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RESEARCH

Accommodating heterogeneous missing 
data patterns for prostate cancer risk prediction
Matthias Neumair1*, Michael W. Kattan2, Stephen J. Freedland3,4, Alexander Haese5, Lourdes Guerrios‑Rivera6, 
Amanda M. De Hoedt3, Michael A. Liss7, Robin J. Leach8, Stephen A. Boorjian9, Matthew R. Cooperberg10, 
Cedric Poyet11, Karim Saba11,12, Kathleen Herkommer13, Valentin H. Meissner13, Andrew J. Vickers14 and 
Donna P. Ankerst1,15 

Abstract 

Background: We compared six commonly used logistic regression methods for accommodating missing risk factor 
data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and devel‑
oped an online risk prediction tool that accommodates missing risk factors from the end‑user.

Methods: Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were 
used for fitting a risk prediction tool for clinically significant prostate cancer, defined as Gleason grade group ≥ 2 on 
standard TRUS prostate biopsy. One large European PBCG cohort was withheld for external validation, where calibra‑
tion‑in‑the‑large (CIL), calibration curves, and area‑underneath‑the‑receiver‑operating characteristic curve (AUC) were 
evaluated. Ten‑fold leave‑one‑cohort‑internal validation further validated the optimal missing data approach.

Results: Among 12,703 biopsies from 10 training cohorts, 3,597 (28%) had clinically significant prostate cancer, 
compared to 1,757 of 5,540 (32%) in the external validation cohort. In external validation, the available cases method 
that pooled individual patient data containing all risk factors input by an end‑user had best CIL, under‑predicting 
risks as percentages by 2.9% on average, and obtained an AUC of 75.7%. Imputation had the worst CIL (‑13.3%). The 
available cases method was further validated as optimal in internal cross‑validation and thus used for development 
of an online risk tool. For end‑users of the risk tool, two risk factors were mandatory: serum prostate‑specific antigen 
(PSA) and age, and ten were optional: digital rectal exam, prostate volume, prior negative biopsy, 5‑alpha‑reductase‑
inhibitor use, prior PSA screen, African ancestry, Hispanic ethnicity, first‑degree prostate‑, breast‑, and second‑degree 
prostate‑cancer family history.

Conclusion: Developers of clinical risk prediction tools should optimize use of available data and sources even in the 
presence of high amounts of missing data and offer options for users with missing risk factors.

Keywords: Clinical risk prediction, Missing data, Prostate cancer, Validation
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Background
The Prostate Biopsy Collaborative Group (PBCG) was 
established with the aim to improve the understand-
ing of heterogeneity in prostate cancer biopsy outcomes 
across international clinical centers [1]. Figure  1 shows 
the range of number of biopsies and prevalence of clini-
cally significant prostate cancer, defined as Gleason 
grade group ≥ 2, across 11 PBCG cohorts. Previously, the 
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PBCG developed an online risk tool based on the small 
set of standard risk factors routinely collected in prac-
tice: prostate-specific antigen (PSA), digital rectal exam 
(DRE), age, African ancestry, first-degree prostate can-
cer family history, and history of a prior negative pros-
tate biopsy [2]. For developing the prior tool, multiple 
methods for aggregating clinical data on a small number 
of variables across heterogeneous centers comprising dif-
ferent risk factor distributions and risk factor-outcome 
associations were compared. The simplest approach of 
pooling individual-level data and fitting a multiple logis-
tic regression model proved to be most accurate [3]. The 
resulting risk calculator was published online at riskcalc.
org to facilitate its use in daily routine [4–8].

The PBCG had requested additional risk factors to 
those included in the current tool from its participating 
cohorts, but these were less rigorously collected, with 
some cohorts not collecting some of the risk factors at 
all (Fig. 2). We wanted to develop an adaptive tool using 
all the information available in Fig.  2 that would allow 

the user to enter as much (or as little) information as 
possible.

Missing data in clinical research is a ubiquitous prob-
lem, and a large number of statistical methods to account 
for it have been proposed [9, 10]. Most methods are 
applied to missing values in training data sets used to 
develop a model, but with the emerging use of online 
and electronic record embedded clinical risk tools, 
approaches for handling missing risk factors on the user 
end of a risk tool requiring the predictor are coming into 
play. Recently, real-time imputation was proposed to 
extend needed cardiovascular disease management for 
patients with missing risk factors [11].

