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period of inj~ction or production and shut-in. The second

method is applied when a well is under thermal equilibrium

conditions. Values of the formation thermal conductivities

can also be estimated by using a continuous temperature

gradient log and by measuring the thermal conductivity of the

formation at a few selected wellbore locations.

From the results of this study, in-situ values of

thermal conductivity can be estimated from temperature

measurements in wells. Although laboratory methods can

measure thermal conductivities with accuracy as high as one

per-cent, it can only represent the value of an individual

specimen. A method for measuring conductivitiew in-situ

which is ~ccurate to within 5 to 10 per-cent would be more

useful for many purposes than the high precision laboratory

values. Values of in-situ thermal conductivity can be useful

for the determ~nation of terrestrial heat flows in the

earth , heat losses from the wellbore in thermal recovery

processes, and in differentiating oil-bearing or gas-bearing

formations from water bearing formations. They may also be

useful in the estimation of other physical properties such as

type of formation, its porosity, :;lS well as its fluid content.

-"
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CHAPTER I

INTRODUCTION

In recent years considerable interest has been gener­

ated in thermal processes of petroleum recovery, especially

hot fluid injection. These processes involve the injection

of heat into a reservoir in the form of steam or hot water.

Every production and injection operation is accompanied

by the transfer of heat between wellbore fluids and the

formation around the wellbore. The resultant heat losses

between the surface and the injection interval could be

very important in the success or failure of these processes.

Knowledge of the subsurface thermal properties is of

importance not only in the thermal recovery process but

also in geothermal operations and in geophysical applica­

tions. Knowledge of thermal conductivity is an important

parameter in the detection and development of geothermal

fields. In the recovery of geothermal energy, the rate at

which heat can be extracted from a hot reservoir is propor­

tional to Af/lcr
f

where A
f

is the formation thermal conduc­

tivity, and a
f

is the formation thermal diffusivity (Murphy,

et ale [51]). The amount of heat flowing through the

surface of the earth from the interior is a quantity which

is of fundamental importance for geophysics. To determine

the terrestrial heat flow in any area the temperature

gradient (aT/az) and the thermal conductivity (A) of rocks

in that area must be measured.



\

)

2

There are many methods for the determination of thermal

conductivity broadly classified as laboratory methods

or in-situ methods. Although la~oratory methods are gen­

erally more accurate, the problem is essentially one of

sampling. In many cases there are no cores available

for laboratory measurements. In some instances, measure­

ments on samples from the surface of nearby cored holes

provide a reasonable estimate of conductivity. For the most

par~ however, conductivity variations within a given type

of rock are of such magnitude that measurements should be

made in the same hole as that in which temperatures are

measured. Even when cores are available, the determination

of thermal conductivity is not straightforward. The most

common problems, reviewed by Beck, et al., [10] are:

(1) Friable rocks: Laboratory determinations of con­

ductivity involve a considerable degree of machining and

polishing. The specimens that survive this process are

invariably the most competent and, usually, the most highly

conducting. The bias so introduced can result in serious

systematic errors.

(2) Specimen size: Another type of systematic error

can result when the specimen size is not large relative

to the average size of th~ individual crystals (Beck and

Beck, [8]). :

(3) Heterogeneity: On a regional scale, a core drill

sample is a very narrow vertical column of rock. Variations

in the relative abundances of such components as micas
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and pyrite minerals can result in large conductivity

variations within a single lithology unit. In contrast to

(1) and (2) above, these variations will tend to produce

random rather than systematic errors.

(4) Removal of the rock from its environment: It

is difficult, if not impossible, to produce in the labora­

tory the physical conditions which exist at great depth

within the earth~ Moreover, with certa~n rocks, the process

of coring and specimen preparation may produce irrever­

sible changes in thermal conductivity as well as in other

physical properties.

Some of the above problems can be minimized by using

non-standard laboratory techniques, such as chips, and/or

careful petrographic studies. In many cases, however,

the only satisfactory solution entails the measurement

of thermal conductivity in-situ. Since its introduction by

Van Der Held and Van Drumen [70], use of the line source,

or "probe", method of measuring thermal conductivity has

become popular for low conductivity materials. However,

many practical problems associated with making measure­

ments with a heated probe can occur, such as thermal

contact resistance, natural convection in the fluid in­

duced by the heated probe, etc. This method will be dis­

cussed in detail later in this study.

In most of the studies dealing with heat flow and

thermal gradients in wells, a linear geothermal gradient

profile has been assumed. This assumption corresponds

3
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to a constant thermal conductivity of the earth. However,

in actual well temperature measurements there are variations

in the temperature profile. This effect is most lik~ly due

to the differences in thermal conductivities in different

formations of the earth or with different fluid saturations.

The geothermal gradient is caused by the continuous flow of

heat from the interior of the earth. The magnitude of the

gradient depends upon the difference in the temperature

between the surface and the heat source in the interior of

the earth and upon the thermal conductivities of the mater­

ials in between. For a uniform heat flux, variations in

thermal conductivities will result in variations in the

temperature gradients.

In this study, based on the above concepts, a theo­

retical analysis of fluid temperature gradients in the

wellbore, as well as temperature gradients in the surround­

ing formations during injection and production and after

shut-in,will be made to evaluate the effects of thermal

conductivities of the, formation on such gradients. These

results will be used to estimate the in-situ thermal con­

ductivities of the formation.
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CHAPTER II

LITERATURE REVIEW

When a temperature gradient exists in a body there

is an energy transfer from the high temperature region

to the low temperature region in accordance with the

second law of thermodynamics. The heat transfer rate

per unit area, q, is given by the empirical relation

known as Fourier's equation of heat conduction,

5

q • - A grad T • (2.1)

)

The positive constant of proportionality between the heat

flux and the temperature gradient is called thermal con-

ductivity and is denoted by A.

Thermal Conductivities of Porous Rocks

Thermal conductivity of a porous material is a complex

function of density, porosity, grain size and shape, cemen-

tation and mineral composition. If it is saturated with

fluid, its thermal conductivity is also dependent upon the

conductivities of ~he saturating fluid and the rock material

(Somerton, [64]). In the following~ the effect of constit-

uents, porosity, and saturating fluid on thermal conduc-

tivity of rocks will be discussed.

(1) Effect of Constituents: Mineral composition

affects the thermal conductivity of rocks because of dif-

ferent conductivity values of individual minerals, orienta-

tion of crystal axes and influence of impurities in solid

solution (Anand, [2V. The major constituent of mineral
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sandstone is quartz for which a fairly large number of

thermal conductivity measurements have been made. Kersten

[43] found that the thermal conductivity is lowest for

basic minerals, increases for intermediate minerals and is

highest for felsic minerals. As such, quartz has one of the

highest conductivities. On the other hand, coal is among the

materials which has very low conductivity. A list of thermal

conductivity of materials usually found in subsurface reser-

voirs is presented in Tables 1, 2 and 3.

(2) Effect of porosity: From the statistical thermo-

dynamics point of view, thermal conductivity for dielectrics

is directly proportional to density as follows (Tien,

et a1., [68]):

A • 1/3 pCvcl

where: pc v • phonon heat capacity,

( 2.2)

\ c • phonon velocity,

1· phonon mean fYee path.

The density of porous material is related to porosity as

follows:

P = P f <I> + (1.0 - <I»P (2.3)
s

where: P • density of porous material,

Ps • density of the solid matrix,

P f • density of the fluid in the pores,

<I> • fractional porosity.

Since <I> and P are directly related it can be said that A

is related to the porosity <I> of the material, the con-

ductivities of the solid matrix and the fluid in the pores
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TABLE 1

Thermal Conductivitiesoof Some Rocks-forming
Minerals at T=23 C (Horai [36]).

7

Chemical Thermal
Mineral Composition Conductivity

(W/mOK)

Quartz Si0 2 7.70

Plagioclase NaA1 2Si 3 °a-CaAlSi30a 2.15

> Orthoclase KA1 2Si
3

O
a

2.30

Muscovite (K,Na)A12(OH)2(AlSi30l0) 2.20

Calcite CaC0 3 3.60

.i Chlorite (Mg,Fe,Al)6(OH)a«Al,Si)40l0) 4.34

Biotite K,(Mg,Fe)3(OH)2(Al,Si 30 l0 ) 2.34

Hornblende NaCa 2(Mg,Fe,Al)S(OH)2(SiAl a 0 22 ) 3.10

Magnesite MgC0 3
5.a5

Sphene CaSiTi05
2.34

".
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') TABLE 2

Thermal Conductivity of Some Reservoir Rocks.

.) Rock Type Density Thermal Conductivity Source No.
(g/cm/ 3 ) (W/mOK)

Mean Range

Dolomite 2.70 4.99 3. 7 2- 5.82 17

Limestone 2.56 2.56 .1.97-2.97 17

Gnieiss 3.49 2.55-3.35 17

Shale 1.76 1.34-2.34 17

Sandstone 4.12 2.39-5.86 17

Clay 1.47 0091 17

Coal 1.05 0.24 17

'l. Chert 2.56 4.53 36
?

Slate 2.76 1.99 36

Mud 1.31 0.79 17

·TABLE 3

Thermal Conductivity of Some Saturant Fluids

Fluid

Light oil

Water

Air

Thermal Conductivity
(W/mOK)

0.15

0.55

0.33

Source No.

2

2

17

:
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(Anand, [2]). Since the density of the fluid which occupies

the pore spaces is less than the solid density, generally

the thermal conductivity is reduced with increased porosity,

Figure 1. Quantitatively, how much less the thermal conduc­

tivity of a porous material will be than the solid matrix

will depend upon the amount of void spaces, the arrangement

of voids, the fluid with which the voids are filled, etc.

(3) Effect of Saturating Fluid: Fairly limited amount

of work has dealt with the prediction of thermal conduc­

tivity of liquid saturated rocks and has not yielded

satisfactory results. The difficulty seems to lie in the

fact that although liquid saturated rocks have higher

conductivities than dry rocks, the amount of increase is a

complex function of the amount of pore space, its character

and distribution, and the conductivity of the saturating

fluid (Somerton, [63]). Many measurements indicated that

ther~al conductivities of brine saturated samples are higher

than dry samples. This is due to the fact that the thermal

conductivity of water (0.59 w/moK at 21°C) is higher than

that of silicon oil (0.28w/moK at 21°C) which in turn is

higher than that of dry air (0.026w/moK at 21°C) (Anand,

[2], Figure 2).

Saturation of the wetting phase fluid has a dominant

effect on the thermal conductivity of the system. The study

of partially liquid saturated rocks by Somerton [64] showed

that for brine-air saturation, thermal conductivity is

related to the square root of brine saturation. For uncon-
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solidated sands saturated with air and brine and all samples

tested which were saturated with two liquids, showed a

relationsnip with square root of the wetting phase satur-

a t ion (Figures 3 and 4) •

Measurement of Thermal Conductivities

Because of the complexity of laboratory measurements,

it is very difficult to obtain accurate thermal conduc-

tivity values, and in many circumstances laboratory methods

for measuring thermal conductivity are unsatisfactory.

In-situ thermal conductivity measurement has received a

great deal of attention in petroleum technology, geothermal,

and geophysics fields because of its important role. Some

of the previous works on this subject will be reviewed in

detail.

Most of the previous studies involving the deter-

mination of in-situ thermal conductivity were conducted

in the geophysics field through the measurements of heat

flow on land and at sea. To determine the terrestrial

heat flow in any area, the temperature gradient (aT/az)

and the thermal conductivity (A) of rocks in that area

must be measured.

1) Probe Measuring Methods

The probe method is commonly chosen for the in-situ

thermal conductivity measurements. This method involves

the use of an electrically heated cylindrical probe which,

to insure radial heat flow conditions at the central plane

normal to its axis, has a length 20 to 30 times the diameter
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of the hole into which it is inserted (Blackwell [12]). Seals

at each end of the probe prevent convection losses up and down

the hole (Beck, et al., [7]). A temperature sensitive element

is located on the outer surface and at the mid-point of the

probe. When the probe is ~n place and has reached the equi­

librium temperature of the borehole at that location, the

current is switched on and a record is made of the temperature

rise versus time.

The idealized model is a perfect thermal conductor

of radius, a, with constant heat supply Q per unit length per

unit time immersed in a material of conductivity A and there

is assummed to be no thermal resistance at the contact

15

) surfaces. If there is thermal resistance at the surface,

modifications in the theory have to be made. This problem

is discussed by Carslaw and Jaeger [16]. Theory of the

probe method has been given by Blackwell [11], Jaeger [38]

and De Vries and Peck [23] and it was reviewed extensively

by Beck [5].

The data obtained by the probe test can be reduced by

one of three methods. The first is the method commonly used

for all probe types of probe measurements. It consists of

plotting the natural logarithm of the time, t, versus the

temperature, T, and finding the slope of the logarithm

asymptote. The thermal conductivity, A, can be found

from the equation:

T(t) .. (Q/41TA) In(t) + BO (lit) , (2.4)

where B is a constant, and the terms O(l/t) are negligible
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for long times. The time to reach the asymptotic section of

the curve depends on the radius of the borehole involved,

the thermal constants of the rocks surrounding the hole, and

the thermal contact resistance of the fluid layer between

the probe and wall of the borehole.

The second method of interpreting probe test results

(Blackwell, [11]) involves the determination of the thermal

contact resistance by the use of an approximate solution to

the transient radial heat flow equation for short time. The

value obtained is then used in another approximation to the

equation for long times. This is equivalent to straighten­

ing the curve obtained by the first method somewhat earlier

than would otherwise be the case, and theoretically makes it

possible to use shorter experimental times.

The third method (Jaeger, [38]; Beck, et al., [7])

uses the exact solution of the transient radial heat flow

equation and involves calculating families of theoretical

curves using values of the appropriate constants which cover

the range of values likely to be found in geophysical work.

The experimental curve of temperature rise versus time is

plotted on log-log paper and compared with the families of

theoretical curves plotted on the same bases. From the best

fit it is theoretically possible to find, from the displace­

ment of the origin, both the thermal conductivity and the

diffusivity of rocks. This method requires a shorter

experimental time than any other method.



)

Beck [5] has pointed out that the practical problems

associated with making measurements with a heated probe in

a deep borehole are formidable. Optimum p%obe lengths

should be 20 to 30 times the bore diameter so that a typical

geothermal well, or oil well, would require a probe about 3

to 4 meters long. To obtain temperature rises of the order

of several degrees per hour in such a large probe requires a

substantial amount of electrical power transmitted downhole.

The applied potential would have to be high to obtain the

required power leading to insulation difficulties which are

aggravated by the high temperatures in wells. 'Furthermore,

since it is impossible to assure uniformly good contact

between the probe and the borehole wall, additional heating

times are required. It is difficult to systematically

correct for these errors since natural conv~ction of this

fluid may be induced by heating the probe (Murphy, et al.,

[51]). Murphy and Lawton [51] extended the transient line

source method described earlier to include effects caused by

flowing fluid in the wellbore. By comparing the conductive

heat flux from the rock to the convective heat transpor-

ted by the wellbore fluid, Murphy and Lawton [51] showed

that temperature measurements made between -0.25 and 100

hours provide meaningful and sufficient data for independ­

ently estimating a mean conductivity A and diffusivity a of

the formation.

The above methods have been developed based on the

assumptions that the geothermal gradient, dT/dz, and the

17



18

formation thermal conductivity do not vary within the

interval being tested, which is often not the case. The

assumption of constant thermal gradient may introdu~e an

appreciable error in the results. Furthermore, the line

source theory cannot be applied in the medium in which

thermal conductivity varies.

2) Correlation Methods

Many empirical relations for predicting thermal con-

ductivity have been derived based on other geophysical well

log parameters. Dakhnov and Kjakonov [22) used data from

the literature to provide the following correlation:

where DB - saturated

A=DB(.3.1)
46S0

3bulk density, g/cm ,

(2.5)

A - thermal conductivity, cal/cm-s-oC.

Using the same approach, for classes of feldspathic rock,

salt and other rock types, Karl [41) obtained

A - A x 10-SV p

where A - a constant depending on the rock's physical

properties,

v - compressional velocity, cm/sec.

(2.6)

Tikhomirov [69) examined both dry and partially saturated

samples of many rock types, and combined the, results

into one equation,

A • 1.30exp (0.S8DD + 0.40SW)

where DD • bulk density of rock in the dry state,

Sw - fractional water saturation.

(2.7)



Using cores from a wide regio~ of the Siberian lowlands,

Moiseyinko and co-workers [50] proposed the relation
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A = [1.17 + 0.83 (3.42 - 0.55W}]x 10-3

where $ = the porosity in percent

A • thermal conductivity in cal/cm-s-oC.

In an experiment with unconsolidated sands, Somerton,

et al., [62] found that

A· 0.735 - 0.013$ + 0.363A S v'SW

where AS is the thermal conductivity of the component

solid grains. Anand, et al., [3] studied the thermal

( 2.9)

conductivity of sandstoneB and derived the following re-

lation for dry samples,

Ad • 0.340Pd - 0.032$ + 0.53kO• lO

+ 0.013F - 0.031, (2.10)

.. {$ A1)o.4sm
+ 4.57 \100-$ x A

g

and for saturated samples

~ ~ ~d[l.O + 0.30(~~ - 1.0) 0.33
x (::r 3

]

where: k· permeability of the rock, millidarcy,

(2.11)

A • thermal conductivity, Btu/ft hr of,

F • formation resistivity factor,

P • density of the rock, g/cm3 ,

$ • fractional porosity,

and subscripts d, 1, and g stand for dry rock, saturating

liquid and gas, respectively; m is the cementation factor.

