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Abstract

The Effects of Background Magnetic Fields on Astrophysical Fingering

Convection

by

Peter Z. Harrington

Double-diffusive convection at higher Prandtl numbers (Pr ∼ O(1) or larger) has been

well studied in geophysical contexts, but detailed investigations of the low Prandtl number

regimes (Pr � 1) which are relevant to most astrophysical scenarios have only recently

become feasible. Since most low-Pr fluids in astrophysical scenarios are electrically con-

ducting, it is possible that magnetic fields play a role in either enhancing or suppressing

double-diffusive convection, but to date there have been no numerical investigations of such

possibilities. Here we study the effects of both vertical (aligned with the gravitational axis)

and horizontal background magnetic fields on the linear stability and nonlinear saturation

of double-diffusive fingering, through a combination of theoretical work and direct numer-

ical simulation (DNS). Both vertical and horizontal background magnetic fields are found

to significantly enhance the fluid kinetic energy, vertical motion, and chemical flux relative

to standard fingering convection, but the two cases differ considerably in their behavior.

We focus mainly on the vertical case, finding that a vertical magnetic field suppresses the

secondary shear instabilities between up- and down-flowing fingers such that saturation of

the instability is delayed until significantly higher levels of vertical fluid motion are reached.

This allows magnetized fingering convection to have significantly enhanced levels of turbu-

lent mixing of chemical species with respect to the hydrodynamic case. Consequentially,

magnetic effects offer a promising explanation of discrepancies between theoretical and ob-

served mixing rates in low-mass red giant branch (RGB) stars.
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1 Introduction & Background

1.1 The double-diffusive instability & fingering convec-

tion

The double diffusive instability has long served the field of fluid dynamics as a rich

and interesting phenomenon, with significant implications for physical processes observed

both on Earth as well as in more distant corners of the universe. Because the field has grown

substantially since its inception, there are now many systems in which double-diffusive

instabilities have been found to play a major role in the overall dynamics. Applications

have been found in oceanography, astrophysics, geophysics, and industrial engineering. The

wide variety of contexts in which double-diffusive instabilities are relevant corresponds to

some diversity in both the physical parameters and the resulting behaviors of these systems,

but they all depend on the same underlying idea – if the density of a fluid depends on

two components which diffuse at different rates, then the fluid may be unstable under the

influence of gravity even when its net density stratification is stable. The two components

truly can be anything affecting the density of the fluid (i.e., any quantity that changes

the buoyancy when its concentration increases or decreases), but the most typical ones are

temperature and chemical composition.

The double-diffusive instability was first discovered and modeled in the context of

the ocean, where heat and salt both affect the density of ocean water but heat diffuses at a
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rate which is two orders of magnitude faster than salt. Stommel et al. (1956) were the first

to propose that sustained fluid motion could be generated by arranging warm, salty water

over cold, fresh water, as long as a vertical salinity gradient could be maintained in the

system. However, they did not fully recognize that the key ingredient was the difference in

diffusivities between heat and salt. This was done in a seminal work by Stern (1960), which

laid out the mathematical details for the first model of the double-diffusive instability, and

correctly predicted that conditions in the ocean could sustain it.

Stern (1960) focused on the branch of double-diffusion known as fingering con-

vection (also called thermohaline convection, as Stern named it in the title of the original

paper), named for the long, thin vertical structures formed by the instability. The mech-

anism for fingering convection is most easily imagined within the heat and salt framework

in which it was originally described – picture an arrangement of hot, salty water on top

of cold, fresh water, such that both components have (roughly constant) vertical gradients.

Without the thermal gradient to compensate and make the fluid less dense on top, the upper

regions of salty water would be overdense, and would begin sinking via the Rayleigh-Taylor

instability. However, the increased heat (thus decreased density) on top counteracts the

increased salinity and makes the fluid bottom-heavy, which we would naively assume to be

dynamically stable. This stable density stratification is a rather non-intuitive aspect of the

fingering instability, since we wouldn’t ordinarily expect a bottom-heavy fluid initially at

rest to begin spontaneously moving. However, if a small parcel of fluid is perturbed down-

wards, its temperature will equilibrate with the colder surrounding fluid much faster than

its salinity will, due to the higher diffusivity of heat. Then, the displaced parcel of fluid is

now overdense – it still has a higher salinity than its surroundings – and continues to sink

downwards.

The mechanism works in the reverse direction, where fluid perturbed upwards will

equilibrate in temperature and become underdense due to its lack of salinity, thus driving
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further upward buoyant motion. The upward and downward motion of parcels of fluid form

the long, vertical fingers for which the fingering instability is named, and the energy source

driving this motion is the potential energy stored in the top-heavy salinity distribution. This

example described the two diffusers as heat and salt, but is easily generalized to any two

quantities that both affect the local density of the fluid. The configuration which defines

fingering convection is simply one where the faster diffuser is stabilizing (e.g., hot water on

top of cold water) and the slower diffuser is de-stabilizing (e.g., salty water on top of fresh

water).

The other branch of the double-diffusive instability, one that is essentially a “mirror

image” of fingering convection, is known as oscillatory double-diffusive convection (ODDC,

also referred to as diffusive convection, and in stellar physics, semiconvection; e.g., Baines

and Gill, 1969; Kato, 1966; Spiegel, 1969). This occurs when the faster diffuser is destabiliz-

ing and the slower diffuser is stabilizing (e.g., cold, fresh water over hot, salty water), where

the motion induced by the instability causes perturbed parcels of fluid to undergo an over-

stable oscillation. While perhaps being slightly less well-studied than fingering convection,

ODDC still has important implications for both geophysical and astrophysical scenarios.

Both fingering convection and ODDC significantly enhance mixing within their en-

vironments, by increasing the vertical turbulent transport of heat or chemical species. Also,

depending on the values of various governing parameters, they can both lead to the forma-

tion of significant secondary instabilities or large-scale structures within their environments

after the initial instability saturates. The fingering instability can lead to the development of

large-scale gravity waves through a mechanism called the collective instability (Stern, 1969;

Stern and Turner, 1969), which further enhances turbulent chemical transport. Fingering

convection can also eventually form distinct layers of fluid, stacked on top of each other

and separated by thin interfaces, by the so-called γ-instability (Radko, 2003). This mech-

anism for layer formation was confirmed by numerical simulations of fingering convection
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(e.g., Stellmach et al., 2011), and it was shown by Traxler et al. (2011) that the collective

instability and the γ-instability are just different unstable modes of the same mean-field

equations. The formation of layers in ODDC has also been observed in both laboratory

experiments (e.g., Turner, 1965) as well as the ocean (e.g., Timmermans et al., 2003). In

the ocean, for both ODDC as well as fingering convection, the formation of layers creates

“thermohaline staircases” (e.g., Schmitt et al., 1987), which further enhance the turbulent

vertical transport of chemical species (Schmitt et al., 2005).

1.2 Astrophysical scenarios: low Prandtl number

The geophysical contexts in which double-diffusion was first studied all share a

common region of parameter space, where the Prandtl number Pr = ν/κT is of order one

or larger. This means that viscosity plays an important role in dictating the dynamics for

such systems. However, in astrophysical contexts, this is not the case. Liquid metals like

those found in planetary interiors have Pr ∼ 10−3 − 10−1, and the plasmas found in stellar

interiors can have Pr ∼ 10−9 − 10−5, because electron conduction in liquid metals and

photon transport in plasmas allow the fluid to thermally equilibrate much more rapidly. As

a result, viscous diffusion becomes negligible on the length scales associated with double-

diffusive convection, making the dynamics more strongly dominated by inertial terms.

Unfortunately, laboratory experiments reproducing the low-Pr conditions of astro-

physical double-diffusive convection are all but impossible. Furthermore, the extremely low

values that of Pr in astrophysical environments make numerical simulations very compu-

tationally expensive. Indeed, 3D direct numerical simulations (DNSs) of low-Pr double-

diffusive fluids have only become feasible within the last decade or so, and even with cur-

rent technology, modeling the behavior for systems with Pr <∼ 10−3 remains a challenge.

Nonetheless, DNSs have become the most important tool in studying these systems, as they

allow us to observe in great detail the growth of the instability, its nonlinear saturation, and
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post-saturation behavior, which would otherwise be scientifically inaccessible.

As a result of the difficulties associated with the low-Pr regime, working out the

details of double diffusive convection with Pr ≤ 0.3 is an on-going problem (see Garaud,

2018, for an in-depth review). There are quite a few similarities between the high- and low-

Pr regimes of double-diffusive convection, and some key differences as well. A major finding

is that the γ-instability, which can lead to layer formation in both fingering convection and

ODDC, is suppressed for fingering convection in the low-Pr regime, since the turbulent fluxes

of heat and composition remain small (Garaud et al., 2015). The same study found that the

collective instability, which can also lead to layering, is also suppressed for Pr ≤ 10−3, which

precludes stellar environments. On the other hand, ODDC at low Prandtl number has been

shown to have a relatively large range of parameter space where layer formation is likely

(Mirouh et al., 2012), with the γ-instability of Stern (1969) being the mechanism by which

layers form (Rosenblum et al., 2011). We will now focus solely on fingering convection, and

in particular, the type expected to occur in stellar environments.

1.2.1 Fingering convection in stars

Relatively soon after the first studies of fingering convection were published, Spiegel

(1969) was the first to review the applicability of double-diffusive instabilities to stellar

environments. Because the field of fingering convection was still in its early days, having

just developed from the “salt-finger” framework of Stern (1960), stellar fingering convection

was also dubbed “thermohaline convection” (as Stern (1960) called it in his original paper),

despite the absence of salt in stellar environments. This practice has continued even into

the present day, but we will refer to the phenomenon solely as fingering convection. As

Spiegel (1969) noted, most stellar interiors, or at least parts of them, possess the basic

ingredients required for double-diffusive convection – stratified fluid, with vertical gradients

in both heat and chemical composition, and a thermal diffusivity much larger than the
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compositional diffusivity. The key “catalyst” required to initiate fingering convection is

that the compositional stratification must be unstable within the region under consideration.

Because heavier elements are mainly found near the center of stars (as the majority of stellar

nuclear reactions are fusion reactions occurring in the core), the mean molecular weight of

the fluid is, in general, stably stratified. Thus, the unstable compositional gradients needed

for fingering convection only arise in certain situations where localized inversions of this

compositional gradient occur.

