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Application 01' Leaming Hodels and Optimization Theory

to Problems of Instruction *

I. PHILOSOPHICAL APPROACH

A. Problem Definition

Stated in its simplest form, the question addressed here is how

to allocate instructional resources to achieve a desired objective. Broadly

interpreted, this question could include the total educational resources of

society and all possible leaming situations. In practic~l. terms, however,

the setting is restricted to~the structural educational system, because

this is' the only context in which decisions on the allocation of instructional

resources may be implemented.

When the question of allocating resources is examined in this

setting, attention is usually focussed on a well-defined sub-component of

the problem. Once the characteristics of one of these sub-components are

understood, their implications may be extended to a larger context. In

general, however, the characteristics of many sub-components must be synthe-

sized before solutions canbe derived for the problem of resource allocation.

In the school setting, the principal resources to be allocated

are the human resources of teachers and students. When the teaching function

is augmented 'by non-human resources, such as computer-aided instruction, then

the total instructional resources must be considered. The time spent by the

students also must be included because there is frequently a trade-off

between instructional resources to-be allocated and spee~ of learning.

There are two basic questions in any resource allocation problem:

(1) what are the alternatives and their implications, and (2) which alternative

is preferred? The first question concerns the "system" and includes such

questions as what is feasible, what happens if and what is the cost? The

second question has to do with the goals, objectives and preferences of the
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decision-maker or the collection of people he represents. These are very

difficult questions to answer; but they must be answered; at least implicitly,

every time an allocation decision is made. This chapter reviews the develop

ment and application of mathematical models that help the decision-maker

directly with the first question and indirectly with the question of

identifying objectives and preferences.

B. Empirical Approach versus Modelling Approach

The core of any decision problem is the determination of the
,

implications or outcomes of each alternative that is, the determination of

the answers to what happens if? The questions of feasibility and cost are

ancillary to this central problem and are relatively uncomplicated. For

example, consider the problem of determining optimal class size. For a

particular situation, the question of feasibility might involve simply the

availability of physical facilities and instructional resources. Analysis

of the question of cost also would be reasonably straightforward. It would,

however, be very difficult to determine and quantify the expected results with

sufficient accuracy to permit assessment of the·cost-~ffective trade-off.

.. It is the quantitative analysis of the core of the decision problem that

can be approached with empirical or modelling techniques.

In the empirical approach, the input variables (class size, for

example) and the output variables (amount learned, say) are defined-for the

particular problem at hand and then empirical data relating to these

variables are collected and analyzed. From the analysis it is hoped that a

causal relationship can be determined and quantified. This relationship then

serves to predict the output from the system for the range of alternatives

under consideration. Once the expected output has been quantified and

once the costs of the alternatives have been determined, the decision problem

is reduced to an evaluation of preferences.

. I
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The empirical ~pproach has a natural appeal for several reasons.

First, perhaps, is its simplicity. If a particular system has only a few

variables that are amenable to q~antification, then, given sufficient data,

the relationships between them can be determined. The second reason for

its appeal is that no a priori knowledge of the relationships among

variables is necessary; the data simply speak for themselves. A third

reason is that data analysis can never really be avoided completely, what

ever approach is employed. Thus, if the problems of data collection;

verification and analysis must be encountered regardless, it may appear

expeditious to rely on data analysis alone.

There are, however, many problems with the application of the

empirical approach, especially to situations that are as complicated as

those that comprise the educational system. It is extremely difficult to

define real variables precisely. Often surrogate variables must be used

because the real variables cannot be suitably quantified .. For example,

teaching ability can be represented by such quantifiable variables as years

of-experience and level-of-education. Even if variables can be defined, the

complexities of measurement introduce new problems. These problems involve

statistical sampling, measurement error and the choice of survey and inter

view techniques.

In addition to definitional and measurement problems, difficulties

ari"se in controlling multiple variables and long time constants or reaction

times. Within a system of many variables, the relationships between only a

few of them may be impossible to extract empirically because of the in

fluence of other uncontrolled or unquantified variables. Moreover, the

fact that educational systems have long time constants introduces complic-

ations when more than "snapshot" data analysis is required. Time series or

r
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'Ilongitudinal ll data analys;is is particularly important Hhen the objective

is to study the effects resulting from a change in the system, whether it

be an experimental change or a permanent change. Because ·of the long time

constants in education, the effects of change ar.e manifested very slowly

and the detection of the change through data analysis requires the main-

tenance of high quality data over a relatively long time period.

The second method of analyzing the system is the modelling

approach. This approach is charac.terized by some assumptions about the

structure of the system - that is, it assumes a particular form for

relationships among some of the variables. It encompasses a spectrum of

techniques ranging from structured data analysis to abstract theory.