Goss and Combs [33], measuring core samples from

Imperial Valley, proposed three predictive equations for
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the thermal conductivity

A = -1.42 + 2.18V p R = 0.962 (2.12)

A = 2.01 - 0.09 Sq, + 1 066 VP R = 0.966 ( 20 13 )

A = - 0 • 534 - 0 0082 cp + O. 0019 C1 + 2. 11 Vp' R = O. 971 (2. 1 4 )

where: A = thermal conductivity in mcal!cm-s-OC,

Vp = compressional velocity in km!sec,

cP = porosity in percent,

C1 • electrical conductivity in mmho,

R = linear correlation factor.

Most of the relationships presented above are defi­

cient since they are not based on sets of variables mea­

sured on the same samples (Goss and Combs, [33]). None

of the above equations provided satisfactory results for

a variety of rock types; they either gave lower or higher

values compared with laboratory experimental results.

It is also important to point out that, when measured

in-situ, many variables in the empirical relations, such as

Sw' cP, etc., for the thermal conductivity are not measured

directly. They are derived empirically from other directly

measured quantities.

3) Thermal Gradients in Wells

Another method for the determination of in-situ thermal

conductivity involves the use of geothermal gradients.

Many authors have worked on the problem of restoring the

reservoir to the geothermal temperature after drilling, or

injecting fluid. Bullard [14] estimated the time necessary

for the temperature disturbance, caused by the process of



drilling, ,to die away by representing the operation of

drilling by a line heat source Q. If drilling has gone on

for time t1' temperature To at distance r from the source

will be approximately:
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- 0.557] , (2.15)

where A = thermal conductivity of the formation,

a • thermal diffusivity of the formation.

The effect of ceasing to drill at time t1 can be regarded

as that of starting a negative source -Q at this time, so

that the temperature at (r) at time (t) after the ceasation

of drilling is given by:

T • (Q!4nA)ln(1+tl!t) (2.16)

and the way in which the disturbances die away is given by

T In(l+tl!t)

To= In(4atl!r2)-0.S77 (2.17)

From this result Bullard concluded that, for the hole to

return to within 1% of equilibrium, t must be of the order

of 10xt1.

Jaeger [38] obtained a similar result after a more

elaborate calculation. Lachenbruch and Brewer [44] showed

that in the practical case, temperatures at t • 3tl are

within O.OSoC of the equilibrium values. However, these

results can be used only in the ideal case where the line

source theory can be applied. Other investigators, such

as Crosby [21], have derived empirical relations for the

static temperature based on the same principle.
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Edwardson, et al., [281,Schoppel and Gilarranz [59],

and Dowdle and Cobb [26] have derived many techniques to

evaluate static formation temperature based on the Horner

method, similar to pressure build-up theory. Most of these

techniques, however, have used an assumed formation tempera-

ture profile at the conclusion of circulation and provide

no means to calculate this profile directly (Raymond, [55]).

Moreover, this type of analysis can be only used under the

condition that there is no variations in the geothermal

temperature gradient and the formation thermal conductivity.

In the present study, the effect of variation in the

formation thermal conductivity on the wellbore fluid temper-

ature, during injection and shut-in periods, will be investi-

gated. Once the relationship between the formation thermal

conductivity and the fluid temperature behavior as well

as geothermal temperature are known, it is possible to

determine relative values of the formation thermal conduc-

tivity by the linear relationship:

aT
q = -A­az

where: q. geothermal heat flux,

aTaz • geothermal temperature gradient.
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CHAPTER III

DEVELOPMENT OF THE MODEL

3~1 General Considerations

Figure 5 shows the conceptual model used in this study.

The model is composed of a wellbore and the surrounding

formation. The injected or produced fluid enters the well

and fl~ws inside the tubing of outer radius, r w• Any

material external to the fluid column such as insulating

material, mud, casing, or cement is regarded as the ther­

mal resistance between the fluid and the surrounding for­

mation. The formation which surrounds the wellbore consists

of several horizontal layers infinite in lateral extent.

Each layer is homogeneous and composed of material which

has the thermal conductivity denoted by Ai. In this model,

the values of Ai and the depth of formation layers can be

varied as desired. Values of 1 vary from 1.25 w/moK for

shale-clay to 5w/moK for fully water saturated sandstone.

The injection process consists of the fluid entering

the top of the well at a fixed temperature, flowing down the

tubing and into the injection zone at the bottom of the

well. As the fluid flows down the well, heat is exchanged

by convection and by conduction between the fluid and the

formations adjacent to the wellbore at a rate that is

dependent on the relative temperatures and physical pro­

perties of the two media. When injection is stopped, the

well is shut-in and the fluid becomes quiescent in the



wellbore. The wellbore fluid will lose, or gain, heat

to the formation by conduction and possibly by natural

convection inside the borehole during the ~hut-in period.

The static fluid temperature in the wellbore approaches

the geothermal temperature as the system comes to thermal

equilibrium.

In this study, the formation temperature and that of

the quiescent fluid in the wellbore initially are assumed

to be the same as the geothermal temperature. This geother­

mal temperature varies with depth and is taken to be propor­

tional to the magnitude of the formations' thermal conduc­

tivities. At time equal to zero, hot fluid is injected down

the tubing and enters the injection zone at the bottom of

the well. By analyzing the heat transfer process inside the

tubing and in the surrounding formations, the temperature

profiles of the fluid and the formation are obtained. Then,

the injection is stopped and the well is shut-in. The

temperature distributions inside the wellbore and in the

surrounding formations at the end of the injection period

are used as the initial conditions for the analysis of the

system's temperature distribution during shut-in.

Analysis of the shut-in period will accomplish two

goals. First, to study the progress of the return to equili­

brium of the wellbore fluid temperatures; second, to study

the effect of variable thermal conductivities of the forma­

tions on the fluid temperature distribution. In the great

majority of the cases the amount of heat flowing along a

25
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thermally stable borehole rarely changes by more than 15%

from a mean value in the absence of disturbing factors such

as heat sources and sinks, according to Beck and Judge [9].

On the other hand, the thermal conductivities of the forma­

tions through which boreholes pass may vary nearly by an

order of magnitude. Since the thermal gradients for con­

stant heat flux are inversely proportional to the thermal

conductivities of the formation under equilibrium condi­

tions, it follows that a temperature gradient log is gen­

erally a good approximation of a thermal resistivity log.

Hence, the formation thermal conductivities can be deter­

mined relatively from a temperature gradient log. Because

~f the complexity of the problem, a numerical model is

developed to provide the desired results.

3.2

3.2.1

Temperature Distribution During Injection

Mathematical Model

The system to be considered in this study is compos­

ed of two parts:

(1) the wellbore through which single phase fluid

flows vertically downwards and where heat lost by the fluid

transfers radially to the surroundings,

(2) the formation where heat transfers radially and

vertically into the earth. ;

Except for extremely low flow rates, the flow of fluid

in an oil well, or a geothermal well, is turbulent. The

effective conductivity of the fluid would thus be many times



its molecular value, and since wellbore radii are small,

the change in fluid temperature in the radial direction

in the well would be negligible. For typical flow rates

the Peclect number is extremely large (>100), so that

axial conduction of heat in the fluid is negligible compared

to axial convection (Kays, [42]). As a final simplifi-

cation, the depth intervals at which fluid is actually

leaving the well will not be rigorously analyzed - the

convective heating of the formation by the fluid permeating

this interval will not be account~d for in the heat conser-

vation equations.

Under the above circumstances, the differential equa-

tion for axisymetric flow in a circular cylinder, satisfied

by the fluid temperature T(t,z), is obtained by writing a

heat balance on an element of fluid in the tubing between

the depths z and z + dz

27

'.

where: r w • the well radius,

t • the time since the start of injection,

Pw • the fluid density,

Cw • the specific heat capacity of the fluid.

The quantity q is the rate per unit depth, z, at which heat

is conducted to the formation from the fluid. mis the

mass injection rate, and it is considered to be constant.

In this case m can be expressed as

)

.
m =

2
lTr p uw w (3.2)
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where u = fluid velocity.

In this study, the density Pw of the fluid will vary along

the wellbore depending on the fluid temperature,

(3 .. 3)

where TP = (T + 273.0)x 10-4 , and AI' BI' CI and Dl are con­

stants for a particular fluid.. For water Al = -0.472xI0-3 ,

Bl • 0.114213, Cl - -2.996214, D1 = 27.5958, respectively ..

Because turbulent flow Is assumed, the velocity profile

Is relatively flat and the velocity u of the fluid is approxi~

mately constant independent of the coordinates. However,

velocity will change in inverse proportion to the fluid

density, i.e.,

(3.4)

Within the formation, from the cement-formation interface

away from the wellbore, heat flows by' conduction only. For

this case, an unsteady-state, two-dimensional (radial and

vertical) heat conduction equation is employed,

ae 1 a f. a~, a (, ae )
at-a(z~ ar \rar;- az \a(z) az = 0 ,

where e is the formation temperature. The'variable

.( 3.5)

a(z) - A(Z)/PC is the thermal diffusivity of the forma-

tion, and A(Z) is its thermal conductivity which varies

with depth. These equations were developed under the as-

sumption that physical and thermal properties of the forma-

tion and the injected fluid, except the fluid density, do

.r



not vary in the range of temperatures considered. However,
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the extension of the model to temperature dependent proper-

ties can be made.

The heat transfer must be the same on both sides of

the well/formation interface. The boundary conditions that

couple Equations (3.1) and (3.5) are

and

q = 2nr A(Z) ~e
w or

A( Z ) ae • UT ( e- T )
dr •

(3.6)

(3.7)

".

The overall heat transfer coefficient UT refers to the out-

side tubing surface area and represents the net resistance to

heat flow offered by the flowing fluid, tubing, insulation,

annulus, casing, and the cement sheath. On the basis of

several assumptions, discussed by Willhite [68], U
T

can be

simplified as follows:

UT
I [ l)ns 1 r h ]. -
r i + + In (3.8)r i r i (h +h ) rns c r co
~ kins cem

where: ri • outside radius of tubing,

rins • radius of the outside insulation surface,

rh • radius of drill hole,

reo • outside radius of casing,

• heat transfer coefficient for natural convec-

tion based on the outside insulation surface

and the temperature difference between the

outside insulation and inside casing surface,
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h r = radiation heat transfer coefficient based

on the outside tubing surface and the temper-

ature difference between the outside tubing

and inside casing surface,

k ins = thermal conductivity of insulation,

k cem = thermal conductivity of cement.

Initially the formation and the quiescent fluid are

assumed to be at the same temperature, i.e. equilibrium

temperature. Thus,

at t= 0, T(O,z) = 8(O,r,z) = T. (z)
J.

m
= T + ~ q. AZ '

a L,. A. (z) . U i'
i· J.

(3.9)

where Ta is the ambient temperature. Far from the well-

bore the temperature is undisturbed.

Thus, at r -+ CIO, e (t,r,z) = Ti(z) (3.10)

The temperature of the entering fluid is considered constant

and z is measured from the point where the fluid ~nters the

system and in the direction of flow:

at z • 0, T (t, 0) -Ti n j (3.11)

and the fluid is allowed to flow into the wellbore and for a

finite length L. At the surface and at the bottom of the

well the boundary conditions for the formation are

at z = 0,

/}.z.
J.

at z = L,

8(t,r,O) == Ta

8(t,r,L) = T
a

- __ •• - - 0-

+ ~\I q
. A. (z)
J. J.

(3.12)

(3.13)

:

where L is the depth of the well.
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3.2.2 Numerical Formulation

Temperatures of the flowing fluid inside the wellbore

and the surrounding formation are obtained by solving Equa-

tions (3.1) through (3.13). An exact analytical solution

to the system of Equations (3.1) and (3.5), which satisfies

the appropriate boundary and initial conditions, is very

difficult, if not impossible. This is due to the fact

that analytical methods can be applied most effectively

to homogeneous problems of simple geometry. However, these

types of problems can be solved efficiently by numerical

methods.

A numerical solution to an initial value problem such

as Equation (3.1) can be obtained by the finite difference

method. "Terms that would impose very restrictive time

steps such as Lit ~ l!.z/ u, where Liz is the ve rt ical inc re-

ment and ~ is the fluid velocity, are evaluated implicitly

for computational efficiency. An implicit backward dif-

ference scheme with m equally spaced grid nodes is used

to solve for the fluid temperature inside the wellbore.

Adopting the notation of subscripts i, j, to denote the

position (z, r), and superscript n to denote time step (t),

Equation (3.1) is expressed in the finite difference form

31

as:
Tn+l

i (uiLit/Liz) (Tn+l
i-I

(2U
T

Lit/p c r) •
www (3.14)
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where i • 1 is at the top of the well and ·en is the
l,i

formation temperature at the node adjacent to the wellbore.

The wellbore model is connected to a reservoir model

so that the heat lost from the wellbore is the same as

the heat flow into the formation. In the formation sur-

rounding the well, a two dimensional grid system is set

up. Because of the low value of the fDrmation thermal con-

ductivity, most of the temperature change will occur close

to the wellbore (Edwardson, et al., [28]). To be able to

examine this effect, a variable radial grid system is used (Figure 6).

Near the bore wall, a grid spacing small enough to resolve

a drastic change in the temperature gradients is needed,

whereas a much larger grid spacing can be used farther

from the well where the formation temperature gradient is

much smaller. The radial grid spacing is calculated by

using a logarithmic transformation (Miller, [48]),

33

rj • a [kNj/t>No - 1.0] + r
kl/~o _ 1.0 w

where: Nj -(j-l)LlN

l/LlN • total number of radial grid points,

k, a,Ll No are ~onstants that can be varied to

give the desired grid spacing.

(3.15)

Uniform grid spacing is used in the vertical direction.

To obtain the formation temperature distribution, an al-

ternating direction implicit (ADI) technique is employed.

By using this technique, temperature is expressed impli-
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citly in one of the coordinate directions leaving the other

expl ie it and cons ider tng that time is advanced over half a time

stepo Then the roles of the implicit and explicit parts are

interchanged to complete the time stepo This technique,

along with the finite difference representation of the

governing equations, are discussed further in Appendix Ao

Equation (3.5) is expressed in the finite difference form as

follows:

en+1/ 2 _ eO
i,j i,j

l/2Lit

e
n
+

1
/

2
1i,j-1 _

r
j

_
l

= 0 (3.16)

en+1 _ eo+1/ 2
i,j 1,j

1/2At

and

r j +1 - r j _1

eo+1
/ 2 eO+1

/
2 1i,j+1 i,j-1_

r
j

- r
j

_
1

60 +1/ 2 _ 611+1/ 2
i,j+1 i,j

r j +1 _ r j

)

n+1 n+1
2cxi 6i ,j + cxi _16i _1 ,j = 0

Az2

, (3.17) ,.



where: i-I, i, i+l - step in z direction,

j-l , j , j+l - step in r direction,

and rj+ 1/2,rj -1/2 are comput ed by:

r j + 1 + r.

r j+ 1/2 = J
2

r. + r
j

_
1and r. I - J

J- 1 2 2

Equations (3.16) and (3.17) can be written as AP .. x, where

A is a tridiagonnal matrix. The solution is straightforward

if the boundary and initial conditions are specified. At the

formation/wellbore boundary, the heat transfer is matched.

When the energy equation in the fluid is solved, the heat

transfer at the wall is

35

(3.18)

When the temperature in the formation is calculated, the

boundary condition at the formation/well interface is

U /Dn+l _ Tin+l)
.. T \Vl,i (3.19)

The heat transfer is matched throughout the calculation

except for the first time step for the energy in the fluid,

that is, the heat transfer into the reservoir for the cal-

culation of the reservoir temperature at time n+l is just

the heat that will leave the fluid during the calculation

for n+2. The only heat transfer not matched is for the

first calculation of the fluid en~rgy, but usual1y8 (l,i)-Ti

at first time step for this case, so q will be negligi~le.
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The solution procedure is to decouple Equations (3.1) and

(3.5) by solving these two equations alternatively. The new

fluid temperature in the wellbore is solved first using the

old value of the formation temperature. Then the new

temperature in the formation is calculated by determining

the heat flowing from the well into the formation over that

time. First, the fluid density is calculated based on the

fluid temperature distribution at time t. The velocity of

the injected fluid, as a function of the fluid density, is

calculated for all grid nodes. Then the new temperature of

the fluid, at time t+~, inside the wellbore is computedo

Once the new temperature ~n the well is determined, the

change in the formation temperature is calculated as a

function of rand z at all nodal points.

3.2.3 Numerical Results and Discussion

A series of calculations was made to study the behavior

of the fluid temperature in a wellbore and the surrounding

formations during the injection period. In every case, the

physical properties and average thermal properties of the

fluid, and the physical dimensions of the well corresponded

closely to the values reported by Boberg [13] and Ramey

[54]. The overall heat transfer coefficient UT , thermal

conductivities of the formations, and the injection rate are

allowed to vary.

The calculated temperature distributions of the fluid in

the wellbore during the injection period are shown in Figures

I
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7 to 11. Figure 7 shows the temperature profiles at various

times from the start of injection. As the fluid flows

down the well its temperature decreases due to heat loss

to the adjacent formations and to the convection process.

A rapid change in the injection temperature occurs at

early times, followed by an approach to constant temperature

at long times. At early times, due to the large temperature

differences in the fluid and the adjacent formations,

larger amounts of heat are lost to the formation than at

later times when the temperature difference is less. This

has the effect of heating up the part of the formation

adjacent to the wellbore and heat conducts away from the

wellbore slowly because of the low values of formation

thermal conductivities. (This is shown in Figure 12.) When

the formation adjacent to the wellbore is heated up, the

heat loss from the wellbore decreases and approaches a

constant value. Furthermore, the order of magnitude analy­

sis by Murphy, et al., [51] shows that as the injection time

increases, the magnitude of the transient term becomes

negligible compared with the other terms so that a steady

state solution can be applied for the wellbore at long

injection times.

