresponds to perfect agreement. A CCC greater than 0.9 was defined to be “good”

agreement; a CCC between 0.8 and 0.9 was interpreted as “moderate” agreement; and a

CCC less than 0.8 was interpreted as “poor” agreement.
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Figure 3.9: Absolute error in radiomic features.
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CHAPTER 4

Conditional Normalizing Flows

Mitigating the effects of varying computed tomography acquisition and reconstruction pa-

rameters is a challenging inverse problem, where and multiple solutions are plausible. This

paper presents CTFlow, a normalizing flow-based method for translating images acquired

and reconstructed using different doses and kernels to a reference scan. Unlike existing state-

of-the-art image denoising and translation approaches that only generate a single output,

flow-based methods learn the explicit conditional density, capture the uncertainty associated

with restoration, and output the entire spectrum of plausible solutions. We harness these

capabilities to generate more realistic restored reference scans. To evaluate the performance

of CTFlow, first, we compare CTFlow with other denoising techniques by training and test-

ing it on the AAPM-Mayo Clinic Low-Dose CT Grand Challenge dataset. CTFlow achieves

superior performance for both peak signal-to-noise ratio and perceptual quality metrics. Sec-

ond, we train and evaluate CTFlow on 186 low-dose CT chest scans from our institution

that are reconstructed at different doses and kernels, analyzing the difference in restored

reference scans on the performance of a lung nodule detection algorithm. CTFlow produces

more consistent predictions across all dose and kernel conditions than the state-of-the-art

techniques based on generative adversarial networks (GAN). Third, we investigated general-

ization by evaluating a pretrained CTFlow model on a publicly available low-dose CT chest

dataset. We show that CTFlow maintains higher image fidelity than GAN-based methods.

In summary, normalizing flow performs state-of-the-art CT image translation and provides

additional information through its ability to quantify restoration uncertainty.
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4.1 Introduction

Mitigating effects of variations in computed tomography (CT) images is an important task

to restore the high-quality details from the inputs due to non-standard acquisitions or recon-

structions. Multiple factors can cause variations, such as acquisitions (dose) and reconstruc-

tions (kernels). For example, even small amounts of noise in low-dose CT acquisitions can

result in large inconsistencies in clinical evaluations for downstream image analysis tasks such

as lung nodule detection and segmentation [28,29]. Therefore, robust models to mitigate the

effects of dose variation are critical to ensuring reliable quantitative imaging features from

those translated images. In Chapter 3, we explored using a conditional GAN to mitigate

effects of variations in CT scans.

However, studies [49,84,152] have shown that cGANs suffer from mode collapse and they

are prone to ignore the input noise vector z. All GAN-based methods mentioned in Chapter

2 discourage using the random vector z, and therefore the mapping is deterministic. How-

ever, inverse problems such as denoising are ill-posed. These approaches are fundamentally

limited in their ability to output the entire spectrum of plausible solutions. This limitation

often results in the introduction of artifacts or omission of important anatomical landmarks

that may impact computer-aided diagnosis algorithms. A better solution is to explicitly

model uncertainty along with image restoration [40]. Interest has grown recently in combin-

ing uncertainty with neural network models. Schlemper [106] developed Bayesian inference

through Markov chain Monte Carlo (MCMC) variational dropout [32,57] on a deep cascade

of CNNs. Adler [4] used posterior sampling in Bayesian inversion for a conditional WGAN.

Both techniques provide robust image restoration from low-quality input data. Tanno et.

al [118, 119] created a dual-network architecture that estimates the mean and covariance of

the Gaussian conditional distributions on low-resolution input. Using uncertainty modeling,

they were able to quantify the risk of generating distortions when performing superresolution

of diffusion magnetic resonance imaging (MRI). However, all these works approximate poste-
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riors by variational inference, which can be challenging when dealing with high dimensional

distributions such as medical images.

Normalizing flow algorithms, which compute the exact posterior density directly by op-

timizing likelihood, overcome these limitations [24,25]. These generative models have shown

success in conditional image generation for natural images [79]. To the best of our knowl-

edge, there has only been a single attempt to apply this method to medical applications.

Denker [23] employed a normalizing flow model conditioned on LDCT reconstruction by

Filtered Back-Projection (FBP) to improve reconstruction quality from raw sinogram data.

It was unclear, however, how it could be extended to directly denoise LDCT scans in the

image space. As such, this paper presents CTFlow, an approach inspired by [56, 79], which

aims to solve inverse problems and mitigate the variations in CT via maximizing the ex-

plicit likelihood of a standard CT scan given a non-standard one. Normalizing flow has two

important advantages: 1) The translated low-dose CTs have minimal artifacts because the

output is a maximum likelihood estimate that closely matches the target reference distribu-

tion; and 2) unlike GANs that are susceptible to mode collapse, CTFlow is able to explore

multiple solutions to reduce inference uncertainty. We demonstrate how these advantages

provide consistent computer-aided diagnosis (CAD) performance when characterizing the

same imaging abnormality across a variety of input conditions in the context of lung nodule

detection.

The contributions of our work are as follows:

• The conditional normalizing flow was applied to a low-dose CT denoising task and

outperformed state-of-the-art methods in terms of both image fidelity and perceptual

quality on the AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset.

• The conditional normalizing flow was applied to the task for mitigating both dose and

kernel variations on our in-house UCLA dataset, showing that the approach achieves

more consistent downstream lung nodule detection results compared to GAN-based
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methods.

• We present a novel autoencoding technique applied to manipulating the latent space,

resulting in better generalization for external datasets.

• The proposed method allows for the measurement of uncertainty using diverse output

images that are obtained by sampling the latent space.

4.2 Method

4.2.1 Conditional Normalizing Flow

A deterministic approach to image translation, such as using a CNN, finds a mapping func-

tion y = gθ(x) that takes a non-standard input image x and outputs an image y under

reference condition. For example, x could be a low-dose CT image and y could be a normal-

dose (routine-dose) image. For the purpose of illustration, we use this denoising narrative

in the following method section. However, note that x could refer to any CT image from

a non-standard protocol with multiple variations in parameters and y can be a predefined

reference condition. Flow-based image translation aims to approximate the density function

Πy|x(y|x, θ) using maximum likelihood estimation. Normalizing flow gradually transforms

a simple initial (Gaussian) density function pz(z) to a target distribution Π(y|x) using an

invertible neural network y = gθ(z;x) ↔ z = g−1
θ (y;x) = fθ(y;x), where g and f are the

decoding and encoding functions. By the change of variables theorem, we have

Πy|x(y|x, θ) = pz(z)

∣∣∣∣det
dz

dy

∣∣∣∣ = p(fθ(y;x))

∣∣∣∣det
dfθ(y;x)

dy

∣∣∣∣, (4.1)

which can be trained by maximizing the log-likelihood. In practice, a multilayer flow op-

eration is preferred because single-layer flow is not able to identify complex non-linear re-

lationships within data. We decompose fθ into a series of invertible neural network layers

hn, n = 1, 2, 3..., N . hn = fnθ (hn−1; e(x)), where we used a deep CNN e(x) to extract salient

57



Figure 4.1: Framework of forward flow and inverse flow. LDCT: low-dose computed tomog-

raphy; NDCT: normal-dose (or routine-dose) computed tomography.

feature maps of input x to condition on flow layers. For an N -layer flow model, y = h0 and

z = hN . Therefore, applying the chain rule, we aim to maximize log-likelihood as shown in

Equation 4.2. The first term is tractable since it is a Gaussian. In addition, we only need to

calculate the determinant of the Jacobian
dfnθ

dhn−1 for each flow layer in this formulation. We

note that the second term requires special attention to be executed efficiently, as discussed

in 4.2.2.