In its most abstract form, the modelling approach offers the

power of mathematical analysis with the capability of examining a wide

range of alternatives or parameter values. The models that result from

fitting mathematical equations to empirical data also may be amenable to

mathematical analysis; but often, because of their complexity, they require

the power of computers to analyze the effects of ·vario;,s alternatives and

parameter values. It is, of course, possible to combine the abstract

model form with extensive data analysis. Indeed, the optimal balance of model

abstraction and data analysis is the goal of any model builder. This balance

depends upon many factors, including the purpose of the model, the avail-

ability of appropriate data and the characteristics of the decision-maker

as well as the analyst. A good model is characterized by ·providing

sufficient detail for the decision-maker while retaining no more complexity

than is required to portray adequately relationships within the real en-

vironment.

r
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C. Nathematical ~bdels and_ Optimization Theory

A particularly useful form of the modelling approach is one

in which the problem is formulated within the framework of control and

optimization. theory. At the heart of this framework is the mathematical

model that is a dy~amic description of the fundamental variables of the

system. For any alternative under consideration, the model determines

all the implications or outcomes over time resulting from the implementation

of that particular alternative or policy.

Once the implications of each alternative are known and the

costs have been evaluated, preferences can be assigned to the various

alternatives. In the framework of control and optimization theory, these

alternatives for resource allocation are associated with settings of the

control variables. The preferences over all possible alternatives are
\

specified by an objective function that measures the trade-off between

benefits and costs, which are defined in the model by the values of the

control variables and the state variables. The control and state variables

define, generally speaking, the inputs and outcomes of a system, respectively.

The problem of optimal resource allocation is thus the problem of choosing

feasible control variable settings that maximize .(or minimize) the objective

function.

The central dynamic behavior that must be modelled when considering

problems of resource allocation in the educational setting is the interaction

between the instructor - whether it be teacher, computer~assisted instruction

or programmed instruction - and the individual learner. The effects of the

environment (for example, the classroom) also are important. Models of these

interactions are essential in order to predict the outcomes of alternative

instructional policies. Once the cost components of the various alternatives

have been evaluated, the optimization problem may take one of three forms.

r
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If the quantity of resources is fixed, then benefits can be maximized subject

to this resource constraint. If there is a minimum level of performance to

be achieved, then the app~opri~~~ Dbjective is to minimize cost subject to.

this performance level. Finally, if perforw2nce and cost are both flexible

and if the trade-off of benefit and cost can be quantified in an objective

function, then both the optimal quantity of resources and the level of per

formance can be determined.

r

II. PREVIOUS RESEARCH

A. Overview

The applications of learning models and optimization theory to

problems of instruction fall into two categories: (1) individual learner

oriented, and (2) group of learners (classroom) oriented. In category (1)

applications, instruction is given to one learner completely independently of

other ·learners. These applications are typical of computer-assisted instruction

and programmed instruction and also include the.one-teacher/one-student situation.

Within this category, many situations can be adequately described by an app

ropriate existing model from mathematical learning theory. In such cases,

as. outlined below, the results of applying mathematical models. have been

encouraging. In other more complex situations, existing models must be

modified or new models must be developed to describe the instructor/learner

interaction.

In category (2) applications, instruction is given simultaneOUSly

to two or more learners. This characteristic is typical of classroom-oriented

instruction and also includes other forms of instruction, such as films and

mass media, where two or more learners may be receiving instruction but there is ~

no . feedback from learner to instructor. In contrast to category (1) situations,

where mathematical learning theory provides suitable models of instructor/
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learner interaction, -there/is no comparable theory for the group of learners

environment. Category (2) applications must therefore include model develop-

ment as well as mathematical anaJ.y~is.

Most applications, "nether in category (1) or in category (2),

follow a four-step procedure.

Step .one is to isolate a particular learning situation. In this

step, the learning situation is classified as category (1) or (2), the method

of instruction is defined and the material to be learned is specified.

Step two is to acquire a suitable model to describe how in-

struction affects learning. This step may be as simple as the selection of an

appropriate model from mathematical learning theory, as mentioned above, or

as difficult as the development of a new model for the particular situation.

Step three is to define an appropriate criterion for comparing

the various instruction possibilities, taking account of benefits and costs

as.determined by the model.

Step four is to perform the optimization and analyze the

characteristics of the optimal solution. These· characteristics may include

the sensitivity of the optimal solution to key variables of the model and

the comparison of its results relative to those of other solutions. In

some situations the optimization problem may be very difficult or impossible

to solve. In this case, various sub-optimal solutions may be identified

whose results represent improvements over those of previous solutions.