The order of magnitude analysis of Equation (3.1) and

the results shown in Figure 11 indicate that during injec­

tion the fluid temperature is controlled mainly by two

factors: 1) the injection rate and, 2) the rate of heat

loss from the fluid to the surrounding formations. Variable
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thermal conductivities of the formations do not have much ef­

fect on the fluid temperature profile except at early times.

(1) Effect of Injection Rate

In this study, the hot fluid at 150°C is injected down

the well and two injection rates are selected (20,000kg/hr

and 40,000 kg/hr) to study the effect of the injection rate

on the fluid temperature behavior. For the very high injec­

tion rate cases, the injected fluid would have very little

time to exchange heat with the surrounding formations.

Thus the resultant temperature profile would be nearly a

straight line as shown in Figure 8. In these cases most of

the heat is transported axially down the well by convection.

For the lower injection rate, however, the effect of axial

convection is smaller and the radial heat loss from the

wellbore is relatively large. As the fluid flows down the

well it loses heat to the surroundings and its temperature

decreases with depth. In both cases, the steady state

condition is reached after 24 hours of injection. Figure 9

shows the effect of injection rate on the fluid temperature

as the bottom of the well for fluids having surface temper­

atures of 150°C and 85°C. In both cases, the initial bottom

hole te~perature was 80°C. This figure also indicates the

rate with which the bottom-hole temperature approaches the

surface injection temperature. The results indicate that at

the higher injection rate, more heat is transported down the

well by the convection and mixing processes so that the

fluid temperature rises more rapidly, and a steady state

41
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condition is reached more quickly.

(2) Effect of Overall Heat Transfer Coefficient

Various techniques have been employed in attempts to

reduce heat loss during hot fluid injection, such as painting

and insulation of the outer surface of the tubing. The effect

of these completion techniques is to reduce the value of the

the overall heat transfer coefficient. Figure 10 shows the

effect of insulation on the injection temperature profile.

Three values of the overall heat transfer coefficient, UT'

are used for comparison. These values are taken from Wilhite

[71]. The lowest value of UT (5.67 w~2°K) represents the

case of well-insulated tubing. The intermediate value of UT

(56.7w/m2o K) represents the case when a standard completion

technique is used. The highest value ·of UT(5670 w/m2 °K)

corresponds to the case where no tubing is used and there is

only a small temperature difference between the flowing hot

fluid and the surface of the adjacent formation. The rate of

heat loss from the well to the formation is proportional to

the magnitude of the overall heat transfer coefficient and the

difference between the fluid temperature and the temperature

of the adjacent formation, i.e., UT(T-e) = -Aaelar r •w
At early times,temperature difference between the adjacent for-

mation and the fluid is large, resulting in a high rate of heat loss

and the magnitude of the overall heat transfer coefficient is

the dominant factor. As a result, after a few hours of injec-

tion, the temperature of the upper part of the formation adja-

cent to the wellbore increases very quickly and the rate of



".;' '~: . ""-" ... .' ./

"

m= 40,000/kQ hr

" 20UTt WI m K

-- 567.0

--- 56.7
5.67

TEMPERATURE.OC
110 120 130 140 150

01 I I I I I . I I AI
/

/
/

/
/,,,

/
/

/
1 hr
. ,,;/

///
............ " 24~~.

_--- I

8001-- ---- /_-- I
__- I

,,,
",,

200

f 400
cu-cu
E..
:I:....
0-
W 600o

1000' , , • , , , '" ~BL 819-7408'

FIG. 10 EFFECT OF INSULATION ON WELLBORE FLUID TEMPERATURE DISTRIBUTION DURING" "INJECrioN

~

w



1000

XBL 818-3490
FIG. II EFFECT OF VARIABLE THERMAL CONDUCTIVITY ON WELLBORE FLUID TEMPERATURE

DISTRIBUTION DURING INJECTION

r;
<,

t·,·,.·} i,~'.\. ,.;;~ t'''- .0) ~

,.
J"\ ..::::\ ."'....



45

,;

so

j
ISO

~. S.O W/meK

100 2i...:
10 ..... .::::_
I ---=-.:;;;;:~

.
I SO

0 O.S 1.0 1.:5

)

RADIAL DISTANCE, meters----.----·-~-· -----­
XBL 818-3492

FIG. 12 RADIAL TEMPERATURE DISTRIBUTION IN FORMATION
DURING INJECTION



.,

46

heat loss is reduced. In the lower part of the formation the

"')

temperature is still low, relative to the fluid temperature,

and the rate of heat loss remains large. As the injection

time increases, the rate of heat loss will become relatively

constant, proportional to the value of the overall heat trans-

fer coefficient when the adjacent formation has reached a

temperature close to that of the fluid opposite it. The temp-

peratures of the fluid and formation then increase very

slowly with time. For the case of well-insulated tubing (very

low value of the overall heat transfer coefficient) there is

is only a small amount of heat lost from the fluid to the sur-

rounding formation. This results in a nearly vertical line for

the temperature profile.

(3) Effect of Injection Time

Results of the analysis shown in Figures 7 and 9 indica-

ted that as the injection time becomes large (over 24 hours)

the injected fluid temperature approaches a constant value,

except at the bottom of the well where the fluid temperature

continually changes slowly with time. Injection time, however,

is a variable primarily influencing the formation temperature

profile. Figure 12 shows the relationship between radial dis-

tance and temperature in the formation with time at four

different depths corresponding to four different conductivity

layers of the formation. It is observed that the temperature

at the formation-cement interface rises very rapidly but the

the heat is slowly propagated away into the earth because of

r

)

the low values of the formation thermal diffusivity. Heat



transferred from the hot fluid is found to diffuse more rap­

idly in the vicinity of the wellbore, and in the formation

layers having higher values of thermal conductivity.

(4) Effect of Variable Thermal Conductivity

In Figure 11 the injected fluid temperatures were

calculated for the case of uniform thermal conductivity of

the fo~mations and cOmpared with the case when it varied.

As indicated earlier, because of the high injection rate the

fluid temperature profile is mainly controlled by convective

heat transfer and at long flow durations, variable thermal

conductivity has little effect on the fluid temperature

profile. Figure 11 shows that for the injection rate of

40,000kg/hr, the fluid temperature profile was slightly

affected by the variable thermal conductivity of the forma­

tions at a very early injection time, t • 0.15 hr. As

injection continues the effect of variable thermal conduc­

tivity on the fluid temperature profile is diminished.

However, the results presented in Figures 11 and 12 indicate

that the temperature change of the fluid which contacts the

higher thermal conductivity formation layers is more rapid

because of greater amounts of heat conducted away from the

wellbore. The important point to note with respect to the

variable thermal conductivity of the formations is that

layers which have the higher values of thermal conductivity

conduct heat away from the wellbore more rapidly and the

change in fluid temperature depends upon the magnitude of

the formation thermal conductivity.
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3.2.4 Comparison with Published Field Data

The validity of the present mathematical model for

fluid injection is demonstrated through a comparison of

the calculated results with the few wellbore measurements,

which have been published. The first comparison is made

with the long time temperature profile of water injection

at a low flow rate. The field data are taken from Nowak

[52]. The second comparison is made with the temperature

profile for cold water injection published in Ramey's paper

[54].

Figure 13 presents a comparison of temperatures meas-

ured in a water injection well in Nowak's paper [52] with

computed temperatures. Water at the surface temperature of

28.4~C is injected at the rate of 5960kg/hr through an l8cm

diameter casing for three years. Values of heat capacities

and thermal conductivities of the formation are not given in

the reference. Based on the given geothermal temperature

profile, a conductivity of 2.25w/m~K is used for the first

200 meters of the formation, and a value of 2.42w/m~K is

used for the remaining depth of the formation. The value of

2.39 x 10-6J/m~C is assigned for the formation volumetric

heat capacity. In the upper portion of the wellbore, the

measured temperature curve is higher than the geothermal

temperature for the first few hundred meters. Consequently,

the curve crosses over the geothermal temperature curve

at about the 190 meters depth. The temperature profile

straightens out at about 600 meters and reaches a constant



)

gradient thereafter. As shown in Figure 13 the calculated

temperatures are within lOe of the measured temperatures for

the lower part of the curve. For the depths between 300 and

900 meters the discrepancy is relatively large, about 3°e.

However, the measured temperatures between 300 and 900

meters depths are a little lower than one might expect from

the geothermal temperature. After crossing over the geo­

thermal temperature curve, the water temperature profile

should have a positive gradient since it is in contact with

the hotter formation. The only explanation for the negative

temperature gradient effect is water lost through a hole

found in the casing at a depth of 900 meters. The lower

temperature water lost to the formation would have the

effect of cooling down the surrounding formation after long

injection time, so that the water temperature decreases

below the injection temperature.

Another set of field data available for comparison

is taken from Ramey [54]. The water injection rate at

the time of the survey was 31,700kg/hr; the well had been

on injection for a period of approximately 75 days. Water

at surface temperature of about l5°e is injected through

a 18 cm diameter tubing, 2015 meters long. The geothermal

gradient temperature of 0.0165°e/m and thermal conductivity

of 2.42 w/moe are used in the calculations. As shown in

Figure 14, because of the high flow rate, the water temper­

ature profile is nearly a straight line and increases with

depth. The calculated temperatures exceed the measured
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temperatures except at the bottom of the well. The cal­

culated temperatures, however, are within O.5°C of the

measured temperatures showing excellent agreement.

3.3 Temperature Distribution During Shut-in

3.3.1. Mathematical Model

In this section, study is directed towards simulating

the temperature conditions that the fluid inside the well­

bore experiences during shut-in. At the end of an injection

period, the flow of fluid 1s stopped and the fluid becomes

quiescent in the borehole. Just at shut-in, the fluid inside

the borehole and the surrounding formation have the tempera­

ture distribution T(z,r) and 6(z,r), respectively, as given

by Equations (3.1) and (3.5).

The problem involved is that of determining the temper­

ature as a function of time and position within a system

which initially has some spatial distribution of temperature

established within it. Inside the borehole, since there is

no forced convection during shut-in, the major mode of heat

transfer is either conduction or natural convection in the

fluid. In order to develop a mathematical model, it is nec­

essary to make several assumptions. These assumptions are:

(1) The kinematic viscosity, the thermal diffusivity,

and the coefficient of volumetric expansion do not vary

in the range of temperatures considered.

(2) Using the Boussinesq approximation, the law of

variation of density with temperature is



\
(3. 20)
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where p= density of the fluid at temperature T,

Po density of the fluid at temperature To,

~= coefficient of volumetric expansion of the fluid

at temperature To.

(3) The boundary layer approximation applies, i.e.

the radial rate of diffusion of momentum and heat is much

more rapid than the axial rate. This may be justified by

the large aspect ratio h, length/radius ratio. However,

axial heat conduction in the wellbore and in the formation

is taken into account in order to study the effect of

variable thermal conductivities.

(4) The flow is symmetrical about the axis.

At the end of the injection period, the higher tempera-

ture fluid is at the top and the lower temperature fluid

is as the bottom of the wellbore. Thus there is no fluid

motion along the borehole axis. at the beginning of the

shut-in period. However, there may be movement of the fluid

in the radial direction caused by the temperature difference

between the center of the fluid column and the wall of the

wellbore. This radial temperature gradient is induced by

the heat conduction inside the fluid. This may result in a

weak, steady circulation in the wellbore. The warmer fluid

near the center of the wellbore rises up and flows towards

the wall, the cooler fluid near the wall is drawn downwards

and re~laces the warmer fluid. To determine the fluid

temperature distribution in the wellbore, the Navier-Stokes
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equations of mass, momentum, and energy, which apply to the

liquid for aXis-symmetrical flow, and with the boundary

layer approximation, are employed:

(fir
+ or + v = 0

r (3.21 )

"

"

,;

au
v-' =

ar

,,(a2~ + 1.~)
ar2 r ar

lap
-g paz +

(3.22)

aT
at

+ u
aT +, az

apar = 0

aT llw a
v-=--

ar r ar

(3. 23 )

(3.24 )

where: u = fluid velocity in axial direction,

v = fluid velocity in radial direction,

g = acceleration due to gravity,

p = pressure,

v = kinematic viscosity of the fluid,

a = thermal diffusivity of the fluid.
w

The effect of natural convection is specified by the

Rayleigh number, given by:

Ra



/)"T =

where: e = volumetric expansion coefficient of the fluid,

TJ:.- Tw

T
t
= fluid center line temperature,

55

)

)

/

Tw = wall temperature,

and the aspect ratio h = L/rw' where L is the length of the

wellbore and r w is the wellbore radius.

To determine whether the effect of natural convection

can be ignored in this study, a model of purely heat con-

duction will be analyzed first. The maximum radial temper-

ature gradient will be calculated from the conduction model,

since convection would have the effect of reducing the

temperature gradient. This maximum temperature gradient

will be used to evaluate the Raleigh number later in the

study.

(1) Conduction Model

Similar to the previous analysis, the model is divided

into two parts; the fluid in the wellbore and the surround-

ing formation. Inside the wellbore, heat is conducted

radially from the hot fluid through the tubing and insulat-

ingmaterials, if present, into the lower temperature

formation. Because of the axial temperature gradient

established during the injection period, heat is also

conducted along the length of the wellbore. Under these

circumstances, application of an energy balance to a cylin-

drical elemental volume of the fluid of thickness dz yields

the equation:

1peaT
w w at = aT)

r ar '
( 3 • 25 )



56

where: AW = thermal conductivity of the fluid,

P w = density of the fluid,

c w = specific heat capacity of the fluid e

Because of symmetry there is no heat flow at the center

of the wellbore or,

at r = 0 = o (3" 26)

At the wellbore wall the boundary condition for Equation

(3.25) requires that the heat flux out of the wellbore be

the same as the heat flux into the formation, iee.,

at r = r
w

(3 e 27 )

At the to~ of the borehole, heat is lost from the fluid to

the ambient and is given by:

at z = 0,
A aT
waz = H (T-Ta )

(3.28 )

.I

where H is the heat transfer coefficient for surface heat

loss, Ta is the ambient temperature. During the shut-in

period, the fluid temperature at the bottom of the well

changes continuously with time to reach the geothermal

temperature. Therefore, it is very difficult to specify the

boundary condition for the fluid at the bottom of the well.

However, analysis of the injection zone indicated that in

this zone the major part of the heat is transferred away

from the wellbore in the radial direction by convection

(Spillette, [65]; Smith, [62]). Heat conducted in the

vertical direction into the overburden and underburden



formations are assumed to be relatively small. Moreover,

because heat conduction is much larger in the radial

direction than in the vertical direction in the fluid

column, the axial boundary condition at the bottom of the

well does not have much effect on the results of the upper

parts. Under these circumstances, the fluid temperature at

the bottom of the well is very close to the temperature of

the fluid in the injection zone below it. Based on the

solution obtained by Lauwerier [45], the boundary condition

for the fluid at the bottom of the well can be specified

as:

57

at z = L , T (t,r,L) = e (t, r ,L) +
w

where: Tinj

1 ),

1000t
= injection temperature,

(3.29)

e(t,rw,L) = formation temperature at the bottom of

the well,

= fluid thermal diffusivity,

erfc

t

= complimentary error function,

• the time since the start of shut-in.

After shut-in, heat is continuously flowed from the

hot fluid inside the wellbore into the adjacent forma-

tions to attain the thermal equilibrium condition. The

heat is then diffused farther into the earth away from

the wellbore/formation interface. As the shut-in time

in~reases, temperatures of both the fluid in the wellbore

and the formation approach the geothermal temperature.
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Within the formation, heat flows by the conduction process.

To describe the temperature of the formation surrounding

the wellbore, the diffusion equation (3.5) and its boundary

conditions are applicable: .'

as () 1 a (raaSr) _at -a. Z r ar ~Z (a.(Z) ~~)= 0 0.5)

at r = r w , A(Z)~ar = UT (8-T) , (3.7)

at r -+ 00

at z =0

8 = T.(z),
~

8 = T,
a

(3.10)

(3.12)

at z = L, 8

Just at shut-in,

m
= T + L /),T /),z

a i Ai(Z) i

the formation has the

(3.13)

temperature at the

conclusion of injection:

at t -= 0 8 = 81

where 81 is the formation temperature evaluated at the

end of injection from the injection model calculations.

(2) Modified Model with Natural Convection

In this section, a mathematical model which takes

into account the effect of natural convection is developed

based on the conduction model. The Rayleigh number, based

on the radius of the wellbore and the maximum temperature

difference of the fluid in the wellbore from the results of

the conduction model calculations, is between 10 3 and

10 4 • Elder [29] indicated that for Rayleigh numbers less



than 105, or less than l770h, where h is the aspect

ratio, conduction is the dominant mode of heat transfer in

vertical enclosures. In this case, for Ra <105, relative-

ly large temperature gradients develop near the wall,

and in the inner region the temperature ft~ld closely

satisfies LaPlace's equation. The higher temperature

fluid near the center of the borehole flows toward the

wall and displaces the lower temperature fluid. The con-

vection occurs in the form of weak, local convection cells.

The magnitude of the radial ~onvection velocity v is of

the order (A/pcrw )w , as derived from the balance

of conduction and convection (Gebhart, [32]). Using the

approximation of tbe density variation given by Equation

(3.20) the convection velocity can be approximated as:
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where: g = acceleration due to gravity,

(3. 20 )

= coefficient of volumetric expansion

of the fluid,

r w = wellbore radius,

(Tw-Tb ) = maximum radial temperature gradient.

