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Abstract 

The study presented in this paper applies Hidden Markov Modeling (HMM) to uncover the 

recurring patterns within a neural activation dataset collected while designers engaged in a 

design concept generation task. HMM uses a probabilistic approach that describes data (here, 

fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on 

the fMRI data’s temporal and spatial properties, HMM enables an automatic inference on states 

in neurocognitive activation data that are highly likely to occur in concept generation. The states 

with a higher likelihood of occupancy show more activation in the brain regions from the 

executive control network, default mode network, and the middle temporal cortex. Different 

activation patterns and transfers are associated with these states, linking to varying cognitive 

functions, for example, semantic processing, memory retrieval, executive control, and visual 

processing, that characterize possible transitions in cognition related to concept generation. 

HMM offers new insights into cognitive dynamics in design by uncovering the temporal and 

spatial patterns in neurocognition related to concept generation.  Future research can explore new 

avenues of data analysis methods to investigate design neurocognition and provide a more 

detailed description of cognitive dynamics in design. 
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1.     Introduction  

Design cognition has been a significant area of interest in design research. Traditional 

approaches to studying design cognition typically relies upon subjective and qualitative 

techniques. Researchers need to infer, or participants need to report, the internal processes in the 

designer's mind that align with design behavior through observation, questionnaires, or 

interviews (Chiu & Shu, 2011; Dinar et al., 2015). Such approaches allow the research to be 

performed in-situ or in controlled experiments. However, these approaches are limited by their 

intrinsic subjective nature and extensive qualitative data processing requirements (Chiu & Shu, 

2011; Hay et al., 2017). To overcome some of these limitations and combine more quantitative 

methodologies in design cognition research, an emerging research area in the design research 

community, often referred to as “design neurocognition”, is seeking to apply techniques from 

cognitive neuroscience to measure brain activity related to design and advance knowledge of 

design cognition (Balters et al. 2022; Gero & Milovanovic, 2020; Goucher-Lambert et al., 2019; 

Hay et al., 2022; Hu & Shealy, 2019; Liu et al., 2018; Vieira et al., 2020;  Zhao et al., 2020).  

Functional magnetic resonance imaging (fMRI) is one of the neuroimaging techniques used to 

measure design neurocognition. fMRI offers a more direct understanding on the whole-brain 

neurocognitive processes that correlate with design behavior and support design activity. 

Classical analysis of fMRI data usually focuses on a pre-specified “event” (e.g., event-based 

design matrix) or time points (e.g., specific time window or sliding window). Significant 

assumptions are required in the pre-specification relating temporal and spatial information to 

uncover meaningful links between brain activity and participant behavior in response to 

experimental tasks. Additionally, this type of analysis leads to a loss of information from the 

entire dataset, especially the dynamics in the process. In this work, an unsupervised machine 

learning technique, Hidden Markov Modeling (HMM), is used to automatically infer states 

and their spatial and temporal patterns in underlying fMRI data related to design cognition 

without prior specifications on event-based design matrix or time window for fMRI data 

analysis. 

HMM is a generative model that describes data in a temporal sequence of a finite number of 

discrete states. Prior research in both design and neuroscience domains has demonstrated that 

using HMM provides valuable insights into temporal patterns in varying types of data, for 



example, a short-timescale sequence in design behavior data (McComb et al., 2016, 2017a, 

2017b), and dynamic patterns (states) of neural activation in large-scale resting-state fMRI data 

(Vidaurre et al., 2017, 2018). A prior study by the authors also used HMMs to extract distinct 

states in the fMRI data and find differences in neurocognitive patterns between participants with 

different performance levels (Goucher-Lambert & McComb, 2019). In that prior work, 

participants were assigned to high- and low-performing groups based on idea fluency (i.e., the 

number of concepts generated in a fixed time). Half of the designers with higher design fluency 

were assigned into the high-performing group while the other half were assigned into the low-

performing group. Significant differences were found between these two groups in the number of 

solutions generated in every 15-second block. Differences were also observed in the state 

occupancy between the high- and low-performing designers (Goucher-Lambert & McComb, 

2019).    

However, the neural activation patterns associated with the distinct states identified in the prior 

work (Goucher-Lambert & McComb, 2019) are still unknown. There is a lack of understanding 

of the specific brain regions involved in each neurocognitive pattern plus corresponding 

cognitive functions. The current work builds on (Goucher-Lambert & McComb, 2019) by 

investigating the patterns of neural activity, linking them to physical locations in the brain, and 

inferring the cognitive functions associated with each of the 12 states discovered in prior 

work.  The findings suggest that the states extracted from fMRI data using HMM are linked to 

varying brain regions and associated with different cognitive functions that provide meaningful 

explanations for different performance in concept generation.    

  

2.     Background 

This work employs neuroscience experiments (i.e., fMRI) and a machine learning technique (i.e., 

Hidden Markov Modeling, HMM) to explore dynamic neurocognitive patterns related to design 

concept generation. This section first introduces design research that applied fMRI to understand 

brain activities during design and concept generation. Then, critical brain regions and large-scale 

networks associated with the concept generation process are summarized. This section also 

discusses HMM and its application to neuroimaging data and design research.  

2.1. fMRI and design neurocognition 



A growing body of research is using neuroimaging techniques to investigate brain activities 

relevant to design in multiple phases, for example, design concept generation (Fu et al., 2019; 

Goucher-Lambert et al., 2019; Hay et al., 2019; Hu et al., 2019, 2021; Shealy et al., 2020), 

design decision-making (Goucher-Lambert et al., 2017b; Hu & Shealy, 2020, 2022), and open 

design or problem-solving (Vieira et al., 2022b; Zhao et al., 2020). A variety of neuroimaging 

techniques have been employed to measure design neurocognition, such as 

electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and functional 

magnetic resonance (fMRI). EEG and fNIRS are portable in data collection but limited in spatial 

resolution. EEG cannot pinpoint the specific brain regions where the electrical signal comes from 

(Burle et al., 2015). fNIRS usually has a limited number of light sensors and a shallow 

penetration depth, so it is restricted to cover only the outer cortex (Quaresima & Ferrari, 2019). 

In contrast, fMRI provides excellent spatial resolution and rich information on brain activity 

through whole-brain scanning. However, a limited number of fMRI studies have investigated 

design or concept generation considering the lack of mobility and high cost of operation in an 

fMRI experiment (Hay et al., 2022).  

One of the first fMRI study related to design was performed by Goel & Grafman, (2000) which 

explored the difference between architects with and without lesion to the prefrontal cortex, and 

found that  the right dorsolateral prefrontal cortex was necessary for ill-structured representation 

and computation in room space design. Another early study that adopted fMRI to investigate 

design was by Alexiou et al., (2009). This study found distinguishing cognitive functions and 

brain networks when performing architectural room layout tasks in two forms (1) ill-defined and 

open design and (2) well-defined and constrained problem-solving. The study also identified that 

higher activation in the right dorsolateral prefrontal cortex (PFC) was associated more with open 

design than problem-solving (Alexiou et al., 2009), which was confirmed by a recent EEG study 

that extended Alexiou et al.,( 2009)’s work by investigating the open design tasks at three 

distinct stages and found increased activation in ideation stages in alpha 2 and beta 3 band in the 

PFC  (Vieira et al., 2022b). Another two fMRI studies related to design decision-making include 

Sylcott et al., (2013) and Goucher-Lambert et al., (2017) that used fMRI to understand product 

preference judgment when users made trade-offs between different design variables (e.g., form, 

function, and environmental impact) and found varied brain regions associated with each of the 

decision attributes.   



Design concept generation, or design ideation, is arguably the most critical phase for injecting 

creative inspiration and shaping the creativity of subsequent design phases (Cross, 2001; Yang, 

2009; Hay et al., 2019). The design research community is increasingly interested in using 

neuroimaging methods to understand performance (e.g., quantity, quality, creativity, etc.) and 

cognitive processes related to design concept generation. Ellamil et al., (2012) used fMRI to 

investigate the cognitive difference between creative generation and evaluation. The results 

found the medial temporal lobe was central to the generation of novel ideas while evaluation 

mainly involved the executive regions for affective and visceropathies evaluative process. Hay et 

al.,( 2019) compared the neurocognitive activation during concept generation between open-

ended and constrained design ideation tasks but found no significant difference between the two 

conditions. However, they did identify increased activation in the left cingulate gyrus and right 

superior temporal gyrus during ideation. Fu et al., (2019) studied the neurocognitive patterns 

associated with design fixation in concept generation. They found increased activation in areas 

associated with visuospatial processing (e.g., left middle occipital gyrus and right superior 

parietal lobule regions). Goucher-Lambert et al., (2019) investigated design concept generation 

with and without the support of inspirational stimuli (e.g., text-based analogies) and identified 

two separate patterns of brain activation: one is associated with the successful application of 

inspirational stimuli to generate design solutions via insight in the temporal and parietal lobes, 

and the other is the currently unsuccessful and external search for insights in the primary visual 

processing-related brain regions.  

