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ESTIMATION OF IN SITU THERMAL CONDUCTIVITIES
FROM TEMPERATURE GRADIENT MEASUREMENTS

Ph.D. Viet Thai Hoang Mechanical Eiiineering

Prof. W.H. Somerton
Chairman of Committee

ABSTRACT

A mathematical model has been developéd to study the
effect of variable thermal conductivity of the formations,
and the wellbore characteristics, on the fluid temperature
behavior inside the wellbore during injection or production
and after shut-in. During the injection or production period ‘
the wellbore fluid temperature is controlled mainly by the
fluid flow rate and the heat lost from the fluid to the
formation. During the shut-in period, the fluid temperature
is strongly affected by differénces in the formation the;mal
conductivities. This effect is very apparent after as
little as four hours of shut-in. When the well is shut-
in for a longer period of time, the fluid temperature grad-
ients approach the geothermal grédients and chaﬁges in these
temperature gradients with depth 1is invefsely p:oportional
to éhanges in the formation thermal conduétivities.

Based on the results of the present analysis,btwo
methods for estimating in-situ thermal conductivity were
derived. First, the line source concept 1s extended to
estimate values of the formation thermal conductivities

utilizing the fluid temperature record during the transient




period of injection or production and shut-in. The sécond
method is applied when a well is under thermal equilibrium
conditions., Values of the formation thermal conductivities
can also be estimated by using a continuous temperature
gradient log and by measuring the thermal conductivity of the
formation atva few selected wellbore locations.

From the results of this study, in-situ values of
thermal conduétivity can be estimated from temperature
measurements in wells. Although laboratory methods can
measure thermal conductivities with accuracy as high as one
per-cent, it can only represent the value of an individual
specimen. A methodvfor measuring conductivitiew in-situ
which is accurate to within 5 to 10 per—-cent would be more
useful for many purposes than the high precision laboratory
values. Values of in-situ thermal conductivity can be useful
for the determination of terrestrial heat flows in the
earth , heat losses from the wellbore in thermai recovery
processes, and in differentiating oil-bearing or gas-bearing
formations from water bearing formations. They may also be
useful in the estimation of other physical properties such as

type of formation, its porosity, us well as its fluid content.



CHAPTER 1

INTRODUCTION

In recent years considerable interest has been gener-
ated in thermal processes of petroleum recovery, especially
hot fluid injection. These processes involve the injection
of heat into a reservoir in the form of steam orvhot water.
Every production and injection operation is accompanied
by the transfer of heat between wellbore fluids and the
formation around the wellbore. The resultant heat losses
between the surface and the injection interval could be
very important in the success or failure of these processes.

Knowledge of the subsurface thermal properties is of
importance not only in the thermal recovery process but
also in geothermal operations and in geophysical applica-
tions.' Knowledge of thermal conductivity is an important
parameter in the detection and development of geothermal
fields. In the recovery of geothermal energy, the rate at
which heat can be extracted from a hot reservoilr is propor-
tional to Af/ﬂ§£ where if is the formation thermal conduc-

tivity, and o_ is the formation thermal diffusivity (Murphy,

f
et al. [51]). The amount of heat flowing through the
surface of the earth from the interior is a quantity which
is of fundamental importance for geophysics. To determine
the terrestrial heat flow in any area the temperature

gradient (3T/3z) and the thermal conductivity (A) of rocks

in that area must be measured.



There are many methods for the determination of thermal
conductivity broadly classified as laboratory methods
or in-situ methods. Although laboratory methods are gen-
erally more accurate, the problem is essentially one of
sampling. In many cases there are no cores available
for laboratory measurements. In some 1ﬁstances, measure-
ments on samples from the surface of nearby cored holes
provide a reasonable estimate of conductivity. For the most
part, however, conductivity variations within a given type
of rock are of such magnitude that measurements should be
made in thevsame hole as that in which temperatures are
measured. Even when cores are available, the determination
of thermal conductivity is not straightforward. The most
common problems, reviewed by Beck, et al., [10] are:

(1) Friable rocks: Laboratory determinations of con-

ductivity involve a considerable degree of machining and
polishing. The specimens that survive this process are
invariably the most competent and, usually, the most highly
conducting. The bias so introduced can result in serious
systematic errors.

(2) Specimen size: Another type of systematic error

can result when the specimen size is not large relative
to the average size of the individual crystals (Beck and
Beck, [8]).

(3) Heterogeneity: On a regional scale, a core drill

sample is a very narrow vertical column of rock. Variations

in the relative abundances of such components as micas



and pyrite minerals can result in large conductivity
variations within a single lithology unit. - In contrast to
(1) and (2) above, these variations will tend to produce
random rather than systematic errors.

(4) Removal of the rock from its environment: It

is difficult, 1if not impossible, to produce in the labora-
tory the physical conditions which exist at great depth
within the earth. Moreover, with certain rocks, the process
of coring and specimen preparation may produce irrever-
sible changes in thermal conductivity as well as in other
physical properties.

Some of the above problems can be minimized by using
non-standard laboratory techniques, such as chips, and/or
careful petrographic studies. 1In many.cases,‘however,»
the only satisfac;ory solution entails the measurement
of thermal conductivity in-situ, Since its introduction by
Van Der Held and Van Drumen [70)], use of the liné source, |
or "probe”, method of measuring thermal conductivity has
become popular for low conductivity materials. However,
many practical problems associated with making measure-
ments with a heated probe can occur, such as thermal
contact resistance, natural convection in the fluid in-
duced by the heated probe, etc. This method will be dis-
cussed in detail later in this study.

In most of the studies dealing with heat flow and
thermal gradients in wells, a linear geothermal gradient

profile has been assumed., This assumption corresponds



to a constant thermal conductivity of the earth. However,
in actual well temperature measurements there are variations
in the temperature profile. This effect is most likely due
to the differences in thermal conductivities in different
formations of the earth or with different fluid saturations.
The geothermal gradient is caused by the coﬁtinuous flow of
heat from the interior of the earth. The magnitude of the
gradient depends upon the difference in the temperature
between the surface and the heat source in the interior of
_the earth and upon the thermal conductivities of the mater-
ials in between. For a uniform heat flux, variations in
thermal conductivities will result in variatiomns in the
temperature gradients.

In this étudy, based on the above concepts, a theo~-
retical analysis of fluid temperature gradients in the
wellbore, as well as temperature gradients in the surround-
ing formations during injection and production and after
shut-in,will be made to evaluate the effects of thermal
‘conductivities of the formation on such gradients. These
results will be used to estimate the in-situ thermal con-

ductivities of the formation.
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CHAPTER 11

LITERATURE REVIEW

When a temperature gradient exists in a body there
is an energy transfer from the high temperature region.
to the low temperature region in accordance with the
second law of thermodynamics. The heat transfer rate
per unit area, q, is given by the empirical relation
known as Fourier's equation of heat conduction,

q= - A grad T . (2.1)

The positive constant of proportionality between the heat
flux and the temperature gradient 1s called thermal con-
ductivity and is denoted by ).

Thermal Conductivities of Porous Rocks

Thermal conductivity of a porous.material is a complex
functionAof density, porosity, grain size and shape, cemen-
tation and mineral composition. If it i1s saturated with
fluid, 1ts thermal conductivity is also dependent upon the
conductivities of the saturating fluid and the rock material
(Somerton, [64]). In the following, the effect of constit-
uents, porosity, and saturating fluid on thermal conduc~
tivity of rocks will be discussed.

(1) Effect of Constituents: Mineral composition

affects the thermal conductivity of rocks because of dif-
ferent conductivity values of individual minerals, orienta-
tion of crystal axes and influence of impurities in solid

solution (Anand, [2]). The major constituent of mineral



sandstone is quartz for which a fairly large number of
thermal conductivity measurements have been made. Kersten
[43] found that the thermal conductivity is lowest for

basic minerals, increases for intermediate minerals and is
highest for felsic minerals. As such, quartz has one of the
highest conductivities. On the other hand, coal is among the
materials which has very low conductivity. A list of thermal
conductivity of materials usuallj found in subsurface reser-
voirs is presented in Tables 1, 2 and 3.

(2) Effect of porosity: From the statistical thermo-

dynamics point of view, thermal conductivity for dielectrics
is directly proportional to density as follows (Tien,
et al., [68]):
A =1/3 peycl (2.2)
where: pcy = phonon heat capacity,
c = phonon velocity,
1= phonon mean free path.
The density of porous material is related to porosity as
follows:
P=p. ¢+ (1.0 - )P (2.3)

where: p = density of porous material,

Pg = density of the solid matrix,

Pe = density of the fluid in the pores,

¢ = fractional porosity.
‘Since ¢ and p are directly related it can be said that )

is related to the porosity ¢ of the material, the con-

ductivities of the solid matrix and the fluid in the pores



(o)
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TABLE 1

Thermal Conductivitiesoof Some Rocks-forming
Minerals at T=23"C (Horai [36]).

Chemical Thermal
Mineral Composition Conductivity
‘ (W/m°K)
Quartz SiO2 . 7.70
Plagioclase NaA12813 08-CaAISi3O8 2.15
Orthoclase KA]..ZS:L3O8 2,30
Muscovite (K,Na)AlZ(OH)z(AISi3010) 2.20
Calcite CaCo, , 3.60
Chlorite (Mg,Fe,A1)6(0H)8((A1,Si)4010) 4,34
Biotite K,(Mg,Fe)(0H) ,(AL1,5140,,) 2.34
Hornblende NaCaz(Mg,Fe,A1)5(0H)2(SiA18022) 3.10
Magnesite MgCO3 5.85
Sphene CaSiTiO5 2,34
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Thermal Conductivity of Some Reservoir Rocks.

Rock Type

Dolomite
Limestone
Gnieiss
Shale
Sandstone
Clay

Coal
Chert
Slate

Mud

Thermal Conductivity of Some Saturant Fluids

Fluid

Light oil
Water

Alr

Density
(g/cm/3)

2.70

2.56

1.47
1.05
2.56
2.76

1.31

TABLE 2

Thermal Conductivity

Source No.

4.99

2.56

"TABLE 3

(W/mOK)
Mean

Range

3.72-5c82

1.97-2.97

2.55-3.35
1.34-2.34
2.39-5.86

Thermal Conductivity

17
17
17
17
17
17
17
36
36

17

Source No.

(W/m°K)

17
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(Anand, [2]). Since the density of the fluid which occupies
the pore spaces is less than the solid density, generally
the thermal conductivity is reduced with increased porosity,
Figure 1. Quantitatively, how much less the thermal conduc-
tivity of a porous material will be than the so0lid matrix
will depend upon the amount of void spaces, the arrangement
of voids, the fluid with which the voids are filled, etc.

(3) Effect of Saturating Fluid: Fairly limited amount

of work has dealt with the prediction of thermal conduc-
tivity of liquid saturated rocks and has nof yielded
satisfactory results. The difficulty seems to lie in the
fact that although liquid saturated rocks have higher
conductivities than dry rocks, the amount of increase is a
complex function of the amount of pore space, its character
#nd distribution, and the conductivity of the'saturating
fluid (Somerton, [63]). Many measurements indicated that
thermal cdnductivities of brine saturated samples are higher
than dry samples. This is due to the fact that the thermal
conductivity of water (0.59 w/m°K at 21°C) is higher than
that of silicon o0il (0.28w/m°K at 21°C) which in turn is
higher than that of dry air (0.026w/m°K at 21°C) (Anand,
[2], Figure 2).

Saturation of the wetting phase fluid has a dominant
effect on the thermal conductivity of the system. The study
of partially\liquid saturated rocks by Somerton [64] showed
that for brine-air saturation, thermal conductivity is

related to the square root of brine saturation., For uncon-
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solidated sands saturated with air and brine and all samples
tested which were saturated with two liquids, showed a
relationship with square root of the wetting phase satur-
ation (Figures 3 and 4).

Measurement of Thermal Conductivities

Because of the complexity of laboratory measurements,
it is very difficult to obtain accurate thermal conduc~-
tivity values, and in many circumstances laboratory methods
for measuring thermal conductivity are unsatisfactory.
In-situ thermal conductivity measurement has received a
great deal of attention in petroleum technology, geothermal,
and geophysics fields because of its important role. Some
of the previous works on this subject will be revieﬁed in
detail.

Most of the previous studies involving the deter-
mination of in-situ thermal conductivity were conducted
in the geophysics field through the measurements of heat
flow on land and at sea. To determine the terrestrial
heat flow in any area, the temperature gradient (3T /3z)
and the thermal conductivity ()) of rocks in that area
must be measured.

1) Probe Measuring Methods

The probe method is commonly chosen for the in=situ
thermal conductivity measurements. This method involves
the use of an electrically heated cylindrical probe which,
to insure radial heat flow conditions at the central plane

normal to its axis, has a length 20 to 30 times the diameter



of the hole into which it is inserted (Blackwell [12]). Seals
at each end of the prbbe prevent convection losses up and down
the hole (Beck, et al., [7]). A teﬁperature sensitive element
is located on the outer surface and at the mid-point of the
probe. When the probe is in place and has reached the equi-
librium temperature of the borehole at that location, the
current is switched on and a :ecord is made of the temperature
rise versus time.

The idealized model is a perfect thermal conductor
of radius, a, with constant heat supply Q per unit length per
unit time immersed in a matérial of conductivity A and there
is assummed to be no thermal resistance at the contact
surfaces, If there is thermal resistance at the surface,
modifications in the theory have to be made. This problem
is discussed by Carslaw and Jaeger [16]. Theory of the
probe method has been given by Blackwell [11], Jaeger [38]
and De Vries and Peck [23] and it was reviewed extensively
by Beck [5].

The d#ta obtained by the probe test can be reduced by
one of three methods.. The first is the method commonly used
for all probe types of probe measurements. It consists of
plotting the natural logarithm of the time, t, versus the
temperature, T, and finding the slope of the logarithm
asymptote. The thermal conductivity, A, can be found
from the equation:

T(t) = (Q/47A) 1n(t) + BO (1/t) , (2.4)

where B is a constant, and the terms 0(1l/t) are negligible

15
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for long times. The time to reach the asymptotic section of
the curve depends on the radius of the borehole involved,
the thermal constants of the rocks surrounding the hole, and
the thermal contact resistance of the fluid layer between
the probe and wall of the borehole.

The second method of interpreting probe test results
(Blackwell, [11]) involves the determination of the thermal
contact resiétance by the use of an approximate solution to
the transient radial heat flow equation for short time. The
value obtained is then used in another approximation to the
equation for long times. This is equivalent to straight¢n~
ing the curve obtained by the first method somewhat earlier
than would otherwise be the case, and theoretically makes it
possible to use shorter experimental times.

The third method (Jaeger, [38]; Beck, et al., [7])
uses the exact solution of the transient radial heat flow
equation and involves calculating families of théoretical
curves using values of the appropriate constants which cover
the range of values likely to be found in geophysical work.
The experimental curve of temperature rise versus time is
plotted on log—-log paper and compared with the families of
theoretical curves plotted on the same bases. From the best
fit 1t is theoreticall§ possible'to find, from the displace~
ment of the origin, both the thermal conductivity and the
diffusivity of rocks. This method requires a shorter

experimental time than any other method.
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" Beck [5] has pointed out that the practical problems
associated with making measurements with a heated probe in
a deep borehole are formidéble. Optimum probe lengths
should be 20vto 30 times the bore diameter so that a typical
geothermal well, or o0il well, would require a probe about 3
to 4 meters long. To obtain temperature rises of the order
of several degrees per hour in such a large probe requires a
substantial amount of electrical power transmitted downhole.
The applied potential would have to be high to obtain the
required power leading to insulation difficulties which are
aggravated by the high temperatures in wells. ‘Furthermore,
since it is impossible to assure uniformly good contact
between the probe and the borehole wall, additional heating
times are requiréd. It is difficult to systematically
correct for these errors since natural convection of this
fluid may be induced by heating the probe (Murphy, et al.,
[51)). Murphy and Lawton [51] extended the transient line
source method described earlier to include effects caused by
flowing fluid in the wellbore. By comparing the conductive
heat flux from the rock to the convective heat tranSpor¥
ted by the wellbore fluid, Murphy and Lawton [51] showed
that temperature measurements made between ~0.25 and 100
hours provide meaningful and sufficient data for independ-
ently estimating a mean conductivity A and diffusivity o of
the formation.

The above methods have been developed based on the

assumptions that the geothermal gradient, 3T/3z, and the
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formation thermal conductivity do not vary within the
interval being tested, which is often not the case. The
assumption of constant thermal gradient may introduce an
appreciable error in the results. Furthermore, the line
source theory cannot be applied in the medium in which
thermal conductivity varies.

2) Correlation Methods

Many empirical relations for hredicting thermal con-
ductivity have been derived based on other geophysical well
log parameters. Dakhnov and Kjakonov [22] used data from
the literature to provide the following correlation:

A = Dp (Z%§%> (2.5)

where Dg = saturated bulk density, g/cm3,
A = thermal conductivity, cal/ecm-s=-°C.
Using the same approach, for classes of feldspathic rock,
salt and other'rock types, Karl [41] obtained
| A = A x 1078y, (2.6)
where A = a constant depending on the rock's physical
properties,
V = compressional velocity, cm/sec.
Tikhomirov [69] examined both dry and partially saturated
samples of many rock types, and combined the results
into one equation,
A = 1l.30exp (0.58Dp + 0.40Sy) (2.7)
where Dp = bulk density of rock in the dry state,

Sy = fractional water saturation.
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Using cores from a wide region of the Siberian lowlands,
Moiseyinko and co-workers [50] proposed the relation
A = [1.17 + 0.83 (3.42 - 0.554)1x 10-3 (2.8)
where ¢ = the porosity in percent
A = thermal conductivity in cal/cm-s-°C.
In an experiment with unconsolidated sands, Somerton,
et al.,, [62] found that
A= 0,735 - 0,013¢p + 0.363%g VSy (2.9)
where Ag is the thermal conductivity of the component
solid grains. Anand, et al., [3] studied the thermal
conductivity of sandstones and derived the following re-
latioﬁ for dry samples,
Ag = 0.340p4 - 0.032¢ + 0.53x0.10 |
+ 0.013F - 0,031, (2.10)

and for saturated samples

A ‘ A \0.48m
= 1 : 0.33 1 ¢
A Ad[l.o + o.3o<——)\g - 1.0) + 4,57 (—1—100_¢ x -—Ag>

. 22-54.3]
Py (2.11)

where: k = permeability of the rock, millidaréy,

A = thermal conductivity, Btu/ft hr °F,

F = formation resistivity factor,

p = density of the rock, g/cm3,

¢ = fractional porosity,
and subscripts d, 1, and g stand for dry rock, saturating
liquid and gas, respectively; m is the cementation factor.

