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RESEARCH Open Access

Viral and metabolic controls on high rates
of microbial sulfur and carbon cycling in
wetland ecosystems
Paula Dalcin Martins1, Robert E. Danczak1, Simon Roux2, Jeroen Frank3, Mikayla A. Borton1, Richard A. Wolfe1,
Marie N. Burris1 and Michael J. Wilkins1,4*

Abstract

Background: Microorganisms drive high rates of methanogenesis and carbon mineralization in wetland
ecosystems. These signals are especially pronounced in the Prairie Pothole Region of North America, the tenth
largest wetland ecosystem in the world. Sulfate reduction rates up to 22 μmol cm−3 day−1 have been measured in
these wetland sediments, as well as methane fluxes up to 160 mg m−2 h−1—some of the highest emissions ever
measured in North American wetlands. While pore waters from PPR wetlands are characterized by high
concentrations of sulfur species and dissolved organic carbon, the constraints on microbial activity are poorly
understood. Here, we utilized metagenomics to investigate candidate sulfate reducers and methanogens in this
ecosystem and identify metabolic and viral controls on microbial activity.

Results: We recovered 162 dsrA and 206 dsrD sequences from 18 sediment metagenomes and reconstructed 24
candidate sulfate reducer genomes assigned to seven phyla. These genomes encoded the potential for utilizing a
wide variety of electron donors, such as methanol and other alcohols, methylamines, and glycine betaine. We also
identified 37 mcrA sequences spanning five orders and recovered two putative methanogen genomes representing
the most abundant taxa—Methanosaeta and Methanoregulaceae. However, given the abundance of Methanofollis-
affiliated mcrA sequences, the detection of F420-dependent alcohol dehydrogenases, and millimolar concentrations
of ethanol and 2-propanol in sediment pore fluids, we hypothesize that these alcohols may drive a significant
fraction of methanogenesis in this ecosystem. Finally, extensive viral novelty was detected, with approximately 80%
of viral populations being unclassified at any known taxonomic levels and absent from publicly available databases.
Many of these viral populations were predicted to target dominant sulfate reducers and methanogens.

Conclusions: Our results indicate that diversity is likely key to extremely high rates of methanogenesis and sulfate
reduction observed in these wetlands. The inferred genomic diversity and metabolic versatility could result from
dynamic environmental conditions, viral infections, and niche differentiation in the heterogeneous sediment matrix.
These processes likely play an important role in modulating carbon and sulfur cycling in this ecosystem.
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Background
Small inland waters are being increasingly recognized as
playing an oversized role in greenhouse gas emissions—
especially methane (CH4) and carbon dioxide (CO2). Very
small ponds account for 8.6% of the surface areas of lakes
and ponds globally yet contribute to 15.1% of CO2 emis-
sions and 40.6% of diffusive CH4 emissions to the atmos-
phere [1]. The Prairie Pothole Region (PPR) is the tenth
largest wetland ecosystem in the world [2], spanning five
US states in the Upper Midwest and three Canadian prov-
inces. This ecosystem contains millions of small depres-
sional wetlands that were formed during the retreat of ice
sheets at the end of the Wisconsin glaciation and that
now play important ecological roles in waterfowl breeding,
retaining surface runoff, nutrient cycling, and pesticide
degradation [3, 4]. More recently, pore waters in these
wetland sediments have been shown to contain extremely
high concentrations of both dissolved organic carbon [5,
6] and diverse sulfur species [7], while some of the highest
methane fluxes from wetlands in North America have
been measured from this ecosystem [8]. Finally, PPR wet-
land sediments host some of the highest sulfate reduction
rates (SRRs) ever recorded [9], suggesting that this process
likely accounts for a large proportion of sediment carbon
mineralization.
In such systems, the availability of carbon substrates is

likely to play a critical role in controlling the rate of mi-
crobial activity. For instance, previous analyses of pore
fluids from wetlands in the PPR revealed temporal
changes in labile carbon pools (as inferred from fluores-
cence data), which were associated with primary product-
ivity in the overlying water column occurring in late
summer [6]. More recently, we reported the presence of
high concentrations of alcohols in pore fluids, while or-
ganic acids and methylamines have also been detected [9].
Collectively, variability in carbon compound bioavailability
may result in differential microbial activities, as shown re-
cently in a study that identified varying microbial re-
sponses to inputs of autochthonous and allochthonous
carbon to lake sediments [10]. Moreover, the availability
of “non-competitive” substrates (i.e., compounds only
available to a particular functional guild of microorgan-
isms) has previously been shown to enable co-occurrence
of reductive microbial metabolisms that might otherwise
be thermodynamically inhibited [11, 12].
In addition to geochemical constraints, the viral activ-

ity may also play a key role in shaping microbial abun-
dances and activities in wetland ecosystems. Viruses
affect community turnover and resource availability via a
range of interactions with their bacterial hosts. For ex-
ample, viruses may act as a top-down control on micro-
organisms, impacting bacterial densities, as well as a
bottom-up control through virus-mediated cell lysis and
the associated release of labile host contents. Studies in

marine aquatic systems have estimated that such cell
lysis events drive the release of up to 109 tons of carbon
every day [13]. More generally, viral predation is thought
to be an important control on community structure, es-
pecially for fast-growing dominant microbial strains [14,
15]. Given the high sulfate reduction rates previously
measured in PPR sediments, we anticipate that viral pre-
dation may represent an important process controlling
rates of carbon mineralization in this ecosystem.
Despite the abundance of geochemical data for wet-

land sediments in the PPR, and the importance of these
ecosystems in regional carbon and sulfur cycling, the
underlying microbial populations driving these processes
and the potential controls on their activity are poorly
understood. Here, we provide the first characterization
of such populations and controls using genome-resolved
metagenomics. From 18 metagenomes, we recovered key
gene sequences and microbial draft genomes from or-
ganisms likely responsible for sulfate reduction and me-
thane production. Moreover, we predicted that viral
populations target candidate sulfur- and carbon-cycling
microbial hosts and investigated spatiotemporal dynam-
ics in viral and host abundances and community struc-
ture. The ability of phylogenetically and functionally
diverse groups of sulfate reducers and methanogens to
use a wide range of substrates may at least partly explain
the high levels of biogeochemical activity measured in
PPR wetland sediments. Additional linkages between
dominant microorganisms and viruses may represent
one control on sulfate reduction and methanogenesis at
the ecosystem level.

Methods
Sample collection and DNA extractions
Sediment core samples were collected from two adjacent
wetlands, P7 and P8, at the United States Geological
Survey-managed Cottonwood Lake Study Area near
Jamestown, ND, USA [9]. From 16S rRNA gene analyses,
18 representative sediment samples were selected for
metagenomic sequencing based on wetland (P7 and P8),
season (winter, spring, summer), and depth (1–3, 10–12,
and 19–21 cm) (Additional file 1: Table S1). After being
stored at − 80 °C, sediments were thawed, and DNA was
extracted using the MoBio PowerLyzer Powersoil® DNA
Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA,
USA) according to the manufacturer’s instructions. Fol-
lowing extraction, nucleic acids were quantified (Add-
itional file 1: Table S1) using a Qubit® Fluorometer
(Invitrogen, Carlsbad, CA, USA) and diluted, so ~
200 ng of DNA per sample was sent for metagenomic
sequencing at the DOE Joint Genome Institute. These
samples had been previously analyzed using 16S rRNA
gene sequencing and pore water measurements of sul-
fate, sulfide, ferrous iron, methane, methanol,
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trimethylamine, ethanol, 2-propanol, acetate, acetone,
and formate [9]. Here, these geochemical measurements
were used as input values for principal component ana-
lysis in R [16] in order to illustrate the geochemical dif-
ferences between P7 and P8.

