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Abstract 

LBL-16994 

The concept of Hamiltonian system is generalized to include a wide class 

of di ssipati ve processes. Evol ution of any observabl e is generated joi ntly by 

a Hamil tonian, wi th an entropy-conservi ng Poi sson brac ket, and an entropy, 

. with an energy-conservi ng dissipative bracket. Thi s approach yi el ds many of 

the standard kinetic equations, such as those representing particle 

collisions, three-wave interactions, and wave-particle resonances • 

* This work was supported by the Director, Office of Energy Research, of the 
U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 



A common feature of many of the standard kinetic equations of evolution is 

that their dissipative terms conserve energy while they monotonically increase 

entropy. Such equations also include entropy-conserving tenns, which are 

generated by a Hamiltonian and Poisson bracket (PB). 

It is now recognized [1-4] that associated with a PB is a special set of 

observables, denoted Casimirs, whose PB with any observable vanishes. Thus 

they are invariant for any Hamiltonian. (They playa crucial role in Arnold's 

stability method (3], and in foliating Poisson manifolds into symplectic 

leaves. [4]) Such a Casimir is the entropy. 

In thi s paper we introduce the analogous concept of di ssipative bracket 

(DB), and an associated set of observables, whose DB with any observable 

vanishes. These are the dissipative invariants, such as energy and momentum. 

In analogy to the PB {,J , which is bilinear, acts as a derivative, and 

is antisYl1l1letric and Jacobi, we introduce the DB < , >, ·which1s bilinear, 

acts as a derivative, and is sYl1l1letric and positive semi-definite. A 

dissipative Hamiltonian system is equipped with a PB, a DB, and two functions 

generating its evolution, its Hamiltonian H and its entropy S. 

The governing equation of evolution for any observable A is defined as 

• 
A =[A, H} + (A, S). (1) 

From the properties stated above, we have 

o = [S, H} = (H, S >, (2) 

i.e., entropy is a Casimir, energy is a dissipative invariant; and 
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[H, H} = 0, <5, 5>~0. (3) 
• • It follows immediately that H = 0, 5 ~ 0, which we recognize as the first and 

second laws of thermo~namics. 

We illustrate this concept by applying it to three standard kinetic 

equations: (5-10] (A) the Landau kinetic equation, used in plasma p~sics; 

(!) the wave-kinetic equation for resonant triads; (f) the wave-particle­

resonance kinetic equation, a generalization of the quasilinear theory of 

plasma physics. 

In example (A) the dynamical variable is the distribution f(z) (one 

species for simpliCity) on particle phase space z = (!., l!.). The system PB on 

observables A(f) is given by the Lie-Poisson formula: [11-13] 

where [ , ] is the particle bracket: 

We choose a form for the DB so as to satisfy the requirements discussed 

above, and to represent pair collisions: 

(4) 

(5) 

~. where ~k is a 1 inear differential operator chosen below. The delta-function 

guarantees that (H ,A) = 0, for all A, so that energy is a dissipati ve 

i nvari ant for any 5. 
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We note that the DB (6) is indeed positive semi-definite, provided that a 

(representing the short-range interaction) is positive everywhere. It is 

manifestly symmetric and bilinear, and acts as a derivative on A1 and A2• 

In order that the total momentum ~ = fd6z f(z)~' be a dissipative 

i~variant, we choose 

A!, A(f) = !'--ir 6A/6f(z) - !,.:~' 6A/6f(z'). (7) 

We observe that i ndeed (~, A) = a for any A, si nee Ak~ vani shes identically. 

We relate the (self-consistent)particle Hamiltonian to the system 

Hamiltonian H(f): [13] 

h(z;f) = 6H/6f(z), 

-and note that, since ah/a~ = ~, we have 

(8) 

( 9) 

The system Hamiltonian H(f) need not be specified further; it may be 

relativistic and may include long-range interaction. (However, if a magnetic 

field acts on the colliding particles, a generalization of (7) is to be used.) 

All that remains is a choice for the entropy functional S(f), a Casimir 

which we adopt from Boltzmann: 

It is now completely straightforward to deduce the evolution equation for 

fez), using (1), (4), (6), (7), (8), (9), (10); we obtain 
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af(z) 
at = - [fez), h(z;f}] 

This is the standard Landau kinetic equation, [14] including the Vlasov 

evolution [f, h]. The coupling coefficient a (symmetric in z, Zl) is to be 

obtained from the underlying reversible system. 