Goss and Combs [33], measuring core samples from

Imperial Valley, proposed three predictive equations for



the thermal conductivity

A= =1,42 + 2.18Vp , R = 0,962 (2,12)
A= 2,01 - 0.095¢ + 1.66V, , R =0.966 (2.13)
A= -0,534 - 0.082¢ + 0,00190 + 2.11Vp, R = 0,971 (2.14)

where: A = thermal conductivity in mcal/cm-s-°C,
V, = compressional Velocity in km/sec,

¢ = porosity in percent,

0 = electrical conductivity in mmho,

R = linear correlation factor.

Most of the relationships presented above are defi-
cient since they are not based on sets of variables mea-
sured on the same samples (Goss and Combs, [33]). None
of the above equations provided satisfactory results for
a variety of rock types; they either gave lower or higher
values compared with laboratory experimental results.

It is also important to point out that, when measured
in-situ, many variables in the empirical relations, such as
Sws ¢, etc., for ;he thermal conductivity are not measured
directly. They are derived empiriéally from other directly
measured quantities.,

3) Thermal Gradients in Wells

Another method for the determination of in-situ thermal
conductivity involves the use of geothermal gradients.
Many authors have worked on the problem of restoring the
reservoir to the geothermal temperature after drilling, or
injecting fluid. Bullard [14]) estimated the time necessary

for the temperature disturbance, caused by the process of



drilling, to die away by representing the operation of
drilling by a line heat source Q. If drilling has gone on
for time t;, temperature T, at distance r from the source
will be approximately:

To = (. Q, [InC4at; /v2 - 0.557] (2.15)

4T

where A = thermal conductivity of the formation,

o = thefmal diffusivity of the formation.
The effect of ceasing to drill at time t; can be regarded
as that of starting a negative soﬁrce ~Q at this time, so
that the temperature at (r) at time (t) after the ceasation

of drilling is-given by:

T = (Q/4mA)1n(1+ty/t) (2.16)
and the way in which the disturbances die away is given by
T _ 1n(1l+t,/t) .
To 1n(40t1/r2)—0.577 (2.17)

From this result Bullard concluded that, for the hole to
return to within 1% of equilibrium, t must be of the order
of 10xt;.

Jaeger [38] obtained a similar result after a more
elaborate calculation. Lachenbruch and Brewer [44] showed
that in the practical case, temperatures at t = 3t; are
within 0.05°C of the equilibrium values. However, these
results can be used only in the ideal case where the line
source theory can be applied. Other investigators, such
as Crosby [21], have derived empirical relations for the

static temperature based on the same principle.
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Edwardson, et al., [28],Schoppel and Gilarranz [59],
and Dowdle and Cobb [26] have derived many techniques to
evaluate static formation temperature based on the Horner
method, similar to pressure build=up theory. Most of these
techniques, however, have used an assumed formation tempera-
ture profile at the conclusion of circulation and provide
no means to calculate this profile directly (Raymond, [55]).
Moreover, this type of analysis can be only used under the
condition that there is no variations in the geothermal
temperature gradient and the formation thermal conductivity.

In the present study, the effect of variation in the
formation thermal conductivity on the wellbore fluid temper-
ature, during injection and shut-in periods, will be investi-
gated. Once the relationship between the formation thermal
conductivity and the fluid temperature behavior as well
as geothermal temperature are known, it is possible to
determine relative values of the formation thermél conduc=-
tivity by the linear relationship:

= )3T
q 3z : (2.18)

where: q = geothermal heat flux,

é% = geothermal temperature gradient,
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CHAPTER III

DEVELOPMENT OF THE MODEL

3.1 General Considerations

Figure 5 shows the conceptual model used in this study.
The model is composed of a wellbore and the surrounding
formation. The injected or produced fluid enters the well

and flows inside the tubing of outer radius, ry. Any

‘material external to the fluid column such as insulating

material, mud, casing, or cement is regarded as the ther-
mal resistance between the fluid and the surrounding for-
mation., The formation which surrounds the wellbore consisfs
of several horizontal layers infinite in lateral extent.
Each layer is homogeneous and composed of material which
has the thermal conductivity denoted by Aj.  In this model,
the values of Aj and the depth of formation layers can be
varied as desired. Values of A vary from 1.25 w/m°K for
shale-clay to 5w/m°K for fully water saturated sandstone.
The injection process consistsiof the fluid‘entering
the top of the well at a fixed temperature, flowing down the
tubing and into the injection zone at the bottom of the
well, As the fluid flows down the well, heat is exchanged
by convectiqn and by conduction between the fluid and the
formations adjacent to the wellbore at a rate that is
dependent on the relative temperatures and physical pro-
perties of the two media. When injectipn is stopped, the

well is shut-in and the fluid becomes quiescent in the



wellbore. .The wellbore fluid will lose, or gain, heat

to the formation by conduction and possibly by natural
convection inside the borehole during the shut-in period.
The static fluid temperature in the wellbore approaches
the geothermal temperature as the system comes to thermal
equilibrium,

In this study, the formation temperature and that of
the quiescent fluid in the wellbore initially are assumed
to be the same as the geothermal temperature. This geother-
mal temperature varies with depth and is taken to be propor-
tional to the magnitude of the formations' thermal conduc-
tivities. At time equal to zero, hot fluid is injected down
the tubing and enters the injection zone at the bottom of
the well, By analyzing the heat transfer process inside the
tubing and in the surrounding formations, the temperature
profiles of the fluid and the formation are obtained. Then,
the injection is stopped and the well is shut-in. The
temperature distributions inside the wellbore and in the
surrounding formations at the end of the injection period
are used as the initial conditioné for the analysis of the
system's temperature distribution during shut-in.

Analysis of the shut-in period will accomplish two
goals. First, to study the progress of the return to equili-~
brium of the wellbore fluid temperatures; second, to study
the effect of vériable thermal conductivities of the forma-
tions on the fluid temperature distribution. 1In the great

majority of the cases the amount of heat flowing along a

25



26

thermally.stable borehole rarely changes by more than 157
from a mean value in the absence of disturbing factors such
as heat sources and sinks, according to Beck and Judge [9].
On the other hand, the thermal conductivities of the forma-
tions through which boreholes pass may vary nearly by an
order of magnitude. Since the thermal gradients for con-
stént heat flux are inversely proportional to the thermal
conductivities of the forﬁation under equilibrium condi-
tions, it follows that a temperature gradient log is gen-
erally a good approximation of a thermal resistivity log.
Hence, the formation thermal conductivities can be deter-
mined relatively from a temperature gradient log. Because
of the complexity of the problem, a numerical model is

developed to provide the desired results.

3.2 Temperature Distribution During Injection

3.2.1 Mathematical Model

The system to be considered in this study is compos=
ed of two parts:

(1) the wellbore through which single phasé fluid
flows vertically downwards and where heat lost by the fluid
transfers radially to the surroundings, |

(2) the formation where heat transfers radially and
vertically into the earth.

Except for extremely low flow rates, the flow of fluid
in an 0il well, or a geothermal well, is turbulent. The

effective conductivity of the fluid would thus be many times



its molecular value, and since wellbore radii are small,
the change in fluid temperature in the radial direction
in the well would be negligible. For typical flow rates
the Peclect number is extremely large»()lOO), so that
axial conduction of heat in the fluid is negligible compared
to axial convection (Kays, [42]). As a final simplifi-
cation, the depth intérvals at which fluid is‘actually
leaving the well will not be‘rigorously analyzed - the
convective heating of the formation by the fluid permeating
this interval will not be accounted.for in the heat conser-
vation equations. |

Under the above circumstances, the differential equa-
tion for axisymetric flow in a circular cylinder, satisfied
by the fluid temperature T(t,z), is obtained by writing a
heat balance on an element of fluid in the tubing between
the depths z and z + dz

. 9T 291, _ (3.1)
mC(EE? + pwcwﬂrw(at =y

"where: r, = the well radius,

t = the time since the start of injection,
Pw = the fluid density,

cy = the specific heat capacity of the fluid,
The quantity q is the rate per unit depth, z, at which heat
is conducted to the formation from the fluid. 1@ is the

mass injection rate, and it is considered to be constant.

In this case m can be expressed as

. 2
o= Trop U, (3.2)
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where u = fluid velocity.

" In this study, the density py of the fluid will vary aldng

the wellbore depending on the fluid'temperature,

p_(T) = 1.0
W Ay+B, TP+C1 TP4+D, TP~ (3.3)

where TP = (T + 273.0)x 10-4 ; and Ay, Bj, C; and Dj are con=-

stants for a particular fluid. For water A} = °0.472x10’3,

By = 0.114213, C, = -2.996214, D; = 27.5958, respectively.
Because turbulent flow is assumed, the velocity profile

is relatively flat and the velocity u of the fluid is approxi-

mately constant independent of the coordinates. However,

velocity will chénge in inverse proportion to the fluid

density, i.e.,
U - PO (3.4)

Within the formation, from the cement-formation interface
away from the wellbore, heat flows by'conduction only. For
this case, an unsteady-state, two-dimensional (radial and

vertical) heat conduction equation is employed,

96 139 39 9 90
—a—t-..a(z); —a—r (rs- - —a'z (G(Z)—a';) =0 ’ ‘(3.5)

where 6 is the formation temperature. The variable

0(z) = A(z)/pec is the thermal diffusivity of the forma-
tion, and A(z) is its thermal conductivity which varies
with depth. These equations were developed under the as-
sumption that physical and thermal properties of the forma-

tion and the injected fluid, except the fluid density, do
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not vary in the range of temperatures considered. However,
the extension of the model to temperature depeﬁdent proper-
ties can be made.

The heat transfer must be the same on both sides of
the well/formation interface. The boundary conditions that

couple Equations (3.1) and (3.5) are

at r =ry, q = 2ﬂrwk(z) %g . (3.6)
90
and AMz)zo = Up(8-T) . (3.7)

The overall heat transfer coefficient U refers to tﬁe out-
side tubing surface area and represents the net resistance to
heat flow offered by the flowing fluid, tubing, insulation,
annulus, casing, and thercement sheath. On the basis of

several assumptions, discussed by Willhite [68], U, can be

T
simplified as follows:
1 [ T ' T
U, =— ins 1 h
T r In"™— 4+ —=—— + 1n (3.8)
i r
i ‘ rins(hc+hr) Teo
kins kcem
where: ry = outside radius of tubing,

Tins = radius of the outside insulation surface,

rh = radius of drill hole,

= outside radius of casing,

he = heat transfer coefficient for natural convec-
tion based on the outside insulation surface
and the temperature difference between the

outside insulation and inside casing surface,



30

h, = radiation heat transfer coefficient based
on the outside tubing surface and the temper-
ature difference between the outside tubing
and inside casing surface,

kjpns = thermal conductivity of insulation,

kcem = thermal conductivity of cement.

Initially the formation and the quiescent fluid are
assumed to be at the same temperature, i.e. equilibrium
§emperature. Thus{ » , '

at t =0, T(0,2) =0(0,x,2) =T,(2) = rr.-a+r%1 Ty dege (3.9)
where T, is the ambient temperature. Far from the well-
bore the temperature is undisturbed.
Thus, at r » =, ¢ (t,r,z) = Ty(z) . (3.10)
The temperature of the entering fluid is considered constant

and z is measured from the point where the fluid enters the

system and in the direction of flow:
at z = 0, T (t,0) = Tinj . (3.11)

and the fluid is allowed to flow into the wellbore and for a
finite length L. At the surface and at the bottom of the

well the boundary conditions for the formation are

at z = 0, o 8(t,r,0 =T, (3.12)

at z = L, 8(t,x,1) =T+ I e Az, (3.13)
i M4 |

where L is-the depth of the well.



3.2.2 Numerical Formulation

Temperatures of the flowing fluid inside the wellbore
and the surrounding formation are obtained by solving Equa-
tions (3.1) through (3.13). An exact analytical solution
to the syétem of Equations (3.1) and (3.5), which satisfies
the appropriate boundary and initial conditions, is very
difficult, 1f not impossible. This is due to the fact
that analytical methods can be applied most effectively
to homogeneous problems of simple geometry. However, these
types of problems can be solved efficiently by numerical
methods,

A numerical solution to an initial value problem such
as Equation (3;1) can be obtained by the finite difference
method."Té:ms that would 1mpose'very restrictive time
steps such as At< Az/u, where Az is the vertical incre-
ment and uis the fluid velocity, are evaluated implicitly
for computational efficiency. An implicit backwérd dif-
ference scheme with m equally spaced grid nodes is used
to solve for the fluid temperature inside the wellbore.
Adopting the notation of subscripts i, j, to denote the
position (z, r), and superscript n to denote time step (t),
Equation (3.1) is expressed in the finite difference form

as:

n+l n _
Ti - Ti = - (uiAt/Az) (T

n+1l n+1
-1 - ) f

n n+]1 »
(ZUTAt/pWCWrW) . (el,i _Ti ) ’ (3.14)
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where 1 = 1 is at the top of the well arld'e'rll’i ’ is the
formation temperature at the node adjacent to the wellbore.
The wellbore model is connected to a reservoir model
so that the heat lost from the wellbore is the same as
the heat flow into the formation. In the formation sur-
rounding the well, a two dimensional grid system is set
up. Because of the low value of the formation thermal con-
ductivity, most of the temperature change will occur close
to the weilbore (Edwardson, et al., [28]). To be able to
examine this effect, a variable radial grid system is used (Figure 6).
Near the bore wall, a grid spacing small enough to resolve
a drastic change in the temperature gradients is needed,
whereas a much larger grid spacing can be used farther
from the well where the formation temperature gradient is

much smaller. The radial grid spacing is calculated by

using a logarithmic transformation (Miller, [48]),

ry =a (N8N, g g . (3.15)
’
/N _ 4.9

w

where: Nj = (j - l)vAN
1/AN = total number of radial grid points,
k, a, A N, are constaﬁts that can be varied to
glve the desired grid spacing.
Uniform grid spacing is used in the vertical direction.
To obtain the formation temperature distribution, an al-
ternating direction implicit (ADI) technique is employed.

By using this technique, temperature is expressed impli-
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citly in one of the coordinate directions leaving the other

explicit and consider ing that time is advanced over half a time

'stepo Then the roles of the implicit and explicit parts are

interchanged to complete the time step. This technique,
along with the finite difference representation of the
governing equations, are discussed further in Appendix A.

Equation (3.5) is expressed in the finite difference form as

follows:
n+l/2 n ' n+l/2 _ antl/2
%1, "0y - % Tz it 1)
1/2At Ty41 ~ Ty-i Ti+1” Ty -
A gRtl/2 _ gutl/2
rj-1/2 i,3 j;’j-l -
Ty T T3l
n n n -
% 41%01,9 =240 4+ %548,y = O ’ (3.16)
Az2
and
en+1 _ en+1/2 % en+1/2 _ eu+1/2
1,9 i,i - i Tip1yp dadtl T 71
1/2A¢t i+
B S L N Ti+1 - Ty
en+1/2 _ en+1/2 :
Tiayp Al T 7i,3e1 -
r.~-r
h| j-1
n+l n+l n+l
%0187, " 204% 5 oy %0y = 0, (3.17)

Az2



where: 1i-1l, i, i+l = step in z direction,
j-1, j, j+1 = step in r direction,

and rj+.1/2,;j_1/2 are computed by:

) . rj+1 + r,
j+1/2 2
r + r
d . - J j-l .
~an rJ'l/Z A 5

Equations (3.16) and (3.17) can be written as AP = x, where
A is a tridiagonnal matrix. The solution is straightforward
if the boundary and initial conditions are specified. At the
formation/wellbore boundary, the heat transfer is matched.
When the energy equation in the fluid is solved, the heat
transfer at the wall is

q = 27, AzUp (6P ;- . (3.18)

When the temperature in the formation is calculated, the

boundary condition at the formation/well interface is

‘ n+l ntl
hep 0@ = v LT (3.19)

The heat transfer is matched throughout the calculation
except for the first time step for the energy in the fluid,
that 1s, the heat transfer into the reservoir for the cal-
culation of the reservoir temperature at time n+l is just
the heat that will leave the fluid during the calculation
for n+2, The only heat transfer not matched is for the
first calculation of the fluid energy, but usually® (; 1)=T;

at first time step for this case, so q will be negligible.
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The solution procedure is to decouple Equations (3.1) and
(3.5) by solving these two equations alternatively. The new
fluid.temperature in the wellbore is solved first using the
old value of the formation temperature. Then the new
temperature in the formation is calculated by determining
the heat flowing from the well into the formation over that
time. First, the fluid density is calculated based on the

£fluid temperature distribution at time t. The velocity of

. the injected fluid, as a function of the fluid density, is

calculated for all grid nodes. Then the new temperature of
the fluid, at time t+At, inside the wellbore is computed.
Once the new temperature in the well is determined, the
change in the formation temperature is calculated as a |

function of r and z at all nodal points.

3.2.3 Numerical Results and Discussion

A series of calculations was made to study the behavior
of the fluid temperature in a wellbore and the surrounding
formations during the injection period. In every case, the
physical properties and average thermal properties of the
fluid, and the physical dimensions of the well corresponded
closely to the values reported by Boberg [13] and Ramey
[54]. The overall heat transfer coefficient Up, thermal
conductivities of the formations, and the injection rate are
allowed to varye.

The calculated temperature distributions of the fluid in

the wellbore during the injection period are shown in Figures



7 to 11, Figure 7 éhows the temperature profiles at various
times from the start of injection. As the fluid flows

down the well its temperature decreases due to heat loss

to the adjacent formations and to the convection process.