There are multiple scenarios where this unstable compositional gradient (sometimes

referred to as a “µ-inversion”) may arise, all of which occur away from the center of the star.

The most obvious way of increasing the mean molecular weight at larger stellar radii is via

the accretion of heavy material onto the surface. This material can come from planetary

material (Vauclair, 2004; Garaud, 2011; Théado and Vauclair, 2012), an evolved companion

in a binary system (Stothers and Simon, 1969; Stancliffe et al., 2007), or a disk of debris

nearby a white dwarf (WD) star (Deal et al., 2013). In these scenarios, fingering convection

would then occur at the surface of the star, lasting until the heavy elements are drained away

from the surface such that the unstable compositional gradient disappears. A rather less

obvious way of developing an unstable compositional gradient is via the transport of heavy

elements, the most commonly cited being iron, through a combination of atomic diffusion

and radiative levitation (Théado et al., 2009; Zemskova et al., 2014). These processes can

transport heavier elements from the deeper interior of the star upwards, forming layers of

heavy fluid at larger radii, which can then lead to fingering convection. As in the case of

surface accretion, the mixing induced by fingering convection would then begin to dissipate

the accumulated heavier layer of fluid (however, helium settling has been shown to partially

suppress this dissipation, see Zemskova et al., 2014).

Besides accretion and atomic diffusion, a third way of developing the required

unstable compositional gradient is via off-center burning – these cases are characterized by
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rare nuclear reactions, occurring away from the stellar core, which modify the local mean

molecular weight of the fluid. By far the most well-studied example of such a scenario is the

3He +3 He → 4He + p + p reaction (initially pointed out to be relevant to stellar fingering

convection by Ulrich, 1972), which occurs near the edge of the hydrogen-burning shell in

red giant branch (RGB) stars. As this reaction locally reduces the mean molecular weight

of the fluid, fingering convection begins to occur just above the shell, eventually spanning

the entirety of the region between the shell and the convective zone of the star.

1.2.2 The need for new physics

The study of stellar fingering convection has always involved a focus on how much

it could contribute to the mixing of chemical species within a star (the transport of heat is

not as significant since the molecular thermal diffusivity κT is so large in stellar interiors).

Quantifying this mixing was a central focus of the efforts of Ulrich (1972), who developed

a prescription for chemical mixing in the context of fingering convection within RGB stars.

Later, Kippenhahn et al. (1980) developed a very similar model, which effectively only

differed from the model of Ulrich (1972) by a multiplicative constant CM .

In RGB stars, canonical models of mixing (which ignore fingering convection) do

not predict any variations in the surface abundances of heavy elements after the so-called

“first dredge-up”, which happens when the star evolves from the main sequence (MS) onto

the RGB. However, Gratton et al. (2000) observed such variations in stars evolving up

the RGB, finding post-dredge-up evolution in the abundances of lithium and chemical by-

products of the CNO cycle. This pointed to the presence of some unknown mixing process,

and Charbonnel and Zahn (2007a) were the first to attribute these observations to fingering

convection of the type likely to occur in RGB stars. They point out that since the RGB

fingering convection region is near the edge of the hydrogen burning shell, the onset of the

instability brings the possibility of mixing heavier elements (fusion reaction products and
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by-products) from deep within the star up into the convective zone, which would eventually

circulate them to the surface where they would be spectroscopically detectable. By a similar

process but in the opposite direction, lithium from the surface can be mixed down through

the convective zone and then transported by fingering convection down to deep enough levels

where it is destroyed, thus decreasing its spectroscopic signature at the surface.

Towards explaining the observations of Gratton et al. (2000), Charbonnel and Zahn

(2007a) adapted a stellar evolution code to implement the mixing prescriptions of both Ulrich

(1972) and Kippenhahn et al. (1980), finding the observations well-accounted for provided

CM ∼ 1000 as prescribed by Ulrich (1972). However, 3D DNSs of fingering convection

(Denissenkov, 2010; Traxler et al., 2011; Brown et al., 2013) all agree that CM ∼ 10 or

less, representing a difference between theoretical and observed mixing rates in fingering

convection of two orders of magnitude (see, for example, Wachlin et al., 2014).

This “missing-mixing” problem in RGB stars is at the heart of current research

in astrophysical fingering convection, as there is a clear need to introduce novel effects into

the basic model in order to explain observations. As mentioned previously, the formation

of layers in both laboratory and oceanic fingering convection is well-known to greatly en-

hance chemical transport, so Brown et al. (2013) and Garaud et al. (2015) investigated the

possibility of such layer formation in stellar fingering convection but found that it could not

occur in the regime of parameters relevant to RGB stars. Recently, Sengupta and Garaud

(2018) studied the effect of rotation on fingering convection as a possible solution to the

issue. Contrary to their expectations, they found that rotation actually slightly reduced the

amount of mixing, except for one case where a large-scale vortex (LSV) developed, which

greatly enhanced mixing. The emergence of the LSV in the work of Sengupta and Garaud

(2018) may thus explain, or partially explain, the missing mixing problem, but it also bears

a number of caveats – among them, that vortex formation in rotating DNSs appears to de-

pend on both the horizontal aspect ratio of the domain (Julien et al., 2018) and the latitude

8



of the region considered (Moll and Garaud, 2017).

What has been left relatively untouched so far, especially in terms of DNSs, is the

effect of magnetic fields. While many stellar models rely on hydrodynamic approximations,

the electrical conductivity of plasmas in stars makes the true physical behavior intrinsically

magnetohydrodynamic (MHD), but there have been few attempts to model MHD fingering

convection in detail. A study of stellar double-diffusive MHD instabilities was done by

Hughes and Weiss (1995), who investigated the case where magnetic buoyancy, resulting

from a stratified background magnetic field, would act analogously to the compositional

buoyancy (slow diffuser) in standard thermocompostional fingering. They proposed this as

a mechanism to explain evolution of the solar magnetic field, and the formation of active

regions and sunspots, finding that even in the case where the background gradients in

both the temperature and magnetic fields are stabilizing, steady convection can still occur.

More recently, Charbonnel and Zahn (2007b) proposed that the small percentage of RGB

stars which do not show extra mixing (in contrast to the vast majority that do) might be

explained by the presence of a strong toroidal magnetic field (by their estimate, around 105

G) that could inhibit the onset of fingering convection. Their proposal was based on a local

linear analysis and neglected the nonlinear behavior of the instability. More on this will

be discussed in Section 3. In contrast, Denissenkov et al. (2009) proposed that a strong

toroidal magnetic field component (around 105−107 G) would enhance chemical mixing via

a mechanism they called “magneto-thermohaline mixing”, wherein buoyant magnetic flux

rings formed by differential rotation in the region where fingering convection was taking

place would rise up and increase the vertical transport of chemical species. However, this

one-dimensional model bears a number of constraints on the local conditions within RGB

stars which are difficult to verify, especially for the vast majority of RGB stars that show

enhanced mixing rates (they call for 3D numerical simulations to resolve these issues).

It is thus clear that an in-depth theoretical analysis (and particularly, a dedicated
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3D DNS campaign) of MHD fingering convection would be both a novel step and one that

has the potential to resolve significant issues with stellar fingering convection. This work is

a first crack at the problem, and has three principal goals:

1. To develop a reasonable model for MHD fingering convection in the presence of con-

stant background magnetic fields, and study the linear stability of the model to inves-

tigate what effects a magnetic field could have on the basic instability.

2. To run a suite of 3D numerical simulations, investigating the nonlinear saturation

and post-saturation behavior of the instability, for a variety of field strengths and

configurations.

3. To investigate the impact of magnetic fields on vertical fluxes of heat and composition

by fingering convection.

We now focus on the first of these goals, and derive our base mathematical model. Then, in

Section 2, we will describe the numerical tool developed to perform DNSs of MHD fingering

convection. In Section 3, we will present and discuss the linear stability of our model, and

in Section 4, we will present the numerical simulations and develop an analytical model for

some of our results. Finally, we will discuss implications and conclude in Section 5.

1.3 Development of mathematical model

We consider a Cartesian domain and assume that the fluid satisfies the Boussinesq

approximation (Spiegel and Veronis, 1960). This is a standard step taken in setting up the

fingering convection system, and is a good approximation for stellar interiors (as well as

oceanic environments) because typical root mean square velocities are much less than the

sound speed and the size of the region being modeled is much less than the pressure and

density scale heights. An implicit assumption in following the Boussinesq approximation

and not its magneto-Boussinesq variant is that we are neglecting magnetic buoyancy effects,

10



as we will study the scenario where the background magnetic field is constant within the

domain.

The base set of equations are

∇ · u = 0 (1.1)

ρm

(∂u
∂t

+ u · ∇u
)

= −∇p+ ρmν∇2u +
1

µ0
(∇×B)×B + ρ′g (1.2)

∂T

∂t
+ u · ∇T − uz

dTad

dz
= κT∇2T (1.3)

∂C

∂t
+ u · ∇C = κC∇2C (1.4)

∂B

∂t
= ∇× (u×B) + η∇2B (1.5)

∇ ·B = 0 (1.6)

where u = (ux, uy, uz) is the fluid velocity, B = (Bx, By, Bz) is the magnetic field, ρm is

the reference density, ρ′ are perturbations away from ρm, p is the pressure, g is the local

gravity, T is the temperature field, and C is the compositional field, which can either rep-

resent the mean molecular weight of the fluid, or the concentration of a particular chemical

species. The vertical adiabatic temperature gradient dTad

dz is equal to − g
cp

, where cp is the

specific heat at constant pressure of the fluid. This must be included to account for the

intrinsic thermodynamic structure in the star. The kinematic viscosity ν, and the thermal,

compositional, and magnetic diffusivities, κT , κC , and η, respectively, are assumed to be

constant. Here we assume that the magnetic permeability µ0 is simply that of a vacuum,

which is equal to 4π in cgs units. Equation (1.1) is the continuity equation, Eq. (1.1) is the

Navier-Stokes equation with body forces of gravity and the Lorentz force, Eqs. (1.3)-(1.4) are

advection-diffusion equations for thermal and compositional fields, respectively, Eq. (1.5) is

the induction equation, and Eq. (1.6) is the divergence-free constraint associated with the

magnetic field.

