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A SINGLE STAGE FLUX-CORRECTED TRANSPORT

ALGORITHM FOR HIGH-ORDER FINITE-VOLUME METHODS

CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

Abstract. We present a new limiter method for solving the advection equation
using a high-order, finite-volume discretization. The limiter is based on the flux-
corrected transport algorithm. We modify the classical algorithm by introducing
a new computation for solution bounds at smooth extrema, as well as improving
the pre-constraint on the high-order fluxes. We compute the high-order fluxes via a
method of lines approach with fourth order Runge-Kutta as the time integrator. For
computing low-order fluxes, we select the corner transport upwind method due to its
improved stability over donor-cell upwind. Several spatial differencing schemes are
investigated for the high-order flux computation, including centered difference and
upwind schemes. We show that the upwind schemes perform well on account of the
dissipation of high wavenumber components. The new limiter method retains high-
order accuracy for smooth solutions and accurately captures fronts in discontinuous
solutions. Further, we need only apply the limiter once per complete time step.

1. Introduction

We wish to solve hyperbolic conservation laws of the form

∂U

∂t
+∇ · (~F (U)) = 0 (1)

where U represents a vector of conserved values and ~F (U), [~F = (F 1 . . . FD)] are
corresponding fluxes. The discrete solution of these equations at a given time tn+1

and spatial location i is given by:

〈U〉n+1
i = 〈U〉ni −

∆t

∆x

∑

d

[

(F d)
n+ 1

2

i+ 1

2
ed

− (F d)
n+ 1

2

i− 1

2
ed

]

(2)

1
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where 〈U〉n and (F d)n+
1

2 approximate the average of U over a rectangular Cartesian
control volumes indexed by i at time step n and the average of the fluxes in time
over the respective faces, respectively.

Methods for accurately computing these fluxes (F d)n+
1

2 to obtain high-order accuracy
for smooth solutions are well-understood. However, in the presence of discontinuities
or underresolved gradients, such methods generate oscillatory errors, and limiters are
typically introduced to selectively introduce dissipation that will damp these errors.
For high-order methods based on the method of lines, the typical approach to limiters
has been to apply a limiter independently at every flux evaluation in a multi-stage
high-order time integration method, e.g. Runge-Kutta methods. However, such an
approach is problematic, particularly for limiters that are intended to preserve high-
order accuracy at smooth extrema. Such limiters typically make use of second- or
higher-order spatial derivative information at extrema to determine whether the so-
lution is smooth enough to not require limiting. This leads to the use of a larger
stencil (for the limiter) at every stage of the time integration than that of the sim-
pler high-order spatial discretization of the fluxes without limiting, thus increasing
communication costs in a domain-decomposed parallel algorithm. In addition, only
the linear combination of Runge-Kutta stage computations is guaranteed to produce
a high-order accurate solution; the individual stage fluxes and solutions are typically
lower-order accurate in time. In adaptive mesh refinement methods with refinement
in time, this feature complicates the design of the time interpolation step for comput-
ing ghost cell values at refinement boundaries [4]. Finally, many of the stage-by-stage
limiting schemes are geometric in nature, such that the effective fully limited method
corresponds to donor-cell spatial differencing for the fluxes [7, 10]. This typically has a
more restrictive CFL time step stability condition than the high-order methods.

The starting point for addressing these problems is to use a version of the classic
Flux-Corrected Transport (FCT) algorithms [1, 9, 13]. These methods introduce dis-
sipation through a nonlinear hybridization of a high-order flux with a dissipative,
low-order flux. The FCT algorithm is particularly advantageous because it has a
straightforward multi-dimensional expression [13] and has been used extensively with
finite-volume discretizations. We will look at a family of high-order methods based
on centered- and one-point-upwinded linear finite volume interpolation, following the
ideas in [4], combined with the method of lines with fourth-order Runge-Kutta time
discretization as the method for time discretization. All four intermediate stages of
this high-order method will be computed without any limiting applied, in order to
produce a high-order flux to go into the FCT hybridization. The low-order method
will be the corner-transport upwind (CTU) method [2, 11]. The method for com-
puting the hybridization coefficient will be based on the approach used in [4, 5] for
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interpolation-based limiting, modified to fit into the formalism in [13]. This combina-
tion of methods addresses the issues alluded to above. The CFL stability condition for
the CTU method is independent of the direction of propagation of the waves relative
to the coordinate directions and of the dimensionality of the problem, and is typically
much less restrictive than the CFL condition for donor-cell / method-of-lines. The
limiter is applied only once – at the end of the time step – thus minimizing the impact
on the communications cost.

