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ABSTRACT OF THE DISSERTATION

Advances in Exponential-family Random Graph Models: Computation, Model Selection,
and Methodology

by

Fan Yin

Doctor of Philosophy in Statistics

University of California, Irvine, 2020

Professor Carter T. Butts, Chair

Networks (graphs) are broadly used to represent relations between entities in a wide range

of scientific fields. Exponential-family random graph models (ERGMs) provide a highly

general way of specifying distributions on graphs, allowing the complex dependence structure

of edges in a network to be specified in terms of local structural properties. This thesis

addresses problems related to three lines of inquiry for ERGMs: faster Bayesian inference

algorithms; comparison of newly proposed and traditional model selection techniques; and

methodological innovation for modeling ensembles of networks.

In Chapter 2 of this dissertation, we present a highly parallel algorithm that enables fast

Bayesian inference on ERGMs. The impetus for this work comes from the facts that con-

ducting Bayesian inference for ERGMs is challenging because of the intractability of both

the likelihood and posterior normalizing factor and auxiliary-variable based Markov Chain

Monte Carlo (MCMC) methods for this problem are asymptotically exact but computation-

ally demanding. We propose a kernel-based approximate Bayesian computation algorithm

for fitting ERGMs, which is easily parallelizable. Through empirical comparisons against

the state-of-the-art approximate exchange algorithm, we show that the proposed algorithm

yields comparable accuracy to the state-of-the-art MCMC approach, the approximate ex-

xiv



change algorithm (Caimo and Friel, 2011), while cutting the wallclock runtime by half with

5 cores, and by 80% with 30 cores.

In Chapter 3 of this dissertation, we carry out simulation studies to compare newly pro-

posed and traditional model selection techniques. This work is driven by the importance of

understanding the strengths and weaknesses of those model selection techniques for ERGMs

that are currently available, including Akaike information criterion (Akaike, 1973), Bayesian

information criterion (Schwarz, 1978), Held-Out Predictive Evaluation (HOPE) (Yin et al.,

2019), Bayes factors (Raftery, 1995) and graphical goodness of fit (Hunter et al., 2008a).

In particular, we focus on the first three techniques, as the calculation of Bayes factor for

ERGMs relies on reversible jump Markov chain Monte Carlo algorithm extension of the

approximate exchange algorithm (Caimo and Friel, 2013), which is hard to implement and

tune; the graphical goodness of fit is more suitable for checking whether a model is adequate

rather than comparing competing models. The simulation studies are carried out under two

scenarios, closed-M (under which the true model is among the set of candidate models) and

open-M (under which the true model is not among the set of candidate models), and we

evaluate the performance of model selection techniques from various aspects covering the

model selection accuracy, predictive deviance and prediction accuracy of edge variables.

In Chapter 4 of this dissertation, we propose a novel methodology that can be used for

modeling the generative processes of ensembles of networks. The motivation of this work is

that ensembles of networks arise in many scientific fields, but there are few statistical tools

for inferring their generative processes, particularly in the presence of both dyadic depen-

dence and cross-graph heterogeneity. To fill in this gap, we propose characterizing network

ensembles via finite mixtures of exponential family random graph models, a framework for

parametric statistical modeling of graphs that has been successful in explicitly modeling the

complex stochastic processes that govern the structure of edges in a network. Our proposed

methodology can also be used for applications such as model-based clustering of ensembles of

xv



networks and density estimation for complex graph distributions. We develop a Metropolis-

within-Gibbs algorithm to conduct fully Bayesian inference and adapt a version of deviance

information criterion for missing data models to choose the number of latent heterogeneous

generative mechanisms. Simulation studies show that the proposed procedure can recover

the true number of latent heterogeneous generative processes and corresponding parameters.

We demonstrate the utility of the proposed approach using an ensemble of political co-voting

networks among U.S. Senators and an ensemble of advice-seeking networks among school

teachers.

xvi



Chapter 1

Introduction

Networks are broadly used to represent relations between entities in a wide range of scientific

fields. Statistical analysis of network data emerged as early as 1930s, and have continued to

offer open problems for current research. The fundamental challenge in statistical modeling

of network data is to capture the complex relational dependence (or dyad dependence),

that is, the existence or strength of a relationship between two entities can affect other

relationships in the network in a complex way.

Exponential-family random graph models (ERGMs) (Holland and Leinhardt, 1981; Frank

and Strauss, 1986; Snijders et al., 2006; Hunter and Handcock, 2006), also known as p-star

models (Wasserman and Pattison, 1996), emerged as one of the main families of models

capable of capturing the complex dependence structure among dyads.

In recent years, ERGMs have found applications in empirical research in many scientific

fields. Examples include the study of large friendship networks (Goodreau, 2007), genetic

and metabolic networks (Saul and Filkov, 2007), disease transmission networks (Groendyke

et al., 2012), conflict networks in the international system (Cranmer and Desmarais, 2011),

the structure of ancient networks in various of archaeological settings (Amati et al., 2019),

1



the structural comparison of protein structure networks (Grazioli et al., 2019b), the effects of

functional integration and functional segregation in brain functional connectivity networks

(Simpson et al., 2011; Sinke et al., 2016; Obando and De Vico Fallani, 2017), and the impact

of endogenous network effects on the formation of interhospital patient referral networks

(Caimo et al., 2017). While addressing very different problems in different empirical settings,

what these studies have in common is a clear methodological commitment to modeling

network mechanisms directly via parametric effects, rather than just attempting to “control

for” unspecified dependence among the observations (e.g., via latent structure).

1.1 Network Data Representation

We let V denote the set of vertices (also referred to as nodes, entities, actors, etc.) in the

network (graph) of interest, assumed known and fixed. The cardinality of the node set, |V|,

is the number of nodes in the network. A dyad is defined as a pair of actors, ordered if

the network of interest is directed, unordered if not. Dyads can take binary values (1 or 0),

indicating the presence or absence of a relation between incident nodes; as well as counts and

even continuous values indicating the strength of the respective relations. For the purposes

of this thesis, we focus on binary relations without loops and multiple edges (i.e., disallow

any relations between a node and itself; and disallow two or more relations between the same

pair of nodes), also known as, simple graphs.

It is often mathematically convenient to represent the network structure via an adjacency

matrix Y . An adjacency matrix for a simple graph of n nodes is a squared matrix of order-

n with binary values (1 or 0) on the off-diagonal elements (the diagonal elements do not

carry any information and are set at zeros by convention, because no loop is allowed). The

adjacency matrices of undirected networks are symmetric while those of directed networks

might not be symmetric.
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Figure 1.1: An example graph of 5 nodes

Figure 1.1 shows a graphical representation of a directed binary network of 5 nodes with the

following adjacency matrix –

Y =



0 1 0 1 0

0 0 1 1 0

1 0 0 0 0

0 0 1 0 1

0 1 0 1 0


The element Yij (1 or 0) represents the presence or absence of a tie from node i to node j.

1.2 Exponential-family Random Graph Models (ERGMs)

Letting Yn be the set of all possible network configurations on n nodes, we write the proba-

bility mass function (pmf) of Y taking a particular configuration y in the form of a discrete
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exponential family as

Pη(Y = y|X;θ) = exp

(
η(θ)ᵀg(y; X)− ψg,η,X,Yn(θ)

)
h(y), y ∈ Yn, (1.1)

where θ = (θ1, · · · , θq) ∈ Rq is a vector of (curved) model parameters, mapped to the natural

parameters by η(θ) = (η1(θ), · · · , ηp(θ)) ∈ Rp. The natural parameters η may depend on

the sizes of the networks and may be non-linear functions of a parameter vector θ. The user-

defined sufficient statistics g : Yn → Rp may incorporate fixed and known covariates X that

are measured on the nodes or dyads. The sufficient statistics incorporate network features

of interests that are believed to be crucial to the social process that gave rise to it (see,

e.g., Morris et al., 2008). Here h defines the reference measure for the model family; often

chosen to be the counting measure on Yn for unvalued graphs with fixed n, other reference

measures can make more sense in different settings. As discussed below, we employ a sparse

graph reference that leads to a mean degree that is asymptotically constant in n. Finally,

the normalizing factor ψg,η,X,Yn(θ) = log
∑

y′∈Yn exp
{
η(θ)ᵀg(y′; X)

}
h(y′) ensures that (1.1)

sums up to 1 over the support Yn. To make notation simpler, we often assume that V is

implicitly absorbed into X.

Exact evaluation of the normalizing factor involves integrating an extremely rough function

over all possible network configurations (2(n
2) non-negative terms for an undirected network

of size n). This cannot be done by brute force except for trivially small graphs (n 6 7),

and the roughness of the underlying function precludes simple Monte Carlo strategies; thus,

alternative approaches that approximate or avoid this calculation are of substantial interest

(see Hunter et al., 2012, for a review).
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1.3 Contributions and Outline

We explore three ways to advance the research in ERGMs modeling framework in this the-

sis. Chapter 2 begins with a review on classical estimation algorithms for ERGMs and

then presents a highly parallel algorithm for fast Bayesian inference for ERGMs. Chap-

ter 3 presents a cross-validation-analogue approach, named Held-Out Predictive Evaluation

(HOPE), for model selection of ERGMs. Chapter 4 extends the ERGMs for modeling ensem-

bles of networks that arise from heterogeneous graph distributions via finite mixture models.

Chapter 5 summarizes my discoveries, points out limitations of some of the methods, and

provides future directions that others could follow, to promote the research of ERGMs and

network modeling.
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Chapter 2

Kernel-based Approximate Bayesian

Computation for ERGMs

2.1 Introduction

Despite remarkable success in network modeling, parametric inference for ERGMs with com-

plex dependence has been a historical challenge and continues to offer open problems for

current research. The central challenge stems from the normalizing factor of the ERGM

likelihood, which involves integrating an extremely rough function over all possible network

configurations. While somewhat ad-hoc methods of estimating parameters of network mod-

els based on path lengths were explored in a pre-ERGM context by e.g. Rapoport (1957);

Fararo and Sunshine (1964); Rapoport (1979), the first work to investigate inference for

random graphs with dependence structure in a fully modern sense (and in ERGM form) was

the iterative scaling algorithm proposed for the p1 model (Holland and Leinhardt, 1981),

now identified as a sub-class of ERGMs where the dependence is within each dyad (i.e.

reciprocity). As an attempt to incorporate higher-order dependence structure, Frank and
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Strauss (1986) introduced the Markov graphs, where edge variables are dependent only if

they share a common node; unfortunately, the accompanying estimation algorithm based

on cumulant approximations was not practical for use in typical settings. A major advance

was made with Strauss and Ikeda’s (1990) adaptation of the maximum pseudolikelihood

estimation (MPLE) strategy of Besag (1974)), in which the likelihood is approximated by

a product of full conditional distributions, to the estimation of ERGMs. MPLE is still in

use to date in some applications, being relatively fast, algorithmically convenient, and able

to provide parameter estimates (albeit sometimes innaccurate ones) for even badly-specified

models. As an approximation to the MLE, however, the MPLE is often biased with respect

to the mean value parameter space (which the MLE is not), less efficient than the MLE,

prone to instability, and very poorly calibrated (Van Duijn et al., 2009). Given these issues,

most subsequent work has focused on attempting to perform maximum likelihood estimation

(MLE). Fitting general ERGMs using maximum likelihood is numerically demanding, as the

likelihood can only be specified up to a parameter dependent normalizing constant, making

the exact calculation of the MLE extremely difficult except for extremely small graphs (Von

et al., 2020) or in cases for which the likelihood function can be analytically simplified (e.g.

homogeneous and inhomogeneous Bernoulli graphs). State-of-the-art frequentist estimation

approaches for ERGMs thus hinge on simulation-based algorithms to obtain high-quality

approximations to the MLE, including

• Markov chain Monte Carlo maximum likelihood estimation (MCMC MLE), originally

introduced by (Geyer and Thompson, 1992), adapted to ERGMs by Handcock (2003)

and Hunter and Handcock (2006).

• Stochastic approximation (SA), originally introduced by Robbins and Monro (1951);

Pflug (1996), adapted to ERGMs by Snijders (2002).

Bayesian inference for general ERGMs is even more challenging and has been historically
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prohibitive, as the parameter dependent normalizing constant in the likelihood does not

cancel out when taking posterior ratios (as is required, e.g., for standard MCMC strategies).

This produces a target distribution which is termed doubly intractable (Murray et al., 2006),

given the intractability of both the likelihood and the normalizing constant of the posterior

density, and rendering conventional sampling schemes (e.g. Metropolis-Hastings algorithms

(Metropolis et al., 1953; Hastings, 1970)) impractical. There have been some recent devel-

opments on asymptotic approximations for ERGMs (Pu et al., 2015; He and Zheng, 2015),

but they are derived for a very specific set of models employing only permutation invariant

subgraph statistics, typically do not converge in the sparse graph regime, and cannot be

employed for models with covariate effects or other inhomogeneities.

The development of Bayesian inference has the potential to offer special advantages vis a vis

several issues arising in typical ERGM use cases. Per standard theories of exponential-family

models (Barndorff-Nielsen, 1978), the MLE for an ERGM’s parameters does not exist (i.e.,

no finite maximizer of the likelihood exists) when the observed statistics for a given model

happen to lie on the relative boundary of the convex hull of possible values of the sufficient

statistics (Handcock, 2003). This issue is not peculiar to ERGMs, and indeed is present in

all discrete exponential families (including trivial cases like the binomial model). However,

typical ERGM specifications often include statistics based on sums of small numbers of

sparse binary variables, creating a high risk of observing at least one extreme statistic.

Though this can be partially “patched” by taking the estimate to be the infinite limit of

the parameter in the direction of recession, the resulting model is overconfident (e.g., it may

predict that ties between two groups not observed to be in contact are not only rare, but

impossible) and lacks well-defined standard errors. By contrast, Bayes estimators under

suitably regular priors are still well-defined in such cases, and will shrink estimates away

from extreme values. As another example, the standard error of the MLE is currently

obtained by employing the inverse of the Fisher information matrix, an approach that is

conventionally justified by asymptotics under replication. In typical use cases, however,
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models are based on only one observed graph, raising questions about the appropriateness of

the underlying theory. While recent results have provided positive justification for using such

approaches for certain classes of ERGMs (Schweinberger et al., 2019), and there is empirical

evidence showing that the resulting estimates of standard error are similar to that yielded

by parametric bootstrap (Fellows and Handcock, 2012), it is attractive to have alternative

frameworks for quantifying uncertainty that do not depend on asymptotic assumptions.

Bayesian answers regarding uncertainty in parameter estimates are well-defined even in the

finite sample case, and hence provide an immediate way of addressing this issue that does not

depend on any particular model specification. As noted, fully Bayesian inference for ERGMs

is a doubly intractable problem, with both the likelihood and the normalizing constant of the

posterior being infeasible to calculate. Early attempts at resolving this issue were based on

conventional Metropolis-Hastings algorithms in which the likelihood ratio at each iteration

is approximated by a linked importance sampler auxiliary variable algorithm (Koskinen,

2008; Koskinen et al., 2010). Caimo and Friel (2011) attempted to improve performance

by proposing an approximate version of the exchange algorithm (Murray et al., 2006) to

draw posterior samples of model parameters. This approximate exchange algorithm has

become the state-of-the-art approach to Bayesian inference for ERGMs, with the potential

to yield high-quality posterior draws, but the algorithm can be very expensive to use due

to the need to serially draw high-quality ERGM simulations in an auxiliary chain at each

iteration. Bouranis et al. (2017) introduce an approximate method to the approximate

exchange sampler by calibrating the posterior samples drawn from a “pseudo-posterior” –

where the exact ERGM likelihood is replaced by a tractable approximation (e.g. the pseudo-

likelihood) – via an affine transformation that requires the existence of the mode of likelihood

(i.e. MLE) and a Monte-Carlo approximation of the gradient and curvature around the

mode of likelihood (i.e. MCMC-MLE if MLE cannot be solved precisely). Pseudo-posteriors

are also employed by Grazioli et al. (2019a), who instead obtain posterior draws using a

“Bayesian bootstrap” procedure; though computationally efficient, this approach is limited
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to cases in which large numbers of graphs are observed from the same generating process.

As these examples suggest, the existing approaches to Bayesian inference for ERGMs are,

broadly speaking, either limited to relatively special cases or computationally expensive,

non-parallelizable, and difficult to extend to new settings (e.g., ERGMs with endogenous

vertex sets (Almquist and Butts, 2014) or inference from non-sufficient statistics) without

substantial re-engineering of the underlying algorithms. This hence remains an area of active

research, with substantial room for new techniques.

In this chapter, we consider another possible direction for fast Bayesian estimation of ERGM

parameters by proposing a parallelizable kernelized approximate Bayesian computation (K-

ABC) algorithm. We show that the proposed algorithm can yield comparable estimates to

the gold-standard approximate exchange sampler, with significantly reduced computational

time when multiple cores are available. We discuss the choice of distance measure, ker-

nel functions, bandwidth selection, and offer some guidance on selecting optimal settings.

We also show the inherent connection between the proposed algorithm and Kernel Bayes’

rule (KBR) (Fukumizu et al., 2011), offering an interpretation of the resulting estimates

from a kernel regression perspective. The KBR interpretation provides a more direct route

to obtaining estimates of posterior moments, and also suggests the opportunity to exploit

developments in machine learning (e.g., kernelized WLS) to obtain improved posterior ap-

proximations.

The outline of the remainder of this chapter is as follows. In Section 2.2, we give an introduc-

tion to the exponential random graph models along with some simulation and computational

methods that serve as building blocks for the proposed method. In Section 2.3, we present

our parallelizable kernelized approximate Bayesian computation (K-ABC) algorithm for fast

Bayesian estimation of ERGMs, and provide implementation details. In Section 2.4, we

describe the application of our approach in the context of two benchmark social network

datasets of varying sizes, showing the accuracy and computational efficiency of our algo-
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rithm compared to approximate exchange algorithm, which is the current ”gold standard”

for Bayesian inference of ERGMs. We discuss possible future extensions of the proposed

algorithm in Section 2.5 and conclude in Section 2.6.

2.2 Classical Estimation and Simulation Algorithms for

ERGMs

In the following subsections we focus on the technical details of the classical estimation algo-

rithms for ERGMs, some of which serve as building blocks and benchmark for the proposed

ABC-based algorithm.

To better illustrate the general idea behind the ERGM-fitting algorithms, we focus on regular

ERGMs (η(θ) = θ) with counting measure h(y) ≡ 1. Therefore, (1.1) becomes

p(y|θ) = exp
{
θᵀg(y)− ψ(θ)

}
, y ∈ Yn (2.1)

where Yn represents the set of all possible configurations of binary networks of size n and

ψ(θ) = log
∑

y′∈Yn exp
{
θᵀg(y′)

}
, which involves the summation of 2(n

2) non-negative terms

for any value of θ, and the covariates X are absorbed into y to further simplify the notations.
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2.2.1 Maximum Pseudolikelihood Estimation

An approximate approach to maximum likelihood estimation for ERGMs is based on the

pseudolikelihood function (Strauss and Ikeda, 1990),

p(y|θ) ≈ fPL(y|θ) =
∏

(i,j)∈D

p(yij|y−ij,θ). (2.2)

where D denotes the set of all pairs of dyads on V. For directed networks, D = {(i, j)|i, j ∈

V, i 6= j}, while for undirected networks, D = {(i, j)|i, j ∈ V, i < j}. Equation (2.2) is

simply the product of full conditional distributions, which has the following form

logit
{
p(yij = 1|y−ij,θ)

}
= log

p(yij = 1|y−ij,θ)

p(yij = 0|y−ij,θ)

= θᵀ
{
g(y+ij)− g(y−ij)

}
= θᵀ∆i,jg(y) (2.3)

where ∆i,jg(y) = g(y+ij)− g(y−ij) are the so-called change statistics associated with the dyad

(i, j), representing the change in sufficient statistics when yij is toggled from 0 (y−ij) to 1 (y+ij)

with the rest of the network remaining unchanged. Following (2.2), the log pseudo-likelihood

can be written as

log fPL(y|θ) =
∑

(i,j)∈D

[yijlogit
{
p(yij = 1|y−ij,θ)

}
+ log

{
1− p(yij = 1|y−ij,θ)

}
]

=
∑

(i,j)∈D

[yijθ
ᵀ∆ijg(y)− log

{
1 + exp(θᵀ∆ijg(y))

}
]. (2.4)

Note that (2.4) is no different from the likelihood of a logistic regression where yij are
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the responses and ∆ijg(y) as the corresponding row in the model matrix, facilitating fast

estimation. For exponential family distributions with log-likelihood `(θ), the estimate of

standard error is based on the inverse of Fisher information matrix I−1(θ), where

I(θ) = Eθ[∇`(θ)∇`(θ)ᵀ] = V arθ[g(Y )]. (2.5)

Note that under the framework of pseudolikelihood, we substitute log fPL(y|θ) for the true

log-likelihood `(θ) ≡ log p(y|θ), where y is omitted for the convenience of notation. In fact,

pseudolikelihood is a special form of composite likelihood (Lindsay, 1988), which is a more

general class of inference functions used to approximate complex likelihoods (see Varin et al.,

2011, for a most recent review). Despite the empirical observations that MPLE generally

causes bias and underestimates the standard errors (Van Duijn et al., 2009) (especially for

models with strong dyadic dependence), it has been the default choice for the initial value

in MCMC MLE. There is also promising work on using bootstrapped MPLE to construct

confidence intervals (Schmid and Desmarais, 2017) for large and sparse networks, as the

MPLE is usually close to MLE in such cases (Desmarais and Cranmer, 2010).