Following the Boussinesq approximation dictates that variations in the fluid density
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only affect the dynamics via thermal or compositional buoyancy (i.e., only from the g term

and not in the others in Eq. 1.2). We then use a linearized equation of state such that the

density perturbations ρ′ with respect to the reference value ρm satisfy

ρ′

ρm
= −αT ′ + βC ′, (1.7)

where T ′ and C ′ are perturbations to their respective background fields, such that T =

Tm + T ′ and C = Cm + C ′, where Tm and Cm are constant. The coefficients α and β are

constants of thermal expansion and compositional contraction, respectively, given by

α = − 1

ρm

∂ρ

∂T

∣∣∣∣
p,C

, β =
1

ρm

∂ρ

∂C

∣∣∣∣
p,T

. (1.8)

Since the region under consideration is small compared to thermocompositional scale heights,

we then assume the existence of a constant background gradient along the vertical direction

for both the thermal and compositional field (e.g., Baines and Gill, 1969), such that

T ′ = z
dT0

dz
+ T̃ , (1.9)

C ′ = z
dC0

dz
+ C̃. (1.10)

We assume that the perturbations T̃ and C̃, as well as u and B, are triply-periodic in the

domain. With these assumptions in place, the thermal and compositional equations reduce

to

∂T ′

∂t
+ u · ∇T ′ + uz

(dT0

dz
− dTad

dz

)
= κT∇2T ′, (1.11)

∂C ′

∂t
+ u · ∇C ′ + uz

dC0

dz
= κC∇2C ′, (1.12)

while the velocity equation becomes

∂u

∂t
+ u · ∇u = − 1

ρm
∇p+ ν∇2u +

1

µ0ρm
(∇×B)×B + (αT ′ − βC ′)gêz. (1.13)

The magnetic induction equation is not directly affected by the previous assumptions, and

thus it is unchanged.
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The standard non-dimensionalization chosen for fingering convection is based on

the length scale d associated with the width of the fingers, given by (Stern, 1960)

d =

(
κT ν

αg|dT0

dz −
dTad

dz |

)1/4

=

(
κT ν

N2
T

)1/4

, (1.14)

where NT is the local buoyancy frequency due to temperature stratification only. The

non-dimensional units for length, time, and physical variables are then

[l] = d, [t] =
d2

κT
, [u] =

κT
d
, (1.15)

[T ] = d

(
dT0

dz
− dTad

dz

)
, [C] =

α

β
d

(
dT0

dz
− dTad

dz

)
, [B] = B0, (1.16)

where B0 is the reference magnetic field strength. Carrying these through into the equa-

tions, and dropping the tildes, the final, non-dimensionalized system describing fingering

convection in the presence of magnetic fields is given by

∂û

∂t
+ û · ∇û = −∇p̂+ Pr∇2û +HB(∇× B̂)× B̂ + Pr (T̂ − Ĉ)êz, (1.17)

∂T̂

∂t
+ û · ∇T̂ + ûz = ∇2T̂ , (1.18)

∂Ĉ

∂t
+ û · ∇Ĉ +

ûz
R0

= τ∇2Ĉ, (1.19)

∂B̂

∂t
= ∇× (û× B̂) +DB∇2B̂, (1.20)

∇ · û = 0, ∇ · B̂ = 0, (1.21)

where from here onwards, hatted quantities denote non-dimensional ones and time and space

variables have implicitly been made non-dimensional as well. In Eq. (1.17), êz denotes the

unit vector in the z direction.

The non-dimensional parameters controlling the system are the Prandtl number

Pr, the compositional and magnetic diffusivity ratios τ and DB , respectively, the density
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ratio R0, and the Lorentz force coefficient HB :

Pr =
ν

κT
, τ =

κC
κT

, R0 =
α
∣∣∣dT0

dz −
dTad

dz

∣∣∣
β dC0

dz

, (1.22)

HB =
B2

0d
2

ρmµ0κ2
T

, DB =
η

κT
. (1.23)

The Prandtl number Pr is of order one or larger in many geophysical scenarios

(e.g. the very well-studied oceanic thermohaline convection, see Radko, 2013), but very

small in stellar environments or liquid metals in planetary interiors (see Garaud, 2018, for

an in-depth review). The ratios τ and R0 parameterize the relative strength of diffusivities

and effective stratification, respectively, between the thermal and compositional fields (R0

is commonly referred to as the “density ratio”). From a linear stability analysis of pure

fingering convection without magnetic fields (e.g., Baines and Gill, 1969), it is found that

fingering convection occurs for 1 < R0 < τ−1 (Stern, 1960). The new parameters in Eqs.

(1.23) parameterize the behavior of the magnetic field and its effect on fluid motion. The

ratio DB is simply the magnetic analogue to Pr and τ , and it is also small in stellar en-

vironments and planetary interiors (although somewhat larger than Pr). The coefficient of

the Lorentz force HB is the squared ratio of the Alfvén velocity to the characteristic veloc-

ity. Because it depends on B2
0 , it is thus the available “control parameter” that sets the

strength of the background magnetic field. In both the analytical work and the numerical

simulations that follow, we will vary this parameter with the goal of testing a variety of

field strengths. We now briefly discuss what ranges of HB values we might expect in stellar

fingering convection.

The typical values of B0 that are likely to occur in stellar interiors can vary widely

both within a given star and between different stars, depending on the stellar region under

consideration. The same is true for the local conditions of the fluid (and thus the values of

the other physical parameters). For example, fingering convection occurs in MS and RGB

stars at the base of the convective zone, while in WD stars it would occur at the surface
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Star type κT ν ρm d =
(
κT ν
N2

T

)1/4

Main Sequence 107 10 0.1 103.5 − 104

Red Giant Branch 109 100 100− 0.1 103.5 − 104.5

White Dwarf 102 − 106 10− 100 10− 0.1 100.5 − 101.5

Table 1.1: Order-of-magntidue estimates for various governing parameters within the ex-
pected fingering convection regions of Main Sequence stars, Red Giant Branch stars, and
White Dwarfs. The ranges represent values from the lower radius to the upper radius of the
fingering region. All units are in cgs.

following accretion of planets or debris. We provide order-of-magnitude estimates of ν, κT ,

ρm, and d in Table 1.1, for the regions of MS stars, RGB stars, and WD stars where fingering

convection could occur. Based on these parameters, we can compute order-of-magnitude

prefactors for HB for these three scenarios, getting

HMS
B ' 1

4π

( B0

100

)2(0.1

ρm

)2( d

104

)2(107

κT

)2

= 10−2
( B0

100

)2

, (1.24)

HRGB
B ' 1

4π

( B0

100

)2( 1

ρm

)2( d

104

)2(109

κT

)2

= 10−7
( B0

100

)2

, (1.25)

HWD
B ' 1

4π

( B0

100

)2( 1

ρm

)2( d
10

)2(104

κT

)2

= 10−3
( B0

100

)2

, (1.26)

where all quantities in brackets are in cgs units. Clearly, since κT is so large in all stellar

environments, we can expect that in general, HB will be less than 1 as long as field strengths

are limited to a few thousand Gauss. It is also likely that in some scenarios, such as in

RGB stars, HB � 1, which we might naively assume would mean that the effects of the

background magnetic field are marginal. However, based on our numerical simulations and

our analytical model, we will show in Section 5 that even for situations where HB is small,

the effects of background magnetic fields can be significant nonetheless.
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2 Numerical tool: PADDIM

The system describing fingering convection in the presence of magnetic fields (Eqs.

1.17 - 1.21) is inherently nonlinear and is thus difficult to study using just theoretical meth-

ods, so developing a numerical code was paramount to this project. To this end, I developed

the PADDIM code, a high-performance pseudo-spectral magnetohydrodynamics (MHD) code

that numerically solves the double-diffusive MHD equations over a triply-periodic 3D do-

main (or doubly-periodic 2D domain). PADDIM is an MHD extension of the PADDI code

(Traxler et al., 2011; Stellmach et al., 2011), which was originally developed to study pure

double-diffusive convection. PADDI has been used in many successful studies and various

versions have been written, including recent versions that add the effects of rotation to the

mathematical model (Moll and Garaud, 2017; Sengupta and Garaud, 2018). As the orig-

inal PADDI code already contains the basic infrastructure necessary for simulating double-

diffusive convection in ordinary fluids, adding the effects of magnetic fields was simply a

means of adjusting the mathematical model and modifying the I/O to accommodate the

additional parameters and data associated with magnetic fields. In this section, I describe

the general design of PADDIM and provide a few tests which I ran to verify its correctness.
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2.1 PADDIM design overview

2.1.1 Physical model

The physical system modeled in PADDIM is that of incompressible MHD, under the

Boussinesq approximation, along with evolution equations for the thermal and compositional

fields:

∂u

∂t
+ (u · ∇)u = −∇p+Du∇2u +HB [(∇×B)×B] + (BTT −BCC)êz, (2.1)

∂T

∂t
+ (u · ∇)T + ST (êz · u) = DT∇2T, (2.2)

∂C

∂t
+ (u · ∇)C + SC(êz · u) = DC∇2C, (2.3)

∂B

∂t
= ∇× (u×B) +DB∇2B, (2.4)

∇ · u = 0, ∇ ·B = 0. (2.5)

The meanings of all these parameters are given in Table 2.1. These equations are effectively

identical to those of the non-dimensionalized fingering convection system in Eqs. (1.17) -

(1.21), with the only substantial difference being in how the non-dimensional coefficients

in front of various terms have been named. This was done to simplify the code and allow

maximum flexibility regarding non-dimensionalizations besides the standard fingering con-

vection one chosen in Eqs. (1.17) - (1.21). The domain Ω over which Eqs. (2.1) - (2.5) are

modeled is a triply periodic box defined by

Ω =


[0,Γx]× [0,Γy]× [0,Γz], for the 3D case

[0,Γx]× [0,Γz], for the 2D case


where Γx, Γy, and Γz give the size of the box in each dimension. The initial conditions

u(x, 0), B(x, 0), T (x, 0), C(x, 0) are specified by the user. This physical model is repre-

sentative of a homogeneous incompressible flow, where the temperature and compositional

fields (which may or may not be stratified) provide a source of buoyancy. The user may drop
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Symbol Description

u Fluid velocity
B Magnetic field
T Temperature field
C Chemical/Compositional field
p Fluid pressure
Du Velocity diffusion coefficient
HB Lorentz force coefficient
BT Thermal buoyancy coefficient
BC Compositional buoyancy coefficient
DT Thermal diffusion coefficient
ST Thermal stratification coefficient
DC Compositional diffusion coefficient
SC Compositional stratification coefficient
DB Magnetic diffusion coefficient

Table 2.1: The meaning of the parameters in Eqs. (2.1) - (2.5). The coefficients of various
terms (e.g. Du, HB , etc) are written as such to support many different possible non-
dimensionalizations.

the temperature and compositional fields from the equations by leaving out some compiler

flags, in which case the base physical model would simply be that of incompressible MHD

with no body forces.