2.2. Important brain regions and networks for ideation and insights       

Even though only a limited number of fMRI studies have been performed to understand design 

concept generation (Alexiou et al., 2009; Ellamil et al., 2012; Fu et al., 2019; Goucher-Lambert 

et al., 2017b; Hay et al., 2019; Sylcott et al., 2013), ideation (i.e., concept generation) and 

insights are widely studied in the neuroscience literature that used fMRI (Beaty et al., 2016; 

Benedek et al., 2014; Benedek & Fink, 2019; Blumenfeld et al., 2011; Green et al., 2015; 

Heinonen et al., 2016; Shen et al., 2018) or design neurocognition studies that used other 

neuroimaging techniques (Vieira et al., 2022a, 2022b; Shealy & Gero, 2019; Hu et al., 2021). 

The process of generating insights and new ideas requires complex cognitive processes of 

attention, cognitive control, and memory (Benedek et al., 2018; Benedek & Fink, 2019; Fink et 

al., 2007). Some brain regions and large-scale brain networks have been shown to play critical 



roles in supporting ideation and insight. Prior research highlights activity within the brain regions 

from the default mode network (DMN) and executive control network (ECN) as being 

particularly influential (Beaty et al., 2016; Ellamil et al., 2012; Heinonen et al., 2016). DMN-

ECN interactions also occur during cognitive tasks that involve generating and evaluating 

creative ideas (Beaty et al., 2016; Ellamil et al., 2012), and the dynamic transitions between 

default and control network are facilitated by the salience network (Beaty et al., 2018; Uddin, 

2015).    

DMN predominantly includes the medial prefrontal cortex (mPFC), posterior cingulate cortex 

(PCC), and medial and inferior parietal cortex. DMN activity may engage in spontaneous and 

associative processes, such as self-generated and internally-directed thought during mind 

wandering, mental stimulation, and episodic memory retrieval (Beaty et al., 2020). Such self-

generated and internal-directed cognition contributes to concept generation by deriving useful 

information from long-term memory (Beaty et al., 2016, 2020). Prior neuroimaging studies 

found strong activation within the DMN related to creative processing by analogy (Beaty et al., 

2016, 2020; Benedek & Fink, 2019). For instance, the mPFC shows higher activation during the 

novel generation of words with analogies (Green et al., 2015). Likewise, activation in the PCC is 

associated with creative idea generation through metaphor production (Benedek et al., 2014).       

The ECN mainly comprises the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate 

cortex (ACC). The ECN has been linked to the support of internal representation, working 

memory, and relational integrations in creative cognition literature (Beaty et al., 2016; Gilhooly 

et al., 2007; Heinonen et al., 2016). The prefrontal cortex (PFC), especially the dorsolateral PFC, 

is heavily involved in encoding of relational information and executive control when retrieving 

information from working memory (Blumenfeld et al., 2011; Green et al., 2010). Working 

memory is necessary to focus attention on and maintain executive control over elements related 

to concept generation (De Dreu et al., 2012). A prior study found activation in the dorsolateral 

PFC, especially in the left hemisphere, is dominant in concept generation (Shealy & Gero, 2019). 

ACC activity is also a consistent finding in creative analogical thinking tasks for executive 

processes of response conflict and response selection between different ideas (Green et al., 

2015).  



Insights also rely on memory. The temporal cortex, a brain region in charge of semantic and 

episodic memory, is often involved in creative insight (Shen et al., 2017). Temporal regions, 

especially the medial temporal lobe, have been closely linked to the function of breaking mental 

sets and establishing remote and novel associations, which then can trigger insight experience 

(Shen et al., 2018; Q. Zhao et al., 2013). Prior design neurocognition research also found higher 

activation in the temporal regions during creative ideation (Ellamil et al., 2012; Hay et al., 2019) 

and concept generation with inspirational stimuli (Goucher-Lambert et al., 2019). Other brain 

regions, such as the primary visual processing-related brain region in the occipital lobe, show 

activation in creative processing as well. While it is usually connected to participants being 

unable to solve problems with insights (Kounios et al., 2006), design fixation without new ideas 

(Fu et al., 2019), or a continued external search without insights (Goucher-Lambert et al., 

2019) in design cognition.  

2.3. Application of HMM in neuroscience research  

Previous research in design neurocognition (mentioned in Sections 2.1 and 2.2) provides 

valuable information related to concept generation. However, most studies followed classical 

fMRI data analysis methods that depend on significant assumptions. The temporal and spatial 

information regarding the fMRI data needs to be assumed beforehand to extract meaningful 

statistics linking brain activity to participant behavior in response to tasks (e.g., a design matrix 

that specifies time of event in general linear model methods). These analysis techniques are 

locked to specific time points (e.g., when the neural process of interest occurs) and do not 

uncover connections between brain regions that may be correlated in space and time. These 

methods might be limited when the neural process of interest (e.g., ideation) is complex and not 

easy to pre-specify. In addition, the dynamics in the fMRI data are hard to capture when using 

classical methods. To catch the dynamic information in design cognition without making 

assumptions on the structure of the data, HMM is adopted in this work to automatically infer 

states in fMRI data related to design cognition without prior assumptions. 

HMM uses a probabilistic approach to describe the data as a dynamic sequence of discrete states 

with a flexible definition of distribution (e.g., Gaussian, Wishart, or any other family of the 

probability of distribution). HMM can model time-series fMRI data in a temporal structure of the 

inferred brain states, each with specific spatial activation patterns. Applying HMM to fMRI data 



assumes that: (1) fMRI data can be reasonably modeled in a discrete number of states with 

Markovian dynamics; (2) At each point in time, these states are reflective in the form of 

probabilities, and only one active state is assigned based on probability; (3) The current state 

being occupied is only dependent on the last state, not the previous history of state activation 

(Vidaurre, 2021; Vidaurre et al., 2017). The model allows for the analysis of how likely a state 

being occupied at a particular time point, how much time is being spent in each state, and how 

certain a state is transitioning to another state. Such recurrent patterns and dynamics in brain 

activation data throughout entire datasets can be uncovered using HMM. It provides a more 

reliable estimation of brain activation patterns and overcomes the insufficiency when a short 

time window is pre-specified for classical statistical analysis (Vidaurre et al., 2018). Another 

benefit is that HMM enables the detection of the transient occurrence of a state and switches 

between the states when the visits of the states are relatively short in time, which is usually 

missed in classic analysis methods (Vidaurre et al., 2018). Based on the flexibility and analysis 

power, HMM has been applied to fMRI data (Anderson, 2012; Anderson et al., 2010, 2016; 

Baldassano et al., 2017; Meer et al., 2020; Suk et al., 2016; Vidaurre, 2021; Vidaurre et al., 2017, 

2018).  

The earliest fMRI studies that adopted HMM were by (Anderson, 2012; Anderson et al., 2010, 

2016). This study used HMM to distinguish the period of time and mental states (e.g., encoding, 

planning, solving, and responding) when students engaged in mathematical problem-solving 

(Anderson et al., 2016). Baldassano et al., (2017) applied HMM to fMRI data and detected event 

boundaries during narrative perception through shift between brain activation states without 

stimulus annotations. HMM was also applied to decode brain states in resting-state fMRI data for 

clinical application (Suk et al., 2016). Vidaurre et al., (2017) used HMM with the large datasets 

(resting-state fMRI data from 820 subjects) in the Human Connectome Project (HCP) to achieve 

richer and more robust conclusions about the dynamic nature of brain functional connectivity. 

Here, the results demonstrated that activation data can be well represented in discrete states 

which are hierarchically organized in time, and the dynamic transitions between these states are 

far from random. More recently, Meer et al., (2020) applied HMM to fMRI data collected during 

movie viewing. The HMM captured a sequence of well-defined functional states plus dynamic 

transitions that were temporally aligned to specific features of the movie in the study. In 

summary, previous research has demonstrated HMM as a viable approach to represent brain 



activation data in a variety of contexts for which information regarding recurrent patterns of 

activity is of interest. The goal of the current work in this paper is to uncover brain activation 

patterns and cognitive functions that emerge and transit between different states during design 

concept generation. 