2.2.2 Simulation Methods

More advanced estimation techniques, including simulation-based methods for finding max-

imum likelihood estimates, as well as Bayesian methods, require sampling from the ERGM

distribution. To simulate from p(y|θ), Snijders (2002) propose to use a Metropolis-Hastings

sampling procedure: given a proposal y′ from density q(y′|y), accept with probability

α = min

(
1,
q(y|y′)p(y′|θ)

q(y′|y)p(y|θ)

)
= min

(
1,
q(y|y′)
q(y′|y)

exp
{
θᵀ(g(y′)− g(y))

})
. (2.6)
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Based on (2.3), note that if we restrict q(y′|y) > 0 only if
∑

(i,j)∈D 1(y′ij 6= yij) equals one, i.e.

only the networks that can be constructed by toggling exactly one dyad from y are allowed to

be proposed, then g(y′)− g(y) reduces to ±∆ijg(y) with the sign depending on the direction

of the toggle, resulting in a Gibbs sampling algorithm. To avoid unnecessary computational

cost spent on highly improbable graphs, the starting point y(0) of the sampling is usually

set as the observed network yobs (if available). Furthermore, as opposed to the basic MCMC

algorithm in which each dyad is selected to be toggled uniformly at random, the adoption

of asymmetric proposals have been demonstrated to be more favorable for sparse graphs.

For example, the “TNT”(tie-no-tie) sampler implemented as default in the ergm package for

R (Morris et al., 2008), while the “OTNT”(open triangle-tie-no tie) (Wang and Atchadé,

2014) has been shown to improve performance in clustered networks and the improved fixed

density (IFD) sampler has been shown to be a promising tool for large, sparse networks

(Byshkin et al., 2016). Specifically, the “TNT” sampler selects an tied dyad (i.e., realized

edge) with probability 1/2 (instead of the graph density, which is close to 0 for a sparse

graph) at each iteration, which often leads to better mixing in the typical case of ERGMs

that concentrate probability mass on sparse graphs. The above MCMC routines produce a

sequence of networks
{
y(0), · · · , y(T )

}
, of which the initial part is highly dependent on the

starting point (network) and hence is usually discarded as burn-in. These are referred to

as the auxiliary iterations required before a simulated network can be claimed as a random

draw from p(y|θ). Exact sampling from ERGMs is also possible at a higher computational

cost (Butts, 2018), and non-MCMC approximate samplers have also been proposed (Butts,

2015).

2.2.3 Approximate MLE via Simulation-based Algorithms

The maximum likelihood estimation for general ERGMs is currently based on simulation-

based algorithms, of which the two most prevalent approaches are Markov chain Monte Carlo
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maximum likelihood estimation (MCMC MLE) and stochastic approximation (SA).

Given observed network yobs, SA finds MLE by solving the moment equation

∇θlogp(yobs|θ) = g(yobs)− Eθ[g(Y )] = 0, (2.7)

where ∇θlogp(y|θ) denotes the gradient of the log-likelihood function logp(y|θ) with respect

to θ. Snijders (2002) proposed solving Equation (2.7) using stochastic approximation (Rob-

bins and Monro, 1951; Pflug, 1996). The iteration starts with an initial guess θ0 (usually

MPLE), the stochastic approximation method updates θt to θt+1 as follows,

θt+1 = θt − atD̂−1t (g(Yθt)− g(yobs)), (2.8)

where D̂t is an approximation of the Hessian of the log-likelihood function in the neighbor-

hood of θt, at is a sequence of positive numbers approaching 0 as t increases, and Yθt is

a network sample from the ERGM with parameter θt by MCMC methods. Rather than

solving the moment equation (2.7), MCMC MLE (Geyer and Thompson, 1992) makes more

efficient use of MCMC samples as it targets maximization of the log ratio of the likelihoods,

`(θ) − `(θ0), where θ0 is a fixed parameter value that should ideally be close to the true

MLE θ̂. Specifically, Handcock (2003); Hunter and Handcock (2006) developed a version of

MCMC MLE for ERGMs as follows

LRθ0(θ) ≡ `(θ)− `(θ0) =(θ − θ0)ᵀg(yobs)− (ψ(θ)− ψ(θ0))

=(θ − θ0)ᵀg(yobs)− logE
[

exp
{

(θ − θ0)ᵀg(Y )
}]

≈(θ − θ0)ᵀg(yobs)− log

[
1

m

m∑
i=1

exp
{

(θ − θ0)ᵀg(y(i))
}]

,

(2.9)

where
{
y(1), · · · , y(m)

}
are random draws from p(y|θ0) via MCMC as introduced in 2.2.2. It
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is worth noting that long burn-in and high thinning factor are required to obtain nearly inde-

pendent and representative samples and thus a better approximation to LRθ0(θ). In practice,

θ0 is often taken to be the easy-to-calculate MPLE, while novel approaches for finding a bet-

ter θ0 have been proposed in recent years, including the partial stepping technique (Hummel

et al., 2012) and a contrastive divergence (CD,Hinton (2002))-based technique adapted to

ERGMs by Krivitsky (2017).

The implementation of the above two algorithms is publicly available in ergm package (Hunter

et al., 2008b; Handcock et al., 2008) from the Statnet suite of R packages and software

PNet(Wang et al., 2009).

2.2.4 Bayesian Inference for ERGMs

We consider the Bayesian treatment of ERGM inference as illustrated in Koskinen (2004).

Given observed network yobs, and prior distribution π(θ) placed on θ, the full posterior

distribution of θ is

π(θ|yobs) =
p(yobs|θ)π(θ)∫
p(yobs|θ)π(θ)dθ

∝ p(yobs|θ)π(θ) (2.10)

where
∫
p(yobs|θ)π(θ)dθ is the marginal probability of data, which is often intractable as a

(potentially) high-dimensional integral for general models.

Standard MCMC approaches, e.g. the Metropolis-Hastings (MH) algorithm can address

intractable normalizing constants of a posterior density as long as the posterior density of

interest is known up to a constant. However, the likelihood itself is only known up to a

parameter dependent constant ψ(θ), and hence leads to the so-called “doubly intractable”

problem, which cannot be dealt with using naive implementation of MH or other conventional
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MCMC algorithms designed for models with tractable likelihood functions. This gap has

led to the development of a body of MCMC approaches that by design generate samples

from doubly intractable posterior densities, most of which rely on augmenting the posterior

density so that the augmented posterior probability distribution is easy to sample from.

The exchange algorithm has evolved as a popular approach for tackling problems with in-

tractable likelihood such as the Ising and Potts models (Møller et al., 2006; Murray et al.,

2006). The exchange algorithm samples from the augmented distribution,

π(θ′, y′,θ|yobs) ∝ p(yobs|θ)π(θ)q(θ′|θ)p(y′|θ′) (2.11)

where p(yobs|θ) and p(y′|θ′) correspond to the same distribution but with different parameter

values. The distribution q(θ′|θ) is any distribution for augmented variable θ′ which might

depend on θ, for example, a random walk centered at θ. Sampling auxiliary variables on

an extended state space allows the normalizing constants in likelihood to be canceled in the

Metropolis-Hastings acceptance probability,

α = min

(
1,
p(θ′)p(yobs|θ′)q(θ|θ′)p(y′|θ)

p(θ)p(yobs|θ)q(θ′|θ)p(y′|θ′)

)
= min

(
1,
p(θ′)q(θ|θ′)
p(θ)q(θ′|θ)

exp
{

(θ′ − θ)ᵀ(g(yobs)− g(y′))
})

, (2.12)

which is tractable and therefore the Metropolis-Hastings type algorithm operating on the

augmented state space is applicable to general ERGMs by design. However, the exact ex-

change algorithm requires exact simulation of the auxiliary variable y′ from the likelihood,

which is typically infeasible for general ERGMs. The approximate exchange algorithm (AEA)

of Caimo and Friel (2011) modifies the original exchange algorithm by substituting MCMC-

based approximate samples for exact draws. Specifically, the “tie-no-tie” (TNT) sampler

(Morris et al., 2008) was advocated as a more efficient approach to simulate from ERGM

likelihood at each MCMC iteration, according to the implementation in bergm function from
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the R package Bergm (Caimo and Friel, 2014). The default implementation of approximate

exchange algorithm in Bergm package uses the idea of adaptive direction sampling (ADS)

method (Gilks et al., 1994; ter Braak and Vrugt, 2008) from Population Monte Carlo to

propose “parallel ADS” move to improve the mixing, and the default number of chains is

set to be twice the number of model parameters.

2.3 Approximate Bayesian Computation for ERGMs

In this paper, we focus on alternatives to exchange sampling based on kernel methods and

approximate Bayesian computation. ABC has emerged as a powerful tool for (approxi-

mate) Bayesian analysis of complex models for which the likelihood p(y|θ) is unavailable or

computationally intractable but where simulation of Y |θ is feasible (Pritchard et al., 1999;

Beaumont et al., 2002; Marjoram et al., 2003; Sisson and Fan, 2011; Marin et al., 2012;

Sisson et al., 2018).

In approximate Bayesian computation (ABC), inference is concerned with the partial pos-

terior distribution π(θ|sobs) (Doksum and Lo, 1990),

π(θ|sobs) =
p(sobs)|θ)π(θ)∫
p(sobs)|θ)π(θ)dθ

, (2.13)

where sobs ≡ S(yobs) represents a vector of d-dimensional summary statistics computed from

the observed data yobs. The classical rejection ABC (R-ABC) (see Algorithm 1) approximates

the partial posterior distribution π(θ|sobs) by

πABCh (θ|sobs) ∝
∫
1(
∥∥∥s∗ − sobs∥∥∥ 6 h)p(s∗|θ)π(θ)ds∗. (2.14)
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and proceeds by first drawing N values θ(i), i = 1, · · · , N from the prior distribution π and

then simulating data from the likelihood p(y|θ(i)), retaining those θ(i) with
∥∥∥s(i) − sobs∥∥∥ 6 h

(h > 0, usually a sufficiently small number to control the precision of the approximation)

under some distance metric ‖·‖. The underlying idea (based on the work of Rubin (1984))

is that θ(i) is unlikely to have generated the observed data, if
∥∥∥s(i) − sobs∥∥∥ is large. Such

algorithms converge to the exact posterior when h→ 0 and s contains all sufficient statistics,

because the posterior π(θ|sobs) can be regarded as a slice of the joint distribution π(θ, s)

at s = sobs. A somewhat deeper observation (which we will exploit below) is that R-ABC

is a form of kernel method, in which a uniform kernel with respect to the metric ‖·‖ with

bandwidth h used to perform a simulation-based analog of kernel regression (predicting

posterior quantities at sobs). This informal intuition (which can be made precise, see e.g.

Fukumizu et al., 2011) suggests a number of potential improvements to the base algorithm,

some of which we will leverage here.

In practice, despite the fact that the sampling step of R-ABC is embarrassingly parallel, a

naive implementation of R-ABC can perform poorly given limited computational resources.

In the ERGM context, two immediate problems arise:

• Under a weakly informative prior, an extremely large proportion of sampled parameters

may generate graphs nowhere close to the observed graph. For example, a prior such

as a multivariate Gaussian centered at zero with large standard deviations places most

of its mass in unrealistic regions of the parameter space: e.g. positive values of the

parameter associated with the edges term in ERGMs are rarely seen (when there is

no edgecov), as most real-world network data are sparse (Kolaczyk and Krivitsky,

2015); and large positive values of parameters associated with dependence terms such

as k-stars, triangles, or shared partners can lead to degenerate probability distribution

on graphs that are not useful for network modeling (Handcock, 2003; Schweinberger,

2011). R-ABC algorithms can be very inefficient under such prior specifications, as
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the feasible region for realistic real-world networks in the parameter space is often very

thin and irregularly-shaped (Handcock, 2003; Rinaldo et al., 2009).

• The distance metric ‖·‖ and the rejection threshold h are determined based on the

so-called “reference table” (simulated parameter-data pairs obtained from a pilot run).

The former is usually chosen as a version of weighted Euclidean distance with the

weights being selected to normalize the summary statistics so that they vary over

roughly the same scale, preventing the distance being dominated by the most variable

statistic. The threshold h controls the trade-off between runtime and approximation

accuracy, and for R-ABC it is usually selected using the 1% quantile of the distance

computed based on the pilot run. However, the relatively high cost of ERGM simula-

tion can make such algorithm tuning fairly expensive, especially where sampling must

be based on an imprecise prior (which, as described above, will lead in most cases to

degenerate or otherwise non-viable graph distributions).

Algorithm 1 Rejection-ABC (R-ABC) algorithm (Pritchard et al., 1999)

Require: Observed summary statistics sobs = S(yobs), data generating mechanism p(y|θ),
prior π(θ)

Input: Summary statistics s = S(y)
A desired sample size N > 0.
A distance metric ‖·‖
A threshold parameter h > 0.
Burn-in for MCMC-based simulation for the likelihood (default B = 2n2, where n

is the network size)
Compute observed summary statistics sobs = S(yobs)

1: while i 6 N do
2: θ′ ∼ π(θ)
3: y′ ∼ p(y|θ′) (burn-in for the MCMC-based simulation B)
4: s′ = S(y′)
5: if

∥∥s′ − sobs∥∥ 6 h then

6: Set θ(i) = θ′, i = i+ 1
7: end if
8: end while

Output: A set of parameter values
{
θ(i)
}N
i=1

with equal weights, drawn from πABCh (θ|sobs)
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Given these issues, a number of adaptations are required to make ABC feasible for ERGM

inference, Here, we provide a strategy for approximate Bayesian inference for ERGM param-

eters under two different scenarios. We first consider the most common scenario, in which we

either observe the full network or the set of sufficient statistics is from it, developing a highly

parallel algorithm for fast Bayesian inference. In the second scenario, only a subset of the

sufficient statistics can be observed (potentially alongside other, proxy statistics), which is

typical for sampled, incompletely reported, or obfuscated network data. While conventional

estimation schemes are difficult to apply in these cases without extensive re-engineering, we

show that our ABC approach easily accommodates them. In both cases, we propose a ver-

sion of a kernelized ABC-MCMC algorithm for posterior simulation, though we also discuss

KBR-style approaches for efficient posterior moment estimation.

2.3.1 Kernel ABC Importance Sampling Algorithm

To improve the sampling efficiency when only weakly informative priors are available, we

propose to sample from an importance density rather than the prior. We also consider al-

ternative kernels to the standard uniform kernel employed in the default R-ABC algorithm.

This leads to a kernel ABC importance sampling algorithm (K-ABC-IS), shown here as Algo-

rithm 2. The easy-to-calculate MPLE is a natural choice for constructing an initial proposal

distribution when the full network is available. Specifically, we employ a location-scale family

centered at the MPLE, with a scale matrix based on the Hessian of the log pseudolikelihood.

Because the curvature of the pseudolikelihood about the MPLE generally underestimates

the variability of the parameters, we use an “inflated” multivariate Student’s t proposal Tν

with a relatively small degree of freedom parameter (e.g. ν = 4) whose scale matrix is the

inverse Hessian matrix of the negative log pseudolikelihood at the MPLE, multiplied by a

scaling factor ω > 1 to ensure that the sampled parameters are not confined to an overly

narrow region near the MPLE. With the parameters sampled from the importance density,
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we are more likely to generate graphs that are more similar to the observed graph, hence

improving sampling efficiency. (Equivalently, we expect that–so long as the data is reason-

ably informative, and under reasonable choices of priors–substantial posterior mass will be

concentrated in the vicinity of the MLE, and hence typically the MPLE. Use of a heavy-

tailed proposal “hedges” this expectation against the possibility that the MPLE is a poor

initial guess, and ensures adequate weight to majorize the tails of the posterior distribution.)

Algorithm 2 presents the kernel ABC importance sampling algorithm. Intuitively, the key

idea is to “doubly re-weight” the sampled parameters by both their importance ratio versus

the prior (i.e., how likely the draw would be to arise under the prior versus the proposal)

and their likelihood of generating graphs that are similar to the observed graph in terms of

the summary statistics. As a metric on the space of statistics we employ the Mahalanobis

distance; it serves as a natural choice because it takes both the variability and correlation of

the summary statistics into consideration (an important factor, since many typical ERGM

statistics are highly correlated). We here suggest a Gaussian kernel due to the facts that it

is a non-compact kernel and yields fairly efficient estimator for smooth distributions. The

bandwidth, h, is here chosen based on a simple heuristic for kernel density estimation (Silver-

man, 1986) applied to the the computed Mahalanobis distance d(i), i = 1, · · · , N distribution.

It should be noted that we do not reject samples in this algorithm, instead assigning them

different weights according to both importance ratio and kernel weights. We have found that

the proposed Algorithm 2 is an improvement over ABC with smooth rejection (Beaumont

et al., 2002) in the ERGM setting. It is worth noting that more sophisticated approaches for

bandwidth selection exist but can increase the computational cost; as discussed in detail in

later sections, our experience has suggested that the heuristic bandwith provides comparable

performance to more elaborate schemes with much greater computational efficiency.

Note that the sampling step in Algorithm 2 is embarrassingly parallel; since this accounts

for the overwhelming majority of the algorithm’s computational cost, dramatic performance

enhancements are possible on multi-core hardware. By contrast, the approximate exchange
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algorithm must be run serially, and cannot take advantage of this level of parallelism. On the

other hand, the exchange algorithm has the advantage of exploring the parameter space in

a more controlled manner, guided by the likelihood ratio and prior ratio defined in (2.12) at

each iteration, and in our experiments has proved to be slightly more efficient than K-ABC-

IS when the latter is run on a single core. When multiple cores are available, K-ABC-IS can

be substantially faster.

Algorithm 2 K-ABC importance sampling algorithm (K-ABC-IS)

Require: Observed summary statistics sobs = S(yobs), data generating mechanism p(y|θ),
prior π(θ)

Input: A desired sample size N > 0.
A parametric family for proposal distribution (e.g.multivariate Student’s t proposal

distribution, Tν , degree of freedom ν).
A scale factor ω
Burn-in for MCMC-based simulation for the likelihood (default B = 2n2, where n

is the network size)
A distance metric ‖·‖ (e.g. mahalanobis distance)
Smoothing kernel Kh(·) and scale parameter h > 0.
(Optional) θ̂MPLE, I(θ̂MPLE)

1: Initialization: µ̂, Σ̂ (default µ̂ = θ̂MPLE, Σ̂ = ωI−1(θ̂MPLE)),
set f(θ) ≡ T4(µ̂, Σ̂)

2: for i = 1, 2, · · · , N do

3: θ(i) ∼ f(θ), (unnormalized) importance weight w
(i)
I = π(θ(i))

f(θ(i))

4: y(i) ∼ p(y|θ(i)) (burn-in of the MCMC-based simulation B)
5: s(i) = S(y(i))
6: end for
7: W = 1

N

∑N
i=1(s

(i) − s̄)(s(i) − s̄)ᵀ, where s̄ = 1
N

∑N
i=1 s

(i)

8: d(i) = (s(i) − sobs)ᵀW−1(s(i) − sobs) for i = 1, 2, · · · , N
9: Perform univariate kernel density estimate on d(i), i = 1, 2, · · · , N to obtain a (heuristic)

bandwidth h, and fix h as the scale parameter for the smoothing kernel Kh(·), kernel

weight w
(i)
K ∝ Kh(d

(i)).

10: Assign weight to θ(i) as w̃(i) ∝ w
(i)
I w

(i)
K , and the corresponding normalized w(i)

Output: A set of parameter values
{
θ(i)
}N
i=1

with weights w(i), drawn from πABCh (θ|sobs)

Based on the weighted parameters returned by Algorithm 2, we estimate the partial posterior
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mean of any scalar function of model parameters, a(θ), E[a(θ)|sobs] by the kernel estimate

m0,a =
N∑
i=1

w(i)a(θ(i))

=

∑N
i=1 a(θ(i))w

(i)
I w

(i)
K∑N

i=1w
(i)
I w

(i)
K

=

∑N
i=1 a(θ(i))w

(i)
I Kh(d

(i))∑N
i=1w

(i)
I Kh(d(i))

. (2.15)

Note that (2.15) is similar to the Nadaraya-Watson type estimator (Nadaraya, 1964; Watson,

1964), which can be found by minimizing the weighted sum of squared residuals

WSSR0 =
N∑
i=1

{
a(θ(i))− α

}2

w(i) (2.16)

By letting a(θ) = θj and θiθj, i, j = 1, · · · , p, we can obtain the estimate for posterior mean

and posterior second moments, hence yielding a natural estimate of posterior variance based

on the identity Var[θj|sobs] = E[θ2j |sobs] − (E[θj|sobs])2. From a non-parametric regression

perspective, the proposed estimator in (2.15) corresponds to a locally constant estimate, and

more intricate estimation of the posterior moments might be achieved by using locally linear

or polynomial estimators (Blum, 2010) or any state-of-the-art machine learning techniques

as long as the optimization is with respect to the squared error loss (e.g., kernelized WLS).

Note that when the sufficient statistics g(y) are a subset of the selected summary statistics,

the resulting estimator targets the true posterior mean and standard deviation.

The construction of posterior intervals is straightforward given weighted samples
{

(θ(i), w(i))
}N
i=1

.

For j = 1, · · · , p, the general procedure is as follows:

1. Find the empirical cumulative distribution function (ECDF) as F̂j(x) = 1
N

∑N
i=1 1(θ

(i)
j 6

x).
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2. Obtain a smooth approximation F̃j(x) of the ECDF F̂j(x) using monotonic spline (e.g.

splinefun function in R, with method set as “monoH.FC”).