This is an estimate of the maximum value since it was made

neglecting viscous forces. For water and fluids with mod-

erate and high Prandtl numbers, the maximum velocity will

be much less than this value. In this wellbore ~odel the

magnitude of the maximum velocity is

v
max = 0.7 x 10-4 m/sec.
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It is important to note here that the magnitude of the

Rayleigh number and the maximum velocity are dependent

upon radius of the wellbore and the radial temperature

gradient. Natural convection would have the effect of

flattening the temperature profile and reducing heat trans­

fer in this direction. Thus the Rayleigh number and

the maximum velocity reduce as the shut-in time increases~

For a detailed theoretical description of the natural

convection heat transfer process, three equations are

necessary: continuity, momentum, and energy. However,

under these circumstances, as discussed above, the effect of

natural convection is small compared with conduction, the

fluid velocity induced by natural convection is relatively

small and the convection cells are weak and local. A

modified model is developed in order to take these effects

into account. Instead of solving a set of three equations,

additional terms will be added to the energy equation of

the conduction model. These terms have the same form as

the diffusion term in the energy equation, but produce the

effect of reducing the heat transfer in the radial direction

and flattening the radial temperature profile. One term sim­

ulates the process of warmer fluid flowing radially ~utwards

toward the wellbore wall and another term simulates the pro­

cess of cooler fluid flowing downward and displacing the

warmer fluid. The nodified energy equation, which takes the

effect of weak and local natural convection into account,

is expressed as follows:
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~,

aT a2T a2T Cl C!. aT a2Tw
at = Cl;p + Clz azz + + arl )w z r r ar

Cl (-!. aT a2T·r + arz)r r ar

where: Cl = thermal diffusivity of the fluid,w

Cl = aClwz ,
Cl = baw •r

(3.21)
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Coefficients a and b can be varied so that the maximum

Rayleigh number is less than 10 3 • For Ra <10 3 the

effect of natural convection is negligible. The initial

and boundary conditions for the conduction model are

applicable in this case.

To solve for the temperature of the formation sur-

rounding the wellbore, the diffusion equation (3.5) and its

initial and boundary conditions are employed.

3.3.2 Numerical Formulation

Similar to the previous section, temperature dis-

tributions of the fluid inside the wel1bore and the

surrounding formation are obtained numerically. An im-

plicit (ADI) finite difference technique is employed to

solve for both the fluid and formation temperatures. The

resulting finite difference equations for the temperature

of the fluid inside the we11bore are given as:
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Tn+l / 2
i,j

a ~t { n+l/2 n+l/2= w r'+1/ 2 Ti '+1 Tr - r J -_.=...z...• .r..].;....=..._--=i:.z.,..j_
j+l j-l r j +l - r j

and

n n
2Ti ,j + Ti _l • j

(3.22)

Tn+1
i,j

+1/2 a ~t Tn+l / 2 _ Tn+l/2 T~~/2_ Tn+l / 2
T~,j _ ___.w {r'+1/ 2 i,j+l i,j - r j _l / 2 1.,J i,j-l}

r j +l - r j _l J r j +l - r j r j - r j _l

a ~t Tn+l 2Tn+l + Tn+l
+ w i+l,j - i,j i-l,j

2 ~z2

(3.23)

To solve these equations and to resolve the boundary layer

regime where the fluid temperature changes rapidly, again,

a variable radial grid system is used.

A reservoir model is connected to the wellbore model

so that the heat transfer is consistent with the tempera-

ture field of the system. The heat flow rate out of the

wellbore and into the formation must be equal. A set of

finite difference equations, similar to Equations (3.16)

and (3.17), are applicable to solve for the formation

temperature in this case.

en+l / 2_ en
i.j i.j -

6.t/2

2a { en+1
/
2

- en+l /
2

en+l/2_ en+l / 2 }
r _i r r j +l / 2 i,j+l i.j - r j _l / 2 i.j i,j-l
j+l j-l r j +l - r j r. - r. 1

J J-

n n n
- Cti+lei+l.J· - 2a.e .. + a i Ie. l' 0__ 1 1,J - 1-,J =

6.z2 (3.24 )
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(3.25 )

The new fluid temperature in the wellbore is solved first

using the old value of the formation temperature. Then

the new temperature in the formation is calculated by

determining the heat that flowed from the we11bore into the

formation over that time interval. When the energy equa-

tion of the fluid inside the we11bore is solved, the heat

transfer at the wall is:

(3.26 )

Because this boundary condition for the heat flow is

solved partially explicitly, there is a stability limit.

The stability condition in terms of the radial spacing is

(Miller [49]):

b.r b.r
(b.r + b.r l)r 1b.r + 2aLit[" m r 1 + (r + ... m r 1 )]1m m- m- m ur m- - m ur m-.

m-1 -2- "2 m-1 -2- ~1.0

(b.r + b.r l)r 1b.r - 2aLitr
m m- m- m m (3.27)

"2

and r = (r +r 1)/2,m m m-
"2

r
m-1

2
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Once the fluid temperature in the we11bore at new

time level is known, the new value of the formation tem-

perature can be calculated using this new value of the

we11bore fluid temperature. When the temperature of the

formation is calculated, the boundary condition at the

formation/we11bore interface is:

(3.28)

No stability problems are encountered because the tempera-

ture of the formation is solved implicitly, even at the

boundary.

The model is now solved for the fluid temperature in

the we1lbore, including heat loss to the surrounding forma-

tions.

3.3.3 Numerical Results and Discussion

At shut-in, the flow of fluid in the we11bore is

stopped and the effect of ceasing injection can be re-

garded as that of stopping a heat source inside the we11-

bore. The temperature of the fluid will gradually return to

its initial state by transfer of heat into the surrounding

formations. Several calculations are made tn illustrate

the development of the fluid temperature profile inside

the we11bore during shut-in. The intent is to determine

the effects of the formation thermal conductivities and

the we11bore characteristics on the fluid temperature

behavior.
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Just after shut-in, radial conduction becomes important.

Heat is conducted from the hot fluid at the center of the

borehole towards the borehole wall through the we11bore

tubing, insulating material, casing, and cement, and into

the formation. Initially, at the end of injection, there is

assumed to be no radial temperature gradient in the fluid

because of the mixing process in the turbulent flow during

injection but, as the radial conduction becomes larger, the

radial temperature gradient develops and reaches the maximum

value at about one hour after shut-in. The growth of the

fluid temperature gradient near the borehole wall causes the

heat transferred from the we11bore fluid to the adjacent

formations to increase. However, due to the relatively low

value of the formation thermal conductivity, most of the

heat lost from the we11bore will stay in the portion of

formation adjacent to the well and conduct slowly farther

into the earth away from the we11bore. This will slow down

the rate of heat transfer from the we11bore fluid to the

formation. After the fluid radial temperature gradient

reaches the maximum va1ue,it decreases as the shut-in

time increases. These effects are shown in dimensionless

form in Figure 15. The development of the radial heat

conduction in the fluid, inside the we11bore, after shut-

in can be seen by comparing the radial temperature gradient

to its maximum value.

Another calculation using a modified form of the

model was carried out to illustrate the effect of natural
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convection in the wellbore. The resulting fluid tem­

perature behavior is also shown in Figure 15, where the

results of the two models are compared. As indicated

in the analysis, natural convection has the effect of

flattening the radial temperature gradient of the fluid in

the inner region of the wellbore. However, since the

higher temperature fluid moves toward the borehole wall and

exchanges heat with the adjacent formation, the temperature

profile is steeper near the borehole wall during early

shut-in times. After four hours of shut-in the tempera­

ture profiles of the two models are similar and after

twelve hours of shut-in they nearly coincide. This result

indicates that the effect of natural convection on the fluid

temperature profile in the wellbore is only important in the

early shut-in times, and becomes negligible in comparison

with heat conduction after long shut-in times, say twelve

hours. This also shows that natural convection does not

have much effect on the rate of return of the wellbore fluid

temperature to equilibrium at long shut-in times.

(1) Effect of Changing Wellbore Radius

Figure 16 shows the effect of changing the wellbore

radius on the fluid temperature distribution in the well­

bore during shut-in. It is observed that, for the same

initial condition and other variables kept constant, as

the wellbore radius decreases the radial temperature

gradient decreases since Rayleigh number and convection

velocity vary in proportion to the wellbore radius.
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However, the rate of return of the fluid temperature to

equilibrium increases as the wellbore radius decreases.

The area available for heat transfer at the wall,2TILr
w

varies linearly with the radius r w ' while the volume of

the fluid inside the wellbore, TILr3, varies with r3 and

so does the amount of heat contained in the fluid column

needed to be transferred away to return to equilibrium.

As the radius is reduced by one-half, the amount of heat

needed to be transferred into the formation is reduced

by a factor of four so that the fluid temperature inside

the wellbore will reach the geothermal temperature faster.

Figure 16 indicates that after 96 hours of shut-in, for r w

= O.08m the fluid temperature inside the wellbore is within

4% of the geothermal temperature, while for r w = O.04m the

fluid. t.emperaturp is wi thin 2.5% of the geothermal temper-

ature at the same time.

(2) Effect of Overall Heat Transfer Coefficient

In this section the effect of insulation on the fluid

temperature is investigated. Effects of a ten-fold change

in the overall heat transfer coefficient on the temperature

profile can be seen on Figure 17. The effect is very

apparent near the borehole wall, where heat is transferred

from the fluid to the formation through the wellbore. The

higher value of overall heat transfer coefficient results in

a steeper temperature gradient in the fluid near the bore-

hole wall at early shut-in times. Similarly, for the higher

value of overall heat transfer coefficient, the fluid
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temperature inside the we11bore will return to its initial

value faster at early shut-in times since more heat is

transferred to the adjacent formations. However, as the

fluid temperature decreases the difference between the fluid

temperature and the adjacent formation temperature is

reduced and becomes negligible when the shut-in time is very

long as seen in Figure 18. This will reduce the rate of

heat transfer from the fluid to the formation at long

times. For the case of the lower overall heat transfer

coefficient, UT' there is a large temperature difference

between the fluid and adjacent formation during early

shut-in times. This temperature difference still exists

even at long times, but with smaller magnitude, so that heat

is continuously transferred from the fluid to the formation

at larger rates than the case of higher overall heat trans­

fer coefficient when the shut-in time is very long. More­

over, during injection, conduction heats the formation more

in the case of the high UT than in the case of low UT.

As a result, the fluid temperature approaches the geothermal

temperature faster at long shut-in times for the case of low

UT. It is important to note here that the overall heat

transfer coefficient has an effect only on the rate of

temperature return but not on the temperature profile at

long shut-in times. After 24 hours of shut-in time, the

fluid temperature profiles for different values of the

overall heat transfer coefficient are similar, as shown in

Figures 17 and 22.
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(3) Effect of Injection Time

As indicated earlier, even though the fluid tempera­

ture profile during injection is not very sensitive to

injection time, at long times, more heat is accumulated in

the formation adjacent to the wellbore and the temperature

of a larger volume of formation surrounding the wellbore

is increased as the injection time increases. As a result,

there is less heat return at early shut-in times and as

one would expect, longer times are needed for the fluid

temperature to return to its initial value. Wellbore

fluid temperature curves after 24 hours of shut-in

are presented for cumulative injection times of 24 hours

and 72 hours at a constant injection rate of 40,OOOkg/hr

and variable thermal conductivities of the formations

in Figure 19. The higher cumulative injection time causes

the 24 hour shut-in curve to be displaced farther from

the geothermal temperature.

(4) Effect of Variable Thermal Conductivities

During the shut-in period,the fluid temperature

profile inside the wellbore is strongly affected by differ­

ences in formation thermal conductivities. Since conduction

is the dominant heat transfer process during shut-in, the

formation which has the higher value of thermal conductivity

will conduct heat away from the wellbore faster than the

lower thermal conductivity region. As a result, the fluid

inside the wellbore which is in contact with the high

thermal conductivity formation will have the temperature
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return to its initial value rapidly. Figure 19 shows that,

because of the variahle thermal conductivity of the forma­

tions, the fluid temperature gradients are not constant but

vary along the length of the wellbore at the locations where

thermal conductivity of the formations change abruptly. It

also shows that the fluid temperature profiles have the

shape similar to the geothermal temperature profile.

Figure 20 shows the approach to equilibrium with time of the

fluid temperature inside the wellb~re which is surrounded by

variable thermal conductivity formations. The ratio of

temperature differences (T s -T)~Ts - Ti), where Ts is the

fluid temperature just at shut-in and Ti is its initial

value, i.e. geothermal temperature, is plotted versus time.

After 12 hours of shut-in, the fluid temperature is within

17% of the original geothermal value for theA~ 5.0w/moC

formation layer, 23% for the A ~ 3.75w/moC formation

layer, and 34% for the ~ ~ 1.25w/moC formation layer. After

72 hours of shut-in the fluid temperature is witin 2.5% of

the original geothermal value for the A ~ 5.0w/moC formation

layer, 4% for the A~ 3.75w/moC formation layer, and 7.5%

for the A ~ 1.25w/moC formation layer. The rate of return

to equilibrium of the fluid temperature (during shut-in)

increases very rapidly in the first 12 hours of shut-in and

begins to approach a slow, logarithmic rate after 48 hours

of shut-in.

Figure 21 shows the fluid temperature profile along

the wellbore axis during shut-in. Effect of variable
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thermal conductivities of the formation is very apparent

after four hours of shut-in. The fluid temperature in

)

the wellbore, which is in contact with the higher thermal

conductivity formation layers, approaches the geothermal

temperature very rapidly during the first 12 hours of
,

shut-in whereas the fluid temperature in the lower thermal

conductivity layers approaches the geothermal temperature

more sl~wly. After 24 hours of shut-in the fluid temper-

ature profile has the shape similar to that of the geo­

thermal.' After 72 hours of shut-in the fluid temperature

inside the wellbore is very close to the geothermal temper-

ature, and this temperature profile varies along the depth

of the wellbore proportional to the value of the formation

thermal conductivities.

Figures 21 and 22 show that during early shut-in times,

there exist negative gradients in the wellbore fluid temper-

ature profile where the formation thermal conductivity changes

abruptly from a smaller value to a greater value. A three-fold

change in thermal conductivity is not uncommon in subsurface

formations. It can be explained that in the low thermal

;

conductivity formation region, heat is conducted slowly away

from the wellbore whereas in the high thermal conductivity

formation region heat is conducted much faster so that the

fluid temperature returns to the original geothermal value

more quickly. Differences in the formation thermal conduc-

tivities lead to uneven rates of return of temperature to

equilibrium and will result in the negative gradients in some
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sections of the fluid profile. These negative temper-

ature gradients are relatively large at early shut-in times

and become smaller as the time increases. The decrease in

the temperature differences between the fluid and the

formation with time and the approach to a constant value of

the rate of heat transfer from the fluid to the formation

will cause these negative temperature gradients to diminish.

Figure 22 indicates that for different values of the overall

heat transfer coefficient the fluid temperature profiles

inside the wellbore are similar after 24 hours of shut-in.

However, in the case of low overall heat transfer coeffi­

cient, the negative gradient persists for a longer shut-in

time. This result implies that after long shut-in times,

say 24 hours, the fluid temperature profile inside the

we11bore is primarily controlled by the formation thermal

conductivities.

Figure 22 shows the fluid temperature distribution

during shut-in with a different set of formation thermal

conductivities than Figure 21. It indicates that the fluid

temperature profile during shut-in is very sensitive to the

formation thermal conductivity variation. This contrast can

be seen by comparing the fluid temperature distributions in

Figures 22 and 23. Figure 23 shows the we11bore fluid

temperature distributions during shut-in for a well which is

surrounded by a uniform thermal conductivity formation. In

both cases, the we11bore fluid temperature exhibits the same

behavior as the formation thermal conductivity variation
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after 72 hours of shut-in, i.e., the gradients vary along

the length of the wellbore in proportion to the magnitude of

the thermal conductivity of the formations.

3.3.4. Comparison with Published Field Data

The temperature behavior of the shut-in wellbore

from calculations based on the mathematical model can be

compared with published field results. The comparison is

made with the temperature profile of a water injection well

during the shut-in period. These well measurements are

reported by Nowak [52]. Figure 24'presents a comparison of

temperatures measured in a water injection well after three

days of shut-in,with calculated temperatures. Water at a

surface temperature of 28.4°C is injected down the well at a

rate of 5960kg/hr for a period of three years. A temper­

ature survey is made after three days of shut-in. In the

upper portion of the wellbore measured temperature profile,

the fluid temperature is higher than the formation temper­

ature and at shut-in it is cooled off towards the geothermal

temperature. In the lower portion of the temperature

profile, the fluid temperature is lower than the formation

temperature and it is heated up approaching geothermal. The

temperature profile becomes linear at about l500m depth ana

has the same slope as the geothermal temperature curve. The

calculated temperatures, shown by the solid line in Figure

24, exceed the measured temperatures for the depths between

190m and 1500m, and become lower than the measured temper­

atures for the remaining portion of the well. Except for

.,
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the depths between 400m and lOOOm where water loss from the

casing was found and the discrepancy is relatively large,

the calculated temperatures are within 1°C of the measured

temperatures. This indicates satisfactory agreement between

the two results.

3.4 Temperature Distribution in the Shut-in after Production

Case

".
"

3.4.1. Analysis

In this section, the temperature conditions that the

fluid inside the wellbore experiences during shut-in after

producing the well, will be investigated. In the production

well, hot fluid from the producing zone of the formation

enters at the bottom of the well and flows up the wellbore.

As the fluid flows up the wellbore, its temperature is

determined by the rate of heat convection up the borehole

and the rate of heat exchange between the formations adja-

cent to the wellbore and the fluid inside the well.