2.1.2 Numerical scheme

PADDIM uses a pseudo-spectral scheme to numerically solve Eqs. (2.1) - (2.5), which

gives it the advantage of higher accuracy at lower computational cost compared to simpler fi-

nite difference methods. The approach is similar to the classic scheme presented in Patterson

and Orszag (1971) and Orszag and Patterson (1972). The primitive variables (u,B, T, C) are

approximated by their Fourier series representations truncated at maximum wave numbers

in each of the x, y, and z directions, and their spectral space representations (ũ, B̃, T̃ , C̃) are

advanced in time according to the ordinary differential equations (ODEs) that arise when

transforming Eqs. (2.1) - (2.5). Doing so transforms the spatial linear differential operators

into vector multiplications by the wave vector k, which can be solved exactly up to machine

accuracy. The nonlinear terms are calculated in physical space and then transformed back
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into spectral space in order to advance the ODEs. An outline of a procedure similar to this

is given in §3.3.1 of Canuto et al. (2007). In PADDIM, all Fourier transforms are performed

using a parallelized fast Fourier transform (FFT) algorithm that makes use of the FFTW

library to optimize performance.

The treatment of the velocity field employs a few simplifying tricks to make the

code more stable and convenient to implement, which are worth mentioning. First, using

the identity

(u · ∇)u = (∇× u)× u +
1

2
∇(u · u),

we can rewrite Eq. 2.1 as

∂u

∂t
+ (∇× u)× u = −∇q +Du∇2u + F , (2.6)

where F represents the body force terms all grouped together and q is the dynamic pressure

given by

q = p+
1

2
(u · u).

When transformed into spectral space, with the diffusion term treated implicitly and the

body force and advection terms treated explicitly, Eq. 2.6 yields an ODE for each wave

mode k given by ( d
dt

+Du|k|2
)
ũk = −ikq̃k + F̃k − c̃k, (2.7)

where c̃k corresponds to the Fourier transform of the (∇× u) × u term. This is the ODE

solved by PADDIM to advance the velocity field in time. Besides improving stability, another

advantage of advancing u via the form in Eq. 2.6 is that PADDIM already has the vorticity

ω = ∇×u on hand, calculated exactly in spectral space and then transformed into physical

space, as an output variable.

A major convenience provided by the fact that PADDIM is a pseudo-spectral code is

that the divergence-free condition, ∇·B = 0, is adequately satisfied without extra computa-

tion. In finite difference codes, even when starting from an initial state satisfying ∇·B = 0,

19



the finite-differencing approximation of spatial derivatives introduces nonzero errors that can

accumulate as the simulation progresses. If the divergence-free condition is not satisfied, it is

possible to have unphysical fluid transport orthogonal to magnetic field lines, among a host

of other issues (Brackbill and Barnes, 1980). In such situations, much care has to be taken

to minimize or eliminate this error via some sort of “divergence-cleaning” or staggered mesh

approach. An overview of and comparison between various approaches is given in Balsara

and Kim (2004). In PADDIM, the divergence-cleaning headache is avoided, since ∇ ·B = 0

can be satisfied up to machine accuracy in spectral space because the divergence operator

simplifies to a dot product with the wave vector k. There are non-zero errors introduced

when transforming back into physical space, but these are negligible because they do not

accumulate as the simulation advances – indeed, in production runs, calculating ∇ ·B at

each time step showed that it never grew past machine accuracy.

The chief time-stepping scheme in PADDIM is the third-order Adams-Bashforth/Backward-

Differentiation-Formula (AB/BDF3) method. This is supplemented at start-up using a sec-

ond order Runge-Kutta/Crank-Nicholson (RK/CN2) scheme. The AB/BDF3 scheme is a

multi-step method of the form

1

∆t

k∑
j=0

aju
n+1−j =

k−1∑
j=0

H(un−j), (2.8)

where un is the solution at timestep n, H is the operator on the RHS in the equation

∂tu = H(u), ∆t is the time step size, and aj , bj are coefficients. Ordinarily, the aj and

bj in Eq. 2.8 are fixed values, but since the time step must change in PADDIM according

to the Courant-Friedrichs-Lewy (CFL) condition, these coefficients must be expressed in

terms of the sizes of previous time steps. Through a straightforward but laborious Taylor

expansion of the local truncation error, the expressions relating these coefficients to the

ratios of current and previous time steps can be computed and are given in §4.5.1 of Peyret

(2002).
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2.2 Verification & Testing

There are three major components of the system (2.1) - (2.5) in PADDIM which

needed to be tested in order to validate the new physical model. The first two are mag-

netic diffusion and induction of magnetic field through fluid motions, which arise from the

induction equation (Eq. 2.4). The third is the effect of the Lorentz force on the velocity,

which is the (∇ × B) × B term in Eq. (2.1). Each of these were tested in succession by

exciting eigenmodes of a simple test problem in order to verify the accuracy of the numerical

solution.

2.2.1 Magnetic diffusion

The test for magnetic diffusion was the simplest of the three, as it depends only

on the magnetic field and thus can be tested by ignoring the velocity field entirely. Setting

the induction term in Eq. (2.4) to zero, we have

∂B

∂t
= DB∇2B.

The eigenfunctions of the above operator are sines and cosines, which naturally satisfy the

periodic boundary conditions, and since PADDIM saves profiles of simulation variables along

the z-direction, the test problem was set up as

∂Bx
∂t

= DB
∂2Bx
∂z2

,

Bx(x, y, z, t = 0) = B0 sin
(2πz

Γz

)
,

By(x, y, z, t) = Bz(x, y, z, t) = 0.

The analytical solution to this problem is

Bx(x, y, z, t) = B0e
−[DB(2π/Γz)2]t sin

(2πz

Γz

)
.

The numerical solution matched the analytical solution up to machine accuracy,

with a mean difference of 2.3× 10−18. Figure 2.1 shows a plot of the numerical solution.
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Figure 2.1: The numerical results for the vertical profile of the x-component of the mag-
netic field at several time steps during the magnetic diffusion test. The profile of each time
step plotted is colored according to simulation time, with blue corresponding to t = 0 and
red corresponding to the end of the simulation.

2.2.2 Velocity-induced magnetic field

Testing the “induction” part of the induction equation was done with a simple

kinematic model (where the velocity field drives induction of magnetic field via Eq. (2.4)

but there is no feedback on the velocity field via the Lorentz force). To get a stable, non-

turbulent flow field, the thermal and compositional fields were ignored and a forcing term

was added to the non-dimensionalized momentum equation, giving

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + F0 sin

(2πz

Γz

)
êx. (2.9)

The laminar solution to Eq. 2.9 can be found by imposing a balance between the

diffusion and forcing terms, which in the x-direction (the direction of forcing) yields

uL(z) =

(
F0Γ2

z Re

4π2

)
sin
(2πz

Γz

)
êx. (2.10)

Choosing a simple non-dimensionalization where Γz = max |uL| = Re = 1 (thus

F0 = 4π2), we can solve the induction equation with this prescribed u = (uL, 0, 0). If By

and Bz are initially zero in this setup, they will remain as such. Thus, with Bz(x, y, z, t =
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0) = B0, the induction equation with no diffusion reduces to

∂Bx
∂t

=
∂

∂y
(uxBy − uyBx)− ∂

∂z
(uzBx − uxBz) =

∂

∂z
(uxBz) = B0

∂uL
∂z

= B02π cos(2πz),

(2.11)

which has the solution Bx = B02πt cos(2πz). Then, for the full problem with diffusion, we

adopt an ansatz where Bx is of the form Bx = Bx0(t) cos(2πz), which gives the ODE

dBx0

dt
= 2πB0 −DB(4π2)Bx0. (2.12)

The solution to Eq. (2.12) is

Bx0(t) =
B0

2πDB
(1− e−DB4π2t), (2.13)

which determines the envelope of the analytical solution for Bx in this laminar test problem.

Running PADDIM initialized with the laminar problem and the chosen non-dimensionalization

yielded results that matched this analytical solution up to machine accuracy. Figure 2.2

shows the numerical results for Bx growing from zero according to Eq. 2.13 as it is induced

by the laminar flow. The mean magnitude of the difference between the numerical results

and the analytical solution was 1.06× 10−16.

Figure 2.2: The numerical results for the vertical profile of the x-component of the mag-
netic field at several time steps during the Laminar flow kinematic dynamo test. The profile
of each time step plotted is colored according to simulation time, with blue corresponding
to t = 0 and red corresponding to the end of the simulation.
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2.2.3 Lorentz force

To test the full MHD “feedback loop”, where u affects B via the induction equation

and B affects u via the Lorentz force, a test problem that excited shear Alfvén waves was

set up. Shear Alfvén waves propagate along the direction of the background field B0, with

wave speed

vA =
ω

k
=

B0√
µ0ρm

.

We consider a magnetic field B = B0 + b, where the perturbations b are given by b =

‖b‖eik·x where ‖b‖ � ‖B0‖ and k ‖ B0. Carrying this into the equations, then linearizing

(and non-dimensionalizing) the system yields

∂b

∂t
= ∇× (u×B0) +

1

Rm
∇2b, (2.14)

∂u

∂t
= −∇p+HB((∇× b)×B0) +

1

Re
∇2u, (2.15)

where Rm is the magnetic Reynolds number. If we align B0 along the z direction and

take b to have no x component (without loss of generality), we get a wave equation in

by and uy. Then, choosing initial conditions such that uy =
∂by
∂t = 0, we get a system

where the waves in the velocity and magnetic fields should have the same wave number and

frequency, with the uy waves phase-shifted by a quarter-period. Taking the perturbations

as 1% of the magnitude of the background magnetic field (which has magnitude 1 by the

non-dimensionalization), these linearized solutions are given by

by(x, t) = 0.01 sin(10πz) cos(10π
√
HBt) (2.16)

uy(x, t) = 0.01
√
HB cos(10πz) sin(10π

√
HBt) (2.17)

Running this test problem in PADDIM with HB = 0.01 produced the expected

behavior. Figure 2.3 shows various temporal snapshots of the analytical linearized solutions

Eqs. (2.16)-(2.17) as well as the fully nonlinear numerical solutions, as a vertical profile

along the x = y = 0 line. The mean relative difference between the two solutions was
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about 1.4% for both the magnetic and velocity fields, which is reasonable considering that

Eqs. (2.16)-(2.17) are just linear approximations of the actual physical behavior and do not

account for diffusion. The waves clearly have the same wave number and frequency, with

the appropriate quarter-period phase shift.