3. Find the q-th quantile of F̃j(x) by minimizing the squared error.

To obtain independent samples from the joint posterior with equal weights, it is possible

to use sampling-importance resampling (SIR) techniques (Rubin, 1987, 1988). The resam-

pling step can be conducted with or without replacement, but the latter should be favored

when only a few large weights and many small weights are present (Gelman et al., 1995).

Improved SIR with faster convergence rates and bias-reduced SIR were proposed and stud-

ied by Skare et al. (2003). The SIR-based techniques have proved to be useful for ABC

algorithms producing weighted samples (see, e.g. Mengersen et al., 2013; Zhu et al., 2016).

The theoretical validity of the proposed ABC algorithm can be justified from an approximate

likelihood perspective (Karabatsos and Leisen, 2018), as it implicitly works with a kernel

density estimate of the likelihood, i.e.

πABCh (θ|sobs) ∝
∫
Kh(
∥∥∥s∗ − sobs∥∥∥)p(s∗|θ)π(θ)ds∗. (2.17)

In particular, in the typical ERGM case s corresponds to the sufficient statistics of the

proposed model, and hence πABCh can closely approximate the true posterior for appropriate

choice of Kh. As we show below, a Gaussian kernel appears to work well for the cases studied

here.
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2.3.2 Kernel ABC Adaptive Importance Sampling Algorithm

We consider the idea of adaptive importance sampling (AIS) (see,e.g. Ortiz and Kaelbling,

2000; Liu, 2008; Pennanen and Koivu, 2006; Rubinstein and Kroese, 2004) where the initial

proposal distribution is not good enough. This idea can be particularly useful when MPLE is

suspected to be heavily biased (e.g. network size is small and with strong dyadic dependence)

or even not available (e.g. fitting egocentrically sampled data with terms involving counts

of triangles or higher-order cycles). Algorithm 3 describes the K-ABC adaptive importance

sampling (K-ABC-AIS) algorithm, in which both the proposal distribution and distance

function are updated iteratively based on the points sampled in most recent step. Prangle

(2017) gave some theoretical support for similar algorithms with compact smoothing kernels.

2.3.3 Proposal Distributions for Importance Sampling

Similar to the importance of proposal distributions in MCMC (Roberts et al., 1997; Rosen-

thal, 2011), our proposed algorithms can greatly benefit from a well-chosen proposal distribu-

tion. Our focus here is on probability densities constructed from a common yet flexible dis-

tributional family, the multivariate Student’s t distribution, Tν(µ,Σ). The easy-to-calculate

MPLE is a natural choice for µ, as it is typically not very far from the high density region

(or, at minimum, likely to be closer than the prior mean). To mitigate the potential issue

caused by an overly confident estimate of uncertainty, we consider a relatively small degree

of freedom ν = 4 and use a scale factor ω = 4 to inflate the nominal covariance matrix given

by MPLE. When using adaptive importance sampling, we advocate the use of a sequence

of gradually decreasing scaling factors ω1, · · · , ωT so as to avoid wasting too many draws

in low-density regions. Similarly, increasing the degree of freedom in later rounds of impor-

tance sampling is also an option. One potential pitfall for K-ABC-AIS is to split the fixed

computational budget into multiple, very thin portions, which can in turn lead to an even
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Algorithm 3 K-ABC adaptive importance sampling algorithm (K-ABC-AIS)

Require: Observed summary statistics sobs = S(yobs), data generating mechanism p(y|θ),
prior π(θ)

Input: Kh(·) (h > 0), B, distance metric ‖·‖ (e.g. mahalanobis distance), Tν
Number of rounds of importance sampling T .
Desired sample sizes Nt > 0, t = 1, · · · , T .
Scale factors ωt > 0, t = 1, · · · , T
(Optional) θ̂MPLE, I(θ̂MPLE)

1: Initialization: Let t = 1 and find µ̂1, Σ̂1 (default µ̂1 = θ̂MPLE, Σ̂1 = ω1I
−1(θ̂MPLE)),

set f1(θ) ≡ Tν(µ̂1, Σ̂1)
2: for t = 1, · · · , T do
3: for i = 1, · · · , N do

4: θ
(i)
t ∼ ft(θ), (unnormalized) importance weight w

(i)
I,t =

π(θ
(i)
t )

f(θ
(i)
t )

5: y
(i)
t ∼ p(y|θ(i)t ) (burn-in of the MCMC-based simulation B)

6: s
(i)
t = S(y

(i)
t )

7: end for
8: Wt = 1

N

∑N
i=1(s

(i)
t − s̄)(s

(i)
t − s̄)ᵀ, where s̄t = 1

N

∑N
i=1 s

(i)
t

9: d
(i)
t = (s

(i)
t − sobs)ᵀW−1

t (s
(i)
t − sobs) for i = 1, · · · , N

10: Perform univariate kernel density estimate on d
(i)
t , i = 1, 2, · · · , N to obtain a (heuris-

tic) bandwidth ht, and fix ht as the scale parameter for the smoothing kernel Kht(·)
11: Assign weights to θ

(i)
t as w̃

(i)
t ∝ w

(i)
I,tw

(i)
K,t, and the corresponding normalized w

(i)
t

12: µ̂t =
∑Nt

i=1w
(i)
t θ

(i)
t , Σ̂t = ωt

∑Nt

i=1w
(i)
t (θ

(i)
t − µ̂t)(θ

(i)
t − µ̂t)ᵀ.

13: if t<T then
14: ft+1(θ) ≡ T4(µ̂t, Σ̂t)
15: end if
16: end for

Output: A set of i = 1, · · · , NT samples
{
θ(i)
}NT

i=1
with weights w

(i)
T , drawn from

πABCh (θ|sobs)
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worse proposal distribution than the one initially suggested (e.g., if the first round yields

an estimate that is worse than the MPLE itself due to insufficient sampling). We note that

samples from previous rounds can be retained in subsequent calculations, provided that their

importance weights are handled appropriately; otherwise, however, our observation has been

that using more than two to three rounds of refinement yields little benefit, and hence it is

more efficient to split a fixed sampling budget into two (or at most three) waves of sampling

than in a larger number. We describe the results of a simulation experiment investigating

the impact of sample size below.

2.3.4 Bandwidth Selection

A key parameter determining the accuracy of inference via ABC is the bandwidth, h. If s

is sufficient for θ, and h → 0 we can obtain an arbitrarily good approximation to the true

posterior; however, this insight is of relatively little practical use, since exact matching of

simulated to observed statistics is an event of vanishingly small probability. A good working

bandwidth thus strikes a balance between accuracy in approximating the target distribution

(or at least its first several moments) and computational efficiency. As introduced in 2.3.1,

we find that a simple bandwidth heuristic calculated on the distribution of the simulated

Mahalanobis distances can yield satisfactory and stable performance at very low cost. To

achieve a higher accuracy on the estimation of posterior moments, alternative approaches

that might better serve the purpose in principle include cross validation (CV), or k-nearest

neighbor CV (kNN CV), given that the goal is to estimate E[a(θj)|sobs], j = 1, · · · , p at the

observed summary statistics sobs. Bandwidths can also be chosen for each dimension, albeit

with modification of the kernel and distance metric. However, preliminary experiments using

these methods suggested that bandwidth selection using these approaches was often unstable,

and did not yield systematic improvement on the heuristic option. At the same time, these

methods were substantially more computationally expensive than the heuristic, increasing
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estimation time. Per-statistic bandwidth selection methods also create challenges for tasks

requiring the same weight to be applied to all elements of a draw (e.g., posterior sampling, as

opposed, e.g., to estimation of marginal posterior moments), as orthogonal kernels lose the

advantage of the Mahalanobis distance in accounting for correlations among statistics (and

thereby efficiency) and correlated kernels are difficult to calibrate. Because we found more

sophisticated bandwidth selection schemes to add cost without improving performance, we

do not pursue them further here. However, it is plausible that better procedures are possible,

and we regard this as an open problem.

2.4 Applications

We apply our approach to two benchmark social network datasets of varying sizes. Ap-

proximate exchange algorithm (AEA) was considered to be the current ”gold-standard” for

Bayesian inference of ERGMs. Hence, to illustrate the accuracy and computational efficiency

of our approach, we compare the proposed algorithm with AEA. All computations in this

paper are implemented in R (R Core Team, 2020) on a computing server (96GB RAM, with

4 Intel Xeon E5-2690v2 processors, operating at 3.00GHz, with 10 processing cores in each)

– we use software suite statnet (Handcock et al., 2008) to simulate networks from ERGMs,

and we implement AEA using the R package Bergm (Caimo and Friel, 2014). (Note that

Bergm also uses statnet for MCMC simulation, and hence its implementation and those of K-

ABC methods employed in this paper are directly comparable.) The R code to implement the

algorithm and the data are available from https://github.com/fyin-stats/K_ABC_ERGMs.
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Figure 2.1: Karate club friendship network

2.4.1 Karate Club Network

The Karate club data (Zachary, 1977) represents a friendship network between 34 members

in a US university karate club in the 1970’s. This network consists of 78 undirected edges as

presented in Figure 2.1, and the interest lies on the effect of triad closure. We consider the op-

timal model specification identified in Bouranis et al. (2018), which is g(y) = (g1(y), v(y, φ)).

Specifically, g1(y) =
∑

i<j yij is the total number of edges in the network and v(y, φ) is the

geometrically weighted edgewise shared partner(GWESP) statistic (Hunter and Handcock,

2006) defined as

v(y, φ) = eφ
n−2∑
k=1

{
1− (1− e−φ)k

}
EPk(y)

where EPk(y) is the number of connected pairs that have exactly k common neighbors and

parameter φ controls the decreasing rates of weights placed on higher order terms. The

GWESP statistic is a common choice for modeling the tendency of forming local clusters

in a network, and it has intuitive interpretation as there is diminishing positive return on

the odds of an edge for each additional shared partner (e.g. one more common friend in the

context of friendship network).
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We obtain the “ground truth” based on a long AEA run consisting of 4 population chains

(burn-in period 2500, 12500 main iterations for each chain) with a “conservative” burn-in

for MCMC-based simulation, e.g., 1 × 105, which takes 4373.7 seconds (1.215 hours) to

fit. While acknowledging that a holistic comparison between K-ABC and AEA sampler

cannot be easily conducted due to algorithmic differences, we here provide a more limited

comparison of AEA versus the K-ABC approach for typcal desiderata within a basic test

case. When the total size of proposed samples is fixed, prior theory leads us to expect the

AEA to outperform K-ABC. However, K-ABC can base inference on sample sizes that scale

with the number of available cores given fixed computational time, as the sampling step of

K-ABC is embarrassingly parallel. (Equivalently, given a fixed number of simulated graphs,

wallclock time can be reduced under K-ABC by employing a larger number of cores.) Taking

these facts into consideration, we consider the following settings,

• K-ABC-IS : One round of importance sampling, sample size: 32000, degree of freedom

ν = 4, scale factor ω = 4, burn-in for MCMC-based simulation B = 104.

• K-ABC-AIS : Two rounds of importance sampling, sample size: (8000,24000), degree

of freedom ν1 = 4, ν2 = 4, scale factor ω1 = 4, ω2 = 2, burn-in for MCMC-based

simulation B = 104.

• AEA : 4 population chains, each chain with burn in = 500, main iters = 1500, auxiliary

burn-in (i.e. burn-in for MCMC-based simulation) = 104

Note that we allow the K-ABC-IS and K-ABC-AIS to draw a total of 32000 samples, which

is 4 times the total sample size in AEA. To ensure the simulated networks used in these three

algorithms are of the same quality, we fix the burn-in period of MCMC-based simulation to

be 10000. Under the above settings, all the algorithms are run 20 times, and their results are

summarized in Table 2.1. Given the stochastic nature of these algorithms, the results differ

from run to run, but overall they are very close to the ground truth. K-ABC-AIS and AEA
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Table 2.1: Comparison between K-ABC and AEA. K-ABC algorithms (K-ABC-IS, K-ABC-
AIS) are run on 30 cores. Wallclock runtime reported is the average across 20 runs. The
ground truth value is obtained based on a long AEA run.

Ground truth MAE RMSE Runtime (secs)
K-ABC-IS (θ1) -3.25 0.09 0.11 14.2
K-ABC-IS (θ2) 1.10 0.07 0.08 14.2
K-ABC-AIS (θ1) -3.25 0.03 0.03 14.8
K-ABC-AIS (θ2) 1.10 0.02 0.03 14.8
AEA (θ1) -3.25 0.02 0.03 94.4
AEA (θ2) 1.10 0.02 0.02 94.4

Figure 2.2: Estimated marginal posterior distribution of θ. The grey line and grey dotted
line represent the MLE and MPLE, respectively.

yield essentially identical performance with respect to the estimation of posterior means, but

the runtime of K-ABC-AIS is almost one seventh of that for AEA. We also note that the

K-ABC-AIS performs better than K-ABC-IS, as the former gives more accurate posterior

mean estimates, indicating that the adaptive scheme is indeed helpful for producing a better

proposal distribution.

Figure 2.2 shows that K-ABC matches closely to each marginal posterior distribution from

the ground truth. It is worth mentioning that the posterior marginal density for K-ABC is

constructed based on unweighted samples obtained using sampling-importance resampling

(SIR) with replacement.
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2.4.2 Faux Mesa High School Network

The Faux Mesa High school network represents a total of 203 undirected friendship relations

in a synthetic high school of 205 students based on an observed high school in the western

U.S. (Handcock et al., 2008), and it is widely used as a realistic test network for statistical

procedures. Figure 2.3 shows that the network is sparse and a large proportion of edges are

formed between students in the same grade, suggesting a strong homophily effect on grade.

The presence of some local clusters is indicative of the bias towards the formation of triangles

(i.e. transitivity effect). Bearing the observed facts in mind, we consider a model with the

following 3 statistics:

g1(y) =
∑
i<j

yij g2(y) =
∑
i<j

yij1(xi = xj)

g3(y) = v(y, φ)

where xi represents the grade of i-th individual and 1(·) is the indicator function, hence

g2(y) counts the total number of edges connecting individuals from the same grade. v(y, φ)

is the geometrically weighted edgewise shared partner (GWESP) statistic

w(y, φ) = eφ
n−2∑
k=1

{
1− (1− e−φ)k

}
EPk(y)

where the decay parameter is fixed at 0.5 here, as suggested in the model proposed in Hunter

et al. (2008b).

As large friendship networks are usually sparse with a high degree of homophily and tran-

sitivity (Goodreau, 2007), we consider a multivariate Gaussian prior centered at µ0 =
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Figure 2.3: Faux Mesa High School friendship network. Colours indicate the grade.

(−2, 0.5, 0.5) and covariance matrix Σ0 = 5I3; this corresponds to an a priori belief that

the coefficient associated with the edges term g1(y) is likely to be negative and those as-

sociated with the effect of grade homophily and transitivity are likely to be positive. The

relatively large standard deviations ensure the statistical inference cannot be dominated by

the prior belief. Also, given the sparsity of the observed data (network density ≈ 0.01), the

observed edge-count based sufficient statistics might be a lot closer to their lower bound (0)

than to their upper bound (total number of edges, n(n−1)
2

) and their distribution might be

right-skewed, hence the proposed weighting scheme will unfairly favor the sparse graph. As a

remedy, we consider a monotonic power-law transformation, T (u) =
√
u+ 1 on the sufficient

statistics when implementing K-ABC procedure.

The “ground truth” is again obtained based on a long AEA run, where we choose a “con-

servative” burn-in for MCMC-based simulation, e.g. 5 × 105, and run AEA for sufficiently

long – 6 population chains, each with burn-in = 4000, main-iters = 16000 to ensure that the

resulting samples can provide an adequate approximation to the “true” target (17.7 hours,

63669.7 seconds). We compare the K-ABC-AIS algorithm with the AEA under the following

settings –

• K-ABC-AIS : Two rounds of importance sampling, sample size: (24000,96000); degree
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Table 2.2: Comparison between K-ABC and AEA. K-ABC algorithm (K-ABC-AIS) is run
on 30 cores. Wallclock runtime reported is the average across 20 runs.

Ground truth MAE RMSE Runtime (secs)
K-ABC-AIS (θ1) -6.20 0.04 0.05 283.6
K-ABC-AIS (θ2) 1.97 0.01 0.01 283.6
K-ABC-AIS (θ3) 1.24 0.07 0.07 283.6
AEA (θ1) -6.20 0.03 0.03 1078.3
AEA (θ2) 1.97 0.01 0.01 1078.3
AEA (θ3) 1.24 0.06 0.06 1078.3

of freedom ν1 = 4, ν2 = 4; scale factor ω1 = 4, ω2 = 2, burn-in for MCMC-based

simulation B = 5× 104.

• AEA : 6 population chains, each chain with burn-in = 1000, main iters = 4000, auxiliary

burn-in (i.e. burn-in for MCMC-based simulation) = 5× 104

Note that in this case we also allow the K-ABC-AIS to draw a total of 120000 samples,

which is 4 times the total sample size in AEA. Table 2.2 shows that the point estimates

given by K-ABC-AIS and AEA show virtually identical performance. Figure 2.4 shows that

the estimated marginal distributions are similar, but we also notice that there is discrepancy

between the marginal posterior distribution of the GWESP parameter estimated based on

the K-ABC-AIS, AEA and the “ground truth.” Such behavior suggests that a sufficiently

long burn-in period for simulating from ERGMs can play a crucial role in both AEA and

K-ABC type algorithms.

2.4.3 Computational Efficiency of K-ABC with Parallel Comput-

ing

We further investigate the computational efficiency of the proposed K-ABC approach. The

presented results suggest that - (1) K-ABC seems to be able to produce comparable results

to AEA when the total sample size is 4 times that of AEA; (2) K-ABC-AIS can produce
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Figure 2.4: Estimated marginal posterior distribution of θ. The grey line and grey dotted
line represent the MLE and MPLE, respectively.

more accurate estimations than K-ABC-IS, and it is advisable to allocate one fifth of the

total sample size to the first round of importance sampling step. Therefore, we compare

the computational efficiency between K-ABC-AIS and AEA under the settings which give

similar level of estimation accuracy. Figure 2.5 illustrates the relative computing time of the

K-ABC-AIS algorithm and AEA for the two networks Karate club (34 nodes), Faux Mesa

High (205 nodes) for an increasing number of computing cores.

The relative computing time is defined as the ratio of K-ABC-AIS time to AEA time, and

thus a relative computing time greater than 1 indicates that the AEA computing time

is shorter, while a relative computing time smaller than 1 indicates that the K-ABC-AIS

provides faster results.

Figure 2.5 demonstrates that both networks only require five cores for the K-ABC-AIS to

outperform the computing time of the AEA and that the computing time can be further

reduced if more computing cores are available as we can get five-fold reduction on the comput-

ing time when 30 computing cores are used. We expect further reduction on the computing

time as the serial part of the K-ABC-AIS algorithm only takes a small portion of the total

runtime.
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Figure 2.5: The y-axis gives the ratio of the K-ABC-AIS time to that of the AEA time.
Values below 1 indicate that the K-ABC-AIS requires a shorter computing time.

2.5 Further Extensions

The proposed K-ABC approach has a wide range of connections to existing Bayesian compu-

tation techniques, including regression-adjustment ABC, Bayes Linear Analysis, and Kernel

Bayes’ rule. Techniques and extensions developed in these literatures could naturally be

applied our case, without requiring extensive modification of our approach.

It is particularly worth noting the connection between K-ABC and Kernel Bayes’ rule (KBR)

(Fukumizu et al., 2011). Both of them provide posterior estimates in the form of a kernel

mean, but the fundamental goal of K-ABC is obtaining samples from an approximation to the

posterior distribution, while KBR can generate empirical estimates via the kernel approaches

that converge to the true posterior mean embedding in the limit of infinite sample size

(Fukumizu et al., 2013). The connection with KBR also makes plain the extent to which

estimation of posterior moments (and hence quantiles) is fundamentally a nonparametric
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regression problem, where we seek to estimate E[a(θ)|yobs] (for some function a(·)) from a

superpopulation defined by the joint distribution of y and θ. Because this regression is for

us a purely computational device, any scheme that performs well and is computationally

efficient is potentially useful. While we here use an approach that is equivalent to classical

kernel regression, kernelized weighted least squares would be another natural choice, as might

more exotic alternatives such as random forests or neural networks. The primary advantage

of such methods is their flexibility in fitting complex functions with minimal user input,

an asset that is of obvious relevance in this application. On the other hand, methods that

require expensive training procedures to calibrate nuisance parameters may not improve

performance sufficiently to justify the increased cost. Further work will need to be done

to determine which techniques, including linear adjustments (Beaumont et al., 2002; Blum

et al., 2013), non-linear adjustments (Blum and François, 2010), yield net performance gains.

Another possible direction might be approximating the posterior by a multivariate normal

distribution, based on the classic Bernstein-von Mises theorem (Van der Vaart, 2000). There

is recent work on variational Bayesian inference for ERGMs (Tan and Friel, 2020) based

on the adjusted pseudo-likelihood (Bouranis et al., 2018), in which the posterior density

π(θ|yobs) is approximated by a Gaussian distribution qλ(θ), and the parameters λ = {µ,Σ}

are found by minimizing the Kullback-Leibler divergence (or equivalently maximizing the

evidence lower bound). Provided the Gaussian approximation is valid, the proposed ap-

proach enables the construction of Gaussian distribution based on estimated posterior mean

and posterior second moments. In case the resulting covariance matrix is not positive def-

inite, post correction methods can be adopted (e.g., Løland et al., 2013). To date, general

variational inference for ERGMs without the knowledge of MLE has not proven successful

outside of demonstration models, and it is unclear whether its limitations can be overcome.