2.4.Application of HMM in design research  

Another critical motivation for applying HMM to neuroimaging data on design ideation comes 

from prior work that has demonstrated HMM as a valuable tool for capturing patterns and 

sequence in design behavior data. HMM was adopted by the authors in prior work to represent 

and stimulate sequential patterns of design behaviors when designing for additive manufacturing 

(Mehta et al., 2020) and solving configuration problems, including the design of truss structures 

or internet-connected home cooling systems (Brownell et al., 2021; McComb et al., 2016, 2017a, 

2017b). Design is a dynamic process in a sequence of stages or activities (Cramer-Petersen et al., 

2019; Gericke & Blessing, 2011; Howard et al., 2008). In engineering design, the capacity of 

designers to learn and employ sequences (temporal patterns of activity) has long been of interest 

to design researchers (McComb et al., 2016, 2017b; Cramer-Petersen et al., 2019; Gericke & 

Blessing, 2011). Prior research explored sequence in design at different levels of abstraction 

(McComb et al., 2016). The level of abstraction refers to the sequencing levels in design based 

on the ordering of design stages (more abstract and generalized), specific tasks, or design 

operations (less abstract and more detailed-specific). For example, the higher level of abstraction 

as design stages that tend to occur at the longer timescales (e.g., customer needs assessment, 

conceptual design, detailed design) (Atman et al., 2007; Goldschmidt & Rodgers, 2013), and a 

lower degree of abstract at a shorter timescale as specific design tasks  and operations (e.g., 

adding a member, adding a joint, resizing a member, etc., in the design of truss structures) 

(Brownell et al., 2021; Rogers, 1996; Sen et al., 2010). Sequencing at short timescales and low 

abstraction directly impact design proficiency (Brownell et al., 2021) or performance (McComb 

et al., 2016, 2017b). However, this level of abstraction and timescales has not well studied in the 

engineering design literature (McComb et al., 2017a). The current work presented in this paper 

aims to fill this gap by exploring the states in neurocognition as imaged through fMRI. The 

spatial and temporal patterns are investigated from a neurocognitive aspect. The results identify 

and assess a short-timescale sequence of difference states in neurocognition that has not 

previously been examined in engineering design research. Here sequence refers to the temporal 



patterns and transitions in neurocognitive activation and functions. This intersection of 

neuroimaging, design concept generation, and analysis using HMM provides a novel 

contribution to design cognition literature. 

 

3.     Methods 

This study investigates the patterns of neural activation and possible cognitive functions 

associated with each of the 12 states related to design concept generation identified in prior work 

(Goucher-Lambert & McComb 2019). The fMRI datasets, data processing procedures, and 

Hidden Markov modeling (HMM) are introduced in Sections 3.1, 3.2, and 3.3, respectively. 

Section 3.4 describes the method for localizing the brain activations and inferring possible 

cognitive functions associated with each state.       

3.1. Design concept generation task and fMRI experiment 

This study used the fMRI dataset collected in a prior design by Goucher-Lambert et al. (2019) in 

which participants engaged in concept generation tasks with or without the assistance of 

inspirational stimuli. Inspirational stimuli are examples provided to designers to enhance 

creativity and innovation during conceptual ideation (Goucher-Lambert & Cagan, 2019). These 

stimuli were sourced in prior work by extracting common and uncommon words from 

crowdsourced solutions using a text-mining technique. Their distance to the problem (near or far) 

was determined based on word frequency and bi-directional path length textual similarity 

(Goucher-Lambert & Cagan, 2019).  

In the fMRI experiment, designers (i.e., engineering and design students) completed the 12 

design problems and developed as many solutions as possible in an MRI scanner. For each 

design problem, designers were given a total of two minutes, separated into two 60-second 

blocks, and asked to develop as many solutions as possible in each block. From the beginning of 

each block, all designers were presented with word sets drawn from inspirational stimuli 

(inspirational stimuli condition, near or far stimuli) or containing words from the design problem 

without inspirational stimuli (control condition). A total of five inspirational stimuli were 

displayed: three words displayed at the same time (Word Set 1) from the beginning of the first 

block and the remaining two words displayed simultaneously (Word Set 2) from the beginning of 



the second block. The purpose is to make the presentation of inspirational stimuli 

alternate throughout the task and provide new stimuli if participants had exhausted their use of 

the inspirational stimuli presented in the first block. An example problem and inspirational 

stimuli can be found in Figure 1. Each of the twelve design problems had a unique set of 

inspirational stimuli for all three conditions (near, far, control). The experiment conditions were 

counter-balanced to provide an even distribution of problem-condition pairs for each designer. 

Figure 1 shows the experiment process. Only fMRI images collected during the whole session of 

the design concept generation periods (highlighted in Figure 1, without any specification on the 

time points of Word Set 1 or Word Set 2) were included in the HMM. The full details of the 

design problems, inspirational stimuli, and fMRI experiment can be found in Sections 2.2 in 

Goucher-Lambert et al., (2019).      

 

Figure 1 Design concept generation experiment process with an example problem and 
corresponding inspirational stimuli   

3.2. fMRI data collection, pre-processing and brain parcellations 

A total of 21 engineering students were recruited and completed the fMRI experiment. Figure 2 

illustrates the steps for the fMRI data collection, pre-processing, and preparation for HMM 

training. fMRI data collection and pre-processing were performed in the prior work. Detailed 



information on participants, fMRI equipment, data acquisition, and data pre-processing (Step A 

and B in Figure 2) can be found in Sections 2.3 and 2.4 in Goucher-Lambert et al., (2019). Data 

processing in the current work includes Steps C, D, and E in Figure 2. 

 

  

Figure 2 fMRI data pre-processing and preparing. Steps A and B were performed in the 
prior work. The current study processed and analyzed the fMRI data in Steps C, D, and E 

A multi-stage process was applied to prepare the pre-processed fMRI time-series data into lower-

order spatial representations for the purpose of more rapid HMM training, illustrated in Figure 2 

(C) and (D). The first step was down-sampling each fMRI image from the resolution of 

54×64×50 (in a total of 172,800 ) voxels to 27×32×25 (in a total of 21,600) voxels to avoid 

overfitting (Anderson, 2012). Then the processing pipeline and techniques used by (Smith et al., 

2014; Vidaurre et al., 2017, 2018) were applied in this study to prepare HMM inputs. Principal 

component analysis (PCA) was used to reduce fMRI data to its dominant constituents with a 

dimension of 50 parameters for each subject. The last step was to perform independent 

component analysis (ICA) with pre-specified constraints (i.e., parcellation in Figure 2 (D)). The 

max-kurtosis ICA algorithm was applied to project the data into a 50-dimension time-series 

using the 50-parcellation template from the Human Connectome Project (HCP). The whole-brain 

fMRI data was parcellated into the activation data within 50 functional distinct areas using the 

pre-validated spatial maps (Medolic_IC) from HCP, which include spatial information of the 50 

spatially independent components in the brain (Beckmann, 2012). Previous researchers used the 

large-scale resting-state fMRI data in the HCP and provided this data-driven functional 

parcellation of human brains with high stability (Beckmann & Smith, 2004; Smith et al., 2014, 

2015). A final standardization was performed to the 50-dimension time-series fMRI data 



aggregated among all participants so that the training data for the following HMM have a mean 

of 0 and a standard deviation of 1. 

3.3. Hidden Markov Modeling 

The normalized fMRI time-series datasets from all participants were concatenated in the 

temporal dimension and used to train HMM to generate a group-level sequence of a finite 

number of states with varying patterns in neural activation. Specifically, the HMM was trained 

with emissions in Gaussian distribution, which was used in prior fMRI studies (Vidaurre et al., 

2017, 2018) and is appropriate for the fMRI data used in this study. Here each state was 

represented by the average modes of brain activation that are emitted or enacted with some 

degree of variance in Gaussian distribution. The HMM-MAR (Hidden Markov Model - 

Multivariate Autoregressive) toolbox (Vidaurre et al., 2016) was used to accomplish the analysis. 

Estimations on parameters of state distributions, progression through states, and transition 

probability matrix, were conducted by using the HMM-MAR toolbox. A state matrix (S 12 × 50) 

showing the state distribution across the 50 brain parcellations for the 12 states was calculated 

for further activation localization (detailed in Section 3.4). 

