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Abstract

Considerable efforts have been devoted towards developing effective drug delivery methods. 

Microfluidic systems, with their capability for precise handling and transport of small liquid 

quantities, have emerged as a promising platform for designing advanced drug delivery systems. 

Thus, microfluidic systems have been increasingly used for fabrication of drug carriers or direct 

drug delivery to a targeted tissue. In this review, the recent advances in these areas are critically 

reviewed and the shortcomings and opportunities are discussed. In addition, we highlight the 

efforts towards developing smart drug delivery platforms with integrated sensing and drug delivery 

components.

1. Introduction

In recent years, researchers have focused on developing novel drugs as well as strategies for 

their effective delivery to the target sites to improve the outcome of the treatment process. 

These strategies aim to enhance the drug bioavailability and specificity, reduce their 

cytotoxicity, and improve patients’ comfort. A considerable portion of the pertinent literature 

has been devoted to the development of drug or gene carriers [1–3]. These activities range 

from developing biomaterials that enable controlled release of drugs to discovering 

antibodies or proteins that ascertain specificity of the site of action. For example, pH- or 

temperature-responsive carriers have been synthesized via bulk methods for the release of 
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the loaded drug in tissues with lower pH or higher temperature [4,5]. However, these 

conventional methods for synthesizing drug carriers may sometimes require large amounts 

of expensive drugs for fabrication and encapsulation to ensure the desired therapeutic 

response.

Generating a reproducible release profile requires the fabrication of monodisperse drug 

carriers, which may not be feasible with conventional methods such as emulsification [6]. 

Another challenging task using these bulk methods is to fabricate carriers for delivery of 

several drugs or growth factors with different release profiles, where a precise control over 

the composition of the employed carriers is required. Localized drug delivery is another 

active research area in which regular approaches such as hypodermic injection of drug or 

oral drug delivery are either not capable of controlling the drug release locally or 

maintaining the drug level over a long period of time [7]. Thus, devising strategies capable 

of addressing these challenges are important and will have significant clinical implications.

Recent advancements in microtechnologies and microfluidics have impacted various fields 

including drug discovery, biology, diagnostics, and tissue engineering [8–12]. Microfluidic 

systems allow precise handling and manipulation of nano- and pico-liter volumes of liquid 

in a reproducible and tunable fashion. Thus, such systems have been employed for 

fabrication of complex drug carriers with precise size and composition leading to a 

predictable and tunable release profile [13,14].

Microfluidic systems can be utilized for active and localized delivery of drugs in 

preprogrammed and minute quantities. This characteristic facilitates the administration of 

drugs with short half life or those that carry the risk of cytotoxicity upon systemic 

administration. Furthermore, some traditional delivery methods such as painful and 

hazardous injections can benefit from these microtechnologies by fabricating microneedles 

or needle-free injection systems [15]. Microfluidic systems have been recently designed for 

transdermal administration of drugs to improve patients’ comfort and quality of life [16]. As 

a result of the recent advancement of biosensing platforms and integration of microfluidics, 

a new class of drug delivery systems has emerged as promising tools, which can administer 

drugs on demand to form “smart” systems. These platforms can accurately monitor and 

analyze therapeutic effects through autonomous feedback loop systems [17].

Integration of engineered tissues and organoids with microfluidics to create organ- and 

body-ona-chip platforms has created a unique opportunity for preclinical assessment of the 

efficacy and cytotoxity of drug delivery techniques in vitro. These systems can mimic in 
vivo microenvironment and allows variation of different parameters in a high throughput 

manner. Recent advances in development and utilization of such platforms have been 

discussed elsewhere [8,18] and are not reviewed here. In this short review, we will discuss 

various microfluidic systems that have been utilized for fabrication of drug carriers. We will 

also highlight the recent advancements and challenges in microfluidic-based direct drug 

delivery. In addition, we will discuss the integrated and automated platforms capable of 

smart drug administration.
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2. Microfluidics in fabrication of drug carriers

Developing effective drug carriers is an important aspect of drug delivery research. Such 

carriers should adjust the release rate, improve the bioavailability, and reduce the side effects 

of drugs. They also need to improve the uptake of poorly soluble and relatively unstable 

drugs. In particular, oral delivery carriers should withstand the low pH of stomach and be 

small enough or covered with proper markers to pass through the intestinal mucosal barrier 

and enter blood stream. Reliability and controllability of drug release profile are key factors 

in the successful application of drug carriers, which depends on their size, shape, uniformity, 

and composition [19]. For example, nanoparticles with diameter less than 10 nm are rapidly 

filtered out in kidneys [20]. On the other hand, larger particles can be recognized by immune 

system and can be removed through phagocytosis [21].