θ̂ = argmax
θ

log pz(z) +
N∑
n=1

log

∣∣∣∣det
dfnθ (hn−1; e(x))

dhn−1

∣∣∣∣ (4.2)

Once the training is complete, we apply the decoding function gθ(z;x) with random

latent variables z from an independent and identically distributed Gaussian. The use of

latent variables z allows us to explore various restored images y′ conditioning on the same

non-standard input x. The framework of CTFlow is illustrated in Figure 4.1.
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4.2.2 Flow layers

As discussed, flow layers must meet two requirements: 1) be invertible 2) be tractable

Jacobian determinant. We follow the triangulation trick developed by NICE [24]. The core

idea is to use affine coupling layers adopted with a conditional variable, noted as the self-

conditional affine layer. We first equally split the channels into (hn1 , h
n
2 ) = split(hn), and

apply affine transformation on h2 while keeping an identity transform on h1, as illustrate in

Equation 4.3. NN is a shallow convolutional neural network that is used to compute scale

and shift factor in spatial coordinates i, j . Thus, by definition, Jacobian of hn+1 is a lower

triangular matrix. The log determinant is simply sum(|s|).

hn+1
1 = hn1

(s, t) = NNnθ (hn1 ; e(x))

hn+1
2 = exp(s)� hn2 + t

hn+1 = concat(hn+1
1 , hn+1

2 )

(4.3)

Activation normalization : Channel-wise batch normalization [48] that per output chan-

nel output has zero mean and unit variance.

Invertible 1x1 conv: In contrast to RealNVP which shuffles the channel order before affine

coupling split, we follow the study in [56], utilizing a learnable 1x1 convolution hnij = Whn−1
ij ,

where W is a square matrix with dimension c × c (channels). Each spatial element ij in h

is multiplied by this 1x1 convolution matrix W . The log determinant is hw log sum(det(W ))

and can be computed efficiently using PLU factorization as suggested in [56]. Moreover, the

inverse 1x1 operation is trivial to compute because the cost of calculating the inverse matrix

W−1 is relatively small.

Feature conditional affine: We already have a self-conditional layer in the conditioning

setting that partially incorporates the noisy image feature maps into the flow steps. Here, we

aim to impose a more vital interaction between feature maps extracted e(x) and activation

maps h. To achieve this, as equation 4.4 shows, we directly compute the scale and shift
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(a) Flow module. RRDB: Residual in

Residual Dense Blocks (b) Multiscale architecture

Figure 4.2: Flow module and multiscale CTFlow architecture. K = 16, L = 3 were used in

this work as suggested in [79].

factor from e(x). Overall, the basic network structure of flow is shown in Figure 4.2a.

(s, t) = NNnθ (e(x))

hn+1 = exp(s)� hn + t
(4.4)

4.2.3 Multiscale architecture

Since flow is inherently invertible, it requires input x and latent space vector z to have the

same dimension. However, in most cases Πy|x(y|x, θ) is a low-dimensional manifold on a

high-dimensional input space. Significant computational resources are wasted when the flow

model is imposed with dimensionality higher than the dimension of true latent space. As

a result of a multiscale architecture in RealNVP, we simplify the model and improve the

estimation of Πy|x(y|x, θ) at multiple levels. The overall multiscale architecture is depicted

in Figure 4.2b, where we equally divide each output z into (zout, znext), while recursively

feeding znext to the next level and, before directly outputting zout for maximum log-likelihood
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estimation at the end.

4.2.4 Training details

We used a clinical dataset “AAPM-Mayo Clinic Low-Dose CT Grand Challenge” by Mayo

Clinic to train and validate our model for image quality in CT denoising task. The dataset

consists of 5,936 abdominal CT images at 1.0 mm slice thickness taken from both routine-dose

and simulated quarter-dose pairs from 10 patients. Among them, 80% were used for training

and 20% were reserved for validation. All images were randomly cropped into patches of

128×128 pixels, excluding the area that was mostly air. Our comparison was conducted using

GAN-based approaches (GAN, WGAN-MSE, WGAN-VGG, and SNGAN [133, 136, 139]),

CNN-based approach (SRResNet) [73] and a denoising algorithm based on collaborative

filtering, Block-matching and 3D filtering (BM3D) [22] for comparison.

CTFlow training is divided into two parts.

• Our first step was to train a CNN based on Residual-in-Residual Dense Blocks (RRDB)

[129], which has been extensively explored in many superresolution works. This CNN

contains 14 RRDB blocks and serves as our feature extractor for low-dose images. The

RRDB network was trained using L1 loss for 60k iterations. The batch size was 16 and

the learning rate was set to 2e-4. The Adam optimizer was used with β1, β2 = 0.9, 0.99.

After training, all layers of RRDB were frozen and used only for feature extraction.

Feature maps were derived from {2, 6, 10, 14} block outputs. Afterward, the outputs

of each block were concatenated into a conditional feature map e(x).

• In the same manner, we trained the CTFlow model with a batch size of 16 and 50k

iterations. The learning rate was set to 1e-4 and halved at 50% 75% 90% and 95% of

the total training steps. Negative log-likelihood (NLL) loss was used, and the network

took 3 days to train on an NVIDIA RTX 8000 GPU. The peak GPU memory usage was

39GB. An example of training NLL curve is shown in Figure 4.3. Unlike the adversarial
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training of GANs that requires two loss functions, our network had only one loss and

was easily optimized. NLL was stable and decreased monotonically.

Figure 4.3: Learning curve for negative log-likelihood (NLL) for AAPM dataset.

Figure 4.4: Denoised images in AAPM dataset with different temperature τ settings. The

texture emerges in lung parenchyma as τ increases.
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4.2.5 Autoencoding

Deep learning techniques for medical imaging are plagued by the problem of model general-

ization. Usually, due to the intra- and inter-variability of CT acquisition and reconstruction

protocol, a model trained on one dataset will not generalize well to another dataset from

a different institution. We observed suboptimal performance when applying our model to

the public Mayo clinic low-dose CT dataset [87] using a direct mapping gθ(z;x), which was

trained on the UCLA dataset. GAN showed a similar trend in a previous study [69]. Us-

ing the powerful representation of the latent space vector z, we propose to develop a new

autoencoding technique to address this problem. On the basis of this, we developed a more

sophisticated image denoising technique by using latent space normalization, as described

in [79]. The autoencoding technique is useful when CTFlow is applied to external datasets

(e.g., CT scans acquired using different protocols and hardware platforms). This procedure is

carried out as first encoding the input LDCT image by conditioning on itself as ẑ = fθ(x;x)

. Like the auto-encoder, this encoding vector contains the latent code for reconstructing a

clean version of x, or gθ(ẑ;x). However, since we condition on x, which has a slightly dif-

ferent image appearance than an unknown ground truth y, the resulting ẑ does not follow a

standard Gaussian distribution, while gθ expects z ∼ N(0, I) by feeding fθ with (y;x) pairs.