The appropriate number of states for a hidden Markov model is usually determined within an 

iterative procedure (McComb et al., 2017b; Pohle et al., 2017). A range of varying numbers of 

hidden states from 2 to 32 was tested for the HMM training, and log-likelihood values were 

compared among all the models. Here, log-likelihood is a measure of model accuracy, describing 

the probability that the observed data was produced by the trained model. The resulting 

differences in log-likelihood values between models was negligible, providing no basis on which 

to choose the number of states. As a result, 12 was determined as the number of states and used 

for model training in prior work (Goucher-Lambert & McComb, 2019) and the current study to 

align with previous literature in neuroscience applying 12-state HMM to neuroimaging data 

(Vidaurre et al., 2017, 2018).       

3.4.Localizing the brain activation in each HMM state  

The 12 HMM states from (Goucher-Lambert & McComb, 2019) were used in the current work 

for the investigation of the brain activation patterns related to concept generation. As mentioned 

in Section 3.3, each state was represented by the average mode of brain activation, so a state 

matrix (S 12 × 50) with mean values of activation was calculated and used. The state matrix has 12 



row vectors that stand for 12 states.  Each row vector contains 50 contributing indices, which are 

mean values from a Gaussian distribution and represent the average contribution from the 

corresponding parcellation. The state matrix was used to project the activation back into a 

higher-dimension activation matrix with more voxel elements. The mathematics is represented in 

Equation (1). 

      X = S × A                                                                          (1)  

A mixing matrix (A 50 × 32767) including the voxel compositions of the 50 parcellations was 

provided by the HCP (Ugurbil & Van Essen, 2017) and applied to the states matrix (S) here for 

the generation of high-dimension and whole-brain activation matrix (X 12 × 32767) associated with 

the 12 states. Here 32767 represents the dimension length of the standard 32k surface meshes 

provided by HCP mixing matrix template (16-bite integers and limited to 32767 in each 

dimension) (Elam et al., 2013). Then the activation for each state (a row vector in X) was coded 

and converted into appropriate CIFTI-2 format files. Doing so enabled the visualization of each 

HMM state in an activation heatmap using the HCP visualization and discovery tool wb_view 

(Marcus et al., 2013). 

An investigation of the physical locations in the brain and possible cognitive functions associated 

with the HCP 50 parcellations was performed to better understand the activation patterns of the 

HMM states. Specific Montreal Neurological Institute and Hospital (MNI) coordinates for the 

center point of each parcellation were extracted in the wb_view tool. The extracted MNI 

coordinates for each parcellation were localized into brain regions and Brodmann areas using the 

Biolmage Suite tool (Papademetris et al., 2006). Then a meta-analytical database of fMRI 

studies, NeuroSynth, was used to map between the parcellation MNIs and associated cognitive 

functions (Yarkoni et al., 2011). NeuroSynth operates by using combined text-mining, meta-

analysis, and machine-learning techniques to generate probabilistic mappings between cognitive 

functions and neural activation in the brain region with corresponding MNI coordinates (Yarkoni 

et al., 2011). The cognitive functions in NeuroSynth are coded into specific psychological terms, 

such as working memory, retrieval, visual, or large-scale brain networks. A total of 14371 fMRI 

studies have been used in NeuroSynth for a robust and reliable inference mapping between brain 

regions and cognitive functions (Yakoni, 2022; Yarkoni et al., 2011). NeuroSynth has been used 

in previous research to localize brain regions of interest and identify common cognitive functions 



in fMRI datasets related to design (Goucher-Lambert et al., 2017a). This coordinate-to-term 

mapping approach was used in the present work to infer cognitive functions associated with each 

parcellation and then each HMM state. The psychological terms with a high likelihood of 

associating with the activation in the MNI coordinate (represented by a posterior probability 

P(term | activation) from Naïve Bayes Classification higher than 0.75) were selected as cognitive 

functions associated with the parcellation. Eventually, for each state, the key parcellations (i.e., 

parcellations with top 3 contributing indices to the state in the state matrix) and their associated 

cognitive functions (i.e., psychological terms extracted from NeuroSynth) were identified for 

further interpretation of the state. 

 

4.     Results 

Using the methodologies outlined in Section 3, this study investigates the patterns of neural 

activation that are associated with each of the states discovered by Goucher-Lamber & McComb 

(2019). Cognitive functions associated with each of the HMM states were inferred based on 

meta-analysis from NeuroSynth. State transfers between the HMM states were also uncovered 

and interpreted.  

4.1. Patterns of neural activation associated with the 12 states 

The 50 parcellations acquired from the Human Connectome Project (HCP) were localized to 

specific brain regions and Brodmann areas for further interpretation. Six parcellations were 

removed from the summary since the activation (i.e., z-scores) were negligible. A summary of 

associated brain regions for the other 44 active parcellations can be found in Table A1 in the 

Appendix. In addition, possible cognitive functions described by the psychological terms 

extracted in NeuroSynth, associated with each parcellation, are also listed in Table A1.  

To directly illustrate the neural activation patterns associated with each HMM state, brain 

activation heatmaps of the 12 states were created using the wb_view tool and presented in Figure 

3. The activation map for each state was generated by projecting the state matrix for the 50 

parcellations back to high-dimension activation within each voxel element, which is described in 

Section 3.4. As shown in the activation heatmap, distinct locations in the brain and patterns of 

activation are associated with the 12 HMM states. State 4 has significantly higher activation than 



other states, mainly in the prefrontal cortex and motor cortex. States 1, 7, and 11 show negative 

activation in a wide range of brain regions. Other states show strong activation in either the 

prefrontal cortex (PFC), temporal cortex, or occipital cortex. For example, State 2, 8, and 10 

show strong activation in the occipital and temporal cortex, while State 6 mainly involves 

activation in the PFC.  

  

Figure 3 Activation heatmap for the inferred 12 HMM states from the aggregated fMRI 
data. The states are characterized by their mean activation that projected from the 50-

dimension parcellations to whole brain space. 
When using the HMM approach, the activation pattern for each state has a linear relationship 

with the activation in the brain parcellations, represented in the state matrix. Figure 4 below uses 

a color-coded state matrix to represent the contribution indices of the 44 active parcellations to 

each state. The 44 parcellations were reordered and clustered based on the cortex they are in to 



more clearly show the activated cortex for each state. A few parcellations include more than one 

cortex in the human brain, and therefore appear along the y-axis of the figure multiple times.  

 

Figure 4. Contribution indices of the parcellations to each state. The color represents the 
value of contribution from the parcellation to the state. The parcellations are reordered 

and clustered based on the cortex 

  

As shown in Figure 4, State 4 shows higher activation levels than other states, including in the 

prefrontal cortex, temporal cortex, parietal cortex, and motor cortex. Another finding is that 

some states show stronger activations in one or two cortexes than other brain regions. For 

example, States 2 and 5 are more involved in the occipital and temporal cortex; State 6 has 

stronger activations in the prefrontal cortex than other regions. State 3 and 10 show their major 

activation in the occipital cortex. States 1 and 11 are less activated but have major activation in 

the occipital cortex; State 7 also shows less activation in most brain regions except for activation 

in the occipital cortex, cingulate cortex, and prefrontal cortex.      



  

4.2. Key parcellations for each state and possible cognitive functions 

To identify physical brain locations of major activation for each state and infer cognitive 

functions, the top 3 parcellations of the state (ranked by the contributing indices in the state 

matrix) were identified. Cognitive functions of the parcellations, coded as concise physiological 

terms, were extracted using a coordinate-to-term approach based on the meta-analysis from 

NeuroSynth (Section 3.4). Table 1 here lists the top 3 parcellations for each inferred state, plus 

their physical location in the brain, and associated cognitive functions from meta-analysis.  