The aim of this study was to construct a clinically 
significant prostate cancer risk tool that would opti-
mize the use of data from heterogeneous cohorts with 
varying missing data patterns and allow end-users of 
the tools access even when missing some risk factors. 
In terms of development of a risk model on multiple 
cohorts with varying missing data patterns, we found 

Fig. 1 Sample sizes represented by the height of rectangles and prevalence of significant prostate cancer represented by the width of rectangles 
for the 11 PBCG cohorts used in the study. The cohorts have been numbered according to their rank of clinically significant prostate cancer 
prevalence. The  3rd cohort in black outline was withheld to serve as an external validation cohort with the remaining 10 cohorts used for training 
prediction models
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four philosophically distinct approaches: available case 
analyses, ensembles of cohort-specific models, miss-
ing indicator methods, and imputation. We compared 
six variations of these approaches and selected an opti-
mal one for this application. For the end-user side, we 
adopted an individual patient tailored approach as we 
have implemented in previous tools, whereby the user 
inputs the risk factors he has available and a resulting 
prediction based on those risk factors is returned [2, 12].

Methods
The study was based on risk factor and outcome data 
collected from January 2006 to December 2019 from 
trans-rectal systematic 10–12 core biopsies from 10 
PBCG cohorts spanning North America and Europe 
used for training and one PBCG European cohort used 
for validation (Figs.  1, 2, and S1). The risk factors col-
lected included the standard risk factors used in clini-
cal practice for prostate cancer diagnosis along with 
other less commonly used risk factors, but with proven 

associations to prostate cancer. All PBCG data were col-
lected following local institutional review board (IRB) 
approval from the University of Texas Health Science 
Center of San Antonio, Memorial Sloan Kettering Cancer 
Center (MSKCC), Mayo Clinic, University of California 
San Francisco, Hamburg-Eppendorf University Clinic, 
Cleveland Clinic, Sunnybrook Health Sciences Centre, 
Veterans affairs (VA) Caribbean Healthcare System, VA 
Durham, San Raffaele Hospital, and University Hospi-
tal Zurich. Analyses for this retrospective study were 
approved by the Technical University of Munich Rechts 
der Isar Hospital ethics committee, with all methods per-
formed in accordance with the guidelines and regulations 
of the committee. As data collected were anonymized 
and obtained as part of standard clinical care, consent 
was waived by all IRB’s, except regarding second-degree 
prostate cancer and first-degree breast cancer family his-
tory for the VA Durham. Written consent for these vari-
ables was obtained and documented as part of a larger 
separate study at the VA Durham prior to the beginning 

Fig. 2 Amount of missing risk factor data by cohort on the x‑axis; all patients were required to have prostate‑specific antigen (PSA) and age, hence 
0% missing for these covariates. The  3rd cohort separated by the black vertical line is used as an external validation set, and leave‑one‑cohort‑out 
cross‑validation was applied to the other cohorts. Cohorts were sorted by missing data pattern
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of this study. All institutional PBCG IRB approvals are 
maintained by the MSKCC central data coordinating 
center and IRB.

The 10 cohorts used for training the model followed the 
PBCG prospective protocol in data collection, whereas 
the external validation cohort supplied retrospective 
data from a single institution that performs a high annual 
number of prostate biopsies to the PBCG [2, 3]. Included 
data came from patients who had received a prostate 
biopsy following a PSA test under local standard-of-care 
and may be seen as representative of patients in North 
America, including Puerto Rico, and Europe. MRI biop-
sies as well as prostate biopsies from patients with pros-
tate cancer were excluded. Clinically significant prostate 
cancer was defined as Gleason grade group ≥ 2 on biopsy 
[13]. For users of the developed risk calculator, two risk 
factors were mandatory: PSA and age. Ten risk factors 
were optional: DRE, prostate volume, prior negative 
biopsy, 5-alpha-reductase-inhibitor use, prior PSA screen 
(yes/no), African ancestry, Hispanic ethnicity, first- and 
second-degree prostate cancer- and first-degree breast 
cancer-family history.