B. Individual Learner Setting

1. Quantitative Approach for Automated Teaching Devices

. An important application of mathematical modelling and optimiz-

ation theory was the development of a decision structure for teaching machines

by Smallwood (1962). Smallwood's goal was to produce a framework for the

r
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design of teaching machinep that would emulate the two most important

qualities of a good human tutor: (1) the ability to adjust instruction

to the advantage of the leamer, and (2) the ability to adapt instruction

based on his own experience. The decision system within this framework

must therefore make use of the leamer's response history, not only to the

benefit.of the current learner, but also for future learners.

The learning situation considered by Smallwood has three basic

elements: (1) an ordered set of concepts that are to be taught, (2) a set

of test questions for each concept to measure the learner's understanding,

and (3). an array of blocks of materi~l that may be presented to teach the

concepts. Two additional elements are required to complete the framework

for the design of a teaching machine: (4) a model with which to estimate the

probability that a learner with a particular response history will respond

with a particular answer to each question, and (5) a criterion for choosing

which block to present to a learner at any given time.

Having defined his model requirements in probabilistic terms,

Smallwood considered three modelling approaches: correlation, Bayesian

and intuition. He discarded the correlation model approach as not use-

ful in this context. Then he developed Bayesian models, based on the tech-

niques of maximum likelihood and Bayesian estimation (these models are too

complex to review here). His intuition approac9 led to a relatively simple

quantitative model based on four desired properties: representation of

question difficulty and learner ability, together with model simplicity

and experimental performance.

.'
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The model is
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be
a

1 - (I-b) (l-e)
(l-a)

b < a

b > a

r

where P is the probability of a correct response, b measures the ability of

the learner, e measures the difficulty of the question and a is an average of

the fraction of correct responses. All parameters are between zero and one.

As an objective function for determining optimal block presentation

strategies, Smallwood suggested two possibilities with variations. One was

an amount-learned criterion, which measured the difference before and after

instruction, and the other· was a learning-rate criterion, which essentially

normalized the first criterion over time. In the optimization process, these

criteria are used to choose among alternative blocks for present"ation in a

local, rather than global sense.

A simple teaching machine was constructed based on the concepts of this

l

decision structure. The experimental evidence verified that the machine distin- r

guished between learners and presented them with different combinations of blocks

of material. It also verified that different decisions were taken at different

times under similar cirClli~stances, indicating that the machine was adaptive.

2. Order of Presentation of Items from a List

The· task of learning a list of paired-associate items has practical

applications in many areas of education, notably in reading and foreign

language instruction (Atkinson, 1972). It is also a learning task for which

models of mathematical learning theory have been very successful at describing

empirical data. Is is therefore not surprising that the earliest and most en-

couraging results of the application of optimization techniques have come in

this area. Although the learning models employed in these studies are extremely

y,
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simple) the results are valuable for three reasons:
, . (1) the applications

are practical, (2) these results lead to further critical assessment of the

basic' learning models, and (3) the general analytical procedure is trans fer-

able to more complex situations.

The application of mathematical models and optimization theory to

the problem of presenting items from a list can be illustrated by three

examples from the literature. The first is a short paper by Crothers (1965)

that derives an optimal order of item presentation when two modes of

presentation are available. The second is an in-depth study by Karush and

Dear (1966) of a s'imple learning model that leads to an important decomposition

result. The third example is a paper by Atkinson and Paulson (1972) that

derives optimal presentational strategies from three different learning

models and presents SOme experimental results. These three papers are

described briefly.

In the Crothers paper there are two modes of presentation of

the items from the list; the total number of presentations using each'mode

is fixed, but the order of presentation is to be chosen. Since the order

of presentation does not affect the cost of the instruction, the objective

is simply to maximize the expected proportion of correct items on a test

after all presentations have been made.

Two models of the learning process are studied in this paper.

The random trial increment model (which is described in detail later in this

section) predicts that the expected proportion of correct 'items is independ-

ent of the order of presentation of items; therefore, any order is an optimal

solution. The second learning model, the long-short learning and retention

model, predicts different results from different, presentation orders, and so

a meaningful application of optimization exists. This model depicts the learner



as being in one of three states: a learned state, a partial learning state
;

and an unlearned state. The learner responds with a correct respose with

probability 1, P or g, respectively, depending upon his state of learning,

and his transition from state to state is defined by the probabilistic

transition matrix

100

a 1-a 0

b c 1-b-c

This model simplifies into the two-element model by setting b equal to zero

and further into the all-or-none model by dropping the partial learning state.