Microfluidic techniques have been employed for preparation of optimally designed drug 

carriers with the aim of effective therapeutic response. These techniques enable production 

of mono dispersed and multifunctional drug carriers with highly tunable physical and 

chemical properties to promote efficacy of drug transport, release, distribution, and 

elimination during the course of treatment [22,23]. In this section, we will highlight recent 

advances in fabrication of self-assembled, droplets/emulsions, and non-spherical carriers 

using microfluidic systems.

2.1. Self-assembled drug carriers

Nano to microsize vehicles and drug carriers have been commonly fabricated by self-

assembly in microfluidic systems. In this technique, two or multiple streams of various 

reagents are interfaced and the carriers are formed at the interfacial layer. In general, such 

self-assembly reactions are achieved through hydrodynamic flow focusing (HFF) as well as 

passive and active mixing. In hydrodynamic flow focusing a core of carrier solution 

containing the surfactant mixer is focused by surrounding streams of a miscible buffer in the 

microchannel (Fig. 1a). The size of synthesized carriers are determined by controlling the 

mixing rates between different fluid streams, which is governed by geometry of the 

microchannel, flow rates, and the diffusion coefficient of different miscible streams [20]. 

Microfluidic mixing has been effectively used for precise self-assembly of polymeric and 

lipid nanoparticles [20,24], followed by encapsulation or chemical conjugation of active 

molecules to the synthesized carriers [25]. The size of self-assembled particles created by 

this method is commonly less than 1 μm which facilitate the carrier transport across 

physiological barriers and minimize the chance of phagocytosis [21]. Abhay et al. 
demonstrated the self-assembly of highly monodispersed liposomes via a microfluidic HFF 

method and their size effect on cellular uptake mechanisms [26]. When tested against 

endocytosis inhibitors, large size liposomes (97.8–162.1 nm) were subjected to clathrin-

dependent uptake mechanisms, while the smallest liposomes (40.6 nm in diameter) primarily 

followed a dynamin-dependent pathway. In another example, homogeneous PLGA-PEG 

copolymer nanoparticles with encapsulated Docetaxel were fabricated using microfluidic 

nanoprecipitation [25]. The size of the fabricated particles using this method was in the 

range of 20 nm- 25 nm, which was smaller than the particles obtained by bulk emulsion 

precipitation (30–100 nm) [25]. It was also observed that the half life of the particles 
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fabricated with microfluidic system was approximately twice of the values for those 

obtained using the bulk method.

In a hydrodynamic flow focusing microfluidic system, the narrow width of the core stream 

provides a fast mixing due to small diffusion length scale [25]. The particle size distribution 

and the rate of particle formation by self-assembly are controlled by diffusive mixing time 

(τmix = w2
9D

1
(1 + 1/R)2

) where w is the channel width, D is the diffusivity of the solvent in the 

core stream, and R is the ratio of the core stream flow rate to the total flow rate of the 

surrounding streams [20]. In a fixed geometry, it has been demonstrated that increasing the 

flow ratio (R) can improve the production rate and increase the average diameter of the 

produced nanoparticles [27]. To decrease the mixing time and improve the self-assembly 

process, micromixers have been also used for fabrication of carriers and nanoparticles [28]. 

In general, such microfluidic mixers are divided into two categories of passive and active 

systems. In passive mixers, the interfaced streams are mixed by introducing surface 

microarcitectures or abrupt changes in flow configuration without applying any external 

forces used in active mixing (Fig. 1b). Lipid nanoparticles (LNPs) encapsulating siRNA, for 

instance, have been generated using a passive microfluidic mixer resulting in rapid 

preparation of gene-containing carriers with increased gene silencing efficiency [29].