The mathematical model of the injection shut-in case is

applicable for this case, except that the origin is taken at

the bottom of the well and the flow is positive upwards.

During production, the temperature of the fluid entering the

wellbore is the same as the temperature in the producing

interval. Under these circumstances, the system of equa-

tions which describes the temperature of the fluid and the

surrounding formation during the production period is:

aT + aT _
uai at-

A
w

r (pc)
w w

ae 1
ar r

w
(3. 29 )



(3.39)

where (pc)w = product of the heat capacity and the density

of the in-flowing fluid,

a(z) = thermal diffusivity of the formation, varies

with depth.

The appropriate initial and boundary conditions are:

"
,.

m
at t = 0, T(t,z) = 6(t,r,z) = T. (z) = T - r !:J.T !:J.z. (3.31)

~ 0
i Ai(Z)

1.

at z = 0, T(t,z) = 6(t,r,z) = T (3.32)
0

at Z = L, 6(t,r,z) = T (3.33)a

85

(3.34)

at r + 00 6(t,r,z), (3.35)

where L is the depth of the well, Ta is the ambient

temperature, and To is the producing formation temper-

ature.

For the shut-in period after production, the ana-

lysis is the same as for the injection shut-in case.

A modified form of the conduction model is employed to

sDlve for the temperature profiles of the fluid in the

wellbore and the adjacent formation. For the fluid tem-
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perature inside the wellbore, the governing equation and

"

its boundary conditions are:

aT aZTat = (Ctw + Ctz)rzZ +
(3.36)

at r = 0,

at r = r w'
A aT = has
w ar ar ,

(3.37)

(3.38)

at z = 0, T(t,r,z) : T
o '

(3.39)

,
"

at z = L, A aT: H(T-T )
w az a (3.40)

The following equations and boundary conditions are used

to describe the formation temperature during shut-in :

as (l as + aZs) 0 as
at - Ct(-z) r ar arz - az (Ct(z)-az) = 0,

(3.41)

at r = r ,
w

A(Z)~ = U (S-T)or T (3.42)

at r .. 00 , S(t,r,z) = Ti (z) t (3.43)
".

at ° S(tt rz) = T (3.44)
z = 0

at z = L, S(t,r,z) = T (3.45)a



The temperatures of the fluid and the formation at the

end of the production period will be used as the initial

conditions for the shut-in period.

Equat~ons (3.29), (3.30), (3.36), and (3.41) are

solved numerically and two computer programs, TEMPI and TEMP2

used in the injection shut-in case, will be modified and uti­

lized in this case.

3.4.2 Numerical Results and Discussion - Production/Shut-in

Case

(1) Production Period

During the production period, hot fluid flows out

of the production zone, enters the wellbore and flows up the

well. As the fluid flows up the wellbore it contacts the

lower temperature formations, its temperature decreasing due

to heat loss to the adjacent formations. The rate of heat

loss is proportional to the temperature difference between

the flowing fluid and the formation. The wellbore fluid

temperature increases with time as the formations surround­

ing the wellbore become heated. A rapid increase in the

wellbore fluid temperature occurs at early times, followed

by an approach to a steady condition at long times. Figure

25 shows that after ten hours of production, the fluid

temperature in the wellbore changes very slowly and ap­

proaches a constant value after 24 hours.

Similar to the injection case, as the production

ra te increases, the produced fluid is transported up the

we 11 very fast and due to the convection and mixing process,
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the fluid temperature rises rapidly with time. This will

result in a nearly vertical line for the temperature

profile at earlier times and a steady state condition is

reached more rapidly than at lo~er production rates.

Figure 26 shows that fluid produced at 84°C at a depth of

lOOOm, is reduced in temperature to only 82.5°C at the top

of the well in 24 hours for the flow rate of 42,OOOkg/hr.

For the flow rates of 2l,OOOkg!hr and l2,OOOkg/hr the fluid

surface temperature is shown to be reduced to 81°C and 79°C,

respectively, after 24 hours of production.

Figure 27 shows the effect of the overall heat trans-

fer coefficient on the fluid temperature distribution during

production. For the same production rate, the higher value

of overall heat transfer coefficient, UT' leads to lower

fluid surface temperature because of greater heat loss. The

hot fluid produced at lOOOm depth at 84°C is reduced to 82°C

for UT • 56.7w/m 20K and is reduced to only 83.5°C for

UT = 5.67w/m 20K at the top of the well after 24 hours of

production as shown in Figure 27.

During production, except for extremely low flow rates,

the flow of the produced fluid is turbulent and well mixed

in the wellbore so that variable therma~ conductivity of the

formation has very little effect on the fluid temperature

profile.

(2) Shut-in After Production

When the production is stopped, the fluid becomes

quiescent inside the borehole. Heat from the hot fluid
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column conducts into the surrounding formation and dis-

sipates away from the wellbore. Gradually, the fluid

temperature inside the wellbore will co~e to equilibrium

with the formation. After shut-in, due to heat conducted to

the formation, the radial temperature gradient develops

rapidly near the borehole wall. This temperature gradient

reaches a maximum value at about one hour after shut-in as

shown in Figure 28. As the heat stored in the fluid is

transferred away from the wellbore, the radial temperature

gradient in the wellbore decreases and becomes very small

after 24 hours of shut-in as shown in Figure 28. Figure 29

shows the wellbore fluid temperature versus time, for two

different depths, 250m and 750m. The fluid temperature in

the wellbore is heated up during the production period and

then cooled off during shut-in. During shut-in the fluid

temperature changes rapidly during the first twelve hours

of shut-in and begins to approach a slow, logarithmic

decline after that.

When the well is produced for longer periods of time,

more heat is accumulated in the formation adjacent to the

wellbore so that longer times are needed for the heat

to diffuse away.. Thus more time is needed for the fluid

temperature to return to its initial value.

Figure 31 shows the fluid temperature distribution

along the wellbore axis during shut-in. As indicated

in the previous section of this study, the fluid inside

the wellbore which is in contact with the higher thermal



conductivity formations approaches the geothermal temperature

faster than formations with lower thermal conductivity.

This effect is very apparent during the first few hours

of shut-in. Negative temperature gradients occur at bound-

aries where thermal conductivity of the formations change

from a smaller value to a larger value. As the shut-in time

increases, the fluid temperature inside the wellbore ap-

proaches closer to the geothermal and the temperature

distribution curve has the shape of the geothermal temper-

95
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ature profile after 72 hours of shut-in. This result

)

)

)

indicates that under thermal equilibrium conditions, the

fluid temperature is inversely proportional to the magnitude

of the formation thermal conductivities.

Effects of the overall heat transfer coefficient

on the fluid temperature profile are the same as in the

injection shut-in case. The hot fluid is cooled off faster

in the wellbore having the higher value of overall heat

transfer because of the higher rate of heat transfer to the

formation during early shut-in times as shown in Figure

30. After 24 hours of shut-in, however, the fluid temper-

ature p~ofiles for different values of overall heat transfer

coefficients are very close to each other. Both tempera-

ture profiles approach the geothermal temperature profile

after 72 hours of shut-in. Figure 30 shows that the fluid

)

J

temperature profiles vary in proportion to the formation

thermal conductivities at long shut-in times for both

values of the overall heat transfer coefficient.
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CHAPTER IV

ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM

MEASURED TEMPERATURE GRADIENTS IN WELLS

4. 10 Transient Method

4.1.1. Transient Heating or Cooling

From the results of the analysis in the previous

chapters of this study, it can be concluded that during

injection or production and during the shut-in period, fluid

temperature behavior in the wellbore depends on many factors

such as the rate of heat conduction and convection in the

fluid, and the rate of heat transfer from the fluid into the

formation, the latter being a strong function of the

formation thermal conductivities. It is difficult to

present a direct quantitative evaluation of the effects of

the formation thermal conductivity variation on the fluid

temperature during the injection or production process and

on the restoration of thermal equilibrium during shut-in.

It should be possible, however, to draw certain semi-

quantitative conclusions from consideration of the numerical

results of this study.

After heating by a heat source, the cooling of the

fluid at a point interior to a homogeneous stratum of finite

thickness will, for sufficiently small values of time, behave

as if the medium were infinite and homogeneous, possessing the

thermal properties of that stratum. During injection or

production, if the fluid with heat capacity c is pumped either
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up or down the well at a mass flow rate ~, then the heating

rate of q = ~c~/ ~ will be induced per unit of well depth.

The results presented in Chapter III of this study indicate

that except at early stages of injection or production, the

fluid temperature gradient a T/az can be considered constant.

Therefore, the heating rate q induced by the in-flowing fluid

is approximately uniform. During injection or production and

at early shut-in times, vertical temperature gradients in

the formation are small compared to radial temperature

gradients induced by injection or production, i.e.aWe~< ae/ar.

Radial conduction is the dominant mode of heat transfer

in the formation. The well bore fluid temperature during

injection or production and early shut-in times can be approxi-

mate~ from the heat source concept with the following

considerations:

(1) the heating rate q is uniform during injection or

production;

(2) the form of the heating or cooling curve at any

depth during injection or production will not

depend upon the thermal properties of the

adjacent strata;

)

)

: (3) radial heat flow is far more important than ver-

tical heat flow in the formation.

Under the above conditions the temperature at any

depth of the system of the wellbore and formation, can be

approximated as follows:



)

100

2" r A ~ I
1T W ar r

w (4.1)

i.e., (4.la)

a
2e 1 aeD 1 aeDD + rar = ex (z) at

ar
2

where TD = (T -Ti) ,

e III ( e - Ti)
D

q = heat supplied/unitlength/unit time ,

= me aT/oz

q' = q/2:rrrw '

(4.2)

M =

These are sUbjected to the initial and boundary conditions:

at r =

and aD

,at t = 0, TD = aD = 0

ae
r w~ A--!L = UT (eD - TD)

ar
is bounded as r -l" co •

(4.3)

(4.4)

(4.5)

)

)

The solution of this system of equations can be obtain-

ed by using a LaPlace transformation technique (Blackwell,

Lll]). Procedure for solving these equations is outlined

in Appendix B. The result is:

. '[ ( pc) 2A]
T =rwq 1 4 _ + 2A + -!.. {ln4T - y + LO - ~n4T -y + ru )} ,
D 2A n T y rwU

T
2T c w T

(4.6)
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where y=Euler's constant = 5722,

T = atl r~

This result indicates that the change of fluid tempera-

ture at any depth is a function of time, formation thermal

conductivity and diffusivity, heating rate, overall heat

transfer coefficient, and ratio of heat capacity of the

fluid in the wellbore and the formation~

The application of this result to the determination

of thermal conductivity and thermal diffusivity is as

follows:

Rewrite Equation (4.6) in the form,

101

T
D

(t) ~ AIn (t) + B + t {Cln (t) + D} (4.7)

)
where A=

r q'
w

21..
,

B=
r q'
~ [Ina - 21nr + In4 - y21.. w

Similarly C, D may be expressed in terms of the above

constants. If the injection time is long enough, after

j

a few hours of injection the contribution of the term

of the order (lIt) can be neglected.

It can be seen that, if the heating rate can be es-

timated and the wellbore parameters are known, a fit of

suitable experimental data to this expression will yield

a value of A at the desired depth directly from the con-

stant A. Once A and liT are known, a value of a can be

estimated from the constant B.
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To improve the accuracy of determination of A and a the

method of curve-fitting can be employed, as shown by Beck,

et a1., [7]. The temperature rise T of the fluid at time t

can be written as:

103·

T = (q/A) G (K, n, T)

where G is a complex function of K, n ,T

(4.8)

given by Equation

(4.6) where K, n ,T are dimensionless parameters:

,

)

.J

at
T="T

r
w

If the flowing fluid is water, n is 1.35 (Murphy, et

a1., [51]). It follows from (4.8) that

ln T = ln (q/A) + lnG (K, n, T ) (4.10)

"

-'

.J

Values of G(K, n , T) can be evaluated and plotted

against T for a specific value of n and va rious values

of K on log-log paper. The experimental values of tempera-

ture are plotted against time on transparent log-log graph

paper and slid over a family of theoretical curves, G

versus T, keeping the axes parallel, until the best fit is

obtained. The displacement of the axes then gives log

2( q/ A) and log (a / r w) •
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A plot of G (K, n, T ) against T for n = 1.35 and

various values of K is shown in log-log form in Figure

320 A number of numerical data points taken from Figure 1

of this study are shown by circles in the same figure fitted

to a curve of the family. A good match is obtained for the

curve K = 0.5 and the value of A was found to be 3.4 w/moKo

4.1.2. Transient Shut-in

During early shut-in times, the fluid temperature

is a complex function of the formation thermal conductivi­

ties, the overall heat transfer coefficient, and the sur­

rounding formation temperatures, as shown in Figures 21 and

22 and as given by Equation (3.21). Results of the mathe­

matical analysis shown in Figures 21 and 22 indicate a

strong effect of variable thermal conductivity of the

formation on the fluid temperature profile. These figures

also show that the fluid temperature gradients inside the

wellbore change very rapidly, proportionly to the magnitude

of the formation thermal conductivities during the first

four hours of shut-in and they' slowly approach the geo­

thermal gradients with time after ten hours of shut-in.

From the fluid temperature measurements during early shut-in

it should be possible to find a relationship between the

fluid temperature and the thermal conductivity of the

formations. Unfortunately, there is no simple relationship

between those two parameters. However, the temperature

measurements at any depth give a temperature-time curve at

that depth which can be used to est~mate the thermal conduc-



tivity of the formation at that depth. During early shut-

in, the temperature distribution in the formation shown in

Figure 18 and the analysis in Section 3.2 indicate that

within the formation surrounding the wellbore,radial conduc-

tion is much more important than axial conduction. After

four hours of shut-in the effect of natural convection in

the wellbore is small and can be neglected in comparison to

radial.conduction (Figure 15). Under the above conditions,

the previous analysis can be modified to solve for the

thermal conductivity of the formations. After shut-in, the

heating induced by the fluid is stopped. If the well has

been injected into or produced from time zero to tl' the

fluid temperature after tl may be calculated by adding to

Equation (4.6) that for a negative source of strength q

starting at ti. If the shut-in time is small compared to

injection or production time, the result is:

(Pc)w(ln4T - y + ;AU )] + ~T . [ln4T2 - y + 1 -
pc \ w T 2
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(pc)w ( 2A) 1] 1 l
pc In4T2 - y + rwU

T
- 2 ~w + 0 (tz)~ ,

(4.11)

The temperature T of the fluid after shut-in can be written

(4.12)

/

or
lnT = In (q!A) + In F (K, n, 1"2) (4.13)
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(1
where 1'2=-:Z (t-tl) and K , n are defined as before.

r w
Similar to the previous method, values of F( K, n, t) are

evaluated for a specific value of n and plotted against ~

on log-log paper. To reduce the experimental results,

observed values of the fluid temperature are plotted against

time and slid across a family of theoretical curves, F (K,n

, t 2) versus T 2, keeping the axis parallel until a match

with the theoretical curve is achieved. The thermal conduc-

tivity and the thermal diffusivity can be calculated from

the shifts of the axes since they give In (q / ).) and In «1
2

trw> •

A plot of F (K , n , T2) against T2 for n = 1.35

and various values of K is shown in Figure 33. Numerical

data points from this study are shown fitted to the curves

for K = 1.0 and 1. 5. It may be seen that the curve for

)

which = 1.0 gives a slightly better fit, but the two

curves give the same value). = 3.5 w/moK. The result by

the previous method was 3.4w/moK.

In concept then, the thermal conductivity of the

formations surrounding the wellbore at any depth can be

estimated by shutting the well for a time sufficient to

allow equilibrium conditions to prevail, positioning

a temperature measuring device in the well at the desired

depth, establishing a constant rate of flow, and finally

plotting the subsequent heating or cooling versus time curve

to determine the conductivity.
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The above analysis is restricted to the condition that

the heating rate induced by the in-flow fluid during in­

jection and production can be considered constant and axial

heat conduction is negligible in comparison to radial

conduction in the formations.

4.2. Steady State Method

As the shut-in time increases, effects of the over-

all heat transfer coefficient and the surrounding forma­

tion temperatures on the fluid temperature behavior dimin­

ish. On the other hand, the percentage contribution of heat

initially liberated in the adjacent strata during injection

or production to the temperature disturbance at the observed

point will increase. Thus the form of cooling curve at any

depth will depend upon the thermal properties of all strata

in which the initially liberated heat contributes appreci­

ably to the temperature disturbance at that depth. For

large shut-in times the effec t of the terms aT!Ot and

ae/aT in Equations (3.25) and (3.5), of the order of (lit),

will diminish and the effect of natural convection inside

the wellbore is negligible. The factors which influence the

fluid temperature in the well are the heat transfer from the

fluid to the surrounding formation, Aw(aT/ar)=A<ae lor),

and the rate of heat conducted away from the wellbore

which are directly proportional to the formation thermal

conductivities. Even though during this period of shut-in

the main factors which control the fluid temperature be­

havior are the formation thermal conductivities, it is



)

very difficult to obtain a direct relationship between the

temperature and the formation thermal conductivities. This

is because the analytical solution for the heat flow equa­

tions in a variable thermal conductivity medium is diffi­

cult. However, as the fluid temperature approaches the

geothermal, its gradients are about the same as the geo­

thermal gradients, as shown in Figures 22 and 31. In this

study, after 72 hours of shut-in, the fluid temperature

gradients are within four percent of the geothermal grad­

ients. The magnitudes of the fluid temperature gradients

are controlled by the geothermal heat flux and the formation

thermal conductivities. If it is assumed that the heat flow

is constant along the length of the borehole, then any

changes in temperature gradient, even over small sec-

tions of the borehole, must be assumed to be due to changes

in thermal conductivity of the surrounding formations.