For this study, we restrict our attention to the equation of scalar advection equation.
This allows us to explore design decisions in a simple setting, but one that is still
relatively unforgiving, and important for real applications (transport of scalars in
the atmosphere, Vlasov equations in phase space). The extension to systems will be
discussed in future work. One question we will not address here is that of positivity
preservation. The reason is that, in more than one dimension for any linear first-
order method that is not donor cell, it is possible to construct a discretely divergence-
free advection velocity and non-negative initial data such that the solution becomes
negative after one time step. Our preferred approach is to post-process the solution
at the end of each time step by redistributing negative increments to nearby cells
in a way that would lead to an overall non-negative solution, while still conserving
[8, 12].

1.1. Advection Equation. We will consider the linear advection equation in the
following form.

∂q

∂t
+∇ · (q~u) = 0 (3)

∇ · ~u = 0 (4)

on a D-dimensional square domain Ω = [0, 1]D. In this case ~u is an advective velocity
and q is a scalar field. The partial differential equation above can also be written
as:

dq

dt
= 0

d~x

dt
= ~u (5)

Provided that an initial condition is specified (q0 = q(~x (t0), t0)) this system of ordi-
nary differential equations yields a unique solution for any q(~x (t), t) and ~x (t). The
solution arrived at by integrating the equations is that q is constant along characteris-
tic curves defined by ~x (t). Even though there is a simple solution to this equation, the
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analysis is still quite useful since there is no diffusion or entropy condition built-in
to the equation: any numerical errors introduced are propagated through the do-
main.

1.2. Finite-Volume Discretization. Our solution approach is to use a finite-
volume method to discretize the physical domain into a union of control volumes Vi

(Eq. 6)

Vi = [ih, (i + e)h] , i ∈ Z
D , e = (1, 1, ..., 1) (6)

where h is the grid spacing (∆x) and i is a D-dimensional index denoting location.
Values of the conserved scalar quantity q are stored as cell-averages 〈q〉 over each cell
Vi (Eq. 7). The fluxes F d = qud are stored as averages 〈F d〉i± 1

2
ed over the surface

faces A±

d of each cell (Eq. 8).

〈q〉i(t) =
1

hD

∫

Vi

q(x , t)dx (7)

〈F d〉i± 1

2
ed(t) =

1

hD−1

∫

A±

d

F d(x , t) dx (8)

Applying the finite-volume discretization (Eq. 6) to Eq. 3 yields a semi-discrete sys-
tem of ordinary differential equations (ODE) in time:

d〈q〉i
dt

= −
1

hD

∫

Vi

(∇ · (~F ))dx (9)

= −
1

h

∑

d

[〈F d〉i+ 1

2
ed − 〈F d〉i− 1

2
ed ] (10)

where Eq. 10 is the result of applying the divergence theorem to Eq. 9. The integra-
tion of the above system with respect to time from tn to tn+1 produces the solution
given below:
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〈q〉n+1
i = 〈q〉ni −

∆t

h

∑

d

[

〈F d〉
n+ 1

2

i+ 1

2
ed

− 〈F d〉
n+ 1

2

i− 1

2
ed

]

(11)

〈F d〉
n+ 1

2

i± 1

2
ed

=
1

∆t

∫ tn+∆t

tn
〈F d〉i± 1

2
ed(t)dt (12)

The resulting challenge is to accurately compute 〈F d〉
n+ 1

2

i± 1

2
ed
. It is important to note

that no approximations have been made at this point: Eq. 11 - Eq. 12 are exact rela-
tionships. However, to obtain a full discrete approximation, we need quadrature rules
for the surface fluxes in Eq. 10 and for the time-averaged fluxes in Eq. 12. The quad-
rature rules for computing these fluxes are defined following ideas from [4]. In that
work, the high-order quadratures were computed using a method of lines approach.
The surface fluxes were computed using a high-order centered difference method and
the temporal integration was computed using the classic fourth-order Runge-Kutta
(RK4) method. We retained the use of RK4 in this study and investigated several
high-order methods for computing the surface fluxes.

1.3. Hybridization. Returning to the flux description in Eq. 12, we may now define
the hybridization

〈F d〉
n+ 1

2

i+ 1

2
ed

= (ηi+ 1

2
ed)〈F d

H〉i+ 1

2
ed + (1− ηi+ 1

2
ed)〈F d

L〉i+ 1

2
ed (13)

where the subscripts H and L refer to the high-order and low-order fluxes, and ηi+ 1

2
ed

is the hybridization coefficient.

In the following sections of the paper we will describe the design choices and pro-
cedures for computing the high-order flux, the low-order flux, and the hybridization
coefficient.