Despite their advantages, one step HFF and micromixers have not been shown to generate 

multilayer carriers, which are important for sequential delivery of multiple factors. To 

address this challenge, diffusion-based microfluidics with sequential reaction steps have 

been employed for creating multilayer carriers (Fig.1c) [30]. In one study, sequentially 

fabricated lipoplex nanoplarticles encapsulating Bcl-2 antisense deoxyoligonucleotide 

(ODN) showed higher level of Bcl-2 antisense uptake in K562 human leukemia cells and 

more efficient down-regulation of Bcl-2 protein level in comparison with carriers made by 

bulk mixing methods [30].

Overall, HFF systems and passive micromixers are easy to fabricate and operate for 

generating particles with relatively uniform size distribution. However, formed particles are 

usually small (>1 μm) and cannot be employed for applications were long term release of 

drug is desired. Another limitation of fabrication of self-assembled carriers is diffusion-

limited mass transfer between the co-laminar streams, which limits the production rate and 

scalability of the process. Thus, novel designs which benefit from active mixing systems 

with improved mass transfer rate would enhance the rate of carrier production.

2.2. Droplet-based carriers

Droplet-based microfluidics is the most popular carrier synthesizing method that can 

generate highly reproducible and homogeneous drug-loaded particles, microcapsules, 

microbubbles, and microgels (Fig. 1d-f) [31,32]. The shear stress combined the interfacial 

tension between immiscible fluids enable the droplet production, where the particles size can 

be controlled by adjusting the flow rates, solution viscosity, and surface tension. In 

comparison with self-assembly methods that were used to generate nanoparticles, particles 

that are produced by droplet-based microfluidic systems are typically larger (i.e. micro-

scale). Such microcarriers are able to provide high drug loading or drug encapsulation and 
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maintain sustained drug release for relatively long periods. Tuning of drug release can also 

be achieved by tailoring the internal structure of such droplets (e.g double or multiple 

emulsions) which enables simultaneous delivery of multiple drugs.

Production of single and multiple emulsion-based carriers produced through microfluidic 

approaches can be achieved using combination of cross-flow, flow focusing, and co-flow 

configurations. In cross-flowing geometry droplets are generated in dripping regime inside 

microfluidics system with X-,Y-, or T-junctions. However, flow-focusing [33] and co-

flowing [34] produce droplets using jetting and dripping modes. Droplet-based microfluidics 

is versatile and allows the fabrication of monodisperse particles from various polymers such 

as poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLA), alginate, and poly(ethylene 

glycol) (PEG) [19]. The surface chemistry of the fabricated carriers significantly affects the 

drug release profile as well as their recognition by the immune system [19]. For example, 

coating the carriers with a PEG layer can prolong their systemic circulation as well as delay 

uptake by cells and clearance. Thus, multiple emulsions have been fabricated using multiple 

flow configurations with opposite wettabilities [35]. In a study, lipid microparticles, were 

synthesized via droplet-based microfludics through a co-flow dripping configuration and 

congealing process to solidify the melted lipid [36]. Results demonstrated a narrow size 

distribution with optimal morphological characteristics (e.g. sphericity, surface smoothness) 

of the fabricated lipid microparticles. Similarly, microcapsules (aqueous core) and 

microbubbles (gaseous core) can be generated using the droplet-based microfluidic approach 

through solidification methods such as evaporation, extraction, and multilayer deposition 

[37,38]. Microgel-based carriers have also been fabricated by flow-focusing microfluidic 

systems [39]. These microgels are usually formed from hydrophilic stimuli-responsive 

polymers and hydrogels with high water content making them promising candidates for drug 

carriers [40]. In particular, the rapid and reversible changes in their pore size in response to 

physiochemical stimuli make microgels attractive for smart drug delivery. For instance, 

poly(N-isopropylacrylamide) (PNIPAM), with polymer chains containing both hydrophilic 

amide groups and hydrophobic isopropyl groups, is commonly used as thermosensitive 

microgels triggered by changes in temperature and pH [41]. Recently, a study was conducted 

to demonstrate the fabrication of water-actuated microgels-based on microfluidic double 

emulsion [42]. The generated microgles were able to release encapsulated actives by 

hydration.