DNA sequencing, quality control, and assembly
Genomic DNA libraries with an insert size of 270 bp were
sequenced on the Illumina HiSeq 2500 platform, generat-
ing paired-end reads (2 × 151 bp). Reads were processed
with BBDuk [17] to remove Illumina adapters and
primers. Reads containing traces of spike-ins were dis-
carded entirely. Bases with a Phred quality score (Q) below
12 were trimmed from both the 5′ and 3′ end of the se-
quences. Reads smaller than 51 bp or containing more
than one ambiguous base (N) were removed (ktrim = r,
minlen = 40, minlenfraction = 0.6, mink = 11, tbo, tpe, k =
23, hdist = 1, hdist2 = 1, ftm = 5, maq = 8, maxns = 1, k =
27, trimq = 12, qtrim = rl). The remaining reads were
mapped against a masked version of the human reference
genome (HG19) using BBMap 35.82 [17] to remove se-
quences of putative human origin. Reads aligning with
more than 93% identity to HG19 were discarded (fast,
local, minratio = 0.84, maxindel = 6, tipsearch = 4, bw = 18,
bwr = 0.18, usemodulo, printunmappedcount, idtag, min-
hits = 1). Metagenome assembly was performed using
MEGAHIT v1.0.3 [18] using a range of k-mers (“--k-list
23,43,63,83,103,123”) at default settings.

Contig merging and binning
In order to improve assembly and reduce redundancy
for binning using differential coverage, the 18 assemblies
were merged with Newbler and dereplicated with a cus-
tom script, which is part of the MeGAMerge pipeline
[19] with default parameters. Only contigs larger than
1500 bp were retained. Reads were mapped back to the
final contig set using Bowtie2 [20], from ~ 2.16 billion
trimmed, quality-controlled metagenome reads, 33%
mapped to the final set of contigs (Additional file 2:
Table S2). The generated sequence mapping files were
handled and converted as needed using SAMtools 1.6
[21]. Metagenome binning was performed employing
three different binning algorithms with default parame-
ters: CONCOCT 0.4.1 [22], MaxBin2 v. 2.2.3 [23], and
MetaBAT2 v. 2.10.2 [24]. The three resulting bin sets
were supplied to DAS Tool 1.0 [25] for consensus bin-
ning and dereplication, generating an optimized set of
bins named after their seed bin method. Selected bins
from the MetaBAT run before the DAS Tool step were
added to the final pool of bins, being named bin.1, bin.2,
etc., because some viable bins were lost or lose marker
genes during this process despite the overall improve-
ment. Bins were verified manually to ensure the selected
bins did not overlap with the post-DAS Tool bins. A

single-copy marker gene analysis was performed using
CheckM 1.0.7 [26] to assess the quality (completeness
and contamination) of the genome bins.

Identification of viral contigs and construction of a viral
OTU table
Viral sequences within our metagenomic dataset likely
originate from populations of double-stranded or
single-stranded DNA phages, including both lytic phages
(intracellular and extracellular) and temperate phages in-
tegrated into the microbial chromosome or existing as
extrachromosomal elements. VirSorter [27] was used to
identify viral contigs in the merged contig set with default
parameters: “Virome db” as the database, no additional
viral sequence to be used as a reference, and no virome
decontamination, outputting 29,317 putative viral se-
quences. Only the highest confidence contig categories 1,
2, 4, and 5 (no. 3 or 6) were included in this study, with
categories 4 and 5 being manually curated, resulting in
19,127 sequences. Out of those, 4262 sequences larger
than 5000 bp were pooled together and clustered at 95%
average nucleotide identity (ANI) over 80% of the contig
length [28], resulting in 3344 unique viral seeds. Binning
of viral contigs with MetaBAT [24] was unsuccessful, so
each viral seed was considered a viral population or viral
operational taxonomic unit (vOTU).
Bowtie2 [20] was used to map reads back to viral pop-

ulations. Reads Per Kilobase per Million mapped reads
(RPKM) values for each contig were calculated as the
number of mapped reads times 109 divided by the total
number of reads times the contig length. A contig was
considered to be present in a sample only if at least 75%
of the contig length was covered by reads in that sample.
The generated vOTU table with viral abundances
(RPKM values) in each sample retained 3329 viral con-
tigs and was used as an input for analyses in R using the
vegan package v.2.4-4 [29]: non-metric multidimensional
scaling (NMDS) with metaMDS, PERMANOVA (adonis
function), and procrustes/protest [30] to correlate a
16S-based microbial NMDS to a metagenomics-based
viral NMDS. The 16S rRNA gene-based microbial data
has already been published [9], and a subset of these
data (18 samples) for which we performed metagenomic
sequencing was selected and reanalyzed. The total viral
abundance in each sample was calculated as the sum of
RPKM values for individual contigs in that sample, and
it was used to construct bar charts in R. All figures in
this article were edited in Adobe Illustrator version
16.0.0 (Adobe Systems Inc., San Jose, USA).

Annotation, marker gene analyses, and virally encoded
metabolic genes
Marker genes such as dsrA, dsrD, and mcrA were
screened using the hidden Markov models (HMMs)
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from Anantharaman et al. [31] with hmmsearch
(HMMER v3.1b2) using the flag “--cut_tc” [32]. The
minimum sequence length for DsrA, DsrD, and McrA
sequences to be included in gene analyses was 302, 57,
and 150 amino acids, respectively. A tree with reference
sequences (as described below) was built to select only for
reductive-type dsrA sequences. To search for Methanofol-
lis alcohol dehydrogenases and ribosomal proteins in our
dataset, we have used these proteins in the reference ge-
nomes NZ_CM001555.1 and NZ_BCNW00000000.1 for
BLAST analyses. MttB homolog sequences were recovered
from contigs based on protein annotations.
The abundance of these marker genes in each sample

was computed as the RPKM value for each marker
gene-containing contig, which was calculated as for
vOTU abundance. RPKM values were used to build heat
maps in R with the function heatmap.2, and heat map
hierarchical clustering statistical significance was tested
using the pvclust R package (method.dist = “euclidean”,
method.hclust = “complete”, nboot = 10,000). Only ap-
proximately unbiased p values larger than 95% were
considered as significant. The natural logarithm Shan-
non diversity was calculated in R using the diversity
function with the vegan package [29]. Paired t tests were
performed in R to test differences in Shannon diversity
across the two wetlands.
RPKM values were also used in R (vegan package) to

test gene/contig abundance differences across samples
with PERMANOVA (adonis function) and to construct
redundancy analyses (RDA) plots. For the latter, abun-
dances were Hellinger transformed with the decostand
function, and then forward selection of the best environ-
mental variables was applied using ordistep, which was
performed only if global tests with all variables were sig-
nificant. Adjusted R2 and p values were reported for sig-
nificant statistical analyses.
Bins containing marker genes of interest and all viral

contigs were gene-called and annotated using an in-house
annotation pipeline as previously described [33, 34].
Briefly, genes were called with Prodigal [35] and annotated
based on forward and reverse blast hits (minimum 300 bit
score threshold for reciprocal matches and 60 for one-way
matches) to amino acid sequences in the databases Uni-
Ref90 and KEGG, while motifs were analyzed using Inter-
ProScan. The taxonomical affiliation of marker genes was
inferred from the best BLASTP hit excluding uncultured/
environmental sequences. The taxonomical classification
of bins was determined based on lineage-specific phylo-
genetic markers from CheckM [26]. Annotations were
used to search for virally encoded metabolic genes in viral
contigs based on the following criteria: (i) gene is in the
middle of the contig (not the first or last two genes), (ii)
contig is clearly viral (contains hallmark phage genes such
as tail or capsid protein), (iii) gene occurs at least in three

viral contigs, and (iv) gene product can only act in the
host cell metabolism and could not be used in the viral
cycle (DNA replication, capsid formation, etc). No genes
met these criteria.