2. High-Order Flux Computation

We compute the high-order fluxes using the method of lines. Two schemes must be
chosen: a scheme for integrating the solution in time and a scheme for computing
the spatial derivatives. High-order accuracy requires that both schemes be high-order
accurate.
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2.1. High-Order Temporal Integration Scheme. We use the RK4 scheme to
advance the solution forward in time. Returning to the system of ODE (Eq. 9):

d〈q〉

dt
= −D · 〈~F 〉(t) (14)

= −
1

h

∑

d

〈F d〉i+ 1

2
ed − 〈F d〉i− 1

2
ed

we want to integrate the system from tn to tn+1. RK4 is a fourth-order integration
scheme that consists of computing a linear combination of stage update variables ks.
The updates are defined below:

〈q〉0 = 〈q〉(tn) k1 = −D · 〈~F (〈q〉0)〉∆t (15)

〈q〉1 = 〈q〉0 +
k1
2

k2 = −D · 〈~F (〈q〉1)〉∆t (16)

〈q〉2 = 〈q〉0 +
k2
2

k3 = −D · 〈~F (〈q〉2)〉∆t (17)

〈q〉3 = 〈q〉0 + k3 k4 = −D · 〈~F (〈q〉3)〉∆t (18)

Each update variable ks requires computing stage fluxes 〈F d〉s
i± 1

2
ed

= 〈qud〉s
i± 1

2
ed
. The

stage fluxes are functions of the stage values 〈q〉si and 〈ud〉si alone and the procedure
for computing the fluxes will be described in the next section.

To perform the RK4 integration:

〈q〉(tn +∆t) = 〈q〉(tn) +
1

6
(k1 + 2k2 + 2k3 + k4) (19)

Returning to the conservation notation, this RK4 integration can be described by

〈q〉n+1
i = 〈q〉ni −

∆t

h

D
∑

d=1

[〈F d
H〉i+ 1

2
ed − 〈F d

H〉i− 1

2
ed] (20)

〈F d
H〉i± 1

2
ed =

1

6

[

〈F d〉
(0)

i± 1

2
ed

+ 2〈F d〉
(1)

i± 1

2
ed

+ 2〈F d〉
(2)

i± 1

2
ed

+ 〈F d〉
(3)

i± 1

2
ed

]

(21)
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Figure 1. Normalized phase error and dissipation for the high-order methods (σ = 0.8)

2.2. High-Order Spatial Difference Schemes. We use high-order finite-difference
methods to approximate the surface fluxes associated with the spatial derivatives. The
fluxes 〈qud〉i± 1

2
ed for the spatial derivatives are functions only of the cell-averaged 〈q〉i

and 〈ud〉i at any time. Several methods were explored in this study for computing
〈q〉i± 1

2
ed, including high-order centered difference schemes and upwind schemes. The

advantage of the upwind methods is that they have greater diffusion especially in
regimes where the phase error begins to rise (Figure 1). The upwind methods only
require a small additional computation and the stability between similar order cen-
tered difference and upwind methods is almost identical (Table 1).

The interpolation formulae corresponding to the spatial differencing schemes used are
presented below. For compactness, the following notation will be used:

〈q〉n
i+ 1

2
ed =

S
∑

s=−S

as〈q〉
n
i+sed (22)

where S is the width of the stencil and as are the coefficients. The odd ordered
methods use the full range of coefficients, whereas the even ordered methods have no
coefficient at s = −S.

Fourth Order Centered Difference (S = 2)

{as : s = −S + 1, . . . , S} =
1

12
{−1, 7, 7,−1} (23)



8 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

Fifth Order Upwind (S = 2)

{as : s = −S, . . . , S} =
1

60
{2,−13, 47, 27,−3} (24)

Sixth Order Centered Difference (S = 3)

{as : s = −S + 1, . . . , S} =
1

60
{1,−8, 37, 37,−8, 1} (25)

Seventh Order Upwind (S = 3)

{as : s = −S, . . . , S} =
1

420
{−3, 25,−101, 319, 214,−38, 4} (26)

Ninth Order Upwind (S = 4)

{as : s = −S, . . . , S} =
1

2520
{4,−41, 199,−641, 1879, 1375,−305, 55,−5} (27)

2.3. Product Rule. To complete the flux computation, we must compute the av-
erage of the product of the scalar variable and the velocity (〈qud〉i+ 1

2
ed). The 2D

product rules for second, fourth, and sixth-order accuracy are:

〈qud〉i+ 1

2
ed =〈q〉i+ 1

2
ed〈ud〉i+ 1

2
ed +O(h2) (28)

〈qud〉i+ 1

2
ed =〈q〉i+ 1

2
ed〈ud〉i+ 1

2
ed +

h2

12

∑

d′ != d

∂q

∂xd′

∂ud

∂xd′
+O(h4) (29)

〈qud〉i+ 1

2
ed =〈q〉i+ 1

2
ed〈ud〉i+ 1

2
ed +

h2

12

∑

d′ != d

(

∂q

∂xd′

∂ud

∂xd′

)

(30)