However, variational approximations may be useful as additional tools for seeding ABC pro-

posal distributions, especially in the dense graph regime where typical MCMC algorithms

are often slow.
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Finally, we note that extensions of the methods considered here to temporal ERGMs (TERGMs),

ERGMs with latent variables, or other more complex cases are fairly straightforward given

the ability to simulate from the data generating process. In particular, the modular structure

of the K-ABC algorithm makes it relatively easy to accommodate such extensions within a

single computational framework, so long as a simulation algorithm for the extended model is

available. This is in contrast with existing strategies for ERGM inference, where are gener-

ally specialized for fairly narrow classes of models. This feature makes K-ABC a promising

foundation for building ERGM-based modeling tools that are substantially more flexible

than those currently in use.

2.6 Conclusion

In this paper, we introduced a kernelized approximate Bayesian computation (K-ABC) proce-

dure for ERGMs, exploiting the algorithm’s parallelizability to show substantial performance

gains versus standard methods when multiple cores are available. In typical cases, the avail-

ability of sufficient statistics facilitates inference using this approach, as does the availability

of relatively inexpensive crude initial estimates that can be used to construct effective pro-

posal distributions for importance sampling. Further enhancements in performance can be

obtained by iterative refinement of initial estimates, though our simulation studies suggest

that (given a fixed budget) a small number of larger samples is usually preferred to many

waves of small samples. Comparing our approach with the current state-of-the-art (the

approximate exchange algorithm), we find that K-ABC adaptive importance sampling algo-

rithm (K-ABC-AIS) is able to produce estimates of comparable quality at greatly reduced

wallclock time so long as multiple cores are available. In a serial setting (i.e., when only one

core can be used), the more refined sampling scheme of AEA is more efficient than the ABC

techniques explored here, and we would recommend it as the preferred approach in this case.
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AEA also has the advantage of providing very high-quality posterior approximations when

run with sufficiently rigorous settings (albeit at very high cost). The two approaches thus

have distinct advantages and disadvantages. One potentially useful asset of the proposed

K-ABC algorithm is that it is immediately extensible to non-standard cases (such as infer-

ence from proxy statistics) that are difficult to handle using other techniques. It is also far

easier to implement than AEA. This makes K-ABC a natural choice when flexibility or ease

of implementation are considerations, especially if speed is of the essence.

Though parsimoniously modeling dependencies of scientific interest in networks is the pri-

mary objective for ERGMs, the development of efficient Bayesian inference on higher-

dimensional ERGMs is favorable. With the recent development on high dimensional ABC

algorithms ((Nott et al., 2014; Li et al., 2017)), we envision ABC as a promising framework.

Finally, we note that there are many variations on the specific implementation decisions

pursued here; though we investigated the consequences of several such decisions via two case

studies, there are far more possibilities for expansion and modification of the base algorithm

than can be considered in any one study. We are thus optimistic for the potential for further

enhancement of this very promising approach to ERGM inference.
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Chapter 3

Comparisons of Model Selection

Methods for ERGMs

3.1 Introduction

The exponential family random graph modeling (ERGM) framework (Holland and Leinhardt,

1981; Frank and Strauss, 1986; Snijders et al., 2006; Hunter and Handcock, 2006) (known in

older work by the term p∗ (Wasserman and Pattison, 1996)) has emerged as an important

approach to the statistical analysis of social network data, providing a highly general way of

specifying distributions on graphs and allowing the complex dependence structure of edges

in a network to be specified in terms of local structural properties (Robins et al., 2007).

A wide variety of features have been proposed as potential instantiations of the different

types of driving forces governing the formation of social networks (Morris et al., 2008), with

the potential to accommodate an increasingly rich range of network types. At the same

time, however, poor specifications can lead to unrealistic model behavior (Handcock, 2003;

Schweinberger, 2011), and in practice considerable domain expertise can be required to select
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terms that implement the correct dependence structure for a specific setting (Lusher et al.,

2013).

Choosing among competing model specifications can be viewed as a model selection prob-

lem, making information criteria such as Akaike Information Criterion (AIC) (Akaike, 1973)

and Bayesian Information Criterion (BIC)(Schwarz, 1978) natural choices for adjudication.

However, these criteria rely on a number of theoretical assumptions that are frequently

problematic in a network modeling context. First, edge variables in typical network models

are non-independent, making it difficult to determine the effective sample size needed for

size-corrected AIC and BIC calculations (Hunter et al., 2008a); indeed, at this time the theo-

retical justification for these criteria is unclear in the case of models for single networks with

dyadic dependence (though see Kolaczyk and Krivitsky, 2015; Schweinberger et al., 2019,

for some possible directions). Second, likelihood calculations for complex ERGMs rely on

stochastic approximations (e.g., bridge sampling) that become expensive for large networks

and where high precision is needed. This is not a barrier to parameter estimation (which

typically relies on quantities such as likelihood ratios between identically specified models

with similar parameters that can be more precisely computed), but makes fine distinctions

between the likelihoods of similarly performing but differently specified models difficult.

The theoretical (if not computational) challenges noted above can be avoided in a Bayesian

context by performing model selection via Bayes factors (Raftery, 1995). ERGM applica-

tions to date require fairly expensive, high-quality posterior simulation using methods such

as the Reversible Jump Exchange Algorithm (Caimo and Friel, 2013), a tailored version of

the conventional Reversible Jump MCMC algorithm (Green, 1995) combined with the ex-

change algorithm (Murray et al., 2006) by Caimo and Friel (2011) to deal with the double

intractability of the posterior density, as the ERGM likelihood cannot be computed analyt-

ically in general. This approach has the advantage of being theoretically principled in the

setting of fixed sample size, but the need to obtain a high-quality approximation of the Bayes
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factor can be computationally demanding. Promising directions in this area include efforts

like those of Bouranis et al. (2018) to reduce the computational cost by adjusting the pos-

terior samples yielded by an analytically tractable approximation of the ERGM likelihood,

e.g. the pseudolikelihood. However, its magnitude adjustment step requires approximating

the true ERGM likelihood evaluated at MLE, which raises the same issue encountered in

the calculation of AIC/BIC; thus, an efficient and easily used method for obtaining Bayes

factors for general ERGMs remains elusive. Moreover, the Bayes factor itself is not always

an ideal tool for model selection. The Bayes factor (and its multi-model generalizations)

provides an answer to the question, “which of a set of proposed models is more likely to

be the true data generating process?” assuming that the models being evaluated are a pri-

ori equally probable and that one is correct. While the equal probability assumption (i.e.,

uniform model priors) can be adjusted, the hidden assumption that one proposed model is

correct – or, at least, that among incorrect models the model “more likely” to be correct

is also “better” – is not entirely innocent (Bernardo and Smith, 1994; Spiegelhalter et al.,

2002). When no available model is correct, the model preferred by the Bayes factor may or

may not have other desirable properties (e.g., better predictive performance for some task

of interest), and indeed the Bayes factor may heavily weight aspects of model performance

that are not in practice those most valued by the analyst.

Relatedly, the Bayes factor can be sensitive to model features, such as the tail weight of the

parameter priors, that are often chosen on semi-arbitrary grounds (and that in practice often

have little impact on estimation). This creates the risk that model selection will be unduly

influenced by choices of the analyst that are difficult to constrain and that are otherwise

of minimal substantive importance. Moreover, the approach is only applicable to Bayesian

inference, which is not at present widely used for ERGMs due to computational challanges.

Thus, while the Bayes factor can be an important tool in the network analyst’s arsenal, it

also poses considerable difficulty in practice.
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As an attempt to compensate for the difficulties of likelihood-based criteria, Goodreau (2007)

and Hunter et al. (2008a) introduced graph-level “goodness of fit” (GOF) plots to assess the

fit of ERGMs, in which several graph-level statistics (e.g., degree distributions, edgewise

shared partner distributions) of observed networks are compared against those of simulated

networks from the estimated model. The underlying idea is that draws from a fitted ERGM

should have structural properties similar to the observed one, and, in particular, that net-

work properties not explicitly used to fit the model (“out of model” properties) should be

reproduced by those that were used (“in model” properties). The properties used to assess

a model are usually chosen on substantive grounds, though some efforts have been made

to suggest relatively “generic” statistics of broad utility (e.g. Hunter et al., 2008a; Wang

et al., 2013a,b; Shore and Lubin, 2015). While this approach has proven useful in practice,

it is properly a model adequacy checking strategy rather than a model selection strategy: it

provides ways to identify performance deficiencies in a chosen model, but it does not pro-

vide a general rubric for choosing among competing models. Likewise, the GOF approach is

not designed to provide strong information regarding the predictive performance of a fitted

model. Rather, it only answers the question of how well networks drawn from a model fit

to a specific data set reproduce other features of that data set. This is useful for detecting

when a fitted model is incapable of producing realistic behavior, but it does not establish

that the model will predict well (either in the context of extrapolation to new structures or

interpolation of held-out data).

While it could perhaps be argued that predictive performance is not always a major concern

for ERGMs, lack of predictive power at the very least suggests limitations of a model that

should be borne in mind when using it. Moreover, predictive performance is clearly a consid-

eration in many applications. For example, studies of international conflict (Hoff and Ward,

2004; Maoz et al., 2006) or bill cosponsorship (Fowler, 2006; Cranmer and Desmarais, 2011)

are concerned with consequential relations for which predictions are of significant interest.

These could include e.g. the ability to forecast future network states from past network
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states (or merely from covariates), or conditional prediction of edge states given covariates

and/or information on other edges. In the latter case, performance involving specific edge

states (as opposed e.g. to unlabeled properties such as the degree variance) is of obvious

importance: it is important to know whether a predicted conflict is between e.g. China

and United States versus Bulgaria and Croatia. A model that successfully reproduced the

degree distribution for a given year’s conflict network might not perform well at predicting

the degree distribution for the next year’s network, nor at predicting who will be in a conflict

with whom. Such a model might be judged satisfactory via conventional adequacy checks,

but its value for understanding global conflict would be questionable at best.

The above suggest more explicit predictive metrics as potentially useful tools for model

selection (as well as model assessment). In many fields, cross-validation (CV) techniques

have been fruitfully used in this role, allowing one to assess how well the predictions from

a model generalize to a new data set; flexible, easily understood, and able to be linked

directly with performance outcomes of substantive interest, CV methods are well-adapted

to model selection (see Arlot and Celisse, 2010, for a recent review). Typically, CV divides

the data set into a training set (to which the model is fit) and a test set (against which

the fitted model’s predictions are evaluated under pre-specified loss functions), selecting the

model with the smallest estimated loss. Many variants of this procedure exist (e.g., leave-

one-out CV, k-fold CV, bootstrap CV, etc.), but all share the common feature of assessing

predictive performance on a data subset that was held out during parameter estimation.

Classical CV for regression models with independent and identically distributed (i.i.d.) data

was proposed as early as Geisser (1975), and CV procedures have been tailored for the

purpose of performance evaluation in latent variable modeling of relational data (e.g., Hoff,

2008; Dabbs and Junker, 2016; Li et al., 2020; Chen and Lei, 2018), where edge variables

are conditionally independent given latent variables and hence can be straightforwardly held

out. Likewise, there is work on applying CV to ERGMs where multiple networks from the

same population model are available, and entire networks can be held out (Stewart et al.,
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2019). Such work suggests considerable potential utility in applying CV to the more typical

setting of general ERGMs on single graphs realizations.

A difficulty with standard CV techniques in a general ERGM setting is the direct dependence

of edge variables, which makes it impossible to simply omit edge variables without changing

the underlying probability model.1 Intuitively, the presence of an edge variable in such

a model is itself informative, and this information must be retained for predictions to be

meaningful. This same issue arises in the context of ERGM estimation from networks with

missing edge data, where the presence of edge variables must still be accounted for even

when their states are unknown. Handcock and Gile (2010) introduced an estimation scheme

for handling such data in the case of ignorable missingness, which resolves this difficulty by

integrating over the unknown states of the missing edge variables (and thereby preserving

the impact of their interactions with the variables whose states are observed). The missing

data case suggests the key to obtaining CV-like procedures for ERGMs: while one cannot

meaningfully hold out edge variables, one can hold out the states (i.e., whether a given edge

variable contains an edge or a null) of edge variables, retaining their presence but treating

them as missing data. Building on this intuition, Wang et al. (2016) proposed a held-out

evaluation scheme for evaluating model-based imputation that was analogous to CV, which

they dubbed Held-Out Predictive Evaluation (HOPE). Unlike CV, the edge variables in the

validation set under HOPE are only marked as missing (i.e. NA) in the model training

phase, instead of being completely eliminated. Thus, the trained model accounts for the

presence of the edge variables, but it is not given information on their states. Testing is

then performed by conditional prediction of the held-out edge states from the fitted model

conditional on the edge variables that are not held-out. Since the core techniques needed to

perform this procedure (estimation with missing edge data and conditional procedure) are

supported in standard ERGM software, it can be used without the need for custom software

1This is related to the inconsistency of dependence models under naive subsampling, when the presence
of unmeasured vertices is not accounted for (Shalizi and Rinaldo, 2013); procedures that do allow consistent
estimation are discussed by Schweinberger et al. (2019).
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implementations or other special considerations.

While HOPE was originally introduced in the context of imputation assessment, it is a gen-

eral CV-analogue and the idea of holding out a portion of data as missing can be used for a

wide range of evaluation tasks. For instance, Koskinen et al. (2018) proposed a model-based

approach for the identification of influential nodes in a network by assessing the sensitivity of

estimated parameters when all edge variables associated with the corresponding node is held

out. In this paper, we introduce the use of HOPE to perform model selection for ERGMs,

with an emphasis on simple metrics and procedures that are applicable to a wide range of

network data. Using HOPE, researchers can gain information on how well the model is

able to predict held-out portions of the data from other edge observations; where the model

performs poorly based on held-out data, which can point to weaknesses in parameterization;

and how one model’s predictive performance compares to others. Because such predictive

assessments automatically correct for overfitting (which by definition improves in-sample

performance while harming out-of-sample performance), they can be quantitatively com-

pared across specifications in a way that some other metrics cannot. Taken together, these

assessments can assist researchers in improving models and facilitate the comparison of fit

across multiple models.

With the development of HOPE as a promising model selection technique for ERGMs based

on cross-validation, a well-established model selection framework for general statistical mod-

els, a natural and critical question that remains to be answered is, how well does HOPE

perform compared to other methods? As a first attempt to answer this question, we pro-

pose to conduct simulation studies and evaluate the performance of various model selection

techniques using the following metrics: model selection accuracy; predictive deviance on an

independent test data; and prediction accuracy of edge variables on independent test data.

These three criteria exemplify three potential desiderata in model selection: the ability to se-

lect the true model specification among a set of candidate models (where the true generating
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process is present); the ability to select a model that can yield the smallest deviance on new

data generated from the same data generating process (whether or not the predictive model

reflects that generative process); and the ability to produce accurate edgewise predictions on

the new data generated from the same data generating process (again, without necessarily

assuming access to a “true” model). Details of the simulation study is given in subsequent

sections.

The remainder of this chapter is structured as follows. In Section 3.2, we review the conven-

tional methods for comparing / selecting ERGMs. In Section 3.3, we introduce Held-Out

Predictive Evaluation (HOPE), a cross-validation analogue method, for selecting competing

ERGM specifications. Section 3.4 provides several comprehensive simulation studies to com-

pare the conventional and the novel model-selection methods. Finally, we conclude with a

discussion in Section 3.5.

3.2 Review on Traditional Model Selection Methods

In this section, we review the classic methods for comparing / selecting ERGMs. In par-

ticular, we shall focus on the information-criterion based methods, including the Akaike

information criterion (AIC) (Akaike, 1973), Bayesian information criterion (BIC) (Schwarz,

1978) and graphical goodness of fit (Hunter et al., 2008a). As BIC approximates the Bayes

factor, and more exact calculation of Bayes factor is very challenging for ERGMs (Caimo

and Friel, 2013), we do not include the Bayes factor in the set of candidate model selection

techniques in this simulation study.

3.2.1 AIC and BIC

Recall the general definition of AIC and BIC for a statistical model M
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AIC(M) = 2(#of parameters in M)− 2(maximized log-likelihood under M) (3.1)

BIC(M) = log(N)(#of parameters in M)− 2(maximized log-likelihood under M)

(3.2)

where N denotes the sample size. The goal is to search for M that minimizes AIC(M) or

BIC(M). As the maximum likelihood estimate θ̂MLE corresponds to the point at which the

log-likelihood is maximized given observed data, the maximized log-likelihood for modelM

is

log p(yobs|θ̂MLE) = θ̂ᵀMLEg(yobs)− ψ(θ̂MLE) (3.3)

where ψ(θ̂MLE) is the log-partition function evaluated at θ̂MLE, which is analytically in-

tractable in general and has to be approximated through Monte Carlo simulations. As

discussed in Section 2.2, exact MLE is unavailable for general ERGMs, and hence θ̂MLE is

usually approximated by the MCMC MLE.

Consider the partition function (i.e., exponentiated log-partition function), or equivalently

the normalizing factor,

κ(θ) = exp(ψ(θ)) = exp(log
∑
y′∈Yn

exp
{
θᵀg(y′)

}
) =

∑
y′∈Yn

exp
{
θᵀg(y′)

}

and note that κ(0) = 2(n
2) for undirected networks and 2n(n−1) for directed networks. The

κ(θ̂MLE) can be approximated by an unbiased estimator, following Gelman and Meng (1998),
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Hunter and Handcock (2006) and Friel (2013)

κ(θ̂MLE)

κ(0)
=
κ(uT θ̂MLE)

κ(u0θ̂MLE)
=

T−1∏
l=0

κ(ul+1θ̂MLE)

κ(ulθ̂MLE)
(3.4)

where 0 = u0 < u1 < u2 < · · · < uT = 1 are equally spaced within the range. Importance

sampling is used to estimate the ratio of normalizing factors in (3.4), we note

κ(ul+1θ̂MLE)

κ(ulθ̂MLE)
=

∑
y′∈Yn exp(ul+1θ̂

ᵀ
MLEg(y′))

κ(ulθ̂MLE)

=
∑
y′∈Yn

exp(ul+1θ̂
ᵀ
MLEg(y′))

exp(ulθ̂
ᵀ
MLEg(y′))/p(y′|ulθ̂MLE)

=
∑
y′∈Yn

p(y′|ulθ̂MLE)
exp(ul+1θ̂

ᵀ
MLEg(y′))

exp(ulθ̂
ᵀ
MLEg(y′))

= Ey′∼p(y′|ulθ̂MLE)

[exp(ul+1θ̂
ᵀ
MLEg(y′))

exp(ulθ̂
ᵀ
MLEg(y′))

]
(3.5)

and hence a natural unbiased estimate of this expectation is

̂κ(ul+1θ̂MLE)

κ(ulθ̂MLE)
=

1

K

K∑
k=1

exp(ul+1θ̂
ᵀ
MLEg(y

(l)
k ))

exp(ulθ̂
ᵀ
MLEg(y

(l)
k ))

where y
(l)
1 , . . . , y

(l)
K are i.i.d draws from p(y|ulθ̂MLE). Larger Monte Carlo sample size K

and the temperature T can lead to more precise estimates, but with higher computational

costs. We chose K = 1000 and T = 20 in this work as empirical results show diminishing

returns when going beyond these values. With the estimated normalizing factor ̂κ(θ̂MLE),
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the maximized log-likelihood (3.3) is approximated as

log p(yobs|θ̂MLE) = θ̂ᵀMLEg(yobs)− exp( ̂κ(θ̂MLE)) (3.6)

An additional challenge for BIC is that the seemingly straightforward sample size N is no

longer straightforward for ERGMs with dyadic-dependent terms. Instead, we only know that

the true value of N is within the range [1,
(
n
2

)
] for undirected networks, and [1, n(n− 1)] for

directed networks, and believed to be closer to 1 when dyadic-dependent terms play more

substantial roles in the network formation process. The R package ergm conservatively uses

the maximum of the range to estimated BIC. The current understanding is that both AIC

and BIC can be problematic for selecting models, due to the approximations involved in

their calculations, which we shall investigate via simulation studies.

3.2.2 Graphical Goodness of Fit

Graphical goodness of fit (GOF) is a simulation-based method that is commonly used to

assess the model performance. The basic idea is that a fitted ERGM should recapitulate key

structural features similar to the observed observed network (Hunter et al., 2008a), which

has its root in posterior predictive assessment (Gelman et al., 1996). The choice of the set

of structural features for constructing these GOF procedures depends on both empirical and

theoretical questions. An implementation of GOF for ERGMs with several commonly-used

high-level graph statistics is provided in the package ergm through the function gof.ergm.

Figure 3.1 displays an example visualization of the output of gof.ergm. The boxplots are

generated based on 100 simulated draws, and the bold black lines represent the observed

statistics. The top-left, top-right and bottom-left subfigures in Figure 3.1 correspond to
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Figure 3.1: Sample graphical goodness of fit plots for ERGMs.

the distributions of degree counts, edgewise shared partner counts, and minimum geodesic

distances, respectively. These statistics offer key structural information about networks and

hence are often of substantial interest to network researchers (Hunter et al., 2008a). Typically

either none of these statistics are included in the model, or only a small subset of them are.

The bottom-right subfigure give the quantiles of observed model statistics (bold black lines)

under the distribution of simulated model statistics. These quantiles are expected to be

not too far away from 0.5 because the true MLE should yield expected statistics equal

to observed statistics for exponential-family distributions (Barndorff-Nielsen, 1978). In the

example above, the bold black lines lie within the range of boxplots for most of the statistics,

which indicates that the observed data is plausible under the fitted model.