If we are to make our assumption valid, we must normalize its statistics to N(0, τ) where

τ is a temperature scaling term that dictates diversity of outputs. Suppose a collection of

{z}N comes from N(0, τ), by definition, we have its empirical mean and variance as

µ ∼ N (0,
τ

N
), σ2 ∼ Γ(

N − 1

2
,

2τ

N − 1
). (4.5)

Meanwhile, we also sample a collection of {ẑ}N by autoencoding, and compute the mean µ̂

and variance σ̂2. In this work, we normalize the statistics spatially for each latent vector

channel, because contrast shift and global noise characteristics are the primary sources of

discrepancy between two different CT datasets. The latent vector normalization is therefore
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formulated as

zc =
σc
σ̂c

(ẑc − µ̂c) + µc,∀c ∈ C,C: set of channels (4.6)

We compared the z latent vector normalization results with direct CTFlow inference and

SNGAN in 4.4.2.

4.3 Experiments

We perform the following experiments to evaluate our CTFlow approach: 1. We assessed

image quality and compare with other previously published low-dose CT denoising tech-

niques using the AAPM dataset and 2. We evaluated the ability of CTFlow to mitigate

different sources of variations(such as dose and kernels) towards achieving more consistent

performance of a computer-aided lung nodule detection algorithm.

4.3.1 AAPM dataset evaluation

This section assesses CTFlow’s performance in image quality in comparison with other state-

of-the-art solutions. We compute image quality metrics using the peak signal-to-noise ra-

tio (PSNR), structural similarity (SSIM), and Learned Perceptual Image Patch Similarity

(LPIPS) [147].

4.3.1.1 Texture control

Temperature (τ) has a direct impact on the output image textures. The higher the tem-

perature, the more vivid the images and textures are; and the lower the temperature, the

more blurry the images. We observed the same trend in the CT dataset in Figure 4.4. In

the extreme case where τ = 0.0 , pz(z) collapses into the Dirac Delta distribution and the

mapping becomes fully deterministic. Flow-based models achieve the best performance when

sampled slightly less than one, as empirical evidence has demonstrated [56]. In order to iso-
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(a) Image fidelity (b) Perceptual quality (LPIPS)

Figure 4.5: Trade-off between image fidelity (distortion) and perceptual quality. Temper-

ature settings enable quantitative adjustment to distortion and perceptual appearances.

LPIPS attains its minimum near 0.8.

late the setting for the best image quality, we conducted a parameter sweep on τ . Results

are presented in Figure 4.5. A trade-off between perceptual quality (as measured by LPIPS)

and image fidelity (as measured by PSNR and SSIM) was observed. As a result, we chose τ

to be 0.8 to ensure reasonable fidelity while achieving the best perceptual quality.

4.3.1.2 Image quality assessment

In Table 4.1, we provide the results for image quality metrics, while Figure 4.6 presents

examples of denoised CT images. We aimed to achieve the best perceptual quality (lowest

LPIPS), while maintaining a higher degree of fidelity (PSNR, SSIM). In Figure 4.6, while

both BM3D and SRResNet generated the highest PSNR, the resulting images were overly

smoothed and lacked high-frequency components. Important texture details were lost in the

restoration, which could negatively impact detection performance of a radiologist or CAD

that relies on texture features to characterize lesions. Furthermore, CTFlow achieves 6%
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Figure 4.6: AAPM dataset denoising results comparison. Streaking artifacts around lung

fissures are observed for all GAN-based approaches. CTFlow has no such distortion.

better perceptual quality compared to SNGAN, while maintaining the best PSNR fidelity

in comparison with GAN-based approaches (+0.13 dB for WGAN-VGG). The GAN-based

methods suffer from low-dose CT artifacts that are made of bright and dark streaks in the

direction of more significant attenuation [13]. Images produced by CTFlow, however, did

not have such artifacts.

4.3.2 Nodule detection evaluation

CTFlow has the potential to generate fewer artifacts and to be more consistent with the

input. This section evaluates CTFlow’s performance of mitigating multiple CT variations

with respect to lung nodule detection tasks. Here, we use a dataset of 186 chest LDCT

exams collected at our institution that were acquired at an equivalent dose of 2mGy. The

raw projection data of scans performed on Siemens CT scanners was exported. Poisson

noise was introduced into the raw projection data, as described [44] at levels that were

equivalent to 10% of the original dose. Original routine-dose and reduced dose projection

data were then reconstructed into an image size of 512 × 512 using three reconstruction
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Table 4.1: Generated denoised image quality results on validation images. Red: the best,

blue: the second best in that metric category.

↑ PSNR ↑ SSIM ↓ LPIPS

BM3D 32.81 0.8471 0.1754

SRResNet 31.89 0.8907 0.0865

GAN 30.76 0.8577 0.0379

WGAN-MSE 31.32 0.8636 0.0357

WGAN-VGG 31.37 0.8688 0.0353

SNGAN 31.28 0.8648 0.0345

CTFlow 31.50 0.8631 0.0324
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kernels (smooth, medium, sharp) at 1.0mm slice thickness. The dataset was split as follows:

80 scans for training, 20 scans for validation, and 86 scans for testing. In the test set,

43 scans (50%) contained a total of 68 lung nodules. The centroids of these nodules were

marked by a trained image analyst using the original radiologist report as a reference. In

this study, the reference ground truth condition was 100% dose, medium kernel, and 1.0 mm

slice thickness. Our choice of slice thickness and kernel was based on the parameters that are

currently recommended for lung cancer screening. We trained three separate models that

map low-dose images reconstructed from smooth, medium, and sharp kernels to the ground

truth. In an ideal world, based on the fact that all three of these models are mapped to

the same reference image condition, the results of lung nodule detection should be consistent

across these three models. Note that for each image, we generate 100 samples from a random

noise vector for CTFlow. Meanwhile, we also trained a SNGAN model on the UCLA dataset

for comparison. In this inverse problem, not only is the dose mitigated, but also the kernel

(sharp, smooth to medium). As a result, it is more challenging than a simple denoising

problem.

Our CAD system is a nodule detection network adapted from the RetinaNet model [75], a

composite model comprised of a backbone network called feature pyramid net (FPN) and two

subnetworks responsible for object classification with bounding box regression. The model

was trained and validated on the LIDC-IDRI dataset [10], a public de-identified dataset

of diagnostic and low-dose CT scans with annotations from four experienced thoracic ra-

diologists. As part of the training process, we only considered nodules that at least three

radiologists annotated. A total of 7,607 slices (with 4,234 nodule annotations) were used for

training and 2,323 slices (with 1,454 nodule annotations) for validation. A bounding box

was then created around the union of all the annotator contours to serve as the reference for

the detection model. After training for 200 epochs with Focal loss and Adam optimizer, the

model achieves an average precision (AP@0.5) of 0.62 on the validation set.