A rapid change in the 1nj;?tion temperature occurs at

early times, followed by an approach to constant temperature
at long times. At early times, due to the large temperature
differences in the fluid and the adjacent formations,

larger amounts of heat are lost to the formation than at
later times when the temperature difference is less. This
has the effect of heating up the part of the formation
adjacent to the wellbore and heat conducts away from the
wellbore slowly because of the low values of formation
thermal conductivities. (This is shown in Figure 12.) When
the formation adjacent to the wellbore is heated up, the
heat loss from the wellbore decreases and approaches a
constant value. Furthermore, the order of magnitude analy-
sis by Murphy, et al., [51] shows that as the injeétion time
increases, the magnitude of the transient term becomes
negligible compared with the other terms so that a steédy
state solution can be applied for the wellbore at long
injection times.

The order of magnitude analysis of Equation (3.1) and
the results shown in Figure 11 indicate that during injec-
tion the fluid temperature is controlled mainly by two
factors: 1) the injection rate and, 2) the rate of heat

loss from the fluid to the surrounding formations. Variable
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thermal conductivities of the formations do not have ﬁuch ef-
fect on the fluid temperature profile except at early times.

(1) Effect of Injection Rate

In this'study, the hot fluid at 150°C is injected down
the well and two injection rates are selected (20,000kg/hr
and 40,000 kg/hr) to study the effect of the injection rate
on the fluid temperature behavior. For thé very high injec~-
tion rate cases, the injected fluid wbuld have very little
time to exchange heat with the surrounding formations.
Thus the resultant temperature prbfile would be nearly a
straight line as shown in Figure 8. 1In these cases most of
the heat is transported axially down the well by convection.
For the lower injection rate, however,'the effect of axial
convection is smaller and the radial heat loss from the'
wellbore is relatively large. As the fluid flows down the
well it loses heat to the surroundings and its temperature
decreases with depth. 1In both cases, the steady state
condition is reached after 24 hours of injection.. Figure 9
shows the effect of injection rate on the fluid temperature
as the bottom of the well for flulds having surface temper-
atures of 150°C and 85°C. In both cases, the initial bottom
hole tesperature was 80°C. This figure also indicates the
rate with which the bottom-hole temperature approaches the
surface injection temperature. The results indicate that at
the higher injection rate, more heat is transported down the
well by the convection and mixing processes so that the

fluid temperature rises more rapidly, and a steady state
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condition 1is reached more quickly.

(2) Effect of Overall Heat Transfer Coefficient

Various techniques have been employed in attempts to
reduce heat loss during hot fluid injection, such as painting
and insulation of the outer surface of the tubing. The effect
of these completion techniques is to reduce the value of the
the overéll heat transfer coefficient. Figure 10 shows the
effect of insulation on the injection temperature profile.
Three values of the overall heat transfer coefficient, Urp,
are used for comparison. These values are taken from Wilhite
[71]. The lowest value of Ut (5.67 w4¥°K) represents the

case of well-insulated tubing. The intermediate value of Ufp

(56.7w/m2°K) represents the case when a standard completion

technique is used. The highest value of UT(5670 w/m2°K)
corresponds to the case where no tubing is used and there is
only a small temperature difference between the flowing hot
fluid and the surface of the adjacent formation. The rate of
heat loss from the well to the formation is proportional to

the magnitude of the overall heat transfer coefficient and the

‘difference between the fluid temperature and the temperature

of the adjacent formation, i.e., Up(T-9) = -129 .

or |1y,

At early times,temperature difference between the adjacent for-
mation and the fluid is large, resulting in a high rate of heat loss
and the magnitude of the overall heat transfer coefficient is

the dominant factor. As a result, after a few hours of injec-

tion, the temperature of the upper part of the formation adja-

cent to the wellbore increases very quickly and the rate of
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heat loss is reduced. 1In the lower part of the formation the
temperature is still low, relative to the fluid temperature,
and the rate of heat loss remains large. As the injection
time increases, the rate of heat loss will become relatively
constant, proportional to the value of the overall heat trans-
fer coefficient when the adjacent formation has reached a
temperature cloée to that of the fluid opposite it. The temp-
peratures of the fluid and formation then increase very
slowly with time. For the case of well-insulated tubing (very
low value of the overall heat transfer coefficient) there is
is only a small amount of heat lost from the fluid to the sur-
rounding formation. This results in a ﬁearly vertical line for
the temperature profile.

(3) Effect of Injection Time

Results of the analysis shown in Figures 7 and 9 indica-
ted that as the injection time becomes large (over 24 hours)
the injected fluid temperature approaches a constant value,
except at the bottom of the well where the fluid temperature
continually changes slowly with time. Injection time, however,
is a variable primarily influencing the formation temperature
profile. Figure 12 shows the relationship between radial dis-
tance and temperature in the formation with time at four
different depths corresponding to four different conductivity
layers of the formation. It is observed that the temperature
at the formation-cement interface rises very rapidly but the
the heat 1is slowly propagated away into the earth because of

the low values of the formation thermal diffusivity, Heat



transferred from the hot fluid is found to diffuse more rap-
idly in the vicinity of the wellbore, and in the formation
layers having higher values of thermal conductivity.

(4) Effect of Variable Thermal Conductivity |

In Figure 11 the injeéted fluid temperatures were
calculated for the case of uniform thermal conductivity of
the formations anﬁ compared with the case when it varied.
As indicated earlier, because of the high injecﬁion rate the
fluid temperature>profile is mainly controlled by convective
heat transfer and at long flow durations, variable thermal
conductivity has little effect on the fluid temperature
profile. Figure 11 shows that for the injection rate of
40,000kg/hr, the fluid temperature profile was slightly
affected by thé vériable thermal conductivity of the forma-
tions at a very early injection time, t = 0.15 hr. As
injection continues the effect of variable thermal conduc-
tivity on the fluid temperature profile is diminished.
However, the results presented in Figures 11 and 12 indicate
that the temperature change of the fluid which contacts the
higher thermal conductivity formation layers is more rapid
because of greater amounts of heat conducted away from the
wellbore. The-iﬁportant point to note with respect to the
variable thermal conductivity of the formations is that
layerskwhich have the higher values of thermal conductivity
conduct heat away from the wellbore more rapidly and the
change in fluid temperature depends upon the magnitude of

the formation thermal conductivity.
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3.2.,4 Comparison with Publishéd Field Data

The validity of the present méthematical model for
fluid injection is demonstrated through a comparison of
the calculated results with the few wellbore measurements,
which have been published., The first comparison is made
with the long time temperature profile of water injection
at a low flow rate. The field data are taken from Nowak
[52]. The second comparison is made with the temperature
profile for cold water injection published in.Ramey's paper
[54].

Figure 13 presents a comparison of temperatures meas-
ured in a water injection well in Nowak's paper [52] with
computed temperatures. Water at the surface temperature of
28,4°C is injected at the rate of 5960kg/hr through an 18cm
diameter casing for three years. Values of heat capacities
and thermal conductivities of the formation are not given in
the reference. Based on the given geothermal temperature
profile, a conductivity of 2.25w/m°K is used for the first
200 meters of the formation, and a value of 2.42w/m°K is
used for the remaining depth of the formation. The value of
2.39 x 10~63/m°cC is assigned for the formation volumetric
heat capacity. In the upper portion of the wellbore, the
measured temperature curve is higher than the geothermal
temperature for the first few hundred meters. Consequently,
the curve crosses over the geothermal temperature curve
at about the 190 meters depth. The temperature profile

straightens out at about 600 meters and reaches a constant



gradient thereafter. As shown in Figure 13 the calculated
temperatures are within 1°C of the méasuredvtemperatures for
the lower part of the curve. For the depths between 300 and
900 meters the discrepancy is relatively large, about 3°C.
However, the measured temperatures between 300 and 900
meters depths are a little lower than one might expect from
the geothermal temperature, After crossing over the geo-
thermal temperature curve, the water temperature profile
should have a positive gradient since it is in contact with
the hotter formation. The only explanation for the negative
temperature gradient effect is water lost through a hole
found in the casing at a depth of 900 meters. The lower
temperature water lost to the formation would have the
effect of cooling down the surrounding formation after long
injection time, so that the water temperature decreases
below the injection temperatpre.

Another set of field data available for comparison
is taken from Ramey [54]. The water injection rate at
the'timé of the survey was 31,700kg/hr; the well had been
on injection for a period of approximately 75 days. Water
at surface temperature of about 15°C is injected through
a 18 cm diameter tubing, 2015 meters long. The geothermal
gradient temperature of 0.0165°C/m and thermal conductivity
of 2.42 w/m°C are used‘in the calculations. As shown in
Figure 14, because of the high fldw rate, the water temper-
ature profile is nearly a straight line and increases with

depth. The calculated temperatures exceed the measured
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temperatures except at the bottom of the well. The cal-
culated temperatures, however, are within 0.5°C of the

measured temperatures showing excellent agreement,

3.3 Temperature Distribution During Shut-in

3.3.1. Mathematical Model

In this section, study is directed towards simulating
the temperature conditions that the fluid inside the well-
bore experiences during shut-in. At the end of an injection
period, the flow of fluid is stopped and the fluid becomes
quiescent in the borehole. Just at shut-in, the fluid inside
the borehole and the surrounding formation have the tempera-
ture distribution T(z,r) and €(z,r), respectively, as given
by Equations (3.1) and (3.5).

The problem involved is that of determining the temper-
ature as a function of time and position within a system
which initially has some spatial distribution of temperature
established within it. 1Inside the borehole, since there is
no forced convection during shut-in, the major mode of heat
transfer is either conduction or natural convection in the
fluid. 1In order to develop a mathematical model, it is nec-
essary to make several assumptions. These assumptions are:

(1) The kinematic viscosity, the thermal diffusivity,
and the coefficient of volumetric expanéion do not vary
in the range of temperatures considered.

(2) Using the Boussinesq approximation, the law of

variation of density with temperature is



o'l = g1+ B(T - 1)), (3.20)
where p= density of the fluid at temperature T,
ps density of the fluid at temperature T,,
B= coefficient of volumetric expansion of the fluid
at temperature To'
(3) The boundary layer approximation applies, i.el
the radial rate of diffusion of momentum and heat is much
more rapid than the axial rate, This may be justified by
the large aspect ratio h, length/radius ratio. Howevef,
. axial heat conduction in the wellbore and in the formation
is taken into account in order to study the effect of
variable thermal conductivities.
(4) The flow is symmetrical about the axis.
At the end of the injection period, the higher tempera-
ture fluid is at the top and the iower temperature fluid
is as the bottom of the wellbore. Thus there is no fluid
motion along the borehole axis at the beginning of the
shut-in period. However, there may be movement of the fluid
in the radial direction caused by the temperature difference
between the center of the fluid column and the wall of the
wellbore. This radial temperature gradient is induced by
the heat conduction inside the fluid. This may result in a
weak, steady circulation in the wellbore. The warmer fluid
near the center of the wellbore rises up and flows towards
the wall, the cooler fluid near the wall is drawn downwards

and replaces the warmer fluid. To determine the fluid

temperature distribution in the wellbore, the Navier-Stokes

53



54

equations of mass, momentunm,

and energy, which apply to the

liquid for axis-symmetrical flow, and with the boundary
layer approximation, are employed:
au ov vy _
5z T % T x 0 ? (3.21)
v ou . ou 13P
3 T Yz Y Ve & 53z +
(3.22)
2
\,<_9__121 N i_a_u_>
3 r dr ’
3P 0' (3.23)
or ’
3T oT 3T _%w o T 2
3¢ T Uz Y Var T e T 3r)+ @3 T (3.24)
‘ 922
where: u = fluid velocity in axial direction,
v = fluid velocity in radial direction,
g = acceleration due to gravity,
P = pressure,
v = kinematic viscosity of the fluid,
o= thermal diffusivity of the fluid.

The effect of natural convection is specified by the

Rayleigh number,

given by:

Ra = BgATrg/a@) s



where: B = volumetric expansion coefficient of the fluid,
AT =T - Ty
TE= fluid center line temperature,

T, = wall temperature,
and the aspect ratio h = L/r,, where L is the length'of the
wellbore and ry is the wellbore radius.

To determine whether the effect of natural convection
can be ignored in this study, a model of purely heat con-
duction will be analyzed first. The maximum radial temper-
ature gradient will be calculated from the conduction model,
since convection would have the effect of reducing the
temperature gradient. This maximum temperature gradient
will be used to evaluate the Raleigh number later in the
study.

(1) Conduction Model

Similar to the previous analysis, the model 1is divided
into two parts; the fluid in the wellbore and the surround-
ing formation. Inside the wellbore, heat is conducted
radially from the hot fluid through the tubing and insulat-
ing materials, if present, into the lower temperature
formation. Because of the axial temperature gradient
established during the injection period, heat is also
conducted along the length of the wellbore. Under these
circumstances, application of an energy balance to a cylin-
drical elemental volume of the fluid of thickness dz yields

the equation:

2 2

p.c_oT A 97T ]
wwat = waz2 + )\‘(

(3.25)
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thermal conductivity of the fluid,

£
=
(1]
(2}
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€
]

density of the fluid,

o
|}

W specific heat capacity of the fluid.

Because of symmetry there is no heat flow at the center
of the wellbore or,

atr =0 , 3T
3 0 - (3.26)

At the wellbore wall the boundary condition for Equation
(3.25) requires that the heat flux out of the wellbore be
the same as the heat flux into the formation, i.e.,

atr=r_ |
A 2T . 28
Waz ar 9 . (3027)
At the top of the borehole, heat is lost from the fluid to
the ambient and is given by:

at z = 0,

>
SV
=3

= H (T—Ta)

]
%
N

(3.28)
where H is the heat transfer coefficient for surface heat
loss, T, is the ambient temperature. During the shut-in
period, the fluid temperature at the bottom of the well
changes continuousiy with time to reach the geothermal
temperature, Therefore, it is very difficult to specify the
boundary condition for the fluid at the bottom of the well.
However, analysis of the injection zone indicated that in
this zone the major part of the heat is transferred away
from the wellbore in the radial direction by convection
(spillette, [65]; Smith, [62]). Heat conducted in the

vertical direction into the overburden and underburden
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formations are assumed to be relatiﬁely small. Moreover,
because heat conduction is much larger in the radial
direction than in the vertical direction in the fluid
éolumn, the axial boundary condition at the bottom of the
well does not have much effect on the results of the upper
parts. Under these circumstances, the fluid temperature at
the bottom of the well is very close to the temperature of
the fluid in the injection zone belbw it. Based on the
solution obtained by Lauwerier [45], the>boundary condition
for the fluid at the bottom of the well can be specified
as: |

at z = L, T(,r,L) = 6¢,r L) +
- B(t,rw,L)] (1.0 - erfc 1 ),

=

injection temperature,

T, .
[Tinj (3.29)

where: Tjpj

8(t,ry,L) = formation temperature at the bottom of

the well,
Oy = fluid thermal diffusivity,
erfec = complimentary error function,
t = the time since the start of shut-in.

After shut-in, heat is continuously flowed from the
hot fluid inside the wellbore into the adjacent forma-
tions to attain the thermal equilibrium condition. The
heat is then diffused farther into the earth away from
the wellbore/formation interface. As the-shut-in time
increases, temperatures of both the fluid in the wellbore

and the formation apﬁroach the geothermal temperature.
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Within the formation, heat flows by the conduction process.
To describe the temperature of the formation surrounding

the wellbore, the diffusion equation.(3.5) and its boundary

conditions are applicable: -
20 13 38y 3 . 30)
e "2 T or (rE?) oz Qx(z) Bz)— 0 (3.5) -
a6 '
at r = ry , M2)yg = U (6-T), (3.7)
at r o o, 8 = T.(z2), (3.10)
i
at z =0 , 6 = T, - (3.12)
. .
AT
at z = L | 6 = Ta+2 3 (2) Azi ° (3.13)
i i

Just at shut-in, the formation has the temperature at the
conclusion of injection:
at t = 0 | 6 =26,

where g; is the formation temperature evaluated at the
end of injection from the injection model calculations.

(2) Modified Model with Natural Convection

In this section, a mathematical model which takes
into account the effect of natural convection is developed
based on the conduction model., The Rayleigh number, based
on the radius of the wellbore and the maximum temperature
difference of the fluid in the wellbore from the results of

the conduction model calculations, is between 103 and

104, Elder [29] indicated that for Rayleigh numbers less



than 105, or less than 1770h, where h is the aspect

ratio, conduction is the dominant mode of heat transfer in
vertical enclosures. In this case, for Ra <105, relative-
ly large temperature gradients develop near the wall,

and in the inner region the temperature field closely
satisfies LaPlace's equation., The higher temperature
fluid near the center of the borehole flows toward the
wall and displaces the lower temperature fluid., The con-
vection occurs in the form of weak, local convection cells.
The magnitude of the radial convection velocity v is of
the order ()A/pcry )y » @s derived from the balance

of conduction and convection (Gebhart, [32]). Using the
approximation of the density variation given by Equation

(3.20) the convection velocity can be approximated as:

Voax = [287, (%, - BT/% (3. 20)
where: g = acceleration due to gravity,
B . = coefficient of volumetric expansioﬁ
of the fluid,
= wellbore radius,

(Tw'Th) = maximum radial temperature gradient.
This is an estimate of the maximum value since it was made
neglecting viscous forces., For water and fluids with mod-
erate and high Prandtl numbers, the maximum velocity will
be much less than this value. In this wellbore model the
magnitude of the maximum velocity is

v 0.7 x 10™4 m/sec.

max
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It is important to note here that the magnitude of the
Rayleigh number and the maximum velocity are dependent
upon radius of the wellbore and the radial temperature
gradient. Natural convection would have the effect of
flattening the temperature profile and reducing heat trans-
fer in this direction. Thus the Rayleigh number and
the maximum velocity reduce as the shut-in time increases.
For a detailed theoretical description of the natural
convection heat transfer process, three equations are
necessary: continuity, momentum, and'energy. However,
under these circumstances, as discussed above, the effect of
natural convection is small compared with conduction, the
fluid velocity induced by natural convection is relatively
small and the convection cells are weak and local. A
modified model is developed in order to take these effects
into account. Instead of solving a set of three equations,
additional terms will be added to the energy equétion of
the conduction model. These terms have the same form as
the diffusion term in the energy équation, but produce the
effect of reducing the heat transfer in the radial direction
and flattening the radial temperature profile. One term sim-
ulates the process of warmer fluid flowing radially outwards
toward the wellbore wall and another term simulafes the pro-
cess of cooler fluid flowing downward and displacing the
warmer fluid. The modified energy equation,>which takes the
effect of weak and local natural convection into account,

is expressed as follows:
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2 2 o, 2
sr 9T 2t , % 1T 3%t
- oamt o5zt 2 (Tt 2)
- Zrgeiar . 3T
r (r T 59r2 _ (3.21)

where: @&, = thermal diffusivity of the fluid,

G, = boy o

Coefficients a and b can be varied so that the maximum
Rayleigh number is less than 103, For Ra <103 the
effect of natural convection is negligible. The initial
and boundary conditions for the conduction model are
applicable in this case.