Construction of phylogenetic trees
For phylogenetic trees, amino acid sequences were
aligned with MUSCLE v 3.8.31 [36], and columns with
at least 95% gaps were removed with Geneious® 9.0.5
[37]. Trees were built as previously described [38] using
Protpipeliner, an in-house pipeline that curates align-
ments with GBLOCKS [39], selects the best model with
ProtTest v. 3.4 [40], and provides a tree using RAxML v.
8.3.1 with a 100 bootstraps [41]. The mcrA, dsrA, and
mttB trees were built under the LG + I + G model of
evolution, while the dsrD tree, under the WAG +G
model. All trees were visualized with iToL [42].

Taxonomic classification of viruses
Viral taxonomy was assigned using vConTACT [43].
Briefly, viral proteins were obtained from Prodigal as
part of the aforementioned annotation pipeline and
combined with the viral protein database “PC_aminoa-
cid_database_REFS.faa” from CyVerse [44]. Headers
were modified to avoid underscores and contain up to
30 characters and were used to construct the “pro-
tein.csv” file in windows .csv format. An all-versus-all
BLAST was run with the following parameters: “outfmt
6 -evalue 1e-3 -max_target_seqs 239262.” The maximum
number of target sequences was set as the total number
of headers in the amino acid fasta file to avoid losing in-
formation given that, by default, BLAST outputs only
the best 500 hits. From this point, data was uploaded
into CyVerse, and both apps vcontact_pcs 0.1.60 and
vcontact 0.1.60 were run with default parameters (link
significitivity, 1; significativity threshold, 1; module infla-
tion, 5; module significativity, 1; link proportion, 0.5; in-
flation, 2; module shared min, 3). The output file
“cc_sig1.0_mcl2.0.ntw” was downloaded and imported
into Cytoscape 3.1.1 [45], while the attribute file was
manually constructed and imported into Cytoscape as
well. The prefuse force-directed layout was used and the
app clusterMaker was run with the “MCL cluster” option
and the following parameters: granularity 2.0, array
sources “c,” edge weight conversion “none,” edge cutoff
1.001, assume edges are undirected, assume loops before
clustering, weal edge weight pruning threshold 1E−15,
number of interactions 16, maximum residual value
0.001, create groups (metanodes) with results, and create
new clustered network. Modules containing only refer-
ence viral genomes were removed, and viral classifica-
tion was retrieved from the module table. The
classification of five contigs that clustered with viroph-
age reference sequences was manually curated. We
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could not identify any virophage marker gene on these
contigs, suggesting that this affiliation stemmed from
genes not specific to virophages but potentially shared
across multiple viral groups. Therefore, we conserva-
tively opted to consider these sequences as “unclassified”
in our subsequent analyses.

Viral identification in other datasets
We attempted to identify viral contigs similar to the
novel viral sequences in this study from two database
collections: the Global Ocean Virome (GOV) [46], which
contains sequences from the Tara Oceans Expeditions
and Malaspina, and the VirSorter curated dataset [47],
which contains sequences from RefSeq (January 2015),
Whole Genome Shotgun, Microbial Dark Matter, and
SUP05 databases. For a viral contig to be identified via
BLAST in other databases, we required a minimum of
70% identity over 90% of the contig length, a minimum
bit score of 50, and a maximum e value of 0.001, accord-
ing to the previously published thresholds [46].

Linking viruses to hosts
Four methods were used to infer putative virus-host links:
BLAST [48], to identify prophages in microbial bins;
CRASS 1.0.1 [49], to look for CRISPR array sequences
(direct repeats and spacers), which are then compared to
viral contigs; VirHostMatcher 1.0 [50] and WIsH 1.0 [51],
to infer links based on k-mer frequencies in viral and host
genomes. Viral contigs were blasted against microbial bins
with the following thresholds for host prediction: mini-
mum 75% of viral contig length, 70% similarity, 50 mini-
mum bit score, and 0.001 maximum e value. CRASS was
run on quality-controlled, trimmed metagenome reads
with “-n 5000” and “-e 1e-8” as options. The output
crass_summary_DR1.txt and crass_summary_SP1.txt files
were used to manually verify which direct repeats in mi-
crobial genomes matched spacers corresponding to viral
contigs. Direct repeats and spacers were aligned to micro-
bial and viral contigs, respectively, in Geneious® 9.0.5 [37],
where only one mismatch was allowed and an alignment
over the full spacer was required for host prediction. Vir-
HostMatcher was run with default parameters, and d2*
values ≤ 0.2 were considered a link. WIsH was run with
default parameters against our microbial genome dataset
and microbial genomes from the IMG database [52]. Links
were inferred when p < 0.001, then the lowest common
ancestor of the best five hits was taken as the host.

Results
PPR wetlands host diverse populations of sulfate-
reducing microorganisms
Previously, we reported extremely high sulfate reduction
rates in sediments collected from PPR wetlands [9]. In
order to identify sulfate-reducing microorganisms that

could account for these rates, metagenomic data was
searched for two marker genes: the traditional
reductive-type dsrA gene and dsrD. Despite not being a
functional maker gene and having an unknown function,
dsrD is generally absent from sulfur oxidizers that utilize
the oxidative-type dsrA pathway [53] and has previously
been used in metagenomic sulfate reduction studies [54]. A
notable exception is Desulfurivibrio alkaliphilus, which oxi-
dizes sulfur and encodes dsrD [55]. Therefore, we have used
dsrD to tentatively assign a sulfur metabolism in conjunc-
tion with analyses of other dsr genes. In total, we recovered
162 reductive-type dsrA sequences (Additional file 3: Table
S3) and 206 dsrD sequences, with the taxonomy (per best
BLASTP hit of DsrD) of the sequences spanning ten bac-
terial phyla (Fig. 1). RPKM values of dsrD-containing con-
tigs revealed that gene abundances differed significantly
between the two wetlands (Additional file 4: Figure S1;
PERMANOVA, F = 10.627, p < 0.001), and redundancy
analyses confirmed that wetland was a primary factor con-
straining the composition and abundance of
sulfate-reducing populations (Additional file 5: Figure S2).
The same trends were observed for dsrA; gene abundances
also differed between the two wetlands (Additional file 6:
Figure S3; PERMANOVA, F = 11.294, p < 0.001).
The majority of DsrD amino acid sequences were affil-

iated with microorganisms within the Deltaproteobac-
teria (127), with smaller numbers of sequences affiliated
with Nitrospirae (33), Acidobacteria (18), Planctomycetes
(9), Firmicutes (8), the candidate phyla Armatimonadetes
(4), Gemmatimonadetes (3), Aminicenantes (1) and
Schekmanbacteria (1), and Actinobacteria (2). However,
across all samples, the most abundant dsrD sequences
(inferred from RPKM values) were associated with
Nitrospira strains (Additional file 4: Figure S1 and Fig. 1).
The summing of dsrD RPKM values across samples re-
vealed that candidate sulfate-reducing bacteria (SRB)
were generally more abundant in wetland P8 than in P7
(Additional file 7: Table S4). Across all samples, the
dsrD-based Shannon diversity index varied between 2.85
and 4.81, with no statistical difference between the two
wetlands (Additional file 7: Table S4).