+
h4

1440

∑

d′ != d

(

3
∂3q

∂x3
d′

∂ud

∂xd′
+ 3

∂3ud

∂x3
d′

∂q

∂xd′
+ 2

∂2ud

∂x2
d′

∂2q

∂x2
d′

)

+O(h6)

The possible sources of error in the product formulae above are computing the aver-
ages 〈q〉i+ 1

2
ed, 〈ud〉i+ 1

2
ed, and computing the partial derivative sums. We have already

discussed several methods and their accuracy for computing 〈q〉i+ 1

2
ed. The velocity

fields are analytic for advection, so 〈ud〉i+ 1

2
ed introduces no error. The derivative

terms in the summations above were computed exclusively using centered difference
approximations of appropriate accuracy. For example, the derivatives in the fourth-
order accurate product formula were computed using a second-order centered differ-
ence. The derivatives in the sixth-order formula were computed to fourth-order (for
the term multiplied by h2) and to second-order (for the term multiplied by h4).
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Table 1. Stability of Method for Varying Spatial Difference Operators

Method Stability Constraint

4th Center σ . 2.06/D
5th Upwind σ . 1.73/D
6th Center σ . 1.78/D
7th Upwind σ . 1.69/D
9th Upwind σ . 1.60/D

2.4. Stability. We compute the stability for each high-order scheme to determine
the allowable time step size following the procedure in [3]. Stability for the method of
lines requires the eigenvalues of the right hand side to lie within the stability region of
the time integrator. These eigenvalues are computed by diagonalizing the the semi-
discrete system (Eq. 14). For advection the eigenvalues are defined as the product
of the velocity and the spatial derivative operator (Eq. 31-Eq. 32). The particular
eigenvalues for each spatial differencing scheme will be presented later.

d〈q〉

dt
= λ〈q〉 (31)

λ〈q〉 = −~u
∂

∂x
〈q〉 (32)

These eigenvalues must lie within the stability region of the time integrator. The
stability region for RK4 is well known, and can be described by its characteristic
polynomial

P (z) = 1 + z +
z2

2
+

z3

6
+

z4

24
(33)

where z = ∆tλ. Stability for this problem requires that |P (z)| ≤ 1. The resulting
stability constraints for each spatial differencing scheme are presented in Table 1,
where σ = |u|∆t/h.

Along with stability, the phase error and dissipation were computed (Figure 1). The
dissipation was defined as (1− |g|) where:
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|g| =
√

(Re(g)2 + Im(g)2) (34)

Re(g) =

(

1 + x+
x2

2
+

x3

6
+

x4

24

)

−
y2

2

(

1 + x+
x2

2

)

+
y4

24
(35)

Im(g) = y

(

1 + x+
x2

2
+

x3

6

)

−
y3

6
(1 + x) (36)

and λ = x + iy. The normalized phase error, |1 − α|, is defined using the following
computation

α =
α(β)

|u|
= −

1

σβ

Im(g)

Re(g)
(37)

2.4.1. Spatial Differencing Eigenvalues. The eigenvalues for each of the different
high-order spatial differencing schemes are presented below. In each of the eigen-
value descriptions, βd may range from −π to π, and is defined as 2πkdh with kd =
0,±1,±2, ...,±N/2

Fourth Order Centered Difference:

λ4 =
i

12h

D
∑

d=1

ud [16 sin(βd)− 2 sin(2βd)] (38)

Fifth Order Upwind :

λ5 =
1

60h

D
∑

d=1

ud[ (−2 cos(3βd) + 12 cos(2βd)− 30 cos(βd) + 20)+

i (2 sin(3βd)− 18 sin(2βd) + 90 sin(βd))] (39)

Sixth Order Centered Difference:

λ6 =
i

60h

D
∑

d=1

ud [2 sin(3βd)− 18 sin(2βd) + 90 sin(βd)] (40)
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Seventh Order Upwind :

λ7 =
1

420h

D
∑

d=1

ud[ (3 cos(4βd)− 24 cos(3βd) + 84 cos(2βd)− 168 cos(βd) + 105)+

i (−3 sin(4βd) + 32 sin(3βd)− 168 sin(2βd) + 672 sin(βd))] (41)

Ninth Order Upwind :

λ9 =
1

2520h

D
∑

d=1

ud[(−4 cos(5βd) + 40 cos(4βd)− 180 cos(3βd)+

480 cos(2βd)− 840 cos(βd) + 504)+

i(4 sin(5βd)− 50 sin(4βd) + 300 sin(3βd)−

1200 sin(2βd) + 4200 sin(βd))] (42)

3. Low-Order Flux Computation

The low order fluxes are computed using the CTU method [2, 11]. CTU is a first-
order time advancement scheme. The method is desirable over the simpler donor-cell
upwind method because its stability is independent of dimensionality. However, this
increased stability comes with a price. Instead of a single flux being defined by
a single upwind value, the CTU flux is dependent upon a set of upwinded values.
These values are determined by tracing the characteristic paths from the nodes that
define the flux surface. This process involves an increasing number of Riemann solves
as the dimensionality of the problem increases. In the 1D case, CTU is identical to
donor-cell upwind.