We performed a literature search to identify the six 
most commonly used approaches for handling missing 
data in multivariable logistic regression modeling, for 
either single or multiple cohorts as found in this study. 
All of the approaches could be implemented in the R sta-
tistical package. Our aim was to identify the most accu-
rate approach for implementation in the online tool. To 
increase flexibility of the tool, we tailored each method to 
the specific list of risk factors available for an individual. 
That is, for a validation set, the algorithms were applied 
for each individual in the validation set separately. All 
algorithms return logistic-regression-based expressions 
for probability of clinically significant prostate cancer; 
the cohort ensemble approach averages these for the 

individual cohorts. The methods are summarized in 
Tables 1 and S1.

The available cases algorithm pooled individual level 
data from the training cohorts with information on the 
variables that the end-user had available, fit a main effects 
logistic regression model for clinically significant pros-
tate cancer to the training data, and used the coefficients 
in a tailored prediction model for the target patient. The 
iterative Bayesian information criterion (BIC) selection 
method added stepwise BIC-based model selection to 
the available cases algorithm, allowing two-way interac-
tions to be included. If a risk factor was not chosen in the 
optimal model by the selection process, the procedure 
was re-started excluding the risk factor, allowing for a 
greater number of individuals from the training set to be 
included in model development.

Rather than pooling data across cohorts, the cohort 
ensemble method constructed separate models for each 
cohort, restricting to risk factors available by the end-
user and collected by the training cohort. A risk factor 
was considered available in a training cohort if it was 
measured in 40% or more participants, otherwise it was 
considered missing and not included so as not to prohibi-
tively reduce the sample size for constructing a cohort-
specific model. Because models were fit to single cohorts 
and some of the cohorts had small sample sizes, informa-
tion from individual cohorts could be low or considered 
inadequate for robust multivariable model construction, 
as for example, cohort 10 with only 243 biopsies. Such 
cohorts were not excluded because while they may lack 
power for obtaining statistical significance of individual 
coefficients, the goal here was optimizing out-of-sample 
prediction. Cohort-specific risks were averaged over the 
cohorts for the result provided to the end-user.

The categorization algorithm returned to pool-
ing data across all training cohorts, and additionally 

Table 1 Methods for fitting individual predictor‑specific risk models for members of a test set by combining data from multiple 
cohorts. All individuals in the training and test cohorts have 2 predictors, PSA and age, and then any subset, including none, of 10 
additional predictors for a total of 12 predictors, denoted by X . The set of predictors available for the new individual is denoted by 
X
∗ . All models use logistic regression for prediction of clinically significant prostate cancer. MICE = Multiple imputation by chained 

equations; BIC = Bayesian Information Criterion defined as the ‑2(maximized log likelihood) + (number of covariates) × log(sample size)

Method Definition

Available cases Pool individual‑level data that have X∗ measured across all cohorts and fit a model including X∗ as main effects

Iterative BIC selection Same as available cases, but with an iterative stepwise BIC‑based model selection to determine the optimal subset of X∗ and 
interactions

Cohort ensemble Separate models are built to each cohort by using the coinciding variables of the cohort and the patient

Categorization All individuals in all cohorts are used. Predictors are categorized with missing as one of the categories so that the complete list 
of predictors X is used

Missing indicator Include an indicator for missing a continuous predictor value and the interaction with the predictor as additional variables in 
the analysis. Mostly similar to Categorization

Imputation Impute missing covariates in the training set following the MICE method. Mean imputation for missing values in prediction
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transformed all continuous risk factors to categorical 
so that missing could be added as an extra category. 
For inherently categorical risk factors, such as DRE, 
categories were coded as normal, abnormal, and miss-
ing. Prostate volume was stratified to < 30, 30—50 
and > 50  cc, as previously suggested so that it could 
be obtained by pre-biopsy DRE or TRUS, before add-
ing the additional category of missing [14]. The advan-
tage of this approach was that only one model is fit and 
needed by the end-user. The missing indicator algo-
rithm was similar to the categorization algorithm, but 
did not require categorization of continuous variables 
[15]. Instead, it introduced an indicator equal to 1 if 
the corresponding risk factor was missing versus 0 if 
not missing. The model included the indicator and the 
interaction with the risk factor. Since prostate volume 
was the only continuous risk factor that was some-
times missing, the missing indicator algorithm differed 
from the categorization algorithm in only one variable. 
Second-degree prostate cancer- and first-degree breast 
cancer family history were either both collected or not 
at all by the individual cohorts. Adding a missing cate-
gory to them would therefore induce multi-collinearity. 
In order to avoid this, they were combined to a single 
new 5-category risk factor with second-degree pros-
tate cancer family history only, first-degree breast can-
cer family history only, both present, none present or 
missing.