Abundant candidate sulfate reducers are metabolically
versatile
From metagenomic data, we reconstructed 24 putative SRB
metagenome-assembled genomes (MAGs) that contained
dsrD and/or reductive-type dsrA sequences (bolded names
in Fig. 1 and Additional file 4: Figure S1; Additional file 8:
Table S5 for MAG contamination and completeness). None
of these MAGs encoded the sulfur oxidation genes dsrL,
soxA, soxB, soxC, soxD, soxY, soxZ, soxX, or a sulfide quin-
one oxidoreductase. These MAGs were distributed
throughout the Deltaproteobacteria (14), Chloroflexi (4),
Acidobacteria (2), Planctomycetes (1), Spirochaetales (1),
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candidatus Aminicenantes (1), and Nitrospirae (1). Versatile
metabolic traits were encoded across these genomes. The
Planctomycetes genome, although very incomplete (~
24% with 3.5% contamination), encoded genes for
the reduction of sulfate (dsrAB, dsrTMKJOP), nitrate
(narGHI), nitrite (nirBD), and oxygen (subunits of
NADH dehydrogenase, succinate dehydrogenase,
aa3-type and cbb3-type cytochrome c oxidases, and a
complete cytochrome bd1 complex). This genome
also exhibited versatility with regard to potential
electron donors, encoding a methanol dehydrogen-
ase, glycine betaine utilization mtg genes, alcohol de-
hydrogenases, lactate dehydrogenases, formate
dehydrogenase, a variety of genes involved in pyru-
vate metabolism, and nickel-iron hydrogenases.

Out of the 24 putative SRB genomes, 14 encoded mtg
genes, 22 encoded alcohol dehydrogenases, and 22
encoded nickel-iron hydrogenases. All genes annotated
as the trimethylamine methyltransferase mttB were actu-
ally the non-pyrrolysine homolog mtgB gene involved in
glycine betaine demethylation [56] (Additional file 9:
Figure S4). Four MAGs had both subunits B and C
encoded adjacently: an Acidobacteria (maxbin2.0082), a
Chloroflexi (maxbin2.0347), and two Deltaproteobacteria
(maxbin2.0177 and maxbin2.0512). RPKM-based abun-
dances of mtgB-containing contigs were significantly
higher in wetland P7 (Additional file 9: Figure S4, PER-
MANOVA, F = 4.6677, p < 0.001). Three representative
genomes are summarized in Fig. 2, and binned dsrD
genes are specified in the context of their rank

Fig. 1 dsrD phylogenetic affiliation and abundance per sample. The RAxML tree was constructed using 206 amino acid sequences. The gene or
gene cluster (C1–23) affiliation was inferred from the (representative) best BLASTP hit. Bolded names represent dsrD present in reconstructed
genomes. The yellow, blue, and orange stars indicate dsrD in genomes represented in Fig. 2. For the heat map, dsrD-containing contig RPKM
values were used as input. Clusters are represented by the sum of RPKM values. The statistical significance of hierarchical clustering branches is
indicated by green stars (pvclust, approximately unbiased p < 0.05). Additional file 4: Figure S1 is an expanded version of this figure, displaying
each one of the 206 sequences
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abundance in the two wetlands in Additional file 10: Fig-
ure S5. Although DsrD taxonomic affiliation was in-
ferred from the best BLASTP hit, bin taxonomy was
retrieved from a lineage-specific set of conserved genes
via CheckM [26].
Three MAGs (Chloroflexi, maxbin2.1011; Desulfobac-

teraceae, metabat2.783; Nitrospiraceae, metabat2.164)
representing some of the most abundant SRB in both P7
and P8 wetlands encoded remarkably similar and versa-
tile metabolic capabilities (Fig. 2). The complete or al-
most complete Embden-Meyerhof-Parnas glycolysis
pathway and pentose phosphate pathway were present
in all three genomes. Besides carbohydrates, other candi-
date electron donors available to these microorganisms
included alcohols (as indicated by the presence of alco-
hol dehydrogenases), lactate (lactate dehydrogenase),
pyruvate (pyruvate water dikinase and pyruvate: ferre-
doxin oxidoreductase), acetate (acetyl-CoA synthetase),
formate (formate dehydrogenase), and hydrogen (nicke-
l-iron hydrogenases). The Desulfobacteraceae genome
encoded a methanol-specific methyltransferase and the
trimethylamine-specific methyltransferase mttC, while
the Chloroflexi genome encoded six mtgB genes

(Additional file 9: Figure S4). All three genomes encoded
the complete or almost complete tricarboxylic acid cycle
and the ability to fix carbon dioxide via the
Wood-Ljungdahl pathway, which could be reversed to
completely oxidize substrates to CO2. Respiratory pro-
cesses included oxygen reduction (evidenced by the
presence of a complete electron transport chain: NADH
dehydrogenase, succinate dehydrogenase, cytochrome
bd1 oxidase, and the aa3-type cytochrome c oxidase in
the Chloroflexi genome), dissimilatory sulfate reduction
(sat, apr, and dsrAB), and dissimilatory nitrate reduction
to ammonium (DNRA) via narGHI, nirBD, and nrfAH.
The Chloroflexi genome also had the potential to per-
form the last step in denitrification (nosZ).