This model is assumed to describe the learning process for each mode of

presentation, so that the response probabilities for each state are identical

for all modes but the parameters a, band c are different for each mode.

For a discussion of these models, see Atkinson, Bower and Crothers (1965).

The result of the optimization step in this application is

contained in two theorems. The first theorem states that the ranking of

presentation schedules based on the expected proportion of correct responses

(which is the defined objective) is identical to the ranking based on the

probability of occupying the learned state. The second theorem states that

the ranking of two presentation schedules is preserved if the schedules are

either prefixed or suffixed by identical strings of presentations. These

theorems are sufficient to conclude that moving one presentation mode to

the right of another in a schedule always has the same (qualitative) effect

on the terminal proportion correct and, hence, that optimal presentation

schedules have all presentations of one mode together.

In the learning situation described by Karush and Dear,there are

r,
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n items of equal difficulty to be learned, and the problem is to determine

'which item out of the n to present for study at any given time. The

strategy for choosing items for presentation is to take into account the

learner's response history up to the current time. The all-or-none model

is used to describe the learning process, and it is assumed that the single

model parameter has the same value for each item.

In order to formulate an objective function, it is assumed that

all presentational strategies have the same cost'so that 'the objective can

be defined in terms of the state of learning at the termination of the

strategy. Assuming that all items are weighted equally, an expected loss

function is, defined in terms of the probabilities Pk that at the terminal

node exactly k items are still unlearned. The expected loss for a particular

terminal node is given by

where b
k

is the value (weight) of the loss if k items are still unlearned.

The overall expected loss, which is to be minimized, is therefore

..

r
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h

where q(h) is the probability of occupying terminal node h and the first

summation is over all possible terminal nodes. For the particular values

bk~ 1, the objective function above is equivalent to the maximization of the

probability that all items are learned; and for bk = k it is equivalent

to the maximization of the expected sum of the probabilities of being in the

learned state for each item. All of the results that are derived in the paper are

r
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not dependent on the values for the bk~ and so they are quite general.

The optimization is accomplished using the recursive formulation

of dynamic programming. The pri~~ipal result is that, for arbitrary initial

probabilities of being in the learned state for ·each item, an optimal

strategy is to present the item for which the current probability of

learning is the least .. The most practical application of the results is for

the case where these initial probabilities are zero, in which case the optimal

strategy can be implemented simply by·maintaining counts of correct and in-

correct responses on each item. Also in this case, the optimal strategy

is independent of both model parameters: the probability of transition

and the probability of guessing.

Atkinson and Paulson report empirical results employing the all-or-

none based optimal strategy derived by Karush and Dear and compared it with

strategies based on other learning models. In one experiment, the all-or-none-

based strategy is compared with the optimal strategy derived from the linear

model. In the derivation of this latter optimal strategy, it is assumed that

the model parameters are identical for all items. For the objfctive of

maximizing the expected number of correct responses at the termination of

the experiment, it is shown·that all items should be presented the same

number of times. Consequently, a random-order strategy is employed in which

all items are presented once, then randomly reordered for the next presentation

and so on. The experimental results show that during the learning experience

the all-or-none-based strategy produces a lower proportion of correct responses

than the linear-based (random) strategy, but that on two separate post-

experiment tests, the all-or-none-based strategy yields a higher proportion

of correct responses. From these results it can be concluded that in this

learning situation a~d for the stated objective the all-or-none model

described the learning process more accurately than the linear model.

r
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In .?~nother expe:r;irnent) the all-or-none-bnsed strategy and the

linear-based strategy are compared with a strategy based on the random

trial increment CRTI) model. The RTI model is a compromise between the

all-or-none and the linear models. Defined in te.DmS of the probability

P of an error response, at trial n this probability changes from pen) to

pen + 1) according to

__ {. pen) with probability 1 - e
pen + 1)

ap(n) with probability c

where a is a parameter between zero and one and c is a parameter that measures

the probability that an "increment" of learning takes place on any trial.

This model reduces to the all-or-none model if a = 0 or to the ·linear

model if c = 1.

This application of the RTI model differs in two ways from the

earlier studies outlined above. First, because of the complexity of the

optimization problem, only an approximation to the optimal strategy is used.

The items to be presented at any particular session are chosen to maximize

the gain on that session only, rather than to analyze all possible future

occurrences in the learning encounter. Second, the parameters of the model

are not assumed to be the same for all times. These parameters are estimated

in a sequential manner, as described in the Atkinson and Paulson paper; as

the experiment progresses and more data become available regarding the

relative difficulty of learning each item, refined estimates of the parameter

values are calculated.