Multiple imputation has been recommended for fit-
ting statistical models to training data to handle either 
outcomes or risk factors missing at random (MAR) 
[16]. In the case here, the outcome of clinically sig-
nificant prostate cancer was not missing for any indi-
viduals so imputation was applied only for missing 
risk factors. Data were pooled across all ten cohorts to 
form the training set and imputation was applied using 
the pooled set and not by cohort. For a patient in the 
training set with multiple missing risk factors, multi-
ple imputation by chained equations (MICE) sequen-
tially imputes missing data according to full conditional 
models appropriate to the risk factor data type using 
all other risk factors available as covariates along with 
the outcomes that have been fit to complete cases in 
the training set [16, 17]. The R mice package uses 5 
imputations as default and the literature has also rec-
ommended 10 iterations [16, 18]. We implemented 30 
imputations, as the average percentage of missing val-
ues across all risk factors in the training set, and aver-
aged models built on the 30 imputed data sets for the 
final training set risk model. For the end-user or mem-
ber of the validation set who is missing a risk factor, the 
algorithm imputed its value using mean values from 
the training set only, and not from other members of 

a validation set, as the latter would not be available in 
practice [17].

External validation on the European cohort, which was 
not used for training, was measured by discrimination 
using the area under the receiver-operating-characteris-
tic curve (AUC) along with its 95% confidence interval 
(CI), calibration in the large (CIL), which evaluates the 
average difference between the predicted risk and binary 
clinically significant prostate cancer outcome for each 
patient in the validation set, and calibration-in-the-small 
by calibration curves of observed versus predicted risk 
according to deciles of predicted risk. Internal leave-one-
cohort-out cross-validation using the same metrics was 
also performed, by alternatively holding out one of the 10 
PBCG cohorts used for training the model as a test set 
and training the models on the remaining 9 cohorts. Dis-
tributions of AUCs and CILs from the 10 test validations 
were visualized by violin plots showing smoothed histo-
grams and boxplots showing medians and inter-quartile 
ranges. All analyses were performed in the R statistical 
package [19].

Results
Among 12,703 biopsies from 10 PBCG cohorts used for 
training, 3,597 (28%) had clinically significant prostate 
cancer, compared to 1,757 out of 5,540 (32%) clinically 
significant prostate cancer cases in the external valida-
tion cohort (Fig. 1). All cohorts collected PSA and age but 
varied in collection of the other 10 risk factors, with some 
cohorts not collecting some risk factors at all (Fig. 2). Dif-
ferences between the cohorts in terms of distributions of 
the twelve risk factors and their associations with clini-
cally significant prostate cancer are shown in Fig S1.

In leave-one-cohort-out internal cross-validation 
across the ten PBCG cohorts to ultimately be used 
for training the online model, the iterative BIC selec-
tion method had the lowest median CIL (-0.2%), while 
the available cases method had the highest (2.6%), all of 
which are minor in magnitude (Fig. 3). CIL values ranged 
from -11 to 11% across the ten cohorts used as test sets. 
All six methods had nearly the same median AUC at 80%, 
and values ranged from 74 to 84% across the ten test sets. 
The categorization and missing indicator methods had 
larger variation in both the CIL and AUC than the other 
methods.

In external validation, all six methods either under- or 
over-predicted observed risks since none of the 95% CIs 
for CIL, computed as the average predicted risk minus 
the disease prevalence in the external validation cohort 
(32%), contained the value 0 (Table 2). The available cases 
method was the most accurate, under-predicting risk on 
average by 2.9%. The categorization and missing indi-
cator methods over-predicted risks by 3.5% and 4.2%, 
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respectively, while all other methods under-predicted 
risks, with imputation the worst by 12.4% (Table 2, Fig. 4). 
The AUCs ranged from a low of 75.4% for the iterative 
BIC selection method to a high of 77.4% for the missing 
indicator method, but all 95% CIs overlapped (Table 2).