Candidate methanogens are diverse and may utilize a
variety of electron donors
Thirty-seven mcrA sequences affiliated with Methanofollis
(9), Methanosaeta (8), Methanoregula (7), Methanosar-
cina (3), Arc I group archaea (2), Methanomassiliicoccus
(2), HGW Methanomicrobiales archaea (2), Methanocella
(1), Methanoculleus (1), Methanolinea (1), and Methano-
sphaerula (1) were also recovered from the metagenomic

Fig. 2 Genome cartoon of three representative candidate sulfate reducers. The cartoon displays metabolic pathways encoded by a Chloroflexi
(orange), Desulfobacteraceae (yellow), and Nitrospiraceae (blue) genome. The abbreviations and chemical formulae are as follows: SO4

2−, sulfate; Sat,
sulfate adenylyltransferase; APS, adenosine 5′-phosphosulfate; AprBA, APS reductase subunits A and B; SO3

2−, sulfite; DsrAB, dissimilatory sulfite
reductase subunits A and B; PEP, phosphoenolpyruvate; PK, pyruvate orthophosphate dikinase, PW: pyruvate water dikinase; ADH, alcohol
dehydrogenase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; PFOR, pyruvate ferredoxin oxidoreductase; AFOR, acetaldehyde ferredoxin
oxidoreductase; ALDH, aldehyde dehydrogenase; ACS, acetate synthetase; HCOO−, formate; FDH, formate dehydrogenase; CO2, carbon dioxide; H2,
hydrogen; Hase, nickel-iron hydrogenase; H+, proton; NDH, NADH dehydrogenase; SDH, succinate dehydrogenase; cytbd, cytochrome bd; cytaa3, aa3-
type cytochrome; TCA, tricarboxylic acid cycle; N2O, nitrous oxide; NosZ, nitrous oxide reductase; N2, dinitrogen; NarGHI, nitrate reductase; NirBD,
cytoplasmic, ammonia-forming nitrite reductase; NrfAH, membrane-bound, ammonia-forming nitrite reductase; NO2

−, nitrite; NH3, ammonia
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dataset (Fig. 3). Mirroring patterns observed for dsrD dis-
tributions, mcrA gene abundances also differed across the
two wetlands (PERMANOVA, F = 4.9376, p = 0.001), with
redundancy analyses confirming that wetland was a pri-
mary factor constraining methanogen community struc-
ture (Additional file 5: Figure S2). From RPKM values,
mcrA sequences affiliated with Methanosaeta concilii
(Contig_718208_1, Contig_142349_4) were inferred to be
the most abundant across all samples, followed by mcrA
genes from Methanoregula (Contig_910402_3, Con-
tig_501159_7) and Methanofollis liminatans (Con-
tig_24734660_2, Contig_1121450_8) (Fig. 3). Summed
mcrA RPKM values within the samples indicated that can-
didate methanogens were most abundant in middle P7
depths (Additional file 7: Table S4). The mcrA-based
Shannon diversity index varied between 2.25 and 3.3, with
no statistical difference between the two wetlands (Add-
itional file 7: Table S4). We also detected three
F420-dependent alcohol dehydrogenases (Con-
tig_574620_1, Contig_579739_1, and Contig_24737072_1)
with best BLATP hits to Methanofollis ethanolicus
(WP_067053167.1), but no ribosomal proteins matching
this genus.
Two MAGs encoding mcrA genes (Contig_425941_8 and

Contig_137167_7, respectively) were recovered: a Methano-
saeta (bin.308) 93.3% complete with 3.27% contamination
that was 45 times more abundant in wetland P7 than in P8
and a Methanoregulaceae (metabat2.147) 92.68% complete
with 15.79% contamination that was 9 times more abun-
dant in P7 sediments than in P8 (Additional file 8: Table
S5). Both genomes contained the functional potential for
methanogenesis from acetate, formate, and H2/CO2. Al-
though both acetate kinase and phosphotransacetylase were
absent, an acetyl-CoA synthetase (ACSS) and a carbon
monoxide dehydrogenase-acetyl-CoA decarbonylase/syn-
thase (CODH/ACDS) were encoded in these genomes.
They also encoded a formate dehydrogenase and a formyl-
methanofuran dehydrogenase. From this point in the path-
way, all the genes required for hydrogenotrophic
methanogenesis were present in the two genomes:
formylmethanofuran-tetrahydromethanopterin N-formyl-
transferase, methenyltetrahydromethanopterin cyclohydro-
lase, methylenetetrahydromethanopterin dehydrogenase,
5,10-methylenetetrahydromethanopterin reductase, tetrahy-
dromethanopterin S-methyltransferase, methyl-coenzyme
M reductase, and heterodisulfide reductase.

PPR viruses are novel, abundant, and diverse
Viral population abundances and linkages to bacterial
hosts were also assessed using the metagenomic data. In
total, 3344 viral populations accounting for extensive
viral novelty were recovered from the 18 sediment sam-
ples. These sequences formed 589 genus-level vContact
clusters (Additional file 11: Table S6), with 501

completely new candidate genera (clusters of only PPR
sequences), 36 new genera within Siphoviridae, 16
within Podoviridae, and 14 within Myoviridae (within
these families, clusters had reference sequences classified
only to family level). Reflecting this novelty, only one
viral sequence (Contig_372448) had a BLAST hit to the
GOV database (GOV_bin_5740_contig-100_7).
The majority of these viral populations (2703 out of

3344) were taxonomically unclassified (Additional file 11:
Table S6), while the remainder could be classified as
novel or known genera within Podoviridae (219), Myo-
viridae (216), Siphoviridae (202) and unclassified Caudo-
virales (3) and Microviridae (1). Most of these vOTUs
(3329) met the criteria to be included in further analyses
(see the “Methods” section).
Sediments from wetland P7 collected over spring and

summer had the highest numbers of vOTUs and highest
total viral abundance (summed RPKM values for all vi-
ruses present in that sample). As an example, wetland
sediments from P7 at middle depths collected during
spring had 1036 vOTUs and a summed RPKM of ~ 459.
In contrast, deep sediments collected from wetland P8
at the same time point contained only 123 low abun-
dance vOTUs (summed RPKM = ~ 33) (Fig. 4 and Add-
itional file 7: Table S4). Viral OTU abundances differed
significantly between the two wetlands (PERMANOVA,
F = 5.8165, p < 0.001), supporting redundancy analyses of
vOTU abundances that identified wetland type as a pri-
mary driver of viral community clustering (Add-
itional file 5: Figure S2). Viral Shannon diversity was
also higher in P7 (5.9) than in P8 (4.9; paired t test, p <
0.001; Additional file 7: Table S4).

Microbial and viral communities correlate
Prior 16S rRNA gene analyses from 215 PPR P7 and P8 wet-
land sediment samples had identified 1188 OTUs, with each
sample harboring ~ 500–700 OTUs [9]. 16S rRNA gene
data from the same subset of samples used for metagenomic
analyses was re-analyzed here to identify any possible correl-
ation between microbial and viral community structure.
The non-metric multidimensional scaling (NMDS) of

16S rRNA gene data recapitulated overall microbial
community trends as previously observed [9], such as
strong clustering based on wetland and depth (Fig. 5a).
Similar analysis using a RPKM vOTU table for viral di-
versity and abundance revealed similar clustering trends
(Fig. 5b). A strong and significant correlation (0.8, p =
0.001) between the viral and the microbial ordinations
was identified using a Procrustes rotation (Fig. 5c).

Viruses can be linked to abundant candidate sulfate
reducers and methanogens
Four methods were used to identify viruses that could
infect candidate SRB and methanogen hosts: matches
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between CRISPR spacers and viral contigs, blasting viral
contigs to microbial genomes in order to find prophages,
and two k-mer frequency-based prediction tools (Vir-
HostMatcher and WIsH). The results for SRB hosts are
summarized in Fig. 6, which displays both the number
of links and the abundance of hosts and viruses across
the two wetlands. While similar numbers of SRB hosts
could be linked to viruses in P7 (15) and P8 (17), the
overall number of virus-host linkages (pairs) was larger
in P7 (88) than in P8 (40). The predicted hosts included
some of the most abundant sulfate reducers in each wet-
land: two Chloroflexi in wetland P7 (maxbin2.1011 and
maxbin2.0347) and strains associated with Candidatus

Aminicenantes (maxbin2.0329), Desulfobactereaceae
(metabat2.783), and Nitrospirae (metabat2.164) in wet-
land P8. Most of the individual links (69) occurred via
BLAST, with 40 via WIsH, 27 via VirHostMatcher, and
only 1 via CRISPR spacer matching. Finally, the meth-
anogen Methanosaeta MAG was tentatively linked to
two viral contigs (Contig_425558 and Contig_425713)
via WIsH.