This graphical assessment method offers ways to identify performance deficiencies in models,

and is particularly useful for detecting when a fitted model is incapable of producing realistic

behavior. However, it is clearly lacking as a model selection method, because it neither
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provides quantification of how poorly the model fits the data nor establishes that the model

will predict well (either in the context of extrapolation to new structures or interpolation of

held-out data).

3.3 Held-Out Predictive Evaluation (HOPE)

The Held-Out Predictive Evaluation (HOPE) was introduced by Wang et al. (2016) as a

model-based technique for imputing missing edge data in social networks, based upon the

ability to fit and simulate from ERGMs in the presence of missing data (Handcock and Gile,

2010). We extend HOPE for the purpose of selecting between competing ERGMs.

3.3.1 Likelihood Inference for ERGMs in the Presence of Missing

Data

We consider the binary random adjacency matrix Y , with the support Yn. In the general

case where Y may be only partially observed, we introduce the indicator matrix W that is

of the same size as Y

Wij =


1, edge variable Yij is observed,

0, otherwise.

(3.7)

and denote the observed part of Y by Yobs =
{
Yij : Wij = 1

}
and the unobserved part by

Ymis =
{
Yij : Wij = 0

}
; then Y = Yobs ∪ Ymis. The complete data, {Yobs, Ymis,W}, are not

fully observed, and the observed data, are {Yobs,W}. Letting lower-case symbol represent

53



the realized values of random variables, we define Yn(yobs) = {v : v ∪ yobs ∈ Yn}, which is the

set of possible values of Ymis, under the constraint that the observed part is equal to yobs.

Therefore yobs ∪ Yn(yobs) is the subset of Yn with the observed part equal to yobs.

Under the assumption that the missing data mechanism is missing at random (MAR) (Rubin,

1976), that is,

P (W = w|Y = y, ψ) = P (W = w|Yobs = yobs, ψ) ∀y ∈ yobs ∪ Yn(yobs) (3.8)

where ψ denote the parameters that govern the missing data mechanism, and are distinct

from the ERGM parameters θ. As (3.8) implies that missing edge variables Ymis do not

contain any information about ψ, we have the joint likelihood for ψ and θ given observed

data yobs and observed missing pattern wobs

L[θ, ψ|Yobs = yobs,W = wobs] ∝ P (W = wobs|Yobs = yobs, ψ)P (Yobs = yobs|θ)

Thus likelihood-based inference for θ from L[θ, ψ|Yobs = yobs,W = wobs] will be the same

as likelihood-based inference for θ using the (so-called) face-value likelihood based solely on

Yobs (Handcock and Gile, 2010)

P (Yobs = yobs|θ) ∝
∑

v∈Yn(yobs)

P (Y = yobs ∪ v|θ) (3.9)

We note that the above derivation holds for any parametric models for social networks.

Starting from this point, we assume the random behaviour of Y is characterized by an
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ERGM. To better illustrate the idea, we focus on linear ERGMs with the counting measure

specified in (2.1). Combining (2.1) and (3.9), we have the conditional probability of Ymis

given Yobs = yobs

P (Ymis = ymis|Yobs = yobs,θ) =
P (Yobs = yobs, Ymis = ymis|θ)

P (Yobs = yobs|θ)

=
P (Y = y|θ)

P (Yobs = yobs|θ)

=
P (Y = y|θ)∑

v∈Yn(yobs) P (Y = yobs ∪ v|θ)

= exp[θᵀg(yobs ∪ ymis)− ψ(θ|yobs)], ymis ∈ Yn(yobs)

(3.10)

where ψ(θ|yobs) = log
∑

v∈Yn(yobs) exp[θᵀg(yobs∪v)]. This result gives a simple way to simulate

from the conditional distribution and hence produce multiple imputations for missing edge

variables. Also note that (3.11) becomes

P (Yobs = yobs|θ) ∝
∑

v∈Yn(yobs)

P (Y = yobs ∪ v|θ) ∝ exp[ψ(θ|yobs)− ψ(θ)] (3.11)

which can then be maximized with respect to θ by two sets of MCMC samples: the first

term by a chain conditional on yobs and the second term by a chain on the complete data.

That said, the estimation of ERGM parameters θ is only slightly more difficult than those

discussed in Section 2.2.

Both the ergm package (Hunter et al., 2008b) of the statnet (Handcock et al., 2008) software

suite for R (R Core Team, 2018) and software MPNet (Wang et al., 2014) have implemented
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simulation-based algorithms for approximating the MLE of θ under (3.11). Additionally,

both allow simulations from the estimated parameters with or without missing data (the

former is used in goodness of fit assessments).

In this work, we implement the HOPE procedure in R taking advantage of the functionalities

available in the ergm package. To run conditional simulations from ERGMs, the observed

part of the graph can be fixed using the constraint argument in the simulate.ergm func-

tion. The procedure is repeated for each set of held-out edge variables in observed data, and

the simulated networks are then evaluated based on several criteria from various aspects.

This makes HOPE analogous to cross-validation in that we are evaluating how well we can

predict data that are not used for model training.

3.3.2 HOPE for Model Selection of ERGMs

While first introduced in Wang et al. (2016) as a powerful multiple imputation technique for

missing edge data, HOPE was extended for the purpose of model selection for ERGM in Yin

et al. (2019). We denote the entire index set of edge variables, D =
{

(i, j)|i, j ∈ V, i < j
}

(D =
{

(i, j)|i, j ∈ V, i 6= j
}

, if Y is directed), which can be partitioned into M subsets,

A1, · · · , AM , where
⋃M
m=1Ak ⊆ D. We let Acm represent the relative complement of Am in D.

Intuitively, the HOPE procedure operates by holding out the values (or equivalently, states)

of edge variables in one subset to create artificial missingness while fitting to the resulting

partially observed data, using the resulting estimate to predict the values of the held-out

data. Compared to conventional cross-validation, in which the variables themselves - and

not merely their values - are held out. While this distinction is immaterial for independence

models, it is consequential for typical ERGMs. While other schemes are also feasible, two

natural options for holding out network data are random sampling of edges and removal of

all edge values associated with a randomly chosen vertex,
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• Random edge held-out: D is randomly divided into M non-overlapping 2, equally-sized

batches of edge variables, with each batch being held-out in turn. A similar strategy

was used by Hoff (2008) for the purpose of selecting the optimal number of dimensions

in latent space structure for latent space models. Based on our empirical findings, we

recommend to hold out n−1 edge variables in each batch, where n is the network size.

• Node held-out: All edge variables involving a particular node are simultaneously held-

out. Koskinen et al. (2018) used a similar strategy to identify model-specific influential

nodes under the ERGM framework.

The random edge removal is analogous to M -fold cross validation, and leave-one-out cross

validation in the extreme case where M = |D|. The general procedure for HOPE then

proceeds as follows. For m = 1, · · · ,M :

1. Fit an ERGM to an artificially created partially observed data yAc
m

based on (3.11),

which in turn gives the corresponding held-out data MLE, θ̂(m).

2. Obtain Nsim draws, vm,1, . . . , vm,Nsim , from the conditional distribution P (·|YAc
m

=

yAc
m
, θ̂(m)) defined in (3.10), which yield ŷm,k = vm,k ∪ yAc

m
, k = 1, . . . , K.

3. Evaluate the ability of the model to accurately predict the held-out data under error

metrics of interests. The choice of which metrics to use will depend on which structural

features users deem substantively important for their model.

Yin et al. (2019) provided two general strategies to hold out edge variables (node held-out

and random edge held-out) and proposed a comprehensive list of metrics that can be used

to evaluate a model’s performance at different granularities (dyad, node and graph level).

For the purpose of this work, we shall focus on the random edge held-out and the prediction

2It is a common practice in cross-validation to split the observed dataset into disjoint subsets, in order
to reduce the correlation between estimated models and hence to reduce the variance.
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accuracy of held-out edge variables. The prediction accuracy of the held-out edge variables

under model M are evaluated via the following cost function C

CM(ŷ, y) =
M∑
m=1

∑
(i,j)∈Am

`(ŷij, yij)

where ŷij =
∑Nsim

k=1 ŷm,k
ij

Nsim
is a Monte-Carlo estimate of the conditional expectation E[Yij|YAc

m
=

yAc
m

], and `(a, b), for example, can take the following forms

• Squared loss : `(a, b) = |a− b|2

• Absolute loss : `(a, b) = |a− b|

The goal for HOPE is to search for the model M that minimizes the cost CM. As yij’s

are binary random variables, we also consider the area under the curve (AUC) for receiver

operating curve (ROC) as another candidate metric. Therefore, under the HOPE framework,

we have three candidate methods, “HOPE-Square loss”, “HOPE-Absolute loss” and “HOPE-

ROCAUC”.

We present a simple example based on a six-node undirected binary network to better illus-

trate HOPE. The observed network data have the adjacency matrix representation as follows

3

3The lower triangle part and the diagonal elements of the adjacency matrix are omitted because the
network is undirected and the self-loop is prohibited, respectively.
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y =



1 0 1 1 0

0 0 0 1

1 1 1

0 1

0


For a randomly chosen subset of edge variables Am =

{
(1, 3), (1, 5), (2, 5), (3, 4), (4, 6)

}
, the

states of these chosen edge variables are set as missing (marked by “?”),

yAc
m

=



1 ? 1 ? 0

0 0 ? 1

? 1 1

0 ?

0


and competing ERGM specifications are fit to the resulting partially observed data yAc

m
.

Based on the fitted models, we carry out conditional simulations to “predict” the states and

conditional probability of the edge variables in Am.

3.4 Simulation Studies

We conduct simulation studies to compare the traditional model selection methods (AIC,

BIC) and the novel cross-validation analogue method HOPE. In particular, we consider

two scenarios, closed-M and open-M, where the former corresponds to the scenario under

59



which the true model belongs to the set of candidate models, while the latter corresponds

to the scenario under which the true model does not belong to the set of candidate models.

Under each scenario, we consider networks of varying sizes, and evaluate the model selection

methods on various aspects as follows

• Model selection accuracy.

• Predictive deviance on independent test data.

• Prediction accuracy of edge variables on independent test data.

The general structure of the simulation study for the closed-M setting is as follows:

• Begin with the “ground truth” model for a given network and specify several competing

models.

• Obtain Ntrain i.i.d draws from the “ground truth” model as the “training data” and

Ntest i.i.d draws from the “ground truth” model as the “test data”.

• Fit the competing ERGM specifications to each network in the “training data” using

MCMC MLE described in Section 2.2.3, and calculate AIC, BIC according to 3.2.1.

Identify the best model in the set of competing models according to AIC and BIC

values.

• Carry out the HOPE procedure introduced in Section 3.3. Identify the best model in

the set of competing models according to the values of the cost functions.

• Evaluate the performance of each model selection method in correctly selecting the true

model, along with the predictive deviance and predictive accuracy of edge variables on

the entire “test data”. In particular, when evaluating the prediction accuracy of edge

variables, we hold out the same number of edge variables as that in HOPE procedure,

and conduct conditional simulation to make predictions about those held-out edges.
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where we have Ntrain = 50 and Ntest = 50 in the second step.

3.4.1 Closed-M

“Ground truth”

The “ground truth” models are ERGM distributions defined on the three most commonly

used network sufficient statistics but with distinct parameters,

• g1(y) =
∑

i<j yij, total number of edges.

• g2(y) = eφ
∑n−2

k=1

{
1− (1− e−φ)k

}
EPk(y), geometrically weighted edgewise shared

partners (GWESP). Here EPk(y) is the number of connected pairs that have exactly

k common neighbors, which measures local clustering in a network. The decay param-

eter φ controls the relative contribution of EPk(y) to the GWESP statistic, and it is

fixed at 0.25 in this case.

• g3(y; X) =
∑

i<j yij1{Xi=Xj}, total number of edges with endpoints sharing same value

on node level covariate X, often known as nodematch term.

We fix node-level covariate X to be a binary variable, and let half of the nodes take value 0,

while the other half takes value 1 on X. The network size is 40.

We have two different parameter settings

θ40true =


edges gwesp, φ = 0.25 nodematch(X)

−4.95 2.5 0.25

−3.75 1.25 1.25


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to ensure that the simulated networks have similar mean degree (∼ 10) across different

parameter settings but represent distinct formation mechanism.

• “Strong triadic closure” (first numeric row of θ40true): strong triadic closure effect but

weak homophily effect.

• “Intermediate triadic closure, homophily” (second numeric row of θ40true): intermediate

triadic closure and homophily effect.

Therefore, for each fixed network size, we have two “ground truth” model that share the

same set of sufficient statistics but are equipped with very different parameter values.

Candidate Models

The candidate models M = {M1, . . . ,M10} are listed in Table 3.1, whereM6 corresponds

to the “ground truth” model specification. The “diff = T” in Table 3.1 indicates the dif-

ferential homophily statistics,
∑

i,j yij1(xi = xj = a), which are different from the uniform

homophily statistics,
∑

i,j yij1(xi = xj), as the former allows each group to have a unique

propensity for within-group ties. The graphletCount(1) counts the number of G1 (i.e. a

type of three-node induced subgraphs, where exactly two edges are present), which helps

capture the total number of “open two-path” structures and is implemented in package

ergm.graphlets (Nebil et al., 2015). It is also worth noting that M2 is a natural parsimo-

nious version of the true model when the homophily effect does not play a leading role in

the network formation process, andM3 is a natural parsimonious version of the true model

when the triadic closure effect does not play a leading role.
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Table 3.1: List of candidate models for both closed-M and open-M scenarios. X indicates
the corresponding term is included in the respective model.

edges nodematch(X) gwesp,φ = 0.25 graphletCount(1)
M1 X
M2 X X
M3 X X
M4 X X, diff=T
M5 X X
M6 X X X
M7 X X, diff=T X
M8 X X X
M9 X X X X
M10 X X, diff=T X X

Results

We first discuss the performance on model selection accuracy. Table 3.2 shows the distri-

bution of selected models under different model selection methods and different true model

coefficients. The key observations are summarized as follows. First of all, none of these

model selection methods dominate all other methods. Second, the information-criterion-

based methods, especially BIC, prefer models with fewer terms in general. Third, “HOPE-

Absolute loss” and AIC are more capable of selecting the true model when triadic closure

effect plays nearly a dominant role in the true network formation process; BIC yields the

best model selection accuracy when neither triadic closure nor homophily plays a minor

role. Thirdly, the “HOPE-Square loss” and “HOPE-ROC AUC” appear to be consistently

incompetent in identifying the true models. Overall, BIC appears to be very robust under

the closed-M scenario as it either selects the true model or falls back to the most natural

parsimonious models M2 and M3.

Figures 3.2 and 3.3 present the mean predictive deviance for models selected by different

model selection methods when the true data generating process is “strong triadic closure”

and “intermediate triadic closure, homophily”, respectively. The BIC seems to be able to

consistently select model specifications that yield smallest predictive deviance, regardless of
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Table 3.2: Selected models under different true model coefficients and model selection meth-
ods. Network size = 40. M6 corresponds to the true model specification.

model specifications / model selection techniques AIC BIC HOPE-Sq. loss HOPE-Abs. loss HOPE-ROC AUC

Parameter setting : strong triadic closure
Rank 2 3 5 1 4

M1: edges 0 0 4 0 1
M2: edges + gwesp.fixed.0.25 19 40 8 8 8
M3: edges + nodematch.x 0 0 4 0 2
M4: edges + nodematch.x.0 + nodematch.x.1 0 0 2 0 0
M5: edges + graphlet.1.Count 0 0 10 1 11
M6: edges + nodematch.x + gwesp.fixed.0.25 14 10 4 15 7
M7: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 2 0 5 9 2
M8: edges + nodematch.x + graphlet.1.Count 0 0 9 3 13
M9: edges + nodematch.x + gwesp.fixed.0.25 + graphlet.1.Count 14 0 4 11 5
M10: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 + graphlet.1.Count 1 0 0 3 1

Parameter setting : intermediate triadic closure, homophily
Rank 2 1 5 3 4

M1: edges 0 0 0 0 0
M2: edges + gwesp.fixed.0.25 0 0 0 0 0
M3: edges + nodematch.x 0 5 18 0 5
M4: edges + nodematch.x.0 + nodematch.x.1 0 0 11 0 4
M5: edges + graphlet.1.Count 0 0 1 2 1
M6: edges + nodematch.x + gwesp.fixed.0.25 34 45 6 20 12
M7: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 4 0 2 13 3
M8: edges + nodematch.x + graphlet.1.Count 0 0 10 1 20
M9: edges + nodematch.x + gwesp.fixed.0.25 + graphlet.1.Count 8 0 2 7 3
M10: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 + graphlet.1.Count 4 0 0 7 2

the parameter settings of the true model, though AIC by design provides an approximation

to the predictive deviance and hence is expected to select model specifications that yield the

smallest predictive deviance. We note that “HOPE-Absolute loss” is comparable to those

information-criterion based methods, while “HOPE-Square loss” and “HOPE-ROCAUC”

are inferior to all other methods at this task as well.

Figures 3.4, 3.5 and 3.6 show the mean squared prediction error and mean absolute prediction

error and mean AUC of the ROC curves across 50 replicates. The models selected by BIC

seem to yield the smallest prediction errors and largest AUC of the ROC curves in general,

and we note that AIC and “HOPE-Absolute loss” also give comparable performance. The

predictive performance of “HOPE-ROCAUC” and “HOPE-Square loss” is still inferior, which

might be due to their incompetency in selecting the true model in such setting.
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Figure 3.2: Boxplots for mean predictive deviance on the independent test data. True model:
strong transitivity.
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Figure 3.3: Boxplots for mean predictive deviance on the independent test data. True model:
intermediate transitivity, homophily.
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Figure 3.4: Boxplots for mean squared prediction errors on the independent test data, under
different true model coefficients and model selection methods.
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Figure 3.5: Boxplots for mean AUC of ROC curves on the independent test data, under
different true model coefficients and model selection methods.
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Figure 3.6: Boxplots for mean squared prediction errors on the independent test data, under
different true model coefficients and model selection methods.

3.4.2 Open-M

“Ground truth”

We consider a representative graph generated from the model “Intermediate triadic closure,

homophily” in the Closed-M scenario and fit a latent space model (Hoff et al., 2002) with

intercept α and 2-D Euclidean distance terms |zi − zj|

P (Y |Z, α) =
∏
i<j

P (Yij = yij|zi, zj, α)

=
∏
i<j

logit−1(α− |zi − zj|)

to this representative graph using the ergmm function in R package latentnet (Krivitsky and
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Handcock, 2008). The resulting latent space model serves as the “ground truth” model in

the Open-M scenario. Although latent space models can be viewed as mixtures of Bernoulli

random graph models (Schweinberger et al., 2019) (i.e., ERGMs with dyadic independent

terms only), we note none of the candidate models in Table 3.1 is explicitly equivalent to the

resulting latent space model, that is, the “ground truth” model. We simulate “training data”

and “test data” from the “ground truth” model in a similar manner to that in Closed-M

scenario.

Candidate Models

The “ground truth” model here indeed provides a latent-space-based compression of the

unobservable original data generating process, that is, a combination of homophily effects

and triadic closure effects. Therefore we still consider the set of candidate models shown

in Table 3.1, but this time none of the candidate models is the exact true data generating

model.

Results

Table 3.3 shows the distribution of selected models under different model selection methods

(3 runs in which we encounter convergence issues fitting ERGMs are dropped). There is no

true model in this open-M scenario. Instead of focusing on the model selection accuracy,

we analyze the qualitative patterns of the selected models –

• First of all, we note that the information-criterion-based methods, AIC and BIC, prefer

models with less terms in general, while the HOPE-based methods seem to be less

confined to models with less terms.

• Second, different metrics can lead to considerable difference in model choices under
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HOPE – Squared loss and AUC of the ROC curve seem to be more similar to AIC

and BIC, while the absolute loss appears to be very different from other methods as it

favors M5, “edges + graphletCount(1)”.

Table 3.3: Selected models, open-M. Network size = 40.

model specifications / model selection techniques AIC BIC HOPE-Sq. loss HOPE-Abs. loss HOPE-ROCAUC
M1: edges 0 0 0 0 0
M2: edges + gwesp.fixed.0.25 0 0 0 0 0
M3: edges + nodematch.x 16 27 8 0 5
M4: edges + nodematch.x.0 + nodematch.x.1 10 2 10 0 6
M5: edges + graphlet.1.Count 0 1 5 26 7
M6: edges + nodematch.x + gwesp.fixed.0.25 1 0 1 1 3
M7: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 0 0 0 0 0
M8: edges + nodematch.x + graphlet.1.Count 14 13 18 8 17
M9: edges + nodematch.x + gwesp.fixed.0.25 + graphlet.1.Count 2 3 4 7 6
M10: edges + nodematch.x.0 + nodematch.x.1 + gwesp.fixed.0.25 + graphlet.1.Count 4 1 1 5 3

Total 47 47 47 47 47

Figures 3.7, 3.8, 3.9 and 3.10 present the mean predictive deviance, mean squared prediction

errors, mean absolute prediction errors and mean predictive AUC of ROC curves under the

open-M scenario. We have the following observations –

• All methods, except for “HOPE-Absolute loss”, yield similar predictive performance

with respect to deviance on the independent test data.

• Though “HOPE-Absolute loss” gives the worst predictive performance with respect to

the deviance, it yields the lowest prediction errors and highest AUC values on the test

data.