4. Computing the Hybridization Coefficient

We compute the hybridization coefficient η using a modified multidimensional flux-
corrected transport (FCT) algorithm. Note that the time superscript notation (n)
for fluxes is dropped from here out, but it is implied. Our algorithm is based upon
the method described first in [13]. Here is the generic FCT procedure:

(1) Compute the high-order fluxes 〈F d
H〉i± 1

2
ed over the cell volume Vi .
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(2) Compute the low-order fluxes 〈F d
L〉i± 1

2
ed and the corresponding low-order up-

date 〈q〉tdi .

〈q〉tdi = 〈q〉ni −
∆t

h

∑

d

[

〈F d
L〉i+ 1

2
ed − 〈F d

L〉i− 1

2
ed

]

(43)

(3) Compute the antidiffusive fluxes 〈Ad〉i± 1

2
ed

〈Ad〉i± 1

2
ed = 〈F d

H〉i± 1

2
ed − 〈F d

L〉i± 1

2
ed (44)

(4) Limit the antidiffusive fluxes

〈Ad
η〉i± 1

2
ed = ηd

i± 1

2
ed〈A

d〉i± 1

2
ed (45)

0 ≤ ηd
i± 1

2
ed ≤ 1

(5) Update the solution with the limited antidiffusive fluxes

〈q〉n+1
i = 〈q〉tdi −

∆t

h

∑

d

[

〈Ad
η〉i+ 1

2
ed − 〈Ad

η〉i− 1

2
ed

]

(46)

4.1. Limiting the antidiffusive flux. The primary challenge in the above formu-
lation is comuting the hybridization coefficients (ηi± 1

2
ed). Following the procedure in

[13], we compute the coefficients in the following manner:

Pre-constrain the high-order fluxes 〈FH〉i± 1

2
ed. This is a pre-limiting step that seeks

to keep the high-order fluxes from generating new or steeper extrema.

Compute the sum (P±

i ) of all the antidiffusive fluxes into and out of the cell and a
measure of the diffusion (Q±

i ).
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P+
i =

D
∑

d

[

max
(

〈Ad〉i− 1

2
ed , 0

)

−min
(

〈Ad〉i+ 1

2
ed, 0

)]

(47)

Q+
i =

(

(qmax)i − 〈q〉tdi
) h

∆t
(48)

P−

i =

D
∑

d

[

max
(

〈Ad〉i+ 1

2
ed , 0

)

−min
(

〈Ad〉i− 1

2
ed, 0

)]

(49)

Q−

i =
(

〈q〉tdi − (qmin)i
) h

∆t
(50)

Compute the least upper bounds R±

i .

R+
i =

{

min
(

1.0, Q+
i /P

+
i

)

if P+
i > 0.0

0.0 otherwise
(51)

R−

i =

{

min
(

1.0, Q−

i /P
−

i

)

if P−

i > 0.0

0.0 otherwise
(52)

Select the hybridization coefficient with the most restrictive upper bound.

ηi+ 1

2
ed =







min
(

R+
i+ed , R

−

i

)

if 〈Ad〉i+ 1

2
ed > 0.0

min
(

R+
i , R

−

i+ed

)

if 〈Ad〉i+ 1

2
ed ≤ 0.0

(53)

In the above description the user is provided with two design choices: pre-constraint
for the high-order flux and method of computing the solution bounds (qmax)i and
(qmin)i .

4.2. Computing the Solution Bounds. Compute initial estimates of the solution
bounds, (qmax)i and (qmin)i . First, compute the bounded solutions in a rectangular
stencil (Bi ) that is [2si +1]D cells in size, where si is the stencil size. In this study, si
was allowed to vary depending on the local velocity field in the following manner:
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si =

{

2 if σmax
d

|(ud)i | ≥ 0.5

1 otherwise
(54)

where σ = max(|~u|)∆t/h is the global CFL number.

The stencil was allowed to vary to ensure good performance over the spectrum of
possible CFL numbers. It was found that at low CFL numbers, si = 2 lead to excess
diffusion near discontinuities. Alternatively at high CFL numbers, si = 1 lead to
excess diffusion. Allowing the stencil size to vary mitigated these issues.

After the stencil is determined, four bounds are computed: (1) max based on 〈q〉n,
(2) min based on 〈q〉n, (3) max based on 〈q〉td, and (4) min based on 〈q〉td.