In order to control the size, shape and composition of complex particles containing gene or 

drug carriers, automated and computer controlled microfluidic platforms with integrated 

micropumps and/or microvalves have been used (Fig. 1g). Sung et al. fabricated a 

programmable valve-actuated microfluidic system to generate anisotropic elongated 

particles with exact length, variable bonding angle, pre-designable size sequence and 

chemical order [43]. Similar pneumatic microfluidic processors have been implemented for 

generating large drug carrier for both drug delivery and supramolecular droplet libraries for 

gene transport [44]. Thus, automated platforms can be used for rapid single- or multi-step 

carrier synthesis, to minimize unpredictability and enhance flexibility in production of 

carriers and drug loading.
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Droplet-based microfluidics is the most robust fabrication method for multifunctional drug 

carriers with tunable size and release profile. However, the main shortcoming of this 

technique is inability for fabricating nanosize drug carriers as well as the complexity of 

handling and optimization of fluidic circuit. Regular emulsion-based microfluidic systems 

offer a low throughput, which can be significantly improved by creating systems containing 

an array of T junctions. However, their utilization for industrial scale is still not feasible.

2.3. Non-spherical carriers and particles

The microfluidic particle generation techniques that were described in the previous 

subsections usually result in the generation of spherical particles. However, recent studies 

have shown that particle shape can affect particles in vivo biodistribution, their uptake 

mechanisms, and their blood circulation time in human body [45]. Thus, non-spherical 

particles have attracted an increasing amount of attention for drug delivery investigations. 

They are able to mimic the compelling properties of natural entities like red blood cells. 

Their high surface-to-volume ratio also provides more cell membrane attachment for drug 

delivery. Geng et al. showed that long circulating filomicells with paclitaxel increased the 

apoptosis rate of tumor cells and effectively reduced the tumor size in mice [46]. In another 

study, Kolhar et al. demonstrated the delivery of siRNA with needle-shape polymeric 

nanoparticles in vascular endothelium. The gene silencing efficiency improved with the 

aspect ratio of the non-spherical particles [47].

Non-spherical particles have been fabricated through the self-assembly and coalescence of 

spherical building blocks created through emulsion-based systems (Fig. 2a) [48], stretching 

and deforming droplets in microchannels prior or during their solidification [49], or by flow 

lithography [50]. The self-assembly and coalescence of droplets have been used to produce 

various structures such as rod-like, cylindrical, and disc-like particles [48,51]. However the 

arbitrary control of particle geometry is challenging. Stretch or deformation of produced 

emulsion droplets is another strategy to form anisotropic particles through solidification of 

polymer solutions in microfluidic platforms. It has been shown that the shape of particles 

fabricated by microfluidic emulsion and solvent removal solidification, can be changed from 

spheres to toroids by controlling the flow rate and the solvent diffusion rate (Fig. 2b) [49]. In 

this section we focus more on strategies used to fabricate non-spherical particle using flow 

lithography in microfluidics.

In flow lithography, a solution of photocrosslinkable polymer is flowed through a 

microchannel and is exposed to a light [50]. A photomask can be used to enable creating 

particles with a predefined geometry. Depending on the temporal flow rate, flow lithography 

techniques can be divided in two groups of stop flow and continuous flow lithography. In 

stop flow system, once the prepolymer solution fills the channel, flow is stopped, and light is 

illuminated on the channel to create the particles (Fig. 2c) [52]. In continuous systems on the 

other hand, the light illumination system is continuously turned on and off to create particles 

[53].

Continuous flow systems have a higher throughput than stop flow systems and production 

rates of 100 particles per second are achievable. However, both conventional stop flow and 

continuous flow lithography techniques can only fabricated planar particles. To enable the 
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fabrication of 3D particles, a microfluidic system has been interfaced with a two photon 

polymerizer in which its focal plane could be changed across the depth of the channel (Fig. 

2d) [54]. However, this technique has a relatively low throughput, which limits its 

application for drug delivery.

Flow lithography techniques can be utilized to fabricate both spherical and non-spherical 

particles and carriers. In comparison to droplet-based systems, flow lithography platforms 

are easier to operate due to presence of one phase in the fluidic channel. A key challenge 

associated with flow lithography methods is their low throughput. Moreover, light sensitive 

drugs cannot be incorporated into the carriers fabricated by flow lithography. The smallest 

size of particles fabricated using lithography techniques is limited to the resolution of the 

illumination system; thus, fabrication of sub-micron size particles is challenging.