Table 1 Key parcellation to each state and possible cognitive functions 

State Key parcellations and brain 
regions (Brodmann areas: BA) 

Cognitive functions based on meta-analysis 

State 1 40, 29, 43 
R lateral occipital gyrus (BA 19) 

 
Sight, visual, eye movement 

State 2 39, 37, 42 
L/R middle temporal gyrus (BA 21) 

L/R rostrolateral PFC (BA 10) 
L/R lateral occipital gyrus (BA 18) 

 
Word, semantic, verb, encoding 
Rules, retrieval, reasoning 
Visual, eye movement 

State 3 42, 2, 33 
L lateral occipital gyrus (BA 18) 

L supplementary area (BA6) 

 
Visual, eye movement, reading, real world 
Finger tapping, hand movement 

State 4 19, 23, 11 
L/R supplementary area (BA6) 
L/R dorsolateral PFC (BA 9) 

L/R posterior parietal cortex (BA 7) 
L/R middle temporal gyrus (BA 37) 

 
Finger tapping, motor task 
ECN, mnemonic, language, semantics, solving 
ECN, calculation, memory load 
Word, semantic, encoding/retrieval, intentional 

State 5 39, 42, 41 
L/R middle temporal gyrus (BA 21) 

L/R rostrolateral PFC (BA 10) 
L lateral occipital gyrus (BA 18) 

L supplementary area (BA6) 

 
DMN, word, semantic, verb, encoding 
Rules, retrieval, reasoning 
Visual, eye movement 
Motor, movement, tapping, imagery 

State 6 35, 28, 9 
L ventromedial PFC (BA 10) 

L inferior frontal gyrus (BA 44) 
L dorsolateral PFC (BA 46) 

L supramarginal gyrus (BA 40) 

 
Beliefs, reward  
Semantic, verb, comprehension 
ECN, working memory, demands, rules 
Verb, sentences, language, comprehension 

State 7 43, 29, 18 
R lateral occipital gyrus (BA 19)  

L/R posterior cingulate area (BA 31) 
L orbitofrontal cortex (BA 10) 

 
Sighted, visual, eye movement 
DMN, episodic, retrieval, self-referential 
Memories, retrieval; recollection 



State 8 42, 10, 30 
L lateral occipital gyrus (BA 18) 

R Front eye field (BA 8) 
R angular gyrus (BA 39) 

 
Visual, eye movement 
Memory load, demand, front-parietal 
Attention, theory of mind, social cognition 

State 9 2, 41, 30 
L lateral occipital gyrus (BA 18) 

L supplementary area (BA 6) 
R angular gyrus (BA 39) 

 
Reading, visual 
Motor, movement, tapping, imagery 
Theory of mind, social cognition 

State 10 25, 3, 41 
L lateral occipital gyrus (BA 18) 

L supplementary area (BA 6) 

 
Visual, eye movement, action observation 
Motor, movement, tapping, imagery 

State 11 39, 41, 42 
L lateral occipital gyrus (BA 18) 

L/R medial temporal gyrus (BA 21) 
L/R orbitofrontal cortex (BA 10) 

L  supplementary area (BA 6) 

 
Visual, eye movement 
DMN, word, semantic, verb, encoding 
Rules, retrieval, reasoning 
Motor, movement, tapping, imagery 

State 12 32, 11, 27 
L/R anterior PFC (BA 10) 

L/R dorsolateral PFC (BA 9) 
L/R posterior parietal cortex (BA 7) 
L/R inferior temporal gyrus (BA 37) 

 
Noxious 
ECN, mnemonic, language, semantics, solving 
ECN, calculation, memory load 
Word, semantic, encoding retrieval, intentional 

Note: DMN = default mode network, CEN = central executive network 

Table 1 shows distinct patterns and physical locations of activation in the 12 HMM states. The 

physical locations of the top 3 parcellation for each state provide a consistent mapping with the 

state activation heatmap in Figure 3 and the color-coded state matrix in Figure 4.  For example, 

State 4 shows higher activation in a wide range of brain regions. To be more specific, the major 

activation is in the dorsolateral PFC and posterior parietal cortex from the executive control 

network (ECN), which is generally associated with executive control of working memory 

(Chatham et al., 2011), middle temporal cortex, and bilateral supplementary areas for motor 

tasks (Chu & Black, 2012). Another example is State 6 that mainly involves activation in the 

PFC. The major activated brain regions of State 6, shown in Table 1, are predominately in the 

PFC, including the dorsolateral PFC, ventromedial PFC, and inferior frontal gyrus, which are 

usually involved in rule-based reasoning (O’Bryan et al., 2018; Rudorf & Hare, 2014), 

comprehension (Gernsbacher & Kaschak, 2003), and the executive control function from the 

ECN (Chatham et al., 2011).  

In addition to the consistent mapping, Table 1 also filters the major activated brain regions in the 

states that are less active and hard to notice. For instance, State 1 shows significant activation in 



the occipital cortex that is critical for visual processing (Clarke & Miklossy, 1990). State 7 

involves activation in the occipital, orbitofrontal, and posterior cingulate cortex from the default 

mode network (DMN). DMN usually engages in rest state or spontaneous and associative 

processes (Beaty et al., 2020). For State 2, except for the activation in the temporal and occipital 

cortex, the rostrolateral PFC is also a major brain region of activation. The restrolateral PFC is 

generally associated with rule-based reasoning (Hobeika et al., 2016; Paniukov & Davis, 2018). 

Regardless of the specific activation patterns, most states combine collection of widespread brain 

regions that are functionally connected within large-scale networks. The associated networks 

here mainly include ECN, DMN, visual network, and motor network. The 12 inferred states 

share some consistent cognitive functions related to these brain networks. For instance, semantic 

processing and memory retrieval are two frequent functions listed in Table 1. Semantic 

processing refers to a human’s ability to use, manipulate and generalize knowledge to support 

verbal and non-verbal behaviors (Ralph et al., 2017). Memory retrieval is the process that 

involves the interactions of triggers/cues and stored memory traces (Frankland et al., 2019). Most 

states, except for States 1, 3, and 10, involve activations that are closely associated with either 

executive control of working memory or spontaneous associative processing for semantic and 

retrieving processes.       

Another shared cognitive function in multiple states here is visual processing. All states, except 

for States 4, 6, and 12, show major activation in the primary visual processing-related brain 

regions.  Finger tapping is also a common cognitive function in a few inferred states, including 

States 3, 4, 5, 9, and 10.  This function from the motor network is involved because the 

experiment asked participants to click on a button when they generated a concept. A baseline 

correction with the fMRI data during the n-back task was used to remove the noise associated 

with movement in the experiment. However, there can still be activation associated with 

motivational or imaginary finger movement before or when designers clicked the button.  

4.3. Likelihood of state occupancy and  state transitions      

Among the 12 states identified in (Goucher-Lambert & McComb 2019) for the aggregated fMRI 

data related to concept generation, seven states, the state probability matrix suggests States 1, 2, 

3, 4, 6, 7, and 11, show a higher probability of occupancy than the rest states (i.e., States 5, 8, 9, 

10, and 12). These less-occupied states might represent random activation patterns less relevant 



to the design task. Figure 5 shows the time-varying occupancy probability of the seven states that 

are highly likely to occur in the process of concept generation . Among these states, States 2, 4, 

6, 7, and 11, are more likely to be occupied, especially State 4, with the highest likelihood of 

being occupied than other states. 

 

Figure 5 The probability of occupancy in the seven states that are more likely to be 
occupied in the process of concept generation.              

The dynamic pattern between the 12 states was represented using possible switches between the 

12 states. Only strong transitions with a probability higher than 10% were included in Figure 6(A). 

Strong diagonal elements suggest that participants are likely to stay in a single state across several 

brain image acquisitions. Other strong off-diagonal elements show a dynamic pattern and 

transitions between different states. These transition paths with a transition probability greater than 

10% are highlighted and included in Figure 6(B).  

  



 
Figure 6 Strong transitions (probability > 10%) between states (A) and transition paths 

with high probability between states (B) 
 

As shown in Figure 6(B), the states that are least likely to be occupied (i.e., States 5, 8, 9, 10, and 

12) have a high probability of transitioning to States 4, 6, 7, and 2, but not to States 1, 3, and 11. 

As mentioned, these less-occupied states might represent random activation patterns less relevant 

to the design task. This transition might represent a shift from a random state back to the active 

states for concept generation, especially to States 2, 4, and 6. These states involve activations in 

the lateral PFC from the ECN. The executive control functions associated with these states can 

inhibit cognitive processing on irrelevant information and amplify attention for internal 

representation of insights. Among other active states, there are some state switches with higher 

probability, for example, State 6 to State 4 (31%), State 1 to State 6 (22%), State 2 to State 11 

(21%), State 11 to State 6 (17%), and State 7 to State 2 (16%). These transition paths between 

the key states suggest possible dynamic and recurring patterns in neurocognition related to 

concept generation.  

 

5.     Discussion 



This study used a Hidden Markov Modeling (HMM) approach to uncover the spatial and 

temporal patterns in fMRI data related to design concept generation. Using this approach, 12 

distinct states, with dynamic switches between each other, were automatically inferred from the 

data. Specific activation patterns in each state were linked to different physical locations in the 

brain and varying cognitive functions based on meta-analysis. Furthermore, the state transition 

routes and difference in state occupancy between the high- and low-performing designers can 

provide meaningful explanations to their different design performances.  