The resul ts of the experiment show that. the RTI-based strategy

produces a higher proportion of correct responses on post-tests than either

the all-or-none -based or linear-based strategies. The favorable results

are due partly to the more complex model and partly to the parameter

r
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differences for each item. , This conclusion is supported by the fact that

the relative performance of the RTI-based strategy improves with successive

groups of learners as better esti~ates of the item-related parameters are

calculated.

3. Interrelated Learning Material

In many learning environments, the amount of material that has

been mastered in one area of study affects the learning rate in another

distinct but related area - for example, the curriculum subjects of

mathematics and engineering. In situations such as this, the material

in two related areas may be ,equally important, and the problem is to allocate

instructional resources in such a way that the maximum amount' is learned

in both areas. In other situations, the ma~eria1 in one area may be a

prerequisite for learning in another rather than a goal in itself. Here,

even though the objective may be to maximize, the amount of material learned

in just one area, it may be advantageous in the long run to allocate some

instructional resources to the related area. This problem of allocating

instructional effort to interrelated areas of learning has been studied

by Chant and Atkinson (1973). In this application, a mathematical model of

the learning process did not exist, and so one had to be developed before

optimization theory could be applied.

The learning experience from which the model was developed was

a computer-assisted instructional program for teaching reading (Atkinson,

1974). This program involved two basic interrelated areas (called strands)

of reading, one devoted to instruction in sight-word identification and the

other to instruction in phonics. It has been observed that the instantaneous

..
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learning rate on one strand depended on the studentTs position on the

other strand.

In the development of the learning model, it was assumed that

the interdependence of the t,,,o ,;tr::mds was such that the instantaneous

learning rate on either strand is a function of· the difference in achieve-

ment levels on both strands. Typical learning rate characteristics are

shown in Figure 1. If the achievement levels on the two strands at time

t are represented by xl(tJ and x
2

(tJ, then the instantaneous learning

rates are the derivatives of Xl and x
2

with respect to time; these rates

are denoted as Xl and x2" By defining u(tJ as the relative amount of

instructional effort allo·cated to strand one, the model of learning can

be expressed in differential equation form as

X1 (tJ =u(tJfl(x/tJ - x2 (t)),.

x
2

(tJ = [1 - u(tJ] f
2

(x
l
(tJ- x

2
(tJJ,

where f l and f 2 are the learning rate characteristic functions depicted

in Figure 1. In this formulation of the problem, the total time, T, of

the learning encounter is fixed and the objective is 'to maximize a weighted

sum of the achievement levels on the two strands at the termination of

the encounter. The objective is therefore to maximize

where '°
1

and 02 are given non-negative weights. This maximization is

with respect to u subject to the constraint 0 < u(t) < 1 for all t such

that·O < t < T.

The optimization is carried out, not for the nonlinear learning

INSE~T

1=1(, 1
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rate characteristic functions of Figure 1, but for linearized approximations.
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to them. From the form of' the optimal solutions, it is clear that the

,analysis applies equally well to the nonlinear functions. The optimization

is performed by means of the P~.:-ttryagin Naximum Principle. It is shown

that the optimal solution is characterized by a '''turnpike'' path in the

X
1

X 2 plane. On the turnpike path the difference xl - x 2 between the

achievements levels on the two strands remains constant. Optimal tra-

jectories are such that initially all of the instructional effort is

allocated to one of the strands until the turnpike path is reached.

Then the instructional effort is apportioned so as to maintain a constant

difference between strands - that is, so as to remain on the turnpike

path. Near the end of the learning encounter,' the instructional effort

is again allocated to just one strand, depending on the relative values

of the weights cl and c2 of the objective function. Figure 2 shows the

turnpike path and typical optimal trajectories starting from two different

initial points and terminating according to two different values of

objective function weights.

It is also shown that of all the stable paths, the turnpike

path is the one on which the average learning rate is maximized. A

stable path is the steady state path that is approached if the relative

allocation of instructional effort between strands is held constant.

It can be sho,;n that stable paths are such that the difference between

achievement levels on the two strands is constant.

,.
r
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c. Group of Learners Sett~ng

1. A Descriptive Model StYucture

Carroll" (1965) developed a structure for describing learning

in the school or classroom setting. This model involves five variables;

four are defined in a quantitative sense, but one is difficult to

quantify. The relationships among these variables are not precisely

defined, but the potential interactions are identified and described.

The five variables are aptitude, perseverance, ability to

com~rehend instruction, quality of instruction and opportunity to learn.