3. Microfluidic platforms for direct drug delivery

In addition to the possibility of fabricating complex drug carriers, microfluidic systems can 

be utilized for direct delivery of active molecules [55]. Such systems are capable of 

efficiently transporting drugs to a targeted site to increase the local availability of the drug 

and to reduce the side effects caused by the interaction of the drug with other organs and 

tissues. In addition, microfluidic systems have been successfully employed for the so called 

transdermal delivery, which is direct drug delivery across the skin. The goal of these 

systems, that utilize a needle or an array of microneedles, is to transfer the drug across the 

skin (epidermis) barrier. In this section we will discuss the advantages of microfluidic 

systems employed for localized and transdermal drug delivery.

3.1. Localized drug delivery

There are a number of techniques employed for localized drug delivery such as the use of 

drug loaded polymers and the use of microfluidic implantable devices [56]. Microfluidic 

systems are capable of using convective forces for on demand drug release, which 

differentiate them from other diffusion-based local delivery platforms with continuous and 

non-uniform release profile. Thus, microfluidic platforms are able to control the release 

profile. The microfluidic platforms are usually comprised of a pump or actuator, a valve, a 

drug reservoir, and a membrane for controlling the release rate. The simplest approach is to 

physically compress the reservoir to force the contained drug out. Lo et al. engineered a 

microfluidic drug delivery device with a refillable drug reservoir for treating ocular diseases 

[57]. The device included a PDMS-based check valve to control the release rate of the drug 

after pressurizing the reservoir manually (Fig. 3a-b). The flow rate of the device was varying 

from 0.61 μl/s for 250 mmHg of applied pressure to 1.57 μl/s for 500 mmHg. This variation 

in the drug release rate in response to the actuation pressure could be a limitation of this 

platform, especially if the system is finger actuated [57]. Pressurizing the drug reservoir in 

implantable devices is a key challenge and researchers have tried to design various easy to 

implement mechanisms for achieving this aim. Chung et al. incorporated two electrodes on 

the top and bottom surfaces of the drug reservoir covered with a membrane (Fig. 3c) [58]. To 

release the contained drug, an electrical potential was applied via two electrodes triggering 

two chemical reactions which formed gas bubbles to break the membrane and push out the 
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drug. A similar system, was implanted into a Manduca sexta moth to actively control the 

moth behavior (movement) through chemical delivery (Fig. 3d) [59].

Another method demonstrated by Elman et al. was to use a microfluidic platform with a 

reservoir covered with a silicon nitride membrane (Fig. 3e-f) [60]. The reservoir included a 

heating module to create a film boiling within the entrapped liquid to break the brittle 

membrane and release the drug. This system is effective for the rapid delivery and can be 

used for emergency applications with life threatening conditions. However, this system 

cannot be used for continuous drug delivery over a long period of time. Moreover, the 

generated heat limits its use for thermally unstable drugs and growth factors.

Drug delivery platforms with magnetic actuation are promising candidates for localized drug 

delivery as magnetic field can easily penetrate the body. Pirmoradi et al. developed a 

microfluidic system comprised of a drug reservoir sealed by a magnetic responsive iron 

oxide doped PDMS hanging membrane with a laser drilled aperture (Fig. 3g) [61]. After 

applying a magnetic field, the membrane was deformed pushing out the drug through the 

membrane. The challenge with such a system is the inconsistency of release rate in each 

cycle for cyclic drug delivery.

Overall, the localized microfluidic platform for direct drug delivery to the injury site holds a 

great promise. However, in many applications, such platforms should be degradable in a way 

that after successful operation they could be resorbed without the need for a secondary 

surgery. Moreover, their mechanical characteristics should match those of the surrounding 

tissue to prevent interference with the tissue function and improve patients’ comfort. 

Another important research area, is to develop an easy-to-operate actuation mechanism 

combined with an effective sub-nanoliter scale flow regulating system that enable long term 

and on demand administration of drugs. A key challenge to overcome for designing long-

lasting drug delivery platforms is the immune and inflammatory response and the interaction 

of the tissues with the device. Inflammation can deteriorate the performance of the device 

and in severe cases may lead to device rejection and the need for its removal. Fibrosis may 

also affect the device operation as it can block the nozzles or restrain the movement of 

mechanical components. Thus, coating the construct with anti-fibrotic factors may prolong 

the reliability of the system over the course of treatment.