5.1. Associations and distinctions between the key states 

Among the 12 distinct states, several key states showed a higher likelihood of being occupied 

and transiting than the other states, including States 2, 4, 6, and 7. Consistent cognitive functions 

associated with these states are semantic processing and memory retrieval (Burianova and Grady 

2007; Goldberg et al. 2007). These two cognitive functions echo the associative theory of 

creativity (Mednick, 1962) and a common view on analogical reasoning (Forbus et al., 1995) that 

support the creative process. Here analogical reasoning is the inference inspired by the source, 

and applied to a target (Chan & Schunn, 2015; Forbus et al., 1995; Goucher-Lambert et al., 

2019). Semantic processing supports the generation of new ideas by offering a semantic 

knowledge base of facts and concepts for screening and selection (Beaty et al., 2020; Gerver et 

al., 2022; Mednick, 1962). According to the associative theory of creativity,  people who have a 

loosely structured semantic knowledge base are better at creative tasks because they are more 

capable of forming associations with remote semantic distance (Mednick, 1962). Considering the 

semantic nature of inspirational stimuli provided in the design task, semantic processing can play 

a critical role for participants to cognitively process the semantic similarity and making 

associations between the inspirational stimuli and the design solutions. Memory retrieval is an 

essential step that enables searching and recognizing a useful and relevant concept stored in 

designers' memory (Gomes et al., 2006). Successful retrieval of memory can then be used in the 

subsequent generation of solutions to the design problem. The findings emphasize the 

importance of semantic processing and memory retrieval to design concept generation with 

inspirational stimuli. More specific characteristics of semantic processing and memory retrieval, 

for instance, semantic similarity, divergent or convergent semantic processing, and memory 

retrieval cues, plus their correlates with ideation performance can be studied with more details in 

future research.  



Even though these states have shared cognitive functions, they involve varying physical 

locations of activation in the brain. Figure 7 illustrates the key brain regions (Brodmann areas) of 

activation for the four major States. The differentiated activation patterns of these states suggest 

potentially different roles for semantic and retrieving processing. Considering the temporal 

patterns in occupancy likelihood, these states might represent difference sequences in cognition 

related to concept generation.       

 

Figure 7. Key brain regions of activation for States 6, 4, 7, and 2.  The brain regions 
(Brodmann areas, BA)  with the top 3 contribution indices (shown in Table 1) for the states 
are highlighted in corresponding locations with the BA number.   
  

State 6 might be responsible for stimuli encoding and goal defining  

The activation pattern of State 6 is mainly within the inferior frontal gyrus (Brodmann area—BA 

44) and supramarginal gyrus (BA 40), which are mainly involved in semantic and (specifically) 

verb comprehension (see Table 1), and dorsolateral PFC (BA 46) for rule and demand 

processing. Activation in the BA 44 and BA 40  is often linked to verb processing, especially for 

comprehension (Bak et al., 2001; Giraud et al., 2004; Newman et al., 2009; Sahin et al., 2006). 

Dorsolateral PFC is critical for representing and maintaining information related to goals and 

rules to guide behavior (Bunge et al., 2003; Wallis & Miller, 2003). Considering the distinct 

increase in the likelihood of occupancy of State 6 directly after the introduction of the 



inspirational stimuli (Word Set 1 at 0 seconds and Word Set 2 at 60 seconds), a possible 

interpretation of State 6 is to comprehend and encode the stimuli for goal defining.   

 

State 4 appears to be generating new concepts inspired by the stimuli 

In contrast, State 4 mainly shows activation from the executive control network (ECN, including 

the dorsolateral PFC and posterior parietal cortex). Activation within the ECN is heavily 

involved with executive controls of internal retrieving information from working memory and 

relational integration (Curtis & D’Esposito, 2003; Gonen-Yaacovi et al., 2013). Several 

neuroimaging studies found significant higher activations in the dorsolateral PFC and posterior 

parietal cortex in support of relational integration (Blumenfeld et al., 2011; Green et al., 2010) 

and creative generation task (Gonen-Yaacovi et al., 2013; Kowatari et al., 2009). The middle 

temporal gyrus (BA 37), in charge of semantic and episodic memory in creative insight (Shen et 

al., 2017) and formation of novel associations from analogy (Hao et al., 2013) is also activated in 

State 4. Prior work that applied the general linear modeling (GLM) approach to the same fMRI 

data as the current study found that temporal brain activation were closely associated with 

insights inspired by the stimuli as well (Goucher-Lambert et al., 2019). A possible interpretation 

of State 4 is generating new concepts with the inspirational stimuli.  The activation in the motor 

network of State 4 might be associated with motivational or imaginary finger movement before 

designers confirmed the insights in their minds and planned to report the generation of a new 

concept. 

  

State 7 might switch between internal and external attention 

The main brain regions involved in State 7 include the inferior occipital gyrus for external visual 

processing (Clarke & Miklossy, 1990), orbitofrontal cortex for internal memory retrieving 

(Farovik et al., 2015; Young & Shapiro, 2011), and posterior cingulate cortex (PCC), a core 

backbone for default mode network (DMN). The PCC is typically linked to a central role in 

supporting internal-directed attention for episodic memory retrieving and future planning 

(Buckner et al., 2008). However, there are still debates regarding the exact functions of PCC in 

the neuroscience literature. A comprehensive review on the role of the PCC in neuroimaging 



studies found its possible role associated with switching between internal and external attention 

(Leech & Sharp, 2014). State 7 might serve to sustain insightful thoughts by flexibly switching 

from the external visual process to internal retrieval of memory to generate concepts or a reverse 

switch from the internal controlled process to external attention to the design space. 

  

State 2 seems to contribute to solution evaluation and goal monitoring 

Like State 6, a critical function for State 2 is rule-based reasoning. The specific brain region is 

the rostrolateral PFC. Rostrolateral PFC has been identified as a brain region in support of high-

order cognitive functions in rule-based analogical reasoning (Christoff et al., 2001; Hobeika et 

al., 2016), and memory retrieval (Westphal, Reggente, Ito, & Rissman, 2016). In particular, 

rostrolateral PFC plays an evaluative role in rule-based reasoning (Hobeika et al., 2016; 

Paniukov & Davis, 2018). This evaluative role seems to hold true when designers assess whether 

their associations are appropriately made, or their solutions meet the demand when generating 

concepts with the support of inspirational stimuli. State 2 might represent concepts assessments 

and evaluations. Additionally, higher activation in the occipital cortex is also involved in State 2 

which suggests external attention to the design problem or stimuli.   

It should be noted that these interpretations of states were made based on reverse inference. The 

claims about particular cognitive processes were inferred from reasoning backward from the 

observed brain activity rather than directly testing. However, the meta-analytic framework 

applied in this work using NeuroSynth can potentially address possible problems of reverse 

inference by enabling researchers to conduct quantitative reverse inference on a large scale of 

studies. These interpretations of states only represent possible explanations based on the state 

occupancy, associated brain regions  and cognitive functions. Future research should investigate 

this link between design cognitive processing and neurocognitive patterns more directly to 

examine the interpretations. Another possible limitation is that only group-level inference was 

performed using temporal concatenation for group-level analysis on states occupancy and 

transitions. Subject-level analysis can be reconstructed in future research to explore individual 

characteristics in neurocognition related to concept generation. More detailed and richer 

descriptions on the dynamic patterns and transitions among the key states can be also explored 

based on individual data analysis.  



5.2. Performance-differentiated characteristics in state occupancy and cognitive functions 

States 6, 4, 7, and 2 represent recurring patterns in neurocognition related to the use of the 

stimuli and generating new concepts. The prior research also found high-performing designers 

(i.e., designers with higher idea fluency) showed higher occupancy probability in these states. 

Figure 8 shows the differences in state occupancy likelihood averaged in every 15 seconds 

between the high- and low-performing designers. High-performing designers show a higher 

likelihood of occupancy in States 2, 4, 6, and 7, which are mainly associated with activation in 

the brain regions from the large-scale networks of ECN and DMN. ECN and DMN are two brain 

networks widely studied in creative cognition literature (Beaty et al., 2016). ECN and DMN, plus 

their coupling activation, are believed to play inevitable roles in tasks that demand creative 

processing, such as divergent thinking (Heinonen et al., 2016), analogical reasoning (Hobeika et 

al., 2016), creative idea generation (Beaty et al., 2015), and art creating (Kowatari et al., 2009). 

 

Figure 8 Likelihood of state occupancy difference between the high-performance and low-
performance designers 

      

On the contrary, low-performing designers showed a higher likelihood in States 1, 3, and 11 in 

the duration of concept generation after introducing the stimuli. State 1 mainly shows activation 

in the occipital cortex, so its possible role is visual processing for external information when 

there is no clue or insight from internal processing or participants are unable to generate new 

concepts under time or other constraints. State 3 also involves activation in the occipital cortex. 