Figure 2.3: The numerical results (red) and the analytical linearized solutions (blue) for
the vertical profiles of the y-component of the magnetic field (left) and the velocity field
(right) at several time steps during the Alfvén wave test.
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3 Linear stability analysis

A standard first step taken in studying fluid instabilities is a linear stability analy-

sis, which simplifies the governing equations by removing nonlinearities and explicitly models

fluid behavior in terms of the growth of small perturbations from an initial state. In the

interest of studying fingering convection in the presence of a background magnetic field

(Eqs. 1.17 - 1.21), we will assume a constant background field of unit intensity along the ξ

direction to which we add a small perturbation b̂ such that

B̂ = êξ + b̂, (3.1)

where êξ is the unit vector in the ξ direction. Then, as in the analysis for ordinary fingering

convection (e.g., Baines and Gill, 1969), we take small perturbations of the form

û = ũ exp(λ̂t+ i(k̂ · x)), (3.2)

T̂ = T̃ exp(λ̂t+ i(k̂ · x)), (3.3)

Ĉ = C̃ exp(λ̂t+ i(k̂ · x)), (3.4)

b̂ = b̃ exp(λ̂t+ i(k̂ · x)), (3.5)

where λ̂ is the growth rate of each mode, k̂ = (k̂x, k̂y, k̂z) is the wave vector, x = (x, y, z),

and ũ, T̃ , C̃, and b̃ are fixed.

Substituting these perturbations into Eqs. (1.17) - (1.21) transforms the spatial

differential operators into vector multiplication operations with ik̂, and the temporal deriva-

tives into multiplications by the growth rate λ̂. The divergence-free conditions in Eq. (1.17)
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thus become ik̂ · û = 0 and ik̂ · b̂ = 0. To linearize the system, assume all terms which are

nonlinear in the perturbations (the advective terms and the pure-perturbative component

of the Lorentz force) are sufficiently small such that they may be removed. The governing

equations are then reduced to the simplified set of algebraic equations

(λ̂+ Prk̂2)ũ = −ik̂p̂+ Pr (T̂ − Ĉ)êz +HB [(ik̂ × b̃)× êξ], (3.6)

(λ̂+ k̂2)T̃ + ũz = 0, (3.7)

(λ̂+ τ k̂2)C̃ +
ũz
R0

= 0, (3.8)

(λ̂+DB k̂
2)b̃ = ik̂ξũ, (3.9)

where k̂ξ = k̂ · êξ and k̂2 = k2
x + k2

y + k2
z . The relations in Eqs. (3.6) - (3.9) can be used to

eliminate T̃ , C̃, and b̃, which after some simplification gives

(λ̂+Prk̂2)ũ = −ik̂p̂+Pr ũz

(
1

R0(λ̂+ τ k̂2)
− 1

(λ̂+ k̂2)

)
êz−

k̂ξHB

(λ̂+DB k̂2)
(k̂ξũ−ũξk̂), (3.10)

where ũξ = ũ · êξ. To eliminate pressure, we take the dot product of both sides with k̂ and

impose the k̂ · û = 0 constraint to get

ip̂ =
Prũz k̂z

k̂2

(
1

R0(λ̂+ τ k̂2)
− 1

(λ̂+ k̂2)

)
+

k̂ξũξHB

(λ̂+DB k̂2)
. (3.11)

Substituting Eq. (3.11) back into Eq. (3.10) leads to a convenient cancellation of

the Lorentz force term along the k̂ direction, which gives the relation(
λ̂+ Prk̂2 +

k̂2
ξHB

λ̂+DB k̂2

)
ũ = Pr ũz

(
1

R0(λ̂+ τ k̂2)
− 1

(λ̂+ k̂2)

)(
− k̂z

k̂2
k̂ + êz

)
. (3.12)

Taking the z-component, we get(
λ̂+ Prk̂2 +

k̂2
ξHB

λ̂+DB k̂2

)
= Pr

(
1

R0(λ̂+ τ k̂2)
− 1

(λ̂+ k̂2)

)(
k̂2
H

k̂2

)
, (3.13)

where k̂2
H is the square of the horizontal wave number, defined by k̂2

H = k̂2
x + k̂2

y. Here

we can immediately see that setting HB = 0 reproduces the relation that arose from the

hydrodynamic case. More interestingly, the same is true for k̂ξ = 0 which corresponds to
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perturbations for which k̂ is perpendicular to the magnetic field. This reveals that no matter

the value of HB or DB , the growth rate of modes with k̂ξ = 0 will remain the same as in

the hydrodynamic limit. Furthermore, since we can always pick both k̂ξ = 0 and k̂z = 0,

the fastest-growing modes of magnetic fingering convection (the kz = 0 “elevator modes”,

see Radko, 2013) will grow at the same rate as in the hydrodynamic case.

In their stability analysis of magnetized fingering convection (which differed in a

number of ways from this one), Charbonnel and Zahn (2007b) developed a relation for the

growth rate of the fingers which depended on k̂ · B̂0, where B̂0 represents the background

field. They interpreted their result as showing that the magnetic field could stabilize the

system to fingering convection, but they failed to note that setting k̂ · B̂0 = 0 implies that

the growth rate is unaffected by the presence of the field when k̂ is perpendicular to B̂0.

3.1 Region of instability and fastest-growing modes

We can rearrange Eq. (3.13) to yield a quartic polynomial in λ̂, of the form

λ̂4 + α3λ̂
3 + α2λ̂

2 + α1λ̂+ α0 = 0, (3.14)

where the coefficients αi are given by

α3 = k̂2(Pr +DB + τ + 1), (3.15)

α2 = k̂2
ξHB + k̂4DBPr + k̂4(Pr +DB)(1 + τ) + k̂4τ − Pr

k̂2
H

k̂2
(R−1

0 − 1), (3.16)

α1 = k̂2(1 + τ)(k̂4DBPr + k̂2
ξHB) + k̂6(Pr +DB)τ − Pr k̂2

H(DB(R−1
0 − 1) + (R−1

0 − τ)),

(3.17)

α0 = τ k̂4(k̂4DBPr + k̂2
ξHB)− Prk̂2

H k̂
2DB(R−1

0 − τ). (3.18)

For the system to be linearly unstable, there must be at least one root of Eq.

(3.14) with positive real part. If all coefficients αi are positive, then there are no such

roots, according to the Routh-Hurwitz theorem. Thus, a necessary condition for instability
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(a) HB = 0.01 (b) HB = 1.0

Figure 3.1: Maximum real part of all roots of the growth rate polynomial in Eq. (3.14)

as a function of horizontal wave number k̂H and vertical wave number k̂z, for a background
magnetic field along the z-direction with intensities corresponding to (a) HB = 0.01 and (b)
HB = 1. The other parameters are Pr = τ = DB = 0.1, R0 = 1.45 for both plots, and red
colors indicate instability.

is that at least one of the αi must be negative. Since we need R0 > 1 to prevent standard

overturning convection, the necessary condition for instability to fingering convection in the

presence of a background magnetic field is thus 1 < R0 < τ−1, which is the same condition

found for the non-magnetic case (Stern, 1960).

The maximum growth rate for the instability (i.e., the maximal positive real part

of the roots of Eq. 3.14) occurs for k̂ξ = 0. If the background magnetic field (êξ) is aligned

along the z direction, then the k̂ξ = 0 condition for the fastest growing modes is simply

the k̂z = 0 condition for the elevator modes of the non-magnetic case. As the background

magnetic field becomes increasingly horizontal, the fastest growing modes can still have

k̂z = 0 (and are thus still elevator modes) but will also satisfy k̂ξ = 0. Increasing the

strength of the background magnetic field, and thus HB , effectively “squashes” the unstable

region of k̂-space by suppressing modes of larger k̂ξ.

A simple way of visualizing the unstable region of k̂-space is to numerically solve the

stability polynomial, or special cases of it, for a given set of parameters. This was done for

Pr = τ = DB = 0.1, R0 = 1.45, for a variety of inclinations and intensities of the background

field. Figure 3.1 shows results for the case where the background magnetic field is in the
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vertical direction, as a function of vertical and horizontal wave number, for HB = 0.01 and

HB = 1.0. The HB = 0.01 case, representing a relatively weak background magnetic field,

resembles the unstable region for the non-magnetic case. When the background magnetic

field strength is increased to make HB = 1.0, the modes with higher |k̂z| are suppressed and

the unstable region in k̂-space shrinks. These results resemble those of the stability region

for rotating fingering convection in the case where the rotation axis is also aligned in the

vertical direction (see Fig. 1 of Sengupta and Garaud, 2018).

If the background magnetic field is inclined from the z-axis by some angle θ, the

region of k̂-space unstable to fingering convection departs more noticeably from the non-

magnetic case. Figure 3.2 shows surfaces of null stability for θ ∈ {0, π/6, π/3, π/2}, with a

background magnetic field strength corresponding to HB = 1.0. This represents a relatively

strong field, so the modes with higher k̂ξ are suppressed, making a disc-like structure that

rotates along with the direction of the background field (note that in Fig. 3.2, the back-

ground magnetic field is chosen to have no component along the y-direction, without loss of

generality). If θ = π/2, then the background field is completely aligned with the x-direction

and it suppresses modes with higher |k̂x|. Thus, the linear stability predicts that in this

case, the “fingers” should be arranged into more sheet-like structures since their variation

along the x-direction is significantly reduced.