To solve for the temperature of the formation sur-
rounding the wellbore, the diffusion equation (3.5) and its
initial and boundary conditions are employed.

3.3.2 Numerical Formulation

Similar to the previous section, temperature dis-
tributions of the £fluid inside the wellbore and the
surrounding formation are obtained numerically; An im-
plicit (ADI) finite difference technique is employed to
solve for both the fluid and formation temperatures. - The
resulting finite difference equations for the temperature

of the fluid inside the wellbore are given as:



o At n+l/2 n+l/2 ntl/2 _n+l/2
P2 g —E-——-—-——-{rj+1/2 Tigr T T -, Ty T T
1,3 1,3 Ti41” Ti-1 r - j-1/2 ¥, - r
jHl ] J j-1
n n n
. awAt Ti+1,j - 2Ti,j + Ti—l,j
2 g2 | (3.22)
and
Ol _ /2 o Bt T2+§ii - T“Ilgz_ y /2 T?+;£i
1,5 7 74,3 % e i o Y ey ’
r - Tr r - T r.-r
j+1 j-1 j+1 j j j=1
n+l n+l n+l
+ %A Ty g 2Tyt Ty
2 g2

(3.23)

To solve these equations and to resolve the boundary layer
regime where the fluid temperature changes rapidly, again,
a variable radial grid system is used.

A reservoir model is connected to the wellbore model
so that the heat transfer is consistent with the tempera-
ture field of the system. The heat flow rate out of the
wellbore and into the formationm must be equal. A set of
finite difference equations, similar to Equations (3.16)>
and (3.17), are applicable to solve for the formation

temperature in this case.

gntl/2_ gn 20 pitl/2 _ ountl/2 0+l/2  .n+l/2
i,j i =i Ir 1,§+1 i,j -1 B, -0,
,At/z r, 1 -Tr 1 j+1/2 T - r j-l/Z i,] i,j-1
j+ i- j+1 73 ry- T
n n n
=000, 72940 3448 1 5= 0

Az? (3.24)



n+l n+l/2 n+l/2 n+l/2 n+l/2 ,n+l/2
- B, 11 - 0.3 . .= \
N T TN T LAV o Tl W R NP O B S
At/2 r,, .~ I, I e =T I=i/e r, - r
j+1 -1 i+l 3 i j-1
- n+l _ n+l +1
% 428541,97 20,5 foy_ 6 1. =0 .
A22
(3.25)

‘The new fluid temperature in the Qellbore is solved first
using the oid value of the formation temperature. Then

the new temperature in the formation is calculated by
determining the heat that flowed from the wellbore into the
formation over that time interval. When the energy equa-
tion of the fluid inside the wellbore is solved, the heat

transfer at the wall is:

A = Uy - T, (3.26)
Because this boundary condition for the heat flow is
solved partially explicitly, there is a stability limit.
The stability condition in terms of the radial spacing is

(Miller [491]):

(Ar_ + Arm_l)rm_lArm + 2aAt[§fE 1{_21._.( Ar -1 1)]
2 %1
(Arm + Arm_l)rm_lArm - ZaAtrlE (3.27)
2
where: Arp = Ty = Tpai1 Argp.)] = Tp-1 — Tp-2
and r = (rm+;m_l)/2, Th1 (r _, +r _,)/2.
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Once the fluid temperature in the wellbore at new
time level is known, the new value of the formation tem-
perature can be calculated using this new value of the

wellbore fluid temperature. When the temperature of the

formation is calculated, the boundary condition at the

formation/wellbore interface is:

28

A o+l n+1
or

= UT(B T 7 . (3.28)

No stability problems are encountered because the tempera-
ture of the formation is solved implicitly, even at the
boundarye.

The model is now solved for the fluid temperature in
the wellbore, including heat loss to the surrounding forma-
tions. |

3.3.3 Numerical Results and Discussion

At shut-in, the flow of fluid in the wellbore is
stopped and the effect of ceasing injection can be re-
garded as that of stopping a heat source inside the well-
bore. The temperature of the fluid will gradually return to
its initial state by transfer of heat into the surrounding
formations. Several calculations are made te illustrate
the development of the fluid temperature profile inside
the wellbore during shut-in. The intent is to determine
the effects of the formation thermal conductivities and
the wellbore characteristics on the fluid temperature

behavior.



Just after shut-in, radial conduction becomes important.
Heat is conducted from the hot fluid at the center of the
borehole towérds the borehole wall through the wellbore
tubing, insulating material, casing, and cement, and into
the formation. Initially, at the end of injection, there is
assumed to be no radial temperature gradient in the fluid
because of the mixing process in the turbulent flow during
injection but, as the radial conducfion becomes larger, the
radial temperature gradient develops and reaches the maximum
value at about one hour after shut-in. The growth of the
fluid temperature gradient near the borehole wall causes the
heat transferred from the wellbore fluid to the adjacent
formations to increase. However, due to the relatively low
value of the formation thermal conductivity, most of the
heat lost from the wellbore will stay in the portion of
formation adjacent to the well and conduct slowly farther
into the earth away from the wellbore. This will slow down
the rate of heat transfer from the wellbore fluid to the
formation. After the fluid radialbtemperature gradient
reaches.the maximum value,it decreases as the shut-in
time increases. These effects are shown in dimensionless
form in Figure 15. The development of the radial heat
conduction in the fluid, inside the wellbore, after shut-
in can be seen by comparihg the radial temperature gradient
to its maximum value,

Another calculation using a modified form of the

model was carried out to illustrate the effect of natural
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convection in the weilbore. The resulting fluid tem-
perature behavior is also shown in Figure 15, where the
results of the two models are compared. As indicated
in the analysis, natural convection has the effect of
flattening the rédial temperature gradient of the fluid in
the inner region of the wellbore. However, since the
higher temperature fluid moves toward the borehole wall and
exchanges heat with the adjacént formdtion, the temperature
profile is steeper near the borehole wall during early
shut-in times., After four hours of shut~in the tempera-
ture profiles of the two models are similar and after
twelve hours of shut-in they nearly coincide. This result
indicates that the effect of natural convection on the flﬁid
temperature profile in the wellbore is only important in the
early shut-in times, and becomes negligible in comparison
with heat conduction after long shut-in times, say twelve
hours. This also shows that natural convection does not
have much effect on the rate of return of the wellbore fluid
femperature to equilib:ium at long shut~in times.

(1) Effect of Changing Wellbore Radius

Figure 16 shows the effect of changing the wellbore
radius on the fluid temperature distribution in the well-
bore during shut-in. It is observed that, for the same
initial condition and other variables kept constant, as
the wellbore radius deéreaseé the raaial temperature
gradient decreases since Rayleigh number and convection

velocity vary in proportion to the wellbore radius.
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However, fhe rate of return of the fluid temperature to
equilibrium increases as the wellbore radius decreases.,
The area available for heat transfer at the wall,21rLrw
varies linearly with the radius ry,, while the volume of
the fluid inside the wellbore, ﬂLr%, §aries with r% and o
so does the amount of heat contained in the fluid column
needed to be transferred away to return to equilibrium.
As the rédiué is reduced by one-half, the amount of heat
needed to be transferred into the formation is reduced
by a factor of four so that the fluid temperature inside
the wellbore will reach the geothermal temperature faster.
Figure 16 indicates that after 96 hours of shut-in, for r,
= 0.,08m the fluid temperature inside the wellbore is within
4% of the geothermal temperature, while for r, = 0.04m the
fluidftemperatureis within 2,.5% of the geothermal temper-
ature at the same time.

(2) Effect of Overall Heat Transfer Coefficient

In this section the effect of insulation on the fluid
temperature is invesfigated. Effegts of a ten-fold change
in the overall heat transfer coefficient on the temperature
profile can be seen on Figure 17. The effect is very
apparent near the borehole wall, where heat is transferred
from the fluid to the formation through the wellbore. The
higher value of overall heat transfer coefficient results in
a steeper temperature gradient in the fluid near the bore-
hole wall at early shut-in times. Similarly, for the higher

value of overall heat transfer coefficient, the fluid
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temperature inside the wellbore will return to its initial
value faster at early shut-in times since more heat is
transferred to the adjacent formations. However, as the
fluid temperature decreases the difference between the fluid
temperature and the adjacent formation temperature is
reduced and becomes negligible when the shut=in time is very
long as seen in Figure 18. This will reduce‘the rate of
heat transfer from the fluid to the formation at long

times., For the case of the lower overall heat traﬁsfer
coefficient, Uy, there is a large temperature difference
between the fluid and adjacent formation during early
shut-in times. This temperature difference still exists
even at long times, but with smaller magnitude, so that heat
is continﬁously transferred from the fluid to the formation
at larger rates than the case of higher Qverall heat trans-
fer coefficient when the shut-in time is very long. More-
over, during injection, conduction heats the formation more
in the case of the high Up than in the case of low Ur.

As a result, the fluid temperature approaches the geothermal
temperature faster at long shut-in times for the case of low
Ur. It is important to note here that the overall heat
transfer coefficient has an effect only on the rate of
temperature return but not on the temperature profile at
long shut-in times. After 24 hours of shut-in time, the
fluid temperature profiles for different values of the
overall heat transfer coefficient are similar, as shown in

Figures 17 and 22.
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(3) Effect of Injection Time

As indicated earlier, even though the fluid tempera-
ture profile during injection is nét very sensitive to
injection time, at long times, more heat is accumulated in
the formation adjacent to the wellbore and the temperature
of a larger volume of formation surrounding the wellbore
is>increased as the injection time increases. As a result,
there is less heat regurn at early shut-in times and as
one would expect, longer times are needed for the fluid
temperature to return to its initial value. Wellbore
fluid temperature curves after 24 hours of shut-in
are presented for cumulative injection times of 24 hours
and 72 hours at a constant injection rate of 40,000kg/hr
and variable thermal conductivities of the formations
in Figure 19. The higher cumulative injection time causes
the 24 hour shut-in curve to be displaced farther from
the geothermal temperature.

(4) Effect of Variable Thermal Conductivities

Du;ing the shut-in period, the fluid tgmperature
profile inside the wellbore is strongly affected by differ-
ences in formation thermal conductivities. Since conduction
is the dominant heat transfer process during shut-in, the
formation which has the higher value of thermal conductivity
will conduct heat away from the wellbore faster than the
lower thermal conductivity region. As a result, the fluid
inside the wellbore which is in contact with the high

thermal conductivity formation will have the temperature
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return to its initial value rapidly. Figure 19 shows that,
because of the variable thermal conductivity of the forma-
tions, the fluid temperature gradiénts are not constant but
vary along the length of the wellbore at the locations where
thermal conductivity of the formations change abruptly. It
‘ also shows that the fluid temperature profiles have tﬁe
shape similar to the geothermal temperature profile.
Figure 20 shows the approach to equilibrium with time of the
fluid temperature inside the wellbore which is surrounded by
variable thermal conductivity formations. The ratio of
temperature differences (Tg -T)ATg - T;), where Tg is the
fluid temperature just at shut-in and Ty is its initial
value, i.e., geothermal temperature, is plotted versus time.
After 12 hours of shut-in, the fluid temperature is within
17% of the original geothermal value for thel= 5.0w/m°C
formation layer, 23% for the A= 3.75w/m°C formation
layer, and 34% for the A = 1.25w/m°C formation layer. After
72 hours of shut-in the fluid temperature is witin 2.5% of
the original geothermal value for the A = 5.0w/m°C formation
layer, 4% for the )= 3.75w/m°C formation layer, and 7.5%
for the ) = 1.25w/m°C formation 1ayér. The rate of return
to equilibrium of the fluid temperature (during shut?in)
increases very rapidly in the first 12 hours of shut-in and
begins to approach a slow, logarithmic rate after 48 hours
of shut-in,

Figure 21 shows the fluid temperature profile along

the wellbore axis during shut-in. Effect of variable

75



1.0

9L

A, W/ mk
—-——— .25

— 3.75
——— 5.0

] 1 1 ]

O 4 8 12 24 36 48 60 72

TIME, hours SO :
{ ¥BL 819-7409 '

FIG. 20 EFFECT OF VARIABLE THERMAL CONDUCTIVITY ON THE PROGRESS OF RETURN TO
EQUILIBRIUM OF THE FLUID TEMPERATURE DURING SHUT-IN



DEPTH, meters

200

400

600

800

1000

TEMPERATURE, C

- -
3.75
6.25
2.25
C | | 1 i 1 L 1 ) LT B
| XBL 819-7414
FIG. 21 WELLBORE FLUID TEMPERATURE DISTRIBUTION DURING SHUT-IN

VARIABLE THERMAL CONDUCTIVITY

LL



78

thermal conductivities of the formation is very apparent
after four hours of shut-in. The fluid temperature in
the wellbore, which is in contact with the higher thermal
conductivity formation layers, approaches the geothermal
temperature very rapidly during the first 12 hours of

s%ut-in whereas the fluid temperature in the lower thermal

"conductivity layers approaches the geothermal temperature

more slowly. After 24 hours of shut-in the fluid temper-
ature profile has the shape similar to that of the geo-

thermal. After 72 hours of shut=in the fluid temperature

‘inside the wellbore is very close to the geothermal temper-

ature, and this temperature profile varies along the depth
df the wellbore proportional to the value of the formation
thermal conductivities.

Figures 21 and 22 show that during early shut-in times,
there exist negative gradients in the wellbore fluid temper-
ature profile where the formation thermal conductivity changes
abruptly from a smaller value to a greater value. A three-fold
change in thermal conductivity is not uncommon in subsurface
formations. It can be explained that in the low thermal
conductivity gormation region, heat is conducted slowly away
from the wellbore whereas in the high thermai conductivity
formation region heat is conducted much faster so that the
fluid temperature returns to the original geothermal value
more quickly. Differences in the formation thermal conduc-
tivities lead to uneven rates of return of temperature to

equilibrium and will result in the negative gradients in some



sections of the fluid profile. These negative temper-
ature gradients are relatively large at early shut=-in times
and become smaller as the time increases., The decrease in
the temperature differences betweén the fluid and the
formation with time and the approach to a constant value of
the rate of heat transfer from the fluid to the formation
will cause these negative temperature gradients to diminish.,.
Figure 22 indicates that for different values of the overall
heat transfer coefficient the fluid temperature profiles
inside the wellbore are similar after 24 hours of shut-in.
However, in the case of low overall heat transfer coeffi-
cient, the negative gradient persists for a longer shut-in
time. This result implies that after long shut-in times,
say 24 hours, the fluid temperature profile inéide the
wellbore is primarily controlled by the formation thermal
conductivities.
Figure 22 shows the fluid temperature distribution
during shut-in with a different set of formation thermal
‘conductivities than Figure 21, It indicates that the fluid
temperature profile during shut-in is very sensitive to the
formation thermal conductivity variation. This contrast can
be seen by comparing-the fluid temperature distributions in
Figures 22 and 23. Figure 23 shows the wellbore fluid
temperature distributions during shut-in for a well which is
surrounded by a uniform thermal conductivity formation. In
both cases, the wellbore fluid temperature exhibits the same

behavior as the formation thermal conductivity variation
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after 72 hours of shut-in, i.e., the gradients vary along
the length of the wellbore in proportion to the magnitude of
the thermal conductivity of the formations.

3.3.4. Comparison with Published Field Data

The temperature behavior of the shut-in wellbore
from calculations based on the mathematical model can be
compared with published field results. The comparison is
made with the temperature ﬁrofile of a water injection well
during the shut-in period. These well measurements are
reported by Nowak [52]., Figure 24 -presents a comparison of
temperatures measured in a water injection well after three
days of shut-in,with calculated temperatures.  Water at a
surface temperature of 28.4°C is injected down the well at a
rate of 5960kg/hr for a period of three years. A temper-
ature survey is made after three days of shut-in. 1In the
upper portion of the wellbore measured temperature profile,
the fluid temperature is higher than the formation temper-
ature and at shut—-in it is cooled off towards the geothermal
temperature. In the lower portion of the temperature
profile, the fluid temperature is lower than the formation
temperature and it is heated up appfoaching geothermal. The
temperature profile becomes linear at about 1500m depth and
has the same slope as the geothermal temperature curve. The
calculated temperatures, shown by the solid line im Figure
24, exceed the measured temperatures for the depths between
190m and 1500m, and become lower than the measured temper-

atures for the remaining portion of the well. Except for
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the depths between 406m and 1000m where water loss from the
casing was found and the discrepancy is relatively large,
the calculated temperatures are within 1°C of the measured
temperatures. This indicates satisfactory agreement between
the two results.

3.4 Temperature Distribution in the Shut-in after Production

Case

3.4.1. Analysis

In this section, the temperature conditions that the
fluid inside the wellbore experiences during shut-in after
producing the well, will be investigated. In the production

well, hot fluid from the producing zone of the formation

enters at the bottom of the well and flows up the wellbore.

As the fluid flows up the wellbore, its temperature is
determined by the rate of heat convection up the borehole
and the rate of heat exchange between the formations adja-
cent to the.wellbore and the fluid inside the well.

The mathematical model of the injection shut=-in case is
applicable for this case, except that the origin is taken at
the bottom of the well and the flow is positive upwards.
During production,'the temperature of the fluid entering the
wellbore 1is the same as the temperature in the producing
interval. Under these circumstances, the system of equa-
tions which describes the temperature of the fluid and the

surrounding formation during the production period is:

A
9T oT w 96
oL T, w28 , (3.29)
3z ot rw(pc)w or T,



30 13 . 98, 3 , . . 238
9t ‘“‘z)¥¥“ar) ez(“(Z)az)’o >

where (pc)y product of the heat capacity and the den

of the in-flowing fluid,

alz)

with depth.