Discussion
This study aimed to investigate the diversity and meta-
bolic potential of sulfate-reducing microorganisms,
methanogens, and viruses in PPR wetland sediments that

Fig. 3 mcrA phylogenetic affiliation and abundance per sample. The RAxML tree was constructed using 37 amino acid sequences. The gene
affiliation was inferred from the best BLASTP hit. Bolded names represent mcrA present in reconstructed genomes. For the heat map, the mcrA-
containing contig RPKM values were used as input. The statistical significance of hierarchical clustering branches is indicated by green stars
(pvclust, approximately unbiased p < 0.05)
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could contribute to, or impact, the highest sulfate reduc-
tion rates ever measured as well as some of the highest
methane emissions from wetlands in North America [9].
Reflecting the range of carbon substrates detected in
PPR sediment pore fluids, diverse communities of meta-
bolically flexible SRB and methanogens were identified
that could potentially drive high rates of biogeochemical
transformations.

Sulfate reduction is likely performed by diverse,
metabolically flexible microorganisms
Diverse putative SRB were identified in PPR sediments
via both metagenomic screening of marker genes (162
dsrA and 206 dsrD sequences) (Fig. 1, Additional file 4:
Figure S1, Additional file 10: Figure S5, Additional file 3:
Table S3) and genome-resolved metagenomics that en-
abled recovery of 24 inferred SRB genomes that span
seven phyla (Additional file 8: Table S5). These genomes
should be considered to represent candidate sulfate re-
ducers, given that genomic information cannot guaran-
tee the direction of the reaction, as previously shown by
the discovery that the sulfur-oxidizing microorganism D.
alkaliphilus encodes a reductive-type dissimilatory sul-
fite reductase [55]. Moreover, one genome (bin.240) in
this study encoded only dsrD and no other dsr genes,
and another (maxbin2.0329) encoded only dsrD and
dsrC. While this may be due to genome completeness
limitations (Additional file 8: Table S5), we could not
clearly determine the potential for sulfate reduction in
these cases. Future isolation of these microorganisms is
required to confirm sulfate reduction.

These genomes revealed a high level of metabolic
flexibility, through the potential utilization of a variety of
electron donors and acceptors. We have previously iden-
tified a wide diversity of electron donors in PPR pore
fluids, including micromolar concentrations of acetate
and methanol and millimolar concentrations of ethanol
and 2-propanol [9]. The metabolic potential for
utilization of such substrates in SRB MAGs strengthens
the hypothesis that these carbon pools could support the
measured SRRs. In particular, C1 substrates may play an
important role in sustaining sulfate reduction in this sys-
tem. One candidate SRB MAG encoded a methanol de-
hydrogenase, while two other MAGs encoded mtaA, a
methanol-specific methyltransferase. Souza et al. previ-
ously identified two methanol degradation pathways in
the sulfate reducer Desulfotomaculum kuznetsovii: one
via alcohol dehydrogenase and one via methyltransfer-
ases mtaABC [57], while methanol oxidation via a meth-
yltransferase system has also been described in
Sporomusa species [58]. Arshad et al. also identified
methanol and methylamine methyltransferases in the
genome of Candidatus Nitrobium versatile [59], a candi-
date sulfate reducer that also encoded versatile meta-
bolic potential remarkably similar to the genomes
recovered in this study, including the Nitrospiraceae
MAG (Fig. 2). The potential for metabolism of methyl-
amines was also present in inferred sulfate reducer
MAGs recovered in this study; two MAGs encoded mtb
genes (Additional file 9: Figure S4 and Additional file 8:
Table S5). The non-pyrrolysine mttB homolog methyl-
transferase mtgB present in 14 of our candidate sulfate
reducer genomes has previously been shown to allow

Fig. 4 Richness and abundance of viral populations per sample. The x-axis displays the number of viral OTUs (darker shade) and abundance
(lighter shade) calculated as the sum of viral contig RPKM values in each sample (y-axis). Samples are sorted based on decreasing richness
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utilization of glycine betaine as an electron donor in
Desulfitobacterium hafniense [56], Sporomusa ovata
[60], and, potentially, Candidatus Frackibacter [34].
These data again highlight the metabolic diversity within
the pool of putative SRB in this system and suggest that
C1 metabolism may be a more widespread characteristic
of SRB than currently appreciated.

Additional metabolic diversity associated with electron
acceptor utilization was identified within the same
MAGs and could allow SRB to respond to dynamic en-
vironmental conditions in near-surface wetland sedi-
ments that may be exposed to oxygen, inputs of
nitrogen species from adjacent agricultural regions, and
fluctuations in redox. These inferred traits may represent
another mechanism that at least partially explains the
high SRRs in this system. Finally, the phylogenetic and
functional diversity of SRB within this system may sup-
port a high degree of niche differentiation within the
geochemically heterogeneous sediment matrix [61–64],
allowing a variety of sulfate-reducing groups to perform
sulfate reduction concomitantly and thus increase over-
all sulfate reduction rates.
The application of genome-resolved metagenomics to

sulfate-reducing microbial communities has recently iden-
tified this functional trait in a wide range of microbial taxa
not previously thought to catalyze this reaction [54, 65,
66]. Results from this study—identifying the potential for
sulfate reduction in Acidobacteria, Armatimonadetes,
Planctomycetes, and Candidatus Schekmanbacteria—sup-
port the results from Anantharaman et al. [54] and sug-
gest that additional SRB diversity remains to be
uncovered. This is the first study to report dsrD in the
members of the candidate phylum Aminicenantes (former
OP8). The Aminicenantes MAG reconstructed here was
only ~ 50% complete and also encoded dsrC, but lacked
dsrAB; therefore, it remains unclear whether this organism
could perform sulfate reduction. However, the Aminice-
nantes dsrC had both C-terminal conserved cysteine resi-
dues [67] and its dsrD was the most abundant binned
dsrD gene in wetland P8, suggesting that this organism
was playing an active role in community functioning. The
high relative abundances of these newly identified, puta-
tive SRB lineages in PPR sediments (Fig. 1 and Add-
itional file 4: Figure S1) suggest that they may play a role
in driving the extremely high SRRs and may contribute to
the rate differences between wetlands. Prior 16S rRNA
gene analyses had highlighted the contribution of OTUs
matching poorly resolved Chloroflexi, Deltaproteobacteria,
Actinobacteria, and Acidobacteria to the Bray-Curtis dis-
similarity between P7 and P8 [9]. Although putative SRB
diversity measured using Shannon’s diversity index was
similar between wetlands, differential dsrD abundances af-
filiated with these taxa (Additional file 10: Figure S5) sug-
gest that community membership and structure, in
addition to activity, may be a factor contributing to the
higher measured SRRs in wetland P7.