3.2 Verification via DNS

The early-time behavior of the instability predicted by the linear stability analysis

can be confirmed from some DNS results. To this end, several simulations were run with

the parameters Pr = τ = DB = 0.1, R0 = 1.45, and HB ∈ {0.01, 0.1, 1, 10, 100}, for

fields aligned in the z-direction as well as the x-direction (a detailed discussion of the DNS

parameters used is given in the next section). All simulations are initialized with the fluid

completely at rest, with a uniform magnetic field, and with randomly generated small-
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Figure 3.2: Surfaces of null stability for background magnetic field inclinations of θ ∈
{0, π/6, π/3, π/2} at HB = 1. The background field is chosen, without loss of generality,
to have no component along the y direction. Artificial lighting is included to render the
bumps in the surface.
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amplitude perturbations in the T̂ and Ĉ fields. These small perturbations create a “source”

spectrum of modes where the stable modes decay away but the unstable modes begin to grow

via the fingering instability. An effect of this initialization not seen in non-magnetic fingering

convection is that when the initial magnetic energy is large compared to the kinetic energy,

the very small-scale perturbations seem to generate a group of Alfvén waves and secondary

currents, which dissipate relatively quickly, but still generate some numerical noise in the

fluid velocity and kinetic energy at the beginning of the simulation. However, the noise

is small relative to the saturation peak and post-saturation phases of the instability, and

the ratio of magnetic energy to kinetic energy in the presence of the noise remains large

(since the velocity perturbations are essentially “tapping into” the large background energy

of the magnetic field). It dies off well before the saturation peak is reached, so it is deemed

inconsequential.

Figure 3.3 shows the growth of the kinetic and magnetic energies over time for all

simulations where the magnetic field is aligned with the z-axis. At early times, the numerical

noise discussed above is visible for the cases with stronger background magnetic fields.

However, once the noise dies off, it is clear to see that the instability grows at a constant

exponential growth rate (straight-line on a semi-log plot) until reaching the saturation peak.

Since the trajectories of the kinetic energy for all strengths of the background field (0.01 ≤

HB ≤ 100) are roughly parallel during the growth phase, we can confirm our prediction

that the growth rate of the fastest growing modes is unaffected by the magnetic field.

For the case where the background field is aligned with the vertical axis, the fastest-

growing modes are the k̂z = 0 “elevator modes”, and larger background magnetic field

strengths will suppress the growth rate of modes with higher |k̂z|. Thus, modes with low

(but non-zero) |kz| which grow in the presence of a weak field (or with no magnetic field)

become stable as we increase the background field strength. Figure 3.4 shows this effect,

with two snapshots of the compositional perturbation in the x-z plane taken at early times
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Figure 3.3: The kinetic (“K”, solid lines) and magnetic (“M”, dashed lines) energies as
a function of time (in units of the thermal diffusion timescale) for simulations with the
background magnetic field aligned along the z-direction. The background field strengths
in each run correspond to HB = 0.01 (red), HB = 0.1 (green), HB = 1 (blue), HB = 10
(purple), and HB = 100 (orange).

for simulations at HB = 0.01 and HB = 1.0. For the case where the background magnetic

field is along a horizontal direction, taken here to be the x direction, the fastest growing

modes have k̂x = 0, and larger background magnetic field strengths suppress the growth

rate of modes with higher |k̂x|. Thus, the initial fingers in this case should become more

invariant along the x-direction. Figure 3.5 shows such behavior, with two snapshots of the

compositional perturbation in the x-y plane at early times in simulations of both the vertical

and horizontal magnetic field cases.
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Figure 3.4: Two snapshots of the compositional perturbations in the x-z plane taken at
early times in simulations with a vertical background magnetic field. The left panel shows
a weak-field case, with HB = 0.01, while the right panel shows how a stronger field, with
HB = 1, makes the finger structure more dominated by the k̂z = 0 “elevator modes”. Color
scale runs from -0.036 (blue) to +0.036 (red) on the left, and from -1.20 (blue) to 1.20 (red)
on the right, both in non-dimensional units.

(a) x-aligned B field (b) z-aligned B field

Figure 3.5: Two snapshots of the compositional field in the x-y plane taken at early times
in a simulation with a horizontal background magnetic field (a) and a vertical background
magnetic field (b). Color scale runs from -20 (blue) to +20 (red) in non-dimensional units.
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4 Numerical Simulations

We now turn our attention to the full suite of numerical simulations, which are the

primary component of this thesis, in order to study in depth the nonlinear saturation and

post-saturation behavior of magnetized fingering convection. These simulations showcase

a variety of orientations and strengths of the background magnetic field, but all share the

same values for the “non-magnetic” parameters. In some runs with strong background fields,

the domain size in the vertical direction is extended in order to sufficiently minimize effects

incurred by the size of the domain and its periodic boundary conditions (similar steps were

taken in some of the rotating fingering convection simulations in Sengupta and Garaud,

2018). As mentioned in Section 3.2, the initial conditions for each simulation have the fluid

completely at rest, under a uniform magnetic field of unit strength, with small-amplitude,

randomized perturbations in the T̂ and Ĉ fields from which the instability can grow.

In the interest of probing the effect of magnetic fields on fingering convection

specifically at low Prandtl number, as is relevant to astrophysical scenarios, all simulations

have Pr = 0.1. This is not as low as the expected value of Pr in stellar or planetary interiors

(where it can be several orders of magnitude smaller), but is numerically feasible and allows

direct comparison to the existing body of low-Prandtl fingering convection simulations with

no magnetic fields (Traxler et al., 2011; Brown et al., 2013; Sengupta and Garaud, 2018,

etc.).

The density ratio in all simulations is R0 = 1.45, and the compositional and mag-
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netic diffusion parameters are fixed to τ = DB = 0.1. The base spectral resolution is

96 Fourier modes in each direction, for a cubic domain with a side length of 100 in non-

dimensional units (recall that the unit length in the chosen non-dimensionalization is d,

given in Eq. 1.14). For simulations where the domain size is adjusted, the corresponding

resolution is adjusted proportionally (i.e., doubling the vertical extent of the simulation

domain also doubles the number of Fourier modes in the z-direction).

The HB parameter, the coefficient of the Lorentz force term in the momentum

equation, effectively controls the strength of the background magnetic field. The suite

of simulations presented here tests a wide range of background field strengths, with HB ∈

{0.01, 0.1, 1, 10, 100}. We test a background magnetic field oriented along both the vertical

(z) direction, as well as along the horizontal (x) direction, and one case with an interme-

diate inclination. As we will see, the horizontal and vertical cases for the background field

orientation both have significant effects on the nonlinear saturation and post-saturation be-

havior of the basic instability, but they yield distinctly different behaviors. We now focus

on the qualitative results of the simulations, starting with the horizontal field cases, before

developing a quantitative model for the behavior found in the vertical field cases.

4.1 Qualitative Results

4.1.1 Horizontal background fields

The simulations with horizontal background magnetic fields show rather surprising

results. While the early growth of the instability matches the predictions from linear theory

for all values of HB (as described in Section 3.2), when HB ≥ 0.1, we find that after

saturation, there is a significant departure from the behavior observed in the non-magnetic

case. In Figure 4.1 we show the evolution over time of the kinetic and magnetic energies for

a few of these simulations.
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Figure 4.1: The evolution of the kinetic (solid lines, “K”) and magnetic (dashed lines,
“M”) energies over time (in units of the thermal diffusion timescale) for horizontal magnetic
field simulations with HB = 0.01 (orange), HB = 0.1 (cyan), and HB = 10 (blue). Also
plotted is a simulation with HB = 10 and a field inclined 45◦ from the z-axis (purple, “inc”).
The trajectory of the kinetic energy for the HB = 0.01 case is qualitatively identical to that
of the non-magnetic case.

The HB = 0.01 case is qualitatively indistinguishable from the non-magnetic case,

showing the growth of the instability, its subsequent saturation, and the post-saturation,

statistically stationary state characterized by homogeneous small-scale fingering convection.

However, for HB ≥ 0.1, we find that although an initial saturation “peak” is reached in

the kinetic energy, this local maximum is soon surpassed as both the kinetic and magnetic

energies begin growing again. This subsequent growth eventually flattens out to reach a

statistically stationary state, but one that has a significantly larger mean kinetic energy

with respect to that of both the non-magnetic case as well as that of the initial saturation

peak. By this stage, the vertical components of the fluid velocity and magnetic field dominate

the contributions to the total kinetic and magnetic energy, respectively, despite the initial

magnetic field having no vertical component.

The mechanism by which this process occurs is not immediately clear, but it may
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Figure 4.2: Sample visualizations of the vertical fluid velocity component for runs with
HB = 10. At left, we show a case with the background field inclined at an angle of θ = π/4
from the z-axis, and at right we show a case with a fully-horizontal field (which required ex-
tending the vertical extent of the simulation domain considerably), long after the instability
has surpassed the saturation “peak” of the initial instability.

be the result of some sort of small-scale dynamo action. At the very least, these results

indicate that horizontal magnetic fields can have a significant effect on magnetized fingering

convection even at intermediate field strengths. Furthermore, this effect is able to signif-

icantly increase the amount of vertical fluid motion and turbulent transport of chemical

species. This is contrary to the proposal of Charbonnel and Zahn (2007b) that significant

horizontal magnetic field components might suppress mixing due to fingering convection in

RGB stars.

Visualizations of cases with a background field inclined from the z-axis at θ = π/4

and θ = π/2 are shown in Figure 4.2. Qualitatively speaking, we see that for the inclined

field case (θ = π/4), the fingers respond to the direction of the magnetic field and form

diagonal structures. This is consistent with the linear theory, and this snapshot was taken

fairly early on in the simulation such that the linear regime was still prevalent. In the case

of a fully-horizontal field, if we look at the structures that are formed long after the linear

regime (i.e., long after the saturation “peak” of the initial instability is surpassed), we see
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the development of structures on domain-scale sizes.

There are a number of numerical difficulties associated with these simulations.

Firstly, it seems that increasing the initial field strengths also increases the time it takes

for the “dynamo” phase of the simulation to settle into a statistically stationary state,

meaning that longer integration times are necessary. Second, it is necessary to ensure that

the fingers do not become too vertically invariant as a result of self-interaction via the

periodic boundary conditions (see the Appendix of Sengupta and Garaud, 2018), meaning

taller and taller domains are required when large, coherent vertical structures develop (as

was observed at late times in the HB = 1 and HB = 10 cases). Further progress in studying

the effects of horizontal magnetic fields (and the late-time behavior) will have to heed these

issues, but the results present an interesting new problem. We now focus on the case of a

vertical background magnetic field, whose behavior is less complex than the horizontal case.