• Other HOPE-based methods (“HOPE-Square loss” and “HOPE-Absolute loss”) also

give better performance with respect to edge predictions compared to information-

criterion-based methods.
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Figure 3.7: Boxplots for mean predictive deviance on the independent test data.
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Figure 3.8: Boxplots for mean squared prediction errors on the independent test data.
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Figure 3.9: Boxplots for mean absolute prediction errors on the independent test data.
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Figure 3.10: Boxplots for mean AUC of ROC curves on the independent test data.
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3.5 Discussion and Conclusions

In this chapter, we first reviewed several conventional methods along with a recently proposed

method, Held-Out Predictive Evaluation (HOPE), for selecting competing model specifica-

tions of ERGMs. We designed and conducted systematic simulation studies to compare their

performance on two scenarios, closed-M and open-M. The performance is evaluated with

respect to several desiderata, including the model selection accuracy, predictive deviance,

and prediction accuracy of edge variables.

The simulation studies offer important insights about the strengths and weaknesses of the

model selection techniques under consideration. We first focus on the closed-M scenario.

The information-criterion-based methods, especially BIC, appear to be superior in terms of

selecting the true models under closed-M scenario. We note that AIC appears to be slightly

better than the BIC provided that the network formation process is mainly governed by one

dominant driving force, as BIC seems to penalize too much on the model complexity and

hence is more prone to identify a simpler model. The pattern in predictive performance

is similar to that of model selection accuracy, as the information-criterion-based methods

are more capable of selecting the true model in the closed-M scenario, and this advantage

naturally extends to the predictive performance. Overall, we recommend BIC under closed-

M scenario because it is more robust than AIC in the sense that BIC either selects the

true model or falls back to the most natural parsimonious models. However, AIC and BIC

are both observed to work well overall, and HOPE with absolute loss delivers comparable

performance with respect to predictive outcomes (albeit at greater computational cost);

all three of these methods are hence reasonable options when predictive performance is

of primary interest. By contrast, HOPE based on the squared error loss or AUC criteria

performs quite poorly in our experiments, and we are unable to recommend either for closed-

M model selection.
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We now turn to the open-M scenario. As none of the candidate models is explicitly equiv-

alent to the true model, we comment on qualitative patterns of the selected models. The

information-criterion-based methods, AIC and BIC, prefer models with fewer terms in gen-

eral, while the HOPE-based methods seem to be less confined to models with fewer terms.

Different loss metrics for HOPE can lead to substantial difference in terms of selected models,

with squared error loss and AUC of ROC curves behaving more similarly to the information

criteria than to the absolute loss. With regards to the predictive performance, despite being

the worst in terms of predictive deviance, the “HOPE-Absolute loss” clearly outperforms

all other methods in terms of prediction accuracy of edge variables. We also note that the

“HOPE-ROCAUC” and “HOPE-Square loss” are slightly better than information-criterion-

based methods with respect to prediction accuracy of edge variables, and comparable to

information-criterion-based methods with respect to the predictive deviance. In the open-

M setting, then, HOPE appears to provide a strong alternative to more traditional methods.

Of course, it may be argued that, from a practical standpoint, the closed-M versus open-

M distinction is moot: for real measurements of complex systems, no available model will

plausibly be “true,” and we are hence always in an open-M setting. Although we regard

this as self-evidently true, we would suggest that there may be a useful heuristic distinction

between settings where an available model may be very close to the data generating process

(conditional on available covariates) and settings in which one is able to obtain at best

very crude approximations thereto. Our open-M scenarios are of this latter type, while our

closed-M scenarios may be viewed as more reflective of the former. From that standpoint,

our findings suggest that information criteria will work quite well where an ERGM family is

available that can relatively closely approximate the target graph distribution, while HOPE

has strong advantages (with the exception of deviance prediction) when the ERGM families

under consideration offer only rough approximations to the target. When it is unclear which

regime one is in, the absolute loss HOPE procedure offers a sound compromise for most

inferential goals (though, as noted, it can lead to poor deviance predictions when no close
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approximation to the generating process is available).

While this work provides a first comparative examination of predictive and information-based

methods for ERGM model selection, there is considerable room for further development

in this area. Examples of fruitful directions include theoretical investigation of both the

formal properties of the HOPE procedure and the effective degrees of freedom of ERGM

distributions. Among the questions raised by the present simulation study include:

• Why do information-criterion-based methods work well under typical ERGM use cases

in which standard asymptotic theory does not clearly apply? The answer suggested by

recent work by Schweinberger and colleagues is that the conditions for concentration

of the ERGM likelihood as a function of N = |V| may be fairly weak, in which case

standard approximations to the behavior of the deviance may in fact hold despite

dyadic dependence. While some sufficient conditions for such concentration properties

to hold are known, finding a general characterization remains an open problem.

• Why does BIC give good performance in terms of selecting true models under closed-M

despite using a clearly inaccurate number for effective sample size? As the effective

data degrees of freedom for an ERGM with dependence terms is less than the nominal

degrees of freedom, one would expect the (already conservative) BIC to be strongly

biased towards low-dimensional models. The overall strong performance of the BIC in

these tests suggests that this concern may be misplaced. One possible explanation is

that, since the nominal degrees of freedom scale as O(N2), any constant “deflation”

of the degrees of freedom due to dependence will have a vanishing impact in relative

terms. Specifically, if the effective degrees of freedom scale as αN2 (for some α <

1), then the ratio of the ideal versus nominal complexity penalty in the BIC will be

(logα + 2 logN)/(2 logN) = 1 + 2(logα)/(logN), which goes to 1 as N →∞. While

this is a plausible explanation so long as α is non-small, the conditions under which

the latter holds have not been characterized.
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• Is it possible for us to have a better estimate of the effective sample size that can be

used to calculate BIC (et al.)? Expanding on the above, a formal characterization of

the effective degrees of freedom of an ERGM distribution remains an open problem.

Some bounds are available for special cases (e.g., models with block-local dependence),

but a general characterization remains an open problem.

• What theoretical guarantees can be provided for HOPE in terms of model selection and

generalization errors? Recent consistency and concentration results (as noted above)

for some classes of ERGMs suggest a way forward here, although generalization to the

missing data case is necessary. The impact of dependence on predictive accuracy is also

subtle, among other things implying that one must carefully consider the predictive

task (since e.g., the conditional distribution of a pair of edge variables can deviate

substantially from the product of the full conditionals for each edge variable separately).

Results for errors in conditional prediction of single edges would seem to be the most

natural starting point.

As the above suggest, this is a rich problem space with many avenues for further exploration.
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Chapter 4

Finite Mixtures of ERGMs for

Modeling Ensembles of Networks

4.1 Introduction

Data involving ensembles of networks - that is, multiple independent networks - arise in var-

ious scientific fields, including sociology (Slaughter and Koehly, 2016; Stewart et al., 2019),

neuroscience (Simpson et al., 2011; Obando and De Vico Fallani, 2017), molecular biology

(Unhelkar et al., 2017; Grazioli et al., 2019b), and political science (Moody and Mucha, 2013)

among others. Typically, ensembles of networks represent the action of multiple generative

processes, with different processes being prominent in different settings. A reasonable start-

ing point for analysis of such data is to posit that this variation can be represented in terms

of a discrete set of subpopulations, such that the networks drawn from any given subpopula-

tion tend to be produced by similar generative processes. Given a set of potential generative

models, one would then like to identify the subsets of networks drawn from a particular

subpopulation, or a probabilistic mixture of multiple subpopulations. It is natural to view
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this as a hierarchical finite mixture problem, with the base distributions being parametric

distributions on graphs. As a plausible approximation to the underlying data generating

process, the hierarchical finite mixture framework also provides a flexible approach for pre-

dictive modeling of ensemble of networks. If one seeks to predict graph structures drawn

from a heterogeneous (super)population learned from observed data, one needs to average

over the possible generative processes that might end up producing the observation that one

wants to predict. Such a view is similar in spirit to model averaging techniques (Hoeting

et al., 1999; Hjort and Claeskens, 2003), especially if interpreted in terms of a hierarchical

problem in which we seek to predict an outcome of interest (e.g., co-voting prevalence among

U.S. senators) by first predicting network structure and then predicting the behavior of a

process on that network. In that setting, if it turned out that there were k types of possible

network formation processes and we did not know which one ours happened to be, we would

certainly want to average across the types.

There is a growing body of literature on the analysis of ensembles of networks. This in-

cludes work on discriminative analysis of networks via distance or similarity measures (e.g.

Banks and Carley, 1994; Butts and Carley, 2005; Fitzhugh et al., 2015), which can be broadly

viewed as mapping the ensemble of interest into some high-dimensional space (e.g., the Ham-

ming space of graphs), and then employing standard multivariate analysis techniques (e.g.,

hierarchical clustering, multidimensional scaling) to seek an informative low-dimensional ap-

proximation. Other approaches work with user-selected graph statistics, either directly (e.g.

Pržulj, 2007; Sweet et al., 2019) or by, e.g., modeling quantiles of the observed statistics rel-

ative to a reference distribution to control for size and density effects (Butts, 2011). As such,

these approaches do not attempt to provide generative models for the networks within the

ensemble, though they may in some cases provide generative models for summary statistics

(e.g., predicting the conditional uniform graph quantile for the transitivity of a new graph

drawn from the same ensemble).
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In the category of generative models for complex networks, a common approach is to employ

multilevel models with exponential random graph models (ERGMs, a general family of para-

metric models for networks (see, e.g., Robins et al., 2007, for a review)), as base distributions.

Faust and Skvoretz (2002) introduced multivariate meta-analysis of ERGM parameters from

a common model family (fit to an ensemble of graphs) and predicted conditional edge proba-

bilities from the generative base models as tools for leveraging ERGMs to compare networks.

More elaborate meta-analytic procedures and hierarchical models for single populations of

networks were subsequently developed by, among others, Zijlstra et al. (2006); Slaughter and

Koehly (2016); McFarland et al. (2014); Butts (2017), and Stewart et al. (2019). Nonpara-

metric models (e.g., latent space or block models) have also been employed for studying sets of

networks, e.g. hierarchical mixed membership stochastic blockmodels for multiple networks

(Sweet et al., 2014). In general, those methods have either not posited a generative model

for the parameters of the base distribution (as in descriptive meta-analytic approaches),

have not attempted to jointly estimate population-level and network-level parameters (as

in conventional meta-analysis), or have assumed a simple hierarchical form in which coeffi-

cients are taken to be drawn from a simple population distribution (often Gaussian) with

common mean and variance. The latter work well for homogeneous (super)populations; but

when the network ensemble reflects higher levels of heterogeneity, more structure is required.

In contrast, work such as that of Durante and Dunson (2018); Lehmann (2019) explicitly

considers heterogeneity within graph subpopulations, but assumes that the subpopulation

labels are observed. Joint modeling of population-level and network-level parameters where

subpopulation memberships are unknown, or where the true generative process otherwise

involves a mixture of graph distributions, has remained an open problem to date in the

ERGM context.

In this paper, we propose using a mixture of ERGMs to model the generative process of en-

sembles of networks in which the group labels are not available, under the general framework

of finite mixture models (McLachlan and Basford, 1988; Fraley and Raftery, 2002; Bouveyron
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et al., 2019). Such a formulation provides a useful probabilistic interpretation of the results

and allows for convenient statistical inference; we note that related approaches have proven

to be efficacious for modeling structure within networks (e.g. Salter-Townshend and Mur-

phy, 2015; Schweinberger and Handcock, 2015; Snijders and Nowicki, 1997). Recent work

on using mixtures of network models with the dyadic independence property (e.g., a pri-

ori stochastic blockmodel, p1 model) for modeling multiple network observations (Signorelli

and Wit, 2020) can encounter difficulties when the observed networks exhibit strong dyadic

dependence, which is often the case for real-world networks. We develop a Metropolis-

within-Gibbs algorithm to perform Bayesian inference for the proposed model, with both

the subpopulation assignments and the ERGM parameters in the subpopulations being es-

timated simultaneously. Given that our primary focus is to develop a practical procedure

that can obtain meaningful subpopulations, we employ a pseudo-likelihood approximation

to the ERGM likelihood for efficient computation; while we show here that this approach

can work well, more advanced MCMC techniques can also be deployed to obtain more ac-

curate estimates when the interest lies mainly in the inference of subpopulations-specific

parameters. (It is also possible to use the pseudo-likelihood when updating subpopulation

assignment parameters and then use high-accuracy MCMC-based likelihood calculations to

update subpopulation-specific parameters, offering additional options for speed/accuracy

tradeoffs.) We approach the problem of choosing number of subpopulations from a model

selection perspective, using a version of deviance information criterion.

The remainder of this chapter is structured as follows. In Section 4.2 we briefly introduce

the exponential-family random graph models (ERGMs) and common estimation techniques.

Section 4.3 describes the idea of mixtures of ERGMs, along with our estimation algorithms

and our proposed method for selecting the number of subpopulations. Section 4.4 presents

simulation studies showing that the proposed method can accurately recover the true sub-

population assignment and model parameters. Section 4.5 shows the results of our method

applied to a political co-voting data analysis and Section 4.6 provides another case study
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that aims at clustering advice-seeking networks among school teachers. Section 4.7 concludes

with a discussion.

4.2 Exponential-family Random Graph Models (ERGMs)

4.2.1 Definition and Estimation

We consider the general formulation of ERGMs defined in (1.1),

Pη(Y = y|X;θ) = exp

(
η(θ)ᵀg(y; X)− ψg,η,X,Yn(θ)

)
h(y), y ∈ Yn, (4.1)

Exact evaluation of the normalizing factor, ψg,η,X,Yn(θ), involves integrating an extremely

rough function over all possible network configurations (2(n
2) non-negative terms for an undi-

rected network of size n). This cannot be done by brute force except for trivially small graphs,

and the roughness of the underlying function precludes simple Monte Carlo strategies; thus,

alternative approaches that approximate or avoid this calculation are of substantial interest

(see Hunter et al., 2012, for a review). To date, the most frequently used approaches include:

• Maximum pseudo-likelihood estimation (MPLE; Besag (1974)) adapted to ERGMs by

Strauss and Ikeda (1990).

• Markov Chain Monte Carlo MLE (MCMC MLE; Geyer and Thompson (1992)) adapted

to ERGMs by Handcock (2003); Hunter and Handcock (2006).

• Stochastic approximation (SA; Robbins and Monro (1951); Pflug (1996)) adapted to

ERGMs by Snijders (2002).
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• Fully Bayesian inference based on the approximate exchange algorithm (Caimo and

Friel, 2011).

Recent developments on ERGM estimation have concentrated on: (1) finding better initial

values for simulation-based MLE, including the partial stepping technique (Hummel et al.,

2012) and contrastive divergence (CD,Hinton (2002))-based techniques adapted to ERGMs

by Krivitsky (2017); and (2) more accurate tractable approximations to ERGM likelihood

than pseudo-likelihood, such as the adjusted pseudo-likelihood (Bouranis et al., 2017, 2018)

for fast Bayesian inference. Despite the computational challenges, these and related strategies

have made ERGM inference practical for well-posed model families (e.g., see Schweinberger

et al. (2019) for a recent review).

4.2.2 Size-adjusted Parameterizations

It is worth noting that the behavior of Equation (4.1) across n is highly dependent on the

choice of reference measure, h. In particular, the counting measure - while a mathematically

convenient choice - implicitly sets the base distribution of the network to be the uniform

distribution on Yn, and has the side effect of generating graphs whose densities are ceteris

paribus constant in n. When network size varies, this is not always realistic: in many

networks, mean degree is approximately constant in n, implying that density must scale as

n−1. To correct for this, Krivitsky et al. (2011) propose the reference measure h(y) = n−M(y),

where M is the edge count. This is equivalent to adding a size-dependent offset of − log n

to the natural parameter associated with the edge count, i.e.,

η1(θ) = θ1 − log n, (4.2)
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where θ1 ∈ R is a parameter that does not depend on the network size. In the present

work, we employ the Krivitsky reference measure as above, although other size-adjusted

parameterizations are also possible (e.g., Butts and Almquist, 2015; Kolaczyk and Krivitsky,

2015).

4.3 Finite Mixtures of ERGMs

We assume a population of networks (Y(1),V(1),X(1)), . . . , (Y(m),V(m),X(m)), where Y(i) is

a graph structure on vertex set V(i) with covariate set X(i). Our interest is in modeling

Y(1), · · · ,Y(m) given (V(1),X(1)), · · · , (V(m),X(m)), where it will be assumed that the re-

spective graph structures are conditionally independent given the generative process, vertex

sets, and covariates.

4.3.1 Model Formulation

We model the generative process of the network ensemble as a finite mixture, with each

mixture component (equivalently, subpopulation, or “cluster”) being an ERGM distribution

with cluster-specific parameters. (See Figure 4.1.) Given K clusters, the a priori probability

for a network to belong to cluster k is τk for k = 1, 2, · · · , K, and the probability law

governing the formation of the network in group k is parameterized by Eq. (4.1) with cluster-

specific parameter vector θk ∈ Rqk and cluster-specific mapping to the natural parameters

ηk(θk) = (ηk,1(θk), · · · , ηk,pk(θk)) ∈ Rpk .

More specifically, the marginal likelihood for network Y(i), with |V(i)| ≡ ni, takes the fol-
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lowing form

P(Y(i) = y(i)|X(i); τ ,θ) =
K∑
k=1

τk exp

(
ηk(θk)

ᵀgk(y
(i); X(i))−ψgk,ηk,X(i),Yni

(θk)

)
hi(y

(i)),y(i) ∈ Yni

(4.3)

where τ = (τ1, · · · , τK) and θ = (θ1, · · · ,θK) are the model parameters, and the former

satisfies the constraint
∑K

k=1 τk = 1, τk ≥ 0 for k = 1, . . . , K.

The ensemble of networks consists of m independent observations y = (y(1), · · · ,y(m)) with

fixed covariate set X = (X(1), · · · ,X(m)) and fixed vertex set V = (V(1), · · · ,V(m)), and

hence the joint likelihood is

P(Y = y|X; τ ,θ) =
m∏
i=1

[ K∑
k=1

τk exp

(
ηk(θk)

ᵀgk(y
(i); X(i))−ψgk,ηk,X(i),Yni

(θk)

)
hi(y

(i))

]
,

(4.4)

where we have absorbed the support constraint into the reference measure.

To facilitate statistical inference, we consider the representation of (4.4) from a latent variable

perspective. Let Zi, i = 1, · · · ,m be latent variables following a categorical distribution with

K values and probability parameter τ , such that Zi = k if Y(i) belongs to cluster k. We

may then treat Y(i) as arising from a process in which Zi is first drawn from Categorial(τ ),

and Y(i) is then drawn from the ERGM distribution corresponding to cluster Zi. While one

could allow the reference measure to also vary by cluster, we rely on the case of ERGMs

specified relative to the Krivitsky reference measure if the sizes of the networks vary. In

addition, we focus on canonical ERGM (i.e., η(θ) ≡ θ) as it comprises a wide range of

models that have been found successful for modeling many real world networks. We note that

the generalization to curved ERGM is straightforward conceptually, but the development of
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Y(i)
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α

μ,Ψ

τ

Figure 4.1: Structure of the graph mixture model. Random quantities are depicted within
circles, fixed quantities within rectangles; observables are shaded.

reliable estimation algorithm is a very challenging problem by itself which we leave for future

research.

4.3.2 Bayesian Estimation

Bayesian estimation is a natural choice for parameter inference here, since (1) it is more

robust to initialization and less prone to converge to local minima than maximum likelihood;
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(2) interval estimation is straightforward and does not rely on the assumption of approximate

normality; and (3) it provides principled answers in fixed-n,m settings. Our strategy is to

employ Metropolis-within-Gibbs sampling to obtain MCMC samples from the joint posterior

distribution of θ and τ .

We specify prior distributions for the parameters as follows,

τ ∼ Dirichlet(α),

θk
i.i.d.∼ MVNp(µ,Ψ), k = 1, · · · , K,

where α = (α1, · · · , αK), µ and Ψ are hyper-parameters to be specified by the user. For

typical use cases, a reasonable choice of hyperparameters are α1 = . . . = αK = 3, which puts

low probability on any group being extremely small, µ = 0, and Ψ = 25Ip, which is fairly

flat over the typical range of variation for common parameterizations.

As noted, we perform posterior inference via MCMC. Our algorithm iterates over the model

parameters (θ, τ ) with the priors given above, and the latent variables Z = (Z1, · · · , Zm).

Where possible we sample from the full conditional posterior distributions; otherwise we use

Metropolis-Hastings steps.

The proposal distribution q(·|θ) in the Metropolis step is set by the user to achieve good

performance of the algorithm. On the basis of some experimentation, we use the symmetric

proposal N (θ, σ2Iq), where σ = 0.05. At each MCMC iteration, we permute the labels

to impose ordering constraints on the first common element of the parameter vectors (e.g.,

total number of edges), θ11 < θ21 < · · · < θK1 for model identifiability purposes. Simulation

studies and case studies show that the ordering constraints can work well, though other
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Algorithm 4 Metropolis-within-Gibbs sampler for the ERGM mixture model

1: Initialization: Set τ 0, θ0 and Z0 to initial values (e.g., prior means).
2: for t = 1, 2, · · · , T do
3: Generate Zt

i (i = 1, · · · ,m, k = 1, · · · , K) from
P(Zt

i = k|ηt−1k ,θt−1k ,y(i)) ∝ ηt−1k P(y(i)|X(i);θt−1k )
4: Compute νtk =

∑m
i=1 1Zt

i=k
; k = 1, · · · , K

5: Generate τ t from Dirichlet(α1 + νt1, · · · , αK + νtK)
6: for k = 1, · · · , K do
7: Propose θ

′

k ∼ q(·|θt−1k )
8: Accept θ

′

k with probability equal to
π(θ
′
k)

∏
Zt
i
=k

P(y(i)|X(i);θ
′
k)q(θ

t−1
k |θ′k)

π(θt−1
k )

∏
Zt
i
=k

P(y(i)|X(i);θt−1
k )q(θ

′
k|θ

t−1
k )

9: end for
10: end for

post-processing techniques (e.g., Kullback-Leibler relabeling algorithm (Stephens, 2000) and

Pivotal Reordering algorithm (Marin et al., 2005), etc.), can be used depending on practi-

tioners’ preference.