The aptitude variable is defined as a reference learning rate for a

learner for a given task. Aptitude is to be measured by the reciprocal

of the time required to master the given task to a given criterion under

optimal learning conditions .. The perseverance variable is defined by

the length of time that the learner is willing to spend learning the

task involved. Carroll suggests that this variable will change signi-

ficantly over time and that it can be affected by external factors.

The variable ability-to-comprehend-instruction is assc@ed to be primarily

represented by verbal intelligence, and so measures of verbal intelligence

are considered adequate for quantification purposes. It is suggested

that this variable will demonstrate less rapid changes over time than,

for example, perseverance and that it is determined to a large extent

by the individual's early life environment. Carroll's fourth variable,

quality of instruction, is defined imprecisely as the degree to which

content and method of instruction are structured so that material is

easily learned. There is an important joint relationship between quality

..
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of instruction and ability,to comprehend inst,ruction on the learning

rate. This relationship is such that low quality instruction more

severely hinders the learner with limited ability to comprehend instruction

that the learner with greater ability. The final variable, opportunity

to learn, is defined as the time actually allowed for learning in the

particular situation. It is recognized that in the classroom not all

learners have a continuous opportunity to learn since the class must

learn together.

Without more explicit elaboration of the relationships among

these variables, and in some cases more precise definitions, this model

cannot be used in a quantitative sense. It has been very useful, never-

theless, to help identify the salient features of the learning process

in the classroom.

2. Normative Models

Restle (1964) made an early contribution to the application

of learning models and optimization theory to the classroom or group of

learners setting. He .has studied two situations, each of which involves

a group of identical learners. In the first situation, the problem is

~o determine the optimal class size for a large number of identical

learners. The objective function is expressed in cost terms, including

both instructor and· learner costs, and the amount to be learned is fixed.

In the second situation, the problem is to determine the optimal pace of

instruction for a curriculum consisting of a sequence of identical items

in which further learning progress for any learner is terminated if an item is

•

r

1:

not mastered. The pace of instruction is determined by the amount of

time allocated to each item, assuming equal time for each item and a fixed
,.
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total ~mount· of time. Th~ objective is to me~imize the expected number-

of items learned by the group or, equivalently, by any learner of the

group.

The continuous time all-or-none model is used to describe the

learning process in both situations. This version of the all-or-none

model is essentially the same as the discrete (learning trial) version

introduced earlier and is defined by the cumulative distribution function

-AtF(t) =1 - e

which gives the probability that learning on an item takes place before

time t" where A is the reciprocal of the mean time until learning occurs.

For the optimal class size situation, Restle chooses to minimize

the expected total (weighted) time cost of both instructors and learners,

subject to the constraint that instruction be given until all learners

have mastered the item. Based on the model, ~he expected time Urn) for

a group of n learners to learn an item is given by

r

M(n)

n

=1 '" 1>: L.. k
k = 1

r

Letting r represent the ratio of the value of instructor time to the

value of learner time leads to the expression

NU(n) ~ rNU(n)/n

for expected total time cost in learner time units where N is the total

number of learners and n the size of each sub-group (assuming that N is

large enough that the integrality errOr is negligible), Using a continuous

approximation for U(n), this optimization is easily performed to yield the

.;
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relationship ShOWll in Figure 3 b£twcen optimal class size and r~ the

relative value of instructor and learner time.

For the situation involving optimal pace of instruction,

the total amount of time (T) is allocated equally to each item in order

to maximize the expected number of items mastered by a learner. If t

units are allocated to each· unit, then, based on the model, the mean

number of items learned is

Rather than calculate the maxL~um of this expression with respect to t,

Restle shows the function graphically for various values of the basic

parameter TA. With this learning model, TA represents the expected

number of items learned for an individual learner who is allowed to

proceed to the next item as soon as he has mastered the current item.

On the basis of the graphs, Restle concludes that for a short course

where TA =3, the optimal pace for a group is instruction on 2 items.

INSERT

F\~ 3

r

For a medium-le~gth COurse of TA = 12, the group should receive instruction,

·on 4 items; and for a long course with TA =144, the group takes 30 items.

Thus, for long sequences of items in which a learner is blocked if he

misses only one item, the group pace must be very slow compared to the

tutored pace.

In a paper by Chant and Luenberger (1973), a mathematical

theory of instruction has been developed that describes certain aspects

of the classroom environment. This model is developed in two stages;

the first models the instructor/learner interaction for an individual

r
•
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learner situation, and the' second extends this model to a group of

learners situation. In the first stage, the principal problem under

investigation is the optimal matching of instruction to the character-

istics of the learner. In the second stage, the analysis is concerned

with the problem of instruction pacing, which is an important question

in the classroom situation.