These temperature gradients are inversely proportional to

the change of the formation thermal conductivity with

depth. The temperature gradients are directly proportional

to the changes of thermal resistivity, reciprocal of thermal

conductivity, with depth.

Under thermal equilibrium conditions, and in the

absence of obvious disturbing influences from· heat sources

or sinks in the vicinity of the borehole, a log of tempera­

ture gradient versus depth is essentially the same as

a log of thermal resist~vity with depth. For the case of

short injection or production times, sufficiently accurate

109
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values of thermal conductivity can be obtained by using a

continuous temperature gradient log and calibrating the

complete log by meaurements of thermal conductivity at three

or four selected locations of high, low, and intermediate

temperature gradient log values. The conductivity measure-

ments can be carried out using standard divided bar tech-

niques on borehole cores (Somerton, [63]; Beck, [5]), on

recovered drilling chips (Sass, et a1., [58]) or by in-situ

techniques (Beck, etc a1.,[10]).

Figure 34 shows the comparison between estimated

thermal conductivities calculated from a temperature gra-

dient log and measured thermal conductivities. These

thermal conductivity values and the teoperature gradient

logs were taken from a water filled borehole on the campus

of ~he University of Western Ontario (Conway and Beck,[19])

The borehole is 592m deep, water filled, and cased to a

depth of 441m. Features of the borehole and the core

material were described by Beck and Judge [9]. Continuous

)

)

analog temperature logs were obtained from the borehole.

Analog temperature logs are rapidly and simply obtained

but lack precision and resolution due largely to neglect

of probe time constant. As the probe is lowered down

the borehole it is not in thermal equilibrium with its

surroundings; thus the measured borehole temperature pro-

file does not accurately represent the actual profile.

The application of suitable deconvolution and smoothing

operators to the temperature record output will produce an
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accurate borehole temperature profile. The application of

a simple derivative or gradient operator to this temperature

profile will produce a high-precision, high-resolution

temperature log. Details of the development and application

of suitable operators are presented by Conaway [18].

In applying the above method, first the temperature

gradient taken from the borehole on the campus of the

University of Western Ontario is plotted against the depth

of the borehole. Three values of measured thermal conduc-

tivity values of cores at intermediate, high, and low

temp.erature log values, reported by Beck, et al., [9], are

used to estimate the formation thermal conductivity for

every ten meters depth interval from the temperature grad-

ient log. By using the linear relationship Ai/Aj= (dT/dz)jl

(dT/dz)i and the' temperature gradient versus depth

plot, thermal conductivities of the formations along the

borehole are obtained from the ~hree known thermal conduc-

tivity values of the formation. The estimated thermal

conductivities were found to match very well the measured

thermal conductivities in the regions of high or low values

of the temperature log if the measured thermal conductivity

value was selected at a low or high temperature gradient log

value. However, in the regions in which temperature grad-

ient log values were in the intermediate range, the esti-

mated thermal conductivity values are higher than the

measured values. On the other hand, if a measured thermal

conductivity was selected in the intermed~ate temperature



gradient log value to calculate the estimated thermal

conductivities, the results are matched very well in the

regions which exhibit intermediate temperature gradient log

value but give relatively lower values for other regions. In

Figure 34, two measured thermal conductivity values are used

to calculate the estimated thermal conductivities from the

temperature gradient log, one for the intermediate temper-

ature log value regions and one for the high and low temper-

113

ature log value regions. Excellent agreement between

"

...
estimated thermal conductivities and measured thermal

conductivities is shown on Figure 34. The mean value using

the temperature log is about 2.51 w/moK compared to about

2.44 w/moK for experimental values.

Another set of data used for comparison is provided by

Amoco Production Company. This information is taken from a

well in Tulsa, Oklahoma. Data for the borehole and the

available core material includes temperature gradient logs,

lithology, electrical resistivity, and spontaneous poten-

tial logs. Temperature gradient is measured carefully,

recorded to a precision of O.OOloF. Thermal conductivi-

ties of the core are not available but are predicted from

)
the geophysical well log parameters available. The follow-

)

ing relations taken from Somerton, et. al., [62] and Anand

[2] are used for predicting thermal conductivities:
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"l [ ('1 /.33 \ )
0.48m

A = Ad 1.0 + 0.3 A
g

- 1.0 + 4.57 (10~ - ¢ Ag x

r· 3
Pb

! Pd

(4.13)

.~

and AS = Ad + (A - A ) Sl/3 (4.14)S =1 d ww w

where A = thermal conductivity,

P = density,

¢ = porosity in percent,

Sw = fractional brine saturation,

and subscripts d, 1, g stand for dry rock, saturating liquid

and gas respectively; m is the ceQentation factor.

Porosity and saturation are estimated from the resist-

.-'\

j ivity, spontaneous potential logs and information given in

the lithology logs. Details of procedure for estimating

these parameters are presented in Schlumberger Log Inter-

pretation Series (1972). In the regions where more than one

type of rock are present, a simple arithmetic average was

used to calculate the effective value of thermal conduc-

tivity,

n

Aeff = ~=l (¢iAi)

;

From Figure 35 it can be seen that agreement between

predicted and estimated values is not as good as in the
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previous comparison. The mean value using the temperature

gradient log appears to be lower than the one using well log

parameters, about 1.38 w/moK compared to 1.67 w/moK.

However, agreement between predicted and estimated trends is

quite good. The discrepancy is probably due to the inac­

curacy in the estimated thermal conductivity values because

of lack of information.

From the results of this study, in-situ val~es of

thermal ~onductivity and thermal diffusivity can be estimated

from temperature measurements in wells. Although laboratory

methods can measure thermal conductivities with accuracy as

high as one per cent for an individual specimen -it is

doubtful how far thi~ represents the conductivity of the

rock in-situ and it cannot take into account the effect of

veins or open joints in the rock which may well be important

in the calculation of heat flux. This suggests that a method

for measuring conductivities in-situ which is accurate to

within ~ to 10 percent would be more useful than the high

precision laboratory values. Values of in-situ thermal

conductivity can be us~ful for the' following purposes:

(1) Determining terrestrial heat flow in the eartb so

that the distribution and relationship of the heat flux to

surface and subsurface features can be obtained.

(2) Calculating heat lossses from ~ellbores in any

production or injection process in petroleum or geothermal

operations. The resultan~ heat losses between surface

and the injection or production interval could be very



)

important in the success or failure of these processes.

(3) Differentiating oil-bearing or gas-bearing

formations from water-bearing formations, since the rock's

effective thermal conductivity varies drastically depending

on whether the saturant fluid is water, oil or gas.

(4) From the correlations of thermal conductivity

with other geophysical well log parameters, in-situ thermal

conductivity values may also be useful in the estimation of

other physical properties such as type of formation, its

porosity,as well as it fluid content.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A mathematical model has been developed to study the

effect of variable thermal conductivity of the formations

and wellbore characteristics on the fluid temperature

behavior inside the wellbore during injection or production

and after shut-in.

During the injection or production period the well-

bore fluid temperature is controlled mainly by the flow

rate and heat lost to the formation. Variable thermal

conductivities of the formations have little effect on

the fluid temperature pr~file. However, the change with

time of fluid temperature in the wellbore is related to the

formation thermal conductivities via heat lost from the

fluid to the formation.

During early shut-in times, the wellbore fluid temper-

ature is a function of the rate of heat conduction and

convection in the fluid and the rate of heat lost which is a

complex function of the formation thermal conductivity.

There exist negative gradients in the wellbore fluid temper-

ature profile where the formation thermal conductivity

changes abruptly from a smaller value to a larger value. As

the shut-in time increases, the fluid temperature profile

inside the wellbore is strongly affected by differences in

formation thermal conductivities. This effect is very

apparent after four hours of shut-in. The rate of return of
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the fluid temperature to the geothermal is proportional to

the magnitude of the formation thermal conductivity. If the

)

well is shut-in for a long period of time, the fluid tempera-

ture gradients approach the geothermal gradients, and the

values of these temperture gradients are inversely proportion-

al to the values of formation thermal conductivities.

An estimation of the values of formation thermal conduc-

vity can be obtained by applying a modified heat source

concept to the fluid temperature record during the transient

period of injection or production and early shut-in times.

This involves plotting the fluid temperature versus time on

log~log paper and matching with the theoretical curves.

If a well is injected into or produced for a short

period of time and the shut-in time is long so that thermal

equilibrium conditions prevail, values of the formtion thermal

conductivities along a wellbore can be estimated by using a

continuous temperature gradient log and by measuring the

thermal conductivity of the formation at a few selected

wellbore locations. In applying this method, two values of

thermal conductivity of the formation corresponding to the

locations where the temperature gradient log exhibits high

and intermediate values,are measured by standard techniques,

laboratory or in-situ. This along with the temperature

;

gradient log may be used to estimate the thermal conductivity

of the formations along the wellbore by applying the relation-

ship Al = A2 (aT!aZ)2!(aT!az)1' These methods are operationally

simple since only a temperature measuring device must be

lowered down the borehole and only thermal conductivity of the
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formation at few selected locations must be known.

From the results of this study, in-situ values of

thermal conductivity can be estimated from temperature

measurements in wells. Although laboratory methods can

measure thermal conductivities with accuracy as high as one

per cent, it can only represent the value of an individual

specimen. A method for measuring conductivities in-situ

which is accurate to within 5 to 10 per cent would be more

useful than the high precision laboratory values for many

purposes. Values of in-situ thermal conductivity can be

useful for the determination of terrestrial heat flows

in the earth, heat losses from the wellbores in thermal

recovery processes, and in differentiating oil-bearing

or gas-bearing formations from water-bearing formations.

They may also be useful in the estimation of other physical

properties such as type of formation, its porosity, as well

as ~ts fluid content.
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APPENDIX A

FINITE DIFFERENCE REPRESENTATION OF THE GOVERNING

EQUATIONS AND ALTERNATING DIRECTION METHOD

In this appendix the development of the finite dif-

ference approximations to the governing equations and

the numerical scheme used to solve these equations will

be discussed.

Partial derivatives can be approximated by finite

differences in many ways. All such approximations in-

troduce errors, called truncatioi errors, whose presence

will be'signified by employing the asymptotic 0 notation.

Let the point Pi,j form a discrete approximation for

domain D wi th spacings 11 z and 11 r. A simple approxima­

tion for a T/azli, j will be developed, where the notation

Ti,j = T(il1z,j~) will be employed for the discrete

approximation.

Development of the Taylor series for T(z-l1z) about z

gives

aT 1 a2T [ 3
T (z - I1z) = T(z) - ai (l1z) + Ira;! - 0 (l1z)],

where all derivatives are evaluated at (z). Upon divi-

sion by 11 z one finds the relation

aT I =.L [T'1. - Ti _l ] + 0 [l1z]az i,j I1z

(A-l)

(A-2)
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which, upon suppression of the truncation error, yields

a backward difference approximation of first order in

truncation error.

As an alternative to the backward difference appro-

ximation, a forward difference is obtained in similar

fashion:

Divi sion by!::>. z resul t s in the rela t ion:

(A-3)

(A-4)

Approximation for the second derivatives are obtain-

able from the Taylor series of Equations (A-I) and (A-3).

Addition of Equations (A-I) and (A-3) results in

1 { } a2
T 2~!::>.z2) T(z + Liz) - 2T(z) + T(z - !::>.z) = az2 + 0 [(!::>.z) ] •

In index notation one would write

Equation (A-6) has a second order truncation error.

(A-5)

(A-6)

In a completely similar way,the corresponding first

order and second order partial derivatives in cylindrical

coordinates are obtained in the forms:



T(r+~r) - T(r-~r)

2~r
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(A-7)

T (r+~r) - 2T 6:) + T (r-~r) + 0 [(~r) 2]

(~r)2

(A-8)

Or

a~T = Ti '+1 - Ti '-I + 0 [1/, r )2]ar ,] ,] II-'
, ,j 2~r

(A-9)

a
2

TIarz i,j = (A-lO)

Having developed the basic finite difference approxi-

mation for the first and second order partial derivatives,

it remains to derive the finite difference representation

of the governing equations. The governing equation for
,

the transient, one dimensional heat convection in a verti-

cal cylinder with heat lost through the wall of the

cylinder by conduction has the form:

represents heat lost from theael'!he term 2:rrr A~
w or rw

fluid inside the cylinder to the

depth, and can be expressed as

( A-II)

surroundings, per unit

(A-12)
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Substitute (A-12) into Equation (A-II), and upon

2
division by PC"ITrw ,Equation (A-II) has the form:

aT + aT
u az at =

2 UT (81 r
w

- T)

pc rw (A-13)

In finite difference from, Equation (A~13) is written as:

U(Z)T(t + ~t,z) - T(t + ~t, z - ~z) + T(t + ~t, z) - ~(t, z)
~z ~t

=2UT[8(t,l,z) - T(t + ~t, z)J + O[~z] + 0 [~t] .
pc r

w

In index notation it becomes

Tn+l _ Tn =-U (~t)(Tn+l _ Tn+l )+ 2UT~t ~ n n+l)
1 i 1 ~z 1-1 1 81 1 - T1 'pcr ,. w

where superscript (n) represents the present time step

and (n+l) represents the next time step.

(A-14)

(A -15)

Equation (A-IS) is an approximation to the true par-

tial differential equation (A-13) with a truncation error

of the order (~z) and (lit). The solution of the algebraic

Equation (A-IS), with one unknown T~+l, is straight­

forward.



The governing equation for the transient, two dimen-

siona1 heat conduction bounded internally by a circular

cylinder and for the case where thermal conductivity varies

with the z coordinate, has the form:

131

ae 1a f. ae) .p ( ae)
Peat -A (z)ra-r \r3r - az A(Z) az = 0

Upon division by Pc, Equation (A-16) can be cast in

the form:

"vate - a(z) !.!.. (r ae)_ -?- ~(z) ae] = 0
r ar dr Qzt az '

(A-I6)

(A-I7)

where ex(z) = A(Z) / pc.

Applying the finite difference approximation, im-

p1icit method, for the first order derivative in t and

second order derivatives in rand z to Equation (A-17)

yields:

e(t + ~t,r,z) - e(t,r,z) ( ) e(t + ~t, r + ~i,z) - e(t + ~t, r- ~r,~)
~t = ex z 2r(~r)

+ ex(z) e(t + ~t, r + ~r.z) - 2e(t + ~t,r.z)+ e(t + ~t. r - ~r,z)

(~r2)

+ ex(z + ~z) e(t + ~t,r,z + ~z) - 2ex(z) e(t + ~t,r.z)

(~z)2

+ 2ex(z - ~z) e(t + ~t.r,z - ~z)

(~z)2

(A-18)
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In index form, Equation (A-18) can be simplified as:

(A-19)

This scheme is second order accurate in both time and

space. In case of non-unifor~ grid variation in the

radial direction the second and third terms in Equation

(A-19), after a few algebraic manipulations, can be com-

bined and expressed as follows:

(A-20)

a,e are constants,

and

r j +1 + r j
r j +1/ 2 " - 2 - ,

By substituting (A-20) into Equation (A-19), the

resulting equation has the form:

en+1 n 2ai {rj +1/2

n+1 8n+1 en+1 _ en+1

}i. j - e. j 81 ,j+1 - 1.j i, j i,j-1J..
- r j _1/ 2l1t r j +1 - r

j
_1 r j +1 - r

j
r. - r

j
_

1J



n+l
- 2ai ei ,j

(llz)2

+ en+l
a i - l i-l,j = 0
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(A-21)

This leads to a matrix problem of the type

-+ -+

.M· d

A is a pentadiagona1 matrix and will be of order NzM r

(A-22)

which is very difficult to handle and time consuming. An

alternative approach is the fractional step method of

Peaceman and Rachford (1955) known as the Alternating

Direction Implicit (ADI) method. The main idea is to

consider a multi-dimensional problem as a collection of

one-dimensional problems, each of which is solved over a

fraction of a time step. The associated matrix problems are

/

always tridiagonal, which are much easier to solve.

In this method, instead of using Equation (A-21), one of

the coordinate direction is expressed implicitly leaving the

other explicit and considering that time is advanced over half

a time step. Then the roles of the implicit and explicit

parts are interchanged to complete the time step. Thus, if

the spatial derivative with respect to ris evaluated

implicitly the resultant equation becomes:
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en+!-1 _en+!-1
i.j+1 i.j

rj+l-rj
- r

j-~

n n n
~'+le'+l . - 2~.e ..~. Ie. 1 .
~ ~.J ~ ~.J ~- ~- .J

~Z)2

and

n+l
~i+1ei+1.j

= 0
(A-2 3)

(A-24)

where th~ spatial derivative with respect to z is evaluated

implicitly. Equations (A-23) and (A-24) lead to matrix

problems of the form

(A-25)

and
-+

= dr (A-26)

.
Each step is of first order accuracy and not unconditionally

stable. However p the combined scheme is of second order ac-

curacy and unconditionally stable.
-+
d contains all terms

z
-+

in (A-23) evaluated at time level n, while dr contains

those in (A-24) at time level n+l/2. Eq ua ti ons (A-25)

j

and (A-26) are readily solved by the Gaussian elimination



technique known as the Thomas algorithm. Solution of (A-25)

....n +!.: ....
for e 2 is used to evaluate d in Equation (A-26).

r

Consequently, alternately solving (A-25) and (A-26)

repeatedly enables one to advance the solution in time.
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APPENDIX B

DETERMINA]ION OF THE WELLBORE FLUID TEMPERATURE DURING

INJECTION OR PRODUCTION USING HEAT SOURCE CONCEPT

The governing equations for the system of wellbore

fluid and formation, at any depth during injection or

production, can be cast in the form

, MaTD aaD,
q +"2 ae- = A ar r

w
2a aD 1 ae 1 aaD

ar2 + rar= - a(z) at

(B-1)

(B-2 )

These equations are subject to the initial and boundary

conditions.:

T = a = 0
D D

, t = 0

, r = r
w

(B-3)

(B-4)

/

aD is bounded as r + ~

The following La Place transforms are introduced:

(B-S)

(B-6)



137

00

L (en)= e =1
0

e-pten (r, t) dt=6 (P, r)
("B-7 )

..
;

where p is the transform variable •

La Place transformation of the differential equations

and boundary conditions with respect to time results in

the subsidiary equations and boundary conditions:

1=- e
2

q (B-8)

,de = L_ ~-T
-I\cir P 2 (B-9)

=u (8-T) r=r
T 'w

(B-10)

e is bounded as r ---.. 00 (B-ll)

where q 2 = pIa..