The appropriate initial and boundary conditions are:

m

at t = 0, T(t,z) = 6(t,r,z) =T.,(2) =T -1 AT Az,
i o .3 i,
i Ai(z)
at z = 0, T(t,z) = 6(t,r,2) =T  ,
at z = L, 6(t,r,z) = Ta

at r = r A, 196 = U_(6-T) ,
w? (Z)ar T
at r » o , e(t,r,z) = Ti(Z) s

where L is the depth of the well, T, is the ambient
temperature, and T, is the producing formétion temper-
ature,

For the shut-in period after production, the ana-
lysis is the same as for thé injection shut-in case.
A modified form of the conduction model is employed to

solve for the temperature profiles of the fluid in the
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(3.39)

sity

thermal diffusivity of the formation, varies

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

wellbore and the adjacent formation. For the fluid tem-
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perature inside the wellbore, the governing equation and

its boundary conditions are:
2 32

9T T Ty,

5 = (OL + Q )a 22 t (o -ar)(r 2 Tt 3o ) (3.36)
at r =0, X ., > (3.37)

or
at r = rw’ w 3r 31‘ ? (3‘38)
at z = 0, T(t,r,z) = L (3.39)
oT _ -

at z = L, A &= = H(T-T)) . (3.40)

The following equations and boundary conditions are used

to describe the formation temperature during shut-in :

28 L1308 + a 3 90 .
3t’ - o(z) T 9r ) °z a(z)az ) = 0, (3.41)
at r = r )\(z)-a—e- = U_(6-T)
w’ or T ’ (3.42)
at r » o, 0O(t,r,z) = Ti('z) ’ (3.43)
at z =0 , 6O(tyrz) = T (3.44)
at z = L, e(t,r,z) = T . (3.45)



The temperatures of the fluid and the formation at the
end of the prdduction period will be used as the initial
conditions for the shut-in period.

Equations (3.29), (3.30), (3.36), and (3.41) are
solved numerically and two computer programs, TEMPl and TEMP2
used in the injection shut-in case, will be modified and uti-
lized in this case.

3.4.2 Numerical Results and Discussion - Production/Shut=in

Case

(1) Production Period

During the production period, hot fluid flows out
of the production zone, enters the wellbore and flows up the
well., As the fluid flows up the wellbore it contacts the
lower temperature formations, its temperature decreasing due
to heat loss to the adjacent formations. The rate of heat
loss is proportional to the temperature difference between
the flow;ng fluid and the formation. The wellbore fluid
temperature increases with time as the formations surround-
ing the wellbore become heated. A rapid increase in the
. wellbore fluid temperature occurs at early times, followed
by an approacﬁ to a steady condition'at long times. Figure
25 shows that after ten houés of production, the fluid
temperature in the wellbore changes very slowly and ap-
proaches a constant valuebafter 24 hours.

Similar to the injection case, as the production
rate increases, the produced fluid is transported up the

we 11 very fast and due to the convection and mixing process,
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the fluid temperature rises rapidly with time. This will
result in a nearly vertical line for the temperature
profile at earlier times and a steady state condition is
reached more rapidly than at lower production rates.

Figure 26 shows that fluid produced at 84°C at a depth of
1000m, is reduced in temperature to only 82.5°C at the top
of the well in 24 hours for the flow rate of 42,000kg/hr.
For the flow rates of 21,000kg/hr and 12,000kg/hr the fluid
surface temperature is shown to be reduced to 81°C and 79°C,
respectively, after 24 hours of production,

Figure 27 shows the effect of the overall heat trans-
fer coefficient on the fluid temperature distribution during
production. For the same production rate, the higher value
of overall heat transfer coefficient, Ug, leads to‘lower
fluid surface temperature because of greater heat loss. The
hot fluid produced at 1000m depth at 84°C is reduced to 82°C
for Up = 56.7w/m20K and is reduced to only 83.5°C for
Up = 5.67w/m20k at the top of the well after 24 hours of
production as shown in Figure 27,

During production, except for extremely low flow rates,
the flow of the produced fluid is turbulent and well mixed
in the wellbore so that variable thermal conductivity of the
formation has very little effect on the fluid temperature
profile.

(2) Shut-in After Production

When the production is stopped, the fluid becomes

quiescent inside the borehole. Heat from the hot fluid
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column conducts into the surrounding formation and dis-
sipates away from the wellbore. Gradually, the fluid
temperature inside the wellbore will come to equilibrium
with the formation. After shut-in, due to heat conducted to
the formation, the radial temperature gradient develops
rapidly near the borehole wall. This temperature gradient
reaches a maximum value at abput one hour after shut=-in as
shown in Figure 28, As the heat stored in the fluid is
transferred away from the wellbore, the radial temperature
gradient in the wellbore decreases and becomes very small
after 24 hours of shut~in as shown in Figure 28, Figure 29
shows the wellbore fluid temperature versus time, for two
different depths, 250m and 750m. The fluid temperature in
the wellbore is heated up during the production period and
then cooled off during shut-in. During shut-in the £fluid
temperature changes rapidly during the first twelve hours
of shut-in and begins to approach a slow, logarithmic
decline after that.

When the well is produced for longer periods of time,

more heat is accumulated in the formation adjacent to the

m'wellbore so that longer times are needed for the heat

to diffuse away. Thus more time is needed for the fluid
temperature to return to its initial value.

Figure 31 shows the fluid temperature distribution
along the wellbore axis during shut-in. As indicated
in the previous section of this study, the fluid inside

the wellbore which is in contact with the higher thermal



conductivity formations approaches the geothermal témperature
faster than formations with lower thermal conductivity.
This effect is very apparent during the first few hours
of shut-in. Negative temperature gradients occur at bound-
aries where thermal conductivity of the formations change
from a smaller value to a larger value. As the shut-in time
increases, the fluid temperature inside the wellbore ap-
proaches closer to the geothermal and the temperature
distribution curve has the shape of the geothermal temper-
ature profile after 72 hours of shut-in. This result
indicates that under thermal equilibrium conditions, the
fluid temperatgre ié inversely proportional to the magnitude
of the formation thermal conductivities.

Effects of the ovgrall heat transfer coefficient
on the fluid temperature profile are the same as in the
injection shut-in case. The hot fluid is cooled off faster
in the wellbore having the higher value of overall heat
transfer because of the higher rate of heat transfer to the
formation during early shut-in times as shown in Figure
30, After 24 hours of shut-in, however, the fluid temper-
ature profiles for different values of overall heat transfer
coefficients are very close to each other. Both tempera-
ture profiles approach the geothermal temperature profile
after 72 hours of shut-in. Figure 30 shows that the fluid
temperature profiles vary in proportion to the formation
thermal conductivities at long shut-in times for both

values of the overall heat transfer coefficient.
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CHAPTER 1V
ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM

MEASURED TEMPERATURE GRADIENTS IN WELLS

4, 1, Transient Method

4.1.1., Transient Beating or Cooling

From the results of the analysis in the previous
chapters of this study, it can be concluded that during
injection or production and during the shut-in period, fluid
temperature behavior in the wellbore depends on many factors
such as the rate of heat conduction and convection in the
fluid, and the rate of heat transfer ffom the fluid into the
formation, the latter being a strong function of the
formation thermal conductivities. It is difficult to
present a direct quantitative evaluation of the effects of
the formation thermal conductivity variation on the fluid
temperature during the injection or production process and
on the restoration of thermal equilibrium during shut-in.

It should be possible, however, to draw certain semi-
quantitative conclusions from consideration of the numerical
results of this study.

After heating by a heat source, the cooling of the
fluid at a point interior to a homogeneous stratum of finite
thickness will, for sufficiently small values of time, behave
as if the medium were infinite and homogeneous, possessing the
thermal properties of that stratuﬁ. During injection or

production, if the fluid with heat capacity c is pumped either
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up or down the well at a mass flow rate m, then the heating
rate of q = mc 3T/ 3z will be induced per unit of well depth.

The results presented in Chapter III of this study indicate
that except at early stages of injection or production, the
fluid temperature gradient 3 T/3z can be considered constant.
Therefore, the heating rate q induced by the in-flowing fluid
is approximately uniform. During injection or production and
at early shut—-in times, vertical temperature gradients in

the formation are small compared to radial temperature
gradients induced by injection or production, i.e.6/62x< 36/09r.
Radial conduction is the dominant mode of heat tranéfer

in the formation. The well bore fluid temperature during
injection or production and early shut-in times can be approxi-
mated from the heat source concept with the following
considerations:

(1) the heating rate q is uniform during injection or
production;

(2) the form of the heating or cooling curve at any
depth during injection or production will not
depend upon the thermal prqperties of the
ad jacent strata;

(3) radial heat flow is far more important than ver-
tical heat flow in the formation.

Under the above conditions the temperature at any

depth of the system of the wellbore and formation, can be

approximated as follows:
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oT _ 6

D _ 20
g+ Ty bc)w t anwk or 'r
(4.1)
oT 38
M °p _ D
ice., O +5 5 < 13‘;— lrw s (4.1a)
326 30 36
p 1 _ 1 (4.2)
= 9
81_2 r or az) ot
where Tp = (T -T3) ,
GD = (o - T3y),
q = heat supplied/unitlength/unit time ,
= fic 3T/3z ,
" = q/Zn'rw R
M =

(OC)W_rW .

These are subjected to the initial and boundary conditions:

att=0,TD=9D=0 y (4.3)
or
and 6p is bounded as r+ *© , (4.5)

The solution of this system of equations can be obtain-
ed by using a LaPlace transformation technique (Blackwell,
l11]). Procedure for solving these‘equations is outlined

in Appendix B. The result is:

T A {in4 F1.0 - ey 4 2
T, = 5 [lnlrc-v"'z +‘1—{lnT-Y 0 = g (4T erT}’

D A R}% 2T

N

(4.6)



101

where y=Euler's constant = 5722,
= at/r% .

This result indicates that the change of fluid tempera-
ture at any depth is a function of time, formatiom thermal
conductivity and diffusivity, heating rate, overall heat
transfer coefficient, and ratio of heat capacity of the
fluid in the wellbore and the formation.

The application of this result to the determination
of thermal conductivity and thermal diffusivity is as

follows:

Rewrite Equétion (4.6) in the form,

T, @) =Aln¢) + B+ & {Cln () + D} (4.7)
; 1
where A= T8
Y |
- Y 21
B= ;A [1na - 21nrw + 1ln4 -y + ;;hT] .

Similarly C, D may be expressed in terms of the above
constants. If the injection time is long enough, after
a few hours of injection the contribution of the term
of the order (1/t) can be neglected.

It can be seen that, if the heating rate can be es-
timated and the wellbore parameters are known, a fit of
suitable experimental data to this expression will yield
a value of A at the desired depth directly from the con-
stant A. Once A and Ug are known, a value of o can be

estimated from the constant B.
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To improve the accuracy of determination of ) and g the
method of curve-fitting can be employed, as shown by Beck,
et al.,, [7]. The temperature rise T of the fluid at time t

can be written as:

T=(q/A) ¢ (K, n, T) (4.8)

where G is a complex function of Kk, n,T given by Equation

(4.6) where K, n,T are dimensionless parameters:

K= A
= ’
erT
2 (pc)
=Teo). °
_at
T-2 °
r
w

If the flowing fluid is water, n is 1.35 (Murphy, et

al., [51]). It follows from (4.8) that
InT=1n Q/A) + 1nG (K, n, T) . (4.10)

Values of G(k,n, T) can be evaluated and plotted
against T for a specific value of n and various values
of K on log-log paper. The experimental values of tempera-
ture are plotted against time on transparent log-log graph
paper and slid over a family of theoretical curves, G
vefsus T, keepiﬁg the axes parallel, until the best fit is
obtained. The displacement of the axes then gives log

(q/2) and log (a/ré).
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. it should be possible to find a relationship between the

A plot of G (K, n,T ) against T forn = 1,35 and
various values of k is shown in log-log form in Figure
32. A number of numerical data points taken from Figure 7
of this study are shown by ciréles in the same figure fitted
to a curve of the family. A good match is obtained for the
curve K= 0,5 and the value of A was found to be 3.4 w/m°K.

4.,1.2, Transient Shut—in

During early shut-in times, the fluid temperature
is a complex function of the formation thermal conductivi-
ties, the overall heat transfer coefficient, and the sur-
rounding formation temperatures, as shown in Figures 21 and
22 and as given by Equation (3.21). Results of the mathe-
matical analysis shown in Figures 21 and 22 indiéate a
strong effect of variable thermal conductivity of the
formation on the fluid temperature profile. These figures
also show that the fluid temperature gradients inside the
wellbore change very rapidly, proportionly to the magnitude
of the formation thermal conductivities during the first
four hours of shut=-in and they slowly approach the geo-
thermal gradients with time after ten hours of shut-in.

From the fluid temperature measurements during early shut-in

fluid temperature and the thermal conductivity of the
formations. Unfortunately, there is no simple relationship
between those two parameters. However, the temperature
measufements at any depth give a temperature-time curve at

that depth which can be used to estimate the thermal conduc-



tivity of the formation at that depth. During early shut-
in, the temperature distribution in the formation shown in

Figure 18 and the analysis in Section 3.2 indicate that

within the formation surrounding the wellbore,radial conduc-

tion is much more important than axial conduction. After
four nours of shut-in the effect of natural convection in
the wellbore is small and can be neglected in comparison to
radial conduction (Figure 15). Under the above>conditions,
the previous analysis can be modified to solve for the
thermal conductivity of the formations. After shut-in, the
heating induced by the fluid is stopped. If the well has
been injected into or produced from time zero to t;, the
fluid temperature after tj may be calculated by adding to
Equation (4.6) that for a negative source of strength g
starting at tj. If the shut-in time is small compared to

injection or production time, the result is:

] . 1 |
T, =..§. ({%)31,,-%2 + 5 [lnlrl‘ -Y+1.-

(pc)w ln4t - Y + 2A ) + l—-. lndt, - Y+ 1 =
—_— r U 2T 2

pc w T 2

(pc)

w . 22 la_ 1
(1““2 “ Y+t Ty ) =3 aw]+0 ('Ez)s ’

Pc wT

where tz =t - tl °

The temperature T of the fluid after shut-in can be written

as: T

or
1nT

(4.11)

& rF oty . (4.12)

In (¢/A) + InF(k, N, T,) (4.13)
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where Tz=—%2 (t=t1) andk ,r1lare defined as before.

Similar to tZe previous method, values of F(k, n,T) are
evaluated for a specific value of n and plotted against'%
on log~log paper. To reduce the experimental results,
observed values of the fluid‘temperature are plotted against
time and slid across a family of theoretical curves, F (k,n
» T2) Vversus T3, keeping the axis parallel until a match
with the theoretical curve is achieved. The thermal conduc-
tivity and the thermal diffusivity can be calculated from
the shifts of the axes since they give 1ln (q/A) and 1n (a
/ri).

A plot of F (k,n , T2) against Té forn = 1.35
and various values of K is shown in Figure 33. Numerical
data points from this study are shown fitted to the curves
for k= 1.0 and 1.5, It may be seen that the curve for
which = 1.0 gives a slightly better fit, but the two
curves give the same value A = 3.5 w/m°K. The result by
the previous method was 3.4w/m°K.

In concept then, the thermal conductivity of the
formations surrounding the wellbore at any depth can be
estimated by shutting the well for a time sufficient to
allow equilibrium conditions to prevail, positioning
a temperature measuring device in the well at the desired
depth, establishing a constant rate of flow, and finally
plotting the subsequent heating or cooling versus time curve

to determine the conductivity.
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The above analysis is restricted to the condition that
the heating rate induced by the in-flow fluid during in-
jection and production can be considered constant and axial
heat conduction is negligible in comparison to radial
conduction in the formations. .

4,2, Steady State Method

As the shut-in time increases, effects of the over-
all heat transfer coefficient and the surrounding forma-
tion temperatures on the fluid temperature behavior dimin-
ish. On the other hand, the perceptage contribution of heat
initially liberated in the adjacent strata during injection
or production to the temperature disturbance at the observed
point will increase. Thus the form of cooling curve at any
depth will depend upon the thermal properties of all strata
in which the initially liberated heat contributes appreci-
ably to the temperature disturbance at that depth. For
large shut-in times the effect of the terms JjT/3t and
30/3T in Equations (3.25) and (3.5), of the order of (1/t),
will diminish and the effect of natural convection inside
thevwellbore is negligible. The factors which influence the
fluid temperature in the well are the heat transfer from the
fluid to the surfounding formation, ),(3T/3r)=x(36/53r), 3
and the rate of heat conducted away from the wellbore
which are directly proportional to the formation therﬁal
conductivities. Even though during this period of shut-in

the main factors which control the fluid temperature be-

~ havior are the formation thermal conductivities, it is
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very difficult to obtain a direct relationship between the
temperature and the formation thermal conductivities. This
is because the analytical solution for the heat flow equa-
tions in a variable thermal conductivity medium is diffi-
cult; However, as the fluid temperature approaches the

geothermal, its gradients are about the same as the geo-

- thermal gradients, as shown in Figures 22 and 31. In this

study, after 72 hours of shut-in, the fluid temperature
gradients are within four percent of the geothermal grad-
lents. The magnitudes of the fluid temperature gradients
are controlled by the geothermal heat flux and the formation
thermal conductivities. If it is assumed that the heat flow
is constant along the length of the borehole, then any
changes in temperature gradient, even over small sec-

tions of the borehole, must be assumed to be due to changes
in thermal conductivity of the surrounding formations.

These temperature gradients are inversely proportionai to
the change of the formation thermal conductivity with

depth, The temperature gradients are directly proportional
to the changes of thermal resistivity, reciprocal of thermal
conductivity, with depth.

Under thermal equilibrium conditions, and in the
absence of obvious disturbing influences from heat sources
or sinks in the vicinity of the borehole, a log of tempera-
ture gradient versus depth is essentially the same as
a log of thermal resistivity with depth., For the case of

short injection or production times, sufficiently accurate
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values of thermal conductivity can be obtained by using a

continuous temperature gradient log and calibrating the

'compiete log by meaurements of thermal conductivity at three

or four selected locations of high, low, and intermediate
temperature gradient log values. The coﬁductivity measure-—
ments can be carried out using standard divided bar tech-
niques on borehole cores (Somerton, [63]}; Beck, [5]), on
recovered drilling chips (Sass, et al., [58]) or by in-situ
techniques (Beck, et. al.,{101]).