Motivated by a differential equation formulation of the

learning curve by Thurstone (1930), Chant and Luenberger assume that

the relationship between learning rate, instructional input and state

of the "learner can be represented by

pet) = u(t)g(p(t))

where pet) is the achievement level of the 1earner at time t relative to

total learning. In this equation p(t) represents learning rate, u( t) is

an instructional input variable and g, the craraateristic learning

function, describes how learning rate depends on the achievement level

for a particular learner in a particular situation. Restrictions are

.placed on the function g, so that for a constant instructional input

u(t) the learning curve has the familiar S-shape.

The instructional input variable u(t) is thought of as a

measure of the intensity of instYUction in the sense that the larger

the value of u(t), the greater the learning rate and the cost of in-

struction. T~e relationship between instruction cost and. learning

rate (for a given achievement level) forms the basis of the precise

definition of u(t) such that the total cost of instruction for

t = 0 to t =T is

r
~
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If (u(t))dt
o

where ~(u(t)) defines the rate of expenditure of instructional resources

for instruction of intensity u(t), 0 ~ t ~T,

In formulating an objective function, both the learner's

achievement level and the cost of the learning encounter are considered.

The learner's achievement level at the end of the encounter is represented

by p(T) and the cost of the learner's time by bT. The objective function

is defined as the net benefits;' that is

p(T) - bT - J:~(U(t))dt,

The relative importance of achievement level'and instruction cost is assumed

to be included in the loss function ~~

The optimization problem is to choose the instructional input

u(t) for 0 ~ t ~T and the duration T of the learning encounter so as

to maximize the above objective function. It is shown in the paper that

the optimal instructional input function u is constant throughout the

learning encounter and is determined by the solution of

uQ. ' (u) - Q. (u) - b = O.

The optimal value of T is given by the larger of the two values that

safisfy

g(p(T)) 0: ~I(U),

The result that the optimal instructional input is constant throughout

the learning encounter is quite general in that it does not depend on

,
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the particular characteristic learning function or the particular loss

function.

In the second stage of their development of a mathematical

theory of instruction, Chant and Luenberger first define a learner

aptitude parameter that is used to characterize the diverse nature of

a nonhomogeneous group of learners. Aptitude is defined in a relative

sense by comparing the learning times of two learners under identical

situations. One learner is said to have an aptitude twice as great

as another if he learns the same amount in half the time. This defin-

ition is similar to Carroll's mentioned above. Using this concept of

aptitude, the characteristic learning function g is redefined such that

P(t) =u (t)ag (p (t)).

The above optimization is unchanged with this modification, so that the

optimal instructional 'input is still constant over time.

The development of the group learning model for the purpose

of determining the optimal pace begins with an analysis of the relation-

,ship between pace and aptitude for an individual' learner. To model the

effect of instruction pacing, a body of sequential learning material is

divided into a sequence of blocks. The basic instructor/learner model

outlined above is used to describe the learning process on each block.

The sequential nature of the material is captured by specifying how the

learner's performance on one block depends on his achievement on pre-

ceding blocks. This interblock dependence is defined by the block inter-

. I
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action function h, ,which relates the initial state on a block to the

final achievement level on the preceding block. For analytical purposes,

an infinite sequence of similar blocks is considered., Blocks are

similar if the learning performance for them can be described with

identical characteristic learning functions and block interaction

functions. The infinite sequence is considered in order to eliminate

transient effects and to concentrate on steady state relationships.

An infinite sequence of similar blocks is illustrated in Figure 4.

The steady state learning behavior of a learner on an infinite

sequence of similar blocks is characterized by allocating an equal amount

of instructional time to each block and determining the achievement level

that the learner approaches on each block as the number of blocks in-

creases towards infinity. The pace of instruction is defined as the amount

of time r that is spent on each block. In the limit, the initial state

on each block is the same, the final achievement level on each block is

•

r
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the same and the pace is such that the learner progresses from this

initial state to this final level. This steady state condition is il1-

ustrated in Figure 5.

For an individual learner with a particular S-shaped learning

curve and block interaction function, the correspondence between pacing r

and the steady state final achievement level is defined as the steady

state response function p. With suitable assumptions, it can be shown
s

that ps(r) is zero for T < r , where, is defined as the critical pace,
c c

that Ps is concave and increasing for r > 'c and has infinite slope at

..
r

r
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For determining the optimal pace of instruction, the objective

function of steady state achievement level on a block per unit of time on

the block is defined. This ratio, called gain and denoted y, is given by

y(-r) = p (T)je.. s

The maximization of gain implies that

This relationship is illustrated in Figure 6.