Prior research has linked an increase in visual processing with participants being unable to solve 



problems with insight (Kounios et al., 2006), design fixation without new ideas (Fu et al., 2019), 

or an unsuccessful external search without insights (Goucher-Lambert et al., 2019). The state 

might represent a continued external search for inspiration when participants cannot retrieve 

helpful information from memory. State 11 seems to have similar activation patterns as State 2. 

However, the level of activation has significantly decreased. This diminished activation pattern 

in State 11 might render the corresponding cognitive functions not as effective as State 2     . 

Other less-occupied states, including States 5, 8, 9, 10, and 12, might represent random 

activation patterns less relevant to the design task and are not discussed here. 

The performance differentiated characteristics in neurocognition suggest potential leverage 

points in design fluency and creativity training. For instance, training or  interventions in 

education can target improving neurocognitive ability in the ECN and DMN for semantic 

processing and memory retrieval while controlling unnecessary visual processing or eye 

movements. More research in design and education can take advantage of neuroimaging methods 

to shed light on strategies or practices that improve design performance by offering a new layer 

of data and insightful knowledge of hidden brain activities related to design cognition.  

Noticeably, the classification of high- and low-performing designers was based on idea fluency, 

which means high-performing designers generate new concepts more quickly and fluently. High-

performing designers might be quicker to encode the stimuli and define the goal, and then 

retrieve information from memory and generate the targeted concepts through reasoning. Idea 

fluency is a critical measure for creativity in ideation (Mirabito & Goucher-Lambert, 2021; True, 

1956).  However, a limitation is that only idea fluency was compared, while other metrics, such 

as novelty, quality, and feasibility, are not included in this analysis. This can be seen as a 

challenge posed by utilizing fMRI as a method for studying design, as capturing full design 

concepts (e.g., through think aloud protocols, or drawing/typing) is quite challenging in the MRI 

environment. Future research should explore mechanisms to capture the generated concepts and 

explore how other creativity metrics correlate with dynamics of design neurocognition, while 

accounting for possible data quality concerns that may emerge (e.g., via motion artifacts). 

Additionally, this work mainly investigates design neurocognition related to concept generation, 

which is believed to be a key activity in the design process shaping the creativity of subsequent 

design phases (Cross, 2001; Yang, 2009; Hay et al., 2019). However, design is a complex 

process involving multiple stages and activities, and spanning in varying time durations. There is 



substantial need for more design research to explore behaviors and neurocognition related to 

different stages of design and the dynamic patterns in this process as well.       

5.3. Possible transition routes related to concept generation 

Several possible transition routes can be observed from the transition matrix in Figure 6 (B) plus 

the temporal sequence of occupancy for each state in Figure 5. Three possible routines are 

highlighted in Figure 9. There is a distinct increase of likelihood in States 1, 6, and 11 right after 

introducing the stimuli (shown in Figure 5), and the transition probability is high from State 11 

to State 1 (10%), State 1 to State 6 (22%), and State 11 to 6 (17%) (shown in Figure 6 and 9). 

There seems to be a transition route (path 1 in Figure 9), including States 11 – 1 – 6 or States 11 

– 6. Considering the activation patterns and cognitive roles of these states, this route might be 

associated with a process that participants catch sight of the stimuli/verbs, then pass the visual 

information to the prefrontal cortex for encoding the stimuli and defining the goal of the 

problem.       

 
 

Figure 9 Three possible transition routines with high transiting probabilities between the 
different states 

  



After stimuli encoding and goal defining, the information will transit from State 6 to State 4 

(31%) for analogical reasoning and generation of concepts. Then another transition route, a loop 

including State 4 – 7 – 2 – 4, might represent a recurring process of insights. Once an insight 

occurs, a switch from State 4 to 7(13%)  might help designers achieve a quick shift from the 

internal retrieving process to external attention to the stimuli. Then the transition from State 7 

to 2 (16%) suggests the cognitive processing of solution evaluation and goal monitoring to 

initiate a new round of concept generation in State 4. This transition route (path 2 in Figure 

9)  may represent the successful use of the stimuli, leading to insights and generating new 

concepts     .  

In addition to the transition from State 2 to 4, the transition from State 2 to 11 also has a high 

probability (21%, see Figure 7). Thus, there is a high probability that the transition loop State 6 –

4 –2 intersects with the other transition path of State 11 –1 –6. There can be another transition 

cycle including State 4 –7 –2 –11 –1 – 6- 4 in the process of concept generation (see path 3 in 

Figure 9). States 11 and 1 here represent an extended processing in the external attention system 

and visual-related regions. State 6 is involved for re-encoding the stimuli and redefining the goal 

for the problem. This transition route might happen when participants are at an impasse during 

problem solving. When they are not able to retrieve more useful information and new insights 

from internal search, they switch their attention systems and attempt to pay more attention to the 

external environment for insights with visual processing. They might even need to re-encode the 

stimuli and re-define the goals to generate other concepts. This transition route appears to be 

indicative of a continued and less successful external search process for inspiration.  

5.4. Implications for future work combining HMM and design neurocognition 

Overall, the findings presented in this work demonstrate that HMM is a well-suited approach to 

recognizing the recurring patterns of both spatial and temporal dynamics in design 

neurocognition. HMM can capture rich information contained in the entire fMRI dataset. It also 

bypasses some problems and statistical limitations in classical methods for fMRI analysis. 

Classical methods usually rely on significant assumptions regarding the timing of activation and 

brain regions of interest. For example, the sliding window approach assumes a pre-specification 

of the timescale at which the neural activation occurs. This pre-defined temporal window limits 

its statistical power to detect the dynamics in neurocognition (Hindriks et al., 2016; Vidaurre et 



al., 2018). In contrast, there are no assumptions related to the underlying model structure when 

using the HMM approach. Therefore, latent patterns (states) can be automatically inferred in a 

completely unsupervised way, which makes HMMs suitable for exploratory analyses of 

neurocognition data relative to design.  

Using HMM leads to the findings that echo prior design neurocognition literature and show 

consistency regarding the highly activated brain regions associated with concept generation and 

insights (Gerver et al., 2022; Goucher-Lambert et al., 2019; Rudorf & Hare, 2014; Shen et al., 

2017). Here the data-driven functional parcellation of human brains from a large dataset provides 

more stability in the HMM inputs. Additionally, the HMM methodology enriches knowledge in 

design neurocognition by unveiling the dynamic switches between the states with varying spatial 

and temporal patterns related to design concept generation. Prior neuroscience studies have used 

a similar HMM approach to investigate resting-state fMRI data and found that the transitions 

between states or networks are far from random (Baker et al., 2014; Vidaurre et al., 2017, 2018). 

The current work used  HMM and captured the transient and dynamic switches between the 

discovered states that meaningfully characterized possible sequences in cognition for generating 

concepts. The state switches also offer insightful explanations of the dynamic neural patterns that 

influence performance in concept generation.   

A limitation of the HMM inference used in this work is the prior specification on the number of 

states K. The log-likelihood values with different selections of K (e.g., from 2 to 32) did not 

significantly change when performing the model selection. So the choice of 12 states was chosen 

to better align with prior neuroimaging studies that applied HMM to fMRI data (Vidaurre et al., 

2017). However, the findings (e.g., low occupancy likelihood in some states) suggest that a 

lower number of states may present a better trade-off between richness and redundancy and 

should be explored in future work. In addition, other model selection methods, such as model 

evidence via the free energy used in Bayesian inference techniques, can be adapted to select an 

appropriate number of states (Baker et al., 2014).  

In summary, the results show the power of using HMM to uncover the neural patterns of design. 

This study unveils different states in neurocognition with dynamic spatial and temporal patterns 

and helps to construct a more insightful understanding of design neurocognition. The current 

work focused on the activation patterns of the discovered states related to concept generation. 



Network patterns or functional connectivity is another focus in the creative cognition research 

community. HMM also provides benefits to network analysis in fMRI data (Vidaurre et al., 

2017, 2018).  Future research can move from isolated activation toward exploring broad patterns 

in neural activation networks. The results from future research are expected to show how large-

scale networks in the brain and functional connectivity contribute to design ideation.  