(11 ) 

For exampl e (~), we proceed largely by analogy. The dy namical vari abl e is 

the action density I(y) (one wave-branch for simplicity) on ray phase space 

y = (~,!.). The system PB is [15,13] 

With a possibl y nonlinear system Hamiltonian H(l), we introduce the 

(self-consistent) wave frequency: [15,13] 

",(y;l) = c5H(I )/c5l(y), 

(12) 

(13) 

(l4) 

which is the ray Hamiltonian ",(~,!.), assumed positive here. We then choose the 

differential operator,by,yl,y": 

(15) 

so as to represent local resonant interaction of wave triads: 
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wi th f.{I) = Jd6y I(y) !., the total wave momentum. 

Thus the DB choice: 

guarantees that wave energy and momentum are dissipative invariants. The 

coupling a is positive, synmetric in (y', y"), comes from the underlying 

Hamiltonian theory, and ·includes approximate spatial locality factors 

63(~_~,) 63(~_X"). 

With the standard expression for wave entropy [5,6] 

which, like (10), is a Casimir, we again straightforwardly obtain the 

evolution of I(y): 

aI (y) 
at = - [I(y), Iol(y)] 
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(18) 

(19) 
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This generalizes the standard wave kinetic equation [5,6] to nonuniform 

nonlinear media. (In (20), Wi denotes W(yl), II denotes l(yl), etc.) 

As the final example (f), we now couple the waves and particles resonantly, 

with reference to an unmagnetized plasma. (Again, the magnetized case is a 

generalization of the formulas below.) _With the ~namical variables f(z), 

I(y), we choose the total PB on observables A(f,I) to be the sum of the 

respective brackets (4) and (12), with [ , ] defined for functions in the 

respective phase spaces z, y. 

Now f represents the oscillation-center distribution [16], so that 

K(z; f,l} == 6H(f,I)/6f(z) (21) 

h the ponderomotive Hamiltonian. [16,13]. We still have;' = aK/al., but r is 

now the oscillation-center position. The wave frequency [13] 

w(y; f,l}: 6H(f,I)/61(y) ( 22) 

now depends explicitly on the evolving oscillation-center distribution; thus 

(22) is the local dispersion relation. 

The differential operator A z is chosen to make the total momentum y, 

a dissipative invariant. Thus 

Ay,Z A(f,l}:: 6A/6I(y} - !:~ 6A/6f(z) 

( 23) 

(24) 



yields ~y,z ~ = o. From (21 and (22), we obtain the local Landau resonance: 

~y,z H(f,l) = lJ(y;f,l) - !.. r(z;f,l) (25) 

We now choose the simplest form for the DB: 

(26) 

with a positive, representing the coupling strength. The total entropy S(f,l) 

is the sum of (10) and (19). Again, the equations of evolution follow 

straightforwardly: 

al (y) [ ( at = - I(y), IJ y; f, I) Jy 

. f 6 
+ d z a(Z,y) 6{1J - !.·t> (f(z) - I(y) !..af(z)/a,2.), (27) 

af(z) [ ( (. J at = - f z), K z,f,l) z 

In these coupled equations, the [ , ] terms represent the self-consistent 

wave propagation and oscillation-center evolution, including ponderomotive 

effects. The dissipative terms independent of I represent Cerenkov emission 

and radiation reaction. The terms linear in I represent Landau damping/growth 
v 

and quasi 11 near diffusion. We note the common coup 11 ng [17] for these di ssipa- ~. 

tive effect-so -- -. ---- - - - - ~ - - - - -- - ---

With these three examples expressed as dissipative Hamiltonian systems, we 

may expec t that many other processes can be simil arly represented. Exampl es 
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that come to mind are (at the kinetic level) spontaneous and induced wave 

scattering by particles [13], bremsstrahlung and collisional damping, and (at 

the fluid level) resistivity, viscosity, thermal conductivity, diffusion, and 

thermal equilibration. Preliminary studies indicate that this is indeed the 

case; results will be published elsewhere [18]. It is hoped that this 

unifying principle will lead to new stability theorems for dissipative 

Hami 1 tonfan sy stems. 
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