4.1.2 Vertical background fields

As detailed in Section 3.2, the early growth of the fingering instability in the DNSs

with a vertical background field confirms the behavior predicted by the linear theory. The

instability initially grows exponentially at a rate that is independent of HB , and eventually

settles into a statistically stationary, weakly-turbulent state of small-scale fingering convec-

tion. The principal effect of a vertical magnetic field is that as the strength of the background

field increases via HB , the fingers become more coherent and elongated along the vertical

direction (see Figure 4.3). As a result, the temperature and compositional fluxes, as well as

the r.m.s. vertical velocity, all increase significantly (see Figure 4.4).

Figure 4.3 shows visualizations of the vertical component of the fluid velocity once

the fingering convection has reached a statistically steady state. The HB = 0.01 case is

indistinguishable from the non-magnetic case, with fingers that have a roughly unit aspect

ratio. As HB increases, we see an increasing anisotropy of the fingers, which become co-
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Figure 4.3: Visualizations of the vertical fluid velocity component during the post-
saturation, statistically stationary state, for runs with a vertical background field and
HB = 0.01 (left), HB = 1 (middle), and HB = 10 (right). Increasing the strength of
the magnetic field (via HB) imparts greater vertical coherence to the fingering structures.

herent over long vertical distances, as well as a marked increase in their vertical velocities.

Furthermore, the onset of saturation seems to be more gradual for lower values of HB , while

the cases with large values of HB have the fluid rapidly transition from laminar, vertical

fingers into a saturated, turbulent state.

Qualitatively speaking, this can be explained by noting that increasing the field

strength rigidifies the initial fingers vertically and delays saturation until a much higher

r.m.s. vertical fluid velocity is reached. This increase in the vertical velocities within the fin-

gers causes a substantial increase in the vertical turbulent compositional fluxes, as measured

by the compositional Nusselt number NuC , defined by

NuC = 1− R0

τ
〈ûzĈ〉 =

DC

κC
, (4.1)

where 〈 〉 denotes a volume average over the domain and DC is the effective compositional

diffusivity. Figure 4.4 shows the evolution of NuC over time for each of the simulations. We

see that stronger field strengths can significantly enhance the compositional transport by

up to a few orders of magnitude compared with the non-magnetic case.

Also plotted in Fig. 4.4 is the evolution of NuC from the simulation with a back-

ground magnetic field inclined at 45◦ from the z-axis in the x-z plane, to offer a comparison
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Figure 4.4: The compositional Nusselt number NuC (see Eq. (4.1)) as a function of time
(in units of the thermal diffusion timescale) in simulations with a vertical field for various
valus of HB . The dashed purple line shows the case with an inclined background field, and
the black dashed-line shows a non-magnetic simulation (HB = 0).

between the vertical- and horizontal-field cases. As mentioned previously, the behavior for

arbitrarily inclined background fields is more complex and will require further analysis, but

preliminary results such as this confirm that the presence of a significant horizontal compo-

nent in the background magnetic field can cause significant enhancements of compositional

mixing.

4.2 Analytical model for the vertical field case

We now provide a simple quantitative model for the increase in thermocomposi-

tional fluxes caused by the presence of a vertical field. Previous work has shown that the

mechanism responsible for saturation of ordinary fingering convection is the development of

a shear instability between adjacent up-flowing and down-flowing fingers (Radko and Smith,

2012; Brown et al., 2013), so an obvious explanation for our results is that the vertical mag-

netic field suppresses the shear instability. We now revisit the Brown et al. (2013) model,

and include the effects of a vertical field.
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In the hydrodynamic limit, Brown et al. (2013) assume that the fingers saturate

when the growth rate σ̂ of shear instabilities between up- and down-flowing fingers becomes

commensurate with the growth rate λ̂f of the fastest-growing modes of the basic fingering

instability. That problem can be solved analytically using dimensional analysis, since the

growth rate of the shearing instability must be σ̂ ∝ ŵf l̂f where ŵf is the velocity in the

fingers, and l̂f is their horizontal wavenumber. Assuming that λ̂f = CBσ̂ = CBŵf l̂f , where

CB is a universal constant, then provides an estimate for ŵf , namely ŵf = λ̂f/CB l̂f . This

was verified to hold by Sengupta and Garaud (2018), who found that CB ≈ 1
2π .

To compute NuC , Brown et al. (2013) then assumed that

〈ûzĈ〉 ≈ −KB

ŵ2
f

R0(λ̂+ τ l̂2f )
, (4.2)

where KB is another constant and is of order unity. This then yields the formula

NuC = 1 +KB

ŵ2
f

τ(λ̂+ τ l̂2f )
= 1 +

KB

C2
B

λ̂2
f

τ l̂2f (λ̂+ τ l̂2f )
, (4.3)

which was fitted against data from numerical simulations to find that KB

C2
B
≈ 49, which means

KB ' 1.24.

A vertical magnetic field, on the other hand, stabilizes the fingers against shear

instabilities, so that larger velocities are required to trigger them. To see this, we studied

formally the stability of a sinusoidal shear flow of the kind ŵf sin(l̂fx)êz (which mimics the

flow within the finger elevator modes) in the presence of a constant vertical field of unit

amplitude, by extending the Floquet analysis of Brown et al. (2013) (see their Appendix

A). While the details of this calculation are presented in Appendix A of this thesis, the

results are shown in Figure 4.5. We find that the growth rate of the shear instability σ̂ now

depends sensitively on the non-dimensional number

H∗B =
HB

ŵ2
f

, (4.4)

which decreases as the velocity in the fingers increases.
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Figure 4.5: The non-dimensional growth rate of the shear instability σ̂ as a function of
H∗B (blue crosses). The red line shows the fit given by Eq. (4.5).

There are two sets of modes unstable to shear – a slowly growing one, destabilized

for H∗B < 1, and a rapidly growing one, destabilized for H∗B < 0.5. We fit the branch with

larger growth rate as a function of H∗B , getting

σ̂

ŵf l̂f
' 0.42(0.5−H∗B)2/3. (4.5)

As in the Brown et al. (2013) model, we then assume that σ̂ is of the order of the growth

rate of the fingers λ̂f , according to

0.42ŵf l̂f (0.5−H∗B)2/3 = CH λ̂f , (4.6)

where CH is a universal constant. By demanding that the H∗B = 0 (hydrodynamic)

limit reproduces the proportionality relation CBŵf l̂f = λ̂f , we determine that CH =

(0.42)(0.52/3)/CB ≈ 1.66. Combining Eqs. (4.4) and (4.6), we can then express ŵf in

terms of HB , yielding a relation that is quartic in ŵ
1/2
f :

0.5 ŵ2
f −HB =

(
CH

λ̂f

0.42 l̂f

)3/2

ŵ
1/2
f . (4.7)

We can immediately see two asymptotic regimes arising from this relation. The

first is for very small HB , where the velocity in the fingers simply approaches that of the

Brown et al. (2013) hydrodynamic model. However, for very large HB , the RHS term
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Figure 4.6: The volume-averaged squared vertical velocity 〈u2
z〉 (left, green squares) and

compositional Nusselt number NuC (right, green triangles) as a function of HB from the

simulations. The different lines show the prediction from Eq. (4.7) for λ̂f = 0.147 (black),

corresponding to the parameters in the simulations; λ̂f = 10−3 (blue), representative of a

white dwarf’s fingering convection environment; and λ̂f = 10−5 (red), representative of an
RGB star’s fingering convection environment.

becomes negligible and the velocity in the fingers behaves roughly as ŵf =
√

2HB . We call

this the “magnetically-dominated” regime, which corresponds to equipartition between the

kinetic energy of the fingers and the magnetic energy of the background field. Dimensionally,

this implies that 1
2ρmw

2
f = B2

0/µ0. We also see from Eq. (4.7) that the values of HB where

the transition between the two regimes occurs thus depends on the growth rate λ̂f and

horizontal wave number l̂f of the elevator modes, which are in turn dependent on the

governing parameters (Pr, τ , R0).

We can solve Eq. (4.7) numerically for ŵf as a function of HB for various parameter

values, the results of which are shown in Figure 4.6. With Pr = τ = DB = 0.1, and

R0 = 1.45, as in the numerical simulations, we have λ̂f ≈ 0.147 and l̂f ≈ 0.666, and find

that the numerical results for 〈û2
z〉 are well predicted by ŵ2

f computed from Eq. (4.7). We

can see that the transition between the low- and high-HB regimes for these parameter values

occurs around HB = 1.

However, in stellar interiors, the Prandtl number Pr (as well as τ) can be several

orders of magnitude smaller than what we are able to simulate numerically, and in this
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(Pr, τ)� 1 limit, we typically have (see Appendix B of Brown et al., 2013)

λ̂f '

√
Pr τ(1/τ − 1)

R0 − 1
'
√

Pr

R0 − 1
� 1, (4.8)

which means the transition between low- and high-HB regimes now occurs at a much smaller

value of HB . In Figure 4.6, we have also solved Eq. (4.7) for λ̂f = 10−3 as well as λ̂f = 10−5

(keeping l̂f = 0.666 fixed since l̂f remains O(1) in the low-Pr limit), which are representative

values of what we would expect in a WD or RGB star, respectively. These results show that

the magnetically-dominated regime is HB ≥ 10−4 for WD stars and HB ≥ 10−8 for RGB

stars. Thus, based on our estimates in Eqs. (1.25) and (1.26), it is reasonable to expect that

fingering convection in such stars can be significantly affected by magnetic fields.

Using our model for ŵ2
f , we can finally compute the predicted turbulent composi-

tional flux in magnetized fingering convection via

NuC = 1 +KB

ŵ2
f

τ(λ̂+ τ l̂2f )
, (4.9)

with the same value of KB as in Brown et al. (2013). The results are summarized in the right

panel of Figure 4.6, which shows NuC as a function of HB , for the same three parameter

regimes (numerical simulations, WD stars, and RGB stars).