Comparisons of individual predictions from the six 
different methods for the 5,540 members of the external 

validation cohort are shown in Fig. 5. As can be seen on 
the diagonal, for all methods the distribution of predicted 
risks for clinically significant prostate cancer cases were 
higher than for non-clinically significant prostate can-
cer individuals, but considerable overlap remained. Cor-
relations of predictions by the 6 methods were high, all 
exceeding 0.8. The iterative BIC selection, cohort ensem-
ble and available case methods were similar methods, 
all just using complete cases for the risk factor profile a 
specified individual has, and hence were highly corre-
lated. The remaining three methods adjusted for missing 
data in some manner and were less correlated with these 
methods, with categorization the least correlated, though 
still very highly correlated.

We chose the available cases method for implementa-
tion of the risk tool online since it showed the most accu-
racy in terms of calibration in external validation (Fig. 4), 
where all six methods showed equivalent AUCs (Table 2). 
AUCs and CILs across the 10 cohorts used as test sets in 
the internal leave-one-cohort-out cross-validation were 

Fig. 3 CIL and AUC performing leave‑one‑cohort‑out cross‑validation on 10 PBCG cohorts. Median values are indicated with numbers and as 
vertical lines in the boxes

Table 2 External validation CIL and AUC values with risks as 
percentages along with 95% confidence intervals (CI)

Method CIL (95% CI) AUC (95% CI)

Available cases ‑2.9 (‑4.0, ‑1.8) 75.7 (74.4, 77.1)

Iterative BIC selection ‑8.6 (‑9.7, ‑7.5) 75.4 (74.0, 76.8)

Cohort ensemble ‑7.1 (‑8.2, ‑6.0) 76.4 (75.1, 77.7)

Categorization 3.5 (2.4, 4.6) 76.6 (75.2, 77.9)

Missing indicator 4.2 (3.1, 5.3) 77.4 (76.1, 78.7)

Imputation ‑13.3 (‑14.4, ‑12.2) 75.9 (74.5, 77.2)
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also similar, and the available cases method had the low-
est variability (Fig. 3). The available cases method is less 
computationally intensive compared to multiple impu-
tation and is valid under MAR assumptions based on 
unobserved risk factors and outcomes, which though 
untestable may be assumed as approximately hold-
ing when all established risk factors for outcomes are 
assumed to have been collected [20].

To implement the prediction tool online, we fit 1,024 
models to allow for all possible missing risk factor pat-
terns among 10 risk factors in order to use the maximum 
prostate biopsies possible from the 10 PBCG cohorts. 
R code for all 1024 models is available at the Cleveland 
Clinic Risk Calculator library, https:// riskc alc. org/ Exten 
dedPB CG/, as well as in the Additional file 2.

The smallest model only contains PSA and age, utiliz-
ing all 12,703 biopsies from the 10 PBCG cohorts since 
these two risk factors were measured for all individu-
als. The largest model contains all 12 risk factors and 

was constructed from only 1,334 biopsies from 3 PBCG 
cohorts, as these were the only complete cases. These 
two risk models are shown in Table  3, with all possi-
ble models accessible online at riskcalc.org. Evaluated 
on the same validation set of 5,540 biopsies as used for 
Table 2, the original PBCG risk tool published in 2018 
[2] based on only 6 of the 12 risk factors used here 
obtained a CIL of -5.9 (95% CI -7.1, -4.7), and an AUC 
of 66.9 (95% CI 65.4, 68.5), which is 10 points lower 
than any of the methods incorporating the additional 
risk factors. Adding just prostate volume to these six 
risk factors and evaluating on the validation set yielded 
a CIL of -10.1 (95% CI -11.2, -9.0), and an AUC of 75.6 
(95% CI 74.2, 76.9; p-value < 0.0001 for test of equality 
of this AUC to that from the standard model). Assess-
ment of prostate volume, however, requires an invasive 
procedure that is not routinely performed in advance of 
the prostate biopsy.