Figure 34 shows the comparison between estimated
thermal conductivities calculated from a temperature gra-
dient log and measured thermal conductivities. These
thermal conductivity values and the temperature gradient
logs were taken‘from a water filled borehole on the campus
of the University of Western Ontario (Conway and Beck,[19])
The borehole is 592m deep, water filled, and cased to a
depth of 441m. Features of the borehole and the core
material were described by Beck and Judge [9]. Continuous
analog temperature logs wefe obtained from the borehole.
Analog temperature logs are rapidly and simply obtained
but lack precision and resolution due largely to neglect
of probe time constant. As the probe is lowered down
the borehole it is not in thermal equilibrium with its
surroundings; thus the measured borehole temperature pro-
file does not accurately represent the actual profile.

The application of suitable deconvolution and smoothing

operators to the temperature record output will produce an



111

THERMAL CONDUCTIVITY, W/m°K

| 2 3 4 5 6 | 2 3 4 5 6
100 I 1 } i | LA ] } ] | { 1
MEASURED A\ ESTIMATED A
\
\
\
\
\\\
200 §_o:" =
."
I' -
{
[7/]
$ Y
£ I'
- [ |
T 300— : -
E ™
ch ]
)
]
[}
i
[}
\
/
\
)
400} { -
[
)
'
]
]
}
{
)
500 a1t 1 1 1 1 .t 1 .|

| XBL 819-7423

FIG. 34 THERMAL CONDUCTIVITIES FROM THE UWO BOREHOLE

(From Conaway and Beck, [19])



N

112

accurate borehole temperature profile. The application of

a simple derivative or gradient operator to this temperature
profile will produce a high-precision, high-resolution
temperature log. Details of the development and application
of suitable operators are presented by Conaway [18].

In applying the above method, first the temperature
gradient taken from the borehole on the campus of the
University of Western Ontario 1s plotted against the depth
of the borehole. Three values of measured thermal conduc-
tivity values of cores at intermediate, high, and low
temperature log values, reported by Beck, et al., [9], are
used to estimate the formation thermal conductivity for
every ten meters depth interval from the temperature grad-
ient 1§g. By using the linear relationship li/lj= (3T/3z)j/
(3T/3z )4 and the temperature gradient versus depth
plot, thermal conductivities of the formations along the
borehole are obtained from the three known thermal conduc-
tivity values of the formation. The estimated thermal
conductivities were found to match very well the measured
thermal conductivities in the regions of high or low values
of the temperature log if the measured thermal conductivity
value was selected at a2 low or high temperature gradient log

value. However, in the regions in which temperature grad-

-ient log values were in the intermediate range, the esti-

mated thermal conductivity values are higher than the
measured values. On the other hand, if a measured thermal

conductivity was selected in the intermediate temperature
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gradient log value_to calculate the estimated thermal
conductivities, the results are matched very weil in the
regions which exhibit intermediate temperature gradient log
value but give relatively lower values for other regions. In
Figure 34, two measured thermal conductivity values are used
to calculate the estimated thermal conductivities from the
temperature gradient log, one for the intermediate temper-
ature log value regions and one for the high and low temper-
ature log value regions. Excellént agreement between
estimated thermal conductivities and measured thérmal
conductivities is shown on Figure 34, The mean value using
the temperature log is about 2.51 w/m°K compared to about
2.44 w/m°K for experimental values.

Another set of data used for comparison is provided by

Amoco Production Company. This information is taken from a

well in Tulsa, Oklahoma. Data for the borehole and the

available core materiai includes temperature gradient logs,
lithology, electrical resistivity, and spontaneous poten-
tial logs. Temperature gradient is measured carefully,
recorded to a precision of 0.001°F, Thermal conductivi-
ties of the core are not available but are predicted from
the geophysical well log parameters available. The follow-
ing relations taken from Somerton, et. al., [62] and Anand

[2] are used for predicting thermal conductivities:
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A 0.48m
A=Ay 1,o+o.3(rl-1.o)°'33+457( ¢ 2‘;) )
g ’ 100 - ¢ Ag
S ~4,3
"_b] ‘
Pa
(4.13) N
1/3
and AS = A F (As =1~ M) S, ’ (4.14)
W w '
where ) = thermal conductivity,
p = density,
¢ = porosity in percent,
S8y = fractional brine saturation,

and subscripts-d, 1, g stand for dfy rock, saturating liqui&
and gas respectively; m is the cementation factor.

Porosity and saturation are estiméted from the resist-
ivity, spontaneous potential logs and information given in
the lithology logs. Details of procedure for estimating
these parameters are presented in Schlumberger Log Inter-
pretation Series (1972). In the regions where more than one
type of rock are present, a simple arithmetic average was
used to calculate the effective value of thermal conduc-

tivity,

n
A =3z (o,7,) . (4.15)
eff i=1 1717 :

From Figure 35 it can be seen that agreement between

predicted and estimated values is not as good as in the
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previous comparison. The mean value using the temperature
gradient log appears to be lower than the one using well log
parameters,.about 1.38 w/m°K compared to 1.67 w/m°K.
However, agreement between predicted and estimated trends is
quite good. The discrepancy is probably due to the inac~-
curacy in the estimated thermal conductivity values because
of lack of information.

From the results of this study, in-situ valres of
thermal conductivity and thermal diffusivity can be estimated
from temperature measurements in wells. Although laboratory
methods can measure thermal conductivities with accuracy as
high as one per cent for an individual specimen -it 1is
doubtful how far this represents the conductivity of the
rock in-situ and it cannot take into account the eifect of
veins or open joints in the rock which may well be important
in the calculation of heat flux. This suggests that a method
for measuring conductivities in-situ which is accurate to
within 5 to 10 percent would be more useful than the high
precision laboratory values. Values of in-situ thermal
conductivity can be useful for the following purposes:

(1) Determining terrestrial heat flow in the earth so
that the distribution and relationship of the heat flux to
surface and subsurface features can be obtained.

(2) Calculating heat lossses from wellbores in any
production or injection process in petroleum or geothermal
operations. The resultant heat losses between surface

and the injection or production interval could be very



important in the success or failure of these processes.,.

(3) Differentiating oil-bearing or gas-bearing
formations from water-bearing formations, since the rock's
effective thermal conductivity varies drastically depending

on whether the saturant fluid is water, oil or gas.

(4) From the correlations of thermal conductivity
with other geophysical well log parameters, in-situ thermal
conductivity values ma& also be useful in the estimation of
other physical properties such as type of formation, its

porosity,as well as it fluid content.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A mathematical model has been developed to study the
effect of variable thermal conductivity of the formations
and wellbore characteristics on the fluid temperature
behavior inside the.wellbore during injection or production
and after shut-in.

During the injection or production period the well~-
bore fluid temperature is controlled mainly by the flow
rate and heat lost to the formation. Variable thermal
conductivities of the formations have little effect on
the fluid temperature profile. However, the change with
time of fluid temperature in the wellbore is related to the
formation thermal conductivities via heat lost from the
fluid to the formation.

During early shut-in times, the wellbore fluid temper-
ature is a function of the rate of heat conduction and
convection in the fluid and the rate of heat lost which is a
complex function of the formation thermal conductivity.
There exist negative gradients in the wellbore fluid temper-
ature profile where the formation thermal conductivity
changes abruptly from a smaller value to a larger value. As
the shut~in time increases, the fluid temperéture profile
inside the wellbore is strongly affected by differences in
formation thermal conductivities. This effect is very

apparent after four hours of shut-in. The rate of return of



the fluid temperature to ;he geothermalvis proportional to

the magnitude of the formation thermal conductivity; If the
well is shut-in for a long period of time, the fluid tempera-
ture gradients approach the geothermal gradients, and the
values of these temperture gradients are inversely proportion-
al to the values of formation thermal conductivities.,

An estimation of the values of formation thermal conduc-
vity can be obtained by applying a modified heaﬁ sourée
concept to the fluid temperature record during the transient
period of injection or production and early shut-in times.
This involves plotting the fluid temperature versus time on
log=log paper and matching with the fheoretical curves.

If a well is injected into or produced for a short
period of time and the shut-in time 1is long so that thermal
equilibrium conditions prevail, values of the formtion thermal
conductivities along a wellbore can be estimated by using a
continuous temperature gradient log and by measuring the
thermal conductivity of the formation at a few selected
wellbore locations. In applying this method, two values of
thermal conductivity of the formation»corresponding to the
locations where the temperature gradient log exhibits high
and intermediate values, are measured by standard techniques,
laboratory or in-situ. This along with the temperature
gradient log may be used to estimate the thermal conductivity
of the formations along the wellbore by applying the relation-
ship Al = Ay (0T/32z)3/(38T/3z)1. These methods are operational
simple since only a temperature measuring device must be

lowered down the borehole and only thermal conductivity of the
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formation at few selected locations must be known.
From the results of this study, in-situ values of
thermal conductivity can be estimated from temperature
measurements in wells. Although laboratory methods can .
measure thermal conductivities with accuracy as high as one

per cent, it can only represent the value of an individual

~ specimen. A method for measuring conductivities in-situ

which is accurate to within 5 to 10 per cent would be more

useful than the high precisioh laboratory values for many

purposes. Values of in-situ thermal conductivity can be
useful for the determination ofbterrestrial heat flows

in the earth, heat losses from the wellbores in thermal
recovery processes, and in differentiating oil-bearing

or gas-bearing formations from water-bearing formationms.
They may also be useful in the estimation of other physical
properties such as type of formation, its porosity, as well

as its fluid content.
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APPENDIX A

FINITE DIFFERENCE REPRESENTATION OF THE GOVERNING

EQUATIONS AND ALTERNATING DIRECTION METHOD

In this appendix the development of the finite dif-

ference approximations to the governing equations and
the numerical scheme used to solve these equations will
be discussed.

Partial derivatives can be approximated by finite

differences in many ways. All such approximations in-

troduce errors, called truncation errors, whose presence

127

will be ' signified by employing the asymptotic O notation.

Let the point Pi, 3 form a discrete approximation for
domain D with spacings A z and Ar . A simple approxima-
tion for aT/azh,j will be developed, where the notation
Ty, = T(iAz,jA:) will be employed for the discrete
approximation,

Development of the Taylor series for T(z-Az) about
gives

2
T (z - A2) = T(2) - 4= (B2) + 5757 - 0 [82)°],

where all derivatives are evaluated at (z). Upon divi-

sion by Az one finds the relation

oT _ 1
= Ii’j == [1-1,) + 0[az]

z

(A-1)

(A-2)



128

which, upon suppression of the truncation error, yields
a backward difference approximation of first order in
truncation error.

As an alternative to the backward difference appro-

ximation, a forward difference is obtained in similar

fashion:
Az) = oT 1 BZT A 2 A 3 (A=3)
T(z + Az) = T(2) +-§; (Az) + 20 552 (Az) 0 | (Az) .

Division by A z results in the relation:

of L (A-4)
9z|. j Az

(T;q = T + 0 [AZ]

i+l

Approximation for the second derivatives are obtain-
able from the Taylor series of Equations (A=1) and (A=3).

Addition of Equations (A-1) and (A-3) results in

2
@L—;z){'r(z + Az) - 2T(z) + T(z - Az)}= %_%2 + o[(Az)z] g

In index notation one would write
527 T, . -20, .. T 2 (A-6)
322 |15 = 1+1, i 1, + i1, - 0[(az)“] .
)

(Az4)

Equation (A-6) has a second order truncation error.
In a completely similar way, the corresponding first
order and second order partial derivatives in cylindrical

coordinates are obtained in the forms:

(A-5)

IR
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’ %% = T(r+Ar) - T(r-Ar) - 0[(Ar)2] . (a-7)
2Ar
- 32'1' = T(+Ar) = 2T @) + T (x-Ar) + 0 [(Ar) 2] (A-8)
B ars (Ar)?2
i ” Or
| 3, _ T -T, . 2
| = 1,941 " "i9-1 +0 [en“] . (A-9)
? SEL,j 2Ar
32 - Ti 141 - ZTi j + Ti 4-1 2
3r2ii, 2 Y 2 + of[wn‘] . (A-10)

Having developed the basic finite difference approxi-
mation for the first and second order partial derivatives,
it remains to derive the finite difference representation
of the governing equations. The governing equation for
the transient, one dimensionél heat convection in a verti-

cal cylinder with heat lost through the wall of the

cylinder by conduction has the form:

2 9dT 2 9T _ 30
pcwrw Us; + pcnrw~§E = 2mer§; :w . (A-11)
The term 2gqr kég represents heat lost from the
w or Ty

fluid inside the cylinder to the surroundings, per unit

depth, and can be expressed as

: .38, _ . .2 (A-12)
Zm:wk§; = anw Up (GL. - T) .
Tw W
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Substitute (A-12) into Equation (A-11), and upon

division by pmri , Equation (A-11) has the form:

9T , 3T _ 20y @, - D
u ——— An— 3 °
9z ot pc r, (A-13)

In finite difference from, Equation (A~13) is written as:

u(z )T(t + At,z) - T(t + At, z = Az) T(t + At, z) -~ T(t, z)
Az At

U (A~14)
ch[e(t,l,z) - T(t + At, 2)] o[az +o [ac] .
w
In index notation it becomes
n+l ( n+l n+1> 2U, At
T - T T n _ ontl), -
i i i Az) pcrw (61,1 'I.‘i ) (A-15)

where superscripﬁ (n) represents the present time step
and (n+l) represents the next time step.

. Equation (A-15) is an approximation to the true par-
tial differential equation (A-13) with a truncation error
of the order (Az) and (A). The solution of the algebraic
Equation (A-15), with one unknown Tg+1, is straight-

forward.

s
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The governing equation for the transient, two dimen-
sional heat conduction bounded internally by a circular
cylinder and for the case where thermal conductivity varies

with the z coordinate, has the form:

e_% A(z)rar( ) Bz (A( ) 52 ) ° | (A-16)

Upon division by Pc, Equation (A-16) can be cast in

the form:

P - 139 20y 9 30
e o(z v (r —?)- ',;-Z'Ex(z) -é-;] = 0, (A-17)
where a(z) = A(z) /pc.

Applying the finite difference approximation, im-
plicit method, for the first order derivative in t and
second order derivatives in r and z to Equation (A-17)
yields:

8(t + At,r,z) - 8(t,r,z) _ a(z) 8(t + At, r + Ar,z) - 6(t + At, r—Ar,z)
At 2r(Ar)

0(t + At, r + Ar,z) - 208(t + At,r,2)+ 6(t + At, r - Ar,2)
(8r2)

+ a(z)

+ a(z + Az) O(t + At,r,z + Az) - 2a(z) O(t + At,r,2)
2
(Az)

+ 20(z =~ Az) 6(t + At,r,z - Az)
(Az)?

+ 0[(ar) )+ o [(an2]+ o[Lay?] . (A-18)
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In index form, Equation (A-18) can be simplified as:

n+l n n+l n+l n+l n+l n+l
R R N L O T e W W
At i 2r, (Ar) i 2
J (&r)
(A-19)
n+l n+l n+l
o181 4 72048 5040, .
(Az2)
This scheme is second order accurate in both time and
space., In case of non-uniform grid variation in the
radial direction the second and third terms in Equation
(A-19), after a few algebraic manipulations, can be com-
bined and expressed as follows:
2 e -0
1939, 38 1 < i,4+1 "~ i, g 6, . -0, )
=2 4 =~ r, - r i P i,]
7 = _ - ;
r or or Tyl T Tye1 342 Ti41” Ty j=1/2 R
(A-20)
where: rj41 = rj + oAr
rj-l = rj - RATr
0,B are constants,
and
r . 41 +r
§+1/2 —i——i-—-i ’
r =Lyt -1
§-1/2 ._1.5__1_ .
By substituting (A-20) into Equation (A-19), the
resulting equation has the form:
n+l n n+l n+l n+l n+l
SIS {r O 8 o %37 %0
| At Ti4l "~ i1 j+1/2 rj+1 - rj j=1/2 Ty - rj-l

"
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n+l n+l n+l
e TN REIR Bl A TY e T P T T

(Az)? (A-21)
This leads to a matrix problem of the type
Ad=4d . (A-22)

A is a pentadiagonal matrix and wiil be of order N M,

which is very difficult to handle and time consuming. An
alternative approach 1is the fractional step method of
Peacemén and Rachford (1955) known as the Alternating
Direction Implicit (ADI) method. The main idea is to
consider a multi-dimensional problem as a collection of
one-dimensional problems, each‘of which is solved over a
fraction of a time step. The associated matrix problems are
always tridiagonal, which are much easier to solve,

In this method, instead of using Equation (A-21), one of
the coordinate direction is expressed implicitly leaving the
other explicit and considering that time is advanced over half
a time step. Then the roles of the implicit and explicit
parts are interchanged to complete the time step. Thus, if
the spatial derivative with respect to r is evaluated

implicitly the resultant equation becomes:
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- nHs n n+s n+s nts . n+s
®,57%,3 2oy Oy, 4+17% 4 1,4 04,4-1
;ﬁAt - r =T, rj"'l/g . r -T - rj";i : r -1
i+l i-1 JHL) i T-1
n n n .
_ e R IR A M A - (A-23)
. 2 = ’
0z)
and
gitl_gnts 2%, gt _onths giHs_gnths
A 4. 41, 1,041 8, _ i, d,i-1
1 A -r. .+1 — s 1 o
A rj+1 rJ_1 Jvi rj+l rj J—= rj rj-l
n+l nt+l n+l
%,y P40 %%
@z)? ’ | (A-24)

where the spatial derivative with respect to z is evaluated

implicitly. Equations (A=23) and (A-24) lead to matrix

problems of the form

-)n_',;i _ ->
o =q, (A-25)
ntl >
and Ve =d. . - (A-26)

Each step is of first order accuracy and not unconditionally
stable. However, the combined scheme is of second order ac-
curacy and unconditionally stable. Ez contains all terms

in (A-23) evaluated at time level n, while Er contains

those in (A-24) at time level n+l/2, Equations (A-25)

and (A-26) are readily solved by the Gaussian elimination
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technique known as the Thomas algorithm. Solution of (A-25)

n+k

-
for © is used to evaluate drin Equation (A-26).
Consequently, alternately solving (A~25) and (A-~26)

repeatedly eﬁables one to advance the solution in time.
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APPENDIX B

DETERMINA?ION OF THE WELLBORE FLUID TEMPERATURE DURING

INJECTION OR PRODUCTION USING HEAT SOURCE CONCEPT

The governing equations for the system of wellbore
fluid and formation, at any depth during injection or

production, can be cast in the form

q’ +£?r—r2=)\§32’

2 3t or Ir (B~1)
2
2 T o) 3t (B-2)

These equations are subject to the initial and boundary

conditions.:.