The intent of our study is not to achieve the highest lung nodule detection performance,
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Table 4.2: Analysis of lung nodule detection consistency measured by CCC scores for three

pairwise kernel combinations.

smooth-medium medium-sharp smooth-sharp mean

CTFlow 0.9906 0.9973 0.9914 0.9931

SNGAN 0.8529 0.8438 0.9413 0.8793

but rather to generate consistent prediction across all mappings. After obtaining subject-

level sensitivity and precision, we calculate subject-level F1-score by F1i = 2× precisioni ×

sensitivityi/(precisioni + sensitivityi). Since CTFlow has 100 samples for the same input

images, we take the average F1 score. Next, we use the Concordance Correlation Coefficient

[62] for measuring the consistency of prediction across all three kernels. McBride [86] suggests

the following guidelines for interpreting Lin’s concordance correlation coefficient. Poor: <

0.9; moderate: 0.90 to 0.95; substantial: 0.95 to 0.99; perfect: > 0.99 and above. We

computed pairwise CCC for the smooth, medium, and sharp kernel. Table 4.2 provides the

results. CTFlow significantly outperformed SNGAN. The uncertainty caused by training

individual mappings diminishes as the sample size increases. The results showed CTFlow’s

inherent advantages of being able to explore the entire output sample space.

Figure 4.7: Restoration generalization on Mayo clinic low-dose CT image dataset. Pepper

and salt artifact can be seen in SNGAN results in the highlighted orange rectangle. It can

be seen from in red rectangle that SNGAN results in greater distortion of blood vessels,

whereas CTFlow guarantees structural consistency to the low-dose image.
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4.4 Applications

We will explore two topics in this section that relate to some practical application of CTFlow:

1). Predict model uncertainty when reconstructing a low-dose image to the routine-dose 2).

Improve model performance on an external dataset acquired using protocols that differ from

the training dataset.

4.4.1 Restoration uncertainty

Since CTFlow provides a distribution instead of giving a single prediction, we are able to

examine the uncertainty resulting from noise when translating a low-dose to a routine-dose

scan.

Figure 4.8: Restoration uncertainty characterized by a heat map of standard deviation.
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In Figure 4.8, we plot the heat map of standard deviation for the outputs. Based on

the arrow displayed above, the area surrounding the nodule has a relatively high intensity

level, which indicates that the model has low confidence for restoration in that region since

the pixel-wise variation is large. Any other state-of-the-art methods do not provide this

information. For ill-posed inverse problems such as denoising, a single prediction is not

reliable since the uncertainty of the model cannot be predicted. CTFlow is provided with

an opportunity to visualize uncertainty during restoration, allowing us to increase our trust

in a denoising model.

Table 4.3: Model generalization performance measured by image quality metrics. Both GAN

and Flow were trained on the UCLA dataset but with validation on Mayo clinic low-dose

CT image dataset.

PSNR SSIM LPIPS

SNGAN 24.59 0.5160 0.1042

CTFlow direct 24.78 0.5031 0.1335

CTFlow z norm 24.62 0.5349 0.1099

4.4.2 Model generalization

We selected 50 chest CT scans obtained from Siemens scanners in Mayo clinic low-dose

CT image and projection data [87]. Standard clinical protocols were followed to obtain CT

scans of the anatomical region of interest using routine-dose levels specified by the institution

that acquired the data. Poisson noise was then added to the projection dataset to create

a simulated lower doses. Low-dose chest scans are provided at 10% of the routine-dose.

By leveraging the technique of autoencoding, CTFlow can handle images sampled from a

different distribution. Table 4.3 summarizes the results. For natural images, it has been

established that GAN-based approaches tend to produce more photorealistic results, which
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more than offsets its disadvantage of introducing too many distortions. The problem of

distortion arises when dealing with data that are far from the training set. However, it

is crucial to work with medical images that are consistent with the original input anatomy

features. Based on this premise, the primary objective is to maintain image fidelity and avoid

distortion. The latent space normalization implemented by CTFlow ensures a consistent

anatomical similarity for the input image, and at the same time improves perceptual quality

significantly. The SNGAN, on the other hand, is inferior in terms of image fidelity as

measured by PSNR and SSIM, which indicates more distortions or artifacts in the restored

routine-dose image. The distortions can be seen in Figure 4.7, whereas the CTFlow results

do not exhibit such artifacts.

4.5 Discussion and conclusion

We developed a conditional normalizing flow model, CTFlow, to mitigate the effect of CT

variations seen in non-standard CT scan inputs, which led to improved lung nodule detection

performance over a GAN-based approach. In addition, we demonstrated that CTFlow could

learn more accurate data distributions by learning the explicit likelihood. With the AAPM

dataset evaluation, we found superior image quality without sacrificing perceptual quality.

Moreover, the flow model provides a measure of uncertainty in restored images that CAD

algorithms can leverage to identify regions more susceptible to noise and artifacts during the

restoration process. However, we should also acknowledge that CTFlow has its limitations

too. It is not yet able to achieve the best image fidelity in terms of SSIM score. Furthermore,

the user must provide an appropriate temperature for the image generation, which is another

hyperparameter to be considered. Figure 4.5 illustrates how too high a temperature setting

can lead to undesirable behavior (poor perceptual quality). The alternative state-of-the-

art GAN-based works are all based on adversarial training. The advantage of normalizing

flows over conditional generative models is that they can offer exact and efficient likelihood
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computation and diversity of data generation closer to the true distribution. In contrast,

the learning objective of GAN does not involve an explicit likelihood function, but rather

focuses on generating the best samples. However, this makes the quantitative evaluation

of the conditional GAN model biased. Currently prevalent evaluation criteria based on

image quality metrics (PSNR, SSIM, etc..) do not address this issue since it is possible

to generate realistic samples by memorizing the training data, or missing diversity of the

distribution, but still achieve the best quality. Therefore, we suggest task-based evaluations

such as nodule detection, in which uncertainty plays a significant role. In GAN, the missing

diversity is referred to as mode collapse. Essentially, if the prior is defined over a support

that is smaller than the true dimension of the data, which is usually the case for GAN-based

models, the likelihood is ill-defined. The high dimensionality required by the latent space

vector of normalizing flows is the exact reason why likelihood estimation is successful in our

experiments. The distinct differences and relations have been analyzed in [37].

Although it is outside the scope of this work, we should be aware that the general

idea of modeling uncertainty offered by normalizing flows can also be extended to other

image-processing tasks beyond prepossessing images, such as segmentation, detection, and

classification. An example is Chan et.al [15] who applied an approximate Bayesian inference

scheme based on posterior regularization to improve uncertainty quantification on covariate-

shifted data sets, resulting in improved prognostic models for prostate cancer. Similarly,

[104] presented methods to transform pixel-wise uncertainty into structure-wise uncertainty

metrics for better brain segmentation, demonstrating their effectiveness in performing more

reliable group analysis. A recent preliminary study [96] shows the promise of normalizing

flow to detect abnormalities on patches of histopathology images. As a conclusion, the use

of a flow-based approach in medical applications requiring both the estimation of density

and the generation of samples is a promising direction for the future.
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CHAPTER 5

Normalization model robustness

In this chapter, two concepts are discussed to improve the robustness of normalization mod-

els. The purpose of Chapter 5.1 is to discuss a novel spatial-temporal convolution technique

for improving computation efficiency and analyzing the impact of enhanced computation

efficiency on radiomic features. In Chapter 5.2, we describe a holistic approach to under-

standing the generalizability of different normalization methods, which provides a deeper

understanding of the relationship between image metrics, quantitative imaging features, and

task-driven evaluation to serve as polestars when constructing a normalization model.

5.1 Spatial-Temporal convolution

While deep-learning-based imaging denoising techniques can improve the quality of low-

dose computed tomography (CT) scans, repetitive 3D convolution operations cost significant

computation resources and time. We present an efficient and accurate spatial-temporal

convolution method to accelerate an existing denoising network based on the SRResNet. We

trained and evaluated our model on our dataset containing 184 low-dose chest CT scans.