We find that the value of NuC measured in the statistically stationary state in all of

our simulations is well-predicted by our model. Crucially, we see that NuC scales like HB in

the magnetically-dominated regime, which can easily be understood since NuC ∝ ŵ2
f ∝ HB

in that case. This means that NuC can increase by orders of magnitude depending on the

background field strength. In fact, using Eqs. (4.8) and (4.3), together with the definitions of

d and HB , our model predicts that the turbulent compositional diffusivity due to magnetized

fingering convection should be equal to

DC ' 2KB
B2

0

ρmµ0

√
N2
T +N2

µ

−N2
TN

2
µ

, (4.10)

where N2
T = αg(dT0/dz − dTad/dz) is the square of the temperature-based buoyancy fre-

quency, N2
µ = −βgdC0/dz is the square of the compositional buoyancy frequency (which
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is negative since the compositional field is destabilizing), and where we have assumed that

λ̂f � τ l̂f , which is typically the case for R0 � Pr−1/2. Equation (4.10) should hold as long

as we remain in the magnetically-dominated regime, which, as discussed earlier, corresponds

to the limit HB ≥ 10−4 in WDs, and HB ≥ 10−8 in RGB stars.

Finally, note that the enhancement in the vertical finger velocity by magnetic

fields can also affect heat transport, which is normally negligible in hydrodynamic fingering

convection (Traxler et al., 2011). We predict using similar arguments that the equivalent

Nusselt number for (potential) temperature should be

NuT = 1 +KB

ŵ2
f

λ̂+ l̂2f
, (4.11)

with a corresponding dimensional heat flux given by

FT = −ρmcpκT
dT0

dz
+ ρmcpκT

(
dT0

dz
− dTad

dz

)
(1−NuT ). (4.12)

With NuT � 1, we note the potential for transporting heat inward, as the right-hand term

(which is usually small since NuT is ordinarily close to 1) can be made significantly negative.
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5 Discussion

The linear theory, numerical simulations, and analytical model we have presented

all provide significant, self-consistent evidence that magnetic fields undoubtedly affect the

dynamics of astrophysical fingering convection. Perhaps the most important implication of

these results is that significantly larger rates of compositional mixing can be attained, due

to the ability of magnetic fields to enhance the r.m.s. vertical velocity after the fingers have

saturated. This has obvious implications for the RGB stars abundance problem (Gratton

et al., 2000) mentioned in Section 1.2.2. We can see from Figure 4.6 that even a moderate

magnetic field of ∼ 300 G (for which HB ∼ 10−6) would increase the value of the turbulent

mixing coefficient by two orders of magnitude compared with the non-magnetic case, which

would then be sufficient to explain the observations (cf. Charbonnel and Zahn, 2007a).

Such magnetic field strengths are not unreasonably large, and would indeed be likely in

RGB stars. Although the analytical model behind this effect was limited to the case of a

vertical field, we have also shown numerically that similar (or even larger) enhancements

of the turbulent fluxes are likely if the field is inclined, so we expect our conclusions to be

robust.

Another RGB mixing-related problem has the potential to be solved by these

results. Some RGB stars with low metallicity and a surplus of carbon (so-called “carbon-

enhanced metal-poor” stars) show peculiar abundances of Li and C which are only explained

if the mixing coefficient associated with fingering convection decreases outward with increas-
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ing radius (Henkel et al., 2018). Since we have found the mixing coefficient DC to depend

on the magnetic field strength, which in turn most likely decreases with increasing radius

within the star (e.g. if the field is of primordial origin, or was created by a dynamo in a

prior core-convective phase), we predict that DC should decrease sharply with radius away

from the hydrogen-burning shell. Thus, the magnetic field offers a natural explanation for

the case of radially-dependent mixing as well. In general, it is clear that magnetic effects

should not be neglected when considering fingering convection as a mechanism for various

mixing processes in stellar evolution.

Our discovery of the intriguing behavior occurring when the magnetic field is suffi-

ciently inclined presents a problem of both practical and theoretical importance. Developing

an analytical model to explain the mechanism behind this behavior would likely complete

our understanding of magnetic fingering convection in stellar environments, which could

then lead to a conclusive resolution of the RGB “missing-mixing” problem. Also, it is pos-

sible that the addition of other relevant physical processes (e.g., rotation or shear) could

lead to entirely different dynamics. Both the linear theory and the numerical tool developed

in this work, PADDIM, can now serve as the foundation for which future projects may build

upon.
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Appendix A

Floquet theory for fingers in a vertical field

Here we will study the stability to shear of fingers in the presence of a vertical

background magnetic field. We begin by setting up a two-dimensional sinusoidal shear flow

in the x-z plane, a schematic of which is shown in Figure A.1, that mimics the flow within

the fingers. We will take the unit velocity to be wf , where wf is the velocity of the fingers,

and the unit length to be 1/lf , where lf is the horizontal wave number of the fingers. Then,

if we neglect buoyancy (thus neglecting evolution of the thermal and compositional fields)

and diffusion (in both the velocity and magnetic fields), the non-dimensional governing

Figure A.1: Schematic of the two-dimensional sinusoidal shear flow considered in the
Floquet analysis of magnetized shear between fingers.

49



equations are

DU

Dt
= −∇p+H∗B(∇×B)×B, (A.1)

DB

Dt
= ∇× (U ×B), (A.2)

∇ ·U = 0, (A.3)

∇ ·B = 0, (A.4)

where D/Dt repesents the Lagrangian (advective) derivative, U is the fluid velocity, B is the

magnetic field, and p is the pressure. These equations yield the non-dimensional parameter

H∗B =
B2

0

µ0ρmw2
f

, (A.5)

where µ0 is the magnetic permeability of vacuum, B0 is the background field strength, and

ρm is the density. We consider perturbations u to the base sinusoidal flow such that

U = sin(x)êz + u, (A.6)

as well as perturbations b to the background vertical magnetic field according to

B = êz + b. (A.7)

Then, if we linearize the equations by dropping all terms which are nonlinear in

the perturbations, we get

∂u

∂t
+ u · ∇(sin(x)êz) + (sin(x)êz) · ∇u = −∇p+H∗B(∇× b)× êz, (A.8)

∂b

∂t
= ∇× (sin(x)êz × b) +∇× (u×B0), (A.9)

∇ · u = 0, (A.10)

∇ · b = 0, (A.11)
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yielding the system

∂tux + sin(x)∂zux = −∂xp+H∗B(∂zbx − ∂xbz), (A.12)

∂tuz + sin(x)∂zuz + ux cos(x) = −∂zp, (A.13)

∂tbx = −∂z(sin(x)bx) + ∂zux, (A.14)

∂tbz = ∂x(sin(x)bx)− ∂xux. (A.15)

The last two equations are redundant since ∇ · b = ∂xbx + ∂zbz = 0.

We now consider z-periodic perturbations of the form

u = û(x) exp(ikz + σt), b = b̂(x) exp(ikz + σt), p = p̂(x) exp(ikz + σt), (A.16)

where σ is the growth rate and k is the vertical wave number of the perturbations. Substi-

tuting these into Eqs. (A.13) - (A.15) then transforms the z derivatives into ∂z → ik and

the temporal derivatives into ∂t → σ, yielding

σûx + ik sin(x)ûx = −∂xp̂+H∗B(ikb̂x = ∂xb̂z), (A.17)

σûz + ik sin(x)ûz + ûx cos(x) = −ikp̂, (A.18)

σb̂x = −ik sin(x)b̂x + ikûx. (A.19)

The divergence-free constraints on u and b become

∂xûx + ikûz = 0, (A.20)

∂xb̂x + ikb̂z = 0, (A.21)

which we can use to eliminate p̂, ûz, and b̂z. After some algebra, we arrive at the relations

(
− iσ

k
+ sin(x)

)
(∂2
xûx − k2ûx) + ûx sin(x) = H∗B(∂2

xb̂x − k2b̂x), (A.22)

ûx =
(
− iσ

k
+ sin(x)

)
b̂x (A.23)

Now we assume that ûx and b̂x have the same periodicity as the base flow (i.e.,

with a fundamental horizontal wave number of one in this non-dimensionalization), so we
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expand ûx and b̂x in terms of a suitable basis, getting

ûx =

N∑
n=−N

une
inx, b̂x =

N∑
n=−N

bne
inx. (A.24)

The sum over n should run from −∞ to +∞, but we have truncated it at ±N in anticipation

of a numerical solution to the problem. Substituting these expansions into Eq. (A.23) yields

N∑
n=−N

une
inx =

(
− iσ

k
+
eix − e−ix

2i

) N∑
n=−N

bne
inx, (A.25)

which we can project onto the m mode and get the relation

um = − iσ
k
bm +

1

2i
(bm−1 − bm+1). (A.26)

Doing the same for Eq. (A.22), we get

iσ

k
(m2 + k2)um −

1

2i

[
((m− 1)2 + k2)um−1 − ((m+ 1)2 + k2)um+1

]
+

1

2i
(um−1 − um+1) = −H∗B(m2 + k2)bm.

(A.27)

We now eliminate the factors of i by employing the change of variables vm = ium,

and arrive at

kvm −
k

2

(
bm−1 − bm+1

)
= σbm,

(A.28)

− k

2(m2 + k2)

[
((m− 1)2 + k2 − 1)vm−1 − ((m+ 1)2 + k2 + 1)vm+1

]
−H∗Bbm = σvm.

(A.29)

Since we are looking for an expression for the growth rate σ of the shear instability, we do

not need to find vm or bm explicitly. Rather, if we collect all 2N + 1 modes of bm and vm

into a vector v = (v−N , . . . , vN , b−N , . . . , bN ), we can form an eigenvalue problem of the

form

Av = σv, (A.30)

where A is a matrix defined by the relations in Eqs. (A.28) - (A.29). For a given k, this

eigenvalue problem can be solved numerically for σ, and because we are interested in the
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fastest-growing shear modes, we must maximize σ over k. Doing so for a range of H∗B values

then yields the results shown in Figure 4.5. Note that in this Appendix, we have defined σ in

units of wf lf , so to match the non-dimensionalization of the main text (denoted by hatted

quantities, resulting from the units in Eqs. 1.15 - 1.16), we multiply by ŵf l̂f . Thus, the

non-dimensional growth rate of the shear modes here (σ) is related to the non-dimensional

growth rate in the main non-dimensionalization (σ̂) according to σ̂ = σŵf l̂f .
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