To deal with the intractability of P(y(i)|X(i);θ), there are at least three possible solutions in

the ERGM literature:

• Work with a tractable approximation in place of the ERGM likelihood, e.g., pseudo-

likelihood (Strauss and Ikeda, 1990), fully adjusted pseudo-likelihood (Bouranis et al.,

2018), or other composite likelihoods (Austad and Friel, 2010; Asuncion et al., 2010);

• Use importance sampling to approximate the ERGM likelihood (Koskinen, 2004, 2008);

• Use auxiliary-variable based MCMC algorithms to eliminate the intractable normaliz-

ing factor in ERGM likelihood (Caimo and Friel, 2011).

In fact, updating θk’s using the Metropolis-Hastings ratio in (8) is a doubly-intractable prob-

lem, which can be approached using various advanced MCMC techniques (see Park and

Haran, 2018, for a review). However, these advanced techniques all require simulating net-

works from ERGMs at each MCMC iteration to approximate the true likelihood (4.1), which
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can be expensive for large networks. When the major goal is clustering instead of estimation

of cluster-specific parameters, we propose to work with the most common form of tractable

approximation, the pseudo-likelihood, in which the full likelihood of each network is approx-

imated by a product of full conditional distributions of edge variables yij in y,

fPL(y|X;θ) =
∏

(i,j)∈D

P(yij|y−ij; X;θ) =
∏

(i,j)∈D

1

1 + exp
{
−η(θ)ᵀ∆i,jg(y; X)

} , (4.5)

where ∆i,jg(y; X) = g(y+ij ; X)− g(y−ij ; X) are the so-called change statistics associated with

the dyad (i, j), representing the change in sufficient statistics when yij is toggled from 0

(y−ij) to 1 (y+ij) with the rest of the network remaining unchanged; D denotes the set of all

pairs of dyads. For directed networks, D = {(i, j)|i, j ∈ V, i 6= j}, while for undirected

networks, D = {(i, j)|i, j ∈ V, i < j}. In the frequentist paradigm, maximizing (4.5)

gives the so-called MPLE, which is relatively fast, algorithmically convenient, and able to

provide approximate parameter estimates for even badly-specified models. While empirical

observations show that MPLE can cause bias and underestimate standard errors (Van Duijn

et al., 2009) (especially for models with strong dyadic dependence), it has been the default

choice for initialization of MCMC-MLE algorithms. There is also promising work on using

bootstrapped MPLE to construct confidence intervals (Schmid and Desmarais, 2017) for

large and sparse networks, as the MPLE is usually close to MLE in such cases (Desmarais

and Cranmer, 2010). Similar logic has motivated the use of Bayesian bootstrap estimation

based on “pseudo-MAP” estimates using the PL approximation to the likelihood (Grazioli

et al., 2019b).
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4.3.3 Choosing the Number of Clusters

We recast the problem of choosing the number of clusters as a model selection problem, as

different numbers of clusters result in distinct statistical models. Therefore, we use a version

of the observed deviance information criteria (DIC) introduced by Celeux et al. (2006),

which is an extension of the original DIC (Spiegelhalter et al., 2002) to models with latent

variables. Given posterior draws τ l,θl = (θl1, · · · ,θlK) and observed ensemble of networks

y = (y(1), · · · ,y(m)), the observed DIC is defined by

DICK = −4Eθ[logP(y|X;θ)|y] + 2 log P̂(y|X;θ), (4.6)

where

P̂(y|X;θ) =
m∏
i=1

P̂(y(i)|X(i);θ) =
m∏
i=1

(
1

m

L∑
l=1

K∑
k=1

τ lkP(y(i)|X(i);θ
(l)
k )

)
,

and

Eθ[logP(y|X;θ)|y] =
1

m

L∑
l=1

m∑
i=1

log


K∑
k=1

τ lkP(y(i)|X(i);θ
(l)
k )

 .

As practitioners often seek for parsimonious models to represent the population, we present a

rule-of-thumb to identify the point where there is diminishing return by further increasing the

number of clusters, and hence to avoid potential over-fitting. Define the relative difference

(RD) in DIC as
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RD(k) =
DICk −DICk−1

DICk−1
, k = 2, 3, · · · .

We define the optimal number of clusters given by a pre-specified cut-off value ε as kopt(ε) =

mink
{
k|RD(k) > ε

}
, based on the reasoning that the optimal number of clusters should

be the first k resulting in limited relative improvement in terms of DIC. Simulation studies

in Section 4.4 show empirical evidence supporting that ε = −0.005 can be a reasonable

rule-of-thumb for selecting the number of clusters.

We note that having an ensemble of networks makes it possible to assess the out-of-sample

performance of mixture of ERGMs using the traditional statistical principle of cross-validation

(CV), and there is work on using CV to estimate the number of clusters for observations with

continuous values (Fu and Perry, 2019). In particular, to reduce the possibility of acciden-

tally dropping all graphs in a single cluster by holding out too many graphs simultaneously,

leave-one-out CV should be favored. The loss function for the cross-validation procedure

can be negative log-likelihood evaluated on the held-out data as well as prediction error with

respect to any structural properties of interest (obtained by simulating from estimated model

using training data). Though the CV is not Bayesian and violates the likelihood principle,

it is easy to implement and obviates the need to choose a threshold for when to stop adding

clusters based on the predictive power of the model.

4.3.4 Posterior Probability of Cluster Membership

An appealing aspect of mixture modeling is that the posterior probability of individuals

belonging to each cluster (alternately: graphs having been generated by a particular process)
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can be conveniently obtained as

P(Zi = k|y(i)) =

∫
τkP(y(i)|X(i);θk)∑K
k=1 τkP(y(i)|X(i);θk)

π(θ, τ |y)dθdτ , (4.7)

where π(θ, τ |y) is the posterior distribution of θ, τ . The integral in (4.7) is computationally

intractable. Hence we use posterior samples θ1, · · · ,θL and τ 1, · · · , τL to obtain its Monte-

Carlo approximation,

P̂(Zi = k|y(i)) =
1

L

L∑
l=1

τ lkP(y(i)|X(i);θlk)∑K
k=1 τ

l
kP(y(i)|X(i);θlk)

. (4.8)

The posterior mode, i.e., Ẑi = arg maxk P̂(Zi = k|y(i)) can be used as the output for cluster

analysis, provided that the goal is to obtain a deterministic cluster assignment.

4.4 Simulation Studies

We conduct extensive simulation studies to show that the proposed approach is capable

of selecting the true number of clusters, recovering the true cluster memberships and true

model parameters.

4.4.1 Experiment Settings

The ground truth is available for the synthetic data, as we simulate networks from mixtures

of ERGM distributions defined on the three most commonly used network sufficient statistics
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but with distinct parameters,

• g1(y) =
∑

i<j yij, total number of edges.

• g2(y) = eφ
∑n−2

k=1

{
1− (1− e−φ)k

}
EPk(y), geometrically weighted edgewise shared

partners (GWESP). Here EPk(y) is the number of connected pairs that have exactly

k common neighbors, which measures local clustering in a network. The decay param-

eter φ controls the relative contribution of EPk(y) to the GWESP statistic, and it is

fixed at 0.25 in this case.

• g3(y; X) =
∑

i<j yij1{Xi=Xj}, total number of edges with endpoints sharing the same

value on node-level covariate X, often known as nodematch term.

We fix nodal covariate X to be a binary variable, and let one half of nodes take value 0, while

the other half take value 1 on X. To examine the performance of the proposed approach

across a range of different conditions, we run a full-factorial experiment on the following

three treatments

• Network size: 40, 100, 250.

• Number of clusters: 2, 3.

• Cluster size: 10, 20, 50.

We thus have a total of 18 experimental conditions, each of which is run for 50 replicates.

The true cluster-specific parameters are specified as

θ40true =


−1.15 0 0

−2.85 0.25 2.25

−4.95 2.5 0.25

 , θ100true =


−2.20 0 0

−4.15 0.25 2.25

−5.85 2.5 0.25

 , θ250true =


−3.20 0 0

−4.95 0.25 2.25

−6.42 2.5 0.25


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Figure 4.2: Representative networks from clusters 1 (left), 2 (middle), and 3 (right). Network
size: 100. Color indicates nodal covariate value: 0 (black), 1 (red). Despite the apparent
similarity of the networks produced by the three generative processes, we are able to infer
the latter from the observed ensemble.

to ensure that the simulated networks (i) have similar mean degree (∼ 9.9, that is, networks

of size 100 have density ∼ 0.10) across different clusters and network sizes; and (ii) repre-

sent three most common-yet-intuitive patterns in real-world networks (parameter settings

in the first row corresponds to the cases in which ties are independent Bernoulli draws, and

parameter settings in the second row corresponds to the cases in which there is a strong

homophily effect but a weak triadic closure effect, while the parameter settings in the third

row correspond to the case in which there is a strong triadic closure effect but weak ho-

mophily effect). To maintain this pattern, we fix the values of coefficients associated with

GWESP and nodematch terms across settings with different network sizes, and only modify

the coefficient of edges term to keep the mean degree value as desired. We simulate networks

using first two rows of the parameter matrices when the number of clusters is 2. Identifying

subpopulations from ensembles of networks produced by this model is by no means a trivial

task, especially as the cluster-specific parameters are chosen to produce networks of similar

mean degrees (≈ 0.10) as shown in Figure 4.2. While these networks appear superficially

similar, we can recover the distinct processes that generated them.

We apply the proposed Algorithm 4 to analyze the synthetic data sets, allowing the candidate

values for the number of clusters to range from 1 to one greater than the true number of
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clusters (i.e., to 4, if the true number of clusters is 3; and 3, if the true number of clusters is 2).

We assign random initial values to the latent indicator membership Z0
i , weight parameters

τ 0 according to the prior, and set the parameters associated with the edge term as −2 (i.e.,

θ11 = · · · = θK1 = −2), while all other elements in θ are drawn independently from a uniform

distribution U(−0.1, 0.1). It is worth noting that our experiments suggest that better initial

values can result in faster convergence and more stable performance for large networks. One

effective way to initialize the proposed Algorithm 4 is to first find the MPLE for each network

in the ensemble separately, then cluster these MPLE estimates with K-means algorithm to

initialize Z0
i and calculate the intra-cluster mean MPLE estimates to determine the starting

value of cluster-specific model parameters for each cluster. Table 4.1 presents the MCMC

settings, prior and proposal distribution for the experiments. The thinning interval is chosen

as 50 for all MCMC chains to obtain high-quality, weakly correlated draws from the posterior.

All computations in this paper are implemented in R (R Core Team, 2018), and we use

software suite statnet (Handcock et al., 2008) to generate networks from ERGMs.

Table 4.1: Total number of iterations, burn-in size, initialization method, prior hyper-
parameters and covariance matrix for random-walk Metropolis-Hastings update of θ in sim-
ulation studies

Total iterations Burn-in Initialization µ Ψ Prop. Cov
40, 2 17500 7500 Random (-1,0,0) 25I3 0.0025I3
40, 3 20000 10000 Random (-1,0,0) 25I3 0.0025I3
100, 2 17500 7500 Random (-1,0,0) 25I3 0.0025I3
100, 3 20000 10000 MPLE, K-means (-1,0,0) 25I3 0.0025I3
250, 2 22500 12500 MPLE, K-means (-1,0,0) 25I3 0.0016I3
250, 3 25000 15000 MPLE, K-means (-1,0,0) 25I3 0.0016I3

4.4.2 Recovery of True Number of Clusters and Cluster Member-

ship

We analyze the performance of proposed method in terms of its ability to identify the true

number of clusters and cluster memberships. Figures 4.3 and 4.4 show that selecting the
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number of clusters according to the point beyond which there is diminishing return (ε =

−0.005) is unanimously superior to the minimum DIC criterion (ε = 0), as the latter tends

to be in favor of more complex models (i.e., with more clusters) than is optimal. Under DIC

criterion with ε = −0.005, we note that one has an 90% or higher chance of identifying the

true number of clusters when the true number is 2, and such chance is about 80% when the

true number of clusters is 3. Compared to identifying true number of clusters, recovering

cluster memberships can be a more meaningful task in real-world applications, which we

evaluate using adjusted rand index (ARI) (Hubert and Arabie, 1985), a corrected-for-chance

measure of the similarity between two clustering assignments, which yields a value of 1 for

perfect cluster assignments and has an expected value of 0 for completely random cluster

assignments. ARI is employed as an accuracy measure for cluster assignments here because

the ground truth is available in the simulation study. Table 4.2 gives the mean ARI calculated

across 50 replicates within each experiment setting, it shows that the proposed method can

work well on the task of cluster assignments as all the mean ARI values are higher than

0.90 when the true number of clusters is 2 and 0.85 when the true number of clusters is

3 (a rule-of-thumb threshold value for “good clustering” is 0.80). We note that the mean

ARI scores in Table 4.2 includes those calculated on the runs in which the true number of

clusters is falsely identified, indicating that the proposed method is robust. In other words,

the method fails gracefully, as it tends to completely combine two clusters or split one entire

cluster into two when it errs, rather than mixing two clusters.

Table 4.2: Mean ARI calculated across 50 replicates within each experiment setting. The
true number of clusters is denoted as K.

K=2 K=3
10 20 50 10 20 50

40 0.940 0.980 0.900 0.902 0.942 0.924
100 0.980 0.996 0.980 0.902 0.869 0.905
250 1.000 1.000 1.000 0.884 0.939 0.905
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Figure 4.3: Relative frequency of K̂ selected by DIC criterion with ε = 0 and ε = −0.005.
True number of clusters (K) = 2

Figure 4.4: Relative frequency of K̂ selected by DIC criterion with ε = 0 and ε = −0.005.
True number of clusters (K) = 3.
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4.4.3 Estimation Accuracy

Given a correctly identified number of clusters, one natural question to ask is whether the

proposed algorithm can accurately estimate the cluster-specific parameters. Specifically, we

evaluate the estimation accuracy by examining the bias of posterior means.

Table 4.3 summarizes the bias for cluster-specific model parameters under all experimental

settings. We notice that the bias is in general small, especially for large networks, though

there is slightly higher bias when the true number of clusters is 3. Large bias is mostly seen

in the clusters in which there is strong dyadic dependence among edge variables (i.e., large

coefficients associated with gwesp term), as expected. However, such bias becomes smaller

and also less variable as sample size increases, indicating that larger sample size can mitigate

the bias induced by the adoption of pseudo-likelihood. These findings offer implications to

practitioners as estimated parameters are more reliable when large sample size is available

or when the size of networks of interests is large.

4.4.4 Posterior Predictive Assessments

One of the most appealing aspects of mixture modeling framework is that one can use simple

probability distributions as building blocks to approximate complex probability distributions

(e.g., mixtures of Gaussians are often used to approximate multimodal distributions). It

is of substantial interest to see whether mixtures of ERGMs can provide an adequate fit

to complex graph distributions. Although the selection of metrics should be guided by

the particular properties of interests in practice, we consider four widely used metrics that

characterize different aspects of graph structure as follows

• Mean eigenvector centrality: the eigenvector centrality (EC) is a node-level metric

that measures the degree of membership of a given node in the largest core/periphery
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structure in the graph, and we take mean eigenvector centrality among all nodes in the

graph to convert it to a graph-level metric.1 The eigenvector centrality is also the best

one-dimensional approximation of the graph structure (in a least-squares sense), and

accuracy in reproducing it indicates the extent to which the model is able to recover

the broadest structural features of the graph.

• Transitivity: a standard measure of triadic closure in network analysis (Wasserman

and Faust, 1994), defined as the ratio of complete triangles to all potentially complete

triangles.

• Standard deviation of degree distribution: a measure of the level of heterogeneity in

degree distribution.

• Mean of inverse geodesic distances: a measure of the overall closeness between nodes

in a graph.

We focus on the experimental settings in which we have the most observations (3 clusters,

50 networks in each cluster) in this section. As each ensemble of networks in the synthetic

data sets contains a total of 150 graphs, we also generate 150 networks using posterior sam-

ples with the data generating mechanism described in Figure 4.1. The simulated networks

based on posterior samples and those synthetic networks are summarized by the four graph-

level metrics, and their discrepancies are quantified in terms of the Hellinger distance, a

commonly used metric for quantifying the distance between two probability distributions.

We use function CalcHellingerDist in package textmineR (Jones, 2019) to calculate the

empirical Hellinger distance between two sample vectors. Table 4.4 summarizes the mean

and standard deviation of Hellinger distance evaluated across all replicates, regardless of

whether the number of clusters selected by DIC criterion (ε = −0.005) under the experi-

mental settings of interests (i.e., true number of clusters is 3) is correct. The discrepancy

1Except in very rare cases for which the graph adjacency matrix lacks a principal eigenvalue. In such
circumstances, eigenvector centrality is a signed indicator of membership in the two largest core/periphery
structures (positive versus negative).
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between posterior predictive samples and synthetic data sets increases as the model selection

accuracy decreases, from network size 40 to 100 and then to 250. To better understand the

connections between Hellinger distance values and underlying visual difference in distribu-

tions in terms of histograms, we consider two representative replicates when the network size

is 250. Figure 4.5 corresponds to a case in which the true number of clusters is selected and

with Hellinger distance close to the average – it is clear that the posterior predictive distri-

bution of metrics of interest is very close to that of synthetic data. Figure 4.6 corresponds

to a representative case in which the number of clusters is underestimated to be 2 – the key

observation is the resulting mixture model successfully captures the bimodal feature of mean

eigenvector centrality and the left-skewed feature of mean of inverse geodesic distribution,

and also identifies two of the three modes for standard deviation of degree distribution and

transitivity. Although the result does not seem to be ideal, one key observation is that the

resulting mixture model converges to the “middle ground” between two clusters, indicating

that the possible reason for the model to choose two clusters over three is that the algorithm

gets stuck at a local optimum, which might be mitigated by running MCMC chains longer

or a more efficient proposal distribution for the Metropolis-Hastings step of Algorithm 4. At

a higher level, these results suggest the potential of mixtures of ERGMs as a tool to approx-

imate complex graph distributions as one can view ERGMs as an analogue to “kernel” in

density estimation.

Table 4.4: Mean (standard deviation) of Hellinger distance

Mean EC Transitivity SD of deg. dist. Mean of inverse geodesic distance
40, 3 0.045 (0.002) 0.086 (0.007) 0.083 (0.006) 0.011 (0.001)
100, 3 0.076 (0.005) 0.154 (0.009) 0.123 (0.006) 0.025 (0.003)
250, 3 0.145 (0.015) 0.271 (0.016) 0.137 (0.010) 0.074 (0.016)
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Figure 4.5: Distribution of metrics of interests for posterior predictive samples and synthetic
data, with corresponding Hellinger distance values : 0.150 (upper left), 0.283 (upper right),
0.141 (lower left), 0.076 (lower right).

Figure 4.6: Distribution of metrics of interests for posterior predictive samples and synthetic
data, with corresponding Hellinger distance values: 0.173 (upper left), 0.270 (upper right),
0.125 (lower left), 0.105 (lower right).
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4.5 Case Study: Political Co-voting Networks among

U.S. Senators

In this section, we apply the proposed method to cluster the co-voting patterns among U.S.

Senators from 1867 (start year of Congress 40) to 2014 (end year of Congress 113), which

was a subset of the data first analyzed by Moody and Mucha (2013) using modularity and

role-based blockmodels. The co-voting tendencies are represented by networks based on the

roll call voting data from http://voteview.com, which contains the voting decision of each

Senator (yay, nay, or abstain) for every bill brought to Congress 2. The nodes in the co-voting

network represent Senators and an edge is placed between two nodes if the corresponding

Senators vote concurrently (both yay of both nay) on at least 75% of the bills to which

they were both present. Here we aim at identifying subgroups of networks that appear to

have similar generating characteristics within the group but different characteristics across

groups.

4.5.1 Model Specification and Estimation

Figure 4.7 shows that the co-voting networks vary in structure on different years, and that

party-affiliation appears to be a key factor affecting the co-voting patterns among Senators.

Therefore we consider an ERGM model with following sufficient statistics

g1(y) =
∑
i<j

yij, total number of edges;

g2(y; X) =
∑
i<j

yij,1{Xi=Xj=D}, total number of edges between Democrats;

2This dataset is available online in the R package VCERRGM, https://github.com/jihuilee/VCERGM
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Figure 4.7: Co-voting networks of 61st, 89th and 111th Congress, which were formed in the
year of 1909, 1965 and 2009, respectively. Colors indicate Senators’ party affiliations, blue
= Democrats(D), red = Republican(R).

g3(y; X) =
∑
i<j

yij1{Xi=R,Xj=D}, total number of edges between Democrats and Republicans;

g4(y) = eφ
n−2∑
k=1

{
1− (1− e−φ)k

}
EPk(y), GWESP statistic

The decay parameter of GWESP term is fixed as φ = 0.25 as often used in ERGM literature.

We note that these networks vary in size (range: 69− 112) and thus include an offset term

(4.2) to adjust for network size. (This is equivalent to using the Krivitsky reference measure,

which provides a parameterization with constant baseline expected degree.) We use the prior

specification in Section 4.3, and run long MCMC chains (total iterations = 80000, burn-in

= 30000, thinning interval = 50) with random initial values.