We compared the performance of the proposed spatial-temporal convolution network to the

SRResNet with full 3D convolutional layers. Using 8-bit quantization, we demonstrated

a 7-fold speed-up during inference. Using lung nodule characterization as a driving task,

we analyzed the impact on image quality and radiomic features. Our results show that our

method achieves better perceptual quality, and the outputs are consistent with the SRResNet

baseline outputs for some radiomics features (31 out of 57 total features). These observations
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together demonstrate that the proposed spatial-temporal method can be potentially useful

for clinical applications where the computational resource is limited.

5.1.1 Introduction

Computed tomography (CT) scans provide a detailed characterization of chest anatomy for

radiologists to identify lesions in the lung. However, in practice, CT acquisitions are not

standardized. Given that higher radiation exposure comes with the risk of harmful radia-

tion, the trend has been to acquire lower dose images at the cost of noisier images. Recent

developments in deep learning-based image denoising have yielded a number of approaches to

recover high-resolution details from lower resolution inputs. Prior studies have also demon-

strated that 3D convolutions compared to 2D convolutions achieve better image quality [108].

However, one barrier is that such a method is computationally expensive. We utilize the

spatial and temporal correlation in CT scans to introduce an efficient neural network archi-

tecture, Spatial-Temporal ResNet (STResNet) that restores the high-resolution details from

low-dose CT images. Our goal is to achieve the same level of accuracy as the standard 3D

SRResNet while improving its efficiency.

5.1.2 Method and data

Inspired by Enhanced Deep Residual Networks (EDSR) [73], we implemented a baseline

denoising network based on SRResNet using fully 3D convolutional layers with a series of

residual in residual blocks with convolutional and activation layers. Since CT scans are 3D

volumes consisting of multiple slices, each slice can be treated as a frame at a time step.

For each pixel in a slice, spatial and temporal correlation exists in adjacent frames along the

temporal dimension. Hence, in STResNet, we decompose a full 3D convolution with 3×3×3

kernel into two smaller convolutions, each with a spatial and temporal kernel. As illustrated

in Figure 5.1, 3D convolutional blocks are replaced with spatial (1 × 3 × 3) and temporal
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Figure 5.1: Convolutional blocks and results. A nodule ROI is highlighted in the circle.

(3× 1× 1) convolutional blocks [68].

We demonstrate the differences in efficiency and accuracy using a dataset of low-dose

CTs acquired for lung cancer screening, acquired at an equivalent dose about 2mGy. The

standard condition was acquired at 100% dose and reconstructed using a medium kernel

and 1.0 mm slice thickness, which reflects the parameters that are currently recommended

for lung cancer screening. In the test set of 84 patients, 42 scans (50%) were found to

have a total of 68 lung nodules. Lower-dose CT images were reconstructed from raw data of

standard acquisitions using a physics-based model that simulates noise characteristics as well

as reconstruction artifacts that are equivalent to 10% of the standard dose and at 2.0mm

slice thickness. Data were split into 80/20/84 for training/validation/test. We adapted

the NVIDIA APEX mixed-precision training package to further improve the training speed

with mixed precision on GPU. We also introduced 8-bit low-precision quantization [50] to

SRResNet and STResNet to achieve faster inference on CPU.
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5.1.3 Evaluation and results

Our method was validated using image quality metrics such as peak signal-to-noise ra-

tio (PSNR), structural similarity (SSIM) and Learned Perceptual Image Patch Similarity

(LPIPS) [147]. In Table 5.1, our STResNet achieved better PSNR and SSIM compared to

SRResNet in full precision (FP32) inference. Quantization (INT8) was shown to negatively

impact image quality using PSNR and SSIM as metrics (a decrease of 0.16dB and 0.0152

respectively). However, compared to the baseline model, STResNet with 8-bit quantization

achieved better perceptual quality (0.3555 vs. 0.3653). As shown in Figure 5.1, the differ-

ence between the result of baseline and 8-bit quantized STResNet at nodule ROI is visually

imperceptible. During inference tasks on CPU, our quantized STResNet achieves up to 7.11

times speed-up compared to the standard SRResNet. Using STResNet alone achieves a

speed up by a factor of 1.67. A similar trend is observed during training on GPU with up

to 2 times speed up when using STResNet FP16 versus SRResNet FP32.

To assess differences in radiomic features, we selected 57 first-order intensity, gray-level

concurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size zone

matrix (GLSZM) features to study the impact of feature values on nodules by using different

combinations of networks and precision. In Figure 5.2, we found 54% of feature values from

the outputs of quantized STResNet were still consistent to the baseline distribution.

Table 5.1: Image quality metrics and speed-up factors to baseline. ∗ CPU results

↑ PSNR(dB) ↑ SSIM ↓LPIPS Inference time (sec)
Training time

per iter (sec)

Inference

Speed-up

Training

Speed-up

FP32
SRResNet

(baseline)
31.31±0.30 0.7216±0.0113 0.3635±0.0074 27.4(446.7∗) 6.5 N/A N/A

STResNet 31.91±0.44 0.7265±0.0110 0.3715±0.0075 14.4(267.0∗) 3.9 1.67 1.65

FP16 SRResNet 32.39±0.52 0.7277±0.0111 0.3640±0.0075 13.8 4.9 N/A 1.31

STResNet 32.60±0.64 0.7259±0.0111 0.3732±0.0076 17.0 3.2 N/A 2.04

INT8 SRResNet 31.15±0.28 0.7064±0.0109 0.3501±0.0075 108.7∗ N/A 4.11 N/A

STResNet 31.11±0.30 0.7135±0.0109 0.3555±0.0076 62.8∗ N/A 7.11 N/A
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Figure 5.2: Radiomic features test. Red/Green indicates significant/non-significant differ-

ence to baseline via paired t-test with p < 0.05.

5.1.4 Discussion

We trained and evaluated our efficient and accurate network architecture called STResNet

for low-dose CT denoising. Through our study, we demonstrated that STResNet reduces the

training and inference time compared to SRResNet. We also showed that 8-bit quantization

produced outputs that had minimal perceptual differences despite the information loss of

computing a 12-bit CT scan using 8-bit quantized network weights. We note in our results

that some radiomic features have statistically significant differences in distribution compared

to feature values calculated from SRResNet outputs. Further study is required to assess

the impact of 8-bit quantization and STResNet assumptions on downstream tasks such

as machine learning algorithm performance. As part of future work, we will investigate the

impact of using the efficient network architecture on clinical-driven tasks such as lung nodule

detection or diffuse lung disease quantification.

5.2 Model Generalization

While quantitative image features (radiomics) can provide valuable information about dis-

ease progression, they are susceptible to variations in acquisition and reconstruction. Stud-

ies conducted previously have demonstrated that it is possible to normalize heterogeneous

scans by using per-pixel metrics (e.g., mean squared error) and qualitative reader studies.