  

6. Conclusion 

 This study used a Hidden Markov Modeling (HMM) approach to uncover the spatial and 

temporal patterns in fMRI data related to design concept generation. The underlying fMRI data 

were collected when participants generated solutions to open-ended design problems in two 

concurrent blocks, each lasting 60 seconds. 12 distinct states, with dynamic transitions between 

each other, were automatically inferred from the HMM method. Specific activation patterns 

associated with each state were identified and linked to varying brain regions and cognitive 

functions. The HMM states with higher likelihood of occupancy show more activation in the 

brain regions from the executive control network, default mode network, and the middle 

temporal cortex. Multiple cognitive functions (e.g., semantic processing, memory retrieval, 

executive control, and visual processing) are involved in the key states in neurocognition related 

to concept generation. Highly possible transitions between the states in neurocognition are 

identified and suggest possible transitions between different cognitive processes (e.g., from 

visual processing to rule-based reasoning, from internal retrieving process to external attention). 

The functions of the states in neurocognition offer meaningful explanations on the different 

patterns between designers with high and low idea fluency. To summarize, this study shows the 

potential of HMM in identifying spatial and temporal patterns in the fMRI data related to design 

cognition. HMM offers a deeper understanding of the dynamics in neurocognitive processing 

and brings new knowledge to the design cognition community. Researchers in design 

neurocognition, not limited to those using fMRI but also EEG or fNIRS, can take advantage of 

HMM or other relevant machine learning techniques to provide a more detailed description of 

brain dynamics in design cognition.   
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Appendix 

Table A1 HCP Parcellations, physical locations and cognitive functions 
Parcellation MNI coordinates of central points 

Brain regions; Brodmann area 
Cognitive functions based on meta-
analysis 

1 (-2,-88,32) 
L lateral occipital gyrus; BA 19 

(-2,-68,2) 
L lateral occipital gyrus BA18 

Memory encoding, experience, Word 
pairs;    
Lingual, visual; 

2 (-22,-100,-4) 
L lateral occipital gyrus BA18 

Reading, visual word, face, videos; 

3 (-16,-96,20) 
L lateral occipital gyrus BA18 

Visual, eye movement; 

4 (-42,-80,-6) 
L lateral occipital gyrus; BA 19 

Visual, object, face; 

5 (-40,46,-2)  
L anterior prefrontal cortex, BA 10 

(-16,36,48) 

Rules, reasoning, item, retrieval, 
semantic; 



L front eye field; BA 8 Remembering, experience, thinking, 
semantic, mentalizing, retrieval; 

6 (-6,-64,52)  
L/R superior parietal lobule, BA 7 

(-40,-76,30) 
L/R angular gyrus; BA 39 

Calculation, planning, working memory, 
memory load, execution; 
Memory retrieval, default, episodic, task, 
difficulty, retrieved; 

7 (52,-48,44) 
R supramarginal gyrus, BA 40 

(58,-46,-8) 
R inferior temporal gyrus; BA 37 

(40,40,16) 
R anterior prefrontal cortex, BA 10 

Emotion regulation, monitoring, 
competing; 
  
Memory encoding, character (language), 
memory; 
Working memory, detecting, memory 
load, memory task, painful; 

8 (-40,-80,24)  
L/R lateral occipital gyrus; BA 19  

(-16,-68,52) 
L/R superior parietal lobule; BA 7 

Visual motion, episodic, memory tasks; 
  
Spatial, eye, visual, task, attention; 

9 (-40,36,20)  
L dorsolateral PFC; BA 46 

(-60,-36,36) 
L supramarginal gyrus, BA 40 

ECN, working memory, demands, rules;  
  
Verbs, sentences, language, 
comprehension; 

10 (40,20,44) 
R front eye field; BA 8 

(50,-60,34) 
R angular gyrus; BA 39 

Cognitive, task; 
  
Dorsal attention, attention; 

11 (-40,26,24) 
L/R dorsolateral PFC; BA 9 

(-56,-52,-10) 
L/R inferior temporal gyrus; BA 37 

(-28,-56,48) 
L/R intraparietal sulcus; BA 7 

ECN, memory, working memory, 
retrieval, encoding; 
Word, semantic, retrieval; 
  
ECN, word, working memory, attention; 

12 (-12,52,36) 
L/R dorsolateral PFC; BA 9 

(-6,60,16) 
L anterior PFC; BA 10 

Social cognition, theory mind; 
  
Self-referential, emotion, personality 
traits; 

13 (-24,-60,56)  
L/R intraparietal  sulcus; BA 7 

 (-20,-82,40) 
L/R intraparietal  sulcus; BA 7 

Visual, eye; 
  
Visual, reaching; 

14 (-60,-28,32) 
L/R supramarginal gyrus, BA 40 

Motor, action observation, painful, verb; 

15 (-40,12,48)  
L  supplementary area; BA6 

(-52,2,-20)  
L temporopolar area; BA 38 

Episodic, mind, memories, regulating, 
retrieval, reasoning, judgments; 
Comprehension, sentences, language. 
Semantic, verbs, theory of mind; 

16 (-10,-90,0) Visual, imagery, object, motion; 



L/R primary visual cortex, BA 17 
17 (-20,52,24)  

L anterior PFC; BA 10 
(-52, -52, 36) 

L angular gyrus; BA 39 

Emotion regulation, belief; 
  
Memory retrieval, theory of mind; 

18 (-20,60,4)  
L anterior PFC; BA 10 

(-4,-68,36) 
L dorsal posterior cingulate area; BA 31 

Memories, recollection retrieval; 
  
DMN, recognition memory, episodic, 
memory retrieval; 

19 (60,4,16) 
R  supplementary area; BA6 

Finger movement, execution, chosen, 
motor; tapping; 

20 (-44,-66,28)  
L angular gyrus; BA 39 

Semantic, episodic memory, retrieval, 
memories, mind; 

21 (-40,48,0) 
L/R anterior prefrontal cortex, BA 10 

(-40,20,28) 
L/R dorsolateral PFC; BA 9 

Judgment, retrieval, memory retrieval, 
rules, reasoning, DMN, memory; 
Retrieval, semantic, language, word, 
characters; 

22 (-42,-72,4) 
L/R lateral occipital gyrus; BA 19 

Motion, visual, visual motion; 

23 (-56,-2,28)  
L/R supplementary area; BA6 

Finger tapping, hand, movement; 

24 (-22,-96,4) 
R lateral occipital gyrus BA18 

Early visual, face, words; 

25 (-28,-92,0) 
L lateral occipital gyrus BA18 

Visual, action observation; 

26 (-16,52,32)  
L dorsolateral PFC; BA 9 

(-52,22,12) 
L inferior frontal gyrus; BA 45 

Theory of mind, episodic memory, 
mental states; 
Sentence, semantic, comprehension, 
words, verb; 

27 (-36,48,16)  
L/R anterior prefrontal cortex, BA 10 

Working memory, recall, semantic 
memory, retrieval; 

28 (-52, 18, 16) 
L inferior frontal gyrus, BA 44 

Semantic, verb, comprehension; 

29 (25,-83,27) 
R lateral occipital gyrus; BA 19 

Motion, visual, eye movement; 

30 (50, -48, 18) 
R angular gyrus; BA 39 

Theory mind, empathy, social cognition; 

31 (-60,-32,24) 
L/R supramarginal gyrus, BA 40 

Foot, pain, body; 

32 (-28,42,26) 
L anterior prefrontal cortex; BA 10 

Nociceptive 

33 (-48,-24,56)  
L supplementary area; BA6 

Finger tapping, hand, movement; 

34 (52,-24,52)  
R primary somatosensory cortex, BA 1 

Finger tapping, hand; 



35 (-4,64,-12)  
L ventromedial prefrontal cortex; BA 10 

Beliefs, metabolism, reward; 

36 (-4,-26,64) 
L/R primary motor cortex, BA 4 

Foot, movement, limb; 

37 (8,-92,-8)  
L/R lateral occipital gyrus BA18 

Visual, force, real world; 

38 (-58,2,-4) 
L/R superior temporal gyrus, BA 22 

Language, comprehension; 

39 (-56, -48,-12) 
L/R middle temporal gyrus (BA 21) 

  
L/R rostrolateral PFC (BA 10) 

Word, semantic, verb, encoding; 
  
Rules, retrieval, reasoning; 

40 (-14,- 86,36) 
R lateral occipital gyrus; BA 19 

Sighted, visual; 

41 (-4,0,65) 
L  supplementary area; BA6 

Motor, movement, tapping, imagery; 

42 (-8,-92,-8) 
L lateral occipital gyrus BA18 

Visual, eye movement; 

43 (44,-80,-4)  
R lateral occipital gyrus; BA 19 

Visual, face, object, viewing; 

44 (44,-80,0)  
L/R lateral occipital gyrus; BA 19 

(-20,20,52) 
L/R  supplementary area; BA6 

Visual, object, motion; 
  
Familiarity, decision task; 

  
Note: DMN = default mode network, CEN = central executive network 
 