(qmax)
n
i = max (Bi (〈q〉

n)) (55)

(qmin)
n
i = min (Bi (〈q〉

n)) (56)

(qmax)
td
i = max

(

Bi (〈q〉
td)

)

(57)

(qmin)
td
i = min

(

Bi (〈q〉
td)

)

(58)

Then select the upper and lower bound of the two estimates.

(qmax)i = max((qmax)
n
i , (qmax)

td
i ) (59)

(qmin)i = min((qmin)
n
i , (qmin)

td
i ) (60)

4.2.1. Accurate Solution Bounds at Smooth Extremum. For the vast majority of cells
within the domain, the previous bound computation is sufficiently accurate. However,
computing bounds at extremum is more complicated. Ideally the bounds need to
keep the solution monotonic and positive, but the bounds should also not “clip”
the solution. There are few different methods for avoiding clipping, and we use a
geometric construction that is only applied at smoothly varying extrema. It is based
on the ideas in [5].

The smooth extremum criteria in 1D is:
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(extd)i = min[ (dq)i · (dq)i+ed , (dq)i−ed · (dq)i+2ed ] ≤ 0.0 && (61)

1.25 · (dqtot)i < (tv)i

where the following definitions are used:

(dq)i = 〈q〉tdi − 〈q〉tdi−ed (62)

(dqtot)i = |〈q〉tdi+2ed − 〈q〉tdi−2ed| (63)

(tv)i = |(dq)i+2ed|+ |(dq)i+ed |+ |(dq)i |+ |(dq)i−ed| (64)

This criteria has two parts. First, check for a sign change in the first derivative.
The sign change will indicate either an extremum or a discontinuity in the solution.
Second, ensure that the solution locally is not a perterbation of a discontinuity.

For a smooth multidimensional extremum either (extd)i must be true in all dimensions
or it must be true for some d and the solution must remain constant along the
dimensions in which (extd)i is not true. We use the following criterion to determine
if the solution is constant:

max(|(qdmax)
td
i − 〈q〉tdi |, |(q

d
min)

td
i − 〈q〉tdi |) ≤ 10−14 (65)

where the following definitions hold

(qdmax)
td
i = max

(

〈q〉tdi−ed, 〈q〉
td
i , 〈q〉

td
i+ed

)

(66)

(qdmin)
td
i = min

(

〈q〉tdi−ed, 〈q〉
td
i , 〈q〉

td
i+ed

)

(67)

Once we have determined that the solution at Vi is at a smooth extremum, we compute
new values of (qmax)i and (qmin)i . The first step is to construct a parabolic function
from the local values of 〈q〉 centered at x i :

qd(x) =

(

(d2q)ni
2

)

x2 +

(

(〈q〉i+ed − 〈q〉i−ed)

2

)

x+ 〈q〉i (68)

where



16 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

(d2q)ni = 〈q〉ni+ed + 〈q〉ni−ed − 2〈q〉ni (69)

The location of the vertex (xc) is given by the ratio −b/2a, where a and b are the
quadratic and linear coefficients (Eq. 68):

xc = −
〈q〉i+ed − 〈q〉i−ed

2(d2q)ni
(70)

and−0.5 ≤ xc ≤ 0.5. Then, evaluate the quadratic at the vertex to find the extremum
value as well as deconvolve to get an estimate of the point value:

(qdext)i =

(

(d2q)ni
2

)

x2
c +

(

(〈q〉i+ed − 〈q〉i−ed)

2

)

xc + 〈q〉i −
(d2q)ni
24

(71)

Select the largest (qdext)i or smallest (qdext)i depending on the sign of the second de-
rivative:

(qext)i =







max
d

((qdext)i , (qmax)i ) if sgn((d2q)ni ) ≤ 0.0

min
d

((qdext)i , (qmin)i ) otherwise
(72)

Finally, compute the appropriate extremum bound by augmenting the solution value
at the previous time by a scaled difference between the extremum value and the
solution value:

(qmax)i =

{

qni +max(0.0, 2.0 |(qext)i − qni |) if sgn((d2q)ni ) ≤ 0.0

(qmax)i otherwise
(73)

(qmin)i =

{

qni +min(0.0, 2.0 |(qext)i − qni |) if sgn((d2q)ni ) > 0.0

(qmin)i otherwise
(74)

4.2.2. Updating R±

i at Extrema. We flag the extrema at which the Laplacian is
changing sign. We compute the D dimensional approximation to the Laplacian over
a 3-point stencil:
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∆qi =

D
∑

d=1

∂2qi
∂x2

d

≈

D
∑

d=1

(d2q)ni
h2

(75)

If ∆q changes sign anywhere in the 3-point vicinity of i , then we flag that cell i . We
then update the least upper bound multiplier at the flagged cells:

R±

i = 0 if i flagged (76)

4.3. Pre-constraining the High-Order Flux. We pre-constrain the high-order
flux by modifying the high-order fluxes where they would otherwise accentuate or
produce a new extremum. In practice, the value of the antidiffusive flux is edited
instead of the high-order flux directly. Following [13] we set the antidiffusive flux to
zero in these regions.