Solutions of Equations (B-8) and (B-9) subjected to

(B-13)

(B-12 )T = p [rwp~ + 2AK
l

(qr
w

)]

2r q K (qr)e - w 0
- PfwPLS + zXk l (qrwJ].

Equations (B-10) and (B-ll) give

2r q t:.
w

1 A
where, t:. =-K (qr) + (-U-)Kl(qr).

qrw 0 w rw T w
(B-14)

)



138

Ko (z), K1 (z) are modified Bessel functions of the second

kind and zero and first order, respectively.

From the Inversion Theorem of the La Place transfor-

) mation TD(t) and 6
D
(t,r) can be obtained by:

)

6
D

(t, r) = J:..~ r+ioo e (p,r ~pt dp .

27[J y-ioo

Exact evaluation of integrals in Equations (B-15)

(B-l5)

(B-16)

)

and (B-16) as real infinite integrals is straightforward.

These solutions are quite complicated and unsuitable, how-

ever, for the present purpose, i.e., deduction of thermal

conductivity and thermal diffusivity from a temperature

time record, and an approximate solution for T is deve1op-

ed below.

If the time considered is large enough, as will be

discussed later,the following method introduced by Cars1aw

and Jaeger [16] can be employed. The transform T is ex-

panded formally in ascending powers of p and Equation

(B-13) is evaluated term by term. Inserting the ascending

series expansions for the modified Bessel functions in

Equation (B-12) and simplifying, one obtains

)

)

2
T ~ -rwq' C1. In (k) + r w

2A [p w 4a

+ r~: l~ (~) + 0 ~1

{ 21n<Sp) - 1n
2

43p) - 2 }

(B-17)
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y = is Euler's constant = 0.5722.

By integrating term by term on the Bromwich contour B
2

(Figure 36) using the following results,(Cars1aw and

Jaeger,[16]),

)

(B-18)

(B-19)

(B-20)

2;1 r In ~p)ePtdp = -lit

JBr2

21 . r la (Cp)eptdp = ~ln r~ + y], (B-21)
7T~ JBr2 t . ~

(where C is a real positive constant) one obtains

.
D

T (t) l::! r w
q

' [ (ext ~ 2>'zx- In4 ~. - y+ UTr +
w w

1 1 (ext) ~c)w [ (ext ~ 2>' J)J(-;"..:-=~;....)- ln4 r
w

2 - y+ 1. 0 - 2 (pc) 1n4 r
w

2) - U
T

rwJ

(B-22)

-1
+ 0 ~ •

)

Rigorous mathematical justification of the formal

process described above has not yet been made. However,

for typical rock, with a wel1bore of suitable size, a

few hours must elapse before the term of 0(1./ext/rw2 )

can be neglected without introducing appreciable error;
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on the other hand, if the term of 0(1./at/rw2 ) is included,

a relatively small minimum (at/rw2 ) can be tolerated

(Blackwell, [11]; Murphy, et. a1., [50]).

B'.-_.......B

----.---A
A'

XBL 819-7425

FIG.36 BROMWICH CONTOUR (Br2)
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APPENDIX C

LISTING OF COMPUTER PROGRAMS

C•••••~ R 0 G R A ~ T E M Pl •••••
PROGRAM TEMPICFIUhINPUT.OUTPUT.TAPU.OUTPUT.TAPn-INPUT.TAPE7.

IPUNCH)
C····················································· .C t N J E C T 1 0 NIP ROD U C T ION WELL PRO B L E M
C PROGRAM USED FOR CALCULATING TEMPERATURES OF THE FLUIO AND THE
C SURROUNDING FORMATION DURING INJECTION/PRODUCTION,
C·····················································............•....DIMENSION TC200,.TZCZOO,.TRESC200.200).ALAMDACZOO,.ALPHAr200,

DIMENSION HCOEFC200,.RTC2001.TEMPrzoo,
DIMENSION AC200,.8C2001.CC200,.DC200,. IETAr2001
DIMENSIO~ TMECtOOO,.TE~rtOOO'.yyC~OO'

DIMENSION RHor~00).UC2001

DIMENSION TINT(200)
DI~F.NSION TINtC,O.~OO,

PI-1,141159
INDEXeO
JDElIt-O
MU-lO
MAlItRel0
...I(RIlI....I(D·l
MU~-IlIU-t

A(-l.,
DNO-.25
DN-O.l
TI'4E·0.0
DT-,O.

C S~ECI t CHARACTERISTICS
r.••••••••••••••••••••••••••••••••••
CCCCC THE VARIABLES ARE DEFINED,RW IS THE RADIUS OF THE WELL,ALENGH IS
C THE LENGTH OF THE WELL,CP IS THE HEAT CA~ACtTY OF THE FLUID IN THE
( WELL.ALPHA IS THE DIFFUSIVITY OF THE FORMATION
C HCOEF IS THE HEAT TRANSFER COEFFICIENT FROM THE FLUID IN THE WELL
C TO THE RESERVOIR
(CCCC ROCP IS THE DENSITY TIMES THE MEAT CA~ACITY OF TME FLUID

RW-,08
ALENGH-l000.
DX-ALENGH/MAX
DXSO-DX·DX
DELT-••O
CV-4UO.
1t0CPRE·Z.15E,
fINJEC-nO.O
UR·2·~
FlOW-695./60.
CONST_FLOW/CPI.RW.RW)
Al··.4116616E-'
11-.114Z1103
(1--Z.996214
DI-21.,958
DO 1 I-I,.

1 AlA~DAC 11-1.2
AlA~DAC')-2.0

DO Z 1-6.9
, Al A-'D. r I '-Z."
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At AMD' no, -2.'
DO ! l-lltl4

1 AtAMDAllt-l.e
AtA'4DAln'-2.1
DO 4 1-16.20

4 AtA"'DAClt-S.6
CCCCC INITIALILIZE TEMPERATURE
C T211tlS THE NEW TEMPERATURE IN THE WELL.TINT IS THE INITIAL
C TEMPERATURE.TRE5IJ.lt IS THE TEMPERATURE OF THE ROCK SURROUNDING
C THE WELL.TINJEC IS THE INJECTION TEMPERATURE.II-I IS AT THE TOP.
ececc AND I-MAX IS AT THE BOTTOM OF THE WELL'

TlNTllt-20.
DO 6 1-2.MAX

6 TINTII,-TINTII-lt+DELT/ALAMDAII'
on 10 1-!tIollU
un JeTt~TI"
DO 20 J-hlolllXR

20 TREseJ.I,-TINTII'
10 CONTINUE

12 C1 JeT! tUEe
cceec RADIAL GRID IN RESERVOIR
C ••••••••••••••••••••••••••
e THE VARIABLES AK.DN.DNO ARE CONSTANTS WHICH CAN BE VARtED TO
CCCCC GIVE THE DESIRED SPACINGIDN-I./THE TOTAL NUMBER OF GRID POINTS'

DO '0 I-leMUR
SO RTI It-h.UK•• I (1-1I.DN/DNO'-I. t/UK••n./DNO'-l. '+Rw

PRINT !1
11 FORfoo1ATI/'.10X ••DIMENSION OF RADIAL GRIDS•• llt

PRINT ,~.IRTCJ,.J-I.MAXRI

'2 FO... ,TI4X.l0EI0."
PRINT 4"

4" F~MATIII.4~X•• INITIAL TEMPERATURE DIST~IBUTI~ •• llt
DO 19 l-ltMAX
PRINT 500.(T21It.ITRESIJ.II.J-1.MAXRtt

19 ·CONTINUE
500 FDR'4ATI4X.l1EI0."

DO 49 l-ltMAX
AtPHAII'-15.0E-T'.ALAMDAII,
HeoEFII'-UR

4. C~TINUE

TP_(T2ell+l1'."l.E4
YF-Al+Bl·TP+Cl·TP.TP+Dl·TP••,.
_HOI 1'-te/VF
Ull'--CONST/RHOll,

CCCCC ~E'NITIALIZE TEMPERATURE.I.E. TIl' IS .THE OLD TEMPERATURE WHICH
CCCCC IS SET EQUAL TO THE NEW TEMPERATURE
C ••••••••••••••••••••~•••••••••••••••••••••
C NEW TEMPF.RATUR~ OF THE FLUID IN THE WELL
C ••••••••••••••••••••••••••••••••••••••••••

'5 DO 40 l-l.MAX
TC It-TlI It

40 CONTINUE
INDEX-INDEX+l
TIME -UME+DT

C CC CALCULATE THE NEw TEMPERATURE IN THE WELL
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DO "0 "~.MAX

TP.fTfl'·',3"/l.E4
YF·Al+Bl·TP+Cl·TP·TP+Dl·TP··S.
RHOf I' .1e/VF
Ufl ••RHOCI-l'·UCI-l./RHOCI.
T2CI ••Tfl.+DT.C-UCII·CTCI-1.-Tfl"/DX.+fHCOEFCII.DT.CTRESCl_II-TCI
1,,·~./RW"CRHOCI'.CV)

50 CONTINUE
r ••••••••••••••••••••••••••••••••••••••••••
C TEMPERATURE OF THE SURROUNDING FORMATION
C ••••••••••••••••••••••••••••••••••••••••••
C AT TIME LEVEL N+1/2
C ••••••••••••••••••••

DD 60 l-hIlllAXM
IP.I+1
IM.I-l
DO '0 "'2.MAX~M
JP·J+l
JM·J-l
CCJ'.-ALPHACI'.CDT/2.'.fRTCJP.+RTCJ,,/CRTCJ'.CRTCJPI-RTCJM)).CRTC

tJPI-RTCJ)) I
ACJ'.-ALPHACI'.CDT/2.'.CRTCJ.+RTCJM),/CRTCJ).fRTCJP,-RTCJM,'.CRTC

tJ '-ItTC.P4)) I
IfJI·I.-CfJ'-ACJ'

'0 CO,nINUE
!TA.ALPHACII·CDT/2.I·CRTCl,+RTC2"/CRTCl)·CRTCl)-RTC2)1••21
BC1.·l.+DT.HCOEFCII/CCRTC21-RTC111·ROCPRE)+ETA
Cft '·-ETA
CALL AMATRXCA.B.C.BETA.MAXRM.l'
DO .0 J.ItMAXRM
IFfl.NE.IIGO TO •
DCJ,.TRESfJ.l'.Cl.-ALPHACl'.DT/DXSQ,+CTRESCJ.2,+TINTfl".CALPHA(1)

l.fDT12.' /DXSQ'
GO TO '0

I DCJ ••TRESCJ.I'.Cl.-ALPHAfl •• DT IDXSQ.+fTRESCJ.IP.+TRESCJ.IM".
IfALPHACI'.fDT/2.·/DXSQ.

10 CONTINUE
DC1.·DCl ••DT.HCOEFfl,·T2fl,/fROCPRE·fRTf2t-RTC11 ••
DfMAXRM ••DfMAXRM,+fDT/2.I.ALPHAfl,.TRESCMAXR.I,.fRTfMAXR,+RTCMAXRM

Itl/CRTCMAXRM).fRTCMAXR,-RTCMAXR-2,t.fRTfMAXR,-RTfMAXRMI"
CALL TRIDtfD.TEMP.A.C.BETA.MAXRM.l)
DO " J.hMAXRM

'5 TRESfJ.I •• TEMPCJ'
60 CONTINUE

AT TIME LEVEL "+1
••••••••••••••••••••
DO '0 J.hMAXRIo1
JP·J+l....·.,..1 .
DO 100 1-2.MAXM
IP-I+l .
IM-I-l
Cfl.--ALPHAfl,.CDT/2•• /DXSQ
Aft hCft.
1ft '-h-2••CC It
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100 CONTINUE
Cfll--ALPHAI11.CDT/2.I/DXSQ
8'11-J.-~.·CI]I

CALL A~AT_XCA.!.C.BETA.MAX~.J)

on ,O~ h1 ."AX~

IF'J.~r.l1~0 TO 11
E I-ALPHA 11,· fDT 12. I.' RTl2) +RT f1) ) If RTf 1,.,RTel I-RT( 2I ' •• 21
DCII-TRES'1.11·Cl.-EI-DT·HCOEF'II/JCRT'ZI-RTCll,·ROCPREII+DT.HCOEF

lfll·T211I/ffRTI21-RTflI1·ROCPREJ+TRESI2.1)·EI
GO TO 105

11 EI-ALPHAIII·fDT/2.1.CRTCJP)+RTIJJI/CRTfJ).IRTIJPJ-RTIJM11*CRTCJPI­
tRTCJJ11
'I-ALPHACII.fDT/2.1*fRTfJI+RTfJMI1/CRTCJI.IRTIJP)-RTfJMII.IRTIJI­
lRTf~)J1

Dfll-TRESfJ.II.Cl.-EI-FIJ+TRESfJP.JI·EI+TRESCJM.II·FI
105 COP<lTINUE

DIII-DI11+CDT/Z.I.ALPHAI11·TINTCI1/DXSQ
DIMAXMI-DIMAXMJ+CDT/2.J·ALPHAIMAXMI*TRESIJ.MAXJ/DXSQ
CALL TRIDIID.TEMP.A.C.BETA.MAXM.IJ
DO 110 1-1tMlXM

110 TRESIJ.IJ-TEMPII,
9t) ('n-'TI"u~

C···················C RESULTS PRINT OUT

C···················IFCfTIM£/60.I.G£.14.0.J GO TO 101
IFIINDEx.LT.101 GO TO 101
IFfINDEX.GT.I000J GO TO 97
IFCINDEx.~Q.IINDEX/601.6~1 GO TO 101

97 IFfINDEx.rQ.CINDEX/'O~I.90~IGO TO 101
GO TO 35

101 COtotTl,.u£
TIM£3-TlMEI60.
PRINT 102.TIME3

to! 'ORMATfll.4X••FOR TIME OF••FJO.3.4X.*MINUTES.,,)
PRINT 103

103 FORMATCII.1X.*WELLBORE TEMPERATURE••30X••RESERvOIR TEMPERATURE•• I

'"on no hl.MAX
PRINT 1000.CT2CII.CTRESfJ.II.J-1.MAXR,)
JDEX-JDEx+1
TMEC JDEl '-TlME3
TEMfJOEx'_T2fMAX'

120 CONTINUE
1000 FORMATC11FIO.31

I'CfTIME/60.,.GE.14.0., GO TO ~OO

GO TO 35
200 CONTINUE

WRITE17.1001ICCTRESfl.JI.I-1.MAXRI.J-1.MAX,.fT2CI'.1-1.MAXI
1001 'DRYlTf11F10."

00 600 l-l.MAX
TINTClI-TZfl)
00 ~OO J-t ...AU

~OO TINlfJ.II-TRESfJ.11
600 CONTINUE



PRINT 6S0.CTtNTlt,.I-l.MAX,
PUNCH 6S0.CTINTCI,.1-1.MAX'

6~O 'O~~ATC10~e."
PRtNT 1S0.CCTtNIIJ.I'.J-1.MAXRt.I-1.MAXt
PU"CH ~~O.CCTI"tCJ.I'.J.l.~AXRt.l-t.~AX'

1S0 'OR~ATC10Fe."
STOP
E"D
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C ••S U I R 0 UTI N E A ~ A T R X ••
C SUBROUTINE USED FOR SETTING UP TRIDIAGONAL ~ATRIX.

C····················································· .
SUBROUTI~E A~ATRXCA.B.C.BETA.MAX.ISTARTI

DIMENSiON ACMAXI.BC~AXJ.CC~AX).BETAC~AXI

J·ISTART
BETACJt·BCISTART)
J·J+l
DO 1 I.J.~AX

1 BETAtlt.BCIJ-ClCIJ.CCI-l)t/BETACI-l)
BETACMAXJ.BC~AXt-ACMAX).CC~AX-l)/BETAC~AX-lJ

RETURN
END

C ••S U B R 0 URI NET RIO I••
e SUBROUTINE USED FOR SOLVING TRIDIAGONAL ~ATRIX.

C····················································· .SUBROUTINE TRIDIID.PT.A.C.BETA.~AX.ISTARTI

DI~ENSION DfMAXJ.PTf~AX).ACMAX).Cf~AXJ.BETAC~AXJ.GA~MAC200J

J·ISTART
GAMuACJI.DfJI/BETACJJ
J.J+]
DO 1 I.J.IiIlAX
GAMMAIII.IDIII-ACI)·GA~MAII-IJ)/BETAIII

1 CONTINUE
I.~AX ..
~TCII.GAIA1Altl

, hl-,
PTCII·GAMMAltJ-CCt)·PTf'+lJ/~~T.lt)

IFlt.GT.ISTARTI GO TO 2
lItETURN
£~D
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C•••••P R 0 G RAM T E M P 2 •••••
PROGRAM TEMP2CINPUT.OUTPUTt

C····················································· .C SHU T - I N WELL PRO 8 L E M
C PROGRA~ USED FOR CALCULATI~G TE~PERATURES OF THE FLUID AND THE
C FOR~ATION DURING SHUT-IN.
C····················································· .