Although these techniques are generalizable and may influence downstream tasks (e.g., classi-

fication), they have not been systematically studied. We present a multi-pronged evaluation
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by assessing image normalization techniques using 1) per-pixel image quality and percep-

tual metrics, 2) variability in radiomic features, and 3) task performance differences using

a machine learning (ML) model. We evaluated the performance of a previously published

3D generative adversarial network (GAN) algorithm based on computed tomography (CT)

scans acquired at different institutions with varying levels of radiation exposure. In spite of

the superior metric results of the 3D GAN, its effects on quantitative image features and

downstream performance were not universal. This study indicates a more complex relation-

ship between CT acquisition and reconstruction parameters and their impact on radiomic

features and ML model performance, which is not completely captured by per-pixel metrics

alone. As a result of our analysis, we are able to provide a more comprehensive picture of

the effect of normalization.

Radiomic features reflect small pixel- or voxel-wise changes that could be early indicators

of disease progression but are not readily discernible by human readers [59]. However, these

changes are often confounded by how images are acquired and reconstructed. Radiomic

features are sensitive to scanner and acquisition parameters including dose, reconstruction

kernel, and slice thickness [61,101]. Scanner-specific heterogeneity cannot be simply removed

by the current preprocessing pipeline, as demonstrated in magnetic resonance imaging by

Glocker et al. [35]. While efforts have examined ways to standardize acquisition, such solu-

tions could only be applied prospectively and preclude the use of preexisting imaging data.

Normalization techniques that reduce the variability due to CT acquisition and reconstruc-

tion would aid in the clinical translation of radiomic features.

Prior studies have examined how to normalize the heterogeneous scans computationally.

In addition to traditional methods such as sinogram filtering [128] and iterative reconstruc-

tion [39], we highlight eight recent studies that employed neural networks to perform CT

image enhancement or translation. Chen et al. [16] utilized a deep convolutional neural

network (CNN) to transform low-dose CT (LDCT) images to appear as diagnostic dose.

Wolterink et al. [135] coupled a CNN with an adversarial CNN to denoise the LDCT. Yi [141]
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proposed a generative adversarial network (GAN) that utilizes sharpness loss to leverage the

blurry effect. Yang [140] demonstrated a GAN with Wasserstein (WGAN) and perceptual

loss. You et al. [143] incorporated CNN with residual learning for superresolution image

restoration. Aside from denoising, Liang et al. [71] and Selim et al. [107] proposed a GAN-

based procedure to normalize CT images with different slice thicknesses and reconstruction

kernels towards a predetermined standard. Our group proposed a 3D GAN model [132] that

normalized dose and slice thickness simultaneously.

Table 5.2: Image quality metric results. A-G corresponds to a separate normalization sce-

nario shown in Figure 5.3. D: dose level, K: kernel (sharp/smooth).

METRIC

GAN
WGAN

A B C D E F G H

D: 10% D: 25% D: 10% D: 25% D: 10% D: 25% D: 10% D: 25% D: 10%

→

100%

→

100%

→

100%

→

100%

→

100%

→

100%

→

100%

→

100%

→

100%

K:

smooth

K:

smooth

K:

sharp

K:

sharp

K:

smooth

K:

smooth

K:

sharp

K:

sharp

K:

sharp

→sharp →sharp →smooth →smooth

PSNR 17.75 17.00 18.13 17.82 16.88 16.53 18.19 18.15 18.05

SSIM 0.6345 0.5360 0.6564 0.5914 0.4015 0.3460 0.6776 0.6788 0.6361

LPIPS

(VGG)
0.2346 0.2445 0.1983 0.2057 0.3207 0.3481 0.2745 0.2574 0.2080

Out of these eight studies, six evaluated their approaches by computing image quality

metrics such as peak signal-to-noise ratio (PSNR) and/or structural similarity (SSIM). Two

employed subjective judgment by human readers. Two compared radiomic features. None

examined the effect of normalization on downstream tasks. Six used training and test data

from a single institution with the same type of scanners. Several limitations of these prior

works are noted. First, PSNR and SSIM are computed on a per-pixel/voxel basis using

low-level features, which fail to account for many nuances of perceptual similarity. Second,
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Figure 5.3: Visual comparison for four selected ROIs. Each row corresponds to one ROI

that contains one annotated nodule. Each column corresponds to different normalization

scenarios.

despite having the objective of improving detection, segmentation, or classification, studies

have yet to demonstrate the effect of CT normalization on these tasks. Third, the gen-

eralizability of deep-learning-based normalization techniques has been understudied. Lack

of external validation on scans acquired under different settings raises uncertainty over the

actual model performance.

We propose a multi-pronged approach for evaluating normalization techniques to demon-

strate the strengths and weaknesses of using image synthesis methods for CT normalization.

Our approach’s premise is that a single set of metrics does not provide a complete picture

of the effect that normalization has on quantitative image features and downstream tasks.

With a previously reported GAN-based normalization method, we assess the impact of nor-

malization at three levels and the contributions of this work include 1) demonstrating the

importance of image quality metrics beyond PSNR and SSIM; 2) highlighting the impact

of normalization on radiomic features in critical anatomical regions of interest (ROIs); and

3) displaying the influence of normalization on the performance of a lung nodule detection
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algorithm.

5.2.1 Method

5.2.1.1 Dataset

25 chest LDCT scans from the Mayo Patient CT Projection Data Library [87] were used

in this evaluation. Scans were acquired using a SOMATOM Definition Flash CT scanner

(Siemens Healthineers, Erlangen, Germany) following standard clinical protocols. Simulated

scans at 10% of the routine dose via inserting Poisson noise were available along with the

original imaging data. The kernel used to reconstruct is B50f with a slice thickness of 1.0

mm. Radii (r) and centroids ([x, y, z]) of 42 annotated lesions were provided.

5.2.1.2 Model

We previously described a 3D GAN-based model for CT image normalization, whose ar-

chitecture comprises a 3D SR-ResNet generator and a VGG-like discriminator with spectral

normalization layers [132]. Eight models were trained independently based on different map-

pings (e.g., normalize from 10% dose, smooth kernel to 100% dose, sharp kernel), as specified

in Table 5.2. A WGAN model based on [140] was also implemented for the purpose of com-

parison. These models were trained using images reconstructed from raw sinogram data

for 80 patients extracted from Siemens CT scanners (Definition Flash, Sensation 64, Defi-

nition AS) at our institution. Based on a previously validated physics-based dose-reduction

model [145], noise was injected into the raw data to simulate images with 10% and 25% of the

acquisition dose. Final images were reconstructed using weighted filtered back projection [43]

with a smooth or sharp kernel. The same training strategy was adopted from [132].

5.2.2 Overview of evaluation

The evaluation was conducted in three parts: 1) image quality assessment using per-pixel

metrics (PSNR, SSIM) and a high-level perceptual similarity metric; 2) radiomic feature
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Figure 5.4: Heatmap and dendrogram displaying the level of agreement among radiomic

features. A CCC ≥ 0.8 was considered as indication for high agreement (shaded green).

Features were loosely clustered into five groups using average linkage algorithm. H = high-

pass filtering. L = low-pass filtering. Filters were applied successively in x, y, z direction

(e.g., “HLH”).

analysis on absolute feature errors and reproducibility; and 3) task-dependent assessment

using a pretrained nodule detection algorithm. We performed these evaluations by applying

3D GAN-based models trained at our institution to unseen scans from the Mayo Clinic

dataset.