3.2. Transdermal drug delivery

Drugs can be administered to the patient’s body through a number of routes. Skin is an easy 

to access organ for delivering active molecules; however, it forms a strong barrier that 

protects the body from outside environment. Thus, developing transdermal drug delivery 

platforms has attracted a lot of attention. Recently, arrays of miniaturized microneedles have 

been developed to penetrate the epidermis without disrupting the nerve-rich regions; thus, 

enabling painless drug delivery in comparison to conventional hypodermal delivery systems. 

These microneedles have different forms such as: i) solid microneedles disrupting the 

epidermis barrier, ii) microneedles coated with drug, iii) dissolvable microneedles releasing 

drug in a gradual pace, and iv) hollow microneedles enabling convective drug transport 

across the barrier (Fig. 3h). In this short review, we primarily discuss the fourth category.
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In a study, McAllister et al. microfabricated tapered microneedles from a range of materials 

including metals, silicon, and glass (Fig. 3j) [62]. They used the microneedles for insulin 

injection and demonstrated the effectiveness of the strategy in lowering blood sugar level. A 

comprehensive review of the pertinent literature can be found elsewhere [63]. These 

microneedles can be combined with actuation systems such as piezoelectric systems, spring, 

pressurized gas, and microgear pump for active and preprogrammed drug delivery [64].

These microneedles have also been integrated with sensing systems to improve their 

sensitivity through breaching the epidermal barrier. In a notable study, Yu et al. fabricated 

silicon microneedles and used them for electrocardiography (ECG) [65]. The microneedles 

penetrated through the skin and reduced the electrode-skin-electrode impedance. Moreover, 

they could inject a NaCl solution through the needles as an electrolyte. Their results 

indicated a significant improvement of signal-to-noise ratio of ECG measurement by 

electrodes with microneedles as compared to electrodes with flat surface.

Transdermal microfluidic drug delivery platforms one day replace the hypodermic needles 

and can also be integrated with sensing platforms for designing multifunctional systems. 

Also, such platforms can be combined with bioinspired reversible dry adhesives for creating 

needles with high adhesion force while being easy to remove. However, susceptibility to 

clogging and fibrosis can affect their normal function and strategies should be devised to 

prevent it. Another challenge that may affect the long term use of transdermal drug delivery 

devices is bacterial infection as the skin barrier is breached for the duration of their use. 

Thus, special attention should be paid to designing systems with bacterial inhibition 

characteristics.

4. Smart and autonomous integrated microfluidic systems for drug 

delivery

Smart drug delivery devices are mostly used to keep drugs at a desirable level in body to 

avoid the need for frequent dose [67]. Although there are a great number of investigations 

focusing on integrated (implantable) microfluidic devices for drug delivery, there is a huge 

need to convert such devices to self-regulating smart and autonomous drug delivery systems 

[64]. Such devices are highly desirable for treating chronic diseases such as diabetes and 

rheumatoid arthritis [68], where continuous and controlled drug delivery is the key to 

successful treatment of patients.

A smart and autonomous microfluidic drug delivery device is mainly made of four 

miniaturized building blocks including i) a drug reservoir; ii) a controllable actuator to inject 

therapeutic levels of the drug to body, iii) a (bio)sensing module and its signal processor for 

measuring a marker or an analyte and controlling drug release profile in a closed-loop 

arrangement, and iv) a power source for sensing and actuation processes. Various designs of 

actuators for drug injection integrated in drug reservoirs were discussed in the previous 

section. (Bio)sensors can be potentially designed to be integrated with bio-responsive 

materials for measurement of a specific drug concentration or a particular marker molecule 

of the disease being cured [68,69].
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Tsai et al. fabricated a glucose sensor by immobilizing glucose oxidase on a hydrogel (Fig. 

4a) [68]. In order to preserve the sensitivity of the sensor, it was mounted on the lid of a 

microfabricated vial to protect it from surrounding environmental conditions (e.g. the human 

Body). Upon applying 800 mV potential to the lid made of polymer/gold, it could be opened 

to expose the sensor to the stream of a marker or analyte. In addition, the lid can be mounted 

on a microfabricated drug reservoir to act as a microvalve to open and close the drug 

reservoir for a closed-loop arrangement with the sensor to regulate therapeutic level of a 

drug [68].