A variety of electron donors could fuel methanogenesis
in PPR sediments
Concurrent with high rates of sulfate reduction, we have
previously measured extremely high methane fluxes

Fig. 5 Correlation between microbial and viral populations. a 16S
rRNA gene-based non-metric multidimensional scaling (NMDS)
analyses of microbial community clustering. b Viral population-based
NMDS. PERMANOVA statistics are provided on top of each plot.
Samples were color coded based on significant clustering
variables—wetland (P8 in blue and P7 in red) and depth (the
deeper, the darker the shade). c Procrustes rotation of the viral to
the microbial NMDS. Correlation and p value are provided on top of
the plot
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from these small prairie wetlands. We recovered 37
mcrA sequences affiliated with the orders Methanomi-
crobiales (Methanosphaerula, Methanolinea, Methanore-
gula, Methanoculleus, and Methanofollis and HGW
lineages [68]), Methanosarcinales (Methanosaeta and
Methanosarcina), Methanocellales, Methanomassiliicoc-
cales, and the Methanomicrobia Arc I group archaea
from the metagenomic data and were able to assemble
two MAGs that were taxonomically classified as Metha-
nosaeta and Methanoregulaceae. These two MAGs rep-
resented the two most abundant taxa in sampled
sediments. Typically, Methanosaeta produce methane
from acetate [69], while Methanoregulaceae utilize

formate or H2/CO2 for methanogenesis [70]. These ge-
nomes both encoded ACSS, CODH/ACDS, formate de-
hydrogenase, and all the core genes in the
hydrogenotrophic pathway. Given that acetoclastic
methanogenesis has not been previously reported in this
family, Methanoregulaceae likely require the ACSS gene
for biomass synthesis from acetate.
Wetland type again exerted control on abundances of

inferred methanogens. Methanogen mcrA sequences were
more abundant in wetland P7 (Additional file 7: Table S4),
where higher pore water methane concentrations (up to
6 mM) were detected [9], and were affiliated with Metha-
nosarcina, Methanosaeta, and Methanoregula (Fig. 3). In

Fig. 6 Predicted virus-host linkages among candidate sulfate-reducing strains. Linkages are displayed based on wetland (P7 in green and P8 in
purple). Each host (circles) is identified by taxonomic affiliation and genome name, while viruses (other shapes) are only shown based on
taxonomy. Increasing abundances are indicated by darker color shades, with abundances represented by average RPKM value across samples
from each wetland. For sulfate reducers, the dsrD-containing contig was prioritized in RPKM calculations, and only genomes missing dsrD had
their abundances represented by reductive dsrA-containing contigs (Additional file 10: Table S5). The four prediction methods are represented by
the different color-coded lines
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contrast, Methanofollis-affiliated mcrA sequences were
more abundant in wetland P8 sediments that generally
contained lower pore water methane concentrations (up
to 4 mM).
Mirroring the sulfate-reducing populations, the diver-

sity of detected methanogens suggests that a wide range
of substrates—including acetate, hydrogen and formate,
C1 compounds, and primary and secondary alcohols—
could potentially be utilized for methanogenesis. While
Arc I group archaea have been hypothesized to produce
methane from methylated thiol groups [71], Methano-
sarcina species can utilize H2/CO2, acetate, dimethylsul-
fide, methanol, monomethylamine, dimethylamine, and
trimethylamine [72, 73], and Methanomassiliicoccus
luminyensis is able to grow on methanol, mono-, di-, or
trimethylamine with hydrogen [74]. Moreover, Methano-
follis ethanolicus can utilize ethanol/CO2, 1-propanol/
CO2, 1-butanol/CO2, H2/CO2, and formate for growth
and methane production, converting ethanol to methane
and acetate [75], while Methanofollis liminatans can
utilize formate, H2/CO2, 2-propanol/CO2, 2-butanol/
CO2, and cyclopentanol/CO2, converting these second-
ary and cyclic alcohols to their respective ketones [76].
Given the prior measurements of high concentrations

of ethanol and 2-propanol in PPR pore fluids (up to
4 mM), the abundance of alcohol-utilizing Methanofollis
species (best BLASTP hit for 9 of 37 mcrA sequences
and RPKM values) indicates that these alcohols may fuel
methanogenesis in PPR wetlands. Supporting this hy-
pothesis, three F420-dependent alcohol dehydrogenase
sequences with best BLASTP hits to Methanofollis were
detected within the metagenomic data. The absence of
ribosomal proteins affiliated to this genus in our dataset
suggests that some alcohol-utilizing methanogens in this
study may be only distantly related to Methanofollis.

Local geochemistry exerts a strong control on microbial
and viral community composition and structure
The community clustering of particular microbial groups
(sulfate reducers and methanogens), whole microbial
communities, or whole viral communities was primarily
based on wetland. (Additional file 5: Figure S2). Further-
more, a strong correlation was measured between mi-
crobial and viral communities (Fig. 5) that likely reflects
host availability and different microbial community
structures in the two wetlands. Despite being only ~
350 m apart, the P7 and P8 wetlands are characterized
by distinct geochemical profiles associated with local hy-
drology and evapotranspiration processes (Add-
itional file 12: Figure S6) [77–79]. While P8 pore waters
contain higher concentrations of sulfate and sulfide,
similar fluids from P7 sediments generally contain
higher pore water concentrations of methane, ferrous
iron, acetate, acetone, methanol, ethanol, and

2-propanol [9]. The trends observed in this study high-
light the heterogeneity of geochemical and microbial pa-
rameters over short spatial scales in PPR wetlands and
demonstrate that strong geochemical controls on micro-
bial and viral community composition and structure can
differentially impact the ecosystem functions such as sul-
fate reduction rates and methane fluxes.

Novel and abundant viruses may impact carbon and
sulfur cycling
A large number of diverse, novel viral populations were
identified within this dataset. Given that this is only the
second study to investigate viral sequences from wetland
sediment metagenomes [80], this novelty is expected
and is reflected in the fact that almost no viral contigs
from our data were identified in publicly available viral
databases, and ~ 80% could not be assigned to any
known taxonomic level. These data thus contribute to
exploring the under-sampled soil virosphere; despite the
estimate that 97% of viruses on Earth are in soils and
sediments, as of 2016, only 2.5% of publicly available vir-
omes were from these ecosystems [81].
Viral abundance, richness, and Shannon diversity were

significantly higher in P7 wetland samples that also
hosted higher rates of microbial activity (as inferred
from SRRs) (Fig. 4). While this may simply reflect differ-
ences in microbial community composition and struc-
ture across the two wetlands, it has previously been
suggested that higher host metabolic activity (growth
rates on different electron donors) will be associated
with higher viral production [82]. This correlation has
been observed by Pan et al., who reported significant
correlations between viral productivity and microbial
metabolism inferred from acetate consumption and CO2

production in amended sediment slurries under
nitrate-reducing conditions [83]. Recent studies have
also suggested that dissolved organic matter (DOM) may
impact the rates of viral infection and cell lysis, although
a mechanism has yet to be elucidated [14, 84, 85]. Such
interactions may be prevalent across PPR wetland eco-
systems given the high DOM concentrations frequently
measured in pore fluids. Future studies on viral product-
ivity are needed to uncover the dynamics of viral and
host activities in PPR wetland sediments.
Our results also highlighted specific viruses predicted

to infect the most abundant candidate SRB and metha-
nogens in PPR wetland sediments. Surprisingly, some vi-
ruses were predicted to target microorganisms across
different phyla, particularly using the VirHostMatcher
method. Although we used a stringent threshold (d2