5.2.2.1 Image quality assessment

PSNR and SSIM assess global per-pixel/voxel differences but can easily fail to reflect dif-

ferences which are apparent to human vision. We thus employed another metric named
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Figure 5.5: Absolute errors in three representative radiomic features

Learned Perceptual Image Patch Similarity (LPIPS) [146], which evaluates semantic sim-

ilarity using deep features computed by a pretrained VGG-16 model (version=0.0). The

network was trained on a perceptual similarity dataset (Berkeley-Adobe Perceptual Patch

Similarity Dataset [146]) which contains 484k human perceptual judgments. A lower LPIPS

value reflects a closer perceptual distance. We pursued a task-based approach by focusing

on ROIs with anatomical significance (e.g., lung parenchyma). Calculated along the axial

plane, metric results were averaged over 42 annotated ROIs with a dimension of 64× 64 for

each scenario.

5.2.2.2 Radiomic feature analysis

Motivated by the quantitative radiomics analysis presented in [5], a total of 369 radiomic

features were extracted from 42 ROIs of dimension 64 × 64 × 5 with pyradiomics [126],

which includes: (i) 11 intensity features based on first-order statistics, (i) 30 texture features
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describing spatial distribution of voxel intensities and (iii) aforementioned 41 features from

eight wavelet decompositions of original images by directional (x, y, z) low-pass and high-

pass filtering. We computed absolute errors for each radiomic feature by |x̂i − xi|/xi where

x̂i refers to feature value without/after normalization and xi is the feature value in reference.

Lin’s concordance correlation coefficient (CCC) [62] was employed to study reproducibility

of radiomic features after normalization.

5.2.2.3 Nodule detection performance

We employed a 2D RetinaNet trained on the LIDC-IDRI dataset [74] to perform nodule

detection on the 25 scans containing all annotated lesions. Lobe segmentation by U-Net [46]

was applied to minimize interference from outer chest bone structures. With the provided

centroid and radius (r), we generated a spherical ROI for each nodule. Slices whose inter-

section with the ROI has a radius greater than 0.95r were also adopted as the reference

standard. The model returns a set of rectangular bounding boxes, each with a probability

of containing a nodule. A bounding box with a probability > 0.5 is considered as a nodule

and as a true positive if its intersection over union with ground truth exceeds 0.5. Since a

detection model may have its own inherent performance limitations, we computed CCCs for

precision and recall between each normalization scenario and the reference.

5.2.3 Results

5.2.3.1 Image quality metrics

Results for image quality metrics with a visual comparison of four ROIs were presented in

Table 5.2 and Figure 5.3. Among four denoising-only scenarios, A and C with 10% to

100% dose mappings, respectively, achieved a higher score than B and D with 25% to 100%

mapping. Better PSNR and LPIPS were observed for models trained on images reconstructed

with sharp kernel (C and D). All four scenarios involving kernel conversion resulted in

poorer LPIPS. A noticeable drop in all three metrics was observed when attempting to
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convert a smooth kernel to a sharp kernel, whose ROIs in Figure 5.3 displayed sharpening

of edges with a high noise level. In comparison, G and H achieved comparable PSNR and

SSIM results with the denoising-only scenarios but failed in LPIPS. Their ROIs also visually

appeared oversmoothed.

5.2.3.2 Radiomic features

Figure 5.4 provides an overview of reproducibility of radiomic features after normalization.

Among the five clusters, an increase in agreement was observed for the majority of features

in Cluster 2 for A-D. Features in Cluster 4 also displayed general improvement in A and C,

but also G and H. In contrast, features in Cluster 3 and 5 underwent unimproved or wors-

ened agreement under all normalization scenarios. Features in Cluster 1 were characterized

by consistently high concordance with the reference throughout the normalization process.

Figure 5.5 shows the absolute errors in three radiomic features with high prognostic power

for lung cancer [5]. Similar trends for different scenarios were observed except the increase

in absolute errors for the first-order feature “Energy” extracted from original images.

5.2.3.3 Nodule detection performance

Figure 5.6 summarizes the relative performance of nodule detection between different nor-

malization scenarios and a 100% dose reference. Agreement for precision was generally

improved after normalization except for E and F while significant improvement was only

observed in A, C and G for recall.

5.2.4 Discussion

The inadequacy of conventional metrics (PSNR, SSIM) in assessing visual similarity implies

the potential benefits for employing diverse metrics during performance evaluation. Although

the images in G and H appeared oversmoothed, their PSNR and SSIM were still comparable

with images more perceptually close to the reference. Such discrepancy was captured using
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Figure 5.6: Nodule detection performance. We applied CCC to compare the relative perfor-

mance of different normalization scenarios (precision & recall) with respect to the full-dose

reference.

LPIPS, one option among many high-level metrics [33, 98]. Nevertheless, none of these

metrics alone was adequate to predict the effects on radiomic features and ML model outputs

as presented. Results from different metrics and direct visual comparison are thus essential

for understanding the impact of normalization techniques.

From the metric results and direct visualization, we observed that certain types of map-

pings in CT normalization are more challenging than others. Kernel conversion remains

critical especially when generalized on external datasets. Conversion using our 3D GAN

from smooth to sharp kernel appears to add ringing artifacts into the images (E and F in

Figure 5.3). Whether such difficulties originate from specific neural network characteristics

and potential mitigation strategies demand further investigation.

While overall noise reduction is achieved, the normalized intensity and textural values

highlighted by radiomic features are not necessarily equivalent to those generated from ref-

erence. As seen in Figure 5.4, a fair proportion of features cannot be easily improved

through normalization and are highly sensitive to the changes in reconstruction kernels. Us-

ing a single radiomic signature could also result in an incomplete picture about the effects

of normalization, as shown in Figure 5.5.

Although image quality and radiomic features appear as strong contributors to improve-

ment in nodule detection performance on normalized images, this process is not deterministic

and might depend on how different radiomic features are combined and weighted. As images
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normalized by the WGAN model achieved equivalently good metric and radiomic results

as GAN-C, it did not result in as much improvement in both precision and recall. Rather

than treating as separate processes, optimizing the overall performance for CT normalization

and downstream tasks (detection, segmentation, classification) could potentially be more ef-

ficient.

In summary, we demonstrate that a single set of image quality metrics is insufficient to

predict whether a normalization technique has beneficial impacts on radiomics and down-

stream tasks. Adopting a multi-pronged approach provides a more complete understanding

of the effect of normalization, particularly related to the use of these scans in clinical tasks.

For future work, we wish to translate this idea into more quantitative metrics for performance

comparison between different normalization techniques.
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CHAPTER 6

Conclusion

6.1 Summary

The purpose of this dissertation is to develop and compare two modeling approaches for CT

image normalization, a conditional GAN approach presented in Chapter 3 and a conditional

Flow approach presented in Chapter 4. We examine quantitative imaging features and task-

driven clinical evaluations beyond the use of image quality metrics in Chapter 5. Few works

in this field are presented with a holistic evaluation. The use of a single set of image quality

metrics is insufficient to show whether a normalization technique benefits downstream tasks.

A multi-pronged approach provides a deeper understanding of how normalization impacts

downstream tasks and how it may support clinical decisions.