In a notable study Son et al. developed a wearable patch for diagnosis and therapy of 

movement disorders by controlled delivery of therapeutic agents (Fig. 4b) [70]. M-silica 

nanoparticles with drug loaded nanopores were used as vehicles for adsorption and delivery 

of drugs. Nanoparticles were transfer-printed onto the sticky side of a patch with an 

electroresistive heater/sensor using a PDMS stamp. Upon heating the patch, the 

pharmacological agents loaded in the nanoparticles can diffuse transdermally. The 

temperature sensor was able to monitor the maximum temperature on the skin in order to 

protect it from getting burnt.

Key challenges for making smart microfluidic drug delivery devices are revolving around 

fabrication and integration of miniaturized components in a closed-loop arrangement, and 

developing sensors that can operate reliably over long periods of time. Different methods for 

drug pumping have been developed for implanted microfluidic drug delivery devices [64]. 

One key challenge is to actuate the micropump based on a feedback signal coming from the 

measuring sensors in order to maintain the drug concentration at a therapeutic level. Also, 

the measuring sensors should have very stable operation in terms of sensitivity and 

selectivity over the period of implantation time. The sensors can be potentially designed to 

be integrated with bio-responsive materials for measurement of a specific drug concentration 

or a particular marker molecule of the disease being cured [68,71]. Further details related to 

miniaturized implantable drug delivery devices can be found elsewhere [68,72].

5. Challenges, concluding remarks, and future directions

During the past decades, the design of microfluidic systems and their functionality have 

substantially improved and microfluidic platforms have made their way to various areas of 

medicine including drug delivery. Microfluidic systems can enable fabrication of 

sophisticated drug carriers with uniform sizes in the range of hundreds of nm to several μm. 

In addition such systems are able to design and fabricate drug carriers with preprogrammed 

release profile. We believe that the majority of future advances in this area will be devoted to 

the utilization of advanced polymers for fabrication of controllable and multifunctional drug 

carriers.

Microfluidic systems have also been employed for the direct and localized delivery of drug 

to target sites. These systems are capable of delivery of exact and small quantity of drug 

doses reducing the need for using high concentrations of drugs with significant side effects. 

One future direction of such systems could be the fabrication of biodegradable drug delivery 

platforms, where the implanted system can be resorbed in vivo without the need for a 
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secondary surgery for its removal. The associated challenge is to have a controllable life 

span for these drug delivery systems. The device should operate with optimum performance 

during the course of treatment without degradation. When the treatment is over, the device 

should start to degrade in the body to avoid possible surgical processes for device removal. 

To address this issue, the device components may be made from biodegradable materials 

that are coated with a protective layer to prevent degradation. Whenever the treatment period 

ends, the coating layer will be removed or degraded by a stimulus so the drug delivery 

device can be exposed to enzymes of body fluids for rapid degradation process. Another area 

that is expected to receive significant attention is the combination of sensing platforms and 

microfluidic systems for drug delivery. The utilization of polymeric substrates in fabricating 

electronic systems and sensors has paved the road for fabrication of flexible and 

bioresorbable electronics [73]. Biodegradable batteries and biofuel cells extracting power 

from body fluids might be a future source to empower such devices. Their main challenge 

for integration with drug delivery devices is to have long-term performance stability at 

human body conditions. These electronic platforms can be integrated with microfluidic 

systems or responsive drug carriers for automated and on demand drug administration. It is 

expected that with the emergence of smart systems it will be possible to employ them for 

sensing different biomarkers (e.g. analytes or metabolites) in the body and administer the 

appropriate therapeutics accordingly. Such systems will revolutionize the patient 

management strategies for the treatment of various diseases. A major challenge, however, is 

to develop a monitoring strategy that not only can control the performance of an implanted 

smart drug delivery device but also trigger a secondary method for situations where the 

device failure occurs. This is particularly of great importance for those life-preserving 

devices that sustain patient life.