D D (B-3)
BGD

i R I (B-4)
GD is bounded as r + » (B-5)

The following La Place transforms are introduced:

L@y = T=f , P ©deT o) , (B-6)



= [ -pt =
L(eD)-e-foe 8, ¢, 0)de=d 6,1) (57>

where p is the transform variable.
La Place transformation of the differential equations -
and boundary conditions with respect to time results in

the subsidiary equations and boundary conditions:

ae , 148 _1_
2 T Ydr 2 ’
dr q (B-8)
b _gq” _Mp= _
AF =" 2 T , r=r (B-9)
=UT (6-1) , rer
(B-10)
8 is bounded as r —* (B~11)
where q2 = p/a.
Solutions of Equations (B-8) and (B-9) subjected to
Equations (B-10) and (B-11l) give
2r q A
T- i
B p[rwpi\ + ZAKl (qrw)] ’ (B-12)
' 3 - 2rwq Ko (48 9)
N -pprA + Zlkl(qrw)]l 4
(B-13)

where, A = -]—'-—K Qr ) + (r—)‘-ﬁ—

)K, @r ).
qr_o T'w WU 1w

(B-14)

137
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Ko (2), Ky (2) are modified Bessel functions of the second
kind and zeroand first order, respectively.

From the Inversion Theorem of the La Place transfor-

mation TD(t) and GD(t,r) can be obtained by:
0 = LM T @)ePap,
251 (B-15)
Y=-i®
o) €,1) = 1 +ie & (p,rgptdp. | (B~16)
7z I

Exact evaluation of integrals in Equations (B-=15)
and (B-16) as real infinite integrals is straightforward.
These solutions are quite complicated and unsuitable, how-
ever, for the present purpose, i.e., deduction of thefmal
conductivity and thermal diffusivity from a temperature
time record, and an approximate solution for T is develop-
ed below.

If the time considered is large enough, as will be
discussed later,the following method introduced by Carslaw
and Jaeger [16] can be employed. The transform T is éx-
panded formally in ascending powers of p and Equation
(B-13) is evaluated term by term. Inserting the ascending
series expansions for the modified Bessel functions in

Equation (B-12) and simplifying, one obtains

. 2
-r q r
T ¥ [i In (—BP->+ & {fmen - wlen -2 )

B2 () - ocp)] , | (8-17)
w
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where B = e2Yri/4a g 1nw=2\/erT

Y = is Euler's constant = 0.5722,

By integrating term by term on the Bromwich contour B2

. (Figure 36) using the following results,(Carsiaw and

Jaeger,[16]),

1 pt. - (B-18)
z.m_/;r Ce" dp 0 ’
2 .
1] 1 PY,__ _ t (B-19)
i, $mention- [t)e ]
2
(B-20)

. Pty = -
5T f 1n Cp)e® "dp 1/t
B,

1 2 eoyePtap = Z1n |E
orT 1o Cple” dp i 1@ [c + Y], (B-21)
Brp
(where C is a real positive constant) one obtains
)
T¢) = Twl [ <at 2)
Ind (=) - v+ +
2\ rw> UTrw (B-22)

bc)
1 ot W o] 2\ -1
- 0 - — - +
T 1“‘*(;7) Y+ 10" T 1“‘*(??) G r] 4
(—2-> W ) w T w

T

w

Rigorous mathematical justification of the formal

process described above has not yet been made. However,
for typical rock, with a wellbore of suitable size, a
few hours must elapse before the term of 0(1l./ot/ry2)

can be neglected without introducing appreciable error;
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on the other hand, if the term of 0(l./ot/ry2) is included,
a relatively small minimum (at/ry2) can be tolerated

(Blackwell, [11]; Murphy, et. al., [50]).

© XBL 819-7425

FIG. 36 BROMWICH CONTOUR (Brz)
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APPENDIX C

LISTING OF COMPUTER PROGRAMS

ConoaaP ROGRAM TEMWMP ] tenas
PROGRAM TEMPI(FILMs INPUTsOUTPUT+TAPES=OUTPUT»TAPES=INPUTTAPEY,

1PUNCH)
CEPEEES IO EERtNteEitiast Etsteatatintieaiisastsctiaiatetastigtesasessnnts
¢ INJECTITIONPRODUCTION wWELL PROBLEM
< PROGRAM USED FOR CALCULATING TEMPERATURES OF THE FLUID AND THE
¢ SURROUNDING FORMATION DURING INJECTION/PRODUCTION,

c...... SRR RS RN RN NN BN RN ERENGREERRNCGRERNEERROREEANARNANERNQNEORERNBONES
DIMENSION 7(200)OTZ(ZOO)OTRES(ZOOOZOO)OALA"DA¢ZOO)OALPHA(200)
DIMENSION HCOEF(200)sRT(200)+TEMP(200)

DIMENSION A(200)¢B(200)9C(200)+D(200) BETA(200)
DIMENSIOR TME(3000)9TEM(1000)0YY(200)
DIMENSION RHO(200),U(200)

DIMENSION TINT(200)

DIMENSION TIN1(30,2009

PI1=3,16189

INDEXs0

JDEX=0

MAX=20

MAXR=10

MAXRMeMAXR]

MAXMaMAX=1

AK=],4?

ONO= e 25

DN=0Del

TIME=O.0

DTeb0¢

C SPEC] v CHARACTERISTICS

c......'.'.’.....‘....' (122122211221}

CCCCC THE VARIABLES ARE DEFINED.RW IS THE RADIUS OF THE WELL<ALENGH IS

C THE LENGTH OF THE WELLCP 1S THE HEAT CAPACITY OF THE FLUID IN THE

(4 WELLALPHA IS THE DIFFUSIVITY OF THE FORMATION

C HCOEF 1S THE HEAT TRANSFER COEFFICIENT FROM THE FLUID IN THE WELL

Cc T0 THE RESERVOIR

CCCCC ROCP 1S THE DENSITY TIMES THE MEAT CAPAC!Tv Of T"E FLUID
Rus=,08
Af{ ENGH=1000.

DX=ALENGH/MAX
‘DXSQ=DX#DX
DELTege0
CVs4270.
ROCPRE=2,35E6
TINJEC=150.0
URs2.8
FLOW=6954/60.
CONSTsFLOW/(PIERWSRY)
Alo=e 4 T166THE~S
81%,11421%03
C1=~2:996214
D1227.595%8
D0 1 I=]1.4

1 ALAMDA(I1e1e2
ALAMDA(S 12,0
DO 2 1s6+9

?2 ALAMDA(T)In2,0

141
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ALAMDA(10)=2,3
DO 3 I=11s14
ALAMDA(I)ule8
ALAMDA(1%) 22,7
D0 & Is16920

& ALAMDA(1)=3,6

CCCCC INITIALILIZE TEMPERATURE
C T2(1) 1S THE NEW TEMPERATURE IN THE WELLsTINT IS THE INITIAL
(o TEMPERATURESTRES(Jol) 1S THE TEMPERATURE OF THE ROCK SURROUNDING
C THE WELLOTINJEC IS THE INJECTION TEMPERATURE(I=1 IS AT THE TOP,
CCCCC AND IsMAX IS AT THE BOTTOM OF THE WELL)
TINT(1)=20,
DO 6 ls2iMAX
6 TINT(I)=TINT(1=1)¢DELT/ALAMDALT)
DO 10 IslymMaX
T2(1)=eTINT(])Y
DO 20 Js)eMAXR
20 TRES{(Je1)=TINT(])
10 CONTINUE
Y2(1)eTINJEC
CCCCC RADIAL GRID IN RESERVOIR
c AR ERNRRHBRERERINDORR RN
C THE VARIABLES AKsDNosDNO ARE CONSTANTS WHICH CAN BE VARIED TO
CCCCC GIVE THE DESIRED SPACING(DNs1./THE TOTAL NUMBER OF GRID POINTS)
DO 30 1sjeMAXR
50 RT(!lHSeC(AK0’((l-ll’DN/DNOl-lotl(ll"(l.lDNO)-loi#Rw
PRINT 31
31 FORMAT(/7910X+oDIMENSTON OF RADIAL GRIDS#,/7/)
PRINT 3o (RT(JIoJu]leMAXR)
32 FORMAT{4X910F104,%)
PRINT 499
499 FORMAT(//704SX+#INITIAL TEMPERATURE DlSTQ!BUTIONGoII)
D0 19 lslemAx
PRINT 500¢(T2(3)e(TRES(Jol)oJuleMAXR))
19 CONTINUE
S00 FORMAT(6Xs11E10,3)
DO 49 Is]omAX
ALPHA(11(5,0E=T)®ALAMDA(])
HCOEF { 1 I=UR
49 CONTINUE
TPs(T2(1)427%3¢)714E4
VFsA1+B18TP+Cl14TPHTP4D IR TPRR]Y,
KRHO(1)=]1e/VF
Ul(1)1==«CONST/RHO(])
€CCCC REINITIALIZE TEMPERATUREsIsEe T(I) 1S THE OLD TEMPERATURE WHICH
€CCCCC 1S SETY EQUAL TO THE NEwW TEMPERATURE
c T Y Y Iy Y Y Yy Y YTy Yy Y Y Y Y YYY I YY)
o NEW TEMPFRATURE OF THE FLUTD IN THE WELL
¢ SRR EREENRAN RN SRR IRNE SRt RNENAERRRRERtneR
35 DO 40 IsleMAX
T(lisT2( 1)
&0 CONTINUE
INDEX=INDEX+1
TIME sTIME+DT
€ CC CALCULATE THE NEW TEMPERATURE IN THE WELL
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DO %0 Je2emAX

TPs{T(114273.1/1E4

VFeAl14B18TP+C1eTPETP+D1#TPRE],

RHO(IV=)s/VF

U(11sRHO(I=118U(l=1)/RHO(])
T2(1)1aT(I)eDTH(=U(TI®(T(I=1)=T(]11)/DX)+(HCOEF(T1)ISDTR(TRES(1e1)=T (1]
11102 /RW)I/Z(RHO( T ) eCV)

50 CONTINUVE

YL YRYTY YT YA Y TR Y YT I TR T Y RYY P YY)
TEMPERATURE OF THE SURROUNDING FORMATION
TR I YT TY YR Y T TN YT T Y Y YTy Y

AT TIME LEVEL N+1/2

TTITT YT TT PRY PYY Y D 2T A

D0 60 IsloMAXM

1P=l4]

IMeT=1

00 70 Jm2oMAXRM

JPeJel

JM= =]

C(Jl--ALPHA(])O(Dle.)O(RT(JP'ORT(Jlll(RT(J"(RT(JP)-RT(JM))'(RT(
1JPI=RTIN))

AlJ1e=ALPHA( IS (DT/2, 1% {RTIJISRTIIM) 17 (RTISIHIRTIJP)=RT(JIM) ) #IRT(
1N1=RT (M)}

BlJSIsTe=ClI)=ALI)

70 CONTINUE

ETASALPHAL 1 19(DT/2e 19IRT(114RT(2)1/7(RT(1IS(RT(1)1=RT(21)882)
Bl1)=)o¢DTHHCOEF(II/((RT(2})=RT(]1))®ROCPREIFETA

Cl1)==ETA

CALL AMATRX(AsBeCoBETAIMAXRM] )

DO 80 JsliMAXRM

IF(IeNE«11GO TO 8

DINI=TRES(Js 1)1 # (] =ALPHAI11ODT/DXSQI+(TRES(Je21+TINT(1) 18 (ALPHA(])
10(DT/72,)/DXS0O)

GO 10 80

8 DUJISTRES(Jo114(1,~ALPHA(I)® DT JDXSQI+{TRES{JoIP)+TRES(JoIM) ) #

1{ALPHA( 12 (DT/24)/DXSQ)

80 CONTINUE

0‘1"D(I’ODT0HC°EF(I)072(1’IIROCFRE.(RT(ZD-RTlli’t

DIMAXRM) 2D (MAXRM)I+ (DT/72, 1FALPHAITIRTRES(MAXR I 1 *# (RT(MAXR ) «RT (MAXRM
IIVZERTIMAXRM)I® (RT (MAXR ) =RT(MAXR=211#(RT(MAXR}=RT (MAXRM) Y

CALL TR!DI(DoTEﬁPvoCoBE?AoMAXRMoi)

D0 75 J=1loMAXRM

75 TRES(Js1)sTEMP (J)
60 CONTINUE

AT TIME LEVEL N+)
G0 A28004 000 EGRES
DO 90 JmlsMAXRM
JPe 4+

Jus j=
Do 100 l'ztnﬁXM
IPsle] :
IMsl=] .
ClI1w=ALPHALT)8(DT/2.,)/DXSC
All)sC(])
B(I)1nle=2,%C(])
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100

11

108

110
96
C
C
c

27
101

102

CONTINUE )

Cll1)i==ALPHA(11®#(DT/24)7DXS0

Bll)=le=2,%C1Y)

CALL AMATRX(AeBsCoBETA MAXM, 1)

DO 108 Il eMAXM

1FLJeNE116GO TO 11
EIsALPHA(II®(DT/2, 1% (RTI214RT(11I/Z(RT{II®IRT(191=RT(2) )82
D(I)eTRES(141)18(1~E1=DT®HCOEF(1)/((RT(21=RT(1))®ROCPRE) 14D T*HCOEF
1CII8T2(1)/7CIRT(2)1=RT(1))I®ROCPREI+TRESI2+119E]

GO T0 108
E;‘ALPHA(’"(DT/:."(RT(J’)#RT(J"l(RT‘J"(RT(JP)‘RT(JN)"(RT(JP)'
IRT(JIIY)

FIoALPHAITIRIDT /2, 1% IRTIJIRTIIMIIZ(RTLIIM(RTIJIPI=RT(JM) )R (RT(J)=
1RT (M) )Y .
DIIISTRES(Jo118(1e~E1=F11¢TRES(JPSI)RETSTRES(JIMs 1)®F |
CONTINVE

D(1)1=D{(1)+(DT/2. 1SALPHALII®TINT(1)/7DXS0
DI(MAXM)sD(MAXMI+{DT/2+ )8ALPHA(MAXM)STRES{ JoMAX) /DXSO

CALL TRIDI(D+TEMP oA CoBETAIMAXM,])

DO 110 [Is]eMAXM

TRES(Js11aTEMP (1)

CONT INUE
2800488880000 00808080

RESULTS PRINT OUT
Y Y Y TRy Y Y YTy Y

IF({TIME/60e)eGE1440,) GO TO 101

IF(INDEX.LTe10) GO TO 101

TF{INDEXeGT«1000) GO TO 97

IFLINDEXFQe L INDEX/760Y88D) 60 TO 101
IFCINDEX.EQe (INDEX /90018900160 TO 101

GO T0 35

CONTINVE

TIME3=TIME /60,

PRINT 102,TIMES

FORMAT(//04X+%FOR TIME OF#oF10,304X#MINUTESR//)

PRINT 103
103 FORMAT(//91Xe®WELLBORE TEMPERATURE®#,30X+#RESERVOIR TEMPERATURE®,/

/)
‘DO 120 1s=)omAx

PRINT 1000¢(T2(13o(TRES(JoT)eJulsMAXR))
JDEX=JDEX+]

TME(JDEX)=TIMES

TEM( JDEX )= T2(MAX)

120 CONTINUE
1000 FORMAT(11F10,3)

200 CONTINUE

1001

IF((TIME/60e)0GEe14400) GO TO 200
GO TO 35

WRITE(T91001 )¢ (TRES(TeJ)o ISl sMAXR) 9 Ju1oMAX)I s {T2( ) eInloMAX)
FORMAT(11F10+%)

DO 600 1s]1.MAX

TINTII)=sT2(])

DO 700 J=)oMmAXR

700 TINI(JeI)aTRES(Jo1}
600 CONTINUE

&



Y

PRINT 6504 (TINT(I)s]Is)eMaX)

PUNCH 6504 (TINT(I)oI=1loMAX)
650 FORMAT(10F8.%)

PRINT 7504 (ITINI(JolI)oJ sl sMAXR)sIm]9oMAX)

PUNCH TS0 (ITINI(Jel)o uloMAXR )y In] eMAX)
TS50 FORMAT(10F8.3)

sTOP

END
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%S UBROUTINE AMATRX e

SUBROUTINE USED FOR SETTING UP TRIDIAGONAL MATRIX.

c.I.lIGl.Q".'CC..llCCQI.O’C..i.'...0.00...’.0....0.00...CQ.QQQ.Q....'I

SUBROUTINE AMATRX(A4ByCoBETAWMAXIISTART)
DIMENSION A(MAX)sBIMAX)oCIMAX) ¢BETAIMAX)
JEISTART

BETA(JISBIISTART)

JeJd+l

D0 1 IsJeMAX
BETALI1eB(11={A(]I®C([=~1))/BETA(I=])
BETA(MAX )oB(MAX)=A(MAX)IBCIMAX=1) /BETA(MAX=1)
RETURN

END

S UBROURINE TRI1D les

SUBROUTINE USED FOR SOLVING TRIDIAGONAL MATRIX.

c......il...'.'lC.'QQ'C...G.Q.CQ.QOQQQGI'CQO.IlQ.CGQC.C...Q.C....QQQ'.G

SUBROUTINE TRIDI(DsPToAsCoBETAIMAXSISTART)
DIMENSION DI(MAX)sPTIMAX)IsAIMAX T oCIMAX) oBETAIMAX) oGAMMA(200)
Jel START :
GAMMA ( J1eD(JY/BETA())

Ju g+

NO 1 I=aJeMAX
GAMMA(T)I=(D(1)=AlT)GAMMALI~1))/BETAL])
CONTINUE ‘

JeMAX

PT(1YeGAMMA(L)

{sl=y

PT(1)sGAMMA(1)=C(1I8PT(141)/RFTa(])
JIF(1.GT«1STARTY GO TO 2

RETURN

END



-t

Du

“

CotsssP ROGRAM T EMP 2 snses
PROGRAM TEMP2( INPUT,OUTPUT)
c.l...'...l..Q'l"......'l'.....l.....l’.I.'.’...'........!...l.......l

C SHUT=-IN WELL PROBLEM
C PROGRAM USED FOR CALCULATING TEMPERATURES OF THE FLUID AND THE
c FORMATION DURING SHUT=INe

c...........’.....'.‘.'.'.'.'.....'..............'.'..'........'.......
DIMENSION TW(30+200)9TRES(30+200)¢TINI(30+2001sTINT(200)
DIMENSION ALAMDA(200)¢ALPHAL200)+TEMP(200)

DIMENSION A(200)9B(2001+C(20019D(200)+BETA(200)
DIMENSION R(200)1+RT(200)
INDEX=0D -

MAX=20

MAXR=10

“xX=20

MR=6

MAXMEMAX =1

MAXRMsMAXR=]1

MXMeMX =]

URAME MR

ACm1,2

DNNe0,2%

ON=0,.1}

T0=20,

TIME=Q,

DTe?4n,

C SPECIFY CHARACTERISTICS

c.......".'.'....'.........'.......