DI~ENSION TWC30.200t.TRESCSO.200t,TINIC30,200I,TINT(200)
DIMENSION ALAMDA(200).ALPHAC200t,TEMPC200)
DIMENSION AC200t,8C2001.C(200).DC200t.8ETAC200)
DI~ENSION RC200t,RTC200t
I ..D!X-O ..
.-AlC-20
tlIAlCR-I0
MlC-20.-.-6
MAXII1I-~AX-1

MAlCRM-MAlCR-l
IIllCM-MlC-l
"."'-111I.-1
A'C-'.1
DN,,-0.25
ON-O.l
TO-20.
TIME-O.
OT-,,.n.

C SPECIFY CHARACTERISTICS

C···································CCCCC RW IS THE RADIUS OF THE WELL, ALENGH IS THF LENGTH OF THE WEL~

C ROCP IS THE DE~SITY TIMES THE HEAT CAPACITY OF THE FLUID.lAPA IS
C THE FLUID DIFFUSIVITY, H IS THE HEAT TRANSFER COEFFICIENT FROM
C THE FLUID TO AMBIENT.
C AtPHAClt IS THE FORMATION DIFFUSIVITY. HCOEF IS THE HEAT TRANSFER
ecccc COEFFICIENT FROM THE FLUID TO THE FORMATION.

Rw-O.de
At EfIIGH-I000.
OlC-'L~~c.;H/II1IAX

DlCSO-DlC.DX
ROCP-Z.S5E6
H-S.O
HCOEF-25.
ACCAPA-,.OF-e
'>0 1 l-t.4

1 AtAMDACU-l.2
At."'OU5t-,."
DO 2 1-6,9

! AtAMDAC IIrl2.11
At AMOAClOI -2.1
DO , 1-11.14

, 'tA~DArJl-h"
At A'tDA en1-2. 'T
DO 4 1-16.20

• 'l'''DAC' '_'.6
no tt '-ltM"U ALPHACI .-n.OE-'TI.ALAMDlft 1
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RADIAL GRID SYSTEMS
•••••••••••••••••••••
frOt:t~ATIO ..
DO 20 J-hMAXR

20 RTCJt-'.·CAK.·CCJ-l'.DN/~NO'-1.,/CAK··11./nNOt-l.'+RW.1.7

PRINT 21
21 frORMATCII.15X ••DIMENSION OF THE RADIAL GRIDS IN THE FORMATION.,,,"ItPRINT 22,CRTCJt.J-1.MAXR,
22 frORMATC4X,10F12.5,

eccec VELLBORE
Ret t-.~.qW
.f't_.~II.qW.C ,,-.1,.RW
RC.'-.811·RW
'U~'-."·RWR(6J-.".RW
ItRI ..T 24

2. frOt:tMATfll.'~X••DI~ENSI~.. OF THE RADIAL GRIDS IN THE WELL80RE."",
11
ItRINT 2~,fR(J',J.l,~R,

25 'ORMATf4X,6F12.5t
C INITIALIZE TEMPERATURES

C·························ecce. TWfJ,I' IS THE NEW TEMPERATURE IN THE WELL,TINTII, tS THE FLUID
e TEMPERATURE AT THE END OF THE INJECTION PERIODII-1 IS AT THE TOP
C ,AND I-MAX AT THE BOTTOM OF THE WELLt
e TRESIJ,I, IS THE TEMPERATURE OF THE SURROUNDING FORMATION,
ecccc TINlfJ.I, IS THE FORMATIO~ TEMPERATURE JUST AFTER SHUT-IN.

READ 45,fTINTfl,,1-1.MX,
45 'OR~ATC10F8.'t

READ 4,.(CTINICJ.II,J-I.MAXR,.I-I.MAX,
4' FORMATC10FS.3'

00 41 leltMX
DO 48 J-1, ..R

48 TWfJ,t,-TINTClt
4'7 CONTINUE

. 00 49 l-hMAX
DO 4. J-hMAXR

4. TRESfJ,lt- TINICJ.I'
4' CONTINUE

PRINT 410
410 FORMATCII,20X ••INITIAL FLUID TEMPERATURE DISTRIBUTION•• II"t

PRINT 415.CCTWIJ.lt.J-l.MRt.l-l.MXt
415 FORMATC4•• ,FIZ.,t

PRINT 420
420 FORMATCII,40X,.INITIAL 'ORMATION TEMPERATURE DISTRIBUTION••""t

PRINT 425.CCTRESCJ~I ••J-1,MAXRt,I-1.MAXt
425 FORMATC.X.I0FI2.5.5' INDEX-INDEX+l

TIME-TlME+DT
••••••••••••••••••••••••••••••••••••••

TEMPERATUR! OF THE FLUID IN THF WELL
••••••••••••••••••••••••••••••••••••••

AT TIME LEVEL "+I/Z

I'
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C ••••••••••••••••••••
DO 50 1.1tMXM
IP·I+l
1M. 1-1
DO 51 J.Z,MRM
JP·J+l
JM-J-l
IFCJ.GT.4' GO TO 510
CCJ'.-' ••AKAP~.CDT/2.'.CRCJP'+RCJ"/CRIJ'.CRCJP'-RCJM".CRCJP,-RIJ

IU'
ACJ,--,••UAPA.CDT/2.'.CRCJ'+RCJM"/CRCJ'.CRCJP'-RCJM".CRCJ,-RIJM

III'
GO TO 511

510 CCJt--AKAPA.CDT/,.'.CRIJPt+RCJt"CRCJ'.CRCJPt~RCJM't.1RCJP,-RfJt')
AIJt.-AKAPA.cDT/6.t.CRIJt+RI~)t/IRIJt.CRIJP'-RIJMt,.CRCJ)-RlJ~lt)

~11 ~IJt.,.-AlJ'-CIJ)

51 CONTINUE
All t·O.
CClt·-,.·AKAPA·CDT/4.,·CRllt+RIZlt/CRll1·CRClt-RlZtt.·2)
ell'·I.-CClt '
ETA-AKAPA·CDT/6.,·CRfMRI+RCMRMI"IRCMRI·CRIMRt-RCMRM,t.*21
ICMR)-1.+CDT/Z.t*HCOEF·2./CCRCMRI-RCMRMI'·ROCP)+ETA
ACMR)·-ETA
CALL AMATRXu,e,c.eETA,MR.1'
DO 52 J.1tMR
IFCJ.GT.Z) GO TO 5'3
IFCI.NE.,) GO TO ~,

DCJt.fl.-AKAPA.1DT/2"/DXSQ-C~T/Z.I.H/CDX.ROCP't*TWCJ,It+CAKAD,*C

IDT/2.,/DXSQt.TWCJ.Z)+CCDT/Z.t*H/CDX.ROCPt,*TO
GO TO 52

53 DCJt-C1.-2.*CDT/Z.t*AKAPA/DXSQt.TWCJ.lt+ CAKAP.*CDT/Z."DXSQt*
lCTWCJ.IP'+TWCJ.IM"

Gn TO 52
5'3 IFCI.NE.lt GO TO 5'.

DCJ'-Cl.-, ••AKAPA.CDT/4.t/DXSQ-CDT/Z.t.H/IDX.ROCPt,.TWCJ.lt+fS.*
IAKAPA.CDT/4.t/DXSQt·TWCJ.Z,+ICDT/Z.t·H/CDX·ROCP".TO

GO TO 5Z
534 DIJt.Cl.-2•• CDT/4.t.,••AKAPA/DXSQt.TWCJ,lt+CS••AKAPA.CDT/4.J/DXSQ)

I.CTW CJ,IPt+TWCJ.IM)t
U CONTINUE

DCMRt.DCMRt+DT.HCOEF·TR!SCI.tt/CCRCMRt-RCMR~'t·ROCPt

CALL TRJDICD.TEMP,A.c.eETA.MR.lt
DO 54 J.1tMR

54 TWCJ.tt.TEMPCJt
50 CONTINUE

C AT TIME LEVEL N+I
C ••••••••••••••••••••

DO 60 J-hMR
JP·J+l
JM·.l-1
DO 61 1-1tMXM
1"·1+1
IM·I-l
IFCJ.GT.Z, GO TO 600
CCtt·-AKAPA·CDT/Z."DXSQ
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GO TO 601
600 CCII.-AKAPA.S•• CDT/•• I/oXSQ
60t AIII.elll

"CII·l.-~.·CCII
6t CONTINUE

BC1I·Bllt.CDT/~.I·H/CoX.ROCP'

CALL A~ATRXIA.B.C.BETA.~XM.l'

00 62 l.lt~X~

IFCJ.EQ.l' GO TO 6'
IFCJ.EQ.~R' GO TO 64
lFCJ.LT.5' GO TO 60~

~1.AKAPA·CDT/3.I·CRCJPt.RCJII/CRCJI.CRCJPI-RCJMtl.CRCJPI-RIJ",

'I·AKAPA.CDT/3.t·CRCJ,.RCJM"/CRCJ'.CRCJPt-RCJMtt.CRCJt-RCJ"'lt
GO TO 60S

60~ ~I., ••AKAPA. CoT/•• I.CR CJP '.R CJ, "Clt( J'.CRC JP '-RC JM' I. CR CJD t -R IJ' , ,
FI.s....ap'.CnT14.'. CR IJ,.R IJM" ICR IJ'.CR CJP ,-IH J"',. IR IJ,-RC JM I' ,

603 DCI,.ll.-EI-Flt.TWCJ.II.TWCJP,I'.EI.TWCJM,I'.Fl
Gn TO 62

63 EI.3••AKAPA.COT/4.I.CRC21.Rllt"CRC1,.CRC2,-RCt" ••2t
DII'·CI.-EI'·TWC1,II.TWC2.I'·EI
GO TO 62

64 EI·AKAPA·CDT/3.t·CRCMR,.RIMRMtt/CRCMRMI.CRCMR,-RCMRM'1••2'
'I.CDT/2.'·HCOEF/CCRC"RI-~I"RM".ROCP'
DClt·Cl.-EI-FI,·TWC"R,II.TWCMRM,II·EI.TRESC1.1,·FI

U COt./TlNUE
DCt'·Dlll.CoT/~.'.H.TO/CDX.RoePt

DCMXM,.o(~XM'.AKAPA·(DT/2.'·TW(J,MX"oXSQ

CALL TRIDIID.TEMP,A.C.BETA,"XM,tt
DO 65 l·l.MlCM

65 TWCJ,II.TEMPII'
TWCJ.MXI·t.,~.·CTW(J.MX'.TRES(l.MAX'1

60 CONTINUE .

c··········································C T~MPERAT~E OF THE SURROUNDING FOR~ATION
C ••••••••••••••••••••••••••••••••••••••••••
C AT TIME LEVEL ".1/2
C ••••••••••••••••••••

DO 10 l.ltMAXM
IP.I·1
lM.I-l
DO ~1 J.~,"AXRM

,JP·J·l
....·J-l
CCJI.-ALPHACII.CDT/~.I.CRTCJPI.Rt(JII/CRTCJ•• (RTCJPI-RT(~,'.CRTC

IJPt-RTIJII ,
ACJI.-ALPHACII.CDT/2".IRTIJI+RTIJMII'IRTCJI.IRTI:'Pt-RTIJM,I.CRT(

UI-RY C...... II I
BCJI·t.-CIJI-AIJI

T1 CONTINUE
~TA.ALPHA(II.IDT/2.t·IRTlll+RT(211/IRT(tl.CRT(tl-RT(21' •• 21
Blll·1.+DT.HCOEF /CCRTIZI-RTIlll.ROCP I+ETA
en I.·ETA ,
CALL AMATRXIA.B.C.IETA.MAXRM.l1
DO 12 J.hMAXRM
l'II.HE.ll GO TO 11

("



DCJ'.TRESCJ.l'.Cl.-ALPHACl'.DT/DXSQ'.CTRESCJ.2'.TINICJ.1".CALPHA
111'·CDT/2."DXSQ'

GO TO "2
." DCJ'.TRESIJ.I'.C1.-ALPHACI'. DT IDXSQ'.CTRESCJ.IP,.TRESCJ.IM',*

lCALPHACI'·CDT/2."DXSQ,
T2 CONTINUE

DC1'.DCl'.DT.H~OEF.Twc~~.I"IRO~P .C~TC2'-RTCl'"
DIMlXRM'-~CMAXRM'+CDT/1.'.ALPHlCI'.TRESCMAXR.I'.CRTCMAXR,+RTCMlXRM

l"/CRTCMAXRM'·CRTCMlXR,-RTCMlXR-Z".CRTCMAXR,-RTIMlXRMIl'
CALL TRIDICD.TEMP.A.C.BETA.MAXRM.11
DO "5 J.ItMAX RM

"5 TRESIJ.I'.TEMPIJI
.,0 CON TI NUE

C AT TIME LEvEL N+l
C ••••••••••••••••••••

DO 90 J-l.MAXRM
JIt-J+l
JM-J-l
DO "100 I.Z ....U ...
IP-I+l
IM-I-l
CII'·-ALPHACI'.CDT/2."DXSQ
AlII-CIII
lU I ,.1.-2••CI I'

100 CO,.TINUE
CCl'·-ALPHACl'.IDT/Z."DXSQ
eCll·h-Z.·CCl'
CALL AMlTRXIA.B.C.BETA.MAXM.l'
DO IDS l·l.MAXM
l'IJ.NE.l, GO TO .,
EI.ALPHlCI'·CDT/2.'·IRTCZ'.RTCl,,/IRTCl'·CRTCI,-RTCZ" •• ~,

DCI,·TRESll.I'.Cl.-F.I-DT.HCOFF ICCRTCZ'-RTCl".ROCP "+DT.HCOEF
1.TWIMR.I"ICRTC2'-RTC1".ROCP ,+TRESC2.I'.EI

GO TO lOS
., EI.ALPHAII,.CDTI2.,.CRTCJP,.RTCJ"/CRTIJ'.IRTCJP,-RTCJM".CRTIJP,­

1RTlJII'
'I.ALPHAII,.CDT/2.,.CRTCJ,+RTIJM"/IRTIJ,.IRTIJP,-RTCJM".CRTCJ'­

lRTCJM'1I "
DCI,·TRESCJ.I'.CI.-EI-'I'+TRESCJP.I'·EI+TRESIJM.I'·'1

lOS CONTINUE
DCl'·Dll'+IDT/Z.'·ALPHAll,·TINICJ.l"DXSQ
DCMAXM'·DCMAXM'+CDT/2.,·ALPHACMAXM'.TRESIJ.MAX"DXSQ
CALL TRIDIID.TEMP.A.C.BETA.MAX~.l'
DO 110 1.1tMAXM

110 TRESCJ.I'.TEMPII'
'0 CONTINUE

C .
C RESULTS PRINT OUT
C •••••••••••••••••••

I'CITIME/,0.'.GE.11'20., GO TO 101
JFCINDEX.LT.I0, GO TO 101
IFCINDEX.GT.I000, GO TO ,.,
IFIINDEX.EQ.CINDEX/'O'.'O' GO TO 101

,., I'IINDEX.EQ.IINDEX/'OO,.'OO,GO TO 101
GO TO '5
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101 CONTINUE
TIIIIE,.TIt-.E/,f).
ItRINT 102.TI"'£3

102 FORMATCII.4X ••FOR TIME OF*.Fl0".4X.-MINUTFS-,I,
PRINT to,

to, FO_uATCII.,-OX._WELl8n~EFLUID TE",PERATU_E*.II,
PRINT 500.CCTW(J.I •• J.l."'R •• I.I.~X.

,00 FORMATC4X.,Ft2,"
PRINT 104

104 FOR",ATCII.40X.-FORMATION TEIIIPERATURE-.II'
PRINT ~Ot.CCTRESCJ.l'.J.1.MAXR •• 1.1.MAX'

'01 ,ORMATC4X.tOFll,"
IFC(TIME/60.1,G£,11520,1 GO TO 200
GO TO !5

200 CONTINUE
STOP
END

f'



!
Ll

J

c ••S U B R 0 U T t N E A MAT R X ••
C SUBROUTINE USED FOR SETTING UP TRIDIAGONAL MATRIX.
C········~············································ .

SUBROUTI~E A~ATRXrA.B.C.BETA.MAX.tSTART)

Ol~ENSION ArMAX).B(MAX).C(~AX).BETA(MAX)

J-tSTART
BETA(Jt-B(tSTARTI
J-J+l
00 1 raJ.MAX

1 BETA(lt-Brt'-(A(I'·C(I-!"/BETAct-1'
BETA(MAX)_BrMAX,-ACMAX,.C(MAX-1,/BETACMAX-1'
RETURN .
END

C ••S U B R 0 U R t NET R t 0 I••
e SUBROUTtNE USED FOR SOLvtNG TRtDIAGONAl MATRIX.
C····················································· .SUBROUTINE TRIDI(O.PT.A.C.BETA.MAX.ISTARTI

OlMENStON D(MAX,.PT(MAx,.ArMAx,.C(MAXI.BETACMAX,.GAMMA(200,
J-tSTART
GAMMArJ'_DrJ'/BETArJ'
J-J+'
DO t t-J.~AX

GAMMAClt-(Drl'-A(I'·GAMMArl-!,./BETA(I,
1 CONTINUE

I_~AX

PTCtt-GA~A(t'

, 1-1-,
PT(I'-GAMMA(t'-C(t,·PTrt+l"~~T'Ct'
rFrl.GT.tSTART, GO TO 2
.ETUR~

£~D
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