Fig. 4 Calibration plots with shaded pointwise 95% confidence intervals for the 6 modeling methods applied to 10 PBCG training cohorts 
and validated on the external cohort. The diagonal black line is where predicted risks equal observed risks, lines below the diagonal indicate 
over‑prediction, and lines above under‑prediction, on the validation set

https://riskcalc.org/ExtendedPBCG/
https://riskcalc.org/ExtendedPBCG/
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Discussion
Systematic missing clinical data across heterogeneous 
cohorts poses analysis challenges for both model devel-
opers and end-users. We compared six methods that 
have been proposed for handling missing data with the 
objective of finding the method most likely to perform 
well in multiple external validation studies of a globally 
accessible online risk tool. As with all online risk tools, 
online publication of the original PBCG continues to 
result in published external validation studies providing 
evidence for or against its generalizability to other pop-
ulations, particularly in comparison to other published 
tools [4, 21–26]. To date, by exclusion of prostate volume, 
the original PBCG tool has competed less favorably with 
the other tools incorporating this information. Publica-
tion of the expanded risk tool incorporating prostate vol-
ume will hopefully increase its accuracy for doctors and 
patients as to be evinced by forthcoming external valida-
tion studies.

Available case methods have been recommended by 
statisticians as being robust against missing at random 
(MAR) data mechanisms [10, 20, 27]. The majority of risk 
factors collected across the PBCG are those typically col-
lected in urological clinics from men presenting for PSA 
screening or follow-up. The most ubiquitous and predic-
tive risk factors, PSA and age, have been collected for all 
PBCG participants, and so are exempt from missing data 
assumptions. Men typically receive multiple PSA screen-
ing tests, the PBCG used the PSA most recent to but 
prior to the prostate biopsy. The assumption of MAR for 
the remaining risk factors may be questionable in some 
cases, for example prostate volume may not have been 
reported when the value was assessed to be too low or 
clinically significant prostate cancer was not discovered 
on biopsy. There is no statistical test for MAR, hence we 
relied on external and internal cohort-based validations 
to compare the available case to competing methods for 
selection of the method producing optimal performance 

Fig. 5 Marginal and pairwise comparisons of predictions from the 6 methods for the 5543 biopsies of the external validation set, pooled and 
stratified by clinically significant prostate cancer status (31.7% with clinically significant prostate cancer). Corr indicates Pearson correlation. 
Turquoise indicates individuals with clinically significant prostate cancer and purple not
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across a range of scenarios that would be encountered in 
practice.

The missing indicator method has been shown to 
potentially result in biased odds ratios, even when data 
are missing completely at random, meaning no rela-
tion, conditional or not, between whether a risk factor 
is missing and all other variables, leading to strong rec-
ommendations against its use for causal or explanatory 
inference [10, 20, 28]. The categorization method suffers 
from the same potential biases since it changes all con-
tinuous predictors to categorical ones before applying 
the missing indicator method. A recent study affirmed 
that such methods could be used for randomized trials as 
the missing-ness of protocol-specified variables would be 
randomized by the random treatment assignment, thus 
eliminating systematic bias [15].

The emergence of clinical risk prediction tools embed-
ded in electronic health records, where missing data are 
large and systematic, has led to support for the missing 
indicator method used in model development to match 
the method used when the model is deployed, and that 
if informative presence is potentially informative with 
respect to prediction, then it should be leveraged [29, 30]. 
Machine learning and other supervised learning meth-
ods follow the principle of developing prediction models 
to optimize accuracy on internal and external validation, 
often with uninterpretable models. The renown James–
Stein result shows that an estimator with effects shrunk 
towards zero can be preferable to the unbiased estima-
tor, and these concepts are often applied in regularized 
regression approaches for situations with high numbers 
of predictors [31]. Alternative statistical approaches to 
evaluating competing methods for handling missing 
data concern themselves with evaluation of bias and effi-
ciency under simulation of theoretical scenarios. Hoog-
land et  al. (2019) performed an extensive simulation 
study of 9 methods for accommodating missing data in 
6-variable logistic regression under 8 missing data mech-
anisms, including MAR and missing completely at ran-
dom (MAR) [32]. Their simulation showed the available 
case method used for the risk tool developed here, which 
they referred to as the  2 k submodels method, performed 

Table 3 Odds ratios from the largest, standard, and smallest 
models in terms of number of 12 risk factors available from an 
end‑user. Sample sizes are the number of individuals in the 
training set with all risk factors available (complete cases), and 
number of cohorts contributing the complete cases. In total 
1,024 models are available based on the option for included 
versus not for 10 risk factors, all except PSA and age