Integration of microfluidic systems for direct drug delivery or fabrication of drug carriers 

with recently emerging organ-on-a-chip platforms allows cost effective studies on the 

efficacy of various drug delivery systems. Moreover, it is expected that these integrated 

miniaturized systems can fill the gap between the animal studies and human clinical trials.
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Microfluidics enables fabrication of drug carriers with controlled geometry and release 

profile.

Microfluidic platforms enable effective localized drug delivery at cell, tissue, and organ 

level.

Transdermal systems allow easy and painless delivery of active molecules to patients.

Closed-loop smart microfluidic platforms propose the next generation of drug delivery 

systems.
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Figure 1. 
Microfluidic platforms for production of drug and gene carriers. a) Schematics of niosome 

self-assembly via HFF in a diffusion-based microfluidic mixer (10 nm < Dp <100 nm); 

reprint with permission from[20]. b) Fabrication of lipid nanoparticle (LNP) small 

interfering RNA (siRNA) formulation strategy employing the staggered herringbone 

micromixer (20 nm < Dp < 100 nm); reprint with permission from[29]. c) A multi-inlet 

microfluidic HFF system to generate lipopolyplex containing Bcl-2 antisense 

deoxyoligonucleotide (100 nm < Dp < 300 nm); reprint with permission from[30]. d) 

Droplet-based microfluidic platform for open-celled porous poly(N-isopropylacrylamide) 

(PNIPAM) microgel production (150 μm < Dp < 450 μm), e) SEM micrographs of 

fabricated PNIPAM microgels with open-celled porous structure; reprint with permission 

from [32] f) Fabrication of microgel capsules that consist of two miscible yet distinct layers 

using double emulsion template in the droplet-based microfluidic device (20 μm < Dp < 100 

μm); reprint with permission from [6]. g) Programmable microfluidic array for producing a 
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combinatorial library of DNA encapsulated supramolecular particles; reprint with 

permission from (40 nm < Dp < 200 μm) [44].
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Figure 2. 
Microfluidic systems for fabrication of non-spherical particles and carriers. a) nonspherical 

particles formed by coalescence of spherical particles; reprint with permission from [48]. b) 

tropoid-like particles fabricated using microfluidic emulsion followed by controlled solvent 

evaporation; reprint with permission from [49]. c) Stop flow lithography for fabrication of 

planar particles. (i) schematic of the system, (ii, iii) typical fabricated planar particles using 

flow lithography; reprint with permission from [52,53]. d) Two-photon continuous flow 

lithography for fabrication of 3D particles. (i) schematic of the process, (ii) and (iii) bright 

field and florescent images of a fabricated helical structure; reprint with permission from 

[54].
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Figure 3. 
Microfluidic systems for direct drug delivery. a) Implantation of a microfluidic drug delivery 

platform for ocular applications, where the drug reservoir was sutured to the sclera and 

placed underneath the conjunctiva. b) Components of the employed drug delivery platform; 

reprint with permission from [57]. c) Drug delivery platform that the application of electrical 

field between the top and bottom electrodes introduced bubbles in the chamber which leads 

to drug release; reprint with permission from [58]. d) A schematic and an image of a 

wireless microfluidic system for controlling the flight of Manduca sexta; reprint with 

permission from [59]. e) A microfluidic drug delivery in which heaters generated bubbles to 

break the membrane and release the drug, f) Side view of the device illustrating methylene 

blue release; reprint with permission from[60]. g) Principle of operation of a magnetically 

actuated drug delivery system; reprint with permission from [61]. h) Various types of 

microneedle arrays; reprint with permission from [66]. j) SEM images of hollow metal (i,iii) 

and glass (ii) microneedles. (iv) an array of 500 μm long tapered metal microneedles next to 

a 26-gauge needle; reprint with permission from [62].

Riahi et al. Page 20

Curr Opin Chem Eng. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Smart microfluidic systems for drug delivery. a) schematic diagram of a miniature biosensor 

immobilized on the backside of the gold lid of a microfabricated vial, which is either closed 

or open after electroactuation by the application of 800 mV versus Ag/AgCl; reprint with 

permission from [68]. b) Controlled transdermal drug delivery from hydrocolloid and m-

silica nanoparticles (NPs) by thermal actuation. Wearable electronic patch composed of the 

data storage modules, diagnostic tools and therapeutic actuating elements; reprint with 

permission from [70].
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