* <
0.2) for inferring viral-host linkages, it is possible that
those predictions are false positives. Nonetheless, Peters
et al. have isolated phages that infect different taxonomic
orders [86], and Paez-Espino et al. have observed
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CRISPR spacer matches across different phyla [87].
Therefore, at this stage, we could not rule out the possi-
bility that such linkages in these data reflect phages with
exceptionally broad host range.
The impacts of viral predation on these microorgan-

isms at the ecosystem function level remain to be eluci-
dated. It is possible that through the infection and lysis
of bacterial hosts, viruses could decrease the activity of
fast-growing microorganisms [14, 15], potentially repres-
sing sulfate reduction (and associated carbon
mineralization) and methane production. Alternatively,
the release of labile intracellular contents following
virus-mediated cell death may stimulate activity of other
microbial community members [81, 88], increasing net
sulfate reduction and methane production rates. Given
that bacterial cell lysis may open new niche space within
the ecosystem, the availability of freshly released labile
carbon may also increase microbial diversity in the en-
vironment [89]. Additional laboratory experiments with
enrichments and even isolated cultures are needed,
coupled with these field observations, to better under-
stand how viral predation affects the rates of sulfate re-
duction and methanogenesis in these wetlands.

Conclusions
Our results indicate that phylogenetically diverse
sulfate-reducing bacteria (SRB) and methanogens are the
keys to driving rapid carbon and sulfur transformations
in PPR wetland sediments. Candidate SRB identified in
this study spanned ten phyla, with some affiliating to
taxa only recently described as potential sulfate reducers
(Acidobacteria, Armatimonadetes, Planctomycetes, Can-
didatus Schekmanbacteria, and Gemmatimonadetes) or
that had not been previously described as such (Amini-
cenantes). Candidate methanogens are affiliated to five
orders, with particularly abundant sequences related to
the genera Methanosaeta, Methanoregula, and Methano-
follis. Recovered SRB MAGs encoded versatile metabolic
potential, likely reflecting adaptations to dynamic geo-
chemical conditions in the shallow wetland sediments.
Based on the metabolic potential encoded in draft ge-
nomes, marker gene analyses, and available candidate
substrates, a variety of electron donors (i.e., methyl-
amines, methanol, ethanol, 2-propanol, acetate, formate,
hydrogen/CO2) could fuel sulfate reduction and meth-
anogenesis in this system. Given the abundance of
Methanofollis-related sequences and previously mea-
sured millimolar concentrations of ethanol and
2-propanol in sediment pore fluids [9], we hypothesize
these alcohols may drive a significant proportion of
methanogenesis in this system. Moreover, SRB genomes
encoded genes for the utilization of methanol, methyl-
amines, and glycine betaine as electron donors, suggest-
ing that C1 metabolism may play a significant role in

driving high sulfate reduction rates. Abundant viral pop-
ulations were identified, with a phylogenetic diversity
and novelty expected given the scarcity of viral se-
quences from sediments in databases. These viral popu-
lations were predicted to target abundant SRB and
methanogens, thus likely impacting carbon and sulfur
cycling. While these impacts remain to be elucidated in
future studies, this work highlights that a combination
of phylogenetic and metabolic diversity controlled by
local geochemistry and, potentially, viruses, may explain
extremely high methane emissions and sulfate reduction
rates in PPR wetlands.
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each individual assembly and the merged contig set. (XLSX 13 kb)
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Additional file 4: Figure S1. dsrD phylogenetic affiliation and
abundance per sample. This is the expanded version of Fig. 1. The RAxML
tree was constructed using 206 amino acid sequences. The gene
affiliation was inferred from the best BLASTP hit. The 23 clusters in Fig. 1
are indicated here. Bolded names represent dsrD present in reconstructed
genomes. The yellow, blue, and orange stars indicate dsrD in genomes
represented in Fig. 2. For the heat map, dsrD-containing contig RPKM
values were used as input. The statistical significance of hierarchical
clustering branches is indicated by green stars (pvclust, approximately
unbiased p < 0.05). (PDF 1128 kb)

Additional file 5: Figure S2. Redundancy analyses (RDA) of microbial
and viral populations. Each gene abundance (contig RPKM value) was
used as input for RDA. The genes reductive dsrA and dsrD represent
candidate sulfate-reducing populations, while mcrA, candidate methano-
gens. Forward selection provided the variables to constrain these popula-
tions, shown in the plots and stated below each plot with their
associated RDA statistics. In all plots, P7 samples are indicated by gray cir-
cles, while P8 samples by white/empty circles. (PDF 518 kb)

Additional file 6: Figure S3. dsrA phylogenetic affiliation and
abundance per sample. The RAxML tree was constructed using 162
amino acid sequences. The gene affiliation was inferred from the best
BLASTP hit. For the heat map, the dsrA-containing contig RPKM values
were used as input. The statistical significance of hierarchical clustering
branches is indicated by green stars (pvclust, approximately unbiased p <
0.05). (PDF 391 kb)

Additional file 7: Table S4. Summary of RPKM values, number of viral
OTUs, and Shannon diversity index. A per sample summary of these
values is provided. (XLSX 13 kb)

Additional file 8: Table S5. Summary of microbial genomes. This table
provides a summary of marker genes, completeness, contamination, and
RPKM values for genomes investigated in this study. (XLSX 16 kb)

Additional file 9: Figure S4. Analyses of MtgB genes found in
candidate sulfate reducer genomes. a. This RAxML tree displays the
trimethylamine: corrinoid methyltransferase MttB and the affiliation of
MtgB sequences from this study (in black). Pyrrolysine-containing refer-
ence sequences are shown in orange, and non-pyrrolysine-containing ref-
erence sequences are shown in blue. Reference sequences were
retrieved from Daly et al. and Ticak et al. [34, 56]. b. Analyses of mtgB
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abundances. The RAxML tree was constructed using 28 amino acid se-
quences. The gene affiliation was inferred from the best BLASTP hit. All
sequences were present in reconstructed genomes. For the heat map,
the mtgB-containing contig RPKM values were used as input. The statis-
tical significance of hierarchical clustering branches is indicated by green
stars (pvclust, approximately unbiased p < 0.05). (PDF 311 kb)

Additional file 10: Figure S5. dsrD rank abundance curves in P7 and
P8. The average RPKM value of dsrD-containing contigs in each wetland
is displayed in the y-axis, while each one of the 206 genes is in the x-axis.
Sequences present in genomes are indicated by different colors, with the
genome taxonomic affiliation and name indicated. (PDF 386 kb)

Additional file 11: Table S6. Summary of viral taxonomy. Taxonomic
classification and vContact-based clustering for each viral contig are pro-
vided. (XLSX 81kb)

Additional file 12: Figure S6. Principal component analysis (PCA) of
geochemical variables. Pore water concentrations of sulfate, sulfide,
ferrous iron (Fe II), and methane were retrieved from Dalcin Martins et al.
[9] and used as input values for this analysis. P7 samples are represented
by black circles, while P8 samples by gray circles. (PDF 102 kb)
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