There are limitations to GAN-based approaches. The GAN may introduce undesired

artifacts in the radiomic feature analysis, where unnormalized images may, in some cir-

cumstances, perform better than normalized images. GANs also models the normalization

problem deterministically, even though the problem is intrinsically ill-posed, and multiple

outputs could be valid. This limitation was partially addressed in Chapter 4 with the Flow-

based method, which illustrates the benefits of a flow-based model over a popular GAN-based

model and the impact on ensuring consistent performance of CAD software. A unique feature

of the flow-based model is its ability to measure uncertainty by using different output images
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that are obtained by sampling the latent space. CTFlow delivers more reliable lung nodule

detection results by using explicit density. We can leverage latent space autoencoding to

make models generalizable. The model uncertainty estimation offered by normalizing flows

can also be extended to other medical image analysis beyond prepossessing images, such as

segmentation, detection, and classification. However, CTFlow is not universally superior to

SNGAN. In Chapter 4.4.2, we showed that SNGAN outperforms direct CTFlow for the 10%

dose evaluation in Mayo datasets. When dealing with low-dose denoising problems, SNGAN

demonstrates its strength in generating samples when the conditioned image is of inferior

quality.

Moreover, certain input conditions and feature combinations are robust to variations

in CT parameters. Therefore, applying normalization techniques is unnecessary and may

even amplify artifacts. Some quantitative imaging features are robust under a variety of

conditions, but there may not be a condition under which all features are robust.

Studies in the past have examined the effect of individual CT parameters (e.g., dose,

slice thickness, kernel) on feature reproducibility but have neglected to take into account

the interactions among CT acquisition and reconstruction parameters. For example, if the

effect of radiation dose reduction is examined at a specific kernel and slice thickness, we

may overlook their additive impacts on noise. Therefore, in the future, we will seek to

understand the complex nature of these effects on different clinical tasks systematically and

comprehensively and conduct a breakdown analysis of those features and conditions into

classifications requiring aggressive, moderate, or no mitigation.

The term “artifact” refers to patterns, textures, features, and morphological structures

that are introduced into the normalized image but are not tied to physical reality. As can be

seen from GAN-based normalization results, artifacts are introduced into the reconstructed

image. Normalization based on Flow is effective when dealing with artifacts. Nonetheless, it

is necessary to investigate whether these artifacts originate from the model or the training

set. The distribution of samples with abnormalities (lesions) in the training set must match
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the distribution of abnormalities in the test set. In other words, a good model must be well

calibrated. It is recommended that the probability of generating a lesion or abnormality

matches the actual probability of seeing lesions in the test set, to ensure model reliability.

The flow-based approach has the potential to provide probability information so that it can

be calibrated manually in accordance with the true probability observed in the test set.

We expect to see more work estimating uncertainty and utilizing it to improve classifica-

tion, segmentation, and detection for medical image normalization. Flow-based approaches

facilitate the interpretation of models by providing clinicians with a sense of model con-

fidence. However, GANs will continue to dominate image generation tasks. Meanwhile,

the topic of overcoming mode collapse is an ongoing research to increase sample diversity

for GAN. When should one consider using GAN over Flow? To answer this question, we

must first consider the fundamental differences between the two approaches: GAN models

implicit density, whereas Flow learns explicit density. While GANs have the advantage of

generating visually appealing outputs, Flow learns the optimal likelihood. As discussed in

Chapter 4.25, explicit density can be used to manipulate images. GANs can provide useful

outputs, if having an artifact-free image is not a concern (e.g., medical image synthesis for

data augmentation). Flow might be a better choice for medical images, but GAN is still

superior for natural images.

6.2 Concluding remarks

There are open challenges in the normalization of medical images. At the dataset level, all

models are trained with paired data in this research. Paired data can either be acquired using

ground truth imaging data or by simulating lower-dose or nonstandard imaging conditions.

In the context of image normalization, to obtain a “gold standard” ground truth training

dataset, we would ideally need to acquire paired normal dose and lower dose scans on the

same patient. While such acquisitions do occur in very specific circumstances, requiring
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patients to be exposed to radiation unnecessarily would be unethical. A simulated approach

such as the one that we pursued has several limitations: 1) The intra- and inter-variability

consists of multiple parameter variations resulting in combinations of imaging conditions;

accordingly, it is impossible to enumerate all these conditions through simulation. 2) Simu-

lated scenarios and real-world situations are always different. The challenge is to develop a

physical model that captures every physical process of the image variation due to different

CT parameters. Though in this study, the simulated dataset was based on a sophisticated

physics-based model that had previously been compared and validated statistically with the

characteristics of the ground truth phantom scan, in most cases, simulated data do not ex-

hibit the same characteristics. However, paired data may not even be necessary. Recent

advances, such as CycleGAN, do not require paired data. This allows researchers to scale

up training with more data by utilizing a large volume of unpaired data. Additionally, this

idea can be extended by using more training data to reduce variability as well as directly

training the downstream image analysis model using imaging data with mixed conditions.

As a result, we refer to this approach as data augmentation, which makes the model more

generalizable. This method is intended to use more diverse conditions or parameter combi-

nations within the dataset to act as a regularizer and reduce overfitting to limited imaging

conditions.

Ultimately, the normalization and the data augmentation approach are similar. This

dissertation investigated the effect of different normalization techniques on mitigating the

effects of different CT conditions on quantitative imaging features. Under the current settings

of imaging data accessibility, it is difficult to pursue data augmentation due to two reasons:

1) AI/ML developers and healthcare institutions are unable to retrain their models on a

timely basis due to limited data availability and proprietary software and 2) the downstream

image analysis model differs based on the specific task and type of disease. Retraining a

model for every possible environment that the model could be used is neither feasible nor

scalable.
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One additional point: despite the excitement surrounding the potential use of AI/ML for

medical image analysis, clinical practice has not fundamentally changed. I believe one major

impediment is the lack of good quality training data. In the healthcare industry, legislation

and policies regarding data privacy and security represent a growing concern, and therefore

data are limited.

However, there are two approaches to overcome privacy concerns. With federated learn-

ing, researchers can train statistical models on decentralized devices or servers utilizing local

data sets. Researchers can train using the same model without uploading private data to

the cloud or exchanging data with other parties. By maintaining local data storage, feder-

ated learning reduces data security and privacy risks relative to traditional machine learning

operating in a centralized manner. The parameters of the model are later merged into a

central node. However, one central node responsible for orchestrating all models is prone to

security breaches. The second approach, swarm learning, is also a decentralized and confi-

dential clinical machine learning scheme introduced in [130] that sheds some light on how ML

distributed computing would eventually evolve to for healthcare industry. Peer-to-peer net-

working and coordination are performed through blockchain technology, while confidentiality

is maintained without a central node. This ensures the security of the network through proof-

of-work [26]. As a scientific demonstration, Warnat-Herresthal et. al. shows that Swarm

Learning classifiers outperform those developed at individual sites in predicting radiological

findings (atelectasis, effusion, infiltration) for a public dataset containing 95,000 chest X-ray

images. The goals of this dissertation could have been also achieved through decentralized

federated or swarm learning. For image variability caused by multicenter effect, each center

can train the model using its own data, but merge network parameters later using federated

or swarming learning. The model will be more robust against the effects of variations in

data acquisition protocols with the help of larger datasets from other centers.

The future of healthcare is to employ the aforementioned technologies to enable the

sharing of deidentified medical data amongst institutions, to build robust multicenter data
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sharing platforms, and ultimately to train large-scale models using massive medical datasets.

These efforts are vital to the creation of better tools and infrastructures for model develop-

ment. We will continue to face challenges in developing models from limited data until the

healthcare infrastructure matures in the future.
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