Risk factor Odds ratio 95% CI p-value

Odds ratios for the full model containing 12 risk factors based on a fit to 
1334 prostate biopsies from 3 cohorts

Age 1.07 (1.05, 1.09)  < 0.0001

PSA (log2) 2.38 (1.98, 2.89)  < 0.0001

African ancestry

No Ref – –

Yes 0.68 (0.45, 1.03) 0.08

Prostate volume (log2) 0.25 (0.20, 0.32)  < 0.0001

DRE

Normal Ref – –

Abnormal 1.95 (1.46, 2.60)  < 0.0001

Prior negative biopsy

No Ref – –

Yes 0.32 (0.22, 0.45)  < 0.0001

Hispanic ethnicity

No Ref – –

Yes 1.08 (0.78, 1.50) 0.6

5‑alpha‑reductase‑inhibitor use

No Ref – –

Yes 0.96 (0.63, 1.44) 0.8

Prior PSA screen

No Ref – –

Yes 0.71 (0.38, 1.34) 0.3

First‑degree prostate cancer family history

No Ref – –

Yes 1.93 (1.38, 2.69) 0.0001

Second‑degree prostate cancer family history

No Ref – –

Yes 1.30 (0.86, 1.96) 0.2

First‑degree breast cancer family history

No Ref – –

Yes 1.15 (0.77, 1.70) 0.5

Odds ratios for the model containing the 6 standard risk factors based 
on a fit to 8432 prostate biopsies from 9 cohorts

Age 1.05 (1.04, 1.06)  < 0.0001

PSA (log2) 1.99 (1.86, 2.12)  < 0.0001

African ancestry

No Ref – –

Yes 1.26 (1.11, 1.44) 0.0005

DRE

Normal Ref – –

Abnormal 2.57 (2.29, 2.88)  < 0.0001

Prior negative biopsy

No Ref – –

Yes 0.28 (0.24, 0.32)  < 0.0001

Table 3 (continued)

Risk factor Odds ratio 95% CI p-value

First‑degree prostate cancer family history

No Ref – –

Yes 1.94 (1.70, 2.22)  < 0.0001

Odds ratios for the smallest model containing 2 risk factors based on a 
fit to 12,703 prostate biopsies from 10 cohorts

Age 1.05 (1.05, 1.06)  < 0.0001

PSA (log2) 1.72 (1.64, 1.80)  < 0.0001
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optimally in terms of lowest bias of the AUC along with 
multiple imputation. Their simulation scenarios con-
tained fewer covariates, did not consider calibration, and 
did not contain multiple cohorts as in this study. In lieu 
of simulation, this study performed leave-one-cohort-out 
cross-validation and long with the gold standard of exter-
nal validation on a completely independent cohort as the 
tool would be used in practice. Further simulation stud-
ies using logistic regression coefficients as found in this 
study could be performed and would be likely to confirm 
the choice of method as found by Hoogland et al. (2019).

Across the validations performed in the PBCG, the 
potentially biased missing indicator and categorization 
methods did not perform substantially worse than the 
available cases methods. But we agree that caution should 
be exercised towards their use when data are combined 
across cohorts, where some cohorts do not collect some 
risk factors at all, as was the case with extended family 
history in this study. In this case, the effect of the missing 
category was confounded with that of cohort. The coef-
ficient for missing prostate volume following the miss-
ing indicator method fit to the 10 PBCG cohort data was 
close to zero, meaning a patient with missing prostate 
volume had nearly 0 odds of clinically significant prostate 
cancer compared to a person not missing prostate vol-
ume, which can only be a cohort effect.

Conclusion
In addition to contributing to model development tech-
niques for systematic missing data across heterogene-
ous cohorts, we have provided helpful methods for the 
end-user of online risk tools, namely the fit of multiple 
models for different risk factor missing data patterns. 
Such work enables more users to access online risk tools. 
Each model was fit to all complete cases that contained 
the risk factors, thus optimizing information and accu-
racy for the user. Our online tool requires PSA and age 
for use, and any collection of up to 10 additional risk fac-
tors. As consortia and available data grow in size, so does 
the amount of missing data. A flexible modeling strategy 
accommodating missing data on both the development- 
and user-end maximizes information by utilizing multi-
ple data sources and increases accessibility to a broader 
band of patients, by including those limited in risk factor 
assessment.
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