The baseline condition for applying the pre-constraint:

〈Ad〉i+ 1

2
ed(〈q〉tdi+ed − 〈q〉tdi ) ≤ 0.0 (77)

However, this condition alone is not sufficient. This condition will occasionally be
satisfied at smooth areas in the solution. We add the following conditions to make
sure we only apply this condition away from smooth areas:

min
[

(d2q)ni+ed · (d2q)
n
i , (d2q)ni · (d2q)

n
i−ed , (d2q)ni+ed · (d2q)

n
i+2ed

]

< 0.0 (78)

|〈Ad〉i+ 1

2
ed | ≤

|(ud)i+ 1

2
ed|h

2

(

1− σi+ 1

2
ed

) |(d2q)i + (d2q)i+ed|

2
(79)

where σi+ 1

2
ed = |(ud)i+ 1

2
ed|∆t/h.

The first constraint above attempts to detect a discontinuity in the solution. Discon-
tinuities are natural places for high-order fluxes and consequently antidiffusive fluxes
to generate a new extremum. However, there are smooth multidimensional solutions
in which the second derivative naturally changes sign. The second constraint seeks
to preclude this case. The term on the right hand side of the inequality (Eq. 79) is
the d-directional dissipation term, scaled by the cell size, in the modified equation
analysis (Eq. 80) of CTU applied to the advection equation
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∂q

∂t
+

D
∑

d

(

ud ∂q

∂xd

)

=
D
∑

d

(

udh

2
(1− σd)

∂2q

∂x2
d

)

+O(h2) (80)

We are interested in comparing the magnitude of this dissipative term to the antidif-
fusive flux. While it is true that the second derivative takes on a zero value right at
a discontinuity, the second derivative takes on large values immeadiately surround-
ing this point. This means that the dissipative term is large in the neighborhood
of discontinuities. If the magnitude of the disspative term is large relative to the
the antidiffusive term, then we assume we are near a discontinuity and allow the
pre-constraint.

5. Results

Results in one and two dimensions are presented. A total of four initial conditions were
investigated. Of the four, one initial condition was smooth and the others contained
a discontinuity. For the two dimensional tests, we used two different velocity fields
(Eq. 81-Eq. 82): constant diagonal and solid body rotation.

u = [1, 1] (81)

u = 2π[y − 0.5, 0.5− x] (82)

The center for the constant velocity initial condition was in the middle of the do-
main, whereas it was offset by 0.25 of the grid height for the solid body rotation
examples

x const
c = (0.5, 0.5)

x solid
c = (0.5, 0.75)

5.1. Initial Conditions. The smooth initial condition was constructed as a power
of cosines.

qi (t0) =

{

cos8
(

π
2
· R
R0

)

if R ≤ R0

0 otherwise
(83)
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x i ∈ [0, 1]

R =
√

(x i − x c)2

For this initial condition, R0 = 15 was chosen.

Three different discontinuous initial conditions were investigated. The first was a
square and is described as:

qi (t0) =

{

1 if for each D: |xD
i − xD

c | ≤ 0.15

0 otherwise
(84)

The next is a semi-ellipse:

qi (t0) =







√

1.0−
(

R
R0

)2

if R ≤ R0

0 otherwise
(85)

In this case R0 = 0.25.

The last test case is the classic slotted cylinder in two dimensions [13]. For this paper
we used N = 256 to represent the cylinder. This is roughly twice as resolved as the
original.

5.2. One-Dimensional Tests. The first requirement for the limiter method is
that it reduces to the high-order scheme away from discontinuities. All of the high-
order schemes achieved similar errors for smooth solutions (Figure 2). The rate of
convergence for each method was 4.0, which is the expected rate due to the usage
of RK4 for the time integration scheme. This implies that the limiter is not being
activated in smooth regions, and the first requirement is met.

The second requirement is that the limiter method accurately represent discontinu-
ities. To determine if this requirement is met, we analyzed the performance of the
high-order schemes with and without the limiter. The first test was a comparison
between the high-order schemes without the limiter (Figure 3). In the presence of a
discontinuity, the centered difference solutions produced more pronounced oscillations
than the upwind solutions. This result is consistent with the amplitude and phase
error analysis presented earlier.
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Figure 2. Max Norm Errors in 1D
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Figure 3. Comparison of Square Solutions with Different High-Order Spatial Differencing
Schemes (σ = 0.8, t = 1.0, N = 128)