4.5.2 Results

Figure 4.8 indicates that the DIC reaches its minimum at K = 3, and hence K = 3 appears

to be a plausible choice for the number of clusters. Under K = 3, visual inspections on

the traceplots suggest that the chains converge very fast and mix well (see Figure 4.9 for

traceplots of edges parameter; other traceplots also show similar pattern, but are omitted in

the interest of space). The posterior mean estimates of cluster-specific parameters are
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Figure 4.8: DIC vs Number of clusters, U.S. Congress co-voting networks
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Figure 4.9: Traceplots for parameters associated with edges term for 3 clusters.

τ̂ =


0.36

0.47

0.17

 θ̂ =


1.69 0.01 −2.49 1.42

2.04 −0.12 −3.09 2.14

2.47 0.92 −4.47 2.63


We note that the size-invariant parameters for edge term (first column) can be interpreted

as the log of the baseline mean degree (rather than the logit of the baseline density, as in

the case of the counting measure), suggesting expected degrees varying from approximately

5.5 to 12 across clusters prior to consideration of other effects.

Based on these estimates, we have the following observations regarding the co-voting pat-

terns. Across all clusters, we see both inhibition of cross-party ties (third column) and

strong triadic closure (fourth column). Clusters do differ, however. Cluster 1 shows essen-

tially symmetric behavior by party (column two), with lower levels of cross-group inhibition
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and triadic closure bias than in the other clusters; overall, cluster 1 suggests a relatively

low level of polarization by party, with voting only loosely restricted by party lines. By

contrast, cluster 2 reflects a much more polarized regime, with more activity overall and

co-voting being more concentrated within party. Like cluster 1, however, cluster 2 shows

little party asymmetry (apart from a fairly weak tendency towards lower levels of co-voting

among Democrats). Such asymmetry is much more strongly pronounced within cluster 3,

with intraparty Democratic ties being approximately 2.5 times as likely (ceteris paribus) as

ties within the GOP. This cluster also reflects extremely high levels of polarization, with

cross-party co-voting being strongly inhibited and high levels of triadic closure. Over the pe-

riod studied here, the most common pattern (probability 0.47) is the symmetric polarization

of cluster 2, with the loose, low polarization pattern of cluster 1 also being fairly common

(probability 0.36). The asymmetric, highly polarized regime of cluster 3 is less common, but

is still estimated to account for approximately 17% of the observed cases. Interestingly, we

do not see a corresponding asymmetric pattern in which the GOP shows high intraparty

vote density, as might be anticipated; thus, there appear to be latent differences in how the

two parties behave during the period that, while not manifest in every congress, always have

the potential to arise.

One advantage of working with a fully generative model is the ability to perform “what-if”

analyses that separate effects due to observed covariates from differences in structure arising

from differences in generative processes. To probe the impact of the three behavioral regimes

inferred from the co-voting data, we consider how the entire ensemble of Congressional net-

works would be expected to have been different, if each respective regime had governed the

U.S. Congress for the entire study period. To perform such an analysis, we first simulate a set

of posterior predictive networks for each Congress during the study period, with parameters

drawn from the posterior distribution of each respective cluster. Each collection of networks

can be thought of as a simulated “alternate history,” in which the size and composition of

each Congress were held to their real-world values but the behavioral tendencies that shaped
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the co-voting networks throughout the period were reflective of only one of the three clusters.

Systematic differences in network structure across sets thus provide insight into the potential

impact of behavioral regime, controlling for size and composition.

One important property that can be probed in this way is the expected incidence of vot-

ing coalitions, which play an important role in party politics. Here, we focus on minimal

coalitions, defined as sets of three legislators who consistently vote together (i.e., triangles).

Within-party coalitions can be sources of party cohesion, although they also act as blocks

that can sometimes resist (and must be negotiated with by) party leaders; cross-party coali-

tions, by contrast, pose significant challenges to party cohesion, but can also serve as foci

for sponsorship and promotion of bipartisan legislation. Both are hence significant, with

distinct implications for the political landscape. To examine the coalition structures that

would have been expected to occur under our three behavioral regimes, we simulate 100

“alternate histories” from the posterior distributions of each cluster, calculating the realized

proportions of intra-Democratic, intra-Republican, and inter-Party triangles. (That is, the

counts of fully connected triads with all three members as Democrats, all three members

as Republicans, or members from both parties, scaled by their maximum possible values.)

Using proportions rather than raw counts ensures these metrics are normalized for network

size and the distribution of party affiliations in each Congress; substantively, this choice of

scaling tells us how close each party (or the cross-party cut) is to forming a perfect coali-

tion, in which all members vote in concert. Figure 4.10 shows the realized proportion of

intra-party triangles in simulated networks, and Figure 4.11 shows the realized proportion of

inter-party triangles in the simulated networks. Both figures show substantial differences in

coalition structure, implying that the behavioral regimes associated with the three inferred

clusters would be expected to have a meaningful impact on the political process. Specifically,

we note the following:

• The regime of cluster 1 is marked by the formation of very few voting coalitions, either
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within party or between party). As suggested by the parameter values, we see little

difference in coalition formation between the two parties, both having little cohesion.

• By contrast, the regime of cluster 2 shows a much higher incidence of intra-party

coalition formation, with roughly 10-20% of the potential intra-party coalitions being

present. Coalition incidence differs little by party, with at best a small average incre-

ment in the rate of coalition incidence for Republicans versus Democrats. Interestingly,

this regime also shows the highest rate of cross-party coalition formation; while the

rate is very low overall, it is considerably higher than that observed under cluster 1.

• Finally, the regime of cluster 3 favors extremely high levels of intra-party cohesion,

with rates approaching 50% of the maximum possible for Republicans and 75% for

Democrats. As this implies, the resulting networks are also highly asymmetric, with

the Democratic party expected to generate a much more cohesive coalition structure

than the GOP. Interestingly, this strong intra-party coalition formation does not exist

entirely at the expense of cross-party coalitions: we find an expected rate of cross-

party coalition formation that is only slightly less than that expected for networks

arising under cluster 2. That said, the much higher incidence of intra-party coalition

formation under cluster 3 leads inter-party coalitions to be a smaller fraction of the

total coalition set than under cluster 2, potentially making them less critical to the

legislative process.

Taken together, these observations suggest that the cluster 1 regime tends to generate uni-

formly loose voting networks with very few coalitions of any kind. These networks may resist

polarization, but their high level of fragmentation may make it more difficult to assemble the

sorts of alliances needed to push through controversial legislation. By contrast, the regime

of cluster 2 tends to produce uniformly clustered networks with moderately high levels of

coalition formation in both parties coupled with relatively high numbers of cross-party coali-

tions. These networks may pose particular challenges for party leaders, as they contain a
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Figure 4.10: Proportion of realized intra-party triangles in simulated networks. Colors indi-
cate the party affiliation (blue = Democratic (D), red = Republican (R)).

mix of multiple local coalitions that must be courted for votes, “lone wolves” outside of coali-

tions who must be approached individually, and likely defectors whose cross-party coalitions

provide a bullwark against within-party influence. Finally, the regime of cluster 3 tends to

produce party-cohesive networks dominated by dense intra-party coalitions on both sides

of the aisle (but with substantially higher levels of cohesion among Democratic legislators).

This regime offers party leaders the greatest chance of being able to mobilize members in

support of legislation, at the cost of potential legislative deadlock during periods of high

inter-party conflict.

In addition to examining the potential impact of different behavioral regimes on voting net-

works, our model also provides insight into the incidence of these regimes over time. For

instance, Figure 4.12 shows maximum probability cluster assignments over the study period.

We see that the relatively symmetric cultures represented by cluster 1 and cluster 2 alter-

nate in the nineteenth and twentieth centuries, while the culture of asymmetric polarization

represented by cluster 3 becomes dominant after late 1990’s. This finding is in line with
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Figure 4.11: Proportion of realized inter-party triangles in simulated networks.

Figure 4.12: Maximum probability cluster assignments over study period. Colors indicate
the majority party in the corresponding Congress (blue = Democratic (D), red = Republican
(R)). Regimes of voting behavior are visibly correlated over time.
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the current trend of political party polarization (Moody and Mucha, 2013). Table 4.5 shows

the breakdown of congresses into 3× 2 sub-categories according to the estimated co-voting

pattern and the observed majority party. We examine the independence of co-voting pat-

tern assignment and the majority party using Pearson’s χ2 test, and we fail to reject the

null hypothesis that the majority party is independent of the co-voting patterns (χ2
2 = 1.07,

p-value = 0.58). Thus, while the regimes of party behavior are quite visibly autocorrelated,

this pattern does not seem to be related to which party has control of congress at any given

time.

Table 4.5: Tabulation of co-voting pattern by majority party (from Congress 40 to Congress
113). Majority party is not significantly related to voting regime.

Co-voting Pattern Democratic Republican
1 16 11
2 17 19
3 5 6

4.5.3 Model Assessment

To assess the adequacy of the resulting model, we consider a simulation-based method sug-

gested by Hunter et al. (2008a), with the basic insight that a fitted ERGM model should be

able to reproduce in simulation structural properties similar to those of the observed net-

works. Instead of simulating from a single point estimate, we propose to simulate networks

from estimated posterior distribution, following practices of posterior predictive assessment

in the Bayesian literature (Gelman et al., 1996). The structural property of interest here

is the modularity score (Newman, 2006) (assessed by party), which can be interpreted as

a measure of the polarization of networks with respect to party structure. By definition,

the modularity score ranges from −1 to 1, with larger values indicating higher levels of

polarization. We replicate the following evaluation procedure 100 times:

1. For each vertex set, we first randomly draw a latent membership indicator using pos-
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Figure 4.13: Modularity scores of simulated and observed ensemble of networks. Hellinger
distance: 0.096.

terior samples of τ , then simulate a network from the corresponding component using

posterior samples of θ.

2. Compute the modularity score of the observed ensemble of networks and the simulated

networks.

We compare the distribution of modularity scores of simulated networks to that of observed

networks using Hellinger distance. We obtain the mean of Hellinger distance values as 0.095

and standard deviation of Hellinger distance values as 0.002.

Figure 4.13 shows the distribution of modularity scores for a replicate that has average-case

performance (Hellinger distance value : 0.096). We see that the resulting mixture model can

capture not only the left-skewed feature of the modularity scores in the observed data but also

the variation of the observed modularity scores to a large extent. The remaining discrepancy

between observed modularity scores and those of simulated networks might be mitigated by

more accurate but expensive estimation algorithms for cluster-specific parameters (e.g., using

importance sampling to approximate ERGM likelihood rather than the pseudo-likelihood)

and more sophisticated but potentially less interpretable model specifications.
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4.6 Case Study: Advice-seeking Networks among School

Teachers

We apply our method to cluster an ensemble of school-level teacher advice-seeking networks

3 (Pitts and Spillane, 2009). This dataset consists of 15 directed networks of sizes ranging

from 12 to 76, with each directed tie indicates the seeking of professional advice, from the

teacher who seeks the advice to the teacher who offers the advice. These 15 schools are

operated independently and hence these advice-seeking networks are independent of each

other. Multiple node-level and edge-level covariates are available. As demonstrated in Sweet

et al. (2013), the binary edge-level covariate indicating whether the two incident nodes (i.e.,

teachers) of each edge teach the same grade, named “same grade”, plays an important role

in explaining the advice-seeking patterns among teachers. Figure 4.14 shows that these

networks are different in their structures, and we shall identify clusters in these networks

using our method.

4.6.1 Model Specification and Estimation

We choose the following sufficient statistics for analyzing the advice-seeking networks

g1(y) =
∑
i<j

yij, total number of edges;

g2(y; X) =
∑
i<j

yij,1{Xi=Xj}, total number of within-grade advice-seeking;

g3(y) = eφ
n−2∑
k=1

{
1− (1− e−φ)k

}
EPk(y), GWESP statistic

3This dataset is publicly available in R package HLSM (Adhikari et al., 2020).
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The decay parameter of the GWESP term is fixed as φ = 0.25 as often used in the ERGM

literature, and we include the offset term (4.2) to adjust for network size. The underlying

idea of this model specification is that we use the edges term to control for the overall

propensity of forming edges in these networks, and rely on the number of edges from a

teacher to another teacher teaching the same grade to account for the additional propensity

of forming edges between teachers from the same grade, and capture the triadic closure effect

via the GWESP term. We use the prior specification in Section 4.3, and run the proposed

MCMC algorithm for a total of 40000 iterations where the first 20000 draws are discarded

as burn-in, and every 100-th iteration after the burn-in is stored as posterior samples.

4.6.2 Results

DIC selects the two cluster model (Figure 4.16), and Figure 4.15 shows that the chain

converges well under model K = 2. We also compute the Gelman-Rubin statistic (Gelman

and Rubin, 1992) using multiple chains with random initial values, the result of which

indicates the chosen setting is sufficient for chains to converge. The posterior mean and

standard deviation of model parameters are summarized in Table 4.6, and it appears that

the key distinction between cluster 1 and cluster 2 lies on the propensity of seeking advice

from teachers from the same grade (latter is higher).

Figure 4.17 displays the estimated posterior probability of cluster memberships, which high-

lights the benefits of model-based clustering, as we are able to know the uncertainty in the

cluster assignments. We notice that School 2, 7, 8 and 15 are more likely to belong to cluster

2, and School 12 and 14 are equally likely to belong to the two identified clusters. This

finding suggests that within-grade advice-seeking is more prevalent in School 2, 7, 8 and

15, and is lacking to some extent in School 1, 3, 4, 5, 6, 9, 10, 11, and 13. In addition,

we note that the coefficients associated with the gwesp terms are quite similar in these two
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Figure 4.14: Advice-seeking networks among school teachers. School 3 (left), School 5
(middle) and School 14 (right).

Table 4.6: Posterior mean (standard deviation) of model parameters.

edges + offset edgecov gwesp
Cluster 1 0.17 (0.07) 0.81 (0.26) 0.99 (0.10)
Cluster 2 0.28 (0.07) 1.02 (0.24) 1.04 (0.08)

clusters and well above 0, indicating that the triadic closure effect is a critical factor that

drives the advice-seeking among school teachers. Although the paucity of publicly available

background information limits our ability to gain more insights from this dataset, it is clear

that the proposed method enables policy makers to identify schools that are comparatively

lacking in the within-grade advice-seeking and hence take further actions accordingly to

improve communication between teachers.

4.7 Discussion and Conclusions

In this chapter, we have proposed a mixture of ERGMs approach for modeling the genera-

tive process leading to heterogeneous network ensembles. We developed a Metropolis-within-

Gibbs algorithm to fit ERGM mixtures and obtained Bayesian estimates of clustering assign-

ment probabilities and the cluster-specific ERGM parameters. To account for the difference

in the size of the observed networks, we used a size-adjusted parameterization for ERGMs.

We also tailored a version of observed DIC and defined an empirical rule to select the num-
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Figure 4.15: Posterior probability of cluster memberships, advice-seeking networks
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Figure 4.16: DIC vs Number of clusters, advice-seeking networks
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Figure 4.17: Posterior probability of cluster memberships, advice-seeking networks

ber of clusters, which is proved to be effective in a simulation study. The simulation studies

also showed that the proposed approach can accurately recover the cluster membership and

cluster-specific parameters, without requiring much effort on initialization.

We applied the proposed approach to study the political co-voting networks among U.S.

Senators, and identified three clusters that represent vastly different co-voting patterns.

After matching the clusters with temporal information, we observed that one symmetric

co-voting pattern and another mildly asymmetric co-voting patterns alternate in nineteenth

and twentieth century, and there appeared to be an abrupt shift in the co-voting pattern

towards the direction of political party polarization in last two decades. We also applied

the proposed approach to study the advice-seeking networks among school teachers, and

identified several schools that are a bit lacking in the within-grade advice seeking. This

application provides more insights about how teachers collaborate in schools, and further

justifies the utility of the proposed approach.
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Compared to other methods in the literature, our proposed method allows straightforward

statistical inference for the generative processes of heterogeneous ensembles of networks

with edgewise dependence, and is conveniently interpretable. We believe that the proposed

method can prove to be a highly effective tool for both exploratory and inferential analysis

of ensembles of networks.

In closing, we comment on three important directions of future research that could prove

beneficial to the modeling of ensembles of networks: the development of more sophisticated

size-adjusted parameterizations, more accurate tractable approximations of the ERGM like-

lihood and Dirichlet Process mixtures of ERGMs. It is worth mentioning that the sizes of the

US congresses between 1867 and 2014 range from 69 to 112, and the sizes of advice-seeking

networks range from 12 to 76, non-identical but broadly similar. More importantly, these size

changes occur within a social system whose basic structure remains fairly similar through-

out the time period. In other cases, however, large size differences may be accompanied by

increasingly complex internal barriers to interaction or other additional exogenous structure

that must be accounted for to obtain realistic predictions. Where this additional structure

is not available in the form of covariates, more sophisticated size-adjusted parameterizations

may be required; reference measures or other tools facilitating “automatic” correction of

such effects would facilitate mixture modeling in such scenarios. With respect to likelihood

calculation, it is encouraging that we obtain favorable results in our simulation study using

the easily computed pseudo-likelihood approximation. In particular, the main deficiency of

the pseudo-likelihood is excessive sharpness near the mode, which could in principle encour-

age the over-production of mixture components. While we do not see this effect here, more

accurate likelihood approximations that are inexpensive enough to perform at each MCMC

step for large models would be desirable. As such improved approximations become avail-

able, they can be easily integrated into the posterior simulation framework described here.

Last but not least, a natural further extension of the finite mixture modeling framework

could be Dirichlet Process mixtures of ERGMs where the number of mixture components
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can vary depending on the incoming data size. Although computationally challenging, such

an extension can provide a highly flexible yet interpretable density estimation framework for

complex graph distributions.
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Chapter 5

Conclusion and Future work

In this thesis, I have made several key contributions to advance the field of exponential-

family random graph models (ERGMs): computation, model selection, methodology. Chap-

ter 2 proposes a highly parallel algorithm for fast Bayesian inference of ERGMs based on

approximate Bayesian computation (ABC). With the growing popularity of multi-core pro-

cessors, we envision the proposed algorithm as a practical alternative to the state-of-the-art

MCMC-based algorithm. Chapter 3 offers a systematic investigation on the performance of

various existing model selection methods for ERGMs based on extensive simulation studies.

Chapter 4 extends the ERGM framework from modeling the generative process of single

network observation to that of multiple networks with heterogeneity by proposing a mixture

of ERGMs. The proposed novel methodology is also useful as a tool for exploratory analysis

and cluster analysis of graph data.

Detailed summary and discussion of the aforementioned contributions are provided in the

respective chapters. Here I describe four primary findings that advance the research of

ERGMs.

• Chapter 2 shows that fast Bayesian inference for ERGMs is possible by parallel com-
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putation under the framework of approximate Bayesian computation. The proposed

novel algorithm can yield comparable posterior estimates and inferences to state-of-

the-art MCMC-based algorithms, while cutting the wallclock runtime by half with 5

cores, and by 80% with 30 cores.

• Chapter 3 provides results from simulation studies showing that none of the model se-

lection techniques (AIC, BIC and HoPE) dominate the others, they all have their own

strengths and weaknesses. Information-criterion-based methods are better at identify-

ing the true model under the scenarios in which the true model is among the candidate

models, while HoPE with absolute loss seems to be more capable of selecting a model

that yields better predictive performance when the true model is not among the can-

didate models.

• Chapter 4 proposes a novel methodology for modeling the generative process of en-

sembles of networks. This novel methodology fills an important gap in the current

literature as a highly interpretable framework for characterizing the complex genera-

tive process of ensembles of networks as well as model-based clustering, and has been

successfully applied to the modeling of generative process of an ensemble of co-voting

networks among U.S. Senators and model-based clustering of an ensemble of advice-

seeking networks among school teachers.

• The simulation studies in 4 show that the bias in estimating ERGM parameters based

on the pseudo-likelihood can be mitigated by multiple network observations. The

results also suggest that the biases are smaller for large and sparse networks, ceteris

paribus.

As a final note, the results presented herein suggest a series of potential future directions.

We believe these directions are important for researchers studying ERGMs, and serve the

purpose of advancing the field as a whole.
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• Although parsimoniously modeling dependencies in networks is the primary objective

for ERGMs, we look forward to the development of efficient Bayesian inference on

higher-dimensional ERGMs. With the recent development of high-dimensional ABC

algorithms ((Nott et al., 2014; Li et al., 2017)), we envision ABC as a promising

framework.

• The proposed mixture of ERGMs relies on the Krivitsky reference measure to adjust

for the difference in network sizes, which is particularly suitable for social systems

with fairly similar mean degrees. To facilitate mixture modeling in more general sce-

narios, more sophisticated size-adjusted parameterizations and reference measures are

a potential avenue for future research.

• A natural further extension of the finite mixture modeling framework could be the

development of Dirichlet Process mixtures of ERGMs where the number of mixture

components can vary depending on the incoming data size. Although computationally

challenging, such an extension can provide a highly flexible-yet-interpretable density

estimation framework for complex graph distributions.

• More accurate tractable approximations of the ERGM likelihood are also potential

avenues for future research. In mixture modeling, likelihood evaluation is required

at each step, a tractable likelihood can be of great value for the development of any

practical algorithms for statistical inference.

• Theoretical investigations on HOPE and the effective sample size of general ERGMs

are also critical. The former can establish theoretical guarantees on the model selection

consistency and bounds on generalization errors. The latter can offer insights about

why the current version of BIC for ERGMs can perform well with respect to selecting

the true model the under closed-M scenario and shed light on how the BIC could be

further improved for selecting competing ERGM specifications.
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