CCCCC RW 1S THE RADIUS OF THE WELL+e ALENGH 1S THE LENGTH OF THE WELL

C ROCP 1S THE DENSITY TIMES THE HEAT CAPACITY OF THE FLUID.KAPA IS

< THE FLUID DIFFUSIVITYs H IS THE HEAT TRANSFER COEFFICIENT FROM

C THE FLUID TO AMBIENT .

C ALPHA(]) 1S YHE FORMATION DIFFUSIVITYs HCOEF IS THE HEAT TRANSFER

CCCCC COEFFICIENT FROM THE FLUID TO THE FORMATION.

. RW=0,08

Al ENGH=1000,
DOX=AL FNGH/MAX
DXSQ=DX#DX
ROCP=2,35E6
H=5,0
HCOEF =25,
ARAPA=S,OF =8
N0 1 I=leb

1 ALAMDA(I1=1.2
AL AMDA(S I=?,n
DO 2 1=6,9

2 ALAMDA(I)In2.8
ALAMDA(10)=2,3
D0 3 Isl1914

S ALAMDA(I)=].0
AL AMDA(18)=2,7
DO & 1216020

& ALAMDA(T1m%,6
N0 11 felymMax

31 ALPHA(]1(S,0E~T)ISALAMDA(T)
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(< RADIAL GRID SYSTEMS
c SRERIRRORERFERNRINEEY
CCCCC FORMATION
D0 20 J=1yMAXR , o~
20 RT(J)1a3,8(AKSS ({J=1IDN/DNOI=Y )1 /7 (ARKSR (1, /DND) =], 14RW*],2
© PRINT 21 :
21 FORMAT(//+15Xo@DIMENSION OF THE RADIAL GRIDS IN THE FORMATION#,
7777
PRINT 22+(RT(J)eJe]leMAXR)
22 FORMAT(4&4X910F12+5)
CCCCC WELLBORE
R(1)=s, 3000
R(%)n.883RW
R(3)1s,TSaRY
R(6)s, 8800w
R(S)=s,93%RW
R(6)=994RW
PRINT 24
26 FORMATI//+1%%Xe8DIMENSION OF THE RADIAL GRIDS IN THE WELLBORE®,/7/7/
1
PRINT 28¢(R(J)oJu1 MR}
- 2% FORMAT(4LXs8F12.5)

C INITIALIZE TEMPERATURES

c ARRRTLINEBVRTANEVRSSBRN0E

CCCCe TWiJsl) IS THE NEW TEMPERATURE IN THE WELLTINT(1) IS THE FLUID
c TEMPERATURE AT THE END OF THE INJECTION PERIOD(I=]1 IS AT THE TOP
o +AND 1=MAX AT THE BOTTOM OF THE WELL}

C TRES(Je1) IS THE TEMPERATURE OF THE SURROUNDING FORMATION,
CCCCC TINI(Jel) 1S THE FORMATION TEMPERATURE JUST AFTER SHUT=IN,
. READ 4S5+(TINT(1)eTl=loMX)
4% FORMAT(10FB8.)
READ 469 ((TINI(JoIloJdnloMAXR)oIm]1eMAX)
46 FORMAT(10F8.3)
D0 47 lslemX
DO &8 Js1eMR
&8 TWIJe1)=TINT(]Y
47 CONTINUE
DO 49 Is1eMAX
D0 &4 Js)eMAXR
&4 TRES(Jeils TINI(JoI)
49 CONTINUE
. PRINT 410
410 FORMAT(//+20X+#INITIAL FLUID TEMPERATURE DISTRIBUTION®s////)
PRINT 4184 ({TW(JeT)oJu]loMR)oInloMX)
41% FORMATIAX06F12.5)
PRINT 420
420 FORMAT(//7940X+#INITIAL FORMATION TEMPERATURE DISTRIBUTION®4//77)
PRINT 4250 ({TRES(JvI1oJSnloMAXR) o In]oMAX)
425 FORMAT(AX910F12.5)
35 INDEXsINDEX+]
TIMEaTIMESDT _
YT IYY YT Y YVY Y T Yy Ty PPy r ey YT Yy vy e

TEMPERATURE OF THE FLUID IN THF WELL
LTI TR T 22T P2 YT Y T Y TPy r e e T e Y Y e

AT TIME LEVEL N+1/2

(aXaNa¥al



[ ' NGRSV NSRAGRRNANS
' DO 50 I=1oMXM
~4 1Psl+]
M ]=]
DO 51 Js2.MRM
JPuJe]
JMe =1
1FtJeGTet) GO TO 810
ClI1a=B3  BAKAPAR(DT /2, 18 (RIJPISRISVIIZIRIJIM(RIIPI=RIIM)IS(RIJIP)I=R(J
1
A(J18=3,8ARAPAR (DT /2,18 (RIJISRIIMIJZIR(JIS(RIIPI=RIIMIIB(RIJI=R{IM

510 clJ’.-AKAPA.(DTI3."(RKJPDOR(J)1/(R(J).(R(JP)-R(JM)i'(R(JP)OR(J!))
A(J)oapAKAPARIDT/6 18 IRIIICRIIMIIZIRIINISIRIIPISRIIMIISIRIJI=RIIM) Y)Y
8§11 B(Jlete=A(J)V=C )
$1 CONTINUE
Al(11=0,
CllIm=3RAKAPAS (DT /4 ) #(R(1I+RI2)1/(R{1IMIR(1)=R(2))9¥2)
B(1i=1,=C(1)
ETASAKAPAS (DT/6. )18 (RIMR)ISR(MRM)I I/ IR(MRI*(RIMR)I=R(MRM))®#2)
BIMR) 2144 (DT/2,1*HCOEFR2,7((RIMR)=RIMRM) )EROCP)+ETA
A(MR)=s=ETA
CALL AMATRX(A9BeCosBETAMRs 1)
DO 852 Js1leMR
1F{JeGTe2) GO TO 533
IF(IeNEe)) GO TO 83
D18l ]e=AKAPAR(DT/2,)/DXSQ=(NT/2:,)5H/IDXEROCP)II1#TW(Jo]l)s (AKADAS(
1DT/24 ,7DXSQOIBTW(Je214L(DT/2: 18K/ (DXEROCP ) 14TD
GO T0 52
83 D(JIB{10=2.%(DT/2s)2AKAPA/DXSQIETW(Je])e 'AKAPA’(DY/ZO’/DXSQ”
I(TWIIeIPYISTW e IM))
GO Y0 %2
833 IF(]«NEsl) GO TO 334
DIJIB(1e=3FAKAPAS (DT /44)/7DXSQ=(DT/72. 191/ (DXSROCP)IISTW(Js1) 43¢
1AKAPA#(DT/4¢)/DXSO18TW(Je214((DT/2+ )1/ (DXSROCP}I®TO
GO0 T0 52
834 D(J18(1e=20(DT/4 183, 8AKAPA/DXSQISTW(Je] )4 (3. RAKAPAR(DT /44 /7DXSQ)
18(TW (JeIP)+TW(JeIM))
82 CONTINUE
4D(HR)'D(NR)ODTOHCOEf'TR'S(Io!)/l(R(NR)-R(HRN’)'ROCP)
CALL TRIDI(DsTEMPsAsCoBETAIMR,])
DO 54 JsleMR
84 TH(Us1IsTEMP(J)
830 CONTINUE
C AT TIME LEVEL N+1
c (2222232l rYIyyyy
DO 60 Jm1eMR
P jo]
JMs J=1
¥ DO 61 Is]leMXM
o 1p=ie+]
IMal=]
1F(JeGTe2) GO TO 600
ClI)m=AKAPAR(DT/2,)/DXSO

D
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NN AN

600
601

61

602
603
63

64

62

6%
40

G0 TO 601

Cil)e=AKAPA®S . 2 (DT/4.1/70XS0Q

AlIYeC(])

Rl11=]=2,9C(])

CONTINUE

B(i11sB(1)e(DT/2.1%H/ (DX#ROCP)

CALL AMATRX(AsBeCoBETAMXM,y 1)

DO 62 I=mloMmxw

IF(JeEQe1) GO. TO 619

IF(JeEQeMR) GO TO 64

IF(JeLTe8) GO TO 602
sloAKAPA'(DTI:.)'(R(JonR(J’)I(R(J!O(R(JP)-R(JM))C(R(va-R(J))’
FIsAKAPAR(DT /3 ) #{RIJISGRIIMIIZ(RIJIGIRIIPI=R{IM) ) (R(JI=R(JIM) )}
GO TO 6012

EIs3 . BARKAPARIDT/& 1R (R(JPISRIIIVIZIRISISIRIIP IR IMI YB(R( )P =R(J}))
FIn3,0AKAPARINT/4 1% (RINNSRIIMIIZIRIJISIRIIPIRIIMI VS (R(JI=RIIM) )Y
DIl e=FI=FII0TW{Jol 14eTW(UPII)ISET4TW(JIMy])®"F]

GO T0 62

Eln3.®AKAPAR(DT/4e 1R (RI214R(1IIZIRIIIM(RI2V=R(]))0e2)
DII1s(le=EIN18TW (1ol 1eTW(2s1)®E]

GO T0 62
E1=AKAPA®(DT/3, 1% (RIMRISRIMRM) )7 {R(MRM)® (R(MR) =R (MRM))®#82)
FIs(DT/2.)9HCOEF/{ (R(MR)=R(MR¥} I RROCP)

D11 {le=EI=FIIRTW(MRy T 1+TW(MRMoI)SEJ+TRES(1+1)%F

CONTINUE

D(11=D(114(DT/2+)8H2TD/ (DXSROCP)

DIMXM ) =D (MXM)+AKAPA® (DT /2. )8 TWJeMX ) /DXSO

CALL TRIDI(DeTEMPoAsCoBETA ‘XMe1)

DO 65 I=]leMXM

TWiJeII=TEMP( ]

TH(IoMX )80 /2% (THISoMXI+TRES (] oMAX) )

CONTINUE
CQQCOQCQQQOOQQQQOQGIG.QOQQQQ.GQGOQQCIOQQ'Q

TEMPERATURE OF THE SURROUNDING FORMATION

SECETENESASNCRAARTACAABRRGRRNNTNBNSEBRQRBES

71

AT TIME LEVEL N+1/2
Y Y Y T YT
DO 70 I=1eMAXM
tPele}
tM=le]
00 71 Js2sMAXRM
JP= g+
Mz Je]
ClUImaALPHA(TIRIDT /210 IRTIIPIGRI(IIVIZIRTIJIN(RTIIPI=RT (M) )R (RT!
1JP)=RT(J)))
AlJ)e=ALPHA( 1) IDT/2 18 IRTIJISRT(IM)IZIRTIJIR(RT (P )=RT(IM)I#(RT(
1J1=RT (M)}
BiJizle=ClJI)=A(D)
CONTINUE
ETA=ALPHA( I 1®(DT/2 1% (RT(114RTI211/7(RTIII®I{RT(1)=RT(2))1%22)
B8(11e],+DTHHCOEF ZUIRTI21=RT (1) 3®ROCP )JeETA
Cl1)==ETA
CALL ANATRX(AoBoCo'ETAoHAXRHo!i
D0 T2 JmlsMAXRM
IF(IeNEes1) GO TO 73



DIJISTRES(Je11#(1e=ALPHAC1)SDT/DXSQOI+ITRES(Je214TINI(Je1) )8 (ALPHA
101)8(DT/2.)/DXSQ}
GO T0 72
T3 DIJI=TRES(Jo1)®(),=ALPHA(]1)® DT JDXSQI+(TRESIJoIPIHTRES(JoIM) ) #
JCALPHA(1)1®(DT/24)/DXSQ)
72 CONTINUE
D(1)=D(1)14DTEHCOEFRTW(MRSII/(ROCP ®(RTI21=RT(1)})
DIMAXRM)sD (MAXRMI4 (DT /2, 1 #ALPHAIJISTRESIMAXR I )# (RT(MAXR)¢RTIMAXRM
: l))I(R'NMAXRM)'(RT(MAXR)-RT(MAXR-Z))'(RT(MAXR)'-RT(MAXRM)))
i CALL TRIDI(DTEMPoAsCoBETAIMAXRMs1)
} DO 75 J=1leMAXRM
i TS TRES(JelINSTEMP (J)
70 CONTINUE
i C AT TIME LEVEL N+l
} c XTI YT TY YT YT Y Y T YY)
i DO 90 J=1,MAXRM
JP= 4]
JM= =]
DO 100 I=2emaXm
1Ps]+)
IM=s1-1
ClI1s=ALPHAITI)®(DT/2+)/DXS0
alti=Cl(1}
: A(lI1=),=2,9C( 1Y
i 100 CONTINUE
: Cl1)1s=ALPHA(112(DT/2.)/7DXS0
Bllimle=2,0C(1)
CALL AMATRX(A9sBoCoBETAIMAXM, 1)
DO 105 Is],mMAXM
IF(JeNEe1) GO YO 83
EInALPHAITIR(DT/2. 18 (RT(214RTI1III/Z(RT{1IN(RT(11=RT(2) )04
DI(T)sTRES()191)18(1,~F1=DTEHCOFF ZUIRT(2)1=RT(1)1)I4ROCP ) )+DT®HCOEF
19TW(MR J)/Z7C(RTI2)=RT(1)1VI®ROCP )+TRES(2+1)%E]
GO YO 108
83 El-ALPHl‘l"‘DT’Z."(RT(JP'QRT(J"/(RT(J’.(RT(JP)-RT(JM))'(RT(JP)O
1IRT(J) )
FIsALPHMA(TI®(DT/2 1 IRT(JISRTIIMYI) Z(RTIJIH(RT(JIPI=RTIIM) ) #(RT(J}~
IRT (UMY Y)Y
D(!i-TRES(Jo!)0(lo-El-Flt#TRES(JPo!)'El#TRES(JMo!!'Fl
105 CONTINUE
D(!!-D(llO(D?lzo!'ALPHA(li't!N!lJol)IDXSO
DIMAXMISD(MAXM) * (DT /2. ) RALPHA(MAXM)STRES( JoMAX) 7/DXSO
CALL TRIDI(DeTEMPoAsCoBETAIMAXMe 1)
DO 110 el MaxM
110 TRES(JoI)=TEMP(])
90 CONTINUE

Cc SE2RB2RBRR2R 000000
B ¢ RESULTS PRINT OUT
i (4 SUSRNERERBAERNRNS

IFt{TIME/60e)eGE«11520.) GO TO 101
IFCINDEXeLT30) GO TO 101
¥ IF(INDEX.GT41000) GO TO 97
IFCINDEX<EQe ( ENDEX/601860) GO TO 101
97 IF(INDEX.EQ.{INDEX/900149001G0 TO 101
GO TO 38
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101

102

103
$00
104

501

200

CONTINUE

TIME3=TIME /6%

PRINT 102,TIMES

FORMAT (/704X o#FOR TIME OF#sF10304X+SMINUTES®/ /)
PRINT 103

FORMAT(//+20X+aWELLBORE FLUID TEMPERATURE®4//)
PRINT 800, ((TW{JoTloJuloMR}Io1n]omMX)
FORMAT(4X+86F12.9)

PRINT 104

FORMAT(/7940X s 8FORMATION TEMPERATURE®¢//)
PRINT 8014 ((TRES(Je1 Vo Ju]oMAXR) o Tu] ¢sMAX)
FORMAT (4Xs10F12,3)

IF((TIME/60¢)eGE+115200) GO TO 200

GO TO 3%

CONTINUE

s$TOP
END

AN

~



€C @S UBROUTINE AMATRIYX &
c SUBROUTINE USED FOR SETTING UP TRIDIAGONAL MATRIX.
oy P LYY T TET TR EY TP PTY PT T Y YT ST TY YT Y TRTT LTY T LYY YV 7Y Y T TV T VPP Tre T
SUBROUTINE AMATRX (A¢BoCoBETAMAXsISTART)
DIMENSION AIMAX)oB(MAX)9CIMAX) oBETA(MAX)
JEISTART
BETA(J)I=B( ISTART)
JsJ+]
DO 1 IsJeMAX
1 BETA(I)eB(I1=(A(]IV®C{I=2)1/BETA(]=-1)
BETA(MAX)aB (MAX)=A(MAX)2C(MAX=1)/BETAIMAX~1}

RETURN .
END
C ®S UBROURTINE TR 1D les
c SUBROUTINE USED FOR SOLVING TRIDIAGONAL MATRIX.

CQQQGIQ0!00000!000060.00.00.0QQQQCOQGQQO00Q0QQOQQQQQQOQQCOQCQQQ00'60001

SUBROUTINE TRIDI(DePToA+CoBETAIMAXISTART)
DIMENSION D(MAX)oPT(MAX)IosAIMAX ) sCIMAX) oBETAIMAX ) 9GAMMA(200)
J=ISTART
GAMMA () eD(J)/BETA(LY)
JeJ+)
NO 1 IsJemax
GAMMA(I1=(D(T)=A{T)*GAMMA(I=]1))/BETA(])

1 CONTINUE
TeMAX
PTLI)=GAMMAL])

?2 lala=y
PT{1)1oGAMMAL 1 )=ClTII1%PT(1+1})/RETA(Y)
1F(1.GT<ISTART) GO TO 2
RETURN
END
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