The more important comparisons are how these high-order schemes perform with
the limiter on. For the square initial condition, there is very little difference in the
solution (Figure 4). The only noticeable difference is some additional diffusion on
the tailing edge of the centered difference solution. However, for the semi-ellipse,
the centered difference schemes produce oscillations even in the limited solution near
the discontinuity (Figure 5). The oscillations are bounded by FCT; however, they are
clearly undesirable. The upwind schemes also produce some oscillations, but again the
magnitude of the oscillations is smaller. This is motivation for selecting the upwind
methods moving forward.
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Figure 4. Comparison of Limited Square Solutions with Different High-Order Spatial Dif-
ferencing Schemes (σ = 0.8, t = 1.0, N = 128)
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Figure 5. Comparison of Limited Semi-Ellipse Solutions with Different High-Order Spatial
Differencing Schemes (σ = 0.8, t = 1.0, N = 128)

5.3. Two Dimensional Tests. The smooth test errors in two dimensions are re-
ported with the limiter for both velocity fields (Figure 6). As in the one dimensional
case, the high-order solution accuracy requirement is met. Each method achieves
fourth order accuracy, at a minimum. Interestingly, for the solid body rotation solu-
tion, the error reduction is greater than fourth order. Since the spatial differencing
error is sixth order accurate, this suggests that the time discretization error is smaller
than expected even for large values of σ. Also the ninth order scheme is still conver-
gent right at its theoretical stability limit (σ ∼ 0.8).
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(d) Rotation Velocity with Limiter

Figure 6. Max Norm Errors in 2D

The limiter also performs quite well at representing discontinuities in two dimensions.
Various solution plots for discontinuous initial conditions are presented (Figure 7 -
Figure 9). All of the two dimensional plots were generated using the ninth order
scheme in space, running right at the method’s theoretical stability limit (σ = 0.8
in 2D). The square solution under constant velocity has few, if any, ripples and is
nicely bounded (Figure 7). There is some distortion of the corners, particularly at
the top-left and bottom-right. The square solution under solid body rotation looks
similar to the constant velocity solution and the corner issue is mitigated.

The semi-ellipse solution is likewise well resolved (Figure 8). As with the one dimen-
sional case there are some dispersive errors on the leading edge, but they are small.
The solutions under both velocity fields are accurately bounded. The semi-ellipse
solution under solid body rotation was centered at x solid

c = (1.0, 1.5) to keep the edge
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(a) Constant Velocity Solution (b) Solid Body Rotation Solution
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Figure 7. Square Solutions (t = 1.0, N = 128, σ = 0.8)

of the conditon away from the domain boundary. The domain was also expanded to
x i ∈ [0, 2].

The final test was the slotted cylinder (Figure 9). The limiter method keeps the
solution bounded and resolves the fronts quite nicely. At lower grid resolutions the
slot can fill in and the bounds may not be enforced. But as the grid is refined, both
of these issues are resolved.

6. Conclusions

We presented a new flux limiter based upon FCT that retains high-order accuracy
for smooth solutions and captures fronts well. Our algorithm presented here uses



24 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

(a) Constant Velocity Solution (b) Solid Body Rotation Solution
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Figure 8. Semi-ellipse Solutions (t = 1.0, N = 128, σ = 0.8)

CTU for low-order fluxes, upwind schemes for high-order fluxes, and RK4 for time
integration. Our additions to the previous FCT method included a new computation
for the extrema and an expanded pre-constraint on the high-order fluxes. This new
pre-constraint is more restrictive than the original one, and seeks to only constrain
the fluxes near discontinuities in the solution.

Extensions for this work are applying the limiter to systems of hyperbolic conservation
laws, possibly developing new high-order upwind methods with corner-coupling, and
further improving the pre-constraint on the high-order fluxes. Applying the limiter
to hyperbolic systems is the most straightforward extension of this work. It would
be relatively simple and informative to apply this limiter in a gas dynamics solver.
High-order, corner-coupled upwind methods for use with general multi-stage time
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(a) Solid Body Rotation Solution
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Figure 9. Slotted Cylinder under Solid Body Rotation (t = 1.0, N = 256, σ = 0.8)

integrators could remove the dimensional dependence of the stability. However, no
upwind methods of this nature currently exists. The pre-constraint on the high-order
fluxes is another area where additional study could pay off. In this work we found that
the pre-constraint affects a delicate balance between effectively representing discon-
tinuities and retaining high-order accuracy in smooth areas. It was relatively simple
to get one or the other. Ensuring both required testing many versions of the pre-
constraint. Different versions of the pre-constraint have been proposed [6], but they
did not produce good results with the algorithm presented here.

Other versions of FCT [9] have implemented high-order centered difference schemes
with hyper-diffusive fluxes. These schemes, like the high-order upwind schemes, seek
to add diffusion to the large wave-number solution components. These centered differ-
ence schemes were not examined in this study, but they do offer a possible alternative
to the upwind ones used here.
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