The steady state pesponse pefepence function p is defined as
p .

the function p but for a learner with unity aptitude. In view of the
s

definition ot aptitude as the reciprocal of learning time, the response

of a learner with aptitude a for pacing T is simply p (aT).
• p

A nonhomogeneous group of learners is characterized by the

aptitudes of the learners in the group with the assumption that all the

learners have identical characteristic learning functions and block

interaction functions. The objective function for the group, called

gT'oup gain and denoted r, is defined by

: I

r
INSE£.T '
1= I (, Co

r

...

r (T)

N

=.(1/T) L:p (aiT)
i=l p

i
t

iwhere the N learners of the group have aptitudes a , i = 1 to N. The

optimal group pace is defined by the maximization of this group gain.

It is shown that for widely diverse groups, the optimal pace is such

that the lower aptitude part of the group has a zero steady state

response; that. is, these learners are dropped from the group because

of the fast pace. In addition, for homogeneous groups, the optimal

group. pace is the same as the optimal individual learner pace for that

aptitude.
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III. AREAS OF FURTHER RESEARCH

This concluding section is intended to highlight a few areas

in the field of application of learning models to problems of instruction

that require further work. In addition, suggestions are given as to the

research directions that may be most effective for making these appli-

cations more practical.

A. Problems of Measurement

Problems of measurement exist when we cannot quantify exactly

what we want quantified. In order to verify a quantitative model

empirically or to apply it in real world situations, the variables of

the °model must be measurable. The measurement process can be complicated

at either of two levels: the variables of the model may not be satis-

factorily quantifiable or, if quantifiable, there may be estimation

problems - that is, there may be no satisfactory method of determining

a unique value for the defined variable.

To illustrate these two kinds of problems, consider a

situation where it is required to have a measurement on the state of

a learner with respect to some set of material. At the outset, the

first kind of problem is evident since a precise definition of the

variable concerned is not available. A satisfactory solution to this

problem is perhaps to define a surrogate variable that represents the

real variable. In this situation, a proportional measure of the learner's

knowledge of the material as indicated by his score on some test may be

t
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an adequate surrogate vari~ble. The second kind of problem has to do

with the variability of tests themselves and the learner's performance

on them. Different tests that are intended to measure equivalently

the set of material involved·will yield different results and the results

on a particular test are affected by the testing environment, by guessing

and by numerous other factors.

In experimental situations, these problems can be alleviated

to a certain extent by careful design. In these situations, the set of

material that is to be learned is chosen so that it may be described

precisely and simply - for example, in paired-associate learning experi-

ments. This simplifies both the knowledge definition problem as well

as the estimation problem. In real applicacions, however, these problems

can be severe.

These.problems of measurement can best be attacked during

the formulation and modelling phases of the analysis of problems of in-

struction. It is of limited use to have a model that cannot be investi-

gated experimentally. It is of no practical value to have an experi-

mentally verified instructional technique that requires such extensive

measurement and data analysis that implementation is not cost effective.

These measurement problems must be considered ·during the overall analysis.

In some cases, they may be alleviated at implementation by having an

estimation·model incorporated as part of the technique to be applied.

B. Individual Learner Setting

Optimizing the performance of individual learners is an area

that has tremendous potential for impact, even though it has already

..
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received some a~tention. The application of mathematical models and

optimization theory to learning problems in computer-aided instruction

is likely to prove increasingly useful in the future. Complex models

of learning must be developed, and they should be designed for implemen-

tat ion in particular situations. These models have to be complex so as

to describe adequately the particular learning phenomena in the situation;

. but such complexity is manageable provided that the models can be

adapted for computer implementation. What is needed, then, is a clear

understanding of the ultimate application of the model so that its

development is guided by the requirements of implementation.

C. Classroom Setting

Developments in the classroom setting are much farther from

implementation than those for individual learner setting. For the

classroom, general models must be developed that cover broad categories

of learning and instruction. Existing models must be extended and new

models must be developed to account for group learning phenomena that

.so far have been ignored or not even identified. To accomplish this,

theoretical and empirical research must complement and supplement each

other. Similarly, work by researchers in education and psychology must

be continually synthesized. One promising avenue to pursue in this

respect would be to engage in model-directed data analysis; that is,

either by using an existing model or by developing a model appropriate

for the situation to be investigated, data gathering experLments and

analyses should be deSigned and carried out to verify or refute these

.f
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models. In this approach,' the model directs the empirical research

by imposing a structure on the system or by proposing relationships

or conclusions to be tested.. _l~'. this way, the complex relationships

that comprise an educational system can be more readily isolated, and

